Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Characterization of an AtPAP26-like protein (TrPAP26) from white clover (*Trifolium repens* L.)

A thesis presented in partial fulfillment of the requirements for the degree of

Master of Science in Plant Biology

At Massey University, Palmerston North, New Zealand

Jennifer Y. Huang

2013

Abstract

Phosphate levels in soils are often in deficit in New Zealand agriculture systems, resulting in the need for phosphate supplements in the form of fertilizers. Plants are able to adapt to many environmental stresses and display a wide range of responses designed to cope with phosphate-deficiency, and the study of these may lead to the production of crop and pasture plants that can utilize added P more efficiently. One adaptive mechanism is to express purple acid phosphatase (PAP) genes, the protein products of which are able to generate, transport, and recycle inorganic phosphates from phosphate-rich compounds both intracellularly and extracellularly. Their general mechanism of action is to hydrolyze phosphaterich esters that are found within cells, the cell wall or in the rhizosphere. One PAP, AtPAP26, has been extensively characterized in Arabidopsis thaliana and displays high levels of acid phosphatase activity during phosphate-starvation. AtPAP26 has been found to be the predominantly expressed PAP during phosphate-starvation and the enzyme plays a key role in supplying inorganic phosphate to the plant by hydrolyzing the organic phosphates present in the rhizosphere. An AtPAP26-like sequence has been identified previously in white clover and so this project firstly cloned the full-length TrPAP26 and then examined expression in response to phosphate-starvation. The protein product (TrPAP26) was also characterized and compared to AtPAP26 in terms of its putative biochemical functions.

TrPAP26 was predicted to be a 55 kDa protein with three N-glycosylation sites, a signal peptide of 21 amino acid residues, and a metal-ligating motif typical of PAPs. Its observed mass was closer to 45 kDa, and preliminary experiments, using recombinant TrPAP26 partially purified from transgenic tobacco, suggested that it hydrolyzed a wide range of phosphate-rich esters including adenosine triphosphate (ATP), phosphoenolpyruvate (PEP), and pyrophosphate (PPi), but not inositol hexakisphosphate (phytate). *TrPAP26* transcript levels were found to be constitutive in the roots of white clover, but correlated positively with phosphate supply in other tissues. The protein and activity levels were not directly correlated with the transcript levels suggesting other methods of regulation such as post-

translational modifications, including N-glycosylation. TrPAP26 accumulated more in the mature leaves of white clover plants grown with a full supply of phosphates. Taken together, these results suggest that TrPAP26 may play a role in internal P remobilization, rather than P scavenging directly.

Acknowledgements

I gratefully acknowledge the following people for all their help, without which I could not have completed this project:

- My supervisor Dr. Michael T. McManus for his excellent supervision throughout the course of this project,
- Susanna Leung for all her technical help,
- The New Zealand Pastoral and Agricultural Research Institute for providing a research grant, and
- All my fellow members of lab C 5.19 for their camaraderie.

Table of contents

Abstract	i
Acknowledgments	iii
List of figures	ix
List of tables	xii
Abbreviations	xiii

I. Introduction 1
1.1 Overview
1.2 P in soils and agriculture 2
1.3 Pi uptake mechanisms by plants 4
1.4 Responses of plants to low Pi5
1.5 Acid phosphatases (APases)9
1.6 Purple acid phosphatases (PAPs) 10
1.7 Genetic strategies to improve phosphate use efficiency
1.8 White clover 13
1.9 White clover and PUE 14
1.10 Project and aims16
2. Materials and methods 17
2.1 Plant material
2.1.1 Maintenance of Trifolium repens (white clover) stock plants 17
2.1.2 Excision and treatment of white clover cuttings
2.2 Chemicals
2.3 Biochemical methods 22
2.3.1 Protein extraction 22
2.3.1.1 Soluble protein and cell wall protein extraction 22
2.3.1.2 Glutathione S-transferase GST protein
purification22

2.3.1.3 Ammonium sulfate precipitation	. 23
2.3.1.4 Dialysis	. 24
2.3.1.5 Immobilized metal ion affinity chromatography	24
2.3.2 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis	
(SDS-PAGE)	25
2.3.3 Coomassie brilliant blue staining	. 26
2.3.4 Western analysis	. 27
2.3.5 Enzyme assays	. 30
2.3.5.1 Protein quantification	30
2.3.5.2 BSA standard curve	. 30
2.3.5.3 pNP standard curve	. 31
2.3.5.4 Inorganic phosphate standard curve	. 31
2.3.5.5 Acid phosphatase activity assay A	34
2.3.5.6 Modification to acid phosphatase activity assay A	. 34
2.3.5.7 Acid phosphatase activity assay B	. 35
2.3.5.8 Root surface acid phosphatase activity assay	. 36
2.4 Molecular methods	. 37
2.4.1 Genomic DNA isolation	. 37
2.4.2 RNA isolation	. 37
2.4.2.1 Generation of cDNA	. 37
2.4.2.1.1 DNase treatment of RNA	. 37
2.4.2.1.2 Reverse transcription	. 38
2.4.3 Quantification and purity assessment of nucleic acid	. 39
2.4.4 Primer design	39
2.4.5 Polymerase chain reaction (PCR) amplification	. 41
2.4.5.1 Semi-quantitative reverse-transcriptase PCR	
(sqPCR)	. 42
2.4.5.2 Quantitative RT-PCR (qPCR)	. 42
2.4.6 Agarose gel electrophoresis	. 42
2.4.7 Gel slice extraction and purification	43
2.4.8 DNA sequencing	44

2.4.9 Vector ligation	45
2.4.9.1 cDNA preparation	45
2.4.9.2 Vector preparation	46
2.4.9.3 Ligation	47
2.4.10 Transformation of bacterial cells	48
2.4.10.1 Preparation of competent <i>E. coli</i> cells	48
2.4.10.2 Transformation of E. coli with pGEM-T vector	49
2.4.10.3 Plasmid DNA purification	50
2.4.10.4 Transformation of E. coli with pGEX-6P-3 vecto	r 50
2.4.10.5 Transformation of Agrobacterium tumefaciens v	vith
pART27 vector	51
2.4.10.6 A. tumefaciens plasmid miniprep	52
2.4.11 Transformation of Nicotiana tabacum with A. tumefacier	IS
plasmid	53
2.5 Bioinformatic techniques	55
2.5.1 Basic local alignment search tool (BLAST)	55
2.5.2 Clustal omega	56
2.6 Statistical analysis	56
3. Results	57
3.1 Isolation of a PAP26-like gene from white clover	57
3.1.1 Obtaining the full-length PAP26-like cDNA sequence	57
3.1.2 Bioinformatic analysis	64
3.2 Biochemical characterization of recombinant TrPAP26	67
3.2.1 Protein expression with the construct TrPAP26::GST	67
3.2.2 Protein expression with the construct Δsp- <i>TrPAP26::GS</i> 7	⁻ 73
3.2.3 Identification of recombinant Δsp- <i>TrPAP26::GST</i> using M	ALDI-
TOF/TOF	77
3.3 Biochemical characterization of purified TrPAP26	80
3.3.1 Transforming tobacco with the construct	
35S::TrPAP26::6xHis	80

3.3.2 Integration of 35S::TrPAP26::6xHis and expression of	
TrPAP26::6xHis in tobacco	81
3.3.3 Assessment of TrPAP26::6xHis accumulated in transgenic	
tobacco lines	85
3.3.4 Affinity-purification of TrPAP26::6xHis protein from tobacco	o 88
3.3.5 Activity of partially purified TrPAP26::6xHis	89
3.4 Expression of TrPAP26 and accumulation of TrPAP26 in response	to
changes in P supply <i>in planta</i>	93
3.4.1 White clover grown in short-term phosphate-deficient (-Pi)	
conditions	93
3.4.2 White clover grown in long-term phosphate-deficient (-Pi)	
conditions	94
4. Discussion	100
4.1 Overview	. 100
4.2 Isolation of an AtPAP26-like gene sequence from Trifolium repens	
(white clover)	101
4.3 Recombinant TrPAP26 expressed in <i>E. coli</i>	. 102
4.3.1 Protein expression with the construct <i>TrPAP26::GST</i>	. 103
4.3.2 Protein expression with the construct Δsp -TrPAP26::GST	. 104
4.4 Recombinant TrPAP26 expressed in tobacco	. 107
4.4.1 35S::TrPAP26::6xHis transcript levels	. 107
4.4.2 TrPAP26::6xHis accumulation	. 108
4.4.3 TrPAP26::6xHis affinity-purification	109
4.4.4 TrPAP26::6xHis activity	110
4.5 Expression of TrPAP26 and accumulation of TrPAP26 in response	to
changes in Pi supply <i>in planta</i>	111
4.5.1 <i>TrPAP26</i> transcript levels	. 112
4.5.2 Acid phosphatase activity in white clover tissues exposed to f	he
+Pi/–Pi treatments	. 114
4.5.3 TrPAP26 protein levels	. 115
4.5.4 Possible physiological role of TrPAP26	. 117
4.5.4 Possible physiological role of TrPAP26	. 117

4.6 Summary
4.7 Future work 119
5. Appendices 121
5.1 Nucleotide sequences of a partial EST (897 bp) of an AtPAP26-like
gene gifted by the New Zealand Pastoral Agricultural Research Institute
(Palmerston North, NZ) (Section 3.1.1)
5.2 Consensus nucleotide sequence from 5 positive colonies harbouring the
pGEM vector with the 1 kb fragment of the putative Tr-PAP26
sequence (Section 3.1.1) 121
5.3 Consensus nucleotide sequence from 10 colonies harbouring the pGEN vector with the 0.4 kb fragment of the putative <i>Tr-PAP26</i> sequence (Section 3.1.1)
5.4.1 Full list of BLAST hits of the 0.4 kb fragment of the putative <i>Tr-PAP26</i>
sequence (Section 3.1.1) 123
5.4.2 BLAST hits of the 1 kb fragment of the putative <i>Tr-PAP26</i> sequence
(Section 3.1.1)
5.5 Full contig nucleotide sequence of the partial EST sequence obtained
from AgResearch (Appendix 5.1) and 1 kb fragment of the putative <i>Tr</i> -
PAP26 sequence Appendix 5.2) (Section 3.1.1)
5.6 Full-length nucleotide sequence of <i>TrPAP26</i> with putative start codon
and stop codon bolded (section 3.1.1)
5.7 BLAST matches after MALDI-TOF/TOF for the ~72 kDa putative
recombinant Δ sp-TrPAP26::GST fusion protein (Fig. 3.8B, lane 11)
(section 3.2.3)
5.8 BLAST match after MALDI-TOF/TOF for the ~55 kDa unknown
recombinant protein (Fig. 3.8B, lanes 11 and 12) (section 3.2.3) 134
5.9 BLAST match after MALDI-TOF/TOF for the ~50 kDa putative
recombinant Δ sp-TrPAP26 protein (Fig. 3.8B, lane 12) (section 3.2.3)
5.10 Primer design and rationale (section 2.4.4 and table 2.1) 135
5.11 qPCR protocol (section 2.4.5.2)
6. References

List of figures

Schematic representation of the major components of the soil-plant
P cycle in agricultural systems 3
A model suggesting various adaptive metabolic processes (indicated
by asterisks) that are believed to help plants acclimate to Pi-
deficiency
A classification scheme for Arabidopsis PAPs based on clustering
analysis of amino acid sequences
Drawing of a main stolon (MS) of white clover, showing axillary buds
(AB), lateral branches (LB), and a lateral stolon (LS) 19
Four-nodal stolon cutting prior to planting in vermiculite to induce
roots at nodes 3 and 4 (arrowed)
A. Example of white clover stolon cutting grown in -Pi media for 21
days. B. Schematic of the stolon cutting to indicate the harvested
tissues
A diagrammatic set up for the electrophoretic transfer of proteins
from an acrylamide gel to a PVDF membrane
BSA standard curve used for protein quantification
pNP standard curve used for measuring acid phosphatase activity 33
Inorganic phosphate standard curve used for measuring acid
phosphatase activity
PCR products separated using 1% (w/v) agarose gel
electrophoresis
Separation using 1% (w/v) agarose gel electrophoresis of a PCR
product of <i>T. repens</i> cDNA amplified using the gene-specific forward
and reverse primers
Clustal multiple sequence alignment of the 0.4 kb and 1 kb
fragment

Figure 3.4	The translated sequence of <i>TrPAP26</i> from the putative initiating
	methionine (M) to the stop codon (*)
Figure 3.5	Coomassie blue stain of the induced expression of TrPAP26::GST in
	<i>E. coli</i> after separation using 12% SDS-PAGE
Figure 3.6	Coomassie blue stain of the induced (+IPTG) or non-induced (-IPTG)
	expression of TrPAP26::GST in E. coli strain BL21 after separation
	using 12% (w/v) SDS-PAGE 71
Figure 3.7	Separation of TrPAP26::GST expressed in <i>E. coli</i> origami using 12%
	SDS-PAGE followed by western blotting using the anti-AtPAP26
	antibody (A) or anti-AtPAP12 antibody (B)72
Figure 3.8	Acid phosphatase assay on TrPAP26::GST, TrPAP26, and a crude
	plant extract activity, as indicated73
Figure 3.9	Separation of Δ sp-TrPAP26::GST expressed in <i>E. coli</i> origami using
	12% SDS-PAGE followed by western blotting using the anti-
	AtPAP26 antibody (A) or anti-AtPAP12 antibody (B)76
Figure 3.10	Alignment of the tryptic peptide sequences generated from the 72
	kDa band (Fig. 3.8B, lane 11) 78
Figure 3.11	Alignment of the tryptic peptide sequences generated from the 57
	kDa band (Fig. 3.8B, lanes 11 and 12)78
Figure 3.12	Alignment of the tryptic peptide sequences generated from the 45
	kDa band (Fig. 3.8B, lane 12) 79
Figure 3.13	Acid phosphatase assay of Δ sp-TrPAP26::GST and Δ sp-TrPAP26
	as glutathione-sepharose purified proteins, as indicated
Figure 3.14	Development of tobacco leaf pieces 21 days after inoculation with
	Agrobacterium tumefaciens
Figure 3.15	Separation of PCR products amplified from the genomic DNA
	isolated from putative transgene lines or control lines of tobacco 83
Figure 3.16	Separation of PCR products amplified from the cDNA isolated from
	putative transgene lines or control lines of tobacco
Figure 3.17	Analysis of TrPAP26 expression using semi-quantitative PCR 84

Figure 3.18	Acid phosphatase determined in the wall fraction (A) or soluble
	fraction (B) in the transgenic and control (C2-C10) tobacco lines 86
Figure 3.19	Separation of soluble (top panel) or cell wall (bottom panel) protein
	extracts from putative transgenic plants (lanes 1-8) or control plants
	(C6, C8, C10) using 12% (w/v) SDS-PAGE, following by western
	blotting using the anti-AtPAP12 antibody
Figure 3.20	Acid phosphatase activity assay of the soluble protein extract and
	affinity-purified protein
Figure 3.21	Separated proteins from transgenic plant line 8 or control plant line
	C8, as indicated, that were either bound to the chelating sepharose
	or remained unbound in the supernatant
Figure 3.22	Separation of protein extracts from transgenic plant line 8 and control
	plant line C8, as indicated, using 12% (w/v) SDS-PAGE and western
	blotting using the anti-AtPAP12 antibody
Figure 3.23	Acid phosphatase activity assay with or without MgCl ₂ 91
Figure 3.24	<i>TrPAP26</i> expression in the roots of plants grown in +Pi or –Pi media,
	as indicated, for 24 hours
Figure 3.25	<i>TrPAP26</i> expression in the roots of plants grown in +Pi or –Pi media,
	as indicated, for 7 days94
Figure 3.26	Acid phosphatase activity of whole elongation zone roots of plants
	grown in +Pi or –Pi media, as indicated, for 16 or 18 days
Figure 3.27	qPCR of TrPAP26 expression in various tissues from white clover
	grown in +Pi or –Pi for 21 days
Figure 3.28	Acid phosphatase activity assay of soluble (A) and cell wall protein
	extracts (B) from the tissues, as indicated, and subjected to +Pi or –
	Pi treatment, as indicated
Figure 3.29	Separation of protein extracts from white clover grown in +Pi or -Pi
	media, as indicated by "+" or "-", respectively, using 12% (w/v) SDS-
	PAGE and western blotting using the anti-AtPAP12 antibody 99

List of tables

Table 2.1	List of custom-made primers used	40
Table 2.2	List of pre-made primers used	40
Table 3.1	BLAST alignments against the consensus sequence of the 0.4 kb	
	fragment generated using the "TrPAP26 F1" and "TrPAP26 F2"	
	primers	60
Table 3.2	BLAST alignments against the consensus sequence of the 1 kb	
	fragment generated using the "TrPAP26 F1" and "TrPAP26 F2"	
	primers	61
Table 3.3	Predicted features of the translated TrPAP26 sequence	66
Table 3.4	Substrate specificity assay using the affinity-purified protein from	
	transgenic line 8 and control line C8	92

Abbreviations

inorganic phosphate-deficient
inorganic phosphate-sufficient
six histidine residues
ampicillin
ammonium persulfate
adenosine triphosphate
Arabidopsis thaliana purple acid phosphatase 12
Arabidopsis thaliana purple acid phosphatase 26
6-benzyl aminopurine
5-bromo-4-chloro-3'-indolyphosphate
basic local alignment search tool
base pairs
bovine serum albumen
complementary deoxyribonucleic acid
centimetre
Dalton
diethylpyrocarbonate
deoxyribonucleic acid
dithiothreitol
ethylenediaminetetraacetic acid
expressed sequence tag
first fully expanded leaf
gram
gravity
glyceraldehyde 3-phosphate dehydrogenase
guanidine and cytosine
gross domestic product
glutathione sepharose 4B

GST	glutathione S-transferase
GUS	β-glucuronidase
ha	hectare
I	internodes
IPTG	isopropyl thiogalactoside
kan	kanamycin
kb	kilobase pairs
kDa	kiloDalton
kg	kilogram
КОН	potassium hydroxide
L	litre
LB	Luria-Bertani
Μ	molar
m	metre
MALDI-TOF/TOF	mass spectrometer for amino acid sequence of peptides
mg	milligram
min	minute
mL	millilitre
mM	millimolar
mRNA	messenger ribonucleic acid
NAA	1-napthaleneacetic acid
ng	nanogram
nm	nanometre
NZ	New Zealand
Р	phosphorus
PAGE	polyacrylamide gel electrophoresis
PAP	purple acid phosphatase
PBS	phosphate buffered saline
PCR	polymerase chain reaction
PEP	phosphoenolpyruvate
Pi	inorganic phosphate

pNPP	<i>p</i> -nitrophenol phosphate
pNP	<i>p</i> -nitrophenol
Po	organic phosphate
PUE	phosphate use efficiency
PVDF	polyvinylidene difluoride
qPCR	quantitative polymerase chain reaction
R	roots
RACE	rapid amplification of cDNA ends
rpm	rotations per minute
SDS	sodium dodecyl sulfate
SEM	standard error of the mean
spec	spectinomycin
TAE	Tris-acetate-EDTA
TEMED	tetramethylethylenediamine
Tm	melting temperature
TrPAP26	Trifolium repens purple acid phosphatase 26
uL	microlitre
ug	microgram
V	volt
v/v	volume by volume
w/v	weight by volume
X-gal	5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside