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Abstract

Sediment transport processes are a key mechanism of ecological change in riverine sys-
tems, and certain levels of sediment flux are necessary for healthy ecosystem functioning.
Altered flow regimes and sediment mobility are contributing to a global problem of higher
substrate embeddedness reducing the frequency of substrate scour events and leading to
increases in periphyton accrual. Excess periphyton accrual leads to fish and invertebrate
kills from oxygen depletion, degraded ecological health, altered sediment dynamics, deteri-
oration in water taste, and odour nuisance. In recent decades, reports of toxic periphyton
proliferations have increased and are linked with health problems in humans including
asthma, skin rashes, liver damage, and the death of domestic dogs. Excess periphyton
accrual is prominent in impounded catchments where dams have a considerable impact on
flow and sediment regimes. With at least 3,700 large dams currently under construction
or in the planning phase the problem is set to increase in the foreseeable future.

Hydrological limits are widely implemented by authorities in an attempt to manage
periphyton accrual. Hydrological limits are frequently based on flow-ecology relationships
but are often ineffective. Sediment transport thresholds have been found to have a better
relationship with periphyton accrual than hydrological metrics. Flow-ecology relationships
do not account for the mechanisms of periphyton removal (scour, abrasion, and molar
action) which are likely to vary between sites at equivalent flows, and the species-specific
resistance to each mechanism also likely varies. Abrasion and molar action result from
transport of sediment. Improving the effectiveness of hydrological limits as a tool for river
management therefore relies on setting flows with the aim of inducing sediment transport
to initiate mechanisms of periphyton scour. This will require models which can accurately
predict the flow required to induce different phases of sediment transport. The research
presented in this thesis focuses on improving the estimation of gravel entrainment to
advance entrainment models as a means of setting hydrological limits to induce molar
action and improve the effectiveness of periphyton removal.

A literature review of methods for estimating gravel particle entrainment thresholds
in natural channels revealed a considerable gap in methods being available to quantify
substrate characteristics to calculate resistance thresholds. The review also found sig-
nificant challenges in identifying the onset of gravel transport in natural channels, and
difficulty obtaining corresponding hydrodynamic data to identify entrainment thresholds.
Further, the review found seepage was an important component of hydrodynamic forces
for inducing particle entrainment in flumes, but seepage is not considered in conventional
entrainment formulae, and is not measured alongside bedload transport data in the field.

A suite of tools is identified and developed to improve the quantification of substrate
structure and resistance, identification of incipient motion, and quantification of entrain-
ment thresholds in natural gravel beds to advance the assessment of bed mobility. Optical
and ranging techniques are compared to identify an optimal approach to remotely quantify
substrate structure. Both approaches were found to produce a comparable quantification
of surface roughness using point cloud elevations, but identified different trends in surface
layer development. Quantification of surface layer development was found to be sensitive
to the cell size used to grid the data, and this sensitivity increased with higher-order sta-
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tistical moments which were used to describe armouring. Airborne optical sensors were
found to be the most versatile method for remote characterisation of gravel-bed surface
structure, with a larger range of metrics being derivable from the same dataset to quantify
a wider range of substrate structural and textural characteristics.

Whilst quantifying bed structure is critical for developing bed mobility models, mea-
suring the resistive force of the bed created by the structural arrangement of particles is
required for model calibration and empirical data collection. A protocol was developed to
use a modified penetrometer to quantify the resistive force of the armour (active) layer
in gravel-bed channels. The modifications made to the penetrometer made it sensitive
to variations in armour layer compactness, and allowed for adaptive penetration depths
enabling variations in armour layer thickness to be accounted for. The protocol and mod-
ified penetrometer provide a significant advancement in the ability to empirically quantify
bed resistance and relate bed structure to potential bed mobility, and build on the remote
sensing methods to provide a suite of bed resistance parameters for entrainment models.

Measurement of bed mobility is also critical for calibrating entrainment models and
relating ecological metrics to bed mobility thresholds. Both direct and indirect measure-
ment of bed mobility have benefits for research and river management. Tick-box indices
are frequently used in ecological studies to provide an indirect assessment of substrate
(in)stability (i.e. bed mobility). These indices often provide a poor approximation of bed
mobility, and do not relate well with biotic communities, but their low-cost and rapidity
make them a valuable tool for research and management. An improved index is developed
to provide rapid, low-cost assessment of bed mobility. This index improves on previous
methods by focusing on objective measurements of parameters where low-cost approaches
are available, or providing a framework for scoring parameters where visual assessment
is required. The index scores correlated well with tracer particle data, and were found
to relate to accrual of Phormidium biomass. This index therefore provides a means to
rapidly and cost-effectively estimate bed mobility and predict periphyton accrual.

Direct measurement of bed mobility is also required to provide an empirical dataset
for the calibration of particle entrainment and transport models, and for the empirical
derivation of hydrological limits. A multi-sensor system was developed to measure the
onset of particle movement, and record corresponding hydrodynamic data, including bed
seepage, to identify hydraulic entrainment thresholds in natural channels, and therefore
address the challenges of identifying bedload entrainment thresholds identified in the lit-
erature review. A pilot study testing the system identified bed seepage and turbulence
intensity as key predictors of particle entrainment, and discharge and mean velocity as the
worst predictors. These findings challenge the use of discharge and mean velocity as the
metrics used to set hydrological limits if mechanistic limits based on bed mobility-ecology
relationships are to be established effectively.

These tools provide a means for scientists to study bedload entrainment and trans-
port, identify their thresholds, and relate the frequency and magnitude of these processes
to benthic community dynamics. This research will form the basis for establishing the
mechanisms required to achieve removal of excess periphyton and establish hydrological
limits to ensure these mechanisms function and effective removal of periphyton is achieved
to maintain ecosystem health.
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