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ABSTRACT

A search for an estimator of g in the Normal Linear Model which has
better mean squared error properties than the usual least squares
estimator is undertaken. The properties of some classical
techniques such as restricted least squares, which includes the
selection of a subset of the independent variables, are examined,
along with more recent techniques such as ridge regression and
Bayesian estimators. Most of these can be shown analytically to
improve over least squares only when the true parameter vector g is
in some subspace of the parameter space. Empirical Bayes
estimators are in general difficult to handle analytically, and so
several of these are studied by Monte Carlo methods. A particular
modification of one of these empirical Bayes estimators is found to
improve over least squares over a iarge region of the parameter
space, and it’s use is demonstrated on a small data set. Some
suggestions for further Improvement of this estimator are given and
some techniques for further study of estimators by Monte Carlo

methods are recommended.
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1 INTRODUCTION

This thesis is concerned with estimators of § in the Normal Linear

Model,

Yoo KR E

where y is an nxl vector of observed variables, X is an nxp matrix
of known constants, B is 4an unobservable pxl vector of coefficients
and £ is an nxl vector of unobservable random errors assumed to be
independently and identically Normally distributed with zero mean

and constant, but generally unknown variance o2. This is written
£ ~ N(0,a21).

The more general case where £ ~ N(0,0“V) will not be explicitly
discussed here since, 1f V is of full rank, the model can be

reparameterised to conform to the simpler Normal Linear Model.

It is well knowa that ameng unbiased estimators of §, the least

squares estimate
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has minimum varilance. However this does not guarantee that the
variance of the least squares estimate will be small and it is fer
this reason that some biased estimation techniques are considered
here. The criterion adopted as a measure of the goodness of an
estimator will be mean squared error , mse or MSE, where for a

particular estimator b,

mse(b) = E(b ~ B)T(b - B)
and MSE(b) = E(b - B)(b - B8) .

E has the usual meaning of "the expected value of". It is hoped to

find an estimator which has good mean squared error properties when



compared with least squares.

Various biased estimators, including some commonly used variants of
least squares, are discussed in Chapter 2. The emphasis is on
their mean-squared error performance over different regions of the
parameter space for B and o2. Then in Chapter 3, several
simulation experiments are reported. These experiments investigate
the mean-squared error performance of two Stein-type estimators and
several stochastic ridge estimators over a wide range of the
parameters. As the experiments progress a heuristically modified
stochastic ridge estimator is developed which appears to have good
mean-squared error properties. A numerical example demonstrating
the use of this estimator is given in Chapter 4. Finally a
summary, including suggestions for further study of stochastic ridge
estimators and a discussion of several aspects of simulation studies
and mean-squared error performance of estimators is presented in

Chapter 5.



