Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

QUANTIFYING BED STABILITY: THE MISSING TOOL FOR ESTABLISHING MECHANISTIC HYDROLOGICAL LIMITS

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN GEOGRAPHY AT MASSEY UNIVERSITY, PALMERSTON NORTH, NEW ZEALAND.

UNIVERSITY OF NEW ZEALAND

Andrew J. Neverman

2018

Copyright © Andrew J. Neverman

Typeset with $\square T_E X$

Primary Supervisor: Professor Ian C. Fuller

Co-Supervisors: Professor Russell G. Death Associate Professor Jon N. Procter Dr. Ranvir Singh

Examiners: Professor David J. Gilvear Dr. Jon F. Tunnicliffe Dr. Sam T. McColl

Abstract

Sediment transport processes are a key mechanism of ecological change in riverine systems, and certain levels of sediment flux are necessary for healthy ecosystem functioning. Altered flow regimes and sediment mobility are contributing to a global problem of higher substrate embeddedness reducing the frequency of substrate scour events and leading to increases in periphyton accrual. Excess periphyton accrual leads to fish and invertebrate kills from oxygen depletion, degraded ecological health, altered sediment dynamics, deterioration in water taste, and odour nuisance. In recent decades, reports of toxic periphyton proliferations have increased and are linked with health problems in humans including asthma, skin rashes, liver damage, and the death of domestic dogs. Excess periphyton accrual is prominent in impounded catchments where dams have a considerable impact on flow and sediment regimes. With at least 3,700 large dams currently under construction or in the planning phase the problem is set to increase in the foreseeable future.

Hydrological limits are widely implemented by authorities in an attempt to manage periphyton accrual. Hydrological limits are frequently based on flow-ecology relationships but are often ineffective. Sediment transport thresholds have been found to have a better relationship with periphyton accrual than hydrological metrics. Flow-ecology relationships do not account for the mechanisms of periphyton removal (scour, abrasion, and molar action) which are likely to vary between sites at equivalent flows, and the species-specific resistance to each mechanism also likely varies. Abrasion and molar action result from transport of sediment. Improving the effectiveness of hydrological limits as a tool for river management therefore relies on setting flows with the aim of inducing sediment transport to initiate mechanisms of periphyton scour. This will require models which can accurately predict the flow required to induce different phases of sediment transport. The research presented in this thesis focuses on improving the estimation of gravel entrainment to advance entrainment models as a means of setting hydrological limits to induce molar action and improve the effectiveness of periphyton removal.

A literature review of methods for estimating gravel particle entrainment thresholds in natural channels revealed a considerable gap in methods being available to quantify substrate characteristics to calculate resistance thresholds. The review also found significant challenges in identifying the onset of gravel transport in natural channels, and difficulty obtaining corresponding hydrodynamic data to identify entrainment thresholds. Further, the review found seepage was an important component of hydrodynamic forces for inducing particle entrainment in flumes, but seepage is not considered in conventional entrainment formulae, and is not measured alongside bedload transport data in the field.

A suite of tools is identified and developed to improve the quantification of substrate structure and resistance, identification of incipient motion, and quantification of entrainment thresholds in natural gravel beds to advance the assessment of bed mobility. Optical and ranging techniques are compared to identify an optimal approach to remotely quantify substrate structure. Both approaches were found to produce a comparable quantification of surface roughness using point cloud elevations, but identified different trends in surface layer development. Quantification of surface layer development was found to be sensitive to the cell size used to grid the data, and this sensitivity increased with higher-order statistical moments which were used to describe armouring. Airborne optical sensors were found to be the most versatile method for remote characterisation of gravel-bed surface structure, with a larger range of metrics being derivable from the same dataset to quantify a wider range of substrate structural and textural characteristics.

Whilst quantifying bed structure is critical for developing bed mobility models, measuring the resistive force of the bed created by the structural arrangement of particles is required for model calibration and empirical data collection. A protocol was developed to use a modified penetrometer to quantify the resistive force of the armour (active) layer in gravel-bed channels. The modifications made to the penetrometer made it sensitive to variations in armour layer compactness, and allowed for adaptive penetration depths enabling variations in armour layer thickness to be accounted for. The protocol and modified penetrometer provide a significant advancement in the ability to empirically quantify bed resistance and relate bed structure to potential bed mobility, and build on the remote sensing methods to provide a suite of bed resistance parameters for entrainment models.

Measurement of bed mobility is also critical for calibrating entrainment models and relating ecological metrics to bed mobility thresholds. Both direct and indirect measurement of bed mobility have benefits for research and river management. Tick-box indices are frequently used in ecological studies to provide an indirect assessment of substrate (in)stability (i.e. bed mobility). These indices often provide a poor approximation of bed mobility, and do not relate well with biotic communities, but their low-cost and rapidity make them a valuable tool for research and management. An improved index is developed to provide rapid, low-cost assessment of bed mobility. This index improves on previous methods by focusing on objective measurements of parameters where low-cost approaches are available, or providing a framework for scoring parameters where visual assessment is required. The index scores correlated well with tracer particle data, and were found to relate to accrual of *Phormidium* biomass. This index therefore provides a means to rapidly and cost-effectively estimate bed mobility and predict periphyton accrual.

Direct measurement of bed mobility is also required to provide an empirical dataset for the calibration of particle entrainment and transport models, and for the empirical derivation of hydrological limits. A multi-sensor system was developed to measure the onset of particle movement, and record corresponding hydrodynamic data, including bed seepage, to identify hydraulic entrainment thresholds in natural channels, and therefore address the challenges of identifying bedload entrainment thresholds identified in the literature review. A pilot study testing the system identified bed seepage and turbulence intensity as key predictors of particle entrainment, and discharge and mean velocity as the worst predictors. These findings challenge the use of discharge and mean velocity as the metrics used to set hydrological limits if mechanistic limits based on bed mobility-ecology relationships are to be established effectively.

These tools provide a means for scientists to study bedload entrainment and transport, identify their thresholds, and relate the frequency and magnitude of these processes to benthic community dynamics. This research will form the basis for establishing the mechanisms required to achieve removal of excess periphyton and establish hydrological limits to ensure these mechanisms function and effective removal of periphyton is achieved to maintain ecosystem health.

Acknowledgements

Whilst each chapter contains specific acknowledgements, there are many people I would like to emphasise my thanks to who have been key to my journey during the construction of this thesis.

First of all I would like to thank Professor Ian Fuller and Professor Russell Death for conceiving the idea of this thesis and considering me to be up to the task, and Associate Professor Jon Procter and Dr. Ranvir Singh for joining the project and providing valuable expertise.

The expertise and ideas which were produced in supervisory meetings would never have lead to any data or new knowledge being produced without the technical expertise provided by David Feek (Massey University) and Dave Reid (Essential Electronics and Security Limited, Levin) throughout this research. Sincere thanks are given to David Feek for his many hours of technical assistance with the development, construction, and installation of the sensors and field apparatus used in this thesis, and his repeat sacrifice of dry days in the office to get the job done. Dave Reid was instrumental in developing the brains behind the impact plate geophone and was more than generous with donating his time in-kind to meet our limited budget. Without skilled technicians the state of science would be very poor indeed.

I am thankful to Horizons Regional Council (HRC), in particular Brent Watson and Jeff Watson who were always accommodating, and supported the project through funding and provision of data. Paul Peters is also thanked for supporting the installation of sensors at Mais Reach.

I also thank Dr. Lorenzo Picco and Dr. Riccardo Rainato for hosting me on my trips to Vienna and Padova, and allowing me to join in with the research in the Rio Cordon basin. These were great experiences and provided me with a deeper understanding of geomorphic processes and research beyond the New Zealand context. I am also thankful to them for the introduction to proper coffee and pasta.

Without financial support it would have been impossible to do any of this research. Funding for the project was provided by many parties, including: Massey University (Doctoral Scholarship), TrustPower (Windfarm Bursary), Tilt Renewables (WindFarm Bursary), MacMillan Brown Agricultural Research Scholarship, Royal Society of New Zealand (New Zealand Ecohydraulics Trust Travel Award), IPENZ Rivers Group (Student Research Grant), NZ Hydrological Society (Grant in Aid of Research, Grant in Aid of Travel), Perpetual Guardian (Kathleen Spragg Travel Grant), NZ Geographical Society Manawatu Branch (Postgraduate Research Fund).

I have also been fortunate to receive excellent support outside of my project. On this note I would like to thank Professor Danny Donaghy for providing independent mentoring throughout the PhD process, and for the many Saturday open mats.

To my parents, I thank my mother, Sharyon Neverman, for instilling in me from an early age the inclination to do research if I ever had a question which others could not provide an answer to. And to my father, Geoffrey Neverman, for teaching me that if you can't buy it off the shelf you can make it. And if you can buy it off the shelf, you can probably make it better and cheaper anyway. These foundations are the reason I have made it to this point.

Most importantly, I am grateful to Charlotte Holdsworth for putting up with me throughout this ordeal, and supporting my need to get butter chicken or dumplings on a regular basis. She has also been my primary field assistant, UAV spotter, spell-checker, and sounding board. Without her, this would have been a very different experience.

Contents

Α	bstra	:t	i
A	cknov	ledgements	iii
\mathbf{Li}	st of	Figures	viii
\mathbf{Li}	st of	Tables	xi
\mathbf{Li}	st of	Equations	xiii
G	enera Aim Thes	Introduction and Objectives	1 3 4
1	Tow Imp and 1.1 1.2 1.3 1.4	ards Mechanistic Hydrological Limits: A Literature Synthesis to ove the Study of Direct Linkages Between Sediment Transport Periphyton Accrual in Gravel-Bed Rivers Abstract	7 8 9 13 14 14 16 16
	1.6	1.5.1 Assessment of Resistance	16 16 18 19 19 19 20 20
		1.6.1 Direct Measurement of Bedload	20 21 21 21 21
	1.7	Synthesis	22
2	1.8 Tern try 2.1	Acknowledgements	23 27 28

Contents

	2.2 2.3	Introduction	28 31
	$\frac{2.0}{2.4}$	Methodology f	32
	2.1	2/1 Data Acquisition	32
		24.11 Survey control	32
		2.4.1.1 Survey control	32 32
		2.4.1.3 Structure from Motion photogrammetry	34 34
		2.4.1.5 Structure-moni-motion photogrammetry	04 94
		2.4.2 Found Cloud Flocessing	34 96
		2.4.5 Calculating Point Cloud Moments	30 97
	0.5		37
	2.5	Results	37
		2.5.1 Pebble Counts	37
		2.5.2 Point Clouds	37
		2.5.2.1 Standard deviation $\ldots \ldots $	37
		2.5.3 Skewness and Kurtosis	38
		$2.5.3.1 \text{Complete clouds} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	38
		2.5.3.2 Spatially varied moments $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	41
	2.6	Discussion	42
		2.6.1 Characterising Surface Roughness	42
		2.6.2 Describing Surface Texture	44
		2.6.3 Implications for Modelling and Management	44
	2.7	Conclusions	47
	2.8	Notation	49
	2.9	Acknowledgements	49
	2.10	Funding	49
~	Б		
з	Kap	dly Quantitying Compactness of the Active Laver in Gravel-Bed	
0	Stre	ins	51
Ū	Stre 3.1	ans Sabstract	51 52
0	Stre 3.1 3.2	Abstract Image: Compactness of the fictive layer in claver let Introduction Image: Compactness of the fictive layer in claver let	51 52 52
0	Stre 3.1 3.2 3.3	Image: Strate in the second	51 52 52 54
0	Stre 3.1 3.2 3.3 3.4	Implement of the flether Layor in Claver Let Ims Abstract Introduction Study Sites Methodology	51 52 52 54 58
0	Stre 3.1 3.2 3.3 3.4	ans ans Abstract ans Introduction ans Study Sites ans Methodology ans 3.4.1 Conducting Penetration Tests	51 52 52 54 58 58
	Stre 3.1 3.2 3.3 3.4	ans \mathbb{E} Abstract \mathbb{E} Introduction \mathbb{E} Study Sites \mathbb{E} Methodology \mathbb{E} 3.4.1 Conducting Penetration Tests 3.4.2 Calculating the D_{qq}	51 52 52 54 58 58 58
	Stre 3.1 3.2 3.3 3.4	ans \mathbb{R} Abstract \mathbb{R} Introduction \mathbb{R} Study Sites \mathbb{R} Methodology \mathbb{R} 3.4.1 Conducting Penetration Tests 3.4.2 Calculating the D_{90} 3.4.3 Calculating Substrate Resistance	51 52 52 54 58 58 58 59 59
	Stre 3.1 3.2 3.3 3.4	ans \mathbb{R} Abstract \mathbb{R} Introduction \mathbb{R} Study Sites \mathbb{R} Methodology \mathbb{R} 3.4.1 Conducting Penetration Tests 3.4.2 Calculating the D_{g0} 3.4.3 Calculating Substrate Resistance 3.4.4 Comparison Substrate Characteristics	51 52 52 54 58 58 58 59 59 60
Ū	Stre 3.1 3.2 3.3 3.4	ams ams Abstract ams Introduction ams Study Sites ams Methodology ams 3.4.1 Conducting Penetration Tests 3.4.2 Calculating the D_{g0} 3.4.3 Calculating Substrate Resistance 3.4.4 Comparison Substrate Characteristics	51 52 52 54 58 58 59 59 60 60
Ū	Stre 3.1 3.2 3.3 3.4 3.5	ams Implementation of the frequence Layor in cluster bed Abstract Implementation bed Introduction Implementation frequence Study Sites Implementation frequence Study Sites Implementation frequence Methodology Implementation frequence 3.4.1 Conducting Penetration frequence 3.4.2 Calculating the D_{g0} 3.4.3 Calculating Substrate Resistance 3.4.4 Comparison Substrate Characteristics State Implementation frequence State Implementation frequence	51 52 52 54 58 58 59 60 60 60
	Stre 3.1 3.2 3.3 3.4 3.5 3.6	ams Introduction Introduction Study Sites Introducting Introduction Study Sites Introducting Introducting Methodology Introducting Introducting 3.4.1 Conducting Penetration 3.4.2 Calculating the D_{g0} Introduction 3.4.3 Calculating Substrate 3.4.4 Comparison Substrate State Substrate Characteristics 3.4.1 Discussion/Conclusions Introduction	51 52 52 54 58 58 59 60 60 60 60
	Stre 3.1 3.2 3.3 3.4 3.5 3.6 3.7	ams a Abstract a Introduction a Study Sites a Methodology a 3.4.1 Conducting Penetration Tests a 3.4.2 Calculating the D_{g0} a 3.4.3 Calculating Substrate Resistance a 3.4.4 Comparison Substrate Characteristics a 3.5.1 Discussion/Conclusions a Acknowledgements a a	51 52 52 54 58 59 59 60 60 60 66 70 70
	Stre 3.1 3.2 3.3 3.4 3.5 3.6 3.7	and msand Abstractand AbstractAbstract \dots Introduction \dots Study Sites \dots Study Sites \dots Methodology \dots 3.4.1Conducting Penetration Tests3.4.2Calculating the D_{g0} 3.4.3Calculating Substrate Resistance3.4.4Comparison Substrate Characteristics3.4.5Discussion/Conclusions3.5.1Discussion/ConclusionsNotation \dots	51 52 54 58 59 59 60 60 66 70 70
4	Stre 3.1 3.2 3.3 3.4 3.5 3.6 3.7 A N SL	ans Introduction in the fiber of the fiber of bet of the fiber	51 52 52 54 58 59 60 60 60 60 70 70
4	Stre 3.1 3.2 3.3 3.4 3.5 3.6 3.7 A N Sub	ans Introduction in the rest of the rest of Layer in Gravel Leager in Gravel Abstract Introduction in the rest of	51 52 54 58 59 60 60 60 70 70 71
4	Stre 3.1 3.2 3.3 3.4 3.5 3.6 3.7 A N Sub 4.1	ans $[a]$ Abstract $[a]$ Study Sites $[a]$ Methodology $[a]$ 3.4.1 Conducting Penetration Tests 3.4.2 Calculating the D_{g0} $[a]$ 3.4.3 Calculating Substrate Resistance $[a]$ 3.4.4 Comparison Substrate Characteristics $[a]$ 3.4.4 Comparison Substrate Characteristics $[a]$ 3.5.1 Discussion/Conclusions $[a]$ Notation $[a]$ $[a]$ Acknowledgements $[a]$ $[a]$ Summary $[a]$ $[a]$ Summary $[a]$ $[a]$	51 52 54 58 59 60 60 60 60 70 70 70 71 72 72
4	Stre 3.1 3.2 3.3 3.4 3.5 3.6 3.7 A N Sub 4.1 4.2	ans E Abstract E Introduction E Study Sites E Methodology E 3.4.1 Conducting Penetration Tests E 3.4.2 Calculating the D_{90} E 3.4.3 Calculating Substrate Resistance E 3.4.4 Comparison Substrate Characteristics E 3.4.4 Comparison Substrate Characteristics E 3.5.1 Discussion/Conclusions E Notation E E Acknowledgements E E Summary E E Summary E E Summary E E Summary E E	51 52 54 58 59 60 60 60 60 70 70 71 72 72 72
4	Stre 3.1 3.2 3.3 3.4 3.5 3.6 3.7 A N Sub 4.1 4.2 4.3	and any quantitying compactness of the freth of Layer in Craver body Abstract Introduction Introduction Study Sites Study Sites Study Sites Methodology Study Sites 3.4.1 Conducting Penetration Tests 3.4.2 Calculating the D_{g0} 3.4.3 Calculating Substrate Resistance 3.4.4 Comparison Substrate Characteristics 3.4.4 Comparison Substrate Characteristics 3.5.1 Discussion/Conclusions Notation Stability in Gravel trates Tommary Summary Stability in Gravel Methodology Stability in Gravel	51 52 52 54 58 59 60 60 60 60 70 70 71 72 72 73
4	Stre 3.1 3.2 3.3 3.4 3.5 3.6 3.7 A N Sub 4.1 4.2 4.3	and any equation ying comparison on one receive layer in charter bet in the formation of the	51 52 52 54 58 59 60 60 60 60 70 71 72 73 73 73
4	Stre 3.1 3.2 3.3 3.4 3.5 3.6 3.7 A N Sub 4.1 4.2 4.3	and any and a set of the frequence of the	51 52 52 54 58 59 59 60 60 60 60 60 60 70 70 71 72 73 73 73 76
4	Stre 3.1 3.2 3.3 3.4 3.5 3.6 3.7 A N Sub 4.1 4.2 4.3	In your sector products of the front of bayer in Graver DecisionImage: AbstractAbstractIntroductionStudy SitesMethodology3.4.1Conducting Penetration Tests3.4.2Calculating the D_{g0} 3.4.3Calculating Substrate Resistance3.4.4Comparison Substrate Characteristics3.4.4Comparison Substrate Characteristics3.5.1Discussion/ConclusionsNotationAcknowledgementsSummaryIntroductionMethodology4.3.1Study sites4.3.2Index Development4.3.3Index Variable Selection	51 52 52 53 53 559 60 60 60 60 70 71 72 73 73 76 76
4	Stre 3.1 3.2 3.3 3.4 3.5 3.6 3.7 A N Sub 4.1 4.2 4.3	ms Image: Comparison best of one fitter for layer in criter bet in the fitter bet bet in the fitter bet bet in the fitter bet in the fitter bet i	51 52 52 53 558 559 600 660 70 71 72 73 76 76 81
4	Stre 3.1 3.2 3.3 3.4 3.5 3.6 3.7 A N Sub 4.1 4.2 4.3	and any and a set of the restrict layer in criticit let it is a set of the restrict layer in criticit let it is a set of the restrict layer in criticit let it is a set of the restrict layer in criticit let it is a set of the restrict layer in criticit let it is a set of the restrict layer in criticit let it is a set of the restrict layer in criticit let it is a set of the restrict layer in criticit let it is a set of the restrict layer in criticit let it is a set of the restrict layer in criticit let it is a set of the restrict layer in criticit let it is a set of the restrict layer in criticit let it is a set of the restrict layer in the restrict layer in the restrict layer in the restrict layer is a set of the restrict layer in the restrict layer is a set of the restrict layer in the restrict layer is a set of the restrict layer in the restrict layer in the restrict layer is a set of the restrict layer in the restrict layer is a set of the restrict layer in the restrict layer is a set of the restrict layer in the restrict layer in the restrict layer in the restrict layer in the restrict layer is a set of the restrin layer is set of the restrict layer is a s	51 52 52 53 70 71 72 73 73 76 76 81 82

Contents

Α	Stat	tement	s of Contribution	147
	6.2	Future	e Research	123
6	Syn 6.1	thesis Conclu	usions	117 122
	0.9	AUKIIO		110
	5.0	Adamo	wladgements	115
	5.8	Notati	01	115
	5.7	Conch	isions	113
		5.6.4	Key Outcomes	113
		5.6.2	Intra-Event Thresholds	112
		5.0.1 5.6.2	Mechanisms	119
	0.0	5.6.1	Identifying entrainment thresholds	110
	5.6	Discus	sion	110
		5.5.0	Parameter Relationships	110
		5.5.4 5.5.5	Event 5	108
		554	Event 4	108 108
		0.0.2 5 5 3	Event 3	100 109
		0.0.1 5 5 9	Event 9	109
	0.0	Kesult	S	104
	E E	0.4.4 Docult	beepage	104
		5.4.5 5.4.4	Seepage	. 99 100
		0.4.2 5/4/9	Near-Ded Velocity	. 99
		5.4.1 5.4.9	Identifying the Onset of Motion	. 97
	5.4	Metho	dology	. 97
	5.3	Study	Site	96
	50	5.2.2	Identifying Incipient Motion	95
		5.2.1	Quantifying Thresholds	94
	5.2	Introd		94
	5.1	Abstra	ret	94
	mer	nt in G	ravel-Bed Rivers	93
5	Imp droe	olemen dynam	tation of a Multi-Sensor System to Identify Streamwise Hy- ic and Vertical Bed Seepage Thresholds for Particle Entrain-	
	1.0			
	4.6	Ackno	wledgements	90
	4.5	4.4.2 Discus	sion	80 80
		4.4.1	Predicting Deermidium A cerual	. 00 . 86
	4.4	Result		83
		4.3.7	Case Study	. 82

List of Figures

1.1	Impacts, causes, and mitigation methods for periphyton proliferations	9
1.2	Conceptual model of the approach needed to design effective hydrological regimes vs. the approach used in many contemporary methods. Adapted from do Ialón <i>et al.</i> (2017)	10
		10
2.1	Example of a patch of gravel from the same extent in the TLS and SfMp clouds. Note the SfMp cloud has considerably more data points, and less occluded spots.	30
2.2	Location of the Pohangina River catchment, North Island, New Zealand (left), and the study site at Mais Reach indicated by the black box (right) which shows the extent of Figure 2.3.	31
2.3	Distribution of the survey peg network at Mais Reach (top) displayed on an aerial image from 2016 showing the bar configuration for the August 2016 survey. Pegs from the benchmark survey are displayed in green, the temporary peg used for the October 2015 survey is shown in red (indicating the extent of the bar in October 2015), and pegs 8 and 9 which replaced 6 and 7 are shown in blue. Arrow indicates flow direction. The bottom image shows an example of the GCPs used in the August 2016 survey, allowing rapid deployment, and automatic recognition of targets during processing. DJI [®] Phantom 3 battery shown for scale	33
2.4	Difference in the z direction between points in the SfMp and TLS clouds	35
2.5	Rasters showing the difference in elevation between the SfMp and TLS clouds. The clouds were gridded to 0.5 m resolution, with cell values representing the mean elevation. Areas in red represent cells where the TLS was lower than the SfMp. Areas below 60 mm difference (approximately the D_{84}) are thresholded out as these areas tended to show pixels where the SfMp cloud had data points in occluded areas of the TLS, or at the base of grains where TLS had only sampled the top of the grain. It is worth noting the largest b-axis measured in a pebble sample exceeded 256 mm, and therefore differences in the clouds are within the range of b-axis	
	measurements at the site. The black outline represents the survey boundary.	36
2.6	Box and whisker plots of the spatially varied σ_z (left) and $\Delta \sigma_z$ (right). Note the y-axis has been scaled to make the IQR legible, so some data points beyond the whiskers are not included in the plots.	38
2.7	Rasters showing the spatial variation of σ_z for the October 2015 survey 1 m (top) and 0.25 m (bottom) cell resolutions. SfMp surveys are on the left and TLS on the right. Red circles highlight some of the roughness patches which are evident in the clouds.	40
2.8	Box and whisker plots of the spatially varied S_{kz} (left) and ΔS_{kz} (right). Note the y-axis has been scaled to make the IQR legible, so some data points beyond the whiskers are not included in the plots	42

2.9	Box and whisker plots of the spatially varied K_{uz} (left) and ΔK_{uz} (right). Note the y-axis has been scaled to make the IQR legible, so some data points beyond the whiskers are not included in the plots	42
2.10	Images of the substrate surface for each survey, along with sorting coefficients derived from the pebble count data.	45
2.11	Rasters showing the spatial variation of K_{uz} for the October 2015 survey 1 m (top) and 0.25 m (bottom) cell resolutions. SfMp surveys are on the left and TLS on the right. Note the higher frequency of more extreme platykurtic cells in the 0.25 m rasters, particularly the TLS	46
3.1	Site locations. Sites A-F are the trial sites.	55
3.2	Photographs showing the characteristics of the six trial sites, ranging from third order boulder-bed headwater streams to 6^{th} order wandering lowland	
<u></u>	rivers.	57
$3.3 \\ 3.4$	Schematic of the penetrometer design, showing dimensions and part names. Illustration of how the depth reader attachment is used to measure pene- tration depth (d) , assuming the foot started level with the penetrometer	01
	tip	62
3.5	Conversion curve for the relationship between the BCI and substrate resistance (R_s) for the penetrometer described in this paper.	63
3.6	Scatterplots showing relationship between <i>BCI</i> ' and grain size metrics	64
3.7	Scatterplots showing relationship between BCI' and substrate characteristics.	64
4.1	Relationships between the bed stability score calculated using $PerMatrix_{17104}$ and observed bed movement for each Hold Out test. The title above each plot indicates which site was withheld.	85
4.2	Observed vs. predicted bed movement for the cross-validation procedure.	86
4.3	BSI score vs biomass metrics for the Canterbury case study	87
5.1	Location of the Mais Reach study site and Pohangina River catchment within the context of the North Island (left), and the Ruahine Ranges and neighbouring catchments (right). The head of the catchment is in the north with the river flowing southward, running parallel with the axial Ruahine Range	07
5.2	Top left: Dimensions and layout of the impact plate. Bottom left: Impact plate sitting on the bed showing securing rods as they were being driven in to the bed. Right: White arrows show location of the impact plate at low flow (top) and during a high flow event (bottom)	97 99
5.3	Location of the impact plate and piezometers within the context of the channel planform. The stage gauge is mounted alongside the piezometers. The black box on the left image indicates the extent of the right image. Note there are no major source areas of sediment near the study site, although some erosion of the true left bank did occur, this mainly supplied sand to the channel	.00
5.4	Diagram demonstrating the application of the differential standpipe piezome- ters (SP1 and SP2) for measuring seepage direction. Scenario 1 demon- strates a state of no seepage, scenario 2 demonstrates injection due to high pore pressure at x_2 , and scenario 3 demonstrates suction due to low pore pressure at x_2	.03

List of Figures

List of Tables

1.1	Changes in periphyton biomass under different velocities. Adapted from Davie & Mitrovic (2014).	13
1.2	Data capture and analysis methods to improve incipient motion research	24
2.1	RMS registration errors for each survey and total number of points in each point cloud.	36
2.2	Statistics for the pebble count surveys following Folk (1980), and the D_{50} and D_{84} characteristic grain sizes	38
2.3	Moments of $z_{detrended}$ for each survey and detrending grid resolution (not spatially varied). Note the kurtosis coefficients (K_{uz}) are excess kurtosis	39
2.4	Statistics for the pebble count surveys following Folk (1980), and the D_{50} and D_{84} characteristic grain sizes	39
2.5	Number of cells in each spatially differenced moment raster which had equal values for the TLS and SfMp surveys.	41
3.1	Site characteristics. Grain size for the Waikanae shows range between the study reaches	56
3.2	Statistics for the 30 penetration rates (PR) measured at each site. We propose the use of the mean PR to represent compactness at the site, termed the BCI	63
3.3	BCI score and substrate characteristics for each site	65
3.4	Regression coefficients for the linear models of the <i>BCI</i> score vs various substrate characteristic metrics, ranked by statistical significance	66
3.5	Regression coefficients for the linear models of the \log_{10} transformed <i>BCI</i> score (<i>BCI'</i>) vs various substrate characteristic metrics, ranked by statistical significance	66
3.6	BCI scores converted to substrate resistance (R_s) following Herrick & Jones (2002). R_s values are in Newtons	67
3.7	<i>BCI</i> score and substrate resistance (R_s) for the control reaches (1 and 2) and engineered reaches (3 and 4) of the Waikanae River. Change in the <i>BCI</i> (Δ <i>BCI</i>) and R_s (Δ R_s) are also shown	67
4.1	Location, planform, channel parameters, and sediment characteristics of the 10 study sites in the Ruahine Ranges, North Island, New Zealand	74
4.2	Location, planform, channel parameters, and sediment characteristics of the eight study sites in the South Island, New Zealand	75

List of Tables

4.3	Parameters initially trialled for the index during the pilot surveys, prior to optimisation. The parameter type indicates whether the parameter is mea- suring a driver of resistance or entrainment, or a product of bed movement. The scoring approach differentiates between the use of objective scoring, us- ing physical measurements of parameters e.g. with a tape measure; visual assessment where the observer assigns a numeric rating for the parame- ter; or categorised visual assessment where the observer uses a guide which provides categories to follow for visual estimation, such as percentage of	
	subaerial active channel	78
4.4	Correlations between pilot index parameters and bed movement at 10 sites	01
4.5	In the Ruanine Ranges	81
4.6	Based on these results PerMatrix ₁₇₁₀₄ became the BSL	84
110	weightings for PerMatrix $_{17104}$ which had the highest frequency of maximum correlation with observed bed movement in the 10 Hold Out datasets	84
4.7	Regression statistics for BSI score vs selected metrics for chlorophyll- a as measures for <i>Phormidium</i> biomass	88
5.1	Bedload transport events recorded by the impact plate which also had cor- responding hydrodynamic data.	104
5.2	Critical threshold values (denoted by cr) for the range of hydraulic parameters which were recorded at the onset of bedload transport for the five events. The table shows the large variation in thresholds, with no consistent	
	threshold for incipient motion being identified. \ldots \ldots \ldots \ldots \ldots	109
5.3	Correlation coefficients for each hydrodynamic parameter threshold regressed against <i>MaxA</i> for the initiation of each event, listed in descending order of	
5.4	relationship strength	110
	event thresholds). Thresholds are ordered by significance for each event	111

List of Equations

3.1 Penetration Rate
3.2 Bed Compaction Index
3.3 Substrate Resistance
3.4 Substrate Resistance using Bed Compaction Index
3.5 Work done by the soil/Kinetic Energy of the penetrometer hammer 60
3.6 Travelling velocity of the penetrometer hammer
4.1 Standard Feature Scaling Normalisation
5.1 Time-average Velocity
5.2 Turbulence
5.3 Turbulence Intensity
5.4 Pore Pressure
5.5 Elevation Head
5.6 Total or Piezometric Head
5.7 Seepage Head