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[Abstract] il

ABSTBACT

A commercial 60MHz nuclear magnetic resonance spectrometer has been modified to perform
non-invasive, high resolution, two dimensional proton density imaging on samples smaller
than 10mm.

Orthogonal magnetic field gradients are applied during the experiment to impart a spatial tag
to the nuclear spins. The resultant nuclear signal detected by the spectrometer corresponds to
a sampling of Fourier space. The exact trajectory in this space depends on the magnitude and
timing of the applied gradients. The technique used in this work samples k space in a radial
fashion and is termed filtered back projection. Image reconstruction is implemented on a 16
bit personal computer using a two dimensional fast Fourier transform algorithm.

Due to the small volume elements employed the available signal to noise ratio limits the
resolution attainable. It is therefore important that the S/N be maximized within the system.
To this end careful attention has been paid to the transfer of the nuclear signal from sample
to spectrometer. Signal averaging is also used to improve the S/N although this does result in
long imaging times (typically 30 to 60 minutes). At present a resolution of about 30um is
achievable for a slice thickness of 1.5Smm and a S/N of 40. At the time of initial publication
in June 1986, this corresponded to a voxel resolution an order of magnitude better than that
obtained by other workers in this field.

The orthogonal field gradients used are capable of generating gradients of up to 2Tm~!. This
provides the possibility of measuring self diffusion coefficients in an intact sample, using the
pulsed field gradient spin echo technique - something which would be difficult to achieve with
a large scale imaging system. This thesis reports the first measurements of localised self-
diffusion coefficients using a combination of the PFGSE technique and NMR imaging.
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