Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Quantum many-body dynamics of bright matter-wave solitons

A thesis presented in partial fulfilment of the

requirements for the degree of

Doctor of Philosophy

at

Massey University, Albany

New Zealand

Thomas Ernst

August 2011

Abstract

The interplay of particle and resonant wave scattering including nonlinear effects creates systems of diverse and interesting quantum many-body physics. A better understanding of the physics in these systems could lead to new and exiting application exploiting their quantum nature.

As an example, in this thesis we investigate the scattering of bright matter-wave solitons in ultracold gases on a square well in one spatial dimension. For this, solutions of the mean-field Gross-Pitaevskii approximation and a full quantum many-body method, the so-called multiconfigurational time-dependent Hartree approach (MCTDH), are compared.

The MCTDH method is based on a finite basis set expansion, which naturally leads to errors in system properties, such as energies and densities, when compared to exact results. In this thesis, we propose an efficient solution to this problem by rescaling the interaction strength between the particles. Even for very large interactions in the Tonks-Girardeau limit, the rescaling leads to significant improvements. This is validated by successfully applying the rescaling to problems in ring systems as well as external confinements, such as a harmonic well and a double-well.

The MCTDH method is then applied to the soliton scattering problem and compared to results from mean-field calculations. The latter verify that solitons, when scattered on a well, show quantum effects, such as reflection. For the first time, we show that a soliton can be additionally permanently trapped by the well due to resonances with bound states.

For this thesis, to extend these results to a full many-body approach, we developed QiwiB. It is a program package implementing the MCTDHB method, which is a derivative of the MCTDH method, but optimised for bosonic systems. Limits for the validity of the MCTDHB approach are addressed by convergence studies on the soliton scattering problem. Furthermore, we demonstrate that the scattering on the well enables the creation of macroscopic binary quantum superposition states, i.e. *NOON* states. Novel *NOON* states corresponding to a superposition of a reflected soliton and a trapped soliton are observed. These states are shown to exist for a large range of initial conditions, and a possible experimental realisation is discussed.

ii

Acknowledgments

Firstly, I want to thank my supervisor Prof. Joachim Brand for bringing me all the way from Germany to New Zealand and introducing me to the fascinating world of matter-wave solitons. I am very grateful for all the fruitful discussions, suggestions and his patience with me as well as all the critical comments, from which I have learned so much.

I also want to thank David Hallwood, for the many extensive and inspiring discussions as well as for being such a great work colleague. I also want to thank Jake Gulliksen for being an awesome office mate. I really enjoyed collaborating with them on physics projects as well as the time together on the tennis court. I also want to thank Renyuan, Sasha and Gaby for all the great conversations and the fun time together, and creating such a great atmosphere in the office.

I also would like to thank Prof. Peter Schwerdtfeger for all the BBQs and the great advice on physics problems as well as life issues.

Furthermore many thanks go to all current and former members of the CTCP, in particular Andreas, Andy, James, Matthias, and Michael for their awesome work on the computer administration, and Patrick for help and advice as well as all the coffee.

My gratitude also goes to Prof. Hans-Dieter Meyer, for his kind introduction to MCTDH, and his patience in finding answers to all my questions.

Most of all, I want to thank Susan, for just being her and making my life a dream. You are wonderful and I would not know what to do without you.

Last but not least, I want to thank my parents, who always supported me. Me going to New Zealand certainly was not what they were hoping for, and therefore I am very grateful and happy to have parents who I can always count on and never stop loving me. Thank you for everything, you are the best.

iii

Contents

1	Intr	coduction	1
	1.1	Background and motivation	1
	1.2	Outline of this thesis	7
	1.3	Publications	9
2	The	eoretical background 1	1
	2.1	Simple theories on Bose-Einstein condensates	1
		2.1.1 The ideal gas	1
		2.1.2 Interactions	2
		2.1.3 Gross-Pitaevskii equation	.3
		2.1.4 Beyond Gross-Pitaevskii	5
	2.2	One-dimensional system	.6
		2.2.1 Gross-Pitaevskii equation in 1D	6
		2.2.2 Long range order	7
		2.2.3 Superfluidity $\ldots \ldots 1$	8
	2.3	Dimensionless equations	9
	2.4	Exact solvable models	21
		2.4.1 Tonks-Girardeau (TG) gas	21
		2.4.2 Lieb-Liniger model	23
	2.5	Solitons	25
	2.6	MCTDH/MCTDHB - Theory behind QiwiB	27
		2.6.1 Finite basis-set expansion	28
		2.6.2 Variationally optimised basis - MCTDH	29
		2.6.3 MCTDHB/QiwiB	0
3	Brig	ght soliton scattering with Gross-Pitaevskii 3	7
	3.1	Introduction to the problem	8
	3.2	Phenomenology of soliton scattering by a quantum well 3	59
	3.3	Variational analysis	9
		3.3.1 Two-mode model	9
		3.3.2 Numerical results	2

 \mathbf{V}

CONTENTS

	3.4	The tr	apping process	56
		3.4.1	Analytical model	56
		3.4.2	Temporal trapping	63
	3.5	Probin	ng energy levels	66
	3.6	Summ	ary	70
4	MC	TDH -	- simple improvements due to rescaling of the interac-	
	tion			71
	4.1	Conve	rgence studies	72
		4.1.1	Discussion on CPU times	75
		4.1.2	Convergence with respect to the number of single-particle	
			functions	76
		4.1.3	Convergence with respect to the number of grid points $\ . \ .$	78
		4.1.4	Convergence with respect to the width of the interaction	
			potential	78
		4.1.5	Conclusion	79
	4.2	Rescal	ing of the interaction \ldots	79
		4.2.1	Theoretical background	79
			4.2.1.1 Two particles on a ring \ldots \ldots \ldots \ldots \ldots	80
			4.2.1.2 Empirical rescaling	83
			4.2.1.3 Connection to T matrix renormalisation	84
			4.2.1.4 MCTDH	85
		4.2.2	Bosons in a ring	85
		4.2.3	Bosons in a harmonic potential	89
		4.2.4	Bosons in a double well	91
	4.3	Summ	ary	94
5	Full	quant	um dynamics of soliton scattering	97
	5.1	Introd	uction to the problem	98
	5.2	Two-m	node MCTDHB model	99
		5.2.1	TRL window for the second bound state $\ldots \ldots \ldots \ldots$	102
		5.2.2	$NOON\text{-}{\rm like}$ superposition states inside the RT window $\ .$.	102
	5.3	Multi-	mode MCTDHB models	104

CONTENTS

		5.3.1 TRL windows for the two-mode MCTDHB	.05
		5.3.2 Loss of coherence for multi-mode systems	.09
	5.4	Convergence properties	.14
		5.4.1 Motivation $\ldots \ldots \ldots$.14
		5.4.2 Discussion $\ldots \ldots 1$	17
	5.5	Summary	.21
6	Con	clusions and Outlook 1	25
	6.1	Conclusions	.25
	6.2	Outlook	.27
Aı	open	dix 1	29
1	spon		-0
Α	Rob	sust mesoscopic superposition of strongly correlated ultracold	
	ator	ns	
	- an	application of the rescaling method 1	29
	A.1	Motivation	.29
	A.2	Results	.30
	A.3	Particle loss	.33
	A.4	Summary	.34
в	Nur	nerical methods 1	37
	B.1	Wave propagation	.37
	B.2	Imaginary time propagation	.40
	B.3	Numerical implementation of QiwiB	.41
		B.3.1 Single-particle functions	.41
		B.3.2 Propagation of prefactor \vec{C}	.41
		B.3.3 Improved relaxation	.42
		B.3.4 Implementation of the whole propagation scheme $\ldots \ldots \ldots$.43
		B.3.5 Calculation of $H_{\tilde{C}}$ and the mean fields ρ_{kq} and ρ_{ksql}	.44
		B.3.6 Transformation to natural orbital basis	.45
С	Qiw	iB - Influence of N and M on CPU times 1	47

vii

CONTENTS

D	The	QiwiB program package	151	
	D.1	Background	151	
	D.2	Summary of key features	152	
	D.3	Examples	154	
		D.3.1 Particles in a well	154	
		D.3.2 Travelling bright soliton	158	
ъ.				
Bı	bliog	aphy	164	

List of Figures

1.1	Transition to a BEC.	2
1.2	Bright and dark soliton.	4
3.1	Sketch of a soliton moving towards a well	38
3.2	GP results R and T vs velocity	40
3.3	GP results for R, T, L vs potential depth	43
3.4	Density at $V_0 = 5.2$ and $t = 77$ (full trapping) and $V_0 = 6.5$ and	
	t = 65 (partial trapping)	44
3.5	Time evolution of the density for the cases of full trapping, reflection	
	and transmission as well as partial trapping	45
3.6	Comparing L (GP) and $N_{L,rel}$ (time-independent GP) for different	
	well widths.	47
3.7	T from GP calculations compared to exact one-body results for	
	increasing v_{initial}	48
3.8	Phase difference $\Delta \Phi$ from two-mode model	52
3.9	R, T, L from the two-model model.	53
3.10	Time evolution of the density in the two-mode model for the cases	
	of full reflection, trapping, transmission as well as partial trapping.	55
3.11	T vs kinetic energy from GP calculations	57
3.12	Time evolution of the kinetic and interaction energies for the trans-	
	mitted part of the soliton from GP results at $V_0 = 4.9$ and $V_0 = 5.1$.	58
3.13	Logarithmic density plot of the condensate for different times at	
	$V_0 = 4.9$. A reflected component (radiation) is clearly visible	59
3.14	Logarithmic density plot of the condensate for different times at	
	$V_0 = 5.1$. Compared to Fig. 3.13 the reflected part is clearly larger.	59
3.15	Time evolution of the kinetic and interaction energies for the reflec-	
	ted part of the soliton from GP results at $V_0 = 4.9$ and $V_0 = 5.1$.	60
3.16	Maximal possible trapping vs initial velocity	61
3.17	Time evolution of the density at $V_0 = 5.182 \ (T \approx 1)$ and $V_0 = 5.183$	<i></i>
	$(L \approx 1)$	63

ix

LIST OF FIGURES

3.18	Temporary trapping time for the soliton compared to exact one-	
	body results	64
3.19	Time evolution of the density for temporary trapping	65
3.20	Number of trapped atoms N_L vs chemical potential μ from GP	
	calculations compared with time-independent GP results	68
3.21	Number of trapped atoms N_L vs chemical potential μ from GP	
	calculations compared to the location of linear bound states	69
4.1	Total CPU time vs number of single-particle functions and number	
	of grid points	73
4.2	Relative energy difference different numbers of single-particle func-	
	tions	75
4.3	Relative energy difference for different numbers of grid points	77
4.4	Relative energy difference for different widths of the Gaussian-shaped	
	interaction potential	79
4.5	MCTDH results for the ground state energy vs interaction strength	
	for the two bosons in a ring	80
4.6	Relative energy difference vs interaction strength before and after	
	rescaling	86
4.7	Density-density correlation function for 5 particles in a ring for dif-	
	ferent interaction strengths.	88
4.8	Maximal relative deviation of the energy after rescaling from the	
	exact result E_{LL} over the range of interaction strengths $0 < g < \infty$.	89
4.9	Density function for 5 particles in a harmonic well for different in-	
	teraction strengths	90
4.10	Ground- and excited-state energies for two particles in a harmonic	
	well compared to exact results	91
4.11	Excited-state energies for two particles in a harmonic well compared	
	to exact results in the TG limit	93
5.1	R, T, L for the TRL window for different particle numbers	100
5.2	R, T, L for the RT window for different particle numbers	101
5.3	Density, natural orbitals and the state populations in the natural	
	orbital basis for $N = 80$, $M = 2$ and $V_0 = 4.85$ as well as $V_0 = 4.864$.	103

5.4	R, T, L for the TRL window for $N = 120$ and different numbers of single-particle functions	06
5.5	R, T, L for the TRL window for $N = 10$ and different numbers of single-particle functions	07
5.6	Time evolution of the density and the natural orbitals at $t = 150$ for $N = 10$, $M = 8$ and $V_0 = 4.88$	08
5.7	Time evolution of the density and natural orbital populations for $N = 10, M = 8$ and $V_0 = 4.84100$	09
5.8	Time evolution of the density and natural orbitals for $N = 120$, $V_0 = 6.5$ and $M = 2$ as well as $M = 4$	10
5.9	Reflected soliton density for <i>NOON</i> and mixed state	11
5.10	Time evolution of the one-body density matrices at different times for $N = 120$, $V_0 = 6.5$ and $M = 2$ as well as $M = 4$	13
5.11	Time evolution of the density and the natural orbital populations for $N = 80$, $M = 2$ and $V_0 = 4.82$	15
5.12	Maximal natural orbital populations for different particle numbers and their respective maximal feasible number of single-particle func-	10
5 1 2	Time evolution of the density and the natural orbital populations	10
0.10	at $t = 150$ for $N = 1000$, $M = 3$ and $V_0 = 4.848$	23
6.1	Outlook: Collision of two solitons in a <i>NOON</i> state	27
A.1	Sketch of rotating bosons in a ring stirred by an external potential. 13	30
A.2	Energy level splitting vs interaction strength and total momentum state occupation numbers in the non-interacting regime and for the TG limit.	32
A.3	The superposition quality after particle loss vs interaction strength. 15	35
- 1.0		
C.1	Total CPU time vs number of particles for QiwiB calculations 14	48
C.2	Total CPU time vs number of single-particle functions for QiwiB 14 calculations. 14	49

LIST OF FIGURES

D.1	Original Octave picture of the density at $t = 3.79$ for 20 particles
	in a harmonic well for QiwiB calculations
D.2	Original Octave picture for the reduced one-body density matrix of
	20 particles in a harmonic well for QiwiB calculations
D.3	Original Octave picture for the time evolution of the density with
	20 particles in a harmonic well for QiwiB calculations

List of Tables

5.1	Natural orbital populations for $N = 80$ and $M = 2 \dots 4$ at $V_0 \approx 4.82$
	at $t \approx 60.$
5.2	Maximal natural orbital populations for $N = 10 \dots 10000$ and $M =$
	$2 \dots 8$ inside the RT window. $\dots \dots \dots$

LIST OF TABLES

List of abbreviations

General abbreviations

BEC	Bose-Einstein condensate
GP	Gross-Pitaevskii
GPE	Gross-Pitaevskii equation
1D	one dimension or one-dimensional
NOON	NOON state: superposition of N particles occupying the first
	natural orbital and N particles occupying the second one,
	i.e. $\alpha N, 0 \rangle + \beta 0, N \rangle$ with α and β being complex numbers.
MCTDH	Multiconfigurational time-dependent Hartree
MCTDHB	Multiconfigurational time-dependent Hartree explicitly
	optimised for bosonic symmetry
MCTDH(B)	MCTDH and/or MCTDHB
QiwiB	Quantum integrator with interacting bosons, a program
	package developed for this thesis, which solves the
	MCTDHB equations
TG	Tonks-Girardeau
LL	Lieb-Liniger
RK	Runge-Kutta

Physical observables and operators

Т	Transmission, i.e. in this thesis the relative number of
	particles that passed the well
R	Reflection, i.e. in this thesis the relative number of particles
	that got reflected from the well
L	Trapping, i.e. in this thesis the relative number of particles
	that got trapped inside the well
TRL	TRL window: range of potential depths around the
	resonance with a bound state of the well and where the
	reflection is less than one.

 $\mathbf{X}\mathbf{V}$

LIST OF ABBREVIATIONS

RT	RT window: range of potential depths between a regime of
	full reflection and full transmission
N	number of particles
M	number of single-particle functions, equivalent to the number
	of natural orbitals
N_g	number of grid points for the discretised spatial coordinate
	in the numerical calculations
$\psi(x,t)$	Gross-Pitaevskii wave-function in one dimension
$\Psi(x_1,\ldots,x_N,t)$	Total wave function for N particles in one dimension
$ \Psi(t)\rangle$	Total wave function for N particles in second quantised form
g	dimensionless effective interaction strength in one dimension
μ	chemical potential
$\rho(x,y,t)$	Reduced one-body density matrix given as
	$\rho(x, y, t) = N \int dx_2 \dots dx_N \Psi^{\star}(x, x_2 \dots, x_N) \Psi(y, x_2 \dots, x_N)$
ϕ_i	ith single particle function
ϕ_i^{NO}	ith natural orbital defined by
	$\rho(x, y, t) = \sum_{i=1}^{M} \rho_i \left[\phi_i^{NO}(y) \right]^* \phi_i^{NO}(x)$
$ ho_{kq}$	Density matrix in single-particle representation defined by
	$\rho(x, y, t) = \sum_{k,q=1}^{M} \rho_{kq} \phi_k^{\star}(y) \phi_q(x)$
$ ho_i$	Density matrix in natural-orbital representation defined by
	$\rho(x, y, t) = \sum_{i=1}^{M} \rho_i \left[\phi_i^{NO}(y) \right]^* \phi_i^{NO}(x)$
$ \vec{n} angle$	many-body state in second quantisation:
	$ \vec{n}\rangle = \prod_{k=1}^{M} \frac{1}{\sqrt{n_k!}} [b_k^{\dagger}(t)]^{n_k} \text{vac}\rangle$ with $\vec{n} = (n_1, \dots, n_M)$ and
	$\sum_{i=1}^{M} n_i = N$
$C_{\vec{n}}$	Configuration amplitude defined by $ \Psi(t)\rangle = \sum_{\vec{n}} C_{\vec{n}} \vec{n}\rangle$ in
	the single-particle representation
$C^{NO}_{\vec{n}}$	Configuration amplitude defined by $ \Psi(t)\rangle = \sum_{\vec{n}} C_{\vec{n}} \vec{n}\rangle$ in
	the natural-orbital representation

Physical constants

\hbar	Planck's constant $\hbar = 1.054571726(47) \times 10^{-34} Js$
k_b	Boltzmann constant $k_b = 1.3806488(13) \times 10^{-23} J/K$

xvi