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[Abstract] i i  

ABSTRACT 

A commercial 50MHz nuclear magnetic resonance spectrometer has been modif ied to perform 
non-invas ive. high resolut ion, two d imensional proton densi ty imaging on samples sma l ler 
than lOmm. 

Orthogonal magnetic f ie ld gradients are appl ied dur ing the experiment to impart a spat ial tag 
to the ruclear spins. The resul tant nuclear signal detected by the spectrometer corresponds to 
a samp l ing of Four ier space. The exact trajectory in this space depends on the magnitude and 
timing of the appl ied gradients. The technique used in this work samples I< space in a radial 
fashion and is termed f i l tered back project ion. Image reconstruction is implemented on a 15 
bit personal computer using a two dimensional fast Fourier transform algor ithm. 

Due to the sma l l  volume elements employed the avai l able signal to noise ratio l imits the 
resolut ion atta inable. 1t Is therefore important that the SIN be maximized with in the system. 
To this end careful attention has been paid to the transfer of the ruclear s ignal from sample 
to spectrometer. S ignal averaging is also used to improve the SIN al though this does resul t  in 
long imaging t imes (typical l y  30 to 50 mirutes). At present a resolution or about 30Jlm is 
achievable ror a sl ice thickness or 1.5mm and a SIN or 40. At the t ime or init ial publ icat ion 
in June 1985, this corresponded to a voxel resolut ion an order or magnitude better than that 
obtained by other workers in this f ield. 

The orthogonal f ie ld gradients used are capable of generating gradients of up to 2Tm-1• This 
provides the possib i l i ty of measur ing sel f  diffusion coefficients in an intact sample, using the 
pul sed f ie ld gradient sp in echo technique - something which would be d iff icult to achieve with 
a large scale imaging system. This thesis reports the f irst measurements or local ised sel f­
diffusion coefficients using a combination of the PFGSE technique and NMR imaging. 
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