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Abstract 
We consider the problem of estimating the distribution of carcass weights in a flock of animals 
from estimates made on a truncated sample.  This arises when a farmer chooses the heaviest lambs 
for slaughter and then measurements are made by the meat processor. This enables a farmer to 
answer two questions: what proportion of the animals remaining exceed a nominated carcass 
weight, and/or what carcass weight is exceeded by a nominated proportion of the population? 
Estimates of these statistics and their uncertainties are derived and are exact if the animal weights 
are normally distributed.   These calculations can be the basis of decisions about future feeding and 
drafting strategies, important for farmers producing animals on contracts for future delivery. An 
example is given based on 1000 lambs using a cut-off weight of 15.5 kg with mean of this upper 
group of 16 kg.  Using a realistic estimate of a standard deviation (of the weighing scales) of 0.3 kg, 
this gives an estimated mean of 14.6± 0.04 kg, with a standard deviation of 0.94±0.044 kg, and that 
75% of the lambs in the population exceed 13.9±0.07 kg.  The proportion of lambs that exceed 14.5 
kg is then between 51.3% and 55.7%.   
 
 
 
 
 

                  Introduction 

Integrated management of the food supply chain requires livestock farmers to meet objective 

specifications on the weight of animals sold for slaughter. Generally these animals need to be above 

a nominated carcass weight and to have a minimum fat cover to be acceptable. The farmer estimates 

carcass weight before slaughter by the animal live weight. It is common to record only the live 

weights of those animals selected for slaughter. When the animals are slaughtered, only the carcass 

weights of those selected animals will be available for the meat processor.  

However, information on the liveweight distribution of the animals not selected for slaughter is 

valuable in farm decision  making. For example, estimates of the numbers of lambs growing to 

future slaughter weights would be useful in decisions about the resources required  in order 
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to achieve this. This paper describes the methodology to do this by deriving a method for estimating 

the frequency distribution of the live-weights or carcass weights of the animals not selected for 

slaughter from the data recorded for the animals that are slaughtered.  

Assuming the frequency distribution for animal live-weight is normal, we begin by deriving the 

estimators for the mean and standard deviation of the animal live-weights in the whole population 

when only the mean and proportion of the animals selected for slaughter are known. From these 

estimates any statistic of the animals not selected for slaughter can be calculated. We then use this 

to find the uncertainty in the statistics of interest for the unselected population, and to apply these 

estimates to practical situations. Finally we note that the assumption of normality is based on it 

being the most likely, but we can extend this methodology easily to any other distribution, for 

example a t-distribution.  So it is a generic question, which can arise for any probability 

distribution. Future work will extend this to the case where the multivariate weight and fat 

distribution is truncated for both variates. 

 

The Model 

Assume that the liveweight frequency distribution is normal with mean µ and standard deviation σ. 

Suppose, as is current practice, that the farmer weighs his/her animals, but only records the mean 

live-weight ( Lw ) of the animals selected for slaughter. Then Lw  is the mean of a truncated normal 

density. The farmer also knows the actual numbers, and hence the proportion of the population (α) 

of the animals selected for slaughter. This knowledge is expressed mathematically as: 
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where the liveweights of the animals selected for slaughter (but not recorded) is y, and W is the cut 

– off liveweight – the liveweight above which animals are selected for slaughter. The parameter α is 

included in the second equation to express the fact that we are calculating the mean of the upper 

portion. 
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This is shown in the diagram given in Figure 1, which uses the values of the weights in the section 

“An Application” described later. 

 
Figure 1: Graph of the truncated normal distribution. The fraction α of the distribution to the right 

is removed and has mean weight wL . Here A = live weight. 

 

 

The pair of equations, remarkably, has the following solution for µ and σ as shown in appendix 1: 
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This provides explicit solutions for the population mean and standard deviation in terms of the 

mean of the selected group of animals and the proportion of animals selected. Assume  Lw  is 

normal with variance 
n

2~σ where 2~σ is the variance of the weighing scales and n is the number of 

animals in the selected group. Thus, in (2) µ̂  will have variance, 
n
Q 22~σ  and σ̂ will have variance 
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n
R 22~σ . Noting that from the equations (3) in the appendix  Rerfc )2(2 1 α−=Q , then the 

covariance between µ̂ and σ̂  will be  
n

Rerfc 222 )2(~2 ασ −

  where we have for simplicity written erfc 

-2 (z) for ( erfc -1(z))2.  Similarly with the function  erf. 
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Here erfc-1(2α) denotes the inverse of the complementary error function of argument 2α. To 

calculate these functions note that:  
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The inverse of the error function (erf(x)) is calculated using Matlab as the function inverf.  Of 

course the function erf is closely related to the cumulative normal F by the relationship   

                                             F(z) =    ½ ( 1 + erf(√2 z)). 

 

The utility of this information lies in the calculation of the quantiles of the animals in the population 

from which weights have not been taken. An important practical question is to calculate the lower 

bound on the weight of a given proportion of animals in the group. Let the given proportion be x, 

and the unknown estimated lower bound be K then from appendix 1: 

)2xK −  

 

From the above information K will a normal random variable with mean given above and variance 

given by: 
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An alternative question relates to estimating the proportion of animals in the group above (or 

below) a nominated weight given the estimates µ̂  andσ̂ . This will be given as the cumulative 



GC Wake & AB Pleasants, Calculating  animal performance from limited liveweights of the population         177 
 

normal density with the above mean and standard deviation. However, the probability density of 

this estimate will not be normal due to the non-linearity of the relationship between the proportion 

above a nominated weight and the estimated parameters µ̂ andσ̂ . In this case the approximate 

variance can be found as in Mood et al. (1974) as the long expression below: 
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Notice that it is mostly in terms of error functions and/or the cumulative normal. 

 

An Application 

Suppose a farmer selects the heaviest 165 lambs from a mob of 1000 using a cut – off weight of 

15.5kg. When slaughtered, the average carcass weight of the selected lambs is 16 kg. Then α = 

0.165, W = 15.5 kg and Lw = 16 kg. The standard deviation on the weighing scales is 0.3kg. From 

this information we find from the above µ̂  = 14.6 ± 0.04 kg, and σ̂ = 0.94 ± 0.044 kg. The 

estimated carcass weight that 75% of the lambs in the mob exceed, K = 13.9 ± 0.07 kg. The 

proportion of the mob with carcass weights above 14.5 kg is 0.53 ± 0.027. 

 

Discussion 

The standard deviations associated with the above estimates would suggest that the estimates are 

sufficiently accurate to be of value for management decision-making. For example, in the above 

case 750 lambs minus 165 slaughtered = 585 lambs are estimated to have a carcass weight heavier 

than 13.9kg. Alternatively, with a standard error of 0.07 there is a 95% confidence that at least 585 

of the remaining lambs will exceed 13.9 – 1.96 × 0.07 = 13.7 kg.  

That is, there are 585 lambs that have to gain at least 1.8 kg of carcass weight to exceed the cut–off 

weight with a confidence of 95%.  Similarly, an estimated 365 lambs (530 – 165) need to gain at 

least a kilogram of carcass weight to exceed the cut–off weight. 
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Although it is complex, the mathematics is suitable for coding into a computer program that can 

present the results to a user in a form useful to easily make decisions about the feeding and 

management of animals for slaughter. 

The estimates made using the methods in this paper can also be the basis for probabilistic 

constrained optimisation. For example, suppose a farmer had a known amount of feed for lambs, 

and he/she wished to run the lambs in two groups. If the grouping is to be decided on a weight basis 

then what is the optimal weight to make the split into the two groups in order to achieve the 

management goals with the best probability. The above provides a sound way to answer this 

question. 

 The accuracy of the statistics derived here are dependent on the frequency distribution of animal 

weights being normal. This is not a particularly restrictive assumption since it has been shown by 

Wake et al., (1999) that a group of animals which have had a proportion removed (e.g. selected for 

slaughter) so that the frequency distribution is truncated will return to a normal density rapidly 

(generally less than 20 days for normal lamb growth rates). Thus unless animal growth was 

particularly abnormal the results reported here should be stable and useful estimates of the 

frequency distribution of animals remaining on the farm. 

Although the application discussed here is that of the management of animals for slaughter, there 

are a range of circumstances in which only a sample from the upper tail of the distribution is made, 

yet inferences are required on the whole population.  For example, in measuring microbial 

contamination, the resolution of the test limits observations to microbe numbers above the threshold 

measure.  Similar questions arise in the manufacturing sectors. It is emphasised that the solution 

given here in equations (2) and (3) is general and applies in all these and other applications. 
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Appendix 1.  Derivation of the mean and standard deviation from the truncation 

normal disttribution 
We first define 3 expressions which will be needed in the derivation.  Let  
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where erfc-1(2α) denotes the inverse of the complementary error function of argument 2α. To 

calculate this function we note that:  

where      
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The inverse of the error function (erf(z)) is calculated using Matlab as the function inverf and is of 

course closely related to the cumulative normal F by the relationship   

                                                         F(z) =    ½ ( 1 + erf(√2 z)). 

The first equation in (1) can be written: 
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The second equation  in (1) can be integrated by parts to give: 
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The two equations (a) and (b) regarded as determining µ and σ in terms of W and Lw  remarkably 

reduce to two linear equations for the two unknowns: 

From (a) and (b): 
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Then (a) and (c) are easily solved to give: 
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where U(α), Q(α) and R(α) are as given by equation (2). 
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