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Abstract

The interplay of particle and resonant wave scattering including nonlinear effects
creates systems of diverse and interesting quantum many-body physics. A bet-
ter understanding of the physics in these systems could lead to new and exiting
application exploiting their quantum nature.

As an example, in this thesis we investigate the scattering of bright matter-wave
solitons in ultracold gases on a square well in one spatial dimension. For this, solu-
tions of the mean-field Gross-Pitaevskii approximation and a full quantum many-
body method, the so-called multiconfigurational time-dependent Hartree approach
(MCTDH), are compared.

The MCTDH method is based on a finite basis set expansion, which naturally
leads to errors in system properties, such as energies and densities, when compared
to exact results. In this thesis, we propose an efficient solution to this problem
by rescaling the interaction strength between the particles. Even for very large
interactions in the Tonks-Girardeau limit, the rescaling leads to significant im-
provements. This is validated by successfully applying the rescaling to problems
in ring systems as well as external confinements, such as a harmonic well and a
double-well.

The MCTDH method is then applied to the soliton scattering problem and
compared to results from mean-field calculations. The latter verify that solitons,
when scattered on a well, show quantum effects, such as reflection. For the first
time, we show that a soliton can be additionally permanently trapped by the well
due to resonances with bound states.

For this thesis, to extend these results to a full many-body approach, we de-
veloped QiwiB. It is a program package implementing the MCTDHB method,
which is a derivative of the MCTDH method, but optimised for bosonic systems.
Limits for the validity of the MCTDHB approach are addressed by convergence
studies on the soliton scattering problem. Furthermore, we demonstrate that the
scattering on the well enables the creation of macroscopic binary quantum su-
perposition states, i.e. NOON states. Novel NOON states corresponding to a
superposition of a reflected soliton and a trapped soliton are observed. These
states are shown to exist for a large range of initial conditions, and a possible

experimental realisation is discussed.

[i]






Acknowledgments

Firstly, I want to thank my supervisor Prof. Joachim Brand for bringing me all
the way from Germany to New Zealand and introducing me to the fascinating
world of matter-wave solitons. I am very grateful for all the fruitful discussions,
suggestions and his patience with me as well as all the critical comments, from
which T have learned so much.

I also want to thank David Hallwood, for the many extensive and inspiring
discussions as well as for being such a great work colleague. I also want to thank
Jake Gulliksen for being an awesome office mate. I really enjoyed collaborating
with them on physics projects as well as the time together on the tennis court. I
also want to thank Renyuan, Sasha and Gaby for all the great conversations and
the fun time together, and creating such a great atmosphere in the office.

I also would like to thank Prof. Peter Schwerdtfeger for all the BBQs and the
great advice on physics problems as well as life issues.

Furthermore many thanks go to all current and former members of the CTCP,
in particular Andreas, Andy, James, Matthias, and Michael for their awesome work
on the computer administration, and Patrick for help and advice as well as all the
coffee.

My gratitude also goes to Prof. Hans-Dieter Meyer, for his kind introduction
to MCTDH, and his patience in finding answers to all my questions.

Most of all, I want to thank Susan, for just being her and making my life a
dream. You are wonderful and I would not know what to do without you.

Last but not least, I want to thank my parents, who always supported me. Me
going to New Zealand certainly was not what they were hoping for, and therefore
I am very grateful and happy to have parents who I can always count on and never

stop loving me. Thank you for everything, you are the best.

iii






Contents

1 Introduction 1
1.1 Background and motivation . . . . . ... .. .. oL 1
1.2 Outline of this thesis . . . . . . . .. .. ... ... ... .. ..., 7
1.3 Publications . . . . . . . .. 9

2 Theoretical background 11
2.1 Simple theories on Bose-Einstein condensates . . . . . . .. . . .. 11

2.1.1 Theideal gas . . . . . . . . . . ... ... ... ... 11
2.1.2 Interactions . . . . . . . . . ... ... 12
2.1.3  Gross-Pitaevskii equation . . . . . ... ... 13
2.1.4  Beyond Gross-Pitaevskii . . . .. .. .. ... ... 15
2.2 One-dimensional system . . . . . . . ... ... ... ... ... . 16
2.2.1 Gross-Pitaevskii equationin 1D . . . . . ... ... ... .. 16
2.2.2 Longrangeorder . . . .. .. ... ... 17
2.2.3 Superfluidity . . . . ... 18
2.3 Dimensionless equations . . . . . ... ... L. 19
2.4  Exact solvable models . . . . . .. ... .00 21
2.4.1 Tonks-Girardeau (TG) gas . . . . ... ... ... ... ... 21
2.4.2 Lieb-Liniger model . . . . . . .. .. ... ... 23
2.5 Solitons . . . ... 25
2.6 MCTDH/MCTDHB - Theory behind QiwiB . . . .. ... ... .. 27
2.6.1 Finite basis-set expansion . . . . . ... ... ... ... 28
2.6.2 Variationally optimised basis - MCTDH . . . ... ... .. 29
2.6.3 MCTDHB/QiwiB . . . . . . ... ... ... .. ... ..., 30

3 Bright soliton scattering with Gross-Pitaevskii 37
3.1 Introduction to the problem . . . . . ... ... .. ... ... ... 38
3.2 Phenomenology of soliton scattering by a quantum well . . . . . . . 39
3.3 Variational analysis . . . . . . .. .. oo 49

3.3.1 Two-mode model . . . . ... ... ... ... .. ... ... 49
3.3.2 Numerical results . . . . . .. ... 52




CONTENTS

3.4 The trapping process . . . . . . . . . ..o 56
3.4.1 Analytical model . . . . ... ... 56
3.4.2 Temporal trapping . . . . . . ... L 63

3.5 Probing energy levels . . . . .. ..o 66

3.6 Summary ... ... 70

4 MCTDH - simple improvements due to rescaling of the interac-

tion 71

4.1 Convergence studies . . . . . . . ... Lo 72
4.1.1 Discussion on CPU times . . . . . . .. ... ... ... ... 75
4.1.2  Convergence with respect to the number of single-particle

functions . . . . . . . .. 76
4.1.3 Convergence with respect to the number of grid points . . . 78
4.1.4  Convergence with respect to the width of the interaction

potential . . . . . . ... 78
415 Conclusion . . . . . .. .. 79

4.2 Rescaling of the interaction . . . . . .. ... ... ... ... ... 79

4.2.1 Theoretical background . . . . . . .. ... 79

4.2.1.1 Two particleson aring . . . . . .. ... ... ... 80

4.2.1.2 FEmpirical rescaling . . . . .. ... ... ... ... 83

4.2.1.3 Connection to T" matrix renormalisation . . . . . . 84

4214 MCTDH. ... ... ... ... .. .. ....... 85

422 Bosonsinaring. . ... ... ... ... . 85

4.2.3 Bosons in a harmonic potential . . . . .. ... ... .. .. 89

424 Bosonsinadoublewell . . . . .. ... 91

4.3 SUmMmMary . . . ... 94

5 Full quantum dynamics of soliton scattering 97

5.1 Introduction to the problem . . . . . ... ... ... ... ... .. 98

5.2 Two-mode MCTDHB model . . . . . ... ... ... ... ... ... 99
5.2.1 TRL window for the second bound state . . . . . .. .. .. 102
5.2.2 NOON-like superposition states inside the RT window . . . 102

5.3 Multi-mode MCTDHB models . . . . .. ... ... ... ... ... 104




CONTENTS

5.3.1 TRL windows for the two-mode MCTDHB . . . .
5.3.2  Loss of coherence for multi-mode systems . . . . .
5.4 Convergence properties . . . . . . . . .. ...
5.4.1 Motivation . . . . ... ...
5.4.2 Discussion . . . . .. ... oo

5.5 Summary ... ...

6 Conclusions and Outlook

6.1 Conclusions . . . . . . . . .
6.2 Outlook . . . . . . .

Appendix

129

A Robust mesoscopic superposition of strongly correlated ultracold

atoms
- an application of the rescaling method 129
A1 Motivation . . . . . . . .. 129
A2 Results. . . . . .. . 130
A3 Particleloss . . . . . . . 133
A4 Summary ..o 134
B Numerical methods 137
B.1 Wave propagation . . . . . . . . ... 137
B.2 Imaginary time propagation . . . . . . . ... ... ... ... ... 140
B.3 Numerical implementation of QiwiB . . . . . .. .. ... ... ... 141
B.3.1 Single-particle functions . . . . . .. ... .00 141
B.3.2 Propagation of prefactor Co 141
B.3.3 Improved relaxation . . . . .. ... ... ... .. ... .. 142
B.3.4 Implementation of the whole propagation scheme . . . . . . 143
B.3.5 Calculation of Hg and the mean fields pxq and prgqr - - - - - 144
B.3.6 Transformation to natural orbital basis . . . . . . . ... .. 145
C QiwiB - Influence of N and M on CPU times 147

vii



CONTENTS

D The QiwiB program package 151
D.1 Background . . . . .. .. ... 151
D.2 Summary of key features . . . . . .. ..o 152
D.3 Examples . . . .. . . 154

D.3.1 Particlesinawell . . . .. ... ... .. ... ... ... 154
D.3.2 Travelling bright soliton . . . . . ... ... ... ... ... 158
Bibliography 164

viii



1.1
1.2

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11
3.12

3.13

3.14

3.15

3.16
3.17

List of Figures

Transition to a BEC. . . . . . . . . ...
Bright and dark soliton. . . . . . .. .. ... L.

Sketch of a soliton moving towards a well. . . . . . .. ... .. ..
GP results Rand T vs velocity. . . . . . . ... .. ... .. .. ..
GP results for R, T, L vs potential depth. . . . . . . ... ... ..
Density at Vo = 5.2 and ¢ = 77 (full trapping) and Vi = 6.5 and
t =65 (partial trapping). . . . . . . . ..o
Time evolution of the density for the cases of full trapping, reflection
and transmission as well as partial trapping. . . . . . . . ... . ..
Comparing L (GP) and Nj ¢ (time-independent GP) for different
well widths. . . . . . ..
T from GP calculations compared to exact one-body results for
INCTEASING Vinjtial: -« « « « « « « o o o o e e e e e e
Phase difference A® from two-mode model. . . . . . .. ... ...
R, T, L from the two-mode model. . . . . . .. ... ... ... ...
Time evolution of the density in the two-mode model for the cases
of full reflection, trapping, transmission as well as partial trapping.
T vs kinetic energy from GP calculations. . . . . . . .. ... ...
Time evolution of the kinetic and interaction energies for the trans-
mitted part of the soliton from GP results at V5 = 4.9 and V5 = 5.1.
Logarithmic density plot of the condensate for different times at
Vo = 4.9. A reflected component (radiation) is clearly visible. . . . .
Logarithmic density plot of the condensate for different times at
Vo = 5.1. Compared to Fig. 3.13 the reflected part is clearly larger.
Time evolution of the kinetic and interaction energies for the reflec-
ted part of the soliton from GP results at V; = 4.9 and V4, =5.1. . .
Maximal possible trapping vs initial velocity. . . . . . . . . .. . ..
Time evolution of the density at Vo = 5.182 (T' ~ 1) and V; = 5.183
(L), oo

45

58

59

59




LIST OF FIGURES

3.18

3.19
3.20

3.21

4.1

4.2

4.3
4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

5.1
5.2
5.3

Temporary trapping time for the soliton compared to exact one-
body results. . . . . . . ... 64
Time evolution of the density for temporary trapping. . . . . . . . . 65
Number of trapped atoms N vs chemical potential y from GP
calculations compared with time-independent GP results. . . . . . . 68
Number of trapped atoms N vs chemical potential y from GP

calculations compared to the location of linear bound states. . . . . 69

Total CPU time vs number of single-particle functions and number

of grid points. . . . . . . ... 73
Relative energy difference different numbers of single-particle func-

tlons. . . . .. 75
Relative energy difference for different numbers of grid points. . . . 77

Relative energy difference for different widths of the Gaussian-shaped
interaction potential. . . . . . .. ..o 79
MCTDH results for the ground state energy vs interaction strength
for the two bosons inaring. . . . . . ... ... ... .. 80
Relative energy difference vs interaction strength before and after
rescaling. . . . ... 86
Density-density correlation function for 5 particles in a ring for dif-
ferent interaction strengths. . . . . . .. ... ... .. L. 88
Maximal relative deviation of the energy after rescaling from the
exact result Er; over the range of interaction strengths 0 < g < co. 89

Density function for 5 particles in a harmonic well for different in-

teraction strengths. . . . . . . . ... Lo 90
Ground- and excited-state energies for two particles in a harmonic

well compared to exact results. . . . .. ... ... 91
Excited-state energies for two particles in a harmonic well compared

to exact results in the TG limit. . . . . . ... ... ... ... ... 93
R, T, L for the TRL window for different particle numbers. . . . . 100
R, T, L for the RT window for different particle numbers. . . . . . 101

Density, natural orbitals and the state populations in the natural
orbital basis for N = 80, M = 2 and V;, = 4.85 as well as V = 4.864. 103




LIST OF FIGURES

5.4

5.5

5.6

5.7

5.8

5.9
5.10

5.11

5.12

5.13

6.1

Al
A2

A3

C.1
C.2

R, T, L for the TRL window for N = 120 and different numbers of

single-particle functions. . . . . ... ..o 106
R, T, L for the TRL window for N = 10 and different numbers of
single-particle functions. . . . . . .. ..o 107

Time evolution of the density and the natural orbitals at ¢ = 150

for N=10, M =8and Vy =488. . . . . . .. ... ... ... .. 108
Time evolution of the density and natural orbital populations for
N=10,M =8and Vo =4.84. . . . . . .. ... ... ... .... 109
Time evolution of the density and natural orbitals for N = 120,
Vo=65and M =2aswellas M =4. . ... ... ... ... ... 110
Reflected soliton density for NOON and mixed state. . . . . . . .. 111

Time evolution of the one-body density matrices at different times
for N =120,V =65and M =2aswellas M =4. . . .. .. ... 113

Time evolution of the density and the natural orbital populations
for N=80, M =2and Vo =4.82. . . . . . ... ... ... ... .. 115

Maximal natural orbital populations for different particle numbers

and their respective maximal feasible number of single-particle func-

TIONS. . . . . . 118
Time evolution of the density and the natural orbital populations

at t = 150 for N =1000, M =3 and V, =4.848. . . . . . . ... .. 123
Outlook: Collision of two solitons in a NOON state. . . . . . . . .. 127

Sketch of rotating bosons in a ring stirred by an external potential. 130

Energy level splitting vs interaction strength and total momentum
state occupation numbers in the non-interacting regime and for the
TG limit. . . . ..o 132

The superposition quality after particle loss vs interaction strength. 135

Total CPU time vs number of particles for QiwiB calculations. . . . 148

Total CPU time vs number of single-particle functions for QiwiB

calculations. . . . . . . .. 149




LIST OF FIGURES

D.1 Original Octave picture of the density at ¢ = 3.79 for 20 particles

in a harmonic well for QiwiB calculations. . . . . . . .. .. .. .. 155
D.2 Original Octave picture for the reduced one-body density matrix of

20 particles in a harmonic well for QiwiB calculations. . . . . . . . . 157
D.3 Original Octave picture for the time evolution of the density with

20 particles in a harmonic well for QiwiB calculations. . . . . . . . . 159

xii



5.1

5.2

List of Tables

Natural orbital populations for N = 80 and M =2...4 at V ~ 4.82

at tR 60, .. 116
Maximal natural orbital populations for N = 10...10000 and M =
2...8inside the RT window. . . . . . . . ... ... ... ..... 119

xiii



LIST OF TABLES

xXiv



List of abbreviations

General abbreviations

BEC
GP
GPE
1D
NOON

MCTDH
MCTDHB

MCTDH(B)
QiwiB

TG
LL
RK

Bose-Einstein condensate

Gross-Pitaevskii

Gross-Pitaevskii equation

one dimension or one-dimensional

NOON state: superposition of N particles occupying the first
natural orbital and N particles occupying the second one,
ie. a|N,0) + 5|0, N) with o and 5 being complex numbers.
Multiconfigurational time-dependent Hartree
Multiconfigurational time-dependent Hartree explicitly
optimised for bosonic symmetry

MCTDH and/or MCTDHB

Quantum integrator with interacting bosons, a program
package developed for this thesis, which solves the
MCTDHB equations

Tonks-Girardeau

Lieb-Liniger

Runge-Kutta

Physical observables and operators

TRL

Transmission, i.e. in this thesis the relative number of
particles that passed the well

Reflection, i.e. in this thesis the relative number of particles
that got reflected from the well

Trapping, i.e. in this thesis the relative number of particles
that got trapped inside the well

TRL window: range of potential depths around the
resonance with a bound state of the well and where the

reflection is less than one.




LIST OF ABBREVIATIONS

RT

=

Pkq

Pi

Cr

NO
Cﬁ

RT window: range of potential depths between a regime of
full reflection and full transmission

number of particles

number of single-particle functions, equivalent to the number
of natural orbitals

number of grid points for the discretised spatial coordinate
in the numerical calculations

Gross-Pitaevskii wave-function in one dimension

Total wave function for N particles in one dimension

Total wave function for N particles in second quantised form
dimensionless effective interaction strength in one dimension
chemical potential

Reduced one-body density matrix given as

plx,y,t) =N [dey. .. deyV*(z,25...,28)V(y,22...,TN)
1th single particle function

1th natural orbital defined by

pla,y.t) = S, pi [610(y)]" 8)O(x)

Density matrix in single-particle representation defined by
p(x, Y, 1) = S po Pra®k(y)Sq()

Density matrix in natural-orbital representation defined by
ple.y.t) = 30 i [0 ()] 0N ()

many-body state in second quantisation:

[73) = [Txsy 7 [bL (D))" [vac) with @@ = (ny,...,ny) and
Ei]\il ni =N

Configuration amplitude defined by |U(t)) = >~ Cz|A) in
the single-particle representation

Configuration amplitude defined by |¥(t)) = > . Cz|n) in

the natural-orbital representation

Physical constants

h
Ky

Planck’s constant i = 1.054571726(47) x 10734 Js
Boltzmann constant k, = 1.3806488(13) x 10723J/K

XVvi



