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ABSTRACT 

Some models proposed for the analysis of contingency tables are 
reviewed and illustrated with examples. 

These include standard loglinear models; models which are suitable 
for ordinal categorical variables such as ordinal loglinear, log­
multiplicative and logit models, and models based on an underlying 
distribution for the response; and models for incanplete and square 
tables. 

Estimation methods and inference are also discussed. 
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1. 

CHAPrER I: INTROCUCTION 

1.1 Categorical variables 

This thesis discusses different types of models that can be used to 
describe categorical data. A categorical variable differs fran a 
continuous variable in that rather than being able to take on a 
continuous range of values, it is only classified into a certain 
number of categories. An example would be marital status, which could 
have categories such as married, widowed, divorced, or "other". If we 
classify each member of a sample simultaneously on t¼D or more 
categorical variables, then we can form a cross-classification table. 
For example, we might classify 1000 people by their marital status and 
age (where age has only been measured in categories) such as in Table 
1.1. 

Table 1.1: Cross-classification table of 1000 people by age and 
marital status 

Age (years) 

< 25 

25 - 40 

> 40 

TOTAL 

Married 

100 
200 
120 

420 

Marital Status 
Widowed 

10 
50 
75 

135 

Divorced 

10 
100 

80 

190 

Other 

180 
50 

25 

255 

Total 

300 
400 

300 

1000 

A cross-classification table is also referred to as a contingency 
table or cross-tabulation. 

For sane variables such as marital status and sex, the only sensible 
way to measure them is to classify them into categories. However, 
sane other variables, such as age and incane, can be measured on a 
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continuous scale, but it is often more convenient to simply categorize 
them. 

1.2 Two-Dimensional Tables 

Consider a two-way table of counts with the row variable, X, having r 
categories, and the column variable, Y, having c categories - thus 
there are r rows and c columns. We will denote the actual count in 
the ith row and jth column by nij, and the corresponding expected 
count under sane model as mij• The row and column totals are: 

C 

ni+ = Enij 
j=l 

r 

n+j = L nij 
i=l 

The total number of observations is 

L L nij = N 
i j 

Assuming that neither category has fixed marginal totals, the 
probability that a given individual is classified into cell (i, j) is: 

Tiij = P (X tables on level i and Y takes on level j) 

where 

TI •. lJ = mij 
N 

I TI ij = n+j 
i 

In ij = TI i+ 
j 



H1Tij = 1 
ij 

If X and Y are independent, then 

1Tij = P (X tables on level i) x P (Y takes on level j) 

= 1Ti+ 1T+j 

Since the expected value of nij is 

ffiij = Nrr ij 

then under the model of independence 

ffiij = N ,r i+ 1T +j 

3. 

Later, we will discuss models that allow X and Y to be associated in 
sane way. For these models the expected values depend on more than 
just the marginal probabilities. 

1.3 Three-Dimensional Tables 

We can extend the notation introduced in Section 1. 2 to the case of 
three-way tables. A three-way table with variables X, Y and Z having 
r, c and !l categories respectively, will be said to have observed 
counts nijk with corresp::mding expected counts mijk and population 
probabilities n ijk• 

An example of a three-way table is Table 1.2 which classifies a sample 
of 1593 people by their age, religion and frequency of church 
attendance (Knoke and Burke, 1980, p.68). 
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Table 1.2: Effect of age and religion on church attendance 

Church Attendance 
Religion Age I.ow Mediun High 'Ibtal 

Non-Catholic Young 322 124 141 587 
Old 250 152 194 596 

Catholic Young 88 45 106 239 
Old 28 24 119 171 

TOTAL 688 345 560 1593 

Later, we will fonnulate models that allow various types of 
association between the variables. 

1.4 Sampling Models 

There are three canmon sampling models that are used for the 
collection of cross-classified data. We will illustrate for the case 
of an rxcxi table classified by variables X, Y and z. These results 
can be easily generalized to tables of a different dimension. 

1.4.1 Poisson 

We observe a set of independent Poisson processes, one for each 
cell in the table ov.er a ~ixed time period·, with no prior knowledge 
of the total number of observations to be taken. The count nijk in 
each cell will have a Poisson distribution with mean mijk, i.e. 
the probability function for nijk has the fonn 

nijk -mijk 
f (nijk) = mijk e 

Xijk 1 



The log likelihood function is 

log L(nijk) = l 
i, j ,k 

nijk log mijk - l 
i, j ,k 

5. 

mijk - l 

Since the cells contain counts having independent Poisson 

distributions, the total count in the table, N, has a Poisson 

distribution with mean 

m+++ = l mijk 
ijk 

1.4.2 Multinanial 

We take a fixed sample of size N and cross-classify each member of 

the sample according to the categorical variables. The cell counts 

{ nij0 will have the mul tinanial distribution specified by the 
sample size N and the rcz population probabilities {TI ijk}. The 

probability of a particular set of cell counts {nijk} that Slllll to N 

is the multinanial likelihood 

L(nijk) = _N_._1 __ 

TI nijk! 
i, j ,k 

The log likelihood is 

log L( nijk) = I = 
i, j ,k 

TT nijk 

TI ijk 
i, j ,k 

nijk log TI ijk + log N! - I 
i, j ,k 

The expected value of each nijk is mijk = Nrrijk• 

1.4.3 Product Multinanial 

For each canbination of one or more categorical explanatory 

variables, we take a multincmial sample of fixed size which is 

classified by the remaining response variable( s). For example, 

suppose we fix the 9, layer totals and take a sample of size n++k 

for each k. Let TI ij ( k) be the probability of an observation 

falling into the ith category of X and the jth category of Y, given 
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that it falls into the kth category of Z (i.e. ,r ijJ</,r ++k). The 
cell counts within the kth layer have the multinanial distribution 
specified by the sample size n++k and the probabilities {,r ijk 
k = 1, ••• , t}, and cell counts fran different layers are 
independent. The cell counts in layer k have the probability 
function 

n++k! 
. n nijk! 

I • l,J 

. II . 
l,J 

nijk 
1fiJ'(k) 

and the product of these fran the t layers gives the probability 
function for the whole table (the product multinanial likelihood) 

= II n++k II 
k II 1,J 
i,j· nijk ! 

,r ij (k) nijk 

The expected value of each nijk is mijk = n++k 1fij(k)• 

1. 4.4 Eauivalence of Results for Different Sampling Models 

For the models that will be discussed in this thesis, the maximum 
likelihood estimates (MLEs) are the same for all sampling schemes. 
The one condition required is that a term corresponding to the 
fixed margin( s) in the product mul tinanial sampling scheme be 

included in the model ( for more details see Append ix 1) • Because 
of this equivalence, generally models will be phrased as though the 
sampling scheme was multinanial. 

1.5 ResP?nse and Explanatory Variables 

Each variable ( i.e. margin) in a table can be thought of as either an 
explanatory variable (factor) which affects others, or as a response 
variable which depends on other factors. 

Fbr three-dimensional tables there are three possible canbinations: 

(i) no explanatory, three response variables 
(ii) one explanatory, two response variables 

( iii) . tv.D explanatory, one response variable. 
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Examples of these three types of tables include Tables 1. 2, 1. 3 and 
1. 4. 

Table 1.3: Occupation (0), Education (E), and Aptitude (A) 
of oorld War II volunteers 

01 (self employed, business) 02 (self employed, professional) 

El E2 E3 E4 El E2 E3 E4 

Al 42 55 22 3 1 2 8 19 
A2 72 82 60 12 1 2 15 33 
A3 90 106 85 25 2 5 25 83 
A4 27 48 47 8 2 2 10 45 
AS 8 18 19 5 0 0 12 19 

03 ( teacher) 04 (salary employed) 

El E2 E3 E4 El E2 E3 E4 

Al 0 0 1 19 172 151 107 42 
A2 0 3 3 60 208 198 206 92 
A3 1 4 5 86 279 271 331 191 
A4 0 0 2 36 99 126 179 97 
AS 0 0 1 14 36 35 99 79 

1.5.1 Three Responses 

Type (i) tables are only rarely found in practice. However Table 
1.3 can be thought of as one. The data, taken fran Fienberg (1980, 
p.45) refer to the classification of 4353 World War II volunteers 
into four occupational groups by four levels of education and five 
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levels of aptitude. Because of the sampling scheme and the way in 
which the individuals were classified ( see Fienberg for further 
details), all three variables can be thought of as responses. 

1.5.2 Two Responses 

Table 1.4, taken fran Fienberg (1980, p.27) is an example of the 
second type of table. The data refer to the perch heights and 
diameters of tv.D different species of lizards. Species is an 
expalanatory variable which affects the responses of height and 
diameter. 

Table 1. 4: Perch height and diameter of two species of lizards 

Perch Diameter 

>4. 75 1 

<4. 75 1 

Sagrei Species 
Perch height 
< 4. 0" 

32 
11 

> 4. 0" 

86 
35 

1.5.3 One ResJ?)nse 

Distichus Species 
Perch height 

,;:; 4. 0" 

61 
41 

> 4. 0" 

73 
70 

Type (iii) tables are the most canmon three-dimensional tables. An 

example is given in Table 1.2 which illustrates the effect of the 
explanatory variables, religion and age, on the response, frequency 
of church attendance. 

1.5.4 Types of Models that can be Fitted 

For type ( i) tables only Poisson or multinomial sampling schemes 
are usually appropriate, whereas for types (ii) and (iii) we would 
also use a product-multinomial model in which the fixed marginal 
totals correspond to explanatory variables. 
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The distinction between explanatory and resfX)nse variables 
certainly affects the interpretation of the results, but often does 
not affect the types of models that can be fitted. A sensible 
approach for the analysis of tables with one or more explanatory 
variables is to condition on the values of these margins, treating 
them as fixed even in those cases where they are not. We will 
discuss this approach more fully later. 

1.6 Ordinal Categorical Data 

When one or more of the variables in a cross-classification is 
measured on an ordinal scale, we can use models which take account of 
this to give more powerful tests of association and simpler, more 
incisive measures of this association than models which simply treat 
all the variables as naninal. 

An illustration of an ordinal variable and the levels of its 
corresponding scale would be education which might be measured as 
primary sclxlol, high school, or tertiary education. 

Other examples would be consumer rating of a new food product as 
dislike a lot, dislike, indifferent, like, like a lot; or measuring 
the softness of water as soft, medium or hard. 

Ordinal scales canrnonly occur in many disciplines, such as the social 
sciences (e.g •. for measuring attitudes and opinions), marketing (e.g. 
for preference scales), medicine (e.g. for describing severity of an 
injury, or degree of recovery fran an illness). In many fields 
ordinal scales often result when discrete measurement is used with 
inherently continuous variables such as age, incane or social status. 
Often it is possible to measure a variable perhaps even on a 
continuous scale, but much quicker and more convenient to simply 
measure it on an ordinal scale. For instance, the amount of sediment 
left on a filter pad may be simply classified as none, slight, 
moderate or excessive by canparing it to a photographic standard 
rather than drying it and precisely weighing it. 

A categorical variable is referred to as "ordinal" rather than 
"interval" when there is a clear ordering of the categories but the 
absolute distances among them are unknown. For example, the variable 
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"education" is ordinal when measured with categories primary school, 
high school, university, but it is interval when measured with the 
integer values 0, 1, 2, ••• representing number of years of education. 

An ordinal variable is quantitative because it corresponds to 
different quantities of a certain characteristic, while qualitative 
variables which are measured on a naninal scale have no such property. 
Examples of nominal variables are race, religion or marital status. 
The order of listing of the categories of a naninal variable is 
obviously unimportant. 

1.6.1 Advantages of Using Ordinal Methods 

Most of the well-known methods for analysing categorical data (such 
as the Pearson chi-squared test of independent or the canmon 
log linear models discussed in Chapter II} treat all variables as 
naninal, i.e. the results are invariant to permutations of the 
categories of any of the variables. 

Since ordinal variables are inherently quantitative, Agresti (1984} 
argues that their descriptive measures should be more like those 
for interval variables than those for naninal variables. 

The advantages of using ordinal methods instead of the standard 
naninal procedure_s include: 

1. Ordinal methods have greater power for detecting particular 
kinds of association; 

2. Ordinal data description is based on measures that are 
similar to those (e.g. correlations, slopes} used in 
ordinary regression and analysis of variance for continuous 
variables; 

3. Ordinal analyses 
of which are 
interpretations 
variables. 

can use a greater variety of models, most 
more parsimonious and have simpler 

than the standard models for naninal 

4. Interesting ordinal models can be applied in settings where 
the standard naninal models are trivial or else have too many 

parameters to be tested for goodness of fit. 
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In Chapters IV to VII we will discuss particular classes of·models 
that can be used to model ordinal categorical data. These include 
ordinal lCXJlinear, lCXJ-multiplicative and lCXJit models, as well as 
models based on underlying distributions for the response. 

1.6.2 Odds Ratios for 2x2 Tables 

The odds ratio is a measure that describes the degree of 
association in a 2x2 table - it is especially important in the 
study of ordinal models. 

Consider the 2x2 population cross-classification with cell 
probabilities ,r ij• Within row 1 the odds that variable 2 is in 
column 2 instead of column 1 is 

Within row 2 the corresponding odds equals 

Each Qi is nonnegative, with value greater than 1.0 if column 2 is 
more likely than column 1. 

The ratio of these odds 

= ,r 22,lir 21 
,r 12,lir 11 

is the odds ratio. It is sanetimes called the cross product ratio, 
since it is the ratio of the products ,r 11 ,r 22 and ,r 12 ,r 21 of 
proportions fran cells that are diagonally opposite. 

Each odds S1 i can be expressed as 



so 

r2i = ,r i2/1r i+ 
ir n/ir i+ 

= 1T2(i) 

1r 1( i) 

e = ir 2 ( 2) /ir 1 ( 2) 

1T2(l)iirl(l) 

12. 

The row and column variables are independent if and only if Q 1 = Q 2 
(and so e = 1.0). If 1 < e < oo, then individuals in row 2 are more 
likely to be in column 2 than are individuals in row 1, i.e. 

1T2(2) > 1T2(1)• If O < e < 1, individuals in row 2 are less likely 
to be in column 2 than are individuals in row 1, i.e. 1T2(2) < 
1T2(1)· 

For sample cell frequencies {Xij}, a sample analCXJ of e is 

A 

e = nn n22 

n21 n12 

The value of e does not change if both cell frequencies within any 

row are multiplied by a nonzero constant, or if both cell 
A 

frequencies within any column are multiplied by a constant. So e 
estimates the same characteristic ( e) even if disproportionately 
large or small samples are selected fran the various marginal 
categories of a variable. In particular, it estimates the same 
characteristic regardless of whether sampling is full multinanial 
or independent multinanial. It also takes the same value if the 
orientation of the table is reversed so that the rows becane the 
columns and the columns becane the rows. 

If the order of the rows or the order of the columns is reversed, 
the new value of e is simply the inverse of the original value. So 

tv.D values of e that are the inverse of one another (such as 3 and 
1/3) represent the same degree of association, but in opposite 
directions. 

The odds ratio is a multiplicative function of the cell 

proportions. Its lCXJarithm is an additive function, i.e. 
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leg e = leg 1T ll - leg 1T 12 = leg 1T 21 + leg 1T 22 and may equal any 
real nunber. The leg odds ratio is symmetric about the 
independence value of 0.0 in the sense that a reversal of the tv.0 
rows or the two columns results in a change of its sign. 

1.6.2.1 Incidence of Colds Example 

Pauling ( 1971) describes a double-blioo study to evaluate the 
effect of ascorbic acid (vitamin C) on the camnon cold. One 
group of 140 skiers received a placebo, while a second of 139 
received 1 g of ascorbic acid per day. The incidence of colds 
was recorded and is shown in Table 1.5. 

Table 1.5: Incidence of camnon colds 

Treabnent 

Ascorbic acid 
Placebo 

No Cold 

122 
109 

Cold 

17 
31 

The odds of catching a cold for the ascorbic acid group are 
17/122 = .14, while the odds for the placebo group are 31/109 = 
0.28. The ratio of these odds is 0.28/0.14 = (122 x 31)/(109 x 
17) = 2. 04. This means that the odds of catching a cold were 
2. 04 times higher for the placebo group than for the ascorbic 
acid group. This odds ratio is significantly higher than 1.0, 
so it is plausible that administration of vitamin C helped to 
prevent the occurrence of colds. 

1.6.3 Odds Ratio for rxc Tables 

For the general rxc table odds ratios can be formed using each of 
(f) = r(r-1)/2 pairs of rows in canbination with each of the (i) = 
c(c-1)/2 pairs of columns. For rows a and band columns c and d, 
the odds ratio (1Tac lTbd)/(lTbc lTad) uses four cells occurring in a 
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rectangular pattern (see Figure 1), and there are (f) (~ cx:ids 
ratios of this type. The independence of the two variables is 
equivalent to the condition that all these population cx:ids ratios 
equal 1. O. 

However, there is much redundant information when the entire set of 
these cx:ids ratios is used to characterize the association in a 
table. 

1.6.3.1 LOcal CXlds Ratios 

A basic set of (r-1) (c-1) cx:ids ratios is 

e i j = 1r i j 1r i + 1 , j + 1 , i = 1 , • • • , r-1, 
1r irj+l 1r i+l,j j=l,. • • ,c-1 

Figure 1. 1: General CXlds Ratio 1r ac 1r 00/lT be 1r ad 

c d 

a 

b 
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Figure 1. 2: Local ()jds Ratio e ij 

·+1 

i 

i+l 

This basic set determines all (z) (S) odds ratios that can be 
formed fran pairs of rows and pairs of columns. Independence of 
the tv.D variables is therefore also equivalent to the condition 
that the odds ratios in the basic set are equal to one. 

These odds ratios are formed using cells in adjacent rows and 
adjacent columns, as illustrated in Figure 1.2. Their volumes 
describe the relative magnitude of "local" associations in the 
table, so they are called local odds ratios. 

1.6.3.2 Local-Global ()jds Ratios 

Another family of odds ratios is 

e 'ij = 0: 1r ib) 
lxj 

0: 1r ib) 
b>j 

i = 1, ... ,r-1, 
j = 1, ••• ,c-1 

(I 1Ti+l,b) 
b > j 
(I 1Ti+l,b) 
lxj 

These odds ratios are local in the row variable but "global" in 
the column variable, since all c categories of the column 
variable are used in each odds ratio (see Figure 1.3). They are 
particularly meaningful when a distinction is made between 
response and explanatory variables. 
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1.6.3.3 Global CX'!ds Ratios 

A third family of odds ratios is 

0 II ij = ( I I ,rab) ( I I 1T ab) 
a,;; j l:xj a>i b>j 

( I I 1T ab) ( I I 1T ab) 
a,;; i b> j a>i l:xj 

These measures are the regular odds ratios canputed for the 2x2 
tables corresponding to the ( r-1) ( c-1) ways of collapsing the 
row and column classification into dichotories. They treat row 
and colunn variables alike and describe associations that are 
global in both variables (see Figure 1.4). 

Figure 1.3: Local-Global CX'!ds Ratio 0'ij 
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Figure 1.4: Global o::ids Ratio e"ij 

i 

i+l 

For local, local-global and global odds ratios, independence is 
equivalent to all log odds ratios equalling zero. An 

association described by one of these measures is referred to as 
"positive" or "negative" according to the sign of the leg odds 
ratio. 

If all log 0ij;;,O, then all log e 'ij;;,O. If all loge' ij>O, then 
all log e" ij> O. The converse, of these statements are not 
true (Agresti, 1984). The condition that all local leg odds 
ratios be positive is therefore the most stringent of three 
possible definitions for "uniformly positive association". 

The less localized the odds ratio, the more precise its sample 
value tends to be as an estimation of its population value, 
since the standard error involves the inverses of larger sample 
totals. So if all the {0 ij} are approximately equal, if the 
{ e' ij} are approximately equal, and if the { e" ij} are 
approximately equal, the sample estimates of the third set will 
tend to be smoothest. 

1.6.3.4 Dumping Severity Example 

We will illustrate these three types of odds ratios for ordinal 
variables using the data in Table 1.6, fran Grizzle, Starmer and 
Koch (1%9). The data refer to a canparison of four different 
operations for treating duodenal ulcer patients. The operations 
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correspond to removal of various amounts of the stanach. 
Operation A is drainage and vagotcmy, B is 25% resection and 
vagotany, C is 50% resection and vagotany, and D is 75% 
resection. The categories of operation are ordered, with A 

being the least severe operation and D corresponding to the 
greatest removal of stanach. The variable "dumping severity" 
describes the extent of a possible undesirable side effect of 
the operation. The categories of this variable are also 
ordered, with the response "none" representing the most 
desirable result. 

Table 1.6: D.rrnping severity and operation 

D..unping Severity 

Operation None Slight Moderate Total 

A 61 28 7 96 
B 68 23 13 104 
C 58 40 12 110 
D 53 38 16 107 

TOTAL 240 129 48 417 

{
A {A A Table 1. 7 contains the sample values e ij}, e I ij} and {e II ij} of 

the ordinal odds ratios. 

To illustrate the calculation of the values in Table 1.7: 

" 8 12 = 2 8xl 3 = 2. 2 6 
23x7 

...... 

812 1 = (61+28)xl3 = 1. 82 
( 6 8+23) x7 

,._ 
e 12'' = ( 61+28) x(13xl2xl6) = 1. 86 

( 6 8+23+58+40+53+38)x7 



Table 1.7: Values of Ordinal Odds Ratios for DJmping 
Severity Data 

" 
,.. A e .. 8 I ij e II ij lJ 

j 1 2 1 2 1 

1 o. 74 2. 26 o. 92 1. 82 1. 38 
i 2 2. 04 o. 53 1. 69 o. 86 1. 74 

3 1. 04 1. 40 1.14 1. 44 1.55 

"' 

A 
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·' 

2 

1. 86 
1. 33 

1.53 

'Ihe value of 812 means that the estimated odds that dumping is 
moderate instead of slight is 2.26 times higher for operation B 
than for A. 

The value of 812' means that the estimate odds that dumping is 
moderate instead of none or slight is 1. 82 times higher for 

operation B than A. 

" 'Ihe value of 812'' means that the estimated odds that dumping is 
moderate instead of none or slight is 1. 86 times higher when 
sane stomach is removed (operations B, C, D) than when none is 
removed (A). 

All three sets of measures indicate a generally positive 

association, though the {e"ij} show the most consistency. 

1. 7 Estimation 

For all the models discussed in this thesis, the parameters and 
expected cell counts are estimated by the method of Maximum Likelihood 
(Lindgren, 1976, p.269). 

'Ihis well-known statistical principle gives parameter estimates with 

certain known properties (e.g. asymptotic efficiency, consistency, 
asymptotic normality with known parameters, etc.) as well as giving 
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rise to powerful likelihood-ratio tests which can be used to test 
whether specific models fitted are feasible. 

1. 8 Model Testing 

To test the goodness-of-fit of the various models, we can use either 
of the following tv.D statistics: 

x2 = I 
i 

i m. 
1 

which are asymptotically equivalent. Under the null hypothesis, both 
x2 and G2 are asymptotically distributed as chi-square. x2 is the 
Pearson chi-square statistic (Pearson, 1900), and G2 is a 
likelihood-ratio (LR) statistic, known as the "deviance" in the 
terminolo;iy of generalized linear models. Although both tests usually 
lead to very similar conclusions, we will use G2 as the LR statistic 
is much more useful in testing significance of model terms. 

1. 9 Structural and Sampling Zones 

Zero entries in contingency tables are of tv.D types - structural and 
sampling zeroes. Structural (fixed) zeros occur when it is impossible 
to observe values for certain canbinations of the variables, e.g. 
males who have had a hysterectany. Sampling (randan) zeroes are due 
to sampling variation and the relatively small size of the sample when 
canpared with the large nunber of cells; they disappear when the 
sample size is increased sufficiently. 

When structural zeros occur in a table, it is still possible to 
analyse the data using models which will be discussed in Section 8.2. 

When sampling zeroes are scattered haphazardly throughout the table, 
there are usually no problems - the appropriate models are fitted in 
the normal manner. 
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However, sanetimes the zero entries are placed in such a way that when 
canputing estimated values to satisfy the constraints, if one zero 
entry is given a positive value, then another must be given a negative 
value. If the extra constraint that all estimated values must be 
non-negative is applied, then these entries will have estimated values 
of zero. Table 1.9 gives an example of such a case: 

Table 1. 9: A table with tw::r-dimensional marginal total equal to 
zero 

Xl 
X2 

Yl 

0 

0 

Y2 

5 

12 

I Yl 

6 

5 

Y2 

10 
8 

The n+11 marginal total is zero. Thus, any model which requires this 
marginal total to be fitted must necessarily estimate the (1,1,1) and 
(2,1,1) cells as zero. 

It is this circumstance which has given risen to much debate about the 
"correct" degrees of freedan applying to the deviance in such a case. 

There are three views stated in the literature. The first and most 
widely stated view is that in order to test the goodness-of-fit of a 
model that uses a set of observed marginal totals with at least one 
zero entry, the degrees of freedan associated with the test statistic 
must be reduced (Bishop et al, 1975; Fienberg, 1980; Brown and Fuchs, 
1983 and 1984; Aston and Wilson, 1984). This means that if an 
observed marginal entry is zero, then both the observed and estimated 
entries for all cells included in that total must be zero, and so the 
fit of the model for those cells is known to be perfect. As a result, 
the degrees of freedan associated with the fit of the zero cell values 
must be deleted. The formula for the degrees of freedan is given as 

where 



nc = nunber of cells in the table, 

nz = nl.Illlber of cells with estimated values equal to zero, 

np = nl.Illlber of parameters specified in the model, 

nn = nl.Illlber of parameters that cannot be estimted because of zero 
marginal totals. 
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However, in a recent paper, Baker et al (1985) have asserted that such 
a treatment is incorrect. They state that if a zero occurs in a 
margin that was fixed prior to the experiment, then by definition the 
cells in the table contributing to that margin are structural zeros 
(and are weighted out of all analyses of the table). Therefore, by 
extension, if a table is analysed "conditional on a margin that was 
not actually fixed in the experiment, then cells in the table that 
were not structural zeroes in the experiment will becane structural 
zeroes in the analysis if they contribute to a zero cell in the 
conditioning margin". However, after having dealt with these 
"structural" zeroes, if any other zero cells remain which contribute 
to a margin which is not conditioned on, then no adjustment whatsoever 
is to be made to the degrees of freedan. 

The third view is that of Stirling (1986) who asserts that both the 
previous two methods are incorrect. He states that to obtain the 
correct degrees of freedan for any model, one should always use the 
fonnula 

df = difference between the nunber of estimable parameters for 
the model in question and for the saturated model. 

He explains that if this fonnula is used, then "it makes no difference 
whether or not structural zeroes are kept in the data, whether the 
margins are classified as responses or explanatory variables, or 
whether log-linear or logistic models are used when there is a single 
binary response". However, to correctly apply the fonnula, "we must 
correctly identify all estimable parameters. This has been 
incorrectly done by sane previous authors". 

It can therefore be seen that the literature on methods for sparse 
contingency tables is still controversial. 
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1.9.1 Monkey Example 

An example of a table containing both sampling and structural 
zeroes is Table 1. 8, which is taken in a slightly modified fonn 
fran Fienberg (1980, p.146). The table gives the distribution of 
genital display among six squirrel monkeys (labelled R to W). For 
each display there is an active and passive participant, but a 
monkey never displays towards himself. Thus the dashes in the 
table indicate structural zeroes. There are also several sampling 
zeroes such as in cell (1,6) where there is no a priori reason to 
suppose that the event is impossible. We will assume that the 
opportunity was not available to observe monkey T as an active 
participant. 

Table 1. 8: Genital display in a colony of squirrel monkeys 

Active Participant 

R 

s 
u 
V 

w 

1.10 Loglinear Models 

R 

29 
2 

0 

9 

Passive Participant 
S T U V 

1 

3 

0 

25 

5 

14 
1 

0 

4 

8 

46 

0 

6 

9 

4 
38 

13 

w 

0 

0 

2 

1 

Let~• = (n1, ••• , nr) and~• = (m1, ••• , mr) denote the observed and 
expected counts for the I cells in the table. For simplicity, we will 
use a single index, though the table may be multi-dimensional. 

Loglinear models have the form 

log mi = XI i s 
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where S is a pxl vector of parameters and x'i is a row vector of known 
~ -

constants, the choice of which depends on what kind of association one 
wishes to model. In the nanenclature of analysis of variance ~•i is 
the ith row of the Ixp design matrix X, i.e. 

log m =XS -- -
Many of the models discussed in this thesis are simply special cases 
of the more general category of loglinear models. They can be used to 
model many kinds of association, and so are probably the most canrnon 
models used in practice for contingency tables. 

1.10.1 Fitting I.oglinear Models 

I.oglinear models can be fitted quite easily using either the 
Newton-Raphson algorithm or the Iterative Proportional Fitting 
algorithm. These are discussed in Appendix 2. 

1.11 Linear Models 

Linear models relate the expected cell count to a linear function of 
parameters. The tw::> camnon methods of specifying these models are: 

(i) directly, in a fonn such as A!=~, or 
(ii) indirectly, in tenns of constraints. 

They are not as canrnonly used as loglinear models, as they usually 
specify fairly unusual kinds of relationships between the variables of 
a contingency table. Nevertheless, they fonn a powerful and useful 
class of models which can be used to test specific hypotheses that 
could not normally be tested using loglinear models. 

1.11.1 Linear models specified as A~= X.§. 

Consider the cell counts in a contingency table as making up an Ixl 
vector m• The cell probabilities corresponding to these counts 
make up an Ixl vector~- The vector~ may correspond to 



(i) a Poisson or single multinanial distribution, or to 
(ii) a product-multinanial distribution. 
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In the former case I~i = 1, while in the product-multinanial case 
the set of I cells is canprised of several subsets, each of which 
corresponds to a separate mul tinanial sample, and the sum of the 
elements of~ over each subset is unity. 

If§ is a Kxl vector of unknown parameters, A is a known JxI matrix 
with linearly independent rows, and Xis a known JxK matrix, with 
linearly independent columns, with I>J>K, then we can write the 
expected cell probabilities in terms of a linear function of the 
model parameters as 

Al,!_ = X$. 

Haber (1985) discusses linear models which are formulated in this 
way. 

1.11.2 Linear models specified in terms of constraints 

Suppose we have sane hypothesis about the cell counts which can be 
specified in terms of E constraints. We can write the constraints 
as 

Fm = 0 

where Fis an ExI matrix with E linearly independent rows. Further 
constraints are imposed by the sampling design. These constraints 
guarantee that the sum of the probabilities within each sample will 
be equal to one (or equivalently that the sum of the counts within 
each sample will be equal to the correct marginal total). They can 
be written 

D'E = ls 

where s is the number of samples (S > 1) and D = { dis} is the IxS 

matrix defined by 

dis= {l if cell i belongs to samples 
O otherwise 
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In terms of the cell counts the constraints can be written 

D' Rm= ls 

where 
1/mi+ 
( i=l, 

R is the Ix! diagonal matrix with diagonal elements rii = 
, where mi+ is the marginal total of the ith sample 

••• , S), and off-diagonal elements zero. 

Thus, the constraints on the cell counts can be written as 

where L' is the Ix (E+S) matrix L' = (F' : R'D) and c' is the 
lx(E+S) vector consisting of E zeroes and Sones, i.e. 
c, = ( oE' : ls' ) • 
r- - ......... 

A vector a which satisfies these constraints is 

a = R-1 a* 

where R-1 is the Ix! diagonal matrix with diagonal elements rii = 
mi+, and~* is the Ixl vector with ith element ai = 1/Bi where Bi 
is the nunber of cells in the ith sample. 

1.11.3 Fitting Linear Models 

Linear models specified in terms of constraints can be easily 
fitted using the algorithm of Wedderburn (1974). Details of this 
are given in Appendix 3. 

Linear models specified 
reformulating in terms 
Wedderburn's algorithm. 

' 1.12 Other Models 

as A !, = ~ can be most easily fitted by 
of constraints so that we can then apply 
Appendix 3 gives further details. 

As mentioned previously, most models discussed in this thesis are 
either linear or loglinear, and so can be fitted using the general 
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algorithms appropriate for these. Where a model does not fall into 
one of these two classes, details of estimation methods will be given 
separately. 
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rnAPrER II: NCMINAL u:GLINEAR MODELS 

2.1 Two-Dimensional Tables 

Consider a tv.D-way table of counts, with the row variable X having r 
categories, and the column variable Y having c categories. 

2.1.1 Multiplicative Fonn of the Ioglinear Model 

2.1.1.1 Saturated Model 

For the case of only two variables, the most general model that 
specifies an association between them is called the saturated 
model. The simplest way to express this model is 

m·. lJ = aXY 
ij 

( 2. 1). 

Frcm this expression it can be seen that the expected cell 
counts can be adjusted to give any pattern. In particular, we 
can easily arrange for the expected cell counts to be equal to 
the actual counts. 

However, a more useful parameterization is 

XY 
Mij=n·qXTjyTij (2.2) 

The expected count is modelled as a multiplicative function of 
parameters that depend on X and Y. The meaning of the 
parameters will be explained shortly. 

Although this expression is more canplicated than (2.1), it is a 
more useful parameterization for the other types of models that 
we will meet later. 

There are re cells in the table. There cannot be r independent 

T jY parameters and re independent T ijXY parameters, or there 
would be l+r+c+rc parar.neters for only re cells. We will 



therefore add sane identifiability constraints: 
set is to restrict the parameters so that 

lJ T ijXY = II. T ijXY = 1 (2. 3) 
l J 

29. 

a convenient 

Then we will have only r-1 independent { -r iX}, c-1 independent 
{ -r j Y} and ( r-1} ( c-1} independent { -r jY} • Thus the number of 
parameters will be l+(r-l}+(c-l}+(r-l}(c-1} = re. 

Since the number of parameters equals the number of cells in the 
table, wie can see that the estimated expected counts under this 
model will be equal to the actual counts, i.e. mij = nij• In 
fact, the model is called "saturated" because it contains all 
possible effect parameters. 

We can express the parameters in terms of the expected counts in 
the following way: 

II II mij = II IT (n Tix T jy T ijXY) 
i j i j 

(because of the identifiability constraints), so 

n = (II mij) 1/rc 
i,j 

( 2. 4) 

Then parameter is thus the geanetric mean of the counts. It is 
analcgous to the intercept tenn in a regression equation. It is 
a "baseline" or starting point fran which effects are measured. 
Since 

II mij = nI (-rjY)r 
i 

then 

TjY = (IIi ffiij)l/r 

n 



= (IIi m . . ) 1/ r 11 i / tITmij 
i,j 
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(2. 5) 

which is the geanetric mean of the jth column divided by the 
gecmetric mean of the whole table. 

Similarly 

1" jx = (II mij) 1/c 
n 

Also 

= (II. mi j) 1/ C 

rJr IDij) 17 re 
i,j 

m .. lJ 

( 2. 6) 

- m • . ( II m .. ) 1/rc - lJ lJ 
i, . 

( II mij) 1/r ( rr mij) 1/c 
i j 

The 1" parameters represent effects which the variables have on 
the cell frequencies. The magnitude of an effect is measured as 
a departure fran the value of unity - effects of 1. 0 have no 
impact since they leave the proouct unchanged. If every effect 
was equal to 1.0, then each cell count would be equal to every 
other cell count, and all would be equal to n. If an effect 
parameter is greater than 1.0, then there will be more than the 
average m.nnber of cases expected in that cell, while if the 1" 

parameters are less than 1. 0, there will be fewer than the 
average expected. 

Since the estimated expected cell counts are equal to the actual 
cell counts, the saturated model is not very informative. 
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2.1.1.2 Independence Model 

The mooel of independence is unsaturated (i.e. it does not 
contain all possible effect parameters), and corresponds to 
setting -r ijXY = 1. O for all i, j , i.e. 

m .. - n .,. .x.,. .Y 
lJ - • 1 • J • 

The expected counts depend only on an effect due to X (-rjX) 
and an effect due to Y ( -r Y). This is because of the 
definition of independence: 

the probability that a given individual is classified into· 
cell ( i, j ) is 

P(X=i and Y=j) = P(X=i) x P(Y=j) 

if and only if X and Y are independent. 

In the saturated model of the previous section, the previous 
counts also depended on the canbination of X and Y effects 
(T ijXY), so that the effect of level i of X could differ, 
depending on whether it was canbined with level a of Y or 
say, level b. The independence mooel specifies that X and Y 
act quite independently on the cell counts, so that X and Y 
are not associated. 

The independence mooel has 1 + ( r-1) + ( c-1) = r+c-1 
independent parameters, so that we cannot always adjust the 
parameters to make the fitted counts equal any observed 
pattern of cell counts ( since r> 2 and c;;. 2 =} r+c-1 <re) so, 
in general the fitted counts will not equal the actual counts. 

2.1.2 Additive Form of the Loglinear Model 

2.1.2.l Saturated Model 

Taking natural logarithms of all terms in equation ( 2. 2) 

yields log IDij = log n + log Tix+ log -riY + log TijXY, which 

is usually written as 
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where µ = lO<J n, >.. ix = lCx;;J -r ix, etc. 

The model asslllles that the ~ of the counts is a linear 
function of the parameters, hence the parameters cannot be 
interpreted as directly as in the multiplicative form; this 
additive form corresponds more closely to ordinary normal 
linear models and we shall see later that the parameters can 
be more directly estimated in this form. 

Equation (2.4) becanes 

µ = lCx;;J n 

= lCx;;J (rr mij)l/rc 
i,j 

= _!_ I lCx;;J ffiij 
re i,j 

while equation (2.6) becanes 

= lO<J IT mijl/c 

n 

= 1 L lCx;;J mij - µ 

C j 

= l I lCx;;J ffiij - l_ I lCx;;J ffiij 
Cj rci,j 

and equation (2.5) becanes 

>.. . -XY - lCx;;J m .. lJ - lJ + 1 I lCx;;J m · · lJ 
re i,j 

-1I l Cx;;J m · · lJ 
r i 

-1I 1 Cx;;J mi j 
C j 
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The identifiability constraints given by equation (2.3) now 
becane 

I >- ix = I >- jy = I >- ijxy = I >- ijxY = o 
i j i j 

The additive form of the logarithms is reminiscent of 
analysis of variance (ANOVA). 

Whereas using the multiplicative form, the magnitude of an 
effect is measured as a departure fran 1.0, using the 
additive form it is measured as a departure from zero. 

2.1.2.2 Independence Model 

'Ihe additive form of the loglinear model of independence is 

where, as before, 

L"ix=I>-jY=o 
i j 

This model specifies that X and Y are independent, as defined 
in Section 2. 1. 1. 2. 

'Ihis model can be fitted quite easily as described in Section 
1.10 and Appendix 2. 

The next section gives an example of fitting the independence 
model to a two-way table. 

2.1.2.2.1 Abortion Attitude Example 

Table 2.1 is taken fran Knoke and Burke (1980, p.72). It 
is a 4x2 cross-tabulation of religion by attitude to 
abortion. 'Ihe "attitude to abortion" variable reflects 
agreement or disagreement with a questionnaire item asking 
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whether a v.Drnan should be allowed to have a legal abortion 
because she was too pcor to sup:i;x:>rt more children. 

Table 2.1: Cross-tabulation of abortion attitude 
by religion 

Attitude to Abortion 
Religion Favour Op:i;x:>se Total 

Protestant 460 498 958 
Catholic 147 240 387 
Jew 41 10 51 
Other 65 17 82 

TOTAL 713 765 1478 

Table 2. 2 gives the estimated expected counts under the 
model of independence. 

Table 2.2: Estimated expected counts under independence 

Religion 

Protestant 
Catholic 
Jew 
Other 

TOTAL 

Attitude to Abortion 
Favour 

462.15 
186. 69 

24. 60 
39. 56 

713 

Op:i;x:>se 

495. 85 
200.31 
26. 40 
42. 44 

765 

'Ibtal 

958 
387 

51 
82 

1478 
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2.1.2.3 Goodness-of-Fit Statistics 

As mentioned in Section 1.9, to perform a statistical test of 
the null hypothesis of independence, we can use either of the 
following tv;o statistics: 

which are asymptotically equivalent. Under the null 
hypothesis both x2 and G2 are asymptotically distributed as 
chi-square with degrees of freedan (df) equal to the number 
of parameters in the saturated model minus the number of 
parameters in the independence model. The number of 
parameters in the saturated model is re, and the number of 
parameters in the independence model is l+(r-l)+(c+l) = 

r+c-1, so the difference is 

df = re - ( r+c-1) = ( r-1) ( c-1) 

2.1.2.3.1 Abortion Attitude Example 

For the data of Table 2.1 the goodness-of-fit statistics 
are 

x2 = (460 - 462.15)2 + ••• + (17 - 42.44)2 
= 69. 06 

G2 = 2(460 leg 460 + ••• + 17 leg 17 --- ---
462.15 42.44 

= 72. 44 

Both these statistics 
distribution with 3 df. 

have an asymptotic 
Since x 2 = 11. 35 

• 99( 3) 

chi-square 

both X2 and G2 are significant at the 1% level, leading to 
rejection of the independence hypothesis. SO the 
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respondent's religion seemed to influence his/her attitude 
to abortion. 

2.2 Three-Dimensional Tables 

We will now generalize loglinear models to three-dimensional tables. 
Consider a three-way table, with variables X, Y and Z having r, c and 
i categories, respectively. The observed count nijk has corresponding 
expected count mijk and population probability nijk• 

The general loglinear model has the form 

log mijk = µ + Ajx + :x.jY + Akz + AijXY + Aikxz 
+ A jkxz + A ijkXYZ 

with identifiability constraints 

I :x. ix = I :x. / = I :x. k2 = o 
i j k 

( 2. 7) 

I AijXY = I :\ijxy = I Aikxz = I :\ijxz = ljkyz = ljkyz = o 
i j i k j k 

i j 
= l A i j kXYZ = 0 

k 

2.2.l Association Between Three Variables 

For simplicity, assume that all variables are responses and that 
the mul tinanial sampling scheme applies (although the MLEs are 
identical for the Poisson and product-multinanial sampling schemes; 
and the classification of variables as explanatory of response 
really only affects the interpretation of the models). 

There are five basic kinds of relationships that can occur between 
three variables: 

(1) All three variables related so that the relationship between 
any two depends on the value of the third. This is the 
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saturated mcdel and can be represented by equation · ( 2. 7). 
This mcdel imposes no restrictions on the {mijk} and so the 
estimated expected counts will be equal to the actual counts. 

(2) Pairwise relations among X, Y and Z, with each two-variable 
relation being unaffected by the value of the third variable. 
The representation of this mcdel can be obtained fran 
equation (2.7) by restricting the three-factor interaction to 
be zero, giving 

(3) Conditional independence of X and Y given z. This can be 
obtained by setting AijkXYZ = O, and also AijXY = O, to give 
log IDijk = µ + Aix + Ajy + Akz + AjkYZ. 
This mcdel implies that X and Y are independent for each 
fixed value of z. For each fixed value of z we get 
independence in the corresponding rxc subtable of X and Y. 

There are t'wO other versions of this mcdel, corresi;:onding to 
setting Aikyz = 0 (conditional independence of X and Y, given 
y) and to A j k YZ = 0 (conditional independence of Y and Z, 
given X). 

(4) Independence of (i) X, and 
(ii) Y and Z jointly. 

This can be obtained by setting 

This means that Y is independent of X, given z and z is 
independent of X, given Y. Y and Z are conditionally 
dependent, given X. 

The t¼D other versions of this mcdel correspond to the sole 
conditionally dependent pair being either X and Y or X and z. 
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(5) The final model corresp::mds to all three variables being 
independent, i.e. 

1Tijk=P(X=i, Y=j, Z=k) 

= P(X=i) P(Y=j) P(Z=k) 

The loglinear representation of this corresponds to setting 
;\ ijXY = ;\ jkyz = "ijkXYZ = 0 

giving 
lo;;J mijk = µ +Ai~+ "jy + "kz• 

2.2.2 Hierarchical Models 

In a hierarchical model higher-order association terms may be 
included only if the related lower-order terms are included. For 
example, if "ijkxyz is in the model, then so must be "ijXY, "ikxz 
and >-jkYZ. Similarly, if "ijxy is in the mooel, then "ix and "jy 
must also be included. An example of a non-hierarchical mooel is 

The main reason for using only hierarchical mooels is ease of 
interpretation. 

In hierarchical mooels successively higher association terms 
measure deviations £ran lower-order terms. The lower-order terms 
are said to be "marginal" to the higher-order ones, e.g. 

>-ijXY is marginal to >-ijkXYZ. 

A useful notation is the abbreviated parentheses notation. A model 
can be represented by including in parentheses the superscripts for 
the highest-order term( s) for each variable. For instance, the 
notation for the mooel 

is (X,Y,Z). The notation for 
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is (X,Y,XZ). The notation for 

1 X , Y , Z + , iJ'XY + , ikxz + 'J'kyz + , 1'J'kXYZ ogmijk=µ +).i +Aj +Ak A A A A 

is (XYZ). This notation uniquely describes all hierarchical 
loglinear models. 

2.2.3 Estimation 

The cell counts and parameters can be estimated as previously 
discussed in Section 1.10 and Appendix 2. Appendix 4 gives further 
details of maximum likelihood estimation for the case of three 
variables. 

2.2. 4 Model Testing 

As discussed in Section 1. 9, the two goodness-of-fit statistics are 

x2 = I Cnijk ~ijk) 2 

ijk IDijk 

and 

If the model fitted is correct and N is large, x2 and G2 have 
approximate chi-square distributions with 

df =#parameters in saturated model 
- # parameters in model under consideration. 

As an example of calculating degrees of freedan, consider the model 
(XY, XZ). The parameters in the model are µ, ). iX ). . Y >,_kZ >,_ • • xy 

' J , , lJ 

and Aikxz, i.e. there are l+(r-1) + (c-1) + (,e.-1) + (r-1) (c-1) + 
(r-1)(£.-1) parameters. The number of parameters in the saturated 
model (XYZ) is rc,e. •. Consequently the .degrees of freedan associated 
with the mo:lel (XY, XZ) are 



df = rci - [l+(r-1) + (c-1) + (i-1) + (r-l)(c-1) 
+ ( r-1 ) ( i -1 ) ] 

= r(c-1) (i-1) 

2.2.5 Abortion Attitude Example 

40. 

Consider again the data of Table 2. 1. The "attitude to abortion" 
was actually surveyed in 1972 and 1978. Table 2.1 contains only 
the 1972 data; the full table is shown in Table 2. 3 ( taken frcm 
Knoke and Burke, 1900, p. 72). 

Table 2.3: Attitude to abortion by religion and year 

Religion 

Protestant 
Catholic 
Jew 
Other 

1972 Attitude 
Favour Oppose 

460 

147 
41 
65 

498 
240 

10 

17 

197 8 Attitude 
Favour 

424 

151 
23 
88 

Oppose 

501 
225 

6 

30 

If all three variables were explanatory, then there v;ould be nine 
possible hierarchical loglinear rncx:'iels that could be fitted to this 
data. For the purposes of illustration, they have all been fitted 
and both gocx:'iness-of-fit statistics for the nine rncx:'iels are given 
in Table 2. 4. 



Table 2. 4: 

Medel 

(R,Y,A) 
(R,Y,A) 
(R, YA) 
(Y ,RA) 
(RY,RA) 
(RY,YA) 
(RA,YA) 
(RY,YA,RA) 
(RYA) 

* *** , 
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Gocdness-of-fit statistics for various loglinear 
rncdels 

df x2 

10 140. 85*** 143. 24*** 

7 124. 88*** 130.16*** 

9 140. 79*** 143. 02*** 

7 14. 82* 14. 96* 

4 1. 88 1. 89 

6 124.66*** 129. 94*** 

6 14. 60* 14. 7 4* 

3 1. 46 1. 47 

0 0 0 

Denotes values in upper 5% and 0.1% tail 
respectively, of corresponding x2 distribution, with 
df as indicated 

It can be seen fran Table 2. 4 that the values of x 2 and G2 are 
usually quite close, except when both are large and are far out in 
the tail of the corresponding x2 distributions. The values of the 
gocdness-of-fit statistics decrease as the number of parameters in 
the mcdels increases. 

As mentioned earlier, it is not sensible to fit all these nine 
rncdels because there is only one response, attitude to abortion, 
and religion and year are actually explanatory variables which may 
affect this response. 

Because of this we treat the religion by year margins as fixed 
( irrespective of whether or not they were actually fixed by the 
sampling desing), and so we only consider mcdels which contain the 

religion by year association term, \ijRY. This gives us the choice 

of five models: 

(RY,A), (RY,RA), (RY,YA), (RY,YA,RA) and (RYA). 
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The model (RYA) allows a possible association between religion and 
year, as explanatory variables, but specifies that neither of these 
affected attitude. However, this model does not fit at all well, 
as evidenced by the huge values of G2 and x2. 

The model (RY,RA) specifies that religion affected attitude (but 
year did not). This is an example of model (3) of Section 2.2.1, 
i.e. attitude is conditionally independent of year, given 
religion. This model is 

so has 1+3+1+1+3+3 = 12 parameters, therefore df = 16-12 = 4. This 
model fits well and is the simplest model to do so. 

The model (RY,YA) states that there was a change in attitude fran 
1972 to 1978, which was constant for all four religions. This 
model fits very badly. 

The model (RY,YA,RA) specifies that both year and religion affected 
attitude. However, the absence of the three-factor interaction 
implies that the effect of religion was the same in 1972 and 1978, 
and the effect of year was the same for all religions. 

This model fits well, but is more canplicated than (RY,RA) which 
also fitted adequately. 

The saturated model (RYA) specifies that the effect of religion in 
attitude varied, depending on the year. Alternatively, this could 
be thought of in terms of the effect of year on attitude varying, 
depending on the religion of the person. The saturated model fits 
perfectly, but provides no simplification of the data whatsoever. 

2.2.6 Conditional Test Statistics 

Consider the case where there are two loglinear models Ml and M2, 

with estimated counts mijk( 1) and mijk( 2), where model 1 is a 
special case of model 2 (e.g. (X,Y,Z) is the special case of 
(XY,Z) where AijXY is assumed to be zero). Then the difference in 
deviances, G2(1) - G2(2), can be used to test whether the 
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difference between the expected values for the tv;o models is-simply 
due to randan variation, given that the true expected values 
satisfy model 2. This is a property of the likelihood ratio test. 
The difference in deviance will be 

G2(1) - G2(2) = 2 l nijk log ni'k - 2 I nijk log ni'k 
i,j,k fili;k(l) i,j,k '@.i;k(2) 

= 2 l nijk log 'inijk( 2) 
i,j,k IDijk(l) 

This conditional test statistic has as asymptotic chi-square 
distribution with degrees of freedan equal to the difference in the 
degrees of freedan for the tw0 models (which will also equal the 
number of parameters of model 2 that are constrained to be zero in 
model 1). 

2.2.6.1 Partitioning Chi-Square 

In a hierarchical set of models it is easy to partition the 
deviance into several additive parts. Take for example the 
hierarchical set 

Deviance 

Ml: log mijk = µHXiHYjHzk G2(1) 

M2: log mijk = µ +>,,Xi H yjH Zk+;\ XYij G2( 2) 

M3: log mijk = µHXiH yjH Zk+>,,XYijHxzij G3( 3) 

M4: log mijk = µHXiH yjH Zk+>,,XYijHxzikH yzjk G2( 4) 

2.2.6.2 Abortion Attitude Example 

we have already seen that the model (RY, RA) provides quite a 
good fit to the data of Table 2.3. So does the more complicated 
model (RY, YA, RA) which specifies pair.vise associations between 
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all the variables. The model (RY, RA) assumes that the 
association ter:m A jk = O. To test this assumption we can 
canpare the deviance of model (RY, RA) with that of (RY, YA, RA) 

which has no restrictions on the Ajk term. The conditional test 
statistic is G2(RY, RA) - G2(RY, YA, RA) = 1. 89 - 1. 47 = O. 42, 

which is asymptotically distributed as chi-square with 4-3 = 1 
df. Thus we have no evidence to reject the null hypothesis that 
>.. jk = O. 

The difference in deviances between model M3 and M4, G2(3) -

G2(4), can be attributed to the Ajk term. This difference is 
the appropriate test statistic for testing whether Ajk = 0. In 
a similar manner the Aik ter:m can be tested by comparing G2(2) 

G2( 3) to a x 2 distribution with df = df ( 2) - df ( 3). This 
process will hold true for the whole set because by the very 
nature of any hierarchical set G2(1) > G2(2) ► G2(3) > G2(4). 

However, we cannot partition the Pearson goodness-of-fit 
statistic, x2, in this manner, because this relationship does 
not necessarily hold. 

2.3 Higher-Order Contingency Tables 

The models and methods 
higher-order contingency 
manner. For example, 

discussed so 
tables in a 

the general 

far can be extended to 
relatively straightforward 

loglinear model for a 
four-dimensional cross-classification of variables, A, B, C and D 
would be: 

log m1·J·1?n A B C D AB 
N:, = µH iH j+>.. kH ,iH ij 

+)._ABC• · k+)..ABD. • +' ACD. l?n +' BCD. l?n lJ lJi /\ lN:. /\ J r-.x, 

+' ABCD .. k /\ lJ _i 

with appropriate identifiability constraints. Models specifying 
different types of conditional independence can be obtained by setting 
the appropriate >..-terms to zero. 
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2.4 Other Loglinear Models 

There are other non-standard types of loglinear models that have 
applications to different kinds of data. These will be described in 
later chapters where they will be contrasted with non-loglinear models 
for similar kinds of data. For example, Chapter IV deals with 
loglinear models for ordinal variables, while the models of symmetry 
and quasi-symmetry are discussed in Chapter VIII • 

. \ 
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rnAPrER III: SCME GENERAL ISSUES 

In this chapter we discuss sane general issues that affect most of the 
models discussed in this thesis. These issues can be more easily 
explained by illustrating with particular examples, so we will use the 
loglinear models of the previous chapter for illustration. 

3.1 Model Selection 

Canplicated models involving many parameters always fit a set of data 
more closely than a simpler model that is just a special case of the 
ccmplicated one. For instance, the deviance of the loglinear model 
(XY,Z) must be less than or equal to that of the simpler model 
(X,Y,Z). On the other hand, a simpler model may be more parsimonious 
and easier to interpret, i.e. we want a model that smooths rather 
than overfits the data. Thus, there is a balance between 
goodness-of-fit and simplicity. Just as there are many ways of 
choosing an appropriate regression equation, there is no general best 
method of model selection for a contingency table, and the "best" 
model may well differ between one data analyst and another. 

Generally, to balance simplicity and goodness-of-fit, the symplest 
model possible is accepted as long as its goodness-of-fit statistic, 
G2 is not significant, and the more ccmplicated parameters which could 
be introduced into the model are not significant. In the case of 
loglinear models, these parameters are the next higher order A-terms. 

3.1.1 Abortion Attitude Example 

Table 3.1 gives the five loglinear models that we can consider 
fitting to the data of Table 2.3: 
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Table 3.1: Loglinear rnooels 

Mooel df 

(RY,A) 7 130.16 *** 
(RY,RA) 4 1. 89 ns 
(RY,YA) 6 129. 49 *** 
(RY,YA, RA) 3 1. 47 ns 
(RYA) 0 0 

The simplest rnooel is (RY ,A); however, when the deviance is 
canpared with an x2 distribution with 7df, it is significant at the 
0.1% level, indicating that the model does not provide an adequate 
explanation of the data. The rnooel (RY,YA) also exhibits 
significant lack of fit. 

The simplest rnooel that fits well is (RY ,RA). The terms set to 
zero in this rnooel are >.. jk and >.. ijk• In Section 2. 2. 6. 2 we 
concluded that Ajk was not significantly different fran zero. The 
>.. i j k term can be tested by canparing the deviance for (RY, YA, RA) 
with an x23 distribution - again this is not significant. 

So the rnooel (RY,RA) seems the best choice as it fits adequately 
and the terms it sets to zero are non-significant. 

3.1.2 Residual Analysis 

No analysis would be canplete without a study of the standardized 
residuals 

"-

ri = ni - mi 
V IDi 

The squared standardized residuals are canponents of the Pearson 
chi-square statistic, with I:ri2 = x2. If the null hypothesis 
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holds, these residuals are asymptotically normal with mean O, and 
the average variance of the residuals equals df/nurnber of cells. 

3.2 Interpretation 

After deciding on the best fitting model, it is necessary to interpret 
it. Often the parameter estimates will shed light on specific 
hypotheses of interest. The concepts of odds and odds ratios were 
introduced in Section 1.6.2 and often these provide a very natural way 
of interpreting a model. 

3.2.1 Abortion Attitude Example 

Table 3. 2 gives the estimated expected counts under the model 
(RY,RA) fitted to the data of Table 2.3: 

Table 3.2: Fitted counts under the mc:x:lel (RY,RA) 

1972 Attitude 1978 Attitude 
Religion 

Protestant 
Catholic 
Jew 
Other 

Favour 

449. 75 
151. 15 

40. 80 
62. 73 

Oppose 

508. 25 
235. 85 
10. 20 
19. 27 

Favour 

434. 25 
146. 85 

23. 20 
90. 27 

This mc:x:'lel can be readily interpreted in terms of odds. 

Oppose 

490. 75 
229. 15 

5. 80 
27. 73 

The estimated expected odds for opposing abortion rather than 
favouring it is IDij2/~ijl for religion i and year j. For 
Protestants the estimated expected odds is 508.25/449. 75 = 490. 75/ 
434. 25 = 1.13 in both 1972 and 1978. The corresponding odds for 
the other religions are 



Catholic : 1.56 
Jew 
Other 

o. 25 
: o. 31 

49. 

Thus, the mcx:lel specifies that Protestants and Catholics were more 
likely to oppose abortion, and Jews and "Others" were more likely 
to favour abortion, for both the 1972 and 1978 questionnaires. 

3.3 Collapsing Tables 

Table 3. 3 is the two-dimensional marginal table of counts {ffii( +) k} 

obtained by collapsing Table 3.2 over year: 

Table 3.3: Marginal table of religion by attitude to abortion 

Religion 

Protestant 
Catholic 
Jew 
Other 

Attitude to Abortion 
( 1 97 2 and 197 8) 

Favour 

884 
298 
64 

153 

Oppose 

999 
465 
16 
47 

Odds for Oppose/Favour 

1.13 

1.56 
o. 25 
0.31 

The fitted margins {mi(+)k} are equal to the actual margins {ni(+)k} 
because the mcx:lel (RY ,RA) includes the >.. ik term. The estimated 
expected cx:lds that a respondent of a particular religion will oppose 
rather than favour abortion are: 

Protestant 
Catholic 

1.13 
1. 56 

Jew 0.25 
"Other" O. 31 
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These are exactly the same values for the odds that were calculated 
separately for both 1972 and 1978 fra:n the fitted counts of Table 3.2. 
However, this result will not always hold true; the general rule can 
be stated as follows. In a three-dimensional table the association 
between two variables X and Y (as given by AXYij) may be measured frcm 
the table of sums obtained by collapsing over the third variable z if 
Z is independent of either X or Y or both ( i.e. AXZjk = 0 and/or 
A yzjk = 0) • 

Bishop, Fienberg and Holland (1975) incorrectly implied that the 
converse result is also true. 
counter-example. 

However, Whit ternore (197 8) gives a 

Thus, we can see that for the model (RY,RA) we can collapse over year, 
because AYAjk = O. However, we would not be allowed to collapse over 
either religion or attitude to measure the ARYjk tenn or the A YAjk 
tenn respectively. 

So, in general, it can be very misleading to simply examine the three 
two-dimensional marginal tables resulting frcm a full three­
dimensional cross-classification without first checking whether this 
is allowed (by testing whether the appropriate A-tenns are zero). A 
clear illustration of this point is given in the following example. 

3.3.l University Admissions Example 

Table 3. 4 is taken in a slightly modified fonn frcm Freedman, 
Pisani and Purves (1978). The data relate to a study of possible 
sex bias in graduate admissions to a university. The numbers of 
admissions of both males and females to four departments are given. 
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Table 3.4: Admission of males and females to four university 
department courses 

Males Admission Females Admission 
]):;;partment 

A 

B 

D 

F 

No 

313 
207 
279 
351 

Yes 

512 
353 
138 

22 

No 

19 

8 

244 
317 

Yes 

89 

17 
131 

24 

Table 3. 5 gives the odds of being admitted, for each sex and 
department: 

Table 3.5: Odds for admission for sex by department 

Odds for Admission 
]):;;partment Males Females 

A 

B 

D 

F 

1. 64 

1. 71 
• 50 

• 06 

4. 68 

2.13 
.54 
.08 

It can be seen that in each department females had a higher chance 
of being admitted than males. However, if we simply look at the 
sex by admission marginal table in Table 3.6, we would be led to 
the false conclusion that females had less chance of being admitted 
than males. 



Table 3.6: Sex by admission marginal table 

Sex 

Male 

Female 

Admission 

No Yes 

1150 

588 

1025 

261 
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()jds for Admission 

• 89 

• 44 

Table 3. 7 gives the models that could be fitted to the three-way 

table: 

Table 3. 7: Various loglinear models fitted to admissions data 

Model df Deviance 

(D,S,A) 10 1435 *** 
(SA,D) 9 1366 *** 
(DA,S) 7 651.1 *** 
(DS,A) 7 803. 9 *** 
(DA,SA) 6 582. 4 *** 
(DA,DS) 4 20.0 *** 
(SA,DS) 6 735.3 *** 
(DA,SA,DS) 3 11. 6 ** 
(DSA) 0 0 

It can be seen that none of the unsaturated models fit the data 

adequately, and consequently there are no >..-terms that can be 

assl.llned to be zero. Because of this we can tell :immediately that 
it would be misleading to look at the data collapsed over any of 
the variables. 
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CHAPI'ER IV: r..cx;LINEAR MODEIS FOR ORDINAL VARIABLES 

4.1 Disadvantages of Ignoring Ordinal Nature of Variables 

The concept of ordinal categorical variables has already been 
introduced in Section 1.6. 

The ordinary loglinear models of Chapter II treat all variables as 
nominal, in the sense that parameter estimates and chi-square 
statistics are invariant to orderings of categories. Thus, these 
models fail to use all the available information when at least one of 
the variables is ordinal. 

4.1.1 Dumping Severity Example 

To illustrate this, let us fit the loglinear model of independence 
to the dumping severity data of Table 1.6. Fitting the model 
log mij = µ + \iO + \jD gives a deviance (denoted by G2(I)) of 10. 88, 

with 6 df. Since x2(6).90 = 10.64 and x2(6).95 = 12.59, there is 
slight evidence of an association between operation and the 
severity of the side effect, but we could not reject the model of 
independence at the 5% level. 

The fitted counts under this model are given in Table 4.1: 

Table 4.1: Fitted counts under independence dumping severity 

Operation 

A 

B 

C 

D 

None 

55. 25 
59. 86 

63. 31 
61. 58 

Dumping Severity 
Slight 

29. 70 
32.17 
34. 03 
33.10 

Moderate 

11. 05 
11. 97 
12. 66 

12. 32 
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4.1.1.1 Odds Ratio 

As noted in Section 1.6.2 the model of independence constrains 
all local odds ratios to be equal to 1.0. This can be 
illustrated by calculating the six local odds ratios as follows: 

A 

011 = 55.25 X 32.17 = 1.0 
I' 
012 = 29. 70 X 11. 97 = 1. 0 

59. 86 X 29. 70 32.17 X 11. 05 

A A 

021 = 59. 86 X 34. 03 = 1. 0 0 22 = 32.17 X 12. 66 = 1. 0 
63. 31 X 32.17 34. 03 X 11. 97 

A /'-

0 31 = 63. 31 X 33. 10 = 1. 0 0 32 = 34. 03 X 12. 32 = 1. 0 
61. 58 X 34. 03 33.10 X 12.66 

4.1.1.2 Residual Analysis 

Table 4. 2 contains the standardized residuals frcm the 
independence model: 

Table 4.2: Standardized residuals 

Dumping Severity 
Operation None Slight Moderate 

A 0.77 -0. 31 -1. 22 
B 1. 05 -1. 62 o. 30 
C 0.67 1. 02 -0.19 
D -1. 09 o. 85 1. 05 

As discussed in Section 3.1.2, if the model fitted is correct, 
then these residuals should be normally distributed. However, 
far frcm looking "random" there seems to be some sort of trend 
present in these residuals. Along row l (i.e. operation A) the 
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residuals are scattered about a line with negative slope. Along 
row 2 the slope is less negative, along row 3 the slope is 
positive, and along row 4 the slope is even more positive. The 
pattern to these residuals suggests that for operations with a 
small amount of stanach removal, there are more people than 
would be expected with the lesser side-effects, whereas for 
operations with a large amount of removal, there are more than 
expected with more severe side-effects. 

Thus, since there are systematic departures fran independence, 
the model of independence does not appear to fit as well as 
might have been thought at first sight. 

Since operation and dumping severity have a natural ordering, we 
might want to ask questions such as 11does dumping severity tend 
to increase when more of the stanach is removed?". To help 
answer this type of question, we will look at sane loglinear 
models which take into account the ordinality of the variables. 

4.2 Ordinal-Ordinal Tables 

Suppose that both the row and column variables, X and Y, of a two­
dimensional table are ordinal. A very simple type of association 
would result fran all the local odds ratios being the same fixed 
constant, say e ij = a = exp(S ). Equivalently the log odds ratio would 
be log e ij = s. We would call this model the constant local odds 
ratio model, or the uniform association model. 

4.2.1 Dumping Severity Example 

Table 4. 3 gives the estimated expected counts which result fran 
fitting this model to the data of Table 1.6. 

The estimated value of the local odds ratio is 1.18, which can be 
obtained fran the fitted counts, e.g. 

1.18 = 62.51 X 30.94 = ••• = 
62. 84 X 26. 15 

35.32 X 16.72 
36. 59 X 13. 72 
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This means that the odds of having a slight side-effect instead of 
none (or moderate instead of slight) are 1.18 timees higher for 
operation B instead of A (or C instead of B, or D instead of C). 

'lb illustrate the meaning of the odds ratio, Table 4.3 also shows 
the estimated odds: 

Table 4.3: Estimated counts and odds under uniform association 

Dumping Severity ()jds ()jds 
I 

Operation None Slight Moderate Slight vs I:bne I 

Moderc>te VS Slight 
! 

A 62.51 26. 15 7. 34 26.15 = o. 418 o. 281 
62. 51 

B 62. 84 30. 94 10. 22 30. 94 = o. 492 0.330 
62. 84 

C 60. 97 35. 32 13.72 35. 32 = 0.579 o. 388 
60. 97 

D 53. 69 36.59 16.72 36. 59 = o. 682 o. 457 
J 53. 69 

Consider the odds of slight dumping vs none: the odds for 
operation B of 0.492 are 1.18 times higher than the odds for C of 
0.418. Similarly, the odds for Care 1.18 times higher than those 
for B, and the odds for Dare 1.18 times higher than those for C. 

Exactly the same relationship holds for the odds of moderate vs 
slight dumping. 
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4.2.2 Linear by Linear Association Model 

The uniform association model is a special case of the more general 
linear by linear association model which can be represented as 

( 4. 1) 

The { Ui} and { Vj} are known scores which we have assigned to the 
rows and columns respectively, where u1 < u2 < ••• < ur and 
v1 < v2 < ••• < Ve• Equally spaced scores result in the simplest 
interpretation, and in practice the integer scores {ui = i} and {vj 
= j} are the most canmonly used. 

This model has only one more parameter (S) than the independence 
model, so it has df = (r-1) (c-1)-1 = rc-r-c for testing goodness-of 
-fit. So this model is unsaturated as long as one of the variables 
has more than two categories. Unlike the general model for 
association between X and Y, 

log m · · - µ+' -X+1 Y-+1 XY . . lJ - A 1 A J A lJ ( 2. 7) 

model (4.1) does not require additional association parameters as 
the number of categories of X or Y increases. Model (4.1) is the 
special case of model (2.7) in which the general association term 
A ijXY takes the structure.d form S (ui-u) (Vj-v). 

The S parameter describes the association between X and Y; the 
independence model is the special case in which S = O. 

The association term S(ui-u)(vj-v) reflects a deviation of log mij 
£ran the independence model. If S > 0 more observations are 
expected to have (large X, large Y) values or ( small X, small Y) 
values than if X and Y are independent. On the other hand, if S < 
0, more observations are expected to have ( large x, small Y) or 
( small X, large Y) values than under the independence model. In 
either case the deviation £ran independence increases in the 
directions of the four corner cells of the table. 

For an arbitrary pair of rows a < b and an arbitrary pair of 
columns c < d, the log odds ratio formed £ran the cells (ac), (ad), 

(be) and (bd) is: 
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mac moo 
log mad mbc = S(ub-ua)(vd-vc) 

Whenever the row scores are one unit apart and the column scores 
are one unit apart, the log odds ratio equals s. 

Goodman (1979) defined models in tenns of the (r-1) (c-1) local odds 
ratios 

0ij = mij mi+l,j+l 
mi,j+l mi+l,j 

1 < i < r-1 
l<i<c-1 

defined for adjacent rows and adjacent columns. The unifonn 
association model discussed in the previous section is the special 
case of (4.1) in which all the 0ij'S are equal. In such a model the 
{ uj_} and { Vj} are equal-interval scores, i.e. uru1 = • • • = 

ur-ur-1 and v2-v1 = • • • = Vc-Vc-1• The use of equal-interval 
scores assumes that the categories are "equally spaced" in sane 
sense. 

The use of integer scores {ui = i} and {vj = j} results in all 0ij 
= exp(S) and all log 0ij = S, so Scan be interpreted simply as the 
canrnon value of the local log odds ratio. 

4.2.3 Estimation 

There is no closed-fonn expression for the maximum likelihood 
estimates {mij} of the {mij} in model ( 4. 1). Under the usual 
sampling assumptions, the estimates satisfy the likelihood 
equations 

IDi+ = ni+, i = 1, ·••, r 
·" . ffi+j = n+j , J = 1, •. •, C 

Umij Ui Vj = n nij Ui Vj 
lJ ij 

However, the model is no more difficult to fit than those described 
in Chapter II. We can simply use the methods described in Section 
1.10 and Appendix 2. 
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4.2.4 Dumping Severity Example 

Table 4.4 gives a canparison of the observed counts and the fitted 
counts under the model of independence and also under the uniform 

Table 4. 4: Observed and fitted counts under independence and 
uniform association 

Dumping Severity 
Operation I:bne Slight Moderate 

A 61 28 7 
55. 3 29. 7 ll.O 

62. 5 26. 2 7.3 

B 68 23 13 
59. 9 32. 2 12. 0 
62. 8 30. 9 10. 2 

C 58 40 12 
63. 3 34. 0 12. 7 
61. 0 35. 3 13. 7 

D 53 38 16 
61. 6 33. 1 12. 3 
53. 7 36. 6 16. 7 

a observed counts 
b fitted counts under independence 
c fitted counts under uniform association 

association (UA) model. The latter model fits much better than 
the independence model in the corners, where it predicts the 
greatest departures fran independence. 
When integer scores are used, the estimate of the association 
parameter is /3 == 0.163, with standard error O. 065. The positive 
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" value of S means that the side-effect tended to be more severe with 
greater removal of stanach. As previously noted, the estimated 

,.._ 
uniform odds ratio for adjacent rows and adjacent columns if eij = 

" exp(S) = 1. 18. 

4.2.5 Conditional Test of Independence 

The deviance for the UA model is G2 = 4.59, with 5 df so it fits 
well. The significance of the association between dumping severity 
and operation can be assessed by testing Ho:s=0. This gives a 
conditional test of independence, under the assumption that the 
uniform association model holds. Table 4. 5 gives an analysis of 
deviance table for these nested models. 

Table 4.5: Analysis of deviance 

Model log mij = 8ij = df Deviance 

Independence µH -OH .D 
1 J l 6 10. 88 

Uniform µ H i OH. j D 

Association +s (Ui-U) (Vj-V) a = eS 5 4. 59 

Saturated µ H i OH j D a iS j = nij ni+l,j+l 0 0 
+>-.. -OD ni+l,j ni,j+l l] 

The test statistic is the reduction in deviance denoted by G2(IIU), 
obtained by adding the association parameters to the independence 
model. For this data G2(IIU) = G2(I) - G2(u) 

= 10. 88 - 4. 59 = 6. 29, 

with 6 - 5 = l df, which is significant at the 5% level. This is 
much stronger evidence of association than was obtained with the 
G2(I) statistic. 
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If the uniform association model holds, the ordinal test based on 
G2(I I U) is asymptotically more powerful than the test based on 
G2(I) for detecting departures from independence. The G2(I) 
statistic cannot use as efficiently a constant pattern in local 
odds ratios, since it treats the variables as nominal. The G2(I) 
statistic tests for any way in which two variables could be 
associated, whereas the G2(IIU) statistic only tests for a specific 
type of association, and thus is more powerful at detecting this 
association. (This is analogous to the 'ANOVA situation where an 
overall F test may not pick up a difference in means, but a linear 
trend is significant.) 

However, if in the population some local log odds ratios are 
positive and some are negative, then the uniform association model 
may fit poorly, and the parameter that.S estimates may equal zero. 
Thus independence implies that S = 0, but S = 0 does not imply 
independence if the uniform association model does not hold. Since 
the G2(I) statistic is designed to detect any departure from 
independence, it is better than the G2(IIU) statistic at detecting 
nonmonotonic dependencies for which S is zero or close to zero. 
The alternative hypothesis in the ordinal test (S=0) is narrower 
than the broad alternative of "dependence", so the ordinal test 
sacrifices power for detecting dependencies that are not well 
summarized by the uniform association model. However, the uniform 
association model is still a very useful model in many situations. 

4.3 Ordinal-Nominal Tables 

Sometimes only one of the variables in a two-way table is ordered. 
Even if both variables are ordered, we may want to use only the 
ordinal nature of the response, for instance, if we do not want to 
specify the "distances" between the ordinal categories of the 
explanatory variable. 

If the row variable, X, is nominal and the column variable, Y, is 
ordinal, we can assign scores v1 < v2 < • • • Ve (usually integer 
scores) to the columns and form the row effects model 

log mij = µ+A iX+>.. jY+r i (vj - v) 

where z: >.. i X = n j Y = z: -r i = 0 

( 4. 2) 
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the {T j_} parameters, r-1 of which are linearly independent. Thus the 
model has 

df = re - [l+(r-l)+(c-l)+(r-1)] 
= (r-1) (c-2) 

and is unsaturated when there are more than two columns. 

The independence model is the special case of this model with all Ti= 
O. The association tenn Ti (Vj-vJ reflects the deviation of log mij 
fran the independence model. The {Ti} are called the row effects. If 
a particular row effect Ti is positive, then in row i the probability 
of the Y variable being higher than Vis higher than would be expected 
if the variables were independent. If Ti< 0, observations in row i 
are more likely (canpared to the independence case) to fall at the low 
end of the scale on Y. 

For an arbitrary pair of rows a and b, and columns j and j+l, the log 
odds ratio is 

log maj mbj+ 1 
mbj maj+ 1 = 

so in a sense the Ti map the categories onto a linear 1-dimensional 
scale where the distance between Ta and Tb is directly related to how 
"similar11 the categories are (i.e. how close to 1. 0 the odds ratios 
involving these categories are). 

For integer scores the log odds ratio is constant and equals Tb - Ta 
for all pairs of adjacent columns. 

The row effects model has the same form and produces the same G2 value 
if the rows are permuted. 

It can also be applied to ordinal-ordinal tables. This might be done 
if the departure of log IDij fran the independence model is not linear 
across the rows, as is necessary for the linear-by-linear association 
model is the special case of the row effects model in which Ti = 
f3(Ui-U). 
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4.3.1 Estimation 

The ML estimates of expected counts for the row effects mcxiel satisfy 
the likelihood equations 

There is no closed form expression for these estimates; however, we 

can simply use the general algorithm of Section 1.10. 

4.3.2 Dumping Severity Example 

For the dumping severity data of Table 1.6, the fitted values under 
the row effects model with integer scores are given in Table 4.6: 

Table 4.6: Fitted counts under row effects model 

Operation 

A 

B 

C 

D 

None 

61. 7 
64. 4 

60. 2 

53. 7 

Dumping Severity 
Slight 

26.6 
30.1 
35. 7 

36.6 

The estimates of the row effects parameters are: 

Operation A 
.. 

-0.21 Tl = 
B 

A 

: T2 = -0.13 
C . A 

0.10 . -r3 = 
D 

I\ o. 24 T 4 = 

Moderate 

7. 7 

9. 4 

14. 2 

16. 7 
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This model predicts constant odds ratios for adjacent columns of 
dumping, so the difference between the row effect parameters of row 
land row 2 

,.. ,.. 
T2 - Tl= -0.13 - (-0.21) 

= o. 08 

means that the odds of being classified slight instead of none, or 
moderate instead of slight are exp (0.08) = 1.08 times higher for 
operation B instead of A. 

Corresponding odds ratios for the other operations are 

C vs B: exp (0.10 - (0.13)) = exp (0.23) = 1.26 
D vs C: exp (0.24 - (0.10) = exp (0.14) = 1.15 

We can also obtain these odds ratios £ran the fitted values: 

B vs A, slight vs none 

B vs A, moderate vs slight 

C vs B, slight vs none 

. . 

,-

011 = 61. 7 x 30.l 
64. 4 X 26. 6 

= 1. 08 

" 012 = 26. 6 X 9. 4 
30.l X 7. 7 

= 1. 08 

, ... 
: 021 = 64. 4 X 35. 7 

60.2 X 30.l 

= 1. 26 

Similarly for any other odds ratios. 

If the variable "operation" was actually strictly nominal, we would 
not be so interested in simply canparing row i to row i+ 1. 
However, since it is actually ordinal, this canparison is very 
relevant. Fitting the row effects model allows the odds ratios to 
be different for every pair of adjacent rows, rather than 
constraining them to be identical, as in the uniform association 
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rncx:'iel (which gave an estimated carrnon odds ratio of 1.18). The row 
effect scores of (-0.21, - 0.13, 0.10, 0.24) seem to indicate that 
the "distance" (in tenns of operation severity) between operations 
B and C is twice as great as that between A and B, or C and D. 
This contrasts with using integer scores in the unifor.m association 
rncx:'iel, which assumes that all adjacent operations are of equal 
difference in severity. 

4.3.3 Conditional Test of Independence 

The deviance for this model is G2 = 4. 40, with 3 df, so there is no 
evidence of lack-of-fit. 

The significance of the association between the two variables in 
the row effects rncx:'iel can be assessed by testing 

Ho : T i = • • • = T r = 0 

If the row effects model holds, this hanogeneity of the row effects 
corresi;x:,nds to independence. 
can therefore be based on 

A conditional test of independence 

with df = (r-l)(c-1) - (r-l)(c-2) = r-1. 

Given that the row effects model holds, this test is asymptotically 
amore powerful at detecting an association than the G2(I) test, 
since it concentrates the noncentrality on fewer degrees of 
freedan. The G2(I) test ignores the ordinal nature of Y, whereas 
the G2(IIR) test focuses on alternatives where the ordinal scaling 
is utilized through a linear departure of log mij fran 
independence. These alternatives are narrower and usually of 
greater interest than the general alternative to the null 
hyi;x:,thesis of independence. 

For the dumping severity data testing 
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= 10. 88 - 4. 40 
= 6. 48 

with df = 6-3 =3, which is only significant at the 10% level. 
Canpare this with the G2(rju) statistic of 6.29 with l df obtained 
in Section 4.2.5. Since the X variable in this example (operation) 
is actually ordinal, and the uniform association model seems to fit 
better than the row effects model, it is not surprising to note 
stronger evidence of association is provided by the G2( I I U) 
statistic than by G2(r IR). As before, given that the uniform 
association model holds, we would expect the G2(r I U) test to be 
asymptotically more powerful at detecting an association than the 
G2(r IR) test, since it concentrates the noncentrality on fewer 
degrees of freedan. 

Since operation is actually ordinal, and the uniform association 
model is just a special case of the row effects model (in which ~i 
= S (ui-TI)), we can see whether we are losing much information by 
using the uniform association model (which, in a sense "averages" 
the odds ratios) rather than the row effects model, by canparing 
the deviances of the tv-iO models. 

In this case G2(UIR) = G2(U)-G2(R) 
= 4. 59 - 4. 40 
= 0.19 

with 5-3 = 2 df, which is not significant. So the improved fit due 
to the tv-iO extra parameters in the row effects model is not 
significant. 

The analysis of deviance table for this data is given in Table 4. 7. 



Table 4.7: Analysis of deviance 

Model 

Independence 

Uniform 
association 

Row effects 

Saturated 

log m · ·=µ+' -0+' -D+ lJ- Al AJ 

0 

s (Ui-U) (Vj-V) 

·q (Vj-V) a i = 

>... ,OD 
lJ aiSj = 

4.4 Higher Dimensions 

1 

a = exp (S) 

exp (Ti+l - Ti) 

n·. lJ ni+l,j+l 
ni+l,j ni,j+l 
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df ~viance 

6 10. 88 

5 4. 59 

3 4. 00 

The models in Sections 4. 2 and 4. 3 can be readily generalized to 
higher order tables having at least one ordinal variable. We will 
illustrate for the rxcxi cross-classification of three variables X, Y 
and Z having expected frequences {mi j k} • 

The hierarchical models of interest for three dimensions range fran 
the simple mutual independence model 

to the model that contains all the partial association terms but no 
three-factor interaction term, 

log m .. k - µ+' -X+>.. . Y+' . ,XY+' . kXZ+, . kyz lJ - A 1 J A lJ A 1 A J • 

The next most ccmplex model beyond this includes the term "ijk and is 
of little interest because it is saturated. However, if one or more 
of the variables is ordinal, there is a richer hierarchy of models 
that includes partial association models, and unsaturated three-factor 
interaction models. 



68. 

4.4.1 O::lds Ratios 

In interpreting these models, we refer to the odds ratios {8ij(k)}, 
{8i(j)k} and {8(i)jk} that describe the local conditional 
associations between two variables within a fixed level of the 
third variable. The set of conditional odds ratios {8ij(k)}, where 

8ij(k) = 1Tijk 1Ti+l,j+l,k 
1T i,j+l,k 1T i+l,j ,k 1 .;; i ..: r-1 

1 .;; j .;; c-1 

is the set of (r-1) (c-1) local odds ratio at a fixed level of z. 
Similar definitions hold for 8i(j)k and 8(i)jk• The ratio of odds 
ratios 

8 ijk = 8 ij (k+l = 8 i( j+l)k = 8(i+l) jk 
8ij(k) 8i(j)k 8(i)jk 

is used for describing local three-factor interaction. 8ijk 
describes the interaction in a 2x2x2 section of the table 
consisting of adjacent rows, adjacent columns, and adjacent layers. 
There is an absence of three-factor interaction if all 
(r-l)(c-l)(i-1) of the 8ijk equal 1.0. 

4.4.2 All Variables Ordinal 

Consider the case in which x, Y and Z are all ordinal. Once again 
we have to choose (perhaps sanewhat arbitrarily) scores {ui}, {vj} 
and { wk} to assign to the levels of X, Y and Z respectively. A 
model that utilizes the ordinal nature of the variables is 

log mijk = µHiXHjyHkZ+t3YZ(ui-il) (vj-V) 
+ t3XZ(ui-iJ) (wk-w)+sYZ(vj-v) (wk-w) (4. 3). 

As we will see later, the t3ZY, sXZ and sYZ parameters describe the 
pairwise partial associations. This model has only three more 
parameters than the independence model, and df = rci - [l+(r-1)+ 
(c+l)+(i+l)+l+l+l] = rci-r-c-i-1, so the model is always 
unsaturated. 
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The association term for each pair of variables has the same form 
as the association term in the linear-by-linear association model. 
There is no three-factor interaction term in the model, and all 
0ijk equal 1.0. Hence the partial association between each pair of 
variables is the same for all levels of the third variable. 

If integer scores are used for all three variables, the local 
conditional lOQ' odds ratios simplify to 

lOQ" 0ij(k) = 5XY 
lOQ" e i(j )k = 5XZ 
lOQ' 0(i)jk = 5YZ 

The local odds ratio is uniform for each pair of variables, and the 
strength of association is homogeneous across the levels of the 
third variable, which is why the model is called the homO<Jeneous 
uniform association model. 

If this model holds, and if a particular 8 equals zero, then there 
is conditional independence between those variables. 

In some cases it is not relevant to utilize the orderings of 
classifications for all the ordinal variables. This could be 
because departures from independence are not linear, or because the 
sampling design dictates fitting certain marginal distributions. 
Then the variables in question could be treated as nominal, and the 
models of the following section could be fitted. 

4.4.3 Ordinal and Nominal variables 

When there is a mixture of nominal and ordinal variables, the row 
effects model of Section 4.3 can be generalized. 

4.4.3.1 One Nominal, Two Ordinal Variables 

If Xis nominal and Y and Z are ordinal, a basic model is: 

lOQ' mijk = µHiX+>..jY+;\kz + TiXZ(wk-w) 
+ 5YZ(vj-v)(wk-w) ( 4. 4) 
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This is usually the simplest mooel that would be formulated to 
include all pairwise associations, but no three-factor 
interaction. The Y-Z association term for the ordinal variables 
has the same form as the association term for the linear-by­
linear association model. The X-Y and X-Z association terms for 
the pairs of ncminal and ordinal variables have the same form as 
the association term for the row effects mooel. 

For mooel ( 4. 4) applied with integer scores for the ordinal 
variables, 

log 6ij(k) = ,:XYi+l - iiXY 
log 6i(j)k = ,:XZi+l - Lixz 
log 6(i)jk = SY2 

log e ijk = 0 

4. 4.3.2 Two Nominal, One Ordinal Variable 

Suppose that X and Y are ncminal, and Z is ordinal, then a basic 
mooel would be 

log mijk = µHiX+"-jY+>..kZ+AijXY 
+ ~iXZ(wu-W)+t'jYZ(wk-w) ( 4. 5) 

where nix= I:Ajy = ZAkz = J::,:iXZ = J::,:jYZ 
= Zi"-ijXY = Zj"-ijXY = 0 

A general association term {AijXY} is used for the association 
between the ncminal variables. 

4.4.3.3 Dumping Severity Example 

Table 4. 8 gives a 4x3x4 cross-classification of operation, 
dumping severity and hospital. The data used earlier (Table 
1. 6) is the marginal distribution of this table in which the 
results are ccmbined for the four hospitals. 



Table 4.8: Cross-classification of operation, hospital 
and dumping severity 

Hospital 
1 2 3 4 

Dumping Severity 

Operation N s M IN s M N s M N s 

A 23 7 2 18 6 1 8 6 3 12 
B 23 10 5 18 6 2 12 4 4 15 
C 20 13 5 13 13 2 11 6 2 14 
D 24 10 6 9 15 2 7 7 4 13 

Note: N = none, S = slight, M = moderate 
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M 

9 1 
3 2 
8 3 
6 4 

A model that takes into account the ordinal nature of operation 
and dumping is 

According to this model, dumping severity and operation have a 
uniform association that is the same for each hospital, and 
dumping severity is independent of hospital for each operation. 
The general association term AijOH is used for the 0-H 
association, rather than the term -CjOH(ui-U), because the 0-H · 
marginal distribution. is regarded as fixed by the sampling 
design. When this model is fitted using integer scores, the 
deviance is G2 = 25.35, with 29 df, which is a very good fit. 

Given that the model fits, the conditional independence of 
dumping severity and operation corresponds to 5OD = O. The next 
model in the hierarchy that does not include the 5OD term is 

log ffiijk = µHiOHj 8HkDHijOH, Which is referred to as (D,OH). 
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This model has deviance G2 = 31.64 with 30 df. Thus, the test 
statistic for testing Ho:80D = 0 is G2 = 31.64 - 25.35 = 6.29, 
with 30-29 = 1 df, which is significant at the 5% level. 

The model (OD,OH), i.e. 

contains a general 0-D association term, and has deviance G2 = 

20. 76 with 24 df. To test whether a general 0-D association 
term, >.. ikOD, is necessary ( rather than simply a uniform 
association term, 50D(ui-u)(wk-w)), the statistic is G2 = 25.35 
- 20.76 = 4.59, with 29-24 = 5 df, which is not significant. So 

there is not a significant improvement in fit due to the extra 
five parameters in the more canplicated model (OD,OH). 

The ML estimate of 50D is '$OD = 0.163. This means that the 
estimated odds of moderate instead of slight, or slight instead 
of no dl.llnping, are exp (0.163) = 1.18 times higher for each 
additional 25% of stanach removal. 

To illustrate this, consider Table 4. 9, which contains the 
estimated expected frequencies under the 0-D uniform association 
model. 

The estimated odds ratios for severity of slight vs none for 
operation B vs A, for hospitals 3 and 4 are: 

Hospital 3: "' . 

01(3)1 = ll.07x5. 95 
12.09x4.63 = 1.18 

" Hospital 4: 01(4)1 = 14.32x5.95 

12.09x5.99 = 1.18 
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The corresponding estimated odds ratios for adjacent operations 
and adjacent levels of dumping severity are all 1.18. 

Because the model does not contain an H-D association term, the 
table can be collapsed over hospital, and the 0-D association 
term in the marginal operation by dumping table will be the same 
as in the full table. This is why the estimate of the SOD 

parameter is the same as in the uniform association model fitted 
in Section 4.2.1. 

4.4.4 Three-Factor Interaction Models 

The models introduced in the previous section can be generalized to 
include three-factor interaction terms. A simple model for the 
case when x, Y and z are ordinal is 

log mijk = µ+Aix+AjY+>,_kZ+sXY(ui-U)(Vj-V) 
+ sXZ(ui-u) (wk-w)+s YZ(vj-v) (wk-w) 
+ sXYZ(ui-u) (vj-V) (wk-w) ( 4. 6) 

This model has df = rci-[l+(r-l)+(c-l)+(i-1)+1+1+1+1] = rci -
r-c-i-z, and is unsaturated whenever there are more than two rows, 
columns or layers. 

When this model is applied with integer scores, 

log e ijk = sXYZ 
log 8ij(k) = sXY+r3XYZ [k - (t+l)] 

2 

This model is described as a uniform interaction model because the 
local interaction equals sXYZ for all 2x2x2 subtables formed from 
adjacent rows, adjacent columns and adjacent layers. 

Within a particular level of z, the association between X and Y is 
uniform with local log odds ratio sXY+sXYZ[k-(i+l)/2]. Thus, the 
strength of the X-Y partial association is constant within the 
levels of Z but changes linearly across the levels of z. Similar 
results hold for the X-Z and Y-Z partial associations. 
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A more general interaction model would be 

log mijk = µH.ix-h\jyH.kzH.ijXYH.ikYZH.jkyz 
+ sXYZ(ui-u) (Vj-v) (wk-w). 

This model has df = rci - [l+(r-l)+(c-l)+)i-l)+(r-l)(c-l)+(r-l)(i-1) 
+(c-1) (i-1)+1] = (r-1) (c-1) (i-1)-1, so is unsaturated whenever 
there are more than two rows, columns or layers. When this rncx:1el 
is applied with integer scores, there is a constant value for log 
0ijk, and it is the most general uniform interaction rncx:1el. Due to 
the general forms for the association terms, this model does not 
have uniform association within the partial tables. 

Model (4.6) applied with integer scores may be described as a type 
of heterogeneous uniform association model, since the strength of 
the uniform partial association for each pair of variables changes 
across the levels of the third variable. 

However, a more general example of a heterogeneous uniform 
association model would be to assume there is a uniform conditional 
association between say X and Y which is allowed to change in an 
unspecified manner across the levels of z. In this case the 
interaction is not uniform and Z is treated as naninal. This rncx:1el 
is 

log mijk = µ+;\iX+AjyH.kz+AikxzH.jkyz 
+ SkXY(ui-u) (vj-v) 

For this model with integer scores SkXY is the constant value of 
the X-Y local log odds ratio at level k of z. 

4.4.4.1 Smoking Example 

Table 4.10 is a cross-classification of age, smoking status and 
breating test results of 2289 people (Forthofer and Lehren, 
1981, p.21). 
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Table 4.10: Age by smoking status by breathing test results 

Breathing Test Results 
Age Smoking Status Normal Borderline Abnormal 

<40 Never smoked 577 27 7 
Fonner smoker 192 20 3 
Current smoker 682 46 11 

40-59 Never smoked 164 4 0 
Fonner smoker 145 15 7 
Current smoker 245 47 27 

The standard partial association model (AS, AB, SB) fits poorly, 
with a deviance of 25.93 based on 4 df, so we consider models 
having three-factor interaction tenns. 

The model 

log mijk = µH. iA+A. jSHkBH ijAS+). ikABH jkSB 
+ 5ASB( Ui-u) (vrv) (wk-w) 

with integer scores has only one additional parameter but fits 
much better, with G2 = 2. 7 4 with 3 df. TO test Ho :8 ASB = 0 
use G2 = 25. 93 - 2. 74 = 23.19 with 4-3 = 1 df, which is 
significant at the 0.1% level. So there is very strong evidence 
that the association between smoking status and breathing test 
results depends on age. The estimate of 5SBA = 0.831 means that 
the association between smoking status and breathing test result 
is more positive at the higher age level. Any local odds ratio 
for the 40-59 age group is estimated to be 0ijk = 8(2)jk/8(l)jk 
= exp ( 0. 831) = 2. 30 times higher than the corresponding local 
odds ratio for the< 40 age group. To illustrate this concept 
consider Table 4.11, which contains the fitted counts under this 
uniform interaction model. 
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Table 4.10: Age by smoking status by breathing test results 

Breathing Test Results 
Age &noking Status Normal Borderline Abnormal 

<40 Never smoked 577 27 7 
Former smoker 192 20 3 

Current smoker 682 46 11 

40-59 Never smoked 164 4 0 
Former smoker 145 15 7 
Current smoker 245 47 27 

The standard partial association model (AS, AB, SB) fits pcx:)rly, 
with a deviance of 25.93 based on 4 df, so we consider models 
having three-factor interaction terms. 

The model 

log mijk = µH. iA+\ jSH.kBH. ijAS+\ ikAB+A jkSB 
+ r3ASB(ui-u) (vrv) (wk-w) 

with integer scores has only one additional parameter but fits 
much better, with G2 = 2. 74 with 3 df. To test Ho:BASB = 0 
use G2 = 25. 93 - 2. 74 = 23.19 with 4-3 = l df, which is 
significant at the 0.1% level. So there is very strong evidence 
that the association between smoking status and breathing test 
results depends on age. The estimate of r3SBA = 0. 831 means that 
the association between smoking status and breathing test result 
is more positive at the higher age level. Any local odds ratio 
for the 40-59 age group is estimated to be 0ijk = 0(2)jVS(l)jk 
= exp ( 0. 831) = 2. 30 t irnes higher than the corresponding local 
odds ratio for the< 40 age group. To illustrate this concept 
consider Table 4.11, which contains the fitted counts under this 
uniform interaction model. 
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Table 4.11: Fitted counts under the uniform interaction 
model 

Breathing Test Results 
Age Smoking Status Normal Borderline Abnormal 

< 40 Never smoked 
Former smoker 
Current smoker 

40-59 Never smoked 
Former smoker 
Current smoker 

577. 43 
191. 76 
681. 81 

163.57 
145. 24 
245. 19 

27. 09 
18.57 
47. 34 

3. 91 
15. 43 
45. 66 

6. 48 
4. 67 
9. 85 

0.52 
5. 33 

28.15 

The odds ratio for abnormal vs borderline breathing test, for 
former smoker vs never smoked, at age< 40 estimated to be: 

A 

Age< 40: 6(1)12 = 27.09 X 4.67 = 1.05 
18. 57 X 6. 48 

The corresponding estimated odds ratio for age 40-59 is: 

Age 40-59: 8 (2)12 = 3. 91 X 5. 33 = 2. 44 
16. 43 X 0. 52 

So the estimated odds ratio for the 40-59 age group is 2. 44/1.05 
= 2. 3 times higher than the estimated odds ratio for the < 40 
age agroup. 

The heterogeneous uniform S-B association model, 

logl""!ijk = µHiA+>..j 8+>..kBHij_AS 
+ >.. ikAB+s iSB(vj-v) (wk-w) 

with integer scores, has a deviance of 10.80 with 6 df, and does 
not fit quite as well as the uniform interaction model. 
However, it yields the simple interpretation of constant local 
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odds ratios exp (S1SB) = exp (0.115) = 1.12 for the lower age 
group, and exp (82S8 ) - exp (0.781) = 2.18 for the higher age 
group. To confirm this, Table 4.12 holds the fitted counts 
under this model: 

Table 4.12: Counts under heterogeneous uniform S-B 
association model 

Breathing Test Results 
Age Smoking Status Normal Borderline Abnormal 

< 40 Never smoked 572. 42 32.25 6. 33 
Former smoker 199. 61 12. 62 2. 78 
Current smoker 67 8. 98 48.13 11. 89 

40-59 Never smoked 160. 71 6. 44 o. 85 
Former smoker 150. 08 13.12 3. 80 
Current smoker 243. 21 46. 44 29. 35 

At age< 40, the odds ratio for abnormal vs borderline results, 
for former smoker vs never smoked is estimated to be: 

/' 

Age < 40: e (1)12 = 32. 25 x 2. 78 = 1.12 
12.62 X 6.33 

The corresponding estimated odds ratio for age 40-59 is 

/' 

Age 40-59: 0(2)12 = 6.44 X 3. 80 = 2.19 
13.12 X 0. 85 

Since both s1SB and S2SB are positive, breathing test results 
tend to be more abnormal when an individual's smoking status is 
more current. The association is estimated to be stronger for 
the older age group. 
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CBAPI'ER V: 100-MULTIPLICATIVE MODELS 

An obvious disadvantage of the ordinal loglinear models discussed in 
Chapter IV is the need to assign scores to the categories of ordinal 
variables. For many cases it is not obvious what scores should be 

chosen. But the parameter estimates and goodness of fit of the models 
depend on that choice. 

However, we could treat the scores as parameters to estimate, rather 
than as fixed values. 

For two-dimensional tables a model of this type would be 

log m · · - µ +' -X+A · Y..i..aµ, v . lJ - /\1 J 'I-' l J 

where EA ix = EA jy == 0. Here the {µ i} and {v j} are parameters to be 
estimated. The model is called log-multiplicative because the log of 
the expected count is a multiplicative function of the parameters. 
Goodman (1979) called it the "RC model" because of its multiplicative 
row and column effects. The basic form of the model is unchanged when 
the {µ i} or {v j} are replaced by linear functions of themselves. So 
we can assume an arbitrary location and scale, such as 

Because of the constraints on the model parameters, r-2 of the {µ i} 
and c-2 of the {v j} are linearly independent. So for testing goodness 
of fit 

df == rc-[l+(r-l)+(c-l)+l+(r-2)+(c-2)] 
== ( r-2 ) ( c-2 ) 

and so the table must be at least 3x3 for the model to be unsaturated. 

The independence model corresponds to s==O. The log-multiplicative 
model resembles the linear-by-linear association model discussed in 
Section 4. 2. 2 
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The log-multiplicative model can be interpreted like the 
linear-by-linear association model through the odds ratios if the 
fixed scores { u i} and { v j} are replaced by the parameters { µ i} and 
{ v j} • However, the parameters { µ i} and { v j} need not be monotonic. 
If the RC model fits well and produces parameter score estimates that 
are monotonic, then the linear-by-linear association model would also 
fit well if the fixed scores that were chosen for that model had 
similar spacings. 

The log-multiplicative model is invariant to interchanges of rows and 
columns. For example, if we interchange rows a and b, then µ a and µ b 
simply switch places, so the variables are treated as naninal. 
However, we can describe ordinal characteristics of the data through 
odds ratios. The local log odds ratio is 

so monotonicity in the scores means that all local associations have 
the same sign. Lack of monotonicity in the scores indicates that 
local associations are positive in sane locations and negative in 
others. 

The log-multiplicative model also resembles the row effects model 

if we treat the { µ i} as row effects and the { v j} as parameter scores. 

Generally in the RC model we regard the {µi} as row effects and the 
{ v j} as column effects. 

The RC model can actually be used to give an ordering to the row and 
column categories, i.e. we could order them in increasing order the 
µ i or v j. 

5.1 Estimation 

Although the RC model is not actually loglinear, it can be fitted 
using an iterative loglinear fitting procedure. 
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If one set of parameter scores is treated as fixed, then the model has 
a lo;Jlinear form. 

Each cycle of the iterative procedure consists of two steps. First, 
the column parameters are treated as fixed, and the row scores are 
estimated as in a lo;Jlinear row effects model. Then the estimated row 
effects are treated as fixed row scores, and column scores are 
estimated as in a column effects model. Those estimates serve as 
fixed column scores in the first part of the next cycle. 

5.2 Inference for Log-Multiplicative Models 

Testing for independence corresp:mds to testing H0 :S = 0 in the RC 
model. The test statistic G2(I) - G2(RC) does not have an asymptotic 
chi-squared distribution, because the {µ i} and {v j} are undetermined 
in the RC model if independence holds. Instead, Haberman ( 1981) 
showed that the null asymptotic distribution of the statistic is the 

I 

same as that of the maximum eigenvalue of the (r-1) by (c-1) central 
Wishart matrix with df = c-1. 

5.3 Dumping Severity Example 

Once again we will use the data from Table 1.6. Fitting the RC model 

., 
lm m·. - µ+' -0+>.. ,D...aµ•v·· 

"";:l lJ - /\ 1 J 'µ l J 

gives a deviance of G2(RC) = 2. 85 with df = (4-2)(c-2) = 2, which is a 
good fit. We have already seen that the independence model gives 
G2(I) = 10.88, with 6 df. The test statistic G2(I) - G2(RC) - 10. 88 -
2.85 = 8.03 can be used to test independence, given that the RC model 
fits. The null distribution of this statistic is the same as that of 
the maximum eigenvalue of the 3x3 central Wishart matrix, with 2 df. 
Table 51 of Pearson and Hartley (1972) gives the upper 5% and 1% 
critical values for this test, which are 10.74 and 14.57 respectively. 
Thus, the G2(I) - G2(RC) test is significant at the 5% level, so there 
is evidence that the operation affects the dumping severity. 

The parameter estimates for the RC model are: 
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µ1= o.364 v1 =-o.797 
µ 2 = -o. 613 v 2 = o. 553 
" ,.. µ 3 = o. 404 v 3 = o. 244 
,.. " µ 4 = 0. 573 and S = 0. 442 

The parameter estimates are not monotonic, which indicates that sane 
local associations are positive and sane are negative. The estimate 
of the local odds ratio is 

which gives the six estimated local odds ratios as 

0 11 = exp [ o. 442 (-0. 613+0. 364) ( o. 553+0. 7 97)] 
= exp(-0.149) 
= o. 86 

" 021 = exp[0. 442(0. 404+0. 613) (0. 553+0. 797)] 
= exp(0.607) 
= 1. 83 

" e 31 = exp[0. 442(0. 573-0. 404) (0. 553+0. 797)] 
= exp(0.101) 
= 1.11 

e\2 = 1.04 
" e 22 = o. 87 

8 32 = o. 98 

These are of course the same as those obtained using the fitted counts 
in Table 5. 1. 



Table 5.1: Fitted counts under the RC model 

Operation 

fa 

en 

,.. 
e 21 

A 

e 31 

etc. 

A 

B 

C 

D 

= 

= 

= 

60. 2 8 X 25. 10 = 0. 86 
68. 62 X 25. 59 

6 8. 6 2 X 3 8. 6 4 = 1. 83 
57. 59 X 25.10 

5 7. 5 9 X 3 9. 6 8 = l. ll 
53. 50 X 38. 64 

Dumping Severity 
None Slight 

60.28 25.59 
68. 62 25.10 
57.59 38.64 
53. 50 39. 68 

Moderate 

10.13 
10. 23 
13. 77 
13. 82 
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This RC model states that the odds for heavier dumping severity are 
sanetimes increased by the removal of more stanach and sanetimes 
decreased. The simpler uniform association model 

which we fitted in Section 4. 2. 1, states that the odds of having 
slight dumping instead of none (or moderate instead of slight) are 

' exp(B) = exp(0.163) = 1.18 times higher for operation i+l than 
operation i. The uniform association model gives G2(u) = 4.59, with 
5 df, and is the special case of the RC model where 

- -µ i = Ui-U and \) j = Vj-V 

The difference in deviance between the tv.D models, G2(UIRC) = G2(u) -
G2(RC), provides a test of the null hypothesis that the {µj_} and {vj} 
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are linear transformations of the pre-selected scores for the 
loglinear model, given that the RC model fits. In this case G2(U/RC) 
= 4.59 - 2.85 = 1.74 based on 5-2 = 3 df, which is not significant, so 
the equal interval scores of the uniform association model seem 
permissible, since the increase in deviance is small ccrnpared to using 
the parameter scores of the RC model. Therefore the simpler uniform 
association model seems adequate for describing the relationship 
between operation and dumping severity. 

Although the example used here has both ordinal row and column 
variables, we could of course have used a ncrninal-ordinal, or 
ncrninal-ncrninal table. 

5.4 Higher Dimensions 

The log-multiplicative model can be generalized in various ways so 
that it can be used with multi-dimensional tables. Log-multiplicative 
models are obtained when parameters are substituted for sane or all 
pairs of sets of fixed scores in the ordinal loglinear models of 
Chapter N. For example, a parameter-scores version of the 
homogeneous linear-effects model (4.3) is 

where EA ix = n jy = EA kz = o 
Eµ i = Ev j = Ew k = 0 
EµiZ = Evj2 = Ewk2 = 1 

This model is always unsaturated as it has df = rci - 2(r+c+i) + 5 

The log odds ratios are 

log 0ij(k) = (µi+l-,.ii)(vj+l-vj)SXY 
loge ijk = 0 

so that the model is quite simple to interpret when the parameter 
scores are monotonic. 
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CHAPrER VI: I.OOIT MODELS 

The rncxlels described in the previous chapters are suitable for tables 
with one or more response variables. In contrast, the logit rncxlels of 
this chapter are only appropriate for the situation where there is 
only one response that is also ordinal. This response variable is 
explained by a set of explanatory variables. 

6.1 Dichotanous Response 

A dichotanous response can take one of only two values, e.g. yes/no; 
success/failure; low/high. It can be trivially treated as ordinal by 
defining one level to be "high". 

Dichotanous logit rncxlels can be thought of as simply a different way 
of writing loglinear rncxlels for one dichotanous response. 

To illustrate this, consider a cross-classification in which X and Y 
are categorical explanatory variables and Z is a dichotomous response. 
We will fit the loglinear rncxlel (XY, XZ, YZ) or 

We define the logit as log IDij2/rnijl• This is equal to 

log IDij2 - log IDijl 
= µ H. iXH. jYH. 2zH ijXYH, i 2xzH. j 2Yz 
- [µ H iXH j Y+>.. i Z+>., ijXY+>., il YZ+>., jl YZ] 
= (>.. 2Z->., l Z) +(>.. i 2XZ->., ilXZ) +(>.. j 2YZ->., jl YZ) 

Since z is dichotomous and I>..kZ 
k 

then >.. 1 Z = ->.. 2z 
>.. ilxz = ->.. i2xz 

and >.. jl YZ = ->.. j 2Yz 

= o, n ikxz = 
k 

so log IDij2/rnijl = 2>..2Z + 2>..i2xz + 2>..j 2YZ which can be written as 



where IT ix = 
i 

IT ,y = 0 
. J 
J 
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This is the general form of the logit mooel for naninal X and Y 
variables. 

The logit for Z at level i of X and j of Y is defined to be 

log ,r 2 ( ij) 
1-rr 2( ij) 

= 

= 

= 

log ,r 2 ( ij) 
1Tl(ij) 

log ,r ij 2 
1T ijl 

log IDij2 
ffiijl 

Logit mooels always assume that the response is to be explained by a 
canbination of explanatory variables, so the corresponding loglinear 
mooel will always contain the most general interaction term for 
describing associations among the explanatory variables, plus the 
relevant interaction terms which specify relationships between the 
explanatory variables and the response (these will depend on exactly 
which mooel is being fitted). So, to rewrite a loglinear model in 
terms of a logit mooel, we can simply emit any terms that don't 
involve the response and remove the response subscript fran all other 
terms. 

For example, suppose X is naninal but Y is ordinal with monotone 
scores {v1, ••• , vc)- assigned to its levels. A loglinear mooel that 
specifies that both X and Y affect Z (and also uses the ordinal nature 
of Y) is 

log rn i j k = µ H. i X+>., j y +>-. k ZH i jXY+>., ikxz 
+ T jyZ (Vj-V) 

The logit equivalent of this mooel is 

log ffiij2 = a+-r ix+f3 y (Vj-V) 
ffiij 1 
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6.2 Polytanous Response 

Now we will extend these legit models to the case where a response has 
two or more ordered categories. It makes sense to fonn legits in a 
way that takes the category order into account. However, we don't 
need to use only two categories at a time in fonning the logits. 
Three different types of legits we could use are: 

(a) Adjacent-categories legits 

Lj = leg 1r j + 1 , 

nr 
j=l, ••• ,c-1 

(b) Continuation-ratio legits 

Lj = leg 1r j + 1 
... 1r.,:.1~+-. -.-_-+rr_j __ _ 

j=l, ••• ,c-1 

(c) Cumulative legits 

LJ. = lrv, ,r . 1+ +rr 
~'::l J+ • • • C I j = 1, ••• , c-1 

1T 1 + ••• +rr j 

where 1r j is the probability of response category j at a certain 
canbination of levels of explanatory variables. When there are only 
c=2 categories, all three of these legit types simply to the standard 
legit, leg ( 1r 2/1T 1 ) • 

Figure 6. 1 gives an impression of these three types of legits. 

Figure 6.1: Logits for an ordinal response 

(a) Adjacent-categories 

1 i i+l ... C 
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(b) Continuation-ratio 

... C 

I I 

(c) Cumulative 

6.2.1 Adjacent-Categories Logits 

Goodman (1983) presented models using adjacent-categories logits. 
These models are equivalent to the ordinal loglinear models 
discussed in Chapter IV, but they have a different emphasis in the 
sense that they are only appropriate when there is only one 
(ordinal) response. 

6.2.1.1 Ordinal-Ordinal 

For a two-way table with ordinal explanatory row variable, x, 
which has assigned scores { ui}, and ordinal response column 
variable, Y, a simple logit model v.0uld be 

Lj ( i) = log mij+ 1 = a j + 8 (ui-u) 
mij 

1 < i < r, 
1 < j < c-1 

Independence corresponds to the case where 8 = O. 

This model is equivalent to the loglinear unifonn association 
model 
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(i.e. with integer scores), and the association parameter S is 
identical in the two models. 

6.2.1.2 Ordinal-Nominal 

If the row variable Xis naninal, a simple logit model is 

Lj(i) = log mij+l = O.j + Ti 
IDij 

1 < i < r 
1 < j < c-1 

where ETi = O. This is referred to as the parallel odds model 
by Goodman. Independence corresponds to the case where all the 
Ti equal zero. The parallel odds model is equivalent to the log 
linear row effects model with integer scores { Vj = j} 

1og mij =µ+Ti (vj - v) 

and the { T i} row effect parameters are identical in the two 
models. 

6.2.2 Continuation-Ratio Logits 

Continuation-ratio logits have the feature that the results of 
fitting models for separate logits are independent. Hence the C-1 
G2 statistics and their df values can be summed to obtain an 
overall goodness-of-fit statistic that pertains to the simultaneous 
fitting of C-1 models, one for each logit. However, if the 
categories of the ordinal variable are listed in the opposite order 
and continuation-ratio log its are formed from these (i.e. the 
logits log [nj/(nj+l+ ••• +rrc)] are formed), the results will differ 
fran the original analysis. 

Al though they do not appear to have been used very much in the 
literature, models can be formed for continuation-ratio logits in a 
similar fashion to that described in Section 6.2.1, i.e. we model 
the logit as a linear fuction of the explanatory variables. For 
example, for an ordinal-ordinal table with explanatory row variable 
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X with scores {ui_}, we could model the logit as a linear function 
of the scores 

Lj(i) = log mij+l 
""'m...,.i='""l +.,....-.-.-.-+m._..,.i..,..j 

= a j + S (Ui - U) 

1 < i < r 
1 < j < c-1 

If X is naninal (or if we just wish to treat it as nominal) we 
could model the logit as 

Lj ( i ) = a j + -r i 
1 < i < r 
1 < j < c-1 

Fienberg (1980, p.114) gives an example of the use of a 
continuation ratio logits for a four-way table. 

6.2.3 Cumulative I.Dgits 

The cumulative logits 

Lj = 1T j+ 1 +. • • +rr c 
1r1+ ••• +irj 

use all c categories for each logit, and satisfy L1 ;;, L2 • • • ;;, Lc-1 

6.2.3.1 Heterogeneous Effects 

6.2.3.1.1 Ordinal-Ordinal Tables 

For a tw::>-way table with ordinal explanatory row variable, X, 
which has assigned scores { ui_} , and ordinal response column 
variable, Y, a simple logit model would be 

Lj(i) = log mij+1+ ••• +mic 

mu+ ••• +mij 
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= Ct j + t3 j ( U i-U) , i = 1, • • • , r 

For each fixed cutpoint j there are r logits and two 
parameters, so that df = r-2. This model is simply the basic 
logit model of Section 6.1 for a dichotanous response 
variable and quantitative explanatory variable, applied to 
all c-1 canbinations of adjacent categories. For each 
cutpoint j, the first category is obtained by canbining the 
response categories up to an indlucing the jth, and the 
second category is obtained by canbining the last c-j 
categories. Thus we form c-1 separate rx2 tables and fit the 
basic logit model to each. If the model holds and Sj = 0, 
then X and Y are independent when Y is collapsed in this 
manner. 

For fixed category cutpoint j 
integer scores, is identical 
association model 

this model, applied with 
to the loglinear uniform 

applied to the collapsed rx2 table. 

6.2.3.1.1.1 Dumping Severity Example 

We will now re-analyse the data of Table 1.6. The first 
cumulative logit involves ca:nparing "none" to "slight" 
plus 11moderate11

, i.e. (TI2 + TI3)/TI, the second cumulative 
log it ca:npares 11 none 11 plus "slight" to "moderate", i.e. 
TI 3/ ( TI 1 + TI 2). These two collapsing are given in Tables 
6.1 and 6. 2. 



Table 6.1: Data for first cumulative logit (j=l) 

Operation 

A 

B 

C 

D 

Dt.nnping Severity 
'None Slight or Moderate 

61 
68 
58 
53 

35 

36 
52 

54 

Table 6.2: Data for second cumulative logit (j=2) 

Operation 

A 

B 

C 

D 

Dt.nnping Severity 
None or Slight 

29 

91 
98 

91 

Moderate 

7 

13 

12 
16 
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Total 

96 

104 
110 
107 

'Ibtal 

96 

104 
110 
107 

Assigning integer scores to the operations and fitting the 
linear logit models 

gives the fitted counts of Tables 6.3 and 6.4. 
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Table 6.3: Fitted counts fran first collapsing (j=l) 

Dumping Severity 
Operation None Slight or Moderate 

A 

B 

C 

D 

63.37 
63.13 
40. 63 
52. 87 

32. 63 
40. 87 
49. 37 
54.13 

Total 

96 
104 
110 
107 

Table 6.4: Fitted counts fran second collapsing (j=2) 

Dumping Severity 
Operation None or Slight Moderate Total 

A 

B 

C 

D 

87. 91 
93. 39 

%. 48 
91. 22 

8. 09 
10. 61 
13.52 

15. 78 

96 

104 
llO 
107 

The deviances for the legit models are G12 = 1.49 and G22 = 
O. 94, both with 2 df, so both cumulative legits are fitted 
well. 

" ,.._ The estimates of the slope parameters are 81 = O. 229 and 8 2 = 
0.211, so the odds that there is sane side effect (instead of 
none) is estimated to be exp(S 1) = exp( O. 229) = 1. 26 times 
higher for operation i+l than for operation i. Similarly the 
odds that the dumping is moderate, rather than none or 
slight, is estimated to be exp(82) = exp(0.211) = 1.23 times 
higher for operation i=l than for operation i. 

Of course, both these odds ratios can be obtained from the 
tables of fitted counts. For example, the odds ratio for 
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sane dtnnping instead of none, for operation D vs C is 
estimated as 

631 (1) = 60. 63 X 54.13 = 1. 26 
52. 87 X 49. 37 

The odds .ratio for moderate dtnnping instead of slight or 
none, for operation D vs C, is estimated as 

031 (2 ) = 96. 48 X 15. 78 = 1. 23 
91.22 X 13.52 

To test whether the S parameters are zero, we canpare the 
deviances of the models where they are unconstrained and of 
the models where they are set to zero. 

For the first ctnnulative logit, fitting the independence 
model 

gave a .deviance of G2(r1) = 7.92 with 3 df. The 
unconstrained model 

gave a deviance of G2(s1) = 1.49 with 2 df, so the test 
statistic for Ho:S1 = 0 is G2(I1) - G2 (S1) = 7. 92 - 1. 49 = 
6.43, with 3-2 = 1 df, which is significant at the 5% level. 

For the second Cl.IlUulative logit, G2(I2) = 3.19 with 3 df, and 
G2(B2) = 0.94 with 2 df, so the test statistic for fio:S2 = 0 
is G2 (I2) - G2 (s 2) = 3.19 = 0. 94 = 2. 25 with 3-2 = 1 df, 
which is not significant at the 10% level. 
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6.2.3.1.2 Ordinal-Nominal Tables 

For the two-way table where X is naninal, this approach is 
not very enlightening because if we fit 

Lj(i) = log mi,j+l+ ••• +mic 
mil+ ••• +mij 

where ~Tij = O, then for each fixed cutpoint j there are 
l. 

l+(r-1) = r parameters, but only r logits, and the model 
is saturated. 

6.2.3.2 Homogeneous Effects 

6.2.3.2.1 Ordinal-Ordinal Tables 

Consider again the heterogeneous-effects logit model which we 
applied to the dumpin~ severity data. The estunates of 

were 31 = O. 229 and S 2 = O. 211. The fact that these 
estimates are so sunilar suggests that we might be able to 
assu'Tie B 1 = S 2 and replace them by a single hcmogeneous 
effect para'Tieter S1 and fit the model: 

Lj ( i) = ctj+S (Ui-U) i = 1, ... , r 
j = 1, ... , c-1 

An arnalgamated logit model of this type for the full rxc 
table does not correspond to any loglinear model. 

In general, there are c-1 logits in each of r rows, giving a 
total of r(c-1) logits. There is one association parameter, 
S, and c-1 parameters, {aj}, relating to the various 
cutpoints for forming the logits. Therefore, the residual df 
= r(c-1)-1-(c-l) = rc-r-c. This is the sa'Tie as the residual 
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df for the linear-by-linear association model; however, the 

loglinear and cumulative logit models are not equivalent 
unless c=2. 

Each of the c-1 logits is linearly related to the explanatory 

variable, with slope f3 assumed the same for all logits. If 
the model holds and s=O, then the jth logit is the same in 
each row ( for all j), which implies that X and Y are 

independent. 

The difference in logits for adjacent rows 

Lj ( i + 1 ) - Lj ( i) = log Tii+l,j+1+ ••• +ni+l,c - log ni,~+1+~••+nic 
ni+1,1+ ••• +rri+l,j "11 ••• 1

•
1 tj 

= log (nil+ ••• +nij) (ni+l,j+l+ ••• +rri+l,c) 
lf i + 1, 1 +. • • +ir i + 1, j ) \ IT i 1 j + 1 +. • • +If ic} 

which is the log odds ratio for the 2x2 table obtained using 

rows i and i+l and the dichotomous response having cutpoint 

following category j. This is simply the log of the 

local-global odds ratio e ij' introduced in Section 1. 6. 3. 2. 
If integer row scores are used, then 

Lj(i+l) - Lj(i) = aj+f3(Ui+1-u) - aj-S(Ui-U) 
= f3 (Ui+l-Ui) 
= f3 

so exp(S) represents the constant value of the odds ratios 

{ e ij '} for the ( r-1) ( c-1) 2x2 tables obtained by taking all 
pairs of adjacent rows and all dichotanous collapsing of the 

response. We will call this model the logit uniform 
association model. Mccullagh (1980) shows that the whole 
class of hanogeneous logit effect models are procortional 
odds models. Taking the example of the logit uniform 

association model, the proportional odds mcx:iel states that 
for a given row i, the odds that a category is less than or 

equal to j, is 

Tiil+ ••• +nij = Kj exp-(8j+f3(Ui-u) 
TI i,j+l+• • .+n ic 
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where K j and cS j are just constants that depend on j. 
Taking logs of both sides and multiplying through by -1 
gives 

log ni,j+1+ ••• +rric = -log Kj+oj+B(ui-U) 
nil+- •• +rrij 

which is simply the logit uniform association model. 

6.2.3.2.1.1 Dumping Severity Example 

We will now apply the logit uniform association model to 
the dumping severity data of Table 1.6. The estL~ate of 
the association parameter is S = 0.225, and the deviance 
is G2 = 4. 27 with 5 df, so the model fits well. The 
estimate of the local-global odds ratio is 8ij = exp(S) = 
exp( O. 225) = 1. 25. This means that the odds that dumping 
severity is some rather than none (or mooe:::-ate rather than 
slight or less) is 1.25 times higher for operation i+l 
than for operation i. To illustrate this, consider the 
fitted counts of Table 6.5: 

Table 6.5: Fitted counts under logit Jnifor:m 
association model 

Ope::::-ation 

A 

B 

C 

D 

None 

63.23 
63. 0 8 

60. 70 
53. 05 

D..unping Severity 
Slight ~oderate 

24. 87 

30. 43 
35. 75 
37. 94 

7. 90 

10.50 
13. 56 
16. 01 

Total 

96 

104 
110 

107 



98. 

The first collapsing ( corresrx:mding to j=l) of these 
counts is given in Table 6.6: 

Table 6.6: Fitted counts, collapsed into dichotc:mous 
response (j=l) 

Operation 

A 

B 

C 

D 

None 

63. 23 
63. 08 
60. 70 
53. 05 

D...lmping Severity 
Some (=Slight+ Moderate) 

32. 77 
40. 93 
49. 31 
53. 95 

Total 

96 

104 
llO 
107 

The odds for sane dumping instead of none for operation A 
is 32. 77/63.23 = 0.52; for operation Bit is 40. 93/63.08 = 
O. 64, so the odds that there will be sane dumping rather 
than none is 0.64/0.52 - 1.25 times higher for operation B 
canpared to A. This is fo course just the local-global 
odds ratio 

r- I 

811 = 63.23 X 40. 93 = 1.25 
63. 08 X 32. 77 

A I A I 

The 821 and 831 are calculated in a similar manner to be 
1.25. As always, this means that the odds for operation 
i+l is 1.25 times higher than the oods for operation i. 

0 ration o::lds for Some vs None 

A 32. 77/63.23 = 0.52 
B 40. 93/63.08 = o. 64 
C 49.31/60. 70 = o. 81 
D 53. 91/53.05 = 1.02 
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The second collapsing (j=2) corresponds to a canparison of 
moderate dumping vs none plus slight, and the values of 

,,_ I A/ r-/ 
the estimated local-global odds ratios, 612 , e 22 , e 32 
are also all 1.25. 

6.2.3.2.1.2 Conditional Test of Independence 

Given that the logit uniform association model holds, one 
can test independence by testing Ho :S = O. The test 
statistic is the difference between the deviances for the 
independence model and the logit uniform association 
model: 

which has df = (r-l)(c-1) - (rc-r-c) = 1. 

The logit independence model 

Lj ( i) = a j 

is equivalent to the loglinear independence model 

Fo:::- the dumping severity data, the test of H0 :s = O is 
based on G2(r!U) = 10.88 - 4.27 = 6.61, with l df, which 
is significant at the 5% level. 

6.2.3.2.2 Ordinal-naninal tables 

If X is naninal, we can form a logit analog of the 
log linear row effects mcdel: 

Lj(i) = log mi,j+l+ ••• +mic 
mil+ ••• +mij 

= CLj + Ti, 
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where ETi = O. This model is also analogous to the one-way 
ANOVA mooel for continuous resfOnse variables. In this 
logit row effects model the ith row effect, Ti, is assumed to 
be the same for all c-1 ways of forming the cumulative lOJits 
and (c-l)+(r-1) independent parameters, so the residual df = 
(r-1) (c-2). This is the sarne as the loglinear row effects 
model, but the two are not equivalent unless c=2. 

For each pair of rows a and b the difference in logits 

Lj(b) - Lj(a) = Tb - Ta 

is constant for all c-1 logits, so the log oods ratio for 
the 2x2 table formed by taking rows a and b of the table and 
collapsing the resJ;X)nse is constant for all c-1 collapsings. 

Mccullagh (1980) gives an example of what he 
proJ;X)rtional oods mooel, which is the sa'T\e as this 
effects mooel, with one explanatory variable, 

calls a 
logit row 
with two 

levels, and a resJ;X)nse variable with three ordered 
categories. 

6.2.3.2.2.1 wmping Severity Exanple 

Once again using the data from Table 1.6, we can treat the 
row variable operation as nominal, and fit the logit row 
effects model. The model fits well, with G2 = 3.56 with 
3 df. The fitted counts are 9,iven in Table 6. 7. 

The estimates of the row effects para-ueters are: 

Operation A 
.~ 
T1 = o. 259 

B 
,.. 

-0.251 T2 = 
C "' 0.170 T3 = 
D 

A o. 341 T4 = 



Table 6.7: Fitted counts under lo;:Jit row effects 

model 

Operation 

A 

B 

C 

D 

None 

61.57 

66.51 
59.17 
53.00 

Dumping Severity 

Slight Moderate 

25. 97 

28. 27 
36. 62 
37. 99 

8. 45 
9. 23 

14. 21 
16. 01 
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The model predicts constant loJ odds ratios for the two 

collapsings of each pair of rows into 2x2 tables, so the 
difference between the row effect parameters of rows 3 and 

4, 1 4 - -r 3 = 0. 341 - 0. 170 = 0. 171 means that the odds of 
dumping being some instead of none (or moderate instead of 
slight or less) are exp(0.171) = 1.19 times higher for 

operation D compared to A. 

These odds ratios can also be obtained from the fitted 

values {rrtij}. For example, Table 6. 8 ;ives the f i:cst 
collapsing of the response, correspondin0 to j=l. 

The estimated odds ratio for operation D vs C is 1.02/0. 86 

= (59.17x54.00)/(53.00x50.83) = 1.19. Estimated odds 
ratios can be calculated sit-uilarly for the other 
ope::::-ations. The values of the odds ratios obtained for 
this collapsing are identical to the values obtained for 
the other collapsing ( corresponding to j=2). 
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Table 6. 8: Fitted counts, collapsed into dichotomy 
(j=l) 

Operation 

A 

B 

C 

D 

Dumping Severity 

None 

61.57 

66.51 
59.17 

53.00 

Some 

34. 43 

37. 49 

50. 83 

54. 00 

()jds (Some vs None) 

0.56 

o. 56 

o. 86 

1. 02 

T:::-eating operation as naninal and fitting the logit row 

effects mcx::lel allows the odds ratios to be different for 

every pair of adjacent rows, rather than constraining them 
to be identical, as in the logit uniform association 

mcx::lel. 

6.2.3.2.2.2 Conditional Test of Independence 

Independence is the special case of the logit row effects 

mooel in which all the row effect pararneters are zero. 

Given that the row effects model holds, a conditional test 
of independence can be based on G2(IjR) = G2(I) - G2(R), 

with d f = ( r-1 ) ( c-1 ) - ( r-1 ) ( c-2 ) = r-1. 

For the dumping severity data, the test of Ho:Tl = ••• = 
Tr= 0 is based on G2(IIR) = 10.88 - 3.56 = 7.32 with 6-3 

= 3 df. 

Since operation is actually ordinal and the logit uniform 

association model is just a special case of the row 

effects model (in which Ti= S(ui-G)), we can see whether 

we are losing much infonnation by using the logit uniform 
association model rather than the row effects mcdel, by 

co:nparing the deviances of the two mcx::lels. In this case 
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= 4. 27 - 3. 56 
= 0.71 

with 5-3 = 2 df, which is not significant, so the improved 

fit due to the t¼D extra parameters in the log it row 

effects model is not significant. 

The analysis of deviance table for this data is given in 

Table 6.9: 

Table 6. 9: Analysis of deviance 

Model 

Independence 

Logit 

uniform 

association 

Logit row 

effects 

Lj(i) = log mi,i+1+ ••• +mic 
mu ... rnij 

aj 

aj+S (ui-u) 

aj+r i 

6. 2. 4 Cumulative Logit Models for Higher Dimensions 

df J:)::;viance 

6 10. 88 

5 4. 27 

3 3. 56 

The cumulative logit models discussed in Section 6. 2. 3 can be 
generalized to higher order tables where there may be both ordinal 
and nominal explanatory variables. These models resemble multiple 
regression models for continuous res.r;::onse variables. They are 

simpler to construct than the analogous loglinear:- models of Chapter 
IV, since it is unnecessary to model associations among the 
explanatory variables. 

Anderson and Philips (1981) give an application of the cumulative 

lcxJit mcxiel with multiple explanatory variables to the problem of 

disc:::-iminant analysis with an ordinal classification. 



104. 

6.2.4.1 Homogeneous Linear Logit Effects 

Consider an rxcxi table in which X and Y are explanatory 
variables and z is an ordinal resi;:onse •. Within each of the rxc 
canbinations of X and Y, there are i-1 cumulative logits. 

Lk(ij) = log ffiijk+l+• •• +mij£ 
ffiijl + ••• +IDijk 

k = 1, ••• ,£-1 

Table 6.10 lists association terms for some sL~ple models that 
have linear effects of ordinal variables. None of these models 
allows for three-factor interaction. The parameters have 
similar interpretations to those given in Section 6. 2. 3. 2, but 
in terms of partial associations. 

Table 6.10: Association terms for cumulative logit models 

Scales of ExplanatoDJ Variables Association Terms 
X y X y 

Ordinal Ordinal sX(ui-U) SY(vj-V) 
Nominal Ordinal T iX 3Y(v ·-v) J 
Ncminal Nominal T iX T iy 

For example, when X and Y are nominal, the model used would 
be 

where I: qX = I:-r / = O. Differences between pai::-s of row effects 
{Tix} represent constant 10] odds ratios for canparing levels of 
X (cont~olling for Y) on all i-1 ways of collapsing the resi;:onse 
Z into two categories. The { -r iy} can be interpreted 
similarly. 
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6.2.4.1.1 Dumping Severity Example 

Cbnsider the three-dimensional version of the dumping 
severity data, given in Table 4. 8. The sa'Tlpling scheme is 
assumed to be product multinomial, with an independent 
multinomial sample being taken of the response dumping 
severity at each of the 16 combinations of the explanatory 
variables operation and hospital. 

There are two logits at each of the 16 0-H combinations, 
giving a total of 32 logits. The model 

Lk ( i j ) = a kr k = 1, 2 ( 6. 1) 

states that dumping severity 
operation and hospital. This 
loglinear model 

is jointly independent of 
model is equivalent to the 

symbolised by (OH, D). Since the logit model has only tv.D 
paraoeters, its residual df - 32-2 = 30, and G2 = 31.64, so 
the model fits quite well. 

The model 

assumes a linear effect of operation on the logit of dumping 
severity that is the same for both logits (k = 1,2) and the 
same for each hospital. It also asst.mes that dumping 
severity is conditionally independent of hospital for each 
operac1on. This model has only one more para'Tleter than the 
independence model, and yields G2 = 25.03 bas~d on 29 df when 
fitted with integer scores. There is a marked improvement in 
fit canpared to the independence model, as G2 has decreased 
by 31.64 - 25.03 - 6.61 based on 1 df. The estimate of the 
association parameter is sO = 0. 225. Since this model 
implies that Dis conditionally independent of H, the table 
can be collapsed over hospital without changin;;i the 0-D 
association if the model holds. This is why these results 
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regarding the 0-D association are the same as those obtained 
with the logit uniform association model fitted to the 
marginal 0-D table in Section 6.2.3.2.1. 

The model 

where E,jH = 0, states that the logit of dumping severity is 
linearly related to operation and is also related to hospital 
through additive effects. This mcx:lel assumes that each 
association parameter is homogeneous for the tv.D ways of 
forming cumulative logits, and it assumes an absence of 
three-factor interaction. The model yields G2 =.22.48 with 
26 df, so the improvement in fit over model (6.2) is only G2 
= 25. 03 - 22. 48 = 2. 55, with 29-26 = 3 df, which is not 
significant. So for each operation ther-e is no strong 
evidence that the distribution of dumping severity differs 
a.~ong the four hospitals. 

The analysis of deviance table is given for these three 
models in Table 6.11: 

Table 6.11: A.Dalysis of Deviance 

Difference Difference 

Lk(ij) = df G2 in df in G2 

ak 30 31. 64 
ak+BO(ui-u) 29 25.03 1 6. 61 
ak+e,O( Ui-u) +, j8 26 22. 48 3 2. 25 

The loglinear model that is analogous to logit model (6.2) 
is 
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When fitted using integer scores, this mooel yields G2 = 

25. 35 with 29 df. This is very similar to logit model 
(6.2), although the models are not equivalent since the 
number of resfX)nse categories exceeds two. 

6.2.4.2 Higher-Order Interaction Models 

It is quite simple to formulate logit mooels that allow 
higher-order interactions. For example, supfX)se that the logit 
of z is linearly related to Y, but that the slope of the 
relationship differs across the levels of a naninal variable x. 
An appropriate logit mooel would be 

where Z,ix = Z~ix = O. This mooel has residual df = rci-rc-i 
-2r+2. 

6.2.4.3 Heterogeneous Effects 

A feature of the logit mooels discussed in this Section is the 
assu~ption that the effect of each explanatory variable is the 
same for the differ-ent ways of forming the cu:nulative logits. 
These models may be generalized to include non-hcmogeneous logit 
effects, which means that the effects of the explanatory 
variables change according to which logit is formed. Williams 
and Grizzle (1972) give an example of the application of a model 
that has non-hcmogeneous logit effects. 

Models having hanogeneous logit effects are easier to work with, 
since the effects of explanatODJ variables are easier to 
summarize and interpret. If hcmogeneous effect cumulative logit 
mooels fail to fit, it may still be useful to try fitting 
similar models having another logit form (e.g. adjacent­
categories logits). 
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As in the previous three chapters, this chapter discusses the case 
where there is a single response measured on an ordinal scale, with 
one or more explanatory factors. The difference here is that we 
assume there is a continuous randan variable, Y, underlying the 
observed categories of the response. We can formulate linear models 
that describe how the distribution of the underlying continuous 
unobserved response depends on the explanatory variable(s). 
ordinality is an integral feature of these models and so we do not 
need to improse arbitrary scores on the response categories. 

The c response categories can be thought of as contiguous intervals on 
the continuous scale; the points of division or cut points will be 
denoted by 01, ••• , 0c-l• The jth of the response categories is 
recorded when e j-1 < Y .; e j, where -0:, = e o .; e 1 ,;; • • • ,;; e c-1 .; e c = "". 
For the extreme case where there is one explanatory variable with only 
one level, the probability that Y is less than or equal to a certain 
value 0j is the cumulative distribution function of Y evaluated at 0j, 

t(0j) = J0j f(y) dy 

(where f(y) is the probability density function of y). The difference 
between t(0j) and t(8j-1) = J0j-l f(y) dy 

-00 

is the probability ~j that Y falls in category j, i.e. 

j = 1, ••. , c. 

For the case where there is one explanatory row variable, we model the 
expected value of the underlying response for the ith row as 

E(Y1·) = x·' _l §_ 

= (XiQ, xn, ••• , xip) [so '1 
f31 

f3p l 
! 
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Now zi~ is a general linear function which will depend on the way that 
the explanatory variable is expected to affect the response. S is a 
vector of unknown parameters, and~ is a vector corresponding to the 
explanatory variable, consisting of durmny variables of O's and l's, or 
of real values. 

To illustrate, consider a 3x4 table where the row variable A is purely 
naninal, and the column variable Bis an ordinal response. To model 
association bet....een A and B we would write 

E(Y1) = so + 81 
E(Y2) = so + s2 
E(Y3) = so + S3 

where S1 + s2 + S3 = o. So the ~i contain durmny variables 

~· 1 = (1 1 0 0) 
;:;'2 = (1 0 1 0) 
~•3 = (1 0 0 1) 

and 

~ =r S1 
S 2 
S 3~ 

but if the row variable is ordinal, with assigned scores -1, O, 1, and 
we expect a linear effect of A on Y, then we v.Duld model the 
association as 

E(Y1) = so - 1 X Sl 
E(Y2) = So + 0 X Sl 
E(Y3) = so+ 1 x S1 

So the li are 

I (1, -1) ~l = 
~7 = (1, 0) 

~3 = (1, 1) 

and s =r:~J 
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The probability that for row i the response falls into category j is 

1T i j = q> ( 0 j - ~ I i~) - q> ( 0 j-1 - ~ I ]g ) 
j = 1, ••• , r 

The counts (nil, ni2, ••• , nic) recorded in response categories 
(1, 2, ••• , c) out of ni+ individuals in row i are multinanial with 
probabilities 1Tij• The log likelihood is 

log L(fi', 01, ••• , 0c-l) = 44nij log ,r ij + l log (ni• ) 
lJ i nil • • • nic 

and the unknown parameters can be estimated by maximum likelihood. 

For multi-dimensional tables with two or more explanatory variables, 
we can just think of the canbinations of the explanatory variables as 
being arranged together to form a single row variable. Then the 
expected value of the response for row i can still be mcx:lelled as 

E(Y1·) = x' ·B 
- 1.,... 

where ~ • i pertains to the canbination of explanatory variables that 
gives rise to row i. 

7.1 Distribution Functions 

The shape of the distribution of the underlying res_p:)nse will 
obviously affect the proportions in the observed ordered categories. 
The probability density function (pdf) of Yi could be either symmetric 
or skewed. If symmetric, then for a particular row i, if the expected 
value of Yi, ~i~~, is near the middle of the c ordered categories, the 
sum of the counts to the left of ~i~f would be expected to be roughly 
equal to the surri of the counts to the right. If the pdf of Yi is 
negatively skewed, i.e. there is a sharp drop to the right of the 
mode, there will be a threshold which ~i~ _§ must reach before the 
higher response categories are recorded. A slower drop in the pdf 
means that increases in~~~ are accanpanied by more gradual increases 
in the proportions in higher res_p:)nse categories. The op_p:)site 
situation will occur with a positively skewed pdf. The tails of the 
distribution are also important since a long tail to the right implies 
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that high_ ordinal resr::onse categories are r::ossible even when Xi~S is 
lOW' and similarly in the left tail. Short tails imply that the counts 
will be more tightly clustered about Xi~S, and outliers will be very 
rare. 

Some canmon distributions that are used are the normal, logistic or 
extreme value distributions. If there are only c=2 resr::onse 
categories, these corresr::ond to probit, logit and canplementary-log­
log mcx:lels respectively for the binanial resr:onse. 

7.1.1 Normal 

The normal p::lf (see Figure 7.1) is 

with corresr:onding cumulative distribution function (cdf) 

<l>N(y) = JY (21r)-½ exp (-½ t2) dt 

The normal distribution is often chosen because normality is the 
standard regression assumption for a quantitative resr:onse. 

However, the short tails of the normal distribution make outliers 
unlikely, leading to a lack of fit for many tables. 

7.1.2 Logistic 

The logistic distribution is also symmetric and has a similar shape 
to the normal distribution (see Figure 7.2), but has longer tails, 
so it may fit better than the normal distribution. The logistic 
p::lf is 

exp (-y) 
(1 + exp ( -y) ) 2 

with cdf 



Figure 7.1 Normal Probability Density Function 
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1 
1 + exp(-y) 

Using the logistic distribution gives exactly the same results as 
the cumulative logit models discussed in Section 6. 2. 3 (Agresti, 
1984, p.151). 

As before, the local-global odds ratio for rows a and bis 

e~ab = odds that category> j, for row b 
odds that category> j, for row a 

= P. ( category > j 
P (category< j 

I row b) 
I row b) P (category> j 

P ( category < j 

= (nb,j+l + • • • + TI be) 
n bl + • • • + n bj) 

x (nai + ••• naj) 
( n 1, j + 1 + • • • + n ac) 

row a 
row a 

If the row variable is naninal, with parameters Sa and Sb for 
levels a and b, the odds ratio is simply 

exp (Sb - Sa) 

So fitting the logistic distribution means the parameters can be 
interpreted in terms of odds ratios. Anderson and Phillips (1981) 
and McCullagh (1980) give examples of fitting the logistic 
distribution. 

7.1.3 Extreme Value 

If it is thought that ~~e underlying distribution is skew, then the 
extreme value distribution (or its mirror image, the negative 
extreme value distribution) can be tried. The extreme value pdf is 

fE (y) = exp(y - exp(y)) 

with cdf 
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~E(y) = 1 - exp(- exp(y)) 

The negative extreme value pjf is 

fNE(Y) = exp(-y-exp(-y)) 

with cdf 

~NE(y) = exp (-exp(-y)) 

The extreme value distribution is negatively skewed, i.e. there is 
a very steep drop and short tail to the right of the mode, but a 
long gradual tail to the left (see Figure 7. 3), and the negative 
extreme value distribution is p::>sitively skewed (see Figure 7. 4). 
If Yi folows the extreme value distribution, then it satisfies a 
prop::>rtional hazards models (McCullagh, 1980), with consequent ease 
of interpretation of the parameters. The ratio of 

log P (category> j row b) = log (Tib,j+l + ... + TI be) 
log P (category> j row a) log (Tia,j+l + ... + TI ac) 

= exp ( (lCa,.. - ~b,.. )B) 

which also means that 

P (category> j I row b) = 

P ( category > j I row a) exp ( (lfa,.. - .1.fo,.. )f) 

7.1.4 Estimation 

Stirling (1984) describes an iteratively re-weighted least squares 
algorithm implemented as a Genstat macro that will fit linear 
models assuming underlying distributions that are normal, logistic, 
extreme value, negative extreme value or any mixture of these. He 
analyses a contingency table with 126 cells using a model with only 
eight parameters. 
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Figure 7 .4 Negative Extreme Value Probability Density Function 
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7.1.5 Dumping Severity Example 

We will re-analyse the data of Table 1.6 by this method. 'lb choose 
a suitable distribution, we fit a model where the linear part Ii~f 
is fully parameterized so that each µ i = .ei~ f is allowed to vary 
freely. This corresponds to treating operation as nc:rninal and 
fitting 

ETi = O, for the four standard distributions. Table 7.1 gives the 
deviances for these models. There are six independent parameters 
(µ, Ti, 0j), three independent constraints (the four row totals), 
and 12 cells; therefore df = 12 - 9 = 3. 

Table 7.1: Fully parameterized models 

Distribution 

Normal 
Logistic 
Extreme value 
Negative extreme value 

df 

3 

3 

3 

3 

All these distributions fit quite well. 

Treating operation as ordinal, we can fit the mojel 

D3viance 

4.10 ns 
3. 56 ns 
5. 35 ns 
3.17 ns 

using integer scores. This gives the deviances in Table 7.2. 



Table 7.2: Using integer scores for operation 

Distribution 

N:mnal 
Logistic 
Extreme value 
Negative extreme value 

df 

5 

5 

5 

5 

J::)eviance 

4. 44 ns 
4. 27 ns 
5.37 ns 
4. 23 ns 
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Chee again, all distributions seem to fit quite well. In a small 
table there is often not enough information to choose between 
different distributions. 

Since the negative extreme value distribution gave the smallest 
deviance in both tables, and has easily interpretable parameters, 
we will examine the fitted counts for the ordinal model, which are 
in Table 7. 3. 

Table 7.3: Fitted counts under the negative extreme value 
distribution 

Operation 

A 

B 

C 

D 

Dumping Severity 
Moderate Slight 

8. 38 

10. 75 
13. 45 

15. 43 

24. 29 
29. 98 
35. 82 
38. 93 

tbne 

63.32 
63. 26 
60.74 
52. 63 

TOtal 

% 

104 
110 

107 

TO fit the negative extreme value distribution we can just reverse 
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the ordering of the resJ;X)nse categories and fit the extreme value 
distribution, so the order of dumping severity in Table 7. 3 is the 
reverse of the usual order. 

The parameter estimates are 

~ ft ~ ~ 

'll = 2. 126, 13 = 0.17 8, e 1 = o, e 2 = 1. 516. 

The expected values of y for operations A to Dare: 

Operation + l3 (U, -u) = A 

'll l Yi 

A 2.126 - 0.178 X -1.5 = 2.39 
B 2.126 - 0. 17 8 X -0. 5 = 2. 21 
C 2.126 - 0.178 X o. 5 = 2. 04 
D 2.126 - 0.178 X 1. 5 = 1. 86 

so the underlying extreme value distribution is shifted to the left 
with increasing removal of stanach (bearing in mind that the 
category order has been reversed so that the larger y is the more 
desirable resr::onse, i.e. less side effect (see Figure 7.5). Fbr 
the extreme value distribution, instead of interpreting the 13 
parameter in terms of odds ratios, as we have done with loglinear 
and logit models in previous ·chapters, we interpret it in terms of 
pror::ortions. If we collapse dumping severity into a dichotany of 
moderate vs slight plus none (which corresponds to j = 1, see Table 
7. 4), then the log proJ;X)rtions of S+N for each adjacent row are 
related by exp (-S) = exp (+0.178) = 1. 95, i.e. Propn (S+N) for 
row i+l = [Propn (S+N) for row i] 1.95. 

For example, the pror::ortion of patients w00 had slight or no 
dumping after operation A is 87.62/96 = 0.913. The corresporriing 
proportion for operation Bis 93.25/104 = 0.897. The ratio of the 
log proportions is log (0.897/log (0.913) = -0.109/-0.091 = 1.195, 
and of course 0. 897 = 0. 9131.195. 
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Table 7. 4: Fitted counts, collapsed into dichotomy (j=l) 

Dumping Severity 
Operation Moderate Slight or None 

Propn 
'Ibtal S+N 

log 
(Propn S+N) 

A 

B 

C 

D 

8. 38 
10.75 
13. 45 
15. 43 

87. 62 
93. 25 
96. 55 
91. 57 

96 o. 913 
104 o. 897 
llO O. 878 
107 o. 856 

-0. 091 
-o. 109 
-0.130 
-0.155 

The same relationship holds true for the other collapsing 
(corresponding to j=2) which ccmpares moderate plus slight vs none 
(see Table 7.5). 

Table 7.5: Fitted counts, collapsed into dichotomy (j=2) 

Dumping Severity 
Operation Moderate or Slight None 

A 32.68 63.32 
B 40. 7 4 63. 26 
C 49. 26 60. 7 4 
D 29. 37 52. 63 

Propn 
M+S 

0.660 
o. 609 
o. 552 
o. 492 

log (Propn 
M+S) 

-0. 416 
-0. 497 
-0. 594 
-0. 710 

A similar interpretation holds for fitting the ncminal model 

E(yi) = µ + 'ri 

The fitted counts under the negative extreme value distribution are 
in Table 7.6; they are collapsed into a dichtcmy of moderate vs 
slight plus none (corresponding to j=l) in Table 7.7. 



Table 7.6: Fitted counts 

Operation 

A 

B 

C 

D 

Dumping Severity 
Moderate Slight 

8. 97 25. 67 
9. 44 27.19 

14. 21 37. 27 
15. 34 38. 83 

N:>ne 

61. 36 
67. 37 
58. 52 
52. 83 

1btal 

96 
104 
110 
107 

Table 7. 7: Fitted counts, collapsed into dichtcrny (j=l) 

D.nnping Severity Propn log 
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Operation Moderate Slight or None 1btal S+N (Propn S+N) 

A 

B 

C 

D 

8. 97 
9. 44 

14. 21 
15.34 

87. 03 
94. 56 
95. 79 
91. 66 

The , parameters are estimated as 

TA = O. 192 
tg= 0.223 
tc = -. 0152 
'TD = -0. 263 

96 

104 
llO 
107 

• 907 
• 909 
• 871 
• 857 

-.098 
-. 095 
-.138 
-.154 

The expected log proportions for different rows are related by the 
exponential of the difference in parameters, e.g. 
ccrnpared to row C 

for row D 



log propn (S+N) for row D = exp (-re - ~o) 
log propn (S+N) for row C 

or propn for D = (propn for C) exp (1:c - To) 

= O. 871 exp (0.111) 

= o. 857 

124. 
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OIAPrER VIII - a:rHER MODELS 

8. 1 Mean ResP?nse Models 

Mean response models are appropriate for tables with a single ordinal 
response. We assign scores to the levels of the response variable and 
use its mean as the response function in a regression-type model. 

For example, consider a tv;o-way table classified by ordinal variables 
X and Y having scores {Ui} and {vj} respectively. Within level i of 
X,· the conditional mean of Y is 

<I> = i.:: v· m .. 
J lJ 

j ni+ 

i = 1, ... , r 

The usual linear regression model is <l>i =a+ s(ui-u) 

The parameter a is the average of the conditional means, and S is the 
change in the conditional mean per unit change in x. There are r 
responses and two parameters, so df = r-2, and we need at least three 
rows to obtain an unsaturated model. The model for the ordinal 
nominal table is saturated. 

The mean response model is a linear model and can be fitted by the 
general algorithm described in Section 1.11 and Appendix 3. 

8. 1.1 Dumping Severity Example 

Consider again the 4x3 operation by dumping severity 
cross-classification of Table 1. 6. Treating both variables as 
ordinal and assigning integer scores { Ui=i} and { Vj=j} ( scmewhat 
arbitrarily), we could fit the mean response model 

<j> i = a + S Ui 

where <l>i is the conditional mean of the dumping severity score, 



¢i =(mil+ 2 mi2 + 3 mi3) I mi+ 

i=l, ... ,4. 

Table 8.1 gives the fitted counts obtained under this model. 

Table 8. 1: Fitted counts under mean response rrDdel 

Operation 

A 

B 

C 

D 

D.Imping Severity 
Kone Slight Moderate 

61. 89 27. 46 6. 65 
66.19 23. 65 14.16 
58. 50 39. 75 11. 75 
53. 26 37. 90 15. 84 

The estimates of the mean response scores are 

" ¢1 = (61. 89 + 2x27. 46 + 3x6.65)/196 = 1.425 
-~2 = 1. 500 
l3 = 1.s75 
id = 1. 650 
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The parameter estimates are µ = 1. 538 and 8 = O. 075, which indicate 
that for each additional 25% of stomach removal, the predicted mean 
operation score is increased by 0.075. This model has deviance G2 
= 0.22 with a 2 df, which indicates that it fits very well. 

8.1. 2 Three-way D.Imping Severity Example 

Corresponding models for higher-order tables are easy to construct 
and interpret. Haber (1985, p.5) gives an analysis of the data of 
Table 4.8, using main effects for both hospital and operation in a 
mean response model 



~ ij = µ + a i + 13 j 
i,j = 1,2,3,4 

127. 

He shows that operation significantly affects dumping severity, 
while the four hospitals do not significantly differ with regard to 
their effect. 

8. 2 Models for Incanplete Tables 

The concept of structural zeroes was introduced in Section 1. 9. 
Structural zeroes occur when it is impossible to observe values for 
certain ccmbinations of the variables. Removing structural zeroes (or 
other pre-detennined values) from the analysis results in a table that 
is said to be structurally incanplete. 

8. 2.1 Definitions 

Let S be the set of cells in a t~way rxc array that remain after 
the exclusion of missing entries and fixed values. For those cells 
not in S we put nij = mij = 0. The general loglinear model can 
still be obtained by setting 

for cells (i,j)E" s, with z \iX 
i 

and ~ o ij ;\. ,XY - z lJ - . 8 .. lJ 
A. ,XY 

lJ 
1 J 

where o i j = ( 1 for ( i , j ) E S 
( 0 otherwise 

8. 2. 2 Quasi- Independence 

= z A ,y = 0 
j 

J 

= 0 

The model of quasi-independence can be defined by setting 

XY 
Aij = O for (i,j)c s 

so that log rn 1·J· = µ + ?1·: + , YJ·· ( · ·) /\ for 1, J E s. 
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In other words, X and Y are quasi-independence if we can write the 
expected counts in the form 

mij = (aibj for (i,j)E S 
(0 otherwise 

so quasi-independence is like independence, so it applies to the 
non-empty cells of a table. 

'Ihe general rule 
applicable here. 

for computing degrees of freedom is still 
If there are e cells that have missing or fixed 

entries, then the set S contains rc-e cells, so the saturated model 
needs only rc-i parameters. The number of parameters in the quasi­
independence model is 1 + (r-1) + (c-1) = r+c-1, so the degrees of 
f.:::-eedom are rc-e-(r+c-1) = (r-1) (c-1) - e. 

8. 2. 3 Estimation 

The maximlllll likelihood estimates under the model of quasi­
independence are the same under all three of the usual sampling 
schemes and are usually unaffected by the presence of sampling 
zeroes, providing no row or column has an observed zero total. The 
MLES can be computed by the general log-linear algorith:n. 

8. 2. 4 Monkey Example 

Let us consider the data of Table 1.8 which concerns the genital 
display of monkeys. Fitting the model of quasi-independence 

log ffiij = µ + AiA + Ajp 
(i,j)l: s 

to the data yields the fitted values in Table 8. 2. Inspection of 
this table reveals that the quasi-independence model does not fit 
well. This is also confirmed by the large value of the deviance 
which is G2 = 135.17 with 15 df. There are 1+4+5 = 10 parameters 
in this model, and 25 cells in S, therefore 25 parameters in the 
saturated model, which is why the degrees of freedom equals 25-10 = 

15. 
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Table 8.2: Fitted counts under the quasi-independence model 

Passive Participant 
Active Participant R S T U V w 

R 5.26 2. 48 8. 22 6.65 o. 40 
s 9.19 10. 32 34.19 27.66 1. 65 
u o. 94 12. 47 5. 88 15. 77 o. 94 
V o. 22 o. 25 0.12 o. 39 0.02 
w 9. 66 11. 02 5. 20 17. 21 13. 92 

Since the quasi-independence model does not fit, we can conclude 
the various monkeys choose to display themselves more often towards 
specific members of the colony. 

8. 2. 5 Higher-Order Tables 

When we deal with multi-dimensional tables, we can consider log­
linear models applied only to cells whose values are not structural 
zeroes or fixed values. We will consider three-way tables; these 
methods can be easily extended to higher-order tables. Let S 
represent the cells in an incanplete rxcxi table with observed 
values nijk and expected values mijk• We set nijk = mijk = 0 for 
(i,j,k)c s. The most general loglinear model is 

log mijk = µ + ;qX + >--jY + Akz + AijXY 
+ A ikxz + A jkyz + A ijkXYZ 

where (i,j,k)E s. The >..-te:rrns are deviations and sum to zero over 
each included variable. For example: 

z.: oiYZ Aix = z.: 0ijz AijXY 
i i 

= Z.: 0 iky Aikyz = 
i 

Z.: o i j k >.. i j kXYZ = 0 
i 
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with o ijk = (1 if (i,j,k)E S 
(0 otherwise 

o ijz = (1 if o ijk = 1 for sane k 
(0 otherwise 

0iky (1 if 8ijk = 1 for sane j 
(0 otherwise 

o iyz = (1 if o ijk=l for sane (j,k) 
(0 otherwise 

We define various unsaturated lcglinear mc:dels by setting A-terms 
equal to zero, and, as in the analysis of cauplete tables, we 
restrict our attention to hierarchical mooels. 

The formula for the degrees of freedan of a particular model is 
once again the difference between the number of _p3.rarneters in the 
saturated rnooel and the number of estimable parameters in the model 
in question. The word "estimable" has been used here to emphasize 
that when dealing with structural zeroes, sanetimes not all 
parameters in the quasi-lcglinear mooel are table to be estimated. 
In particular, this will happen when sane structural zeroes make up 
a zero marginal total which is used in a rnooel. 

8. 2. 5. 1 Heal th concerns example 

Table 8. 3, taken fran Fienberg (1980, p.148), gives the results 
of a survey enquiring into the health concerns of teenagers. 
The respondents are classified by sex, age and health concern. 
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Table 8. 3: Health concerns of teenagers, cross-classified by 
age and sex 

Health concerns 

Sex, reproduction 
Menstrual problems 
How healthy I am 

Nothing 

Males 
12-15 

4 

42 
57 

16-17 

2 

7 

20 

Females 
12-15 

9 

4 
19 
71 

16-17 

7 

8 

10 
31 

Since males do not menstruate, there are two structural zeroes 
in the table, and a structural zero in the sex by health concern 
two-dL~ensional marginal table. 

We would normally treat age and sex as explanatory factors which 
could af feet the response heal th conce:rns. Thus, any 
appropriate loglinear models would include the ;\ ijSA term. Table 
8.4 gives the five possible models that could be fitted to this 
data. 

Table 8.4: Models for health concerns data 

Model df 

(SA, H) 22.03 7 
(SA, SH) 9. 43 5 
(SA, AH) 13. 45 4 
(SA, SH, AH) 2. 03 2 
(SAH) 0 0 
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The simplest model that fits adequately is (SA, SH), i.e. 

for (i,j,k)E= s. 

This model specifies that the age of the respondent does not 
affect the health concern expressed, but that the sex does. 
Fitting this model involves the marginal tables nij+ and ni+k• 
The two-dimensional sex by health concerns marginal table is 
given in Table 8. 5. The marginal total n1+2 is a structural 
zero ( because the two cells which it is the total of are both 
structural zeroes) and so the parameter 11. 12SH is non-e~timable. 
Thus, the number of estimable parameters is 1+1+1+3+1+2 = 9. 

Table 8.5: Sex by health concerns marginal table 

Sex 
Health concerns Male Female 

Sex, reproduction 6 16 
Menstrual problems 12 
How healthy I am 49 29 
Nothing 77 102 

There are 14 cells in the table that are not structural zeroes; 
therefore the saturated model needs only 14 parameters. The df 
for the model is thus 14-9 = 5. 

8. 3 Models for Square Tables 

Square tables are two-dimensional tables where the variable for rows 
has the same categories as the variable for columns. The following 
are examples of ways in which such tables might arise: 
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1. In panel studies where each individual is classified at two 
points in time; 

2. When pairs of matched individuals, such as husbands and wives, 
are classified, for each member of the pair; 

3. When individuals are classified according to tv.0 essentially 
similar variables (e.g. strength of right hand and strength of 
left hand); 

4. In experiments on matched pairs, the members of a pair are 
subjected to different treatments. 

Square tables correspond closely to paired quantitative data. 

8. 3. 1 Quasi-Independence 

Sometimes we might want to treat the diagonal cells differently 
fran the others. For instance, we may expect in:::lependence to be a 
feasible model for the off-diagonal cells, but not for the diagonal 
cells. 

Consider an rxr square table classified by variables X and Y. The 
loglinear fonnulation of quasi-independence is 

where >.. ij = ()._ i * if i = j 
(0 otherwise 

FOr the off-diagonal cells this is simply the model of 
independence 

i=j 

while for the diagnonal cells the rrodel is saturated 

i=j 

and the estimated expected frequencies for the diagonal cells equal 
A 

the observed frequencies, i.e. mii = Dii• 
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The easiest way to fit this model is just to treat the d:i.agonal 
cells as structural zeroes and fit the :rncdel of quasi-independence 
as described in Section 8.2. 

The number of parameters in this model is 1 + (r-1) + (r-1) = 3r -
1, the number in the saturated model is r2, therefore the degrees 
of freedan equal r2 - 3r+ 1. 

8. 3.1. l Social Mobility Example 

Table 8. 6 presents data on inter-generational social mobility in 
Britain (Bishop, Fienberg and Holland, 1975, p.206). Because of 
the nature of social mobility it seems more likely that quasi­
independence, rather than independence, will hold in the table, 
i.e. we v.Duld expect a disprop::,rtionate number of sons to have 
the same social status as their fathers, but the status of the 
sons whose status was different fran their fathers might not be 
affected by their fathers' status. 

Table 8.6: British social mobility data 

Fathers' status 

l 

2 

3 

4 

5 

1 

50 
28 
11 

14 
0 

2 

45 
174 

78 
150 

42 

Son's status 
3 4 

8 

84 
110 
185 
72 

18 
154 
223 
714 
320 

5 

8 

55 

96 

447 

411 

Table 8. 7 gives the fitted counts under model of canplete 
independence. This model obviously does not fit well, and was 
G2 = 811.0 with 16 df. 
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'Ihe model of quasi-independence also does not fit well, with G2 
= 249.4 with 25-15+1 = 11 df; however, it is a vast improvement 
over the plain independence model. The fitted counts are given 
in Table 8. 8. 

Table 8.7: Fitted counts under cornplete independence 

Fathers' status 
1 2 

1 3. 8 18. 0 
2 14. 6 69. 2 
3 15. 3 72. 4 
4 44. 5 211. 2 
5 24. 9 118. 2 

Son's status 
3 4 

16. 9 52. 7 
65.0 202. 3 
68. 0 211. 7 

198. 2 617. 0 
110. 9 345. 3 

Table 8.8: Fitted counts under quasi-independence 

Fathers' status 

1 

2 

3 

4 

5 

1 

50.0 
6. 6 

8. 5 

27.5 
10. 4 

2 

9. 5 

174. 0 
56.1 

181. 0 
68. 4 

Son's status 
3 4 

11.0 
50. 0 

110.0 
209. 0 
79.1 

38. 5 
174. 2 
226. 2 
714. 0 
276.1 

5 

37.5 
144. 0 
150.6 
439.1 
245. 7 

5 

20.0 
90. 3 

117. 3 
378. 5 
411. 0 

Bishop, Fienberg and Holland (1975, p.207) discuss more 
complicated models which involve separate consideration of the 
triangular sub-tables above and below the diagonal. 
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8. 3. 2 Sym:netry 

This mcx:'lel specifies that the table is symmetric about the 
diagonal, i.e. 

IDij = ffij i for all i :f: j 

The loglinear representation of symmetry is 

log m · · - µ + , ,X + , ,X + >.. • ,XY lJ - "'l "'J lJ 

where >.. ijXY = >.. j iXY 
and i": Aix = ~ AijXY = O 

i 1 

The maximum likelihocx:'l estimates are 

,.., 
m·. = { nij + nji lJ 

i * j 2 

n .. i = j 11 

There are r(r-1) off-diagonal cells; therefore there are r(r-1)/2 
constraints on the fitted values, so the degrees of freedom are 
r( r-1)/2). 

8.3.2.1 Eye-Testing Example 

Table 8. 9 gives the results frcm eye tests on v.Dmen. The table 
is taken from Bishop, Fienberg and Holland (1975, p. 284). The 
mcx:'lel of symmetry specifies that the expected number of women 
with right eye grade i and left eye grade j equals the expected 
number of women with right eye grade j and left eye grade i. In 
other words, we expect to have the sa~e number of 'M'.)f(len with, 
say, excellent right eye vision but terrible left vision, as 
those with excellent left vision but terrible right vision. The 
fitted counts under this mcx:'lel are given in Table 8.10. Along 
the diagonal the fitted counts are equal to the actual counts, 
while each fitted off-diagonal count, IDij, is eqt1al to the 
average of nij and nji, e.g. 



,,.._ 
m41 = (n41 + n14) / 2 

= (36 + 66) I 2 = 51 

Table 8.9: Results of eye tests 

Right eye 
Grade 

Highest (1) 
Second (2) 
Third (3) 
Lowest ( 4) 

Total 

Highest 
(1) 

1520 
234 
117 

36 

1907 

Left Eye Grade 
Second Third 

(2) (3) 

266 
1512 

362 
82 

2222 

124 
432 

1772 
179 

2507 

Lowest 
( 4) 

66 
78 

205 
492 

841 

Table 8.10: Fitted counts under syrrmetry model 

Right eye 
Grade 

Highest (1) 
Second ( 2) 
Third (3) 
Lowest (4) 

Total 

Highest 
(1) 

1520 
250 
120. 5 

51 

1907 

Left Eye Grade 
Second Third 

(2) (3) 

250 
1512 

397 
80 

2222 

120.5 
397 

1772 
192 

2507 

Lowest 
( 4) 

51 
80 

192 
492 

841 

Total 

1976 
2256 
2456 
789 

7477 

Total 

1976 
2256 
2456 
789 

7477 

137. 
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The deviance is calculated in the usual manner as G2 - · 19. 25, 
with df = 4( 4-1)/2 = 6, which is significant at the 1% level, 
with indicates that the syrmnetry model does not fit well. 

8. 3. 3 Quasi-Symmetry 

The model of quasi-syrmnetry can be defined by 

where , · -XY - , • .xy Al] - AJI 

and I Aix = I Ajy = ~ AijXY = O 
i j 1 

We can see that this is rather like the model of symmetry, except 
that there are an extra (r-1) parameters, AjY, in the loglinear 
representation. Thus, the degrees of freedan are equal to the df 
for the syrmnetry mode 1 minus ( r-1) , which is r ( r-1) /2 - ( r-1) = 

( r-2) ( r-1) /2. 

The model of quasi-syrmnetry is often fitted not because of interest 
in the model itself, but because the difference in G2 for 
quasi-symnetry and G2 for syrmnetry is a conditional test statistic 
for the useful model of marginal hanogeneity. This will be 
discussed in more detail in the next section. 

The quasi-symmetry model imposes no restrictions on the diagonal 
cells, so the MLEs of these are 

and so we can remove these frcm the model. 

For any 2x2 table, the model of quasi-syrmnetry has df = O, and so 
is saturated. 

For r=3, quasi-syrmnetry is equivalent to quasi-independence, i.e. 
if we remove the diagonal cells, or think of them as structural 
zeroes or fixed values, quasi-independence is independence as it 
applies to the non-empty cells of the table. 
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For r > 3, with the diagonal cells removed, quasi-syrmnetry is 
implied by quasi-independence. 

The MLEs of the diagonal cells are simply rnii = nii• 

There is no simple closed fonn expression for the estimates of the 
off-diagonal cells. However, since quasi-syrmnetry is a loglinear 
model, it can be fitted in much the same way as the usual loglinear 
models. 

8. 3. 3. 1 Eye-Testing Example 

Fitting the model of quasi-symmetry to the data of Table 8. 9 

results in the fitted counts given in Table 8.11. The deviance 
is G2 = 7. 27, with (4-2) (4-1)/2 = 3 df, which is not quite 
significant at the 5% level. 

Table 8.11: Fitted counts under quasi-syrmnetry 

Right eye 
grade 

Highest (1) 
Second (2) 
Third (3) 
Lowest (4) 

Highest 
( 1) 

1520 
236. 6 

107. 4 
43. 0 

8. 3. 4 Marginal Hornogene i ty 

Left Eye Grade 
Second Third 

(2) (3) 

263. 4 

1512 
375 

71. 6 

133. 6 
419 

1772 
182. 4 

The model of marginal hanogeneity specifies that 

ffii+ = m+i 

Lowest 
( 4) 

59. 0 
88. 4 

201. 6 
492 
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for i = 1, ••• , r, i.e. corres:i;:onding marginal totals are equal. 
Since there are r-1 constraints on the cell counts, the df for the 
model equals r-1. 

Marginal hanogeneity is implied by, but does not imply, symmetry. 

'Ihe constraints of marginal hanogeneity plus quasi-symmetry give 
the model of symmetry (see Bishop, Fienberg and Holland, 1975, 
p. 2 86 for a proof). Thus a conditional test for marginal 
hancgeneity is given by the difference in deviances between the 
models of symmetry and quasi-symmetry, i.e. G2 (MHjQS) = G2(s) -
G2 (QS). 

The degrees of freedan of this conditional test statistic are equal 
to the difference in df for the models of symmetry and 
quasi-symmetry, i.e. df = r(r-1)/2 - (r-l)(r-2)/2 = r-1. Stirling 
(1986) has :i;:ointed out that if the model of quasi-symmet,__vy does not 
fit well, then a test which is conditional on quasi-symmetry does 
not seen very sensible. He suggests testing the hy:i;:othesis of 
marginal hanogeneity directly by fitting the model and calculating 
the deviance in the usual way. 

8. 3. 4. 1 Estimation 

The marginal hancgeneity model is a linear model because it 
specifies linear constraints on the cell counts: 

mil+ mi2 + •·· + mir = m1i + m2i + •·· + mri 

The MLEs of the diagonal cells {mii} are equal to the observed 
values in these cells, {nii}• 
The MLEs of the off-diagonal cells can be obtained using either 
the method of solving simultaneous equations (Stirling, 1984), 
or generalized linear models specified in terms of constraints 
(Wedderburn, 1974). For details dee Appendix 7. 

8. 3. 4. 2 Eye-testing example 

. We will_ consider again the data of Table 8. 9. The model of 
marginal hanogeneity specifies that mi+= m+i, i,e. m1+ = m+1, 
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m2+ = rn+2, etc. This means that the expected total number of 
women with left eye grade of i equals the expected total nunber 
with right eye grade of i. 

We have already seen that the rncx:'l.els of quasi-symmetry and 
symmetry fitted to this data gave deviance of 7.27, with 3 df, 
and 19. 25, with 6 df, respectively. The test statistic for 
testing the null hypothesis of marginal hanogeneity, conditional 
on the quasi-symmetry model holding, is G2 (MHIQS) = 19.25 -
7.27 = 11.98, with 6-3 = 3 df. 

Fitting the marginal hanogeneity rncx:'l.el directly gives the 
estimated expected counts of Table 8.12. The direct goodness­
of-fit test gives G2 = 11.99 with 3 df which is very close to 
the conditional test statistic. Both test statistics are 
significant at the 1% level, indicating that the rncx:'l.el does not 
appear to describe the data adequately. 

Table 8.12: Estimated expected counts under the rncx:'l.el of 
marginal hanogeneity 

Right eye 
grade 

Highest (1) 
Second (2) 
Thi;:-ci ( 3) 
I.Dwest ( 4) 

TOtal 

Le ft eye grade 
Highest 

(1) 
Second Third I.Dwest 

( 4) 

TOtal 
(2) (3) 

1520 252. 49 
247. 24 1512 
131. 27 383.14 

42. 77 91. 62 

1941.28 223~25 

lll. 84 56. 95 1941. 28 
409. 43 70. 59 2239. 25 

1772 195.27 2481.67 
188. 40 492 814. 80 

2481. 67 814.80 7477.00 
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8. 3. 5 Multi-dimensional tables 

The models of syrrrrnetry, quasi-syrrrrnetry and marginal hanogeneity can 
be extended to higher-order tables. For further details see 
Bishop, Fienberg and Holland, 1975, p.299. 

8.4 Linear Models 

Many of the models that we have considered so far have been loglinear 
models, i.e. the log of the expected cell count is assumed to be a 
linear function of the model parameters. However, there are cases 
where linear models are more appropriate. For instance, the marginal 
hanogeneity model of Section 8.3.4, which is specified by mi+= m+i, 
is a linear model. Many linear models are more easily specified in 
terms of constraints, rather than formally writing the specified cell 
counts in terms of parameters. Often linear models are used to 
characterize the margins of a table. They can also be used to specify 
non-standard hypotheses about a table that often could be difficult to 
specify any other way. 

Estimation is much easier when linear models are specified in terms of 
constraints. For details see Section 1.11 and Appendix 3. 

8. 4. 1 Drug example 

Table 8.13, taken fran Haber (1984, p.4) deals with the canparison 
of the reaction (favourable/unfavourable) to three drugs, A, Band 
C. Seven samples of subjects were used, with each sample 
corresponding to a subset of the three drugs. Thus the 46 subjects 
in the first sample received each of the three drugs; the 28 
subjects in the second sa'Tiple received only drugs A and B, etc. 
Let 0A, 0B and ec denote the probabilities of favourable reactions 
to drugs A, B and C, respectively. The hypothesis that these 
probabilities are the same for all seven samples can be formulated 
in terms of the constraints 

8Al = 8A2 = 8A3 = 8A5 = 0A 
8Bl = 0132 = 854 = 0B6 = 0B 
8c1 = Gc2 = ec3 = 8C7 = ec 
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where eAi, 0bi and Sci are the probabilities of favourable 
reactions to drugs A, B and c, respectively, in sample i. For 
instance 

0 Al = (m1 + m2 + m3 + m4) / (m1 + m2 + m3 + m4 + ms + ID6 + rrr; + 
mg) 

8A2 =(mg+ m1O) /mg+ m1O + m11 + m12) 
0A3 = (m13 + m14) / (m13 + m14 + m15 + m16) 
8A5 = rn21 / (m21 + m22) 

The last column of Table 8. 13 gives the maximum 1 ikel ihood 
estimates under the null hypothesis. The deviance is G2 = 1. 25 
with 9 df which indicates that the model fits well. Thus is-seems 
reasonable to conclude that each drug worked just as well, whether 
it was used individually, or in canbination with the others. 

Another important hypothesis would be that the three drugs vX:>rked 
equally well, i.e. eA = 0B = ec. Haber (1974, p.5) discusses 
testing this more restrictive hypothesis. 



Table 8.13: Responses to drugs A, Band C 

Drugs 

Sample Used 

1 A,B,C 

(N1 =46) 

2 A,B 

(N2=2 8) 

3 A,C 
(N3=25) 

4 B,C 
(N 4=26) 

5 A 
(N5=l6) 

6 B 
(N6=15) 

7 C 

(N7=14) 

Pattern of 

Response * 
A B C 

1 1 1 

1 1 0 
1 0 1 
1 0 0 
0 1 1 
0 1 0 

0 0 1 
0 0 0 

1 1 

1 0 
0 1 
0 0 
1 1 

1 0 
0 1 
0 0 

1 1 

- 1 0 
0 1 

0 0 

1 

0 
1 

- 0 
1 

- 0 

Observed 
Frequency 

6 

16 
2 
4 
2 

4 

6 

6 
12 

4 
4 

8 
5 

10 
4 

6 
4 

12 
5 

5 
10 

6 
11 

4 
5 

9 

MLE of 

Expected 
Frequency 

6.11 

16. 03 
1. 93 

3. 80 
2.11 

4.14 
s. 98 

s. 89 
13. 23 

3. 74 
4. 06 

6. 97 
4. 92 

10.23 
3. 85 

6. 00 
4. 08 

11. 97 
s. 03 
4. 92 

9. 70 

6. 30 
9. 26 

s. 74 
4. 91 

9. 09 

* 1 denotes favourable response, 0 denotes unfavourable 

response, - denotes that the drug was not received 

144. 
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8. 5 Summary 

The preceding chapters have shown that there are many different kinds 
of models that can be fitted to contingency table data. In general, 
if there is more than one response variable, we would have a choice of 
leglinear or leg-multiplicative models. If there is only one 
response, then we have a choice of six classes of models: 

(1) leglinear, which is equivalent to the adjacent categories legit 

(2) continuation ratio legit 

(3) cumulative legit, which is equivalent to assuming an underlying 
legistic distribution for the response 

(4) underlying normal distribution 

(5) underlying extreme value distribution 

(6) leg-multiplicative (RC). 

The first three types are equivalent if the response has only two 
levels. 

I.Dglinear or adjacent categories legit models are well known, easy to 
fit and have readily interpretable parameters. They are usually 
interpreted in terms of odds ratios. Unfortunately, if ordinal models 
are fitted, they are reliant on the choice of arbitrary scores for the 
response and/or explanatory variables. 

Cbntinuation ratio legits are simple to fit, and can be thought of as 
a series of legits, adding up to the whole model. However, they 
suffer from the disconcerting feature that different results will be 

obtained if the ol:'.'dering of the response category is reversed. 

Cumulative legit models can be fairly easily fitted and also have 
parameters are that easily interpreted in terms of odds ratios. 
However, they are also reliant on the choice of suitable scores when 
using ordinal explanatory variables. 

Using models which assume the underlying response has a normal 
distribution seem reasonable, as normality is the standard regression 
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assuuption for a quantitative response. However, the short tails of 
the normal distribution makes outliers unlikely, leading to a lack of 
fit for many tables. 

Assuming an underlying extreme value distribution is appropriate if 
the distribution is assumed to be skewed, the models are easily 
interpreted in terms of proportions rather than odds ratios. 

RC models are more difficult to fit than loglinear models, and test 
statistics are more canplicated. However, they eliminate the problem 
of choosing scores as they are estimated in the course of fitting 
these models. They are also appropriate for both naninal and ordinal 
variables. 

The choice between these models can sanetimes be made on logical 
grounds, i.e. for a given set of data, perhaps it might seem more 
reasonable to use a proportional hazards model ( such as assuming an 
extreme value distribution) rather than assuming normality, or if the 
analysis is to be performed on a logit scale, we may choose to use 
cumulative rather than adjacent-categories legits because it might 
seem more reasonable to assume that several categories collapsed 
together will "behave better11 (i.e. more like binanial) rather than 
assu~ing we can canpare each category to every other category. 

Sometimes there are grounds for choosing one type of model over 
another as a matter of simplicity. For example, although the RC model 
may estimate scores for the categories of a variable, it may be more 
parsimonious and easier to explain to a lay-person (as well as perhaps 
not fitting much more badly) to simply use equal-interval scores. 

Often there may be very little difference in the results of the 
analysis, no matter which model is chosen. This is especially true 
for small tables where there is just not enough data to differentiate 
between the goodness-of-fit of various models. Take, for example, the 
dumping severity data which was re-analysed repeatedly in the previous 
chapters. Most of the different models fitted resulted in very 
similar conclusions, and almost any of them could be justified on one 
ground or another. 

The other models discussed (for incanplete or square tables and linear 
models) are appropriate for certain kinds of tables and it is usually 
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fairly obvious when to use these. 
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APPENDIX 1: EQUIVALENCE OF MLEs UNDER POISSON, MULTIN:MIAL AND 

PROOOCT MULTIN:MIAL SAMPLING SCEEMES 

Al. l MLEs 

148. 

Cbnsider an rxc table classified by variables X and Y. The Poisson 
probability density function (pdf) is 

f(nij) = IDij nij e -mij 

nij ! 

with corresponding log likelihood for the whole table of counts 

i,j i,j i,j 

The multinomial log likelihood is 

log L = log ~ f ~ij ! ) !i _1r ij nij~j 
li',J l,J 

= ~ ~Dij log 1T ij) + log N! + E log (nij ! ) 
l,J i,j 

If we reparameterize in terms of the expected values in each cell, IDij 
= N Tiij, the log likelihood becomes 

log L = E ~ Dij log IDij) + log N! + E log (nij !) 
i,J rr- i,j 

= E ~nij log IDij) E ~nij log N) + log N! + E log (nij !) 
i,J i,J i,j 

W8 can treat the last three terms as constants because the derivative 
of any of them with respect to ffiij is zero. 



The maximum of log L with respect to mij, subject to the constraint 
E m· · = N, is found using the Lagrange multiplier qi by maximizing . . lJ 
1,J 

M =; ~ij log mij + qi (~ 1'.lij - N) 
l,J 11 ] 
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with resi;:ect to qi and mij• If we assume a loglinear model for the 
expected cell counts, i.e. mij = exp (nij) - exp (a+ Xij' S) 
then we maximize 

Q = E n i j n i j + qi ( E exp ( n i j ) -N) 
i,j i,j 

First differentiating with respect to a gives 

aM = E nij + qi E exp (n ij) 
aa i,j i,j 

= E n- · + qi E Mi' . . lJ . . J 
1,J 1,J 

= N + qiN 

Setting this to zero for a maximum gives <j> = -1, so that we can 
equivalently maximize 

~ 1:ij log IDij - ~ 1'.lij 
l,J l,J 

which is identical to what is maximized when using the Poisson model. 
Therefore, the maximum 1 ikel ihood estimates of a and S will be 

identical for both sampling schemes. 

It can be similarly shown that the product-multinanial sampling scheme 
gives the same likelihood function to be maximized as the Poisson and 
multinanial models, as long as the \-tenns corresi;:onding to the fixed 
margins are included in the loglinear model. 
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Al.2 Deviance 

The deviance is defined as 2 (log Lsat - log Lo) where log Lsat is the 
maximum log likelihood for the saturated mcxiel and log Lo is the 
maximum log likelihood for the mcxiel under consideration. 

Al.2.1 Multinanial 

For the multinanial sampling scheme 

log Lo = ~ 1:ij log n ij + log N! + E log nij 
l,J 

= E nij log ~ij - N log N + lo;J N! + E lo;J ni/ 

.A 

For the saturated model mij = nij so 

lo;J Lsat = E nij - N lo;J N +lo;J N! + E lo;J nij! , 
so the deviance is 

G2 = 2 {lo;J Lsat - log Lo) 
= 2 [E (nij lo;J nij) - E (nij log ITiij)] 

= 2 ~ ~ij lo;J ~i· 
l,J -&n 

Al.2.2 Poisson 

,..,. "" 
For the Poisson sampling scheme lo;J Lo = E nij lo;J mij - E ffiij -

E lo;J n ij ! , 

G2 = 2 

= 2 

(lo;J Lsat - lo;J Lo) 
[E (nij lo;J fu~ ⇒ ) + E mij - E nij] 

l] 

A 

and, since E nij = E mij = N 

G2 = 2 E n iJ' lo;J n · · ., l] 
i,j ffiij 
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which is identical to the deviance obtained in the mul tinanial 
model. 

Al.2.3 Product-multinanial 

For the product-multinanial sampling scheme where we fix say the r 
roo totals and take a sample of size ni+ for each i, the likelihood 
function under sane model is 

log Lo = z:: log n i + ! - z:: log n · · , + z:: n i · log n · · . . . lJ. . . J ~ 
1 l,J l,J 1T i+ 

= z:: log ni+ ! - z:: log n · · 1 + z:: ni · log ~ij . . . lJ. . . J 
1 l,J l,J r 1+ 

log Lsat = z:: log ni+! - z:: log niJ·! + z:: ni· log ni· . . . . . J "l] 
1 l,J l,J i'i1:+ 

G2 = 2 (Lsat - Lo) 
= 2 (~ 1:ij log fuij -

1, J ij 
z:: n .. log ni+ + z:: nij log mi+) . , lJ .. 
l,J l,J 

if we have the term AiX in the loglinear model, then IDi+ = ni+, so 
the last tv.D terms cancel out and 

which is identical to the deviance obtained with the multinomial 
and Poisson models. 

These results can be easily generalized to multi-dimensional 
contingency tables. 
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APPENDIX 2: FI'ITING r...cx;LINEAR MODELS 

"A2. l Newton-Raphson Algorithm 

Let Q' = (n1, ••• , n1) and m' = (rn1, ••• , m1) denote the observed and 
expected counts for the I cells in the table. For simplicity we will 
use a single index, though the table may be multi-dimensional. Under 
the Poisson sampling model the log likelihood is 

Loglinear models have the form 

log mi = x' i S - -
where t is a pxl vector of parameters and ~•i is the ith row of the 
Ixp design matrix X, i.e. 

A 

The MLE S maximizes the log likelihood expressed as a function of the 
parameter S, namely 

We will use the Newton-Raphson (NR) technique to maximize log L(~). 

This is a~ iterative procedure that replaces an approximation to the 
optimum, S (t), by S (t+l) at each iteration, where 

!~t+l) = ~(t)- -~ :tg L ( ) rllt ~r L(e_Jt) 

This can be expressed as 

~( t+ 1) = (X'WX)-lx--w~ 

/ 

where W = fu1{t) 
fo2(t) 

mn (t) 
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which is weighted least squares (WIS) with a transformed resi;::onse. In 
other w::,rds, e ( t+ 1) is the WIS solution to the rnooel 

y=XB +e: ,.. ~ 

where the {e:i} are uncorrelated with variances { 1/mi (t)}. Thus the ML 

estimate may be regarded as the limit of a sequence of WIS estimates. 

We can begin the iterative process by setting all IDi(O) = ni, or all 
mi(O) = ni + 0.5 if any ni = O. The m(t) and 5(t) usually converge 
rapidly to the ML estimates m and$. The estimat~ covariance maxtrix 
of S is (X ... wx)-1 (where W is-evalu;ted at S). 

~ 

The canputer packages GLIM (Baker and Nelder, 1978) or Genstat (Alvey 
et al, 1983) use the N-R technique for fitting loglinear models to 
contingency tables as part of the wider frameoork of generalized 
linear models (Nelder and Wedderburn, 1972). 

A2.l.l Abortion Attitude Example 

'Ib illustrate the log m = XB representation needed for fitting a ~ ~ 
loglinear model using the Newton-Raphson method, consider the 4x2 
table of religion and abortion attitude of Table 2.1. 

The model of independence 

log m · · - µ + , ,R + , ,A lJ - 11.1 11. J 

can be expressed as 

log m = XB ~ ~ 

with 

log m' = (log m11, log m12, log m21, •••, log m42) 

S = ( µ , A 1 R, A 2R, A 3R, A 1 A) 
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1 1 0 0 1 
1 1 0 0 -1 

1 0 1 0 1 
X = 1 0 1 0 -1 

1 0 0 1 1 
1 0 0 1 -1 
1 -1 -1 -1 1 
1 -1 -1 -1 -1 

A2.2 Iterative Prop:>rtional Fitting Algorithm 

To illustrate the Iterative Proportional Fitting (IPF) algorithm 
(Deming and Stephan, 1940) we will canpute the estimated expected cell 
counts for the no 3-factor interaction model (XY, XZ, YZ), i.e. 

The {mijk} must satisfy the ML equations 

'"' mij+ = nij+ ,.. 
ffii+k = ni+k 
" m+jk = n+jk 

We cannot write out the MLEs in closed form - the following IPF 
procedure yields the MLEs. 

Stage 1: 

Stage 2: 

Set ~ijk(O) = 1 for all i,j,k 

Successively adjust the {IDij0 so that they satisfy the 
marginal constraints. The first cycle of the adjustment 
process has the following three steps: 

m,..._ .k(l) - m'"'· .k(O) n·. 
l] - l] ~ 

ij+ 

~ijk( 2) = IDijk(l) ni+k 
fn(1T 

i+k 
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1 1 0 0 1 
1 1 0 0 -1 

1 0 1 0 1 
X = 1 0 1 0 -1 

1 0 0 1 1 
1 0 0 1 -1 

1 -1 -1 -1 1 
1 -1 -1 -1 -1 

A2.2 Iterative Proportional Fitting Algorithm 

To illustrate the Iterative Proportional Fitting (IPF) algorith.~ 
(Deming and Stephan, 1940) we will canpute the estimated expected cell 
counts for the no 3-factor interaction model (XY, XZ, YZ), i.e. 

The {mijk} must satisfy the ML equations 

.... 
mij+ = nij+ 
/' 

mi+k = ni+k 
A 

m+jk = n+jk 

We cannot write out the MLEs in closed fonn - the following IPF 
procedure yields the MLEs. 

Stage 1: 

Stage 2: 

Set ~ijk(O) = 1 for all i,j,k 

Successively adjust the {IDij0 so that they satisfy the 
marginal constraints. The first cycle of the adjustment 
process has the following three steps: 

m"· .k(l) - m"· .k(O) n·. 
lJ - lJ ~ 

ij+ 

~ijk( 2) = IDijk(l) ni+k 
RiITT 

i+k 



Stage 3: 

155. 

fn· .k(3) - rn'· .k(2) n, ·k 
lJ - lJ ~ 

+jk 

Summing both sides of the first expresion over k, we note 
that after the first step, all trlij+(l) = nij+, so that the 
estimated expected frequencies satisfy the first set of 
marginal constraints. After the second step all ~i+k(2) = 
ni+k, as well as IDij+ = nij+ for all i and j. After the 
third step all ~jk(3) = n+jk, but the first tv.0 sets of 
constraints no longer hold. 

Repeat stage 2 until the change A 
in the {mijkJ- from one 

cycle to the next is sufficiently snall. 

A2.2.l Lizard Example 

We will use the IPF procedure to fit the model (SD, SH, rn) to the 
data of Table 1. 4. The observed marginal totals are 

Species Diameter 
i j nij+ 

1 1 32 + 86 = 118 
1 2 11 + 35 = 46 
2 1 61 + 73 = 134 
2 2 41 + 70 = 111 

Species Height 
i k ni+k 

1 1 43 
1 2 121 
2 1 102 
2 2 143 
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Diameter Height 
i k n 

1 1 93 

1 2 159 
2 1 52 
2 2 105 

Table A2. 1 shows various stages in the IPF 

with initial cell values equal to 1, i.e. 
marginal total mij+(0) is obtained by summing 
e.g. 'm12+(0) = m121(0) + :rrt122(0) = 2. 

procedure. we beg in 

n1ijk(0) = 1. Each 
the {IIlijk(0)} over k, 

'lb form the {mijk(l)} we multiply each IDijk(0) by nij+/ffiij+(0), 
e.g. 

= 1 X 46 
2 

= 23 

Then we canpute the {m1·J·k(2)} by m1·J·k(2) = ~l·J·k(l) n· k ":-+ (1) ml+k 

e.g. 23 X 121 
82 

= 33. 939 

The next step is to calculate the {IDijk(3)} by 

m· .k(3) = ~- .k(2) rfct~j lJ lJ ,..,. ( 2) 
Jk 

e.g. ~122(3) = 33.939 X 105 
--,-9 ..,..8......,7,....,.2=7 

= 36. 095 

Then we repeat the whole cycle again, until the estimates have 
converged sufficiently. 



Cell {O) (1) ( 2) 

{i,j,k) 
A " ," 

nijk ffiijk ffii.jk lnijk 

(1,1,1) · 32 1 59 30. 939 

(1,1,2) 86 1 59 87.061 
(1,2,1) 11 1 23 12.061 
(1,2,2) 35 1 23 33. 939 
(2,1,1) 61 1 67 55. 7 88 
{2,1,2) 73 1 67 7 8. 212 
{2,2,1) 41 1 55.5 46. 212 
(2,2,2) 70 1 55.5 6 4. 7 88 

{ 0) (1) (2) 
. " i k mi+k . k"' i J ffiij+ J m+jk 

1 1 2 1 1 82 1 1 86. 727 

1 2 2 1 2 82 1 2 165.273 

2 1 2 2 1 122.5 2 1 5 8. 27 3 

2 2 2 2 2 122.5 2 2 98. 727 

(1) (2) 
" " ffiij+ = nij+ mi+k = ni+k 

( 2) 

Inij+ = nij+ 

{ 3) { 4) 
,'\ A. 
lnijk ffiijk 

33. 177 33. 47 9 

83.757 84. 521 

10.763 10.566 

36. 0 95 35. 434 

5 9. 823 59. 351 

75.243 7 4. 649 

41. 237 41.648 

6 8. 905 69,592 

(3 ) 
. k ~{4) • A 

i J ffiij+ 1 m1+k 

1 1 116. 934 1 1 44. 045 

1 2 46. 85 8 1 2 119. 955 

2 1 135. 066 2 1 100. 999 

2 2 109. 905 2 2 144. 241 

( 3) ( 4) 
A /\. 
m+jk = n+jk ffiij+ = ni.j+ 

{12) 

"" lni.j k 

32. 80 

85. 20 

10.20 

35. 80 

60.20 

73. 80 

41. 80 

69. 20 

{12) 
I\.. 

ffiij+ = nij+ 

(12) 
I\. 

111 i+k = ni+k 

/\( 12) 
m+jk = n+jk 

t-3 
~ 
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With only a slight mcdification, the iterative methcd can also be 

used to canpute estimated expected values for the other mooels. 
For example, consider the mcdel (XY, XZ). In this mcx:lel each cycle 
of the iterative methcd would have only two steps. The first 
adjusts for the marginal totals { nij+} and the second for the 
totals { ni+k}. The third set of marginal totals is not needed 
here. Suppose the table is of size 2x2x2. 'Ihe ftijk ( 0) = 1 and 

'rnijk(l) = nij+/2, 

so ~ijk ( 2) = n~j+ x ni+k 
hi++/2 

= nij+ mi+k 
Ili++ 

This mcdel could have been fitted directly using the observed 

marginal totals nij+, ni+k and ni++i however, the IPF methcd gives 
a systematic way of estimating the expected cell counts for all 
the usual loglinear mcdels and we don't have to w::>rry about whether 
direct estimation is possible or not. 
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APPENDIX 3: FITTING LINEAR MODELS 

A3.l Linear models specified in terms of constraints 

Let m be an Ixl vector of cell counts, with corresponding vector of ~ 
probabilities 1r. The Ixl vector 1r may correspond to ~ ,-.. 

(i) a Poisson, or to 
(ii) a product-multinanial distribution. 

In the former case L1Ti = 1, while in the product-multinanial case, the 
set of I cells is canprised of several subsets, each of which 
corresponds to a separate multinanial sample, and the sum of the 
elements of 1r over each subset is unit. 

If we have a hypothesis about the cell counts which can be specified 
in terms of E constraints, we can write the constraints as 

F m = 0 

where F is an ExI matrix with E linearly independent rows. Further 
constraints are imposed by the sampling design. These constraints 
guarantee that the sum of the probabilities within each sample will be 
equal to one (or equivalently that the sum of the counts within each 
sample will be equal to the correct marginal total). They can be 
written 

D ... 1r = ls 

where S is the number of samples ( S ;;, 1) and D = { d isl is the IxS 
matrix defined by 

dis = (1 if cell i belongs to sample S 
(0 otherwise 

In terms of the cell counts the constraints can be written 
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where R is the IxI diagonal matrix with diagonal elements rii = 1/mi+, 
where mi+ is the marginal total of the ith sample (i=l, ••• , S), and 
off-diagonal elements are zero. 

Thus, the constraints on the cell counts can be written as 

Lm=c 

where L.. is the Ix(E+S) matrix L-' = (F-' : R-' D) and c is the lx(E+S) 
vector consisting of E zeroes and Sones, i.e. -

A vector a which satisfies these constraints is 

a= R-1 a* 

where R-1 is the IxI diagonal matrix with diagonal elements rii = mi+, 
and~* is the Ixl vector with ith element ai = 1/Bi where Bi is the 
number of cells in the ith sample. 

~ can easily calculate the MLEs using the algorithm of Wedderburn 
(1974) which is explained in the following section. 

A3.l.l Wedderburn's Algorithm for finding MLEs of generalized 
linear models specified in terms of constraints 

wedderburn (1974) gives an iterative method for finding the MLEs of 
generalized linear models specified in terms of constraints. 

If we assume the cell counts, ni, are distributed according to the 
Poisson distribution with mean, mi, which is a function of ni, 
where ni is a linear function of the parameters associated with the 
model we wish to fit, i.e. ni = ~i--~, the pdf of ni is 

p(ni) = exp (-mi) mini 
1 

We define Fi 
I 

Fi 
= log p(ni), 
= oFi 

TnT 



and 
F'.' = a2F· 
i~ 

So Fi = - mi + ni log mi - log (mi!) 
= - n i + ni lCXJ mi - log (mi! ) 

Fi II - -n· 
- ni2 

E [Fi"] = -1/n i 

Wedderburn shows that if a model is expressed as E(n) = m = A 

where A i = f ( n i) 
with constraints L n = 0 

then instead of iteratively fitting E(n) = X(3 

we may fit E(n) = w-1 L
1 

y 

where W = -E [F1 11 ] 

-E [Fn"] 

= [l/n 1 _ _ _ _ J 
1/nn 

and then use the residuals as the new value for n. 

The algorithm takes the following form: 

(a) Set n = n. Set z = n 

161. 



162. 

(b) 
Calculate w = l/n1 ... 1/nnJ 

(c) Regress~ on W-lL, using Was the weight matrix Set n = z - j ,.., 
( residuals) • 
If the process has gone far enough, stop. Otherwise go to 
step (b). 

If we have inhanogeneous constraints of the fo:rm 

L n = c 

then we simply choose any vector a such that La= c 

The algorithm then beccmes 

(a) Set n = n. calculate z = n - a 

( b) Calculate W = 

[

l/n1... j-
1/nn 

(c) Regress z.- on w-lL', using was weight matrix. 

Set n = z + a - i • 
. - - .-

If the process has gone far enough, stop. Otherwise go to 
step (b). 

,.._ 
The MLEs, mi, will be the values of n i at the conclusion of the 
algorithm. 
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The deviance, G2, is calculated in the usual way, with associated 
degrees of freedan equal to the rank of F, i.e. df = E. 

A3.l.2 Drugs example 

For the data of Table 8.13 the hypothesis of equally favourable 
reactions to, say, drug A, for all seven samples can be written as 

where e Al = 1r 1 + 1r 2 + 1r 3 + 1r 4 
0A2 = 1r9 + 1r10 
0A3 = 813 + 1r14 
8 AS = 1T 21 

This implies that 

1r1 + 1r2 + 1r4 - 1r9 - 1r10 = 0 
1r9 + 1r10 - 1r13 - 1r14 = 0 
1T 13 + 1T 14 - IT 21 = 0 

'Ihe constraints relating to drugs B and C can be written in a 
similar manner, giving 

F* ,r = 0 

where F* is the 9x26 matrix 

11110000 -1-100 
: 1 100 -1-100 

1 100 0000 -10 
F*= 11001100 \-10-10 

I 

11010 0000 -1-100 
1 100 00 -10 

10101010 0000 -10-10 
1010 -10-10 

1010 00 00 :....10 

and ,r" .-
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we can write the constraints in terms of the cell counts,. rather 
than the probabilities as 

Fil' = F*Rm = Fin = 0 

where R is the 26x26 diagonal matrix with diagonal elements rii = 

1/mi+, 

R= 
1/4~. 

--1/46 

1/28 
. 1/28 

1/25-
1/14 

1/14 J 

The constraints that the sum of the probabilities within each of 
the S=7 samples will equal one can be written 

where D' is the 7x26 matrix 

D = 11111111 

1111 

.1111 
1111 

'11 

11 

or equivalently, in tenns of cell counts 
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IY Rm= 17. 
,-

'Ihus the constraints on the cell counts can be written as 

L m = L R-1 R m = L* R m = c 

where L * 1 = ( F* ' : D) • 

A vector a which satisfies these constraints is 

a = R-1 a* 

where a*' = (1/8 •••• , 1/8, 1/4, ••• , 1/4, 1/2, ••• , 1/2). 

We can implement Wedderburn's algoritlrn using n, Land a as given 
above. 
The deviance is calculated in the usual way as G2 = 1.25, with 9 df. 

A3. 2 Linear Models Specified as Arr = XS 

Haber (1985) discusses linear models which are formulated as 

Arr = X8 

where A is a known Ix I matrix, .! is an Ixl vector of cell 
probabilities, X is a known JxK matrix, and t is a Kxl vector of 
unknown parameters, with I> J > K. We assume that the rows of A, as 
well as the columns of X, are linearly independent. We will now 
formulate the linear model in terms of constraints, so that we can 
apply Wedderburn's (197~) algorithm as discussed in Section (a). 

We find a Jx(J-K) matrix W with independent columns ( i.e. of rank 
J-K) which when pre-multiplied by the JxJ matrix r-x(x'x)-lx' gives a 
Jx(J-K) matrix U (of rank J-K). U is orthogonal to X since x'u = 
x'(r-x(x'x)-lx')w = (x'-x'x(x'x)-lx')w = o. Thus 

u' An = O. 
- -

l:bw, since~= Rn, where R is as defined in Section (a), the equation 
becanes 



166. 

u'ARn = o 

I • Writing L =UAR gives the set of J-K = E linear constraints 

F m = 0 

in the same notation as Section (a). 

The constraints imJ;X)sed by the sampling design can once again be 

written as 

I 
D ~ = 15 

Thus the constraints on the cell counts can be written as 

Im = C 

with L
1 

= (R
1
A

1
U : R

1
D), and Wedderburn's algorithm can be used to 

find the MLEs. 

The degrees of freedan associated with the deviance is equal to the 
rank of u'A, which is E = J-K. 

A3.2.l Drugs example 

For the data of Table 8. 13 the linear model which si;:ecifies that e A 
is the same for all seven samples, and similar restrictions on 
es and ec, can be written 

A ir = XS 
,-

where A is the 12x26 matrix 
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- ' -
11110000 I 

1100 
1100 

10 
A= 11001100 

1010 
1100 

10 

10101010 
I 
I 
i 
I 

1010 I 
I 

1010 
10 

I i 

- -

'IT I = ( 'IT l r 'IT 2 r O O O I 'IT 26) 

Xis the 12x3 matrix 

1 0 0 
1 0 0 

X = 1 0 0 
1 0 0 
0 1 0 
0 1 0 
0 1 0 
0 1 0 
0 0 1 
0 0 1 
0 0 1 
0 0 1 

and 13
1 

= (eA, eB, ec) 
·~ 

Now to write this model in the form 
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F*n = U
1
A1r = 0 

we chose the 12x9 matrix W with 9 linearly independent columns: 

W = 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 

Pre-multiplying W by I - X(X
1x)-lx', we obtain the 12x9 matrix u 

which is orthogonal to X, 

I-
4U = 3 -1 -1 

-1 3 -1 
-1 -1 -3 
-1 -1 -1 

0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 0 0 
b o o 
0 0 0 
0 0 0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 

3 -1 -1 

-1 3 -1 
-1 -1 3 
-1 -1 -1 

0 0 0 
0 0 o. 
0 0 o' 
0 0 0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 0 0 3 -1 -1 
0 0 0 -1 3 -1 
0 0 0 -1 -1 3 
0 0 0 -1 -1 -1 



169. 

We can then obtain the 9x26 matrix F* = U
1
A, 

- -
3 -1 -1 3 -1 -1 3 -1 -1 
3 -1 -1 3 -1 -1 0 0 0 

3 -1 -1 0 0 3 -1 -1 
3 -1 -1 0 0 0 0 0 0 

0 0 0 3 -1 -1 3 -1 -1 
0 0 0 3 -1 -1 0 0 0 

0 0 0 0 0 0 3 -1 -1 
4F*' = 0 0 0 0 0 0 0 0 0 

1 3 -1 -1 3 -1. 0 0 0 

1 3 -1 0 0 0 0 0 0 

0 0 0 -1 3 -1 0 0 0 

0 0 0 0 0 0 0 0 0 

-1 -1 3 0 0 0 -1 3 -1 
-1 -1 3 0 0 0 0 0 0 

0 0 0 0 0 0 -1 3 -1 
0 0 0 0 0 0 0 0 0 

0 0 0 -1 -1 3 -1 -1 3 
0 0 0 -1 -1 3 0 0 0 

0 0 0 0 0 0 -1 -1 3 
0 0 0 0 0 0 0 0 0 

-1 -1 -1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 -1 -1 -1 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 -1 -1 -1 
0 0 0 0 0 0 0 0 0 

'- -
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We can then proceed to write the model as 

L rn = c .~ ,-

as explained in Section A3.l.2, and use Wedderburn's algorithm to 
find the MLEs. 



APPENDIX 4: MAXIMUM LIKELIHOOD EQUATIONS FOR LCGLINEAR MODELS 

FOR THREE-DIMENSIONAL TABLES 
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Consider an rxcxi table, classified by variables X, Y and z. The 
Poisson log likelihood function for this table is 

log L = E ni·k log miJ.k - E mi·k + E log niJ·k! .. k J .. k J .. k l,J, l,J, l,J, 

Under the model of independence (X,Y,Z) 

so log L = E nijk (µ + Aix + Ajy + AkZ) 

i, j ,k 

- E exp ( µ + A ix + A j y + A k z) 
i ,j ,k 

+ E log nijk! 
i,j,k 

To find the maximum of log L we can differentiate with respect to the 
model parameters and equate to zero, e.g. 

E n i j k - E exp ( µ + >.. i X + >.. j Y + >.. k Z) 
i,j,k i,j,k 

= E ni. k - E mi. k 
.. k J .. k J l,J, l,J, 

= 0 at T. P. 

= 0 at T. P. 



which gives the maximtnn likelihood (ML) equations 

.... 
In+++= N 
A 

mi++ = ni++ 
·" m+j+ = n+j+ 
A 

TI4-+k = n++k 

Now mi++ = E mi· k 
. k J J, 

= L exp ( µ + A ix + A j y + A k z) 
j,k 

= exp (µ + >..0) E exp (>..jY + >..kZ) 
j,k 

= exp ( µ + >.. i X) E exp ( >.. j Y) 
j 

E exp ( >.. i X) E exp ( >.. k Z) 
i k 

m++k =exp(µ+ >..kZ) 

m+++ = exp (µ) 

Cbmbining these equations, we find that 

mijk = mi++ m+j+ m++k 

so the maximum likelihood estimate (MLE) of mijk is 

" mijk = ni++ n+j+ n++k 

N 2 
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Thus the MLEs of the {mijl<l depend on the cell counts only through 
certain sufficient statistics. For the model of independence, the 
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minimal sufficient statistics are the one-dimensional rnargainal 

frequencies {ni++}, {n+j+} and {n++k}• 

The sufficient statistics for the other loglinear models can be found 
in a similar manner. For example, for the model (XY,Z) or 
log ffiijk = µ +"ix+ Ajy + Akz + AijxY 

a log L = 
a µ 

a log L = 
a >... -XY lJ 

= 

a log L = 

a "kz 

E nijk -
i, j ,k 

E nijk -
k 

A 

= D:ij+ mij+ 

E nijk -
i,j 

" = 114-+k = n++k 

E 
k 

E 

E mi. k 
.. k J 
1, J, 

IDijk 

mijk 
i,j 

The minimal sufficient statistics are { n++k} and { nij+} , and the MLE 
of mijk is 

,.... 
mijk = nij+ n++k 

l5l 

Table A4.l gives the minimal sufficient statistics and the expressions 
for the M.LEs for various models. 
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Table A4.l: Minimal sufficient statistics and expected frequency 
estimates for various models 

Model 

(X,Y,Z) 

(XY,Z) 

(XY,YZ) 

(XY,XZ, YZ) 

Minimal Sufficient Statistics 

{ ni++} , { n+j+} , { n++k} 
{ nij+} , { n++k} 
{ nij+} , { n+j0 
{ nij+, { ni+k} , { n+jk} 

IDijk = 

ni++ n+j+ n++k/N2 

nij+ n++k/n 
nij+ n+jk/n+j+ 

no closed form exists 
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APPENDIX 5: FI'ITING MEAN RESPONSE MODELS 

Mean res_p:mse models can be thought of as simply special cases of 
linear models, and can be fitted using the same techniques. 

Using the same definitions of m, TI, A, X, B, L, L*, c, etc as in 
~ - ~ ~ 

Appendix 3, we can write mean resi:onse models either in the for:m 

ATI =Xp -
or in terms of constraints 

L*TI = C 

We can then use Wedderburn's algorithm to calculate the MLEs. 

AS.l Dumping Severity Example 

For the data of Table 1.6 the mean response model 

q> i = µ + 8 Ui 

where 4>i=Tiil + 2rr i2 + 3TI i3 r and u· 1 = i 
i = 1, ... , 4 

can be written A TI = X B 
~ 

where A is the 4xl2 matrix 

1 2 3 
1 2 3 

A= 1 2 3 
1 2 3 

I 

TI = ( TI l r TI 2 r • • • r TI 12) .~ 



X is the 4x2 matrix 

1 1 

X = 1 2 
1 3 
1 4 

anct e' = (µ, e) 
,-
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'lb write this model in the form F*Jr = U
1
A '.!!.. = 2, we choose the 4x2 

matrix W with two linearly independent columns: 

W= 1 0 
0 1 
0 0 
0 0 

J 

Pre-multiplying w by r-x(x'x)-lx', we obtain the 4x2 matrix u, which 
is orthogonal to X 

r 
I 3 -4 
I 

10 U =' -4 7 

-1 -2 
2 -1 

We then obtain the 2xl2 matrix F* = U1A 

,.._ 
10 F* = 3 6 9 -4 -4 -12 -1 -2 -3 2 4 6 

L-4 -1 -12 7 14 21 -2 -4 -6 -1 -2 -3 

We can write the constraints in terms of the cell counts as 
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F*1r = F*Rm = Fm = 0 
,,,.,, - ,,._ -

where R is the 12xl2 diagonal matrix with diagonal elements rii=l/2ni+ 

1/96 
R= 1/104 

1/110 
1/107 

The constraints that the sum of the probabilities within each of the 
four operations will equal one can be written 

where o' is the 4xl2 matrix 

111 l o' = 111 
111 I 

I 111 
I 

I 
or, equivalently, in terms of cell counts, D Rm= 14. 

·~ 

'Ihus, the constraints on the cell counts can be written as 

Im= L*Rm = c 
~ ·~ 

*
I I where L = (F* :D). 

A vector a which satisfies these constraints is 

where a*' = (1/3, 1/3, ••• , 1/3). 
~ 
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We can implement Wedderburn' s algorithm using n, L and a as given 
above. 

'Ihe deviance is G2 = 0.22 with 2 df. 

Alternatively, we can use the constraints implicit in the mooel 

<j> i = µ + f3 Ui 

The <l>i are constrained to lie on a straight line: 

<1>2 - <l>l = <1>3 - <1>2 = <1>4 - <1>3 = S 

so we can use any tv.D sets of constraints: 

(1) <1>2 - <1>1 = <1>3 - <1>2 
=> -<1>1+2<1>2-<1>3=0 

(2) <j>4-<j>3=<j>3-q,2 
~ <I> 2 - 2<j> 3 + <I> 4 = 0 

So the constraints can be written F*~ = Q 

where F* = r-~ -2 -3 2 4 6 -1 -2 -3 0 0 0 
0 0 1 2 3 -2 -4 -6 1 2 3 

'Ib use Wedderburn's algorithm we can write the constraints as 

L m = c 

as illustrated previously. 
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APPENDIX 6: QUASI-SYMMETRY 

For a tv.0-way table the model of quasi-symmetry is 

lm m · · - µ + , .x + , . y + , .. XY 
~ lJ - A 1 A J A lJ 

where ' • .xy - , .. XY 
AlJ - AJl • 

A6.l One Dummy Variable 

In this method we use one dummy variable to force the ;\ ijXY terms to 
obtey the constraints. The dummy variable takes the value 1 for all 
cells where i=l or j=l (i.e. the first row and the first column). 
The dummy variable takes the values of the next consecutive r-1 
integers for the remainder of the diagonal cells. Then, for every 
pair of off-diagonal cells, of which neither cell is in the first row 
or first column, the next consecutive integer is assigned to both 
members of the pair. 

The log-linear model involving X, Y and the dummy variable is then 
fitted, i.e. 

A6.l.l Eye-testing example 

We will illustrate this method using the data of Table 8. 9, and 
will call the classifying variables "Right" and "Left", and the 
dummy variable "Dummy". Table A6. l gives the values of the dummy 
variable corresponding to the levels of the classifying variables, 
and Table A6. 2 gives the values of the classifying and dummy 
variables and the observed cell counts that would be used to fit 
the quasi-symmetry model:. 



Table A6.l: Values of the dummy variable 

Right 

1 

2 

3 

4 

1 

1 

1 

1 
1 

2 

1 

2 

5 

6 

I.Bft 

3 

1 

5 

3 
7 

4 

1 

6 

7 
4 

180. 

Table A6. 2: variables needed to fit quasi-symmetry model 

Right Left Count 

l 1 1 1520 

l 2 1 266 
1 3 1 124 

1 4 1 66 

2 l 1 234 
2 2 2 1512 

2 3 5 432 

2 4 6 78 

3 1 1 117 

3 2 5 362 

3 3 3 1772 
4 l 1 36 
4 2 6 82 

4 3 7 179 
4 4 4 492 
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A6. 2 Two D..rrnmy Variables 

This methcx:i involves using tvX) durrmy variables. The first dummy 

variable takes on the value of the larger of i and j for the ij th 
cell, while the second durrmy variable takes on the smaller of i and j. 
Then the log-linear mcx:iel involving all the classifying and durrmy 
variables, plus the interaction between the tvX) durrmy variables, is 

fitted, i.e. 

log m1·J· = µ + >.. ,X + >.. ,y + ;\ ,01 + ;\ -02 + ;\ · -0102 1 J 1 J lJ 

The fitted values are then the MLEs iij• 

A6.2.l Eye-testing example 

Table A6.3 gives the values of the classifying and durrmy variables, 

and the observed cell counts that YX)Uld be necessary to fit the 
quasi-symmetry mcx:iel to the data of Table 8.9. 

The dummy variables have been named "High" and "Low". 

Table A6.3: Variables needed to fit quasi-symmetry mcx:iel 

Right Left High LOW Count 

1 1 1 1 1520 

1 2 2 1 266 
1 3 3 1 124 
1 4 4 1 66 
2 1 2 1 234 
2 2 2 2 1512 
2 3 3 2 432 
2 4 4 2 78 
3 1 3 1 117 
3 3 3 2 362 
3 3 3 3 205 
4 1 4 1 36 
4 2 4 2 82 
4 3 4 3 179 
4 4 4 4 492 
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APPENDIX 7 : MARGINAL H(l,1cx;ENEITY 

For an rxr table, the marginal hanogeneity model specifies 

mi+ = m+i 
for i=l, ••• , r. 

The following sections explain two methods of estimation. 

A7.l Method of Solving Simultaneous Equations 

For an rxr table, there are r constraints of the form mi+= m+i, of 
which r-1 are independent. There is also one constraint of the form 

* * I: mij = N (where N = N - I: mii)• 
ii-j 

We write da1m the equations which define these constraints, then 
express r of the r(r-1) off-diagnonal cells {mij, i#j} in terms of N*, 
and the other r(r-2) off-diagonal cells. We can then write these 
equations as 

Y=Xs+ 0 +e: 

where I is the vector of cell counts, Xis the matrix containing the 
coefficients of the expected cell counts in the equations, s is the 
vector of "parameters" ( in this case r(r-2) of the off-diagonal 
counts), o is an off-set vector (containing zeroes, diagonal counts 
and appropriate multiples of N*) and~ is a vector of Poisson errors. 
We can obtain the MLEs by using a Poisson error and an identity link 
function in a package like Genstat. 

A7.l.l Eye-Testing Example 

We will illustrate using the data of Table 8. 9. There are four 
constraints of the form mi+ = m+i, of which only three are 
independent: 

( 1) m1 + = 114-1 =) m12 + m13 + m14 = m21 + rn31 + m41 

(2) m2+ = 114-2 ~ m21 + m23 + m24 = m12 + m32 + m42 

(3) m3+ = :U+3 =? m31 + m32 + m34 = m13 + m23 + m43 
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The constraint that the cell counts must sum to the total can be ' 

expressed as 

( 4) rn21 + rn31 + rn41 + rn12 + rn42 + rn13 + rn23 + M43 + rn14 + m24 + 
* rn34 = N 

We can write rn21, rn42, rn31 and rn23 in terms of ·N*, rn41, rn12, rn32, 

rn13, rn43, rn14, rn24 and rn34 to give 

* rn21 = N + 
* rn31 = N -

rn42 

3rn12 + 2rn13 + 4m14 - 2rn41 + 2rn24 - rn43 + 3rn34 + 2rn32 
2rn12 - rn13 - 3rn14 + rn41 - 2rn24 + rn43 - 3rn34 - 2rn32 

rn14 - rn41 + rn2 4 - rn43 + rn3 4 
* rn23 = N - 2rn12 - 2rn13 - 3rn14 + rn41 - 2rn24 - 2rn34 - rn32 

We can obtain the MLEs by writing these equations in the form 

y = XS + 0 + E' i.e. 

,.. 
Y1 n11 

Y2 n21 
Y3 n31 

1Y4 n41 
I 

Y5 n12 

Y6 n22 
Y7 = n32 = 

y8 n42 

;Y9 n13 
:Y10 n23 
!yll n33 

Y12 n43 
Y13 n14 

Y14 n24 
Y15 n34 

cl6 n4'L 

~ 

1520 
234 

117 

36 

266 
1512 

362 = 

82 

124 
432 

1772 l 
I 

179 · 

66 

78 · 
I 

205 I 

492 J 

0 0 0 0 0 0 0 0 
3 2 4 -2 2 -1 3 2 

-2 -1 -3 1 -2 1 -3 -2 

0 0 0 1 0 0 0 0 

1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
0 0 1 -1 1 -1 1 0 

0 1 0 0 0 0 0 0 
-2 -2 -3 1 -2 0 -2 -1 

0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 

'- ....., 

rn12 
rn13 

rn14 
rn41 + 

rn2 4 
rn43 
rn34 
rn32 

1520 

2181 

2181 
0 

0 

1512 

0 

0 

0 
2181 

1772 
0 

0 
0 

0 

492 

+ E -
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A7.2 Wedderburn's Method - Generalized Linear Models Specified in 
Terms of Constraints 

This method was explained in Appendix A3.l. 

Basically, we consider the r2 cell counts as forming an nxl vector n. 
·~ 

If we express the model as 

E(n) = >.. ~ ,.. 

where Ai= f(ni), with constraints Ln = 0 

then we may fit E(n) = w-1 L' y 

where W = -E [F111

] , 

' - -E [F~] 

= l/n1 _ 

and then we use the residuals as the new value for n. 

A7.2 Generalized Linear Models Specified in Terms of Constraints 

We can simply use the Wedderburn's algorithm described in Appendix 3, 
Section A3. 1. 1. 

A7.2.l Eye-testing example 

For the eye-testing data of Table 8. 9, the constraints mi+ = rn+i 
imply that 

-rn12 - m13 - m14 + m21 + m31 + m41 = 0 

-m21 - m23 - m2 4 + m12 + m32 + m42 = 0 

-m31 - m32 - m34 + m13 + m23 + m43 = 0 

So L n = Lm= 
.~ 
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0 1 1 1 -1 0 0 0 -1 0 0 0 -1 0 0 0 m11 
0 -1 0 0 1 0 1 1 0 -1 0 0 0 -1 0 0 m21 
0 0 -1 0 0 0 -1 0 1 1 0 1 0 0 -1 0 m31 

m41 = 0 
,-

m12 
m22 
m32 
m42 
m13 
m23 
m33 
m43 
m14 
m2 4 
m3 4 
m44 

The first estimate of n ¼Ould bey = z = ,- - ~ 

1520 
234 
117 

36 
266 

1512 
362 

82 
124 
432 

1772 • 
179 
66 
78 

205 
492 

-
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The first estimate of W would be 

1/1520 
1/234 

' ' 
1/492 

so w-1 1
1 ¼DUld be 

0 0 0 
234 -234 0 
117 0 -117 

36 0 0 
-266 266 0 

0 0 0 
0 362 -362 
0 82 0 

-124 0 0 
0 -432 432 
0 0 0 
0 0 179 

- 66 0 0 
0 - 78 0 
0 0 -205 
0 0 0 

We would regress .~ on w-11
1

, using W as the weight matrix, and then 
set the new estimate of n to be the residuals, z - z. We would - ~ ~ 
then re-calculate W and cycle through the procedure until the 
estimated expected values, 3, and the deviance converged. 

If we decide to also use the constraint .k. IDij = N, then the 
l,J 

constraint matrix would have an extra column of l's and the 
constraints would be L n =Im= 



0 l 1 1 
0 -1 0 0 
0 0 -1 0 
1 l 1 1 

-1 0 0 0 
1 0 1 1 
0 0 -1 0 
1 1 1 1 

-1 0 0 0 
0 -1 0 0 
1 1 0 1 
1 1 1 1 

18 7. 

-1 0 0 0 m = O ,,..., 
0 -1 0 0 0 
0 0 -1 0 0 
1 1 1 1 N 

A vector which satisfies these constraints can be formed fran a 
table with symmetry 

1520 
a= 250 

120. 5 
51 

250 
1512 

397 
80 

120. 5 
397 

1772 
192 

51 
80 

192 
492 
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APPENDIX 8: FITTING MODELS USING GENSTAT 

Genstat (Alvey et al., 1983) is probably the most powerful canputer 
package canrnonly available for analyzing contingency tables. The GIM 
directive fits generalized linear models (Nelder and Wedderburn, 1972) 
using the Newton-Raphson algorittnn. IDglinear models can be easily 
fitted by specifying independent Poisson sampling for the cell counts. 
Genstat autanatically selects the log link function and uses log mij 
as the response in the linear model. IDgit models for dichotomous 
response variables can be fitted by specifying a binanial sampling 
distribution for which the logit, log [n (1-rr )] , is the default link 
function. Other types of models can be fitted using Genstat' s 
versatile programming features. 

The remarks made here also apply to GLIM (Baker and Nelder, 1978), 

which is virtually just a subset of Genstat with sane differences in 
syntax. 

The following examples illustrate how Genstat can be used to fit the 
models discussed in this thesis. 

Table A8. l contains the input for fitting the models (RY,A) and 

(RY,RA) to the data of Table 3. 2. The 'REFERENCE' directive simply 
indicates the job-name, while 'UNITS' specifies there are 16 
observations. RELIGION, YEAR and ATTITUDE are defined as factors, 
while COUNT is defined as a variate. The 'TERMS' statement contains 
all variables which might possibly be included in the model. The next 
statement specifies that the response variable, CDUNT, has a Poisson 
distribution. The first 'FIT' statement fits the model (RY,A), i.e. 

while the second one fits the model (RY,RA). RELIGION * YEAR means 
include the main effects for RELIGION and YEAR, plus their 
interaction, RELIGION, YEAR. The default output from the 'FIT' 
statement is the regression coefficients, plus the deviance. To 

obtain the estimated expected values as well, we could use 

'FIT/PRIN = CAO' 
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Table A8. 2 contains the Genstat output. Instead of the usual 
identifiability constraint that the sum of the parameter estimates 
equals zero, Genstat uses the constraint that the parameter estimate 
for the first level of any factor or interaction is zero. For 
instance, for the model RELIGION* YEAR+ ATTITUDE, the estimates of 
RELIGIONl, YEARl, RELIGIONl.YEARl, RELIGION2.YEAR1, RELIGION3, YEARl, 
RELIGION4. YEARl, and RELIGIONl. YEAR2 are all zero. This makes no 
difference whatsoever to the fitted values, etc, and the parameter 
estimates such as AijRY subject to the constraint 

E 
i 

, · ·RY -/\lJ - E 
j 

can be calculated using a little algebra. 

The remainder of this Appendix contains Genstat programes which can be 
used to fit the models discussed in this thesis. They should be 
self-explanatory if read in conjunction with the appropriate Sections 
in the text, and also the previous Appendices in which estimation 
methods are discussed. 



'REFERENCE' RELIGION 
I I 

SEE APPENDIX 2, SECTION A2.l.l 
FITTING LOGLINEAR MODEL OF INDEPENDENCE 
AND THE SATURATED MODEL 
TO TABLE 2.1 - RELIGION BY ATTITUDE TO ABORTION 
FROM KNOKE & BURKE (1980) 

I I 

'UNITS' $ 8 
'FACTOR' RELIGION $4 = l,1,2,2,3,3,4,4 

ATTITUDE $2 = l,2,1,2,1,2,l,2 
'VARIATE' COUNT 
'READ/PRIN=DEM' COUNT 
'RUN' 
460 498 
147 240 

41 10 
6S 17 

'EOD' 
'TABLE' 
'TABULATE' 
'PRINT' 
'RUN' 

Tl$ RELIGION, ATTITUDE 
COUNT ; Tl 
Tl$ 10 

'TERMS' COUNT+RELIGION*ATTITUDE 
'Y/ERROR=POISSON' COUNT 
'CAPTION' 11 (R,A) 11 

'FIT/PRIH=CAU' RELIGION+ATTITUDE 
'RUN' 
'TABULATE' FIT ; Tl 
'PRINT' Tl$ 10.3 
'RUN' 
'FIT/PRIN=CAU' RELIGION*ATTITUDE 
'RUN' 
'TABULATg• FIT ; Tl 
'PRINT' Tl $ 10.3 
'RUN' 

'CLOSE' 
'STOP' 

FVAL = FIT RES= RESID 

FVAL = FIT RES= RESID 

190. 
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GENSTAT V RELEASE 4.04B 
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT 
ION) 

1 
-2 

'REFERENCE' RELIGION 
I I 

-3 SEE APPENDIX 2, SECTION A2.l.l 
-4 
-5 

FITTING LOGLIHEAR MODELS OF INDEPENDENCE 
AND THE SATURATED MODEL 

-6 
-7 

TO TABLE 2.1 - RELIGION BY ATTITUDE TO ABORTION 
FROM KNOKE & BURKE {1980) 

8 
9 'UNITS' $ 8 

10 'FACTOR' RELIGION 
11 ATTITUDE 
12 'VARIATE' COUNT 
13 'READ/PRIH=DEM' COUNT 

'RUN' 14 

15 460 498 
16 147 240 
17 41 10 
18 65 17 
19 'EOD' 

I I 

$4 = l,l,2,2,3,3,4,4 
$2 = l,2,l,2,1,2,1,2 

IDENTIFIER MINIMUM MEAN MAXIMUM VALUES MISSING 
COUNT 10.0 184.8 498.0 8 0 

20 'TABLE' Tl$ RELIGION, ATTITUDE 
21 'TABULATE' COUNT ; Tl 
22 I PRINT' Tl$ 10 
23 'RUN' 

Tl 
ATTITUDE 1 2 
RELIGION 

1 460 498 
2 147 240 
3 41 10 
4 65 17 

24 'TERMS' COUHT+RELIGION*ATTITUDE 
25 'Y/ERROR=POISSON' COUNT 
26 'CAPTION' '' (R,A) 11 
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27 'FIT/PRIN=CAU' RELIGION+ATTITUDE 
28 'RUN' 

FVAL = FIT RES= RESID 

{R,A) 

27 • e • • e e • • • • e • e e e e • e • e • • e e e e e • e e e e e e • e e e a e e e e • e e • e e I I I I I I I I I I I I I I I ♦ I ............................................................... 
***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** REGRESSION COEFFICIENTS*** 

CONSTANT 
RELIGION 2 
RELIGION 3 
RELIGION 4 
ATTITUDE 2 
* STANDARD ERRORS BASED OH SCALE 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

ESTIMATE S.E. 

6.1359 0.0421 
-0.9064 0.0602 
-2.933 0.144 
-2.458 0.115 
0.0704 0.0521 

PARAMETER WITH VALUE 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 3 72.44 24.15 

*** OBSERVED AND FITTED VALUES *** 

OBSERVED FITTED RESIDUAL 

1 460.0 462.1 -0.1 
2 498.0 495.9 0 .1 
3 147 .o 186.7 -2.9 
4 240.0 200.3 2.8 
5 41. 0 24.6 3.3 
6 10.0 26.4 -3.2 
7 65.0 39.6 4.0 
8 17.0 42.4 -3.9 

29 'TABULATE' FIT ; Tl 
30 I PRINT' Tl$ 10.3 
31 'RUN' 

T 

145.85 
-15.05 
-20.41 
-21. 37 

1.35 
1.000 



ATTITUDE 
RELIGIOH 

1 
2 
3 
4 

Tl 
1 

462.148 
186.692 

24.603 
39.558 

2 

495.853 
200.308 

26.397 
42.442 
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32 'FIT/PRIN=CAU' RELIGIOH*ATTITUDE 
33 'RUH' 

FVAL = FIT RES= RESID 

32 • • • • • • • ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ I ♦ ♦ ♦ ♦ ♦ 

***** REGRESSION AHALYSIS ***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** REGRESSION COEFFICIENTS*** 
ESTIMATE S.E. 

CONSTANT 6.1312 0.0466 
RELIGION 2 -1. 1408 0.0947 
RELIGION 3 -2. 418 0.163 
RELIGION 4 -1.957 0.133 
ATTITUDE 2 0.0794 0.0647 
RELIGION 2 .ATTITUDE 2 0.411 0.123 
RELIGION 3 .ATTITUDE 2 -1.490 0.358 
RELIGION 4 .ATTITUDE 2 -1.421 0.280 
* STANDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 0 0 * 

*** OBSERVED AND FITTED VALUES *** 

OBSERVED FITTED RESIDUAL 

1 460.00 460.00 0.00 
2 498.00 498.00 0.00 
3 147. 00 147. 00 0.00 
4 240.00 240.00 0.00 

T 

131.50 
-12.04 
-14.83 
-14. 77 

1.23 
3.34 

-4.16 
-5.07 

1.000 



5 
6 
7 
8 

41.00 
10.00 
65.00 
17.00 

34 'TABULATE' FIT ; Tl 
35 'PRINT' Tl $ 10.3 
36 'RUN' 

Tl 
ATTITUDE 1 2 
RELIGION 

l 460.000 498.000 
2 147.000 240.000 
3 41.000 10.000 
4 65.000 17.000 

38 'CLOSE' 

41.00 
10.00 
65.00 
17.00 

o.oo 
-0.00 

0.00 
0.00 

194. 

******** END OF RELIGION. MAXIMUM OF 1252 DATA UNITS USED AT LINE 32 
(31516 LEFT) 
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'REFER' DRUG 
I I APPENDIX 3, SECTION A3.l.2 

FITTING THE LINEAR MODEL OF RO 
INTERACTION BETWEEN DRUGS TO 
TABLE 8.13 USING WEDDERBURN'S METHOD I I 

'UNITS' $ 26 
'VARIATE' COUNT 

ASTAR 
A 

'FACTOR' DRUGS $ 7 = 8(1} ,4(2} ,4(3} ,4(4} ,2(5} ,2(6} ,2(7} 
'SCALAR' DEV 
'READ/PRIN=Z' COUNT 
'RUN' 
6 16 2 4 2 4 6 6 
12 4 4 8 
5 10 4 6 
4 12 5 5 
10 6 
11 4 
5 9 
'EOD' 
'TABLE/M' Tl $ DRUGS 
'READ/PRIN=Z' LlSTAR,L2STAR,L3STAR,L4STAR,L5STAR,L6STAR, 

L7STAR,L8STAR,L9STAR 
'RUN' 

1 0 0 1 0 0 1 0 0 
1 0 0 1 0 0 0 0 0 
1 0 0 0 0 0 1 0 0 
1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 1 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 

-1 1 0 -1 1 0 0 0 0 
-1 1 0 0 0 0 0 0 0 

0 0 0 -1 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 -1 1 0 0 0 -1 1 0 
0 -1 1 0 0 0 0 0 0 
0 0 0 0 0 0 -1 1 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 -1 1 0 -1 1 
0 0 0 0 -1 1 0 0 0 
0 0 0 0 0 0 0 -1 1 
0 0 0 0 0 0 0 0 0 
0 0 -1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 -1 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 -1 
0 0 0 0 0 0 0 0 0 

'EOD' 
'READ/P,PRIN=Z' LlOSTAR,LllSTAR,Ll2STAR,Ll3STAR, 

Ll4STAR,Ll5STAR,Ll6STAR 
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'RUN' 
1 0 0 0 0 0 0 
1 0 0 0 0 0 0 
1 0 0 0 0 0 0 
1 0 0 0 0 0 0 
1 0 0 0 0 0 0 
1 0 0 0 0 0 0 
1 0 0 0 0 0 0 
1 0 0 0 0 0 0 

0 1 0 0 0 0 0 
0 1 0 0 0 0 0 
0 1 0 0 0 0 0 
0 1 0 0 0 0 0 

0 0 1 0 0 0 0 
0 0 1 0 0 0 0 
0 0 1 0 0 0 0 
0 0 1 0 0 0 0 

0 0 0 1 0 0 0 
0 0 0 1 0 0 0 
0 0 0 1 0 0 0 
0 0 0 1 0 0 0 

0 0 0 0 1 0 0 
0 0 0 0 1 0 0 

0 0 0 0 0 1 0 
0 0 0 0 0 1 0 

0 0 0 0 0 0 1 
0 0 0 0 0 0 1 

'EOD' 
'READ/PRIN=Z' T 
'RUN' 
46 46 46 46 46 46 46 46 28 28 28 28 25 25 25 25 

26 26 26 26 16 16 15 15 14 14 
'EOD' 
'READ/PRIN=Z' AHASH 
'RUN' 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
'EOD' 
'READ/PRIH=Z' NO 
'RUN' 
8 8 8 8 8 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 
'EOD' 
'CALC' ASTAR = AHASH/NO 
'CALC' Ll = LlSTAR/T 
'CALC' L2 = L2STAR/T 
'CALC' L3 = L3STAR/T 
'CALC' L4 = L4STAR/T 
'CALC' LS = LSSTAR/T 
'CALC' L6 = L6STAR/T 



'CALC' 
'CALC' 
'CALC' 

'CALC' 

'CALC' 

L7 = L7STAR/T 
LB = LBSTAR/T 
L9 = L9STAR/T 
LlO = LlOSTAR/T 
Lll = LllSTAR/T 
Ll2 = Ll2STAR/T 
Ll3 = Ll3STAR/T 
Ll4 = Ll4STAR/T 
LIS = LISSTAR/T 
Ll6 = Ll6STAR/T 
A = ASTAR*T 

ETA= COUNT 
'CALC' 
'PRINT/P' 

Z = COUNT - A 
COUNT,ETA,Z $ 10.4 

'RUH' 
'TABULATE/PRIN=T' 
'RUN' 

ETA 

'FOR' I = 1 ... 3 
'CALC' W = 
'CALC' Pl= 
'CALC' P2 = 
'CALC' P3 = 
'CALC' P4 = 
'CALC' PS = 
'CALC' P6 = 
'CALC' P7 = 
'CALC' PB = 

1/ETA 
ETA*Ll 
ETA*L2 
ETA*L3 
ETA*L4 
ETA*LS 
ETA*L6 
ETA*L7 
ETA*LB 

'CALC' P9 = ETA*L9 
'CALC' PlO = ETA*LIO 
'CALC' Pll = ETA*Lll 
'CALC' Pl2 = ETA*Ll2 
'CALC' Pl3 = ETA*Ll3 
'CALC' Pl4 = ETA*Ll4 
'CALC' PlS = ETA*LIS 
'CALC' Pl6 = ETA*Ll6 

Tl 

'TERMS/WT=W' Z+Pl+P2+P3+P4+PS+P6+P7+PB+P9+PlO+Pll+Pl2 
+Pl3+Pl4+Pl5+Pl6 

'Y' Z 
'FIT/INT=N,PRIN=Z' Pl+P2+P3+P4+PS+P6+P7+PB+P9+PlO+Pll 

+Pl2+Pl3+Pl4+Pl5+Pl6 FVAL = PRED 
'CALC' ETA= COUNT - PRED 
'PRINT/S' ETA $10.4 
'CALC' DEV= 2*(SUM(ETA-COUNT) + SUM(COUNT*LOG(COUNT/ETA))} 
'PRINT' DEV $ 10.4 

'REPEAT' 
'RUN' 
'CLOSE' 
'STOP' 
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GENSTAT V RELEASE 4.04B 
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT 
ION) 

l 'REFER' DRUG 
-2 '' APPENDIX 3, SECTION A3.l.2 
-3 FITTING THE LINEAR MODEL OF NO 
-4 INTERACTION BETWEEN DRUGS TO 

5 TABLE 8.13 USING WEDDERBURN'S METHOD 
I I 

6 'UNITS' $ 26 
7 'VARIATE' COUNT 
8 ASTAR 
9 A 

10 'FACTOR' DRUGS $ 7 = 8(1),4(2),4(3),4(4),2(5),2(6),2(7) 
11 'SCALAR' DEV 
12 'READ/PRIN=Z' COUNT 
13 'RUN' 

22 'TABLE/M' Tl $ DRUGS 
23 'READ/PRIN=Z' LlSTAR,L2STAR,L3STAR,L4STAR,L5STAR,L6STAR, 
24 L7STAR,L8STAR,L9STAR 
25 'RUN' 

53 'READ/P,PRIN=Z' LlOSTAR,LllSTAR,Ll2STAR,Ll3STAR, 
54 Ll4STAR,LlSSTAR,L16STAR 
55 'RUN' 

89 'READ/PRIN=Z' T 
90 'RUN' 

94 'READ/PRIN=Z' AHASH 
95 'RUN' 

98 'READ/PRIN=Z' NO 
99 'RUN' 

102 'CALC' 
103 'CALC' 
104 'CALC' 

ASTAR = AHASH/NO 
Ll = LlSTAR/T 
L2 = L2STAR/T 
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105 'CALC' L3 = L3STAR/T 
106 'CALC' L4 = L4STAR/T 
107 'CALC' LS = LSSTAR/T 
108 'CALC' L6 = L6STAR/T 
109 'CALC' L7 = L7STAR/T 
110 'CALC' LB = L8STAR/T 
111 'CALC' L9 = L9STAR/T 
112 LlO = LlOSTAR/T 
113 Lll = LllSTAR/T 
114 Ll2 = Ll2STAR/T 
115 Ll3 = Ll3STAR/T 
116 Ll4 = Ll4STAR/T 
117 LlS = LlSSTAR/T 
118 Ll6 = Ll6STAR/T 
119 'CALC' A = ASTAR*T 
121 'CALC' ETA= COUNT 
122 'CALC' Z = COUNT - A 
123 'PRINT/P' COUNT,ETA,Z $ 10.4 
124 'RUH' 

COUNT ETA z 
6.0000 6.0000 0.2500 

16.0000 16.0000 10.2500 
2.0000 2.0000 -3.7500 
4.0000 4.0000 -1. 7500 
2.0000 2.0000 -3.7500 
4.0000 4.0000 -1. 7500 
6.0000 6.0000 0.2500 
6.0000 6.0000 0.2500 

12.0000 12.0000 5.0000 
4.0000 4.0000 -3.0000 
4.0000 4.0000 -3.0000 
8.0000 8.0000 1.0000 
5.0000 5.0000 -1.2500 

10.0000 10.0000 3.7500 
4.0000 4.0000 -2.2500 
6.0000 6.0000 -0.2500 
4.0000 4.0000 -2.5000 

12.0000 12.0000 5.5000 
5.0000 5.0000 -1. 5000 
5.0000 5.0000 -1. 5000 

10.0000 10.0000 2.0000 
6.0000 6.0000 -2.0000 

11. 0000 11. 0000 3.5000 
4.0000 4.0000 -3.5000 
5.0000 5.0000 -2.0000 
9.0000 9.0000 2.0000 

125 'TABULATE/PRIN=T' ETA Tl 
126 'RUN' 



200. 

Tl 
DRUGS 

1 46.00 
2 28.00 
3 25.00 
4 26.00 
5 16.00 
6 15.00 
7 14.00 

MARGIN 170.00 

127 'FOR' I = 1. .. 3 
128 'CALC' W = 1/ETA 
129 'CALC' Pl = ETA*Ll 
130 'CALC' P2 = ETA*L2 
131 'CALC' P3 = ETA*L3 
132 'CALC' P4 = ETA*L4 
133 'CALC' PS - ETA*L5 
134 'CALC' P6 = ETA*L6 
135 'CALC' P7 = ETA*L7 
136 'CALC' P8 = ETA*L8 
137 'CALC' P9 = ETA*L9 
138 'CALC' PlO = ETA*LlO 
139 'CALC' Pll = ETA*Lll 
140 'CALC' Pl2 = ETA*Ll2 
141 'CALC' Pl3 = ETA*Ll3 
142 'CALC' Pl4 = ETA*Ll4 
143 'CALC' Pl5 = ETA*Ll5 
144 'CALC' Pl6 = ETA*Ll6 
145 'TERMS/WT=W' Z+Pl+P2+P3+P4+P5+P6+P7+P8+P9+PlO+Pll+Pl2 
146 +Pl3+Pl4+Pl5+Pl6 
147 'Y' Z 
148 'FIT/INT=N,PRIN=Z' Pl+P2+P3+P4+P5+P6+P7+P8+P9+PlO+Pll 
149 +Pl2+Pl3+Pl4+Pl5+Pl6 FVAL = PRED 
150 'CALC' ETA= COUNT - PRED 
151 'PRINT/S' ETA $10.4 
152 'CALC' DEV= 2*(SUM(ETA-COUNT) + SUM(COUNT*LOG(COUNT/ETA))) 

153 'PRINT' DEV $ 10.4 
154 'REPEAT' 
155 'RUN' 

ETA 



6.1441 
16.1209 

1. 9111 
3.7564 
2 .1171 
4.1683 
5.9405 
5.8417 

13.2604 
3.7420 
4 .1180 
6.8796 
4. 9259 

10.2548 
3.8310 
5.9883 
4.1115 

12.0257 
4.9957 
4.8671 
9.7157 
6.2843 
9.3099 
5.6901 
4.9039 
9.0961 

ETA 
6.1119 

16.0299 
1.9315 
3.8038 
2.1082 
4 .1449 
5.9825 
5.8872 

13.2288 
3.7399 
4.0551 
6.9763 
4.9187 

10.2319 
3.8499 
5.9996 
4.0855 

11. 9638 
5.0337 
4.9170 
9.6964 
6.3036 

201. 

DEV 1.2564 



9.2592 
5.7408 
4.9104 
9.0896 

ETA 
6 .1123 

16.0326 
1. 9314 
3.8028 
2.1075 
4.1437 
5.9828 
5.8869 

13.2270 
3.7429 
4.0576 
6.9725 
4.9194 

10.2323 
3.8491 
5.9993 
4.0853 

11. 9647 
5.0340 
4.9161 
9.6971 
6.3029 
9.2596 
5.7404 
4.9104 
9.0896 

DEV 1. 2495 

DEV 1. 2495 

156 'CLOSE' 

20 2. 

******** END OF DRUG. MAXIMUM OF 3942 DATA UNITS USED AT LINE 145 (2 
8826 LEFT) 



203. 

GENSTAT V RELEASE 4.04B 
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT 
ION) 

2 'REFER' DRUG 
-3 '' APPENDIX 3, SECTION A3.2.l 
-4 FITTING THE LINEAR MODEL OF NO 
-5 INTERACTION BETWEEN DRUGS TO 
-6 TABLE 8.13 USING WEDDERBURN'S METHOD 
7 USING A DIFFERENT FORM OF THE CONSTRAINTS I I 

8 'UHITS' $ 26 
9 'VARIATE' COUNT 

10 ASTAR 
11 A 
12 'FACTOR' DRUGS $ 7 = 8(1),4(2),4(3),4(4),2(5),2(6),2(7) 
13 ... SCALAR' DEV 
14 'READ/PRIN=Z' COUNT 
15 'RUll' 

24 'TABLE/M' Tl $ DRUGS 
25 I READ/PRHl=DEM' LlSTAR,L2STAR,L3STAR,L4STAR,L5STAR,L6STAR, 
26 L7STAR,L8STAR,L9STAR 
27 'RUH' 

28 3 -1 -1 3 -1 -1 3 -1 -1 
29 3 -1 -1 3 -1 -1 0 0 0 
30 3 -1 -1 0 0 0 3 -1 -1 
31 3 -1 -1 0 0 0 0 0 0 
32 0 0 0 3 -1 -1 3 -1 -1 
33 0 0 0 3 -1 -1 0 0 0 
34 0 0 0 0 0 0 3 -1 -1 
35 0 0 0 0 0 0 0 0 0 
36 -1 3 -1 -1 3 -1 0 0 0 
37 -1 3 -1 0 0 0 0 0 0 
38 0 0 0 -1 3 -1 0 0 0 
39 0 0 0 0 0 0 0 0 0 
40 -1 -1 3 0 0 0 -1 3 -1 
41 -1 -1 3 0 0 0 0 0 0 
42 0 0 0 0 0 0 -1 3 -1 
43 0 0 0 0 0 0 0 0 0 
44 0 0 0 -1 -1 3 -1 -1 3 
45 0 0 0 -1 -1 3 0 0 0 
46 0 0 0 0 0 0 -1 -1 3 
47 0 0 0 0 0 0 0 0 0 
48 -1 -1 -1 0 0 0 0 0 0 
49 0 0 0 0 0 0 0 0 0 
50 0 0 0 -1 -1 -1 0 0 0 
51 0 0 0 0 0 0 0 0 0 



52 0 0 0 0 0 0 -1 -1 -1 
53 0 0 0 0 0 0 0 0 0 
54 'EOD' 

IDENTIFIER MINIMUM MEAN MAXIMUM VALUES MISSING 
LlSTAR -1. 0000 0.2692 3.0000 26 0 
L2STAR -1.00000 -0.03846 3.00000 26 0 

L3STAR -1.00000 -0.03846 3.00000 26 0 

L4STAR -1. 0000 0.2692 3.0000 26 0 
L5STAR -1.00000 -0.03846 3.00000 26 0 

L6STAR -1.00000 -0.03846 3.00000 26 0 

L7STAR -1. 0000 0.2692 3.0000 26 0 
L8STAR -1.00000 -0.03846 3.00000 26 0 

L9STAR -1.00000 -0.03846 3.00000 26 0 

55 'READ/P,PRIN=Z' LlOSTAR,LllSTAR,L12STAR,Ll3STAR, 
56 Ll4STAR,Ll5STAR,L16STAR 
57 'RUN' 

91 'READ/PRI!l=Z' T 
92 'RUN' 

96 'READ/PRI!l=Z' AHASH 
97 'RUN' 

100 'READ/PRI!l=Z' NO 
101 'RUN' 

104 'CALC' ASTAR = AHASH/NO 
105 'CALC' Ll = LlSTAR/T 
106 'CALC' L2 = L2STAR/T 
107 'CALC' L3 = L3STAR/T 
108 'CALC' L4 :: L4STAR/T 
109 'CALC' LS = L5STAR/T 
llO 'CALC' L6 :: L6STAR/T 
111 'CALC' L7 = L7STAR/T 
ll2 'CALC' L8 = L8STAR/T 
113 'CALC' L9 = L9STAR/T 
ll4 LlO = LlOSTAR/T 

204 

SKEW 

SKEW 

SKEW 

SKEW 

SKEW 

SKEW 



115 Lll = LllSTAR/T 
116 Ll2 = Ll2STAR/T 
117 Ll3 = Ll3STAR/T 
118 Ll4 = Ll4STAR/T 
119 Ll5 = Ll5STAR/T 
120 L16 = Ll6STAR/T 
121 'CALC' A = ASTAR*T 
122 'RUN' 

123 'CALC' ETA= COUNT 
124 'CALC' Z = COUNT - A 
125 'PRINT/P' COUNT,ETA,Z $ 10.4 
126 'RUH' 

COUNT ETA z 
6.0000 6.0000 0.2500 

16.0000 16.0000 10.2500 
2.0000 2.0000 -3.7500 
4.0000 4.0000 -1.7500 
2.0000 2.0000 -3.7500 
4.0000 4.0000 -1.7500 
6.0000 6.0000 0.2500 
6.0000 6.0000 0.2500 

12.0000 12.0000 5.0000 
4.0000 4.0000 -3.0000 
4.0000 4.0000 -3.0000 
8.0000 8.0000 1.0000 
5.0000 5.0000 -1. 2500 

10.0000 10.0000 3.7500 
4.0000 4.0000 -2.2500 
6.0000 6.0000 -0.2500 
4.0000 4.0000 -2.5000 

12.0000 12.0000 5.5000 
5.0000 5.0000 -1. 5000 
5.0000 5.0000 -1. 5000 

10.0000 10.0000 2.0000 
6.0000 6.0000 -2.0000 

11.0000 11.0000 3.5000 
4.0000 4.0000 -3.5000 
5.0000 5.0000 -2.0000 
9.0000 9.0000 2.0000 

127 'TABULATE/PRIN=T' ETA Tl 
128 'RUH' 

205. 



206. 

Tl 
DRUGS 

1 46.00 
2 28.00 
3 25.00 
4 26.00 
5 16.00 
6 15.00 
7 14.00 

MARGIN 170.00 

129 'FOR' I= 1 ... 3 
130 'CALC' W = 1/ETA 
131 'CALC' Pl = ETA*Ll 
132 'CALC' P2 = ETA*L2 
133 'CALC' P3 = ETA*L3 
134 'CALC' P4 = ETA*L4 
135 'CALC' PS= ETA*LS 
136 'CALC' P6 = ETA*L6 
137 'CALC' P7 = ETA*L7 
138 'CALC' PB= ETA*L8 
139 'CALC' P9 = ETA*L9 
140 'CALC' PIO= ETA*LlO 
141 'CALC' Pll = ETA*Lll 
142 'CALC' Pl2 = ETA*Ll2 
143 'CALC' Pl3 = ETA*Ll3 
144 'CALC' Pl4 = ETA*Ll4 
145 'CALC' Pl5 = ETA*L15 
146 'CALC' Pl6 = ETA*Ll6 
147 'CALC' SLlETA = SUM(Pl) 
148 'CALC' SL2ETA = SUM(P2) 
149 'CALC' SL3ETA = SUM(P3) 
150 'CALC' SL4ETA = SUM(P4) 
151 'CALC' SLSETA = SUM(P5) 
152 'CALC' SL6ETA = SUM(P6) 
153 'CALC' SL7ETA = SUM(P7) 
154 'CALC' SLBETA = SUM(P8) 
155 'CALC' SL9ETA = SUM(P9) 
156 'CALC' SLlOETA = SUM(PlO) 
157 'CALC' SLllETA = SUM(Pll) 
158 'CALC' SL12ETA = SUM(Pl2) 
159 'CALC' SL13ETA = SUM(Pl3) 
160 'CALC' SL14ETA = SUM(Pl4) 
161 'CALC' SL15ETA = SUM(Pl5) 
162 'CALC' SL16ETA = SUM(Pl6) 
163 'TERMSiWT=W' Z+Pl+P2+P3+P4+P5+P6+P7+P8+P9+PlO+Pll 
164 +Pl2+Pl3+Pl4+Pl5+Pl6 

I Y' z 165 
166 
167 

'FIT/INT=N,PRIN=Z' Pl+P2+P3+P4+P5+P6+P7+P8+P9+Pl0 
+Pll+Pl2+Pl3+Pl4+Pl5+Pl6 ; FVAL = PRED 



207. 

168 'CALC' ETA= COUNT - PRED 
169 'PRINT/S' ETA $10.4 
170 'CALC' DEV= 2*(SUM(ETA-COUNT) + SUM(COUNT*LOG(COUNT/ETA))) 

171 'PRINT' DEV .$ 10.4 
172 'REPEAT' 
173 'RUN' 

ETA 
6 .1441 

16.1209 
1. 9111 
3.7564 
2.1171 
4 .1683 
5.9405 
5.8417 

13.2604 
3.7420 
4 .1180 
6.8796 
4.9259 

10.2548 
3.8310 
5.9883 
4.1115 

12.0257 
4.9957 
4.8671 
9.7157 
6.2843 
9.3099 
5.6901 
4.9039 
9.0961 

ETA 
6.1119 

16.0299 
1.9315 
3.8038 
2.1082 
4.1449 
5.9825 
5. 8872 

13.2288 

DEV 1.2564 



3.7399 
4.0551 
6.9763 
4.9187 

10.2319 
3.8499 
5.9996 
4.0855 

11. 9638 
5.0337 
4.9170 
9.6964 
6.3036 
9.2592 
5.7408 
4.9104 
9.0896 

ETA 
6 .1123 

16.0326 
1. 9314 
3.8028 
2.1075 
4.1437 
5.9828 
5.8869 

13.2270 
3.7429 
4.0576 
6. 9725 
4.9194 

10.2323 
3.8491 
5.9993 
4.0853 

11.9647 
5.0340 
4.9161 
9.6971 
6.3029 
9.2596 
5.7404 
4.9104 
9.0896 

DEV 1.2495 

DEV 1.2495 

174 'CLOSE' 

208. 



209. 

GENSTAT V RELEASE 4.04B 
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT 
ION) 

2 'REFERENCE' RELIGION 
-3 II SEE SECTION 2.2.5 
-4 FITTING VARIOUS LOGLINEAR MODELS 
-5 TO RELIGION BY ATTITUDE TO ABORTION 
-6 TABLE 2.3 
-7 FROM KNOKE & BURKE (1980, P72) 

8 
9 'UNITS' $ 16 

10 'FACTOR' RELIGION 
11 YEAR 
12 ATTITUDE 
13 'VARIATE' COUNT 
14 'READ/PRIN=D' COUNT 
15 'RUlt' 

16 460 498 424 501 
17 147 240 151 225 
18 41 10 23 6 
19 65 17 88 30 
20 'EOD' 

$4 = 4(1. .. 4) 
$2 = 2(1,2)4 
$2 = (1, 2) 8 

21 'TABLE' Tl$ RELIGION, YEAR, 
22 'TABULATE' COUHT ; Tl 
23 I PRINT I Tl$ 10 
24 'RUN' 

Tl 
ATTITUDE 1 

RELIGION YEAR 
1 1 460 

2 424 
2 l 147 

2 151 
3 1 41 

2 23 
4 1 65 

2 88 

I I 

ATTITUDE 

2 

498 
501 
240 
225 

10 
6 

17 
30 

25 'TERMS' COUNT+RELIGION*YEAR*ATTITUDE 



26 'Y /ERROR=POISSON' COUNT 
27 'CAPTION' '' (R,T,A) 11 

28 'FIT/PRIN=A' RELIGION+YEAR+ATTITUDE FVAL = PRED 
29 'TABULATE' PRED ; Tl 
30 'PRINT' Tl$ 10.2 
31 'RUN' 

(R,T,A) 

210. 

28 .. f If I I I IJ I I I I I I I I It I I I I I I I I. I I I I I It. I. I I It If I I I I It t If I It I I I I I I If I I 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 10 143.2 14.32 

Tl 
ATTITUDE l 2 

RELIGION YEAR 
1 l 454.77 496.38 

2 445.54 486.31 
2 1 184.28 201.14 

2 180.54 197.05 
3 l 19.32 21.09 

2 18.93 20.66 
4 l 48.30 52. 72 

2 47.32 51.65 

32 'CAPTION' '' (RT ,A) '' 
33 'FIT/PRIN=A' RELIGION*YEAR+ATTITUDE; FVAL = PRED 
34 'TABULATE' PRED ; Tl 
35 'PRINT' Tl$ 10.2 
36 'RUN' 

(RT,A) 

33 ................................................................. . 

***** REGRESSION ANALYSIS***** 



ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE HEAN DEVIANCE 

RESIDUAL 7 130.2 18.59 

Tl 
ATTITUDE 1 2 

RELIGION YEAR 
1 1 458.05 499.95 

2 442.27 482.73 
2 1 185. 04 201. 96 

2 179.78 196.22 
3 1 24.38 26.62 

2 13.87 15.13 
4 1 39.21 42.79 

2 56.42 61.58 

37 'CAPTION' '' (R,TA) '' 
38 'FIT/PRIN=A' RELIGION+YEAR*ATTITUDE; FVAL = PRED 
39 'TABULATE' PRED ; Tl 
40 'PRINT' Tl$ 10.2 
41 'RUN' 

(R,TA) 

211. 

38. I I I I If I I If It It I I I I I I I I I I I I I I I I I I I I I I I I I I I It t t I I I I It I I It t I ♦ 1 I I I I I I 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 9 143.0 15.89 



212. 

Tl 
ATTITUDE 1 2 

RELIGION YEAR 
1 1 458.84 492.31 

2 441.47 490.38 
2 1 185.93 199.49 

2 178.89 198.70 
3 1 19.49 20.92 

2 18.76 20.83 
4 1 48.74 52.29 

2 46.89 52.08 

42 'CAPTION' II (T,RA) II 

43 'FIT/PRIN=A' RELIGION+YEAR+ATTITUDE 
44 +RELIGION.ATTITUDE; FVAL = PRED 
45 'TABULATE' PRED ; Tl 
46 'PRINT' Tl$ 10.2 
47 'RUN' 

(T,RA) 

43 ................................................................. . 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 7 14.96 2.137 

Tl 
ATTITUDE 1 2 

RELIGIOtl YEAR 
1 l 446.53 504.62 

2 437.47 494.38 
2 l 150.53 234.88 

2 147.47 230.12 
3 1 32.33 8.08 

2 31.67 7.92 
4 1 77.28 23.74 

2 75.72 23.26 



48 
49 
50 
51 
52 
53 

I CAPTION I I I (RT ,RA) I I 

'FIT/PRIH=A' RELIGION*YEAR+ATTITUDE 

'TABULATE' 
I PRINT I 

'RUH' 

(RT,RA) 

+RELIGION.ATTITUDE; FVAL = 
PRED ; Tl 
Tl$ 10.2 

213. 

PRED 

49 •. t t t t t t t t t t t t t t t t t t t t t t t t t I It I I I It t t I It t I I I It t t I I If. I I I It ft f I I t f I 

***** REGRESSION AHALYSIS ***** 

ERROR DISTRIBUTION: POISSON LIHK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE HEAN DEVIANCE 

RESIDUAL 4 1.888 0. 4720 

Tl 
ATTITUDE 1 2 

RELIGIOH YEAR 
1 1 449.75 508.25 

2 434.25 490.75 
2 1 151.15 235.85 

2 146.85 229.15 
3 1 40.80 10.20 

2 23.20 5.80 
4 1 62.73 19.27 

2 90.27 27.73 

54 'CAPTION' '' (RT,TA) '' 
55 'FIT/PRIN=A' RELIGION*YEAR+ATTITUDE 
56 +YEAR.ATTITUDE; FVAL = PRED 
57 'TABULATE' PRED : Tl 
58 'PRINT' Tl $ 10.2 
59 'RUti' 

(RT,TA) 



214. 

55 ... I• 4 4 I If It t t t It t t t t t t t. t t It t t I It t I I I I I I I It I I I I I I I I I I I I I I I I I It I I I 

I I I I I I I I I I I I I I I I I I I I I. I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 6 129.9 21.66 

Tl 
ATTITUDE 1 2 

RELIGION YEAR 
1 1 462. 15 495.85 

2 438.23 486.77 
2 l 186.69 200.31 

2 178 .13 197.87 
3 1 24.60 26.40 

2 13.74 15.26 
4 l 39.56 42.44 

2 55.90 62.10 

60 'CAPTION' (RA,TA) '' 
61 'FIT/PRIN=A' RELIGION+YEAR+ATTITUDE+RELIGION.ATTITUDE 
62 +YEAR.ATTITUDE ; FVAL = PRED 
63 'TABULATE' PRED ; Tl 
64 'PRINT' Tl$ 10.2 
65 'RUN' 

(RA,TA) 

61. I If•• I I I I I I I I It I I I I I I I I I It I It I I I I I It I I I I I a I I I I I I It t I I I I I I I I I I I II I I 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 



215. 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 6 14.74 2. 457 

Tl 
ATTITUDE 1 2 

RELIGION YEAR 
1 1 450.53 500.48 

2 433.47 498.52 
2 1 151. 88 232.96 

2 146.12 232.04 
3 1 32.62 8.02 

2 31.38 7.98 
4 1 77.98 23.55 

2 75.02 23.45 

66 'CAPTIOH' '' (RT,TA,RA) '' 
67 'FIT/PRIN=A' RELIGION+YEAR*ATTITUDE 
68 +RELIGION.ATTITUDE+RELIGION.YEAR FVAL = PRED 
69 'TABULATE' PRED ; Tl 
70 'PRINT' Tl $ 10.2 
71 'RUH' 

(RT,TA,RA) 

67 ................................................................. . 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 

RELIGION 
1 

3 1. 466 

ATTITUDE 
YEAR 

1 
2 

Tl 
1 

455.51 
428.49 

0.4886 

2 

502. 49 
496.51 



2 1 153.38 233.62 
2 144.62 231.38 

3 1 40.95 10.05 
2 23.05 5.95 

4 1 63.16 18.84 
2 89.84 28.16 

72 'CAPTION' '' (RTA} '' 
73 'FIT/PRIN=A' RELIGION*YEAR*ATTITUDE FVAL = PRED 
74 'TABULATE' PRED ; Tl 
75 'PRINT' Tl $ 10.2 
76 'RUN' 

(RTA} 

216. 

73. e e • • e I I♦• I I It t • t t. t t I I I I I I I I I I I I I I It t I I I l f & I I I I I I It t t I It I I I I I I I I I 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 0 0 

Tl 
ATTITUDE 1 2 

RELIGIOll YEAR 
1 1 460.00 498.00 

2 424.00 501. 00 
2 1 147.00 240.00 

2 151.00 225.00 
3 1 41. 00 10.00 

2 23.00 6.00 
4 l 65.00 17.00 

2 88.00 30.00 

78 'CLOSE' 

******** END OF RELIGION. MAXIMUM OF 1712 DATA UNITS USED AT LINE 61 



217. 

GENSTAT V RELEASE 4.04B 
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT 
ION) 

2 
-3 
-4 
-5 

6 
8 
9 

10 
11 
12 
13 
14 
15 
16 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

30 
31 
32 
33 

'REFERENCE' DUMPING 
11 SEE SECTIONS 4.1.l, 4.2.1, 4.3.2 

FITTING THE LOGLINEAR MODELS OF INDEPENDENCE, 
UNIFORM ASSOCIATION, AND ROW EFFECTS TO THE 
DUMPING SEVERITY DATA OF TABLE 1.6 I I 

'UHITS' 
'FACTOR' 

$ 12 
OPERAT $4 
DUMP $3 

'VARIATE' COUNT 
V 
u 
UV 

'READ/PRIN=D' OPERAT,DUMP,U,V,COUNT 
'RUN' 

1 l -1. 5 -1 61 
l 2 -1.5 0 28 
l 3 -1. 5 1 7 
2 1 -0.5 -1 68 
2 2 -0.5 0 23 
2 3 -0.5 1 13 
3 1 0.5 -1 58 
3 2 0.5 0 40 
3 3 0.5 1 12 
4 1 1. 5 -1 53 
4 2 1. 5 0 38 
4 3 1. 5 1 16 
'EOD' 

'TABLE' Tl $ OPERAT, DUMP 
'TABULATE' COUNT; Tl 
I PRIHT I Tl $10.2 
'RUN' 

Tl 
DUMP 1 2 3 

OPERAT 
1 61.00 28.00 7.00 
2 68.00 23.00 13.00 
3 58.00 40.00 12.00 
4 53.00 38.00 16.00 



218. 

34 'CALC' UY= U*Y 
35 'TERMS' COUNT+OPERAT+DUMP+UV+OPERAT.V 
36 'Y/ERROR=POISSON' COUNT 
37 I I MODEL OF INDEPENDENCE I I 

38 I FIT /PRIN=A I OPERAT+DUMP ; FVAL = PRED RES = RESID 
39 'RUN' 

38 ...•.•....................•....................................... 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-YARIATE: COUNT 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE HEAN DEVIANCE 

RESIDUAL 6 10.88 

40 'TABULATE' PRED; Tl 
41 'PRINT' Tl $10.2 
42 'RUH' 

Tl 
DUMP 1 

OPERAT 
1 55.25 
2 59.86 
3 63.31 
4 61. 58 

43 'TABULATE' RESID; Tl 
44 'PRINT' Tl $10.2 
45 'RUH' 

DUMP 
Tl 

1 

2 

29.70 
32.17 
34.03 
33.10 

2 

l. 813 

3 

11.05 
11. 97 
12.66 
12.32 

3 



OPERAT 
1 
2 
3 
4 

0.77 
1.05 

-0.67 
-1.09 

-0.31 
-1.62 
1.02 
0.85 

-1.22 
0.30 

-0.19 
1.05 

47 '' UNIFORM ASSOCIATION MODEL '' 
48 'FIT' OPERAT+DUMP+UV ; FVAL = PRED 
49 'RUH' 

219. 

48. I I I I I I I I I I I I I I I I I I il I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I It I I I I 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** REGRESSION COEFFICIENTS*** 

CO?lSTAllT 
OPERAT 2 
OPERAT 3 
OPERAT 4 
DUMP 2 
DUMP 3 
UV 
* STANDARD ERRORS BASED ON SCALE 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

ESTIMATE 

3.891 
0 .168 
0.300 
0.336 

-0.627 
-1. 654 
0 .1626 

PARAMETER WITH 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 5 4.590 

50 'TABULATE' PRED; Tl 
51 'PRIHT' Tl $10.2 
52 'RUN' 

DUMP 
OPERAT 

Tl 
l 

0.9180 

2 3 

S.E. T 

0 .120 32.30 
0.147 1.14 
0.158 1. 91 
0 .169 1. 98 
0 .110 -5.73 
0 .162 -10.22 

0.0656 2.48 
VALUE l. 000 



1 62.51 26.15 7.34 
2 62.84 30.94 10.22 
3 60.97 35.32 13.72 
4 53.69 36.59 16.72 

54 '' ROW EFFECTS MODEL '' 
55 'FIT' OPERAT+DUMP+OPERAT.V FVAL = PRED 
56 'RUN' 
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55 •••••••••••••••••••••••••••••••••••••••••.••••••••.•.••••••••••••• 

*** LINEAR DEPENDENCE DETECTED WHILE FITTING TERM V.OPERAT 
l PARAMETER(S) OF THIS TERM ARE ALIASED. 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** REGRESSION COEFFICIENTS*** 

CONSTANT 
OPERAT 2 
OPERAT 3 
OPERAT 4 
DUMP 2 
DUMP 3 
V.OPERAT l 
V.OPERAT 2 
V.OPERAT 3 
V.OPERAT 4 
* STAtlDARD ERRORS BASED ON SCALE 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

ESTIMATE 

3.665 
0.124 
0.293 
0.318 

-0.384 
-1. 168 
-0.457 
-0.377 
-0.139 

0 
PARAMETER \IITH 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 3 

57 
58 
59 

'TABULATE' 
'PRillT' Tl 
'RUH' 

4.403 

PRED; Tl 
$10.2 

1.468 

S.E. 

0.192 
0 .185 
0.176 
0 .173 
0.161 
0.269 
0.208 
0.200 
0.189 

:I: 

VALUE l. 000 

T 

19.07 
0.67 
1. 67 
l. 84 

-2.38 
-4.35 
-2.19 
-1.88 
-0.74 

* 
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Tl 
DUMP I 2 3 

OPERAT 
I 61.69 26.61 7.69 
2 64.44 30.13 9.44 
3 60.17 35.67 14.17 
4 53.70 36.59 16.70 

60 'CLOSE' 

******** END OF DUMPING. MAXIMUM OF 1446 DATA UNITS USED AT LINE 55 
(31322 LEFT) 
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GENSTAT V RELEASE 4.04B 
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT 
ION) 

2 
-3 
-4 

'REFERENCE' DUMPING 
I I 

SEE SECTION 4.4.3.3 
-5 FITTING VARIOUS LOGLINEAR MODELS 
-6 
-7 

TO DUMPING SEVERITY DATA OF TABLE 4.8 
FROM AGRESTI P67 

'UNITS' $ 48 
8 
9 

10 
11 
12 
13 
14 
15 

'FACTOR' OPERAT $4 = 12(1 ... 4) 
HOSPITAL $4 = 3(1 ... 4)4 
DUMP $3 = (1 ... 3)16 

'VARIATE' COUNT 
'READ/PRIN=D' COUNT 
'RUH' 

16 23 7 2 
17 23 10 5 
18 20 13 5 
19 24 10 6 
20 'EOD' 

18 6 1 
18 6 2 
13 13 2 

9 15 2 

8 6 3 
12 4 4 
11 6 2 
7 7 4 

12 9 1 
15 3 2 
14 8 3 
13 6 4 

21 'TERMS' COUNT+OPERAT*HOSPITAL*DUMP 
22 1 Y/ERROR=POISSON' COUNT 
23 'CAPTION' II (0,D,H) II 

24 1 FIT/PRIN=A 1 OPERAT+HOSPITAL+DUHP 
25 1 RUH' 

(0,D,H) 

I I 

24 ...................................................... . 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUHT 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 39 32.61 0.8362 



26 'CAPTION' 11 (OD,H) 11 

27 'FIT/PRIN=A' OPERAT+HOSPITAL+DUMP+OPERAT.DUMP 
28 'RUN' 

(OD,H) 

27 ... I I I I I I. I I I I I I I I It I I I I I I I I I I I I ♦ I If I I It 6 t I I I I I. I I I I I I I 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 33 21.73 0.6586 

29 'CAPTION' 11 (HD,O) 1 1 

30 'FIT/PRIN=A' OPERAT+HOSPITAL+DUMP+HOSPITAL.DUMP 
31 'RUN' 

(HD,0) 

30 ...................................................... . 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 33 24.51 0.7427 

32 'CAPTION' '' (OH,D) ' 1 

33 'FIT/PRIN=A' OPERAT+HOSPITAL+DUMP+OPERAT.HOSPITAL 
34 'RUN' 

(OH,D) 

33 ...................................................... . 

***** REGRESSION ANALYSIS***** 

223. 



ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** RESIDUAL DEVIANCE ttt 

SCALE PARAMETER IS 1.000 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 30 31.64 1.055 

35 'CAPTION' '' (HD,OD) 11 

36 'FIT/PRIN=A' OPERAT+HOSPITAL+DUMP+HOSPITAL.DUMP+OPERAT.DUMP 
37 'RUN' 

(HD,OD) 

36. • • f It t • ♦ •I I I I I ♦ I ♦ • I• t ♦•.I I I I I• ♦ a ♦♦ I ♦♦• ♦ I ♦ ii t t It t I I I I It ll 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 27 13.63 0.5049 

38 'CAPTIOH' '' (OD ,OH) '' 
39 'FIT/PRIN=A' OPERAT+HOSPITAL+DUMP+OPERAT.DUMP 
40 +OPERAT.HOSPITAL 
41 'RUN' 

(OD,OH) 

39 ...................................................... . 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE MEAN DEVIANCE 
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RESIDUAL 24 20.76 0.8650 

42 'CAPTION' '' (HD,OH) '' 
43 'FIT/PRIN=A' OPERAT+HOSPITAL+DUMP+HOSPITAL.DUMP 
44 +OPERAT.HOSPITAL 
45 'RUll' 

(HD,OH) 

43. • • t It. t. I I I I I I I I I It I I I I I I I I It I I I I I It I I ♦ I I I I I I I I I I It I I I 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 24 23.54 0.9807 

46 'CAPTION' '' (HD,OD,OH) '' 
47 'FIT/PRIN=A' OPERAT+HOSPITAL+DUMP+HOSPITAL.DUMP 
48 +OPERAT.DUMP+OPERAT.HOSPITAL 
49 'RUN' 

(HD,OD,OH) 

47 .......................•............................... 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUHT 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 18 12.50 0.6946 

50 'CLOSE' 

225. 

******** END OF DUMPING. MAXIMUM OF 4348 DATA UNITS USED AT LINE 47 
(28420 LEFT) 
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GENSTAT V RELEASE 4.04B 
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT 
ION) 

2 
-3 
-4 
-5 
-6 
-7 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

23 
25 
26 
27 
28 

'REFERENCE' DUMPING 
I I 

SEE SECTION 4.4.3.3 
FITTING THE 0-D UNIFORM ASSOCIATION MODEL 
TO DUMPING SEVERITY DATA OF TABLE 4.8 
FROM AGRESTI P67 

'UNITS' $ 48 
'FACTOR' OPERAT $4 = 

HOSPITAL $4 = 
DUMP $3 = 

'VARIATE' COUNT 

12(1 ... 4) 
3(1. .. 4)4 

(l. .. 3)16 

I I 

u 
w 

= 12(-1.5,-0.5,0.5,l.5) 
= (-1,0,1)16 

I READ/PRIH=Z' 
'RUN' 

COUNT 

'CALC' 
'TABLE' 
'TABULATE' 
I PRINT' 
'RUH' 

OPERAT 
l 

2 

3 

4 

UW = U*W 
Tl$ OPERAT, 
COUHT ; Tl 
Tl$ 10 

DUMP 
HOSPITAL 

1 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
4 

HOSPITAL, DUMP 

Tl 
l 2 

23 7 
18 6 
8 6 

12 9 
23 10 
18 6 
12 4 
15 3 
20 13 
13 13 
11 6 
14 8 
24 10 

9 15 
7 7 

13 6 

3 

2 
1 
3 
1 
5 
2 
4 
2 
5 
2 
2 
3 
6 
2 
4 
4 



30 'TERMS' COUNT+OPERAT+HOSPITAL+DUMP+OPERAT.HOSPITAL+UW 
31 'Y /ERROR=POISSON' COUNT 
33 'FIT' OPERAT+HOSPITAL+DUMP+OPERAT.HOSPITAL+UW ; FVAL = FIT 
34 'RUN' 

33 ... ••.•.I ••• f. •I•.• t. t t ft et ft I It t t ft t It ft t f ♦ t ♦ t t ♦ .III ♦♦♦♦ ta I ♦♦♦ I ♦ I 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** REGRESSION COEFFICIENTS*** 
ESTIMATE 

CONSTMlT 2.793 
OPERAT 2 0.260 
OPERAT 3 0.336 
OPERAT 4 0.450 
HOSPITAL 2 -0.247 
HOSPITAL 3 -0.633 
HOSPITAL 4 -0.375 
DUMP 2 -0.627 
DUMP 3 -1. 654 
OPERAT 2 .HOSPITAL 2 -0.133 
OPERAT 2 .HOSPITAL 3 -0.009 
OPERAT 2 .HOSPITAL 4 -0.267 
OPERAT 3 .HOSPITAL 2 -0.059 
OPERAT 3 .HOSPITAL 3 -0.061 
OPERAT 3 .HOSPITAL 4 -0.044 
OPERAT 4 .HOSPITAL 2 -0.184 
OPERAT 4 .HOSPITAL 3 -0.166 
OPERAT 4 .HOSPITAL 4 -0.179 
uw 0.1626 
* STANDARD ERRORS BASED ON SCALE PARAMETER WITH 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 29 25.35 0.8741 

35 'TABULATE' FIT ; Tl 
36 'PRINT' Tl $ 10.2 

S.E. T 

0.188 14.86 
0.243 1.07 
0.251 1. 34 
0.255 1. 77 
0.267 -0.93 
0.300 -2.11 
0.277 -1. 35 
0.109 -5.73 
0.162 -10.24 
0.369 -0.36 
0.407 -0.02 
0.391 -0.68 
0.365 -0.16 
0.411 -0. 15 
0.378 -0.12 
0.367 -0.50 
0.413 -0.40 
0.381 -0.47 

0.0655 2.48 
VALUE 1.000 
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37 'RUN' 

Tl 
DUMP 1 2 3 

OPERAT HOSPITAL 
1 1 20.84 8.72 2. 45 

2 16.28 6.81 1. 91 
3 11.07 4.63 1. 30 
4 14.32 5.99 1.68 

2 1 22.96 11.31 3.73 
2 15. 71 7.74 2.55 
3 12.09 5.95 1. 96 
4 12.09 5.95 1.96 

3 1 21.06 12.20 4.74 
2 15.52 8.99 3.49 
3 10.53 6.10 2.37 
4 13.86 8.03 3.12 

4 1 20.07 13.68 6.25 
2 13.05 8.89 4.06 
3 9.03 6.16 2.81 
4 11. 54 7.87 3.60 

38 'CLOSE' 

******** END OF DUMPING. MAXIMUM OF 2226 DATA UNITS USED AT LINE 33 
(30542 LEFT) 

228. 
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GENSTAT V RELEASE 4.04B 
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT 
ION) 

2 
-3 
-4 
-5 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

'REFERENCE' DUMPING_ITERATIVE 
1

' SEE SECTION 5.3 
FITTING A LOG-MULTIPLICATIVE (RC) MODEL 
TO DUMPING SEVERITY DATA FROM TABLE 1.6 
(AGRESTI, 1984, P81) 

'UNITS' $ 12 
'FACTOR' OPERAT $4 = 3(1 ... 4) 

DUMP $3 = (1 ... 3)4 
'VARIATE' COUNT 

U = 3(-1.5,-0.5,0.5,1.5) 
V = (-1,0,1)4 
USTD $ 4 
VSTD $ 3 

'INTEGER' I7_10 = 3(7 ... 10) 
I7 9 = (7 ... 9)4 
!14710 = 1,4,7,10 
1123 = 1,2,3 

'SCALAR' USSUM 
20 VSSUM 
21 'READ/PRIN=D' COUNT 
22 'RUH' 

23 61 28 7 
24 68 23 13 
25 58 ,10 12 
26 53 38 16 
27 'EOD' 

29 'TABLE' Tl$ OPERAT, DUMP 
31 'TERMS' COUNT+OPERAT+DUMP+OPERAT.V+DUMP.U 
32 'Y/ERROR=POISSON' COUNT 
34 'FOR' I = 1. .. 8 

I I 

35 'FIT /PRIN=Z I OPERAT+DUMP+OPERAT.V COEF = CFl 
36 'COPY' u $ = CFl $ I7 _10 
37 'CALC' U = U - MEAH(U) 
38 'COPY' USTD $ = U $ 114710 
39 'CALC' USSUM = SQRT(SUM(USTD*USTD)) 
40 U = U/USSUM 
41 'PRiNT I DV $10.6 
44 'FIT/PRIN=Z' OPERAT+DUMP+DUMP.U COEF = CF2 

VAL= PRED 
45 'COPY' V $ = CF2 $ 17_9 
46 'CALC' V = V - MEMl ( V) 
47 'COPY' VSTD $ = V $ 1123 
48 'CALC' VSSUM = SQRT(SUM(VSTD*VSTD)) 
49 V = V/VSSUM 

DEV = DV 

DEV = DV F 
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50 'PRINT' DV $10.6 
52 'REPEAT' 
53 'RUN' 

35. ♦ ♦ ♦ ♦♦♦♦♦♦♦ It t ♦ t I ♦ t t ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ t ♦ t ♦ t ♦ f ♦ ♦ ♦ ♦ t I ♦♦♦♦♦♦♦ t I• ♦♦♦♦ t ♦ II ♦♦♦♦ 

♦ t ♦ t ♦ ♦ ♦ I ♦ ♦ ♦ ♦ ♦ ♦ ♦ t t ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ I ♦ ♦ I ♦ t t ♦ ♦ ♦ t I ♦ ♦ ♦ ♦ ♦ ♦ I ♦ I ♦ ♦ t ♦ ♦ ♦ ♦ ♦ 

*** LINEAR DEPENDENCE DETECTED WHILE FITTING TERM V.OPERAT 
1 PARAMETER(S) OF THIS TERM ARE ALIASED. 

DV 4.403389 

44 ♦ t ♦ ♦ ♦ ♦ ♦ ♦ t ♦ ♦ t I ♦♦ t f I ♦♦ t ♦♦♦ ti ♦♦♦♦ ft t ♦ ♦ f ♦ I ♦ f ♦♦ I ♦ If ♦♦♦ t I ♦ t t I & t ♦♦♦ I I I ♦♦ t f 

*** LINEAR DEPENDENCE DETECTED WHILE FITTING TERM U.DUMP 
1 PARAMETER(S) OF THIS TERM ARE ALIASED. 

DV 3.498055 

35. ft ♦ t t t ♦ I ♦♦ It ♦♦ t It ♦ I ♦♦ f ♦ I ♦ t I I ♦ t t f ♦ ♦ f ♦♦ ft t t ♦ f I It t ♦ t l I ♦ t It It ♦♦ I I ♦♦ I ♦ 

*** LINEAR DEPENDENCE DETECTED WHILE FITTING TERM V.OPERAT 
1 PARAMETER(S) OF THIS TERM ARE ALIASED. 

DV 3.089726 

44 ••................•.....•....•.•.....••.••...•................•••• 

*** LINEAR DEPENDENCE DETECTED WHILE FITTING TERM U.DUHP 
1 PARAMETER(S) OF THIS TERM ARE ALIASED. 

DV 2.938355 

35 ................................................................. . 

*** LINEAR DEPENDENCE DETECTED WHILE FITTING TERM V.OPERAT 
1 PARAMETER(S) OF THIS TERM ARE ALIASED. 

DV 2.885235 

44 It It I It ♦ I ♦ t t I I I It ♦ It t t t t t t t I It I It It ♦ ff It t t t It t t ff It It t It t t t Io I I It t 

*** LINEAR DEPENDENCE DETECTED WHILE FITTING TERM U.DUMP 
1 PARAMETER(S) OF THIS TERM ARE ALIASED. 

DV 2.866411 

35 ................................................................. . 

*** LINEAR DEPENDENCE DETECTED WHILE FITTING TERM V.OPERAT 
l PARAHETER(S) OF THIS TERM ARE ALIASED. 

DV 2.859711 
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44 ................................................... , ............. . 

*** LINEAR DEPENDENCE DETECTED WHILE FITTING TERM U.DUHP 
1 PARAMETER(S) OF THIS TERM ARE ALIASED. 

DV 2.857305 

35, t I I I I I If I I I I I I 4 It Ii I I I I I I I I I I I I I I I I I I If I I ♦ I ♦ I I I I I I I I I I I I I I I I I I I I I I 

*** LINEAR DEPENDENCE DETECTED WHILE FITTING TERM V.OPERAT 
1 PARAMETER(S) OF THIS TERM ARE ALIASED. 

DV 2.856437 

44, I I I I I I I I ti I I I- I I I It I I I I I I & I I I I I I I I I I I I I I I I I I I I I I I I I I I I ♦ I I I I I I I I I It I 

*** LINEAR DEPENDENCE DETECTED WHILE FITTING TERH U.DUMP 
1 PARAMETER(S) OF THIS TERM ARE ALIASED. 

DV 2.856123 

35 ................................................................. . 

*** LINEAR DEPENDENCE DETECTED WHILE FITTING TERM V.OPERAT 
1 PARAMETER(S) OF THIS TERM ARE ALIASED. 

DV 2.856010 

44 ................................................................. . 

*** LINEAR DEPENDENCE DETECTED WHILE FITTING TERM U.DUMP 
1 PARAMETER(S) OF THIS TERM ARE ALIASED. 

DV 2.855968 

35, It t t I I I I It t I I I I I It t I I I I I I I It I I I I It♦ I I I I ♦ I I I I I I I I It It t I I I I It It f. f, I I 

*** LINEAR DEPENDENCE DETECTED WHILE FITTING TERM V.OPERAT 
1 PARAMETER(S) OF THIS TERM ARE ALIASED. 

DV 2.855953 

44 ................................................................. . 

*** LINEAR DEPENDENCE DETECTED WHILE FITTING TERM U.DUMP 
1 PARAMETER(S) OF THIS TERM ARE ALIASED. 

DV 2.855948 

35 ................................................................. . 

*** LINEAR DEPENDENCE DETECTED WHILE FITTING TERM V.OPERAT 
1 PARAMETER(S) OF THIS TERM ARE ALIASED. 



23 2. 

DV 2.855946 

44 • .. •II.• I• I• t I I I I I I I I I I e I I I I I I I I I I I I I I I It I I I If t I I I I I I I I I I I I I I I I I It 

*** LINEAR DEPENDENCE DETECTED WHILE FITTING TERM U.DUMP 
l PARAMETER(S) OF THIS TERM ARE ALIASED. 

DV 2.855945 

54 'FIT/PRIN=CA' OPERAT+DUMP+OPERAT.V COEF = CFl 
55 'COPY' u $ = CFl $ !7_10 
56 'CALC' U = U - MEAN(U) 
57 'COPY' USTD $ = U $ Il4710 
58 'CALC' USSUM = SQRT(SUM(USTD*USTD)) 
59 U = U/USSUM 
60 I PRINT I DV $10.6 
63 I FIT/PRIN=CA I OPERAT+DUMP+DUMP.U COEF = CF2 

FVAL = PRED 
64 'COPY' V $ = CF2 $ !7_9 
65 'CALC' V = V - MEAtl ( V) 
66 'COPY' VSTD $ = V $ 1123 
67 'CALC' VSSUM = SQRT(SUM(VSTD*VSTD)) 
68 V = V/VSSUM 
69 I PRIHT I DV $10.6 
71 'PRHIT/P' U,V $10.6 
72 I CAPTION I 

I I ACTUAL COUNTS I I 

73 'TABULATE' COUHT . Tl , 
74 I PRIUT I Tl $ 9 
75 I CAPTION I 

I I FITTED COUNTS I I 

76 'TABULATE' PRED Tl 
77 I PRHIT I Tl $ 10.3 
78 'RUH' 

DEV = DV 

DEV = DV 

54 ................................................................. . 

*** LINEAR DEPENDENCE DETECTED ijH!LE FITTING TERM V.OPERAT 
l PARAMETER(S) OF THIS TERM ARE ALIASED. 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUHT 

*** REGRESSION COEFFICIENTS*** 
ESTIMATE 

COtlSTAHT 3.770 
OPERAT 2 0.042 
OPERAT 3 0.225 
OPERAT 4 0.210 
DUMP 2 -0.299 

S.E. 

0.167 
0 .163 
0.153 
0. 153 
0.205 

T 

22.60 
0.26 
1. 47 
1. 38 

-1.46 



DUMP 3 
V.OPERAT 1 
V.OPERAT 2 
V.OPERAT 3 
V.OPERAT 4 
* STANDARD ERRORS BASED ON SCALE 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

-1. 353 
-0.414 
-0.524 
-0.074 

0 
PARAMETER 

0.210 
0.224 
0.222 
0.212 

* 
WITH VALUE 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 3 2.856 0.9520 

DV 2.855945 

23 3. 

-6.46 
-1.85 
-2.36 
-0.35 

* 
1.000 

63. • ♦ t t ♦ t ♦ t ♦It I I I I I♦♦ I ♦♦ t ♦ ♦ ♦ ♦ ♦ ♦ t I♦ I♦♦♦♦♦ t ♦ II♦♦♦ It I ♦♦♦ I <It ♦♦♦♦♦♦♦♦♦♦♦ • 

*** LINEAR DEPENDENCE DETECTED WHILE FITTING TERM U.DUMP 
1 PARAMETER(S) OF THIS TERM ARE ALIASED. 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** REGRESSION COEFFICIENTS*** 

COHSTAllT 
OPERAT 2 
OPERAT 3 
OPERAT 4 
DUMP 2 
DUMP 3 
U.DUMP 1 
U.DUMP 2 
U.DUMP 3 
t STANDARD ERRORS BASED ON SCALE 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

ESTIMATE 

3.932 
0.015 
0.307 
0.311 

-0.640 
-1.617 
-0.460 
0.136 

0 
PARAMETER WITH 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 4 2.856 0.7140 

DV 2.855945 

S.E. 

0.148 
0 .158 
0.253 
0.292 
0 .111 
0.160 
0.319 
0.343 

* 
VALUE 

T 

26.59 
0.09 
1.22 
1.07 

-5.77 
-10.13 
-1.44 
0.40 

* 
1.000 



u 
-0.363673 
-0.363673 
-0.363673 
-0.613369 
-0.613369 
-0.613369 
o. 404214 
0.404214 
0.404214 
0.572828 
0.572828 
0.572828 

ACTUAL 

V 
-0.796780 

0.552843 
0.243937 

-0.796780 
0.552843 
0.243937 

-0.796780 
0.552843 
0.243937 

-0.796780 
0.552843 
0.243937 

COUNTS 

DUMP 
OPERAT 

1 
2 
3 
4 

FITTED COUHTS 

DUMP 
OPERAT 

Tl 
1 

61 
68 
58 
53 

Tl 
1 

1 60.285 
2 68.622 
3 57.595 
4 53.498 

79 'CLOSE' 

234. 

2 3 

28 7 
23 13 
40 12 
38 16 

2 3 

25.587 10 .128 
25.099 10.279 
38.634 13.771 
39.680 13.822 

******** END OF DUMPING_. MAXIMUM OF 2210 DATA UNITS USED AT LINE 63 
(30558 LEFT) 



235. 

GENSTAT V RELEASE 4.04B 
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT 
ION) 

3 'REFERENCE' DUMPING_ITERATIVE 
-4 ' ' SEE SECTION 5. 3 
-5 ESTIMATING THE BETA PARAMETER FROM 
-6 A LOG-MULTIPLICATIVE (RC) MODEL 
-7 DUMPING SEVERITY DATA FROM TABLE 1.6 
8 (AGRESTI, 1984, P81) 
9 'UNITS' $ 12 

10 'FACTOR' OPERAT $4 = 3(1. .. 4) 
11 DUMP $3 = (1. .. 3)4 
12 'VARIATE' COUNT 
13 U = 3(-.3636,-.6134,.4042,.5728) 
14 V = (-.7968,.5529,:2439)4 
15 'READ/PRIN=Z' COUNT 
16 'RUN' 

23 'TABLE' Tl$ OPERAT, DUMP • 
24 'CAPTIOtl' ' ' ACTUAL COUNTS' ' 
25 'TABULATE' COUNT ; Tl 
26 'PRINT' Tl$ 9 
27 'RUN' 

ACTUAL COUNTS 

Tl 
DUMP 1 2 3 

OPERAT 
1 61 28 7 
2 68 23 13 
3 58 40 12 
4 53 38 16 

28 'CALC' UV= U*V 
29 'TERMS' COUNT+OPERAT+DUMP+UV 
30 'Y/ERROR=POISSON' COUNT 
31 'FIT/PRIN=CA' OPERAT+DUMP+UV FVAL = PRED 
32 'RUN' 

I I 

31 ................................................................. . 



***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** REGRESSION COEFFICIENTS*** 

CONSTANT 
OPERAT 2 
OPERAT 3 
OPERAT 4 
DUMP 2 
DUMP 3 
UV 
* STANDARD ERRORS BASED ON SCALE 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

ESTIMATE 

3.971 
0.042 
0.225 
0.210 

-0.640 
-1. 617 
0.442 

PARAMETER WITH 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 5 

33 
34 
35 
36 

I CAPTIOH I 
I I 

'TABULATE' PRED 
'PRINT' Tl$ 10.3 
'RUN' 

FITTED COUNTS 

Tl 
DUMP 1 

OPERAT 
1 60.284 
2 68.623 
3 57.595 
4 53.498 

37 'CLOSE' 

2.856 0.5712 

FITTED COUHTS I I 

Tl 

2 3 

25.588 10 .128 
25.098 10.279 
38.634 13.771 
39.680 13.822 

236. 

S.E. T 

0 .110 36.18 
0.143 0.29 
0.144 1. 56 
0.145 1.45 
0 .111 -5.79 
0 .159 -10.20 
0.157 2.81 

VALUE 1.000 

******** END OF DUMPING . MAXIMUM OF 1286 DATA UNITS USED AT LINE 31 
(31482 LEFT) 



237. 

GENSTAT V RELEASE 4.04B 
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT 
ION) 

1 
-2 
-3 

4 
5 
6 
7 
8 
9 

10 

16 
-17 

18 
19 
20 

'REFERENCE' DUMPING_LOGITl 
''SEE SECTION 6.2.3.1.1.1 

FITTING SOME HETEROGENEOUS LOGIT MODELS 
TO DUMPING SEVERITY DATA OF TABLE 1.6 

'UNITS' 
'FACTOR' 
'VARIATE' 

$ 4 
OPERAT $4 
COUNT 
TOT 

'READ/PRIN=Z' OPERAT,U,COUNT,TOT 
'RUN' 

'CALC' PROP= COUNT/TOT 
I I IN THIS CASE A "SUCCESS" IS DUMPING= SLIGHT 

AND "FAILURE" IS DUMPING= NONE I I 

'PRHlT/P' OPERAT,U,COUNT,TOT,PROP $ 9, 9.1, 9, 
'RUN' 

OPERAT u COUNT TOT PROP 
1 -1.5 35 96 0.365 
2 -0.5 36 104 0.346 
3 0.5 52 110 0.473 
4 1. 5 54 107 0.505 

21 'TERMS/TOTAL=TOT' COUNT+U 
22 'Y/ERROR=BINOMIAL' COUNT 

I I 

OR 

9, 

-23 ' 1 THIS MODEL ASSUMES OPERATION HAS NO EFFECT 
24 ON FIRST DUMPING LOGIT'' 
25 'FIT /PRHl=A' 
26 'RUN' 

MODERATE, 

9.3 

25 ••••••.•.•.....•.•.••.•.•••••...•.....••••..••...•...••••.•....... 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: BINOMIAL LINK FUNCTION: LOGIT 
Y-VARIATE: COUNT 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 



RESIDUAL 

I I 

DF DEVIANCE MEAN DEVIANCE 

3 7.920 2.640 

THIS MODEL ASSUMES OPERATION HAS AN EFFECT 
ON FIRST DUMPING LOGIT'' 

-27 
28 
29 
30 

'FIT/PRIN=CAU' U 
'RUN' 

238. 

29. •a• t. •••••I I I I I I I I I It t It t It It ♦ t ♦ t •ft ♦ I e • t t I I It It t t It ♦ e It I I It I I ♦ I I 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: BINOMIAL LINK FUNCTION: LOGIT 
Y-VARIATE: COUNT 

*** REGRESSION COEFFICIENTS*** 

COHSTAHT 
u 

ESTIMATE 

-0.320 
0.2291 

S.E. 

0.100 
0.0910 

T 

-3.20 
2.52 

* STANDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE 1.000 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 2 1. 485 0.7426 

*** OBSERVED AND FITTED VALUES*** 

1 
2 
3 
4 

31 'CLOSE' 

OBSERVED 

35 
36 
52 
54 

FITTED 

32.63 
40.87 
49.37 
54 .13 

RESIDUAL TOTAL 

0.51 96 
-0.98 104 
0.50 110 

-0.03 107 

******** END OF DUMPING_. MAXIMUM OF 1012 DATA UNITS USED AT LINE 21 
( 31756 LEFT) 



239. 

GENSTAT V RELEASE 4.04B 
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT 
ION) 

2 
-3 
-4 

5 
6 
7 
8 
9 

10 
11 

'REFERENCE' DUMPING_LOGIT2 
''SEE SECTION 6.2.3.1.1.1 

'UNITS' 
'FACTOR' 
'VARIATE' 

FITTING SOME HETEROGENEOUS LOGIT MODELS 
TO DUMPING SEVERITY DATA OF TABLE 1.6 
$ 4 

OPERAT $4 
COUNT 
TOT 

'READ/PRIN=Z' OPERAT,U,COUNT,TOT 
'RUH' 

17 'CALC' PROP= COUNT/TOT 
-18 '' Hl THIS CASE "SUCCESS" IS DUMPHlG = MODERATE 
19 AND "FAILURE" IS DUMPING= NONE OR SOME '' 

I I 

20 'PRINT/P' OPERAT,U,COUNT,TOT,PROP $ 9, 9.1, 9, 9, 9.3 
21 'TERHS/TOTAL=TOT' COUNT+ U 
22 'Y/ERROR=BINOMIAL' COUNT 
23 ''OPERATION HAS NO EFFECT ON SECOND DUMPING LOGIT'' 
24 'FIT /PRIU=A' 
25 'RUN' 

OPERAT u COUNT TOT PROP 
l -1. 5 7 96 0.073 
2 -0.5 13 104 0 .125 
3 0.5 12 110 0.109 
4 1.5 16 107 0 .150 

24 ................................................................. . 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: BINOMIAL LINK FUNCTION: LOGIT 
Y-VARIATE: COUflT 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 3 3.187 1.062 



26 ''OPERATION HAS AN EFFECT ON SECOND DUMPING LOGIT'' 
27 'FIT/PRIN=CAU' U 
28 'RUN' 

240. 

27. •. • .. t t • t t t t t t t ♦ t t t t t & t t t t t t t I It I I I I I It I I I I I It I It I ♦ I I I I I I I I I It I I I 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: BINOMIAL LINK FUNCTION: LOGIT 
Y-VARIATE: COUNT 

*** REGRESSION COEFFICIENTS*** 
ESTIMATE S.E. T 

CONSTANT -2.070 0.158 -13.13 
U 0.211 0.142 1.49 
* STANDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE 1.000 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 2 0.9384 0.4692 

*** OBSERVED AND FITTED VALUES*** 

l 
2 
3 
4 

29 'CLOSE' 

OBSERVED 

7 
13 
12 
16 

FITTED 

8.09 
10.61 
13.52 
15.78 

RESIDUAL TOTAL 

-0.40 96 
0.78 104 

-0.44 110 
0.06 107 

******** END OF DUMPING_. MAXIMUM OF 1032 DATA UNITS USED AT LINE 21 
(31736 LEFT) 



241. 

GENSTAT V RELEASE 4.04B 
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT 
ION) 

2 'REFERENCE/NUNN=lOO' DUMPING_LINEAR 
4 'MACRO' ORDINAL$ 

-116 ''SEE SECTION 6.2.3.2.1.1 
-117 FITTING A UNIFORM ASSOCIATION MODEL 
-118 TO DUMPING SEVERITY DATA OF TABLE 1.6 
119 USING MACRO OF SECTION 7.1.4 (STIRLING, 1984)'' 
121 'SCALAR' NL=3 NROWS=4 MAXIT=lO NCELLS=l2 
122 'UNIT' $ NCELLS 
123 'FACTOR' LEV $NL =(l ... 3)4 
124 'FACTOR' OPERAT $4 = 3(1 ... 4) 
125 'VARIATE' N 
126 OPERAT L = 3(-1.5,-0.5,0.5,1.5) 
127 'SCALAR' Pl=l.O P2=0.0 P3=0.0 
128 'READ' N 
129 'RUH' 

IDENTIFIER MINIMUM MEMl HAXIMUM 
N 7.00 34.75 68.00 

135 'SET/LIST=M' MODEL2=DUM(l) 
136 'SET/LIST=W MODELl=OPERAT_L 
137 'USE' ORDINAL $ 

138 'RUH' 

FITTING A LINEAR MODEL TO UNDERLYING RESPONSES 

VALUES MISSING 
12 0 

PROPORTIONS OF LOGISTIC, NORMAL AND EXTREME VALUE DISTNS ARE 

Pl 1.00000 

P2 0.00000 

P3 0.00000 
INITIAL ESTIMATES FOR MEAN & CLASS BOUNDARIES 

BOUHDS 
-14.1200 

0.0000 
1.7351 

13.4407 

MN -0.3045 

DEV 10.8782 



24 2. 

137 •et t t • t t t If I I I I I I I I It I I I It I I I I I I I I I I I I I I I• It I ,I I I It t t I It I I• I It It I I I 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I It I I I I I 

***** REGRESSION ANALYSIS***** 

Y-VARIATE: Z 
WEIGHT VARIATE: W 

*** REGRESSION COEFFICIENTS*** 

CONSTANT 
DUM (1) 
OPERAT_L 
* STMlDARD ERRORS BASED ON SCALE 

DEV 4.2952 

ESTIMATE 

-0.3149 
1.735 

0.2236 
PARAMETER 

DEG 

S.E. T 

0.0992 -3.18 
0 .143 12.09 

0.0870 2.57 
WITH VALUE 1.000 

5 

137 ................................................................. . 

***** REGRESSION ANALYSIS***** 

Y-VARIATE: Z 
WEIGHT VARIATE: W 

*** REGRESSION COEFFICIENTS*** 

CONSTAHT 
DUM(l) 
OPERAT_L 
* STANDARD ERRORS BASED ON SCALE 

DEV 4. 2701 

ESTIMATE 

-0.320 
1. 754 

0.2247 
PARAMETER 

DEG 

S.E. T 

0.100 -3.20 
0 .143 12.24 

0.0881 2.55 
WITH VALUE 1. 000 

5 

137 ................................................................. . 

***** REGRESSIOH ANALYSIS***** 

Y-VARIATE: Z 
WEIGHT VARIATE: W 

*** REGRESSION COEFFICIENTS*** 

CONSTANT 
DUH(l) 
OPERAT L 

ESTIMATE 

-0.320 
1.754 

0. 22-17 

S.E. 

0.100 
0.145 

0.0882 

T 

-3.20 
12 .11 
2.55 



243. 

* STANDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE 1.000 

DEV 4.2701 DEG 5 
ACTUAL AND FITTED CELL COUNTS AND RESIDUALS 

T3 
LEV 1 2 3 
ROW 

1 61 28 7 
2 68 23 13 
3 58 40 12 
4 53 38 16 

T3 
LEV 1 2 3 
ROW 

1 63.230961 24.867994 7.901047 
2 63.075539 30.426111 10.498355 
3 60.696751 35.746326 13.556925 
4 53.050480 37.936993 16.012526 

T3 
LEV l 2 3 
ROW 

l -0.2822 0.6155 -0.3270 
2 0.6122 -1. 4075 0.7441 
3 -0.3488 0.6980 -0.4314 
4 -0.0073 0.0103 -0.0028 

139 'CLOSE' 

******** END OF DUMPING . MAXIMUM OF 4096 DATA UNITS USED AT LINE 13 
7 (28672 LEFT) 



244. 

GENSTAT V RELEASE 4.04B 
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT 
ION) 

2 'REFERENCE/NUNN=lOO' DUMPING 
4 'MACRO' ORDINAL$ 

-116 ''SEE SECTION 6.2.3.2.2.1 
-117 FITTING A LOGIT ROW EFFECTS MODEL 
-118 TO DUMPING SEVERITY DATA OF TABLE 1.6 
119 USING MACRO OF SECTION 7.1.4 (STIRLING, 1984)'' 
120 'SCALAR' NL=3 NROWS=4 MAXIT=lO NCELLS=l2 
121 'UNIT' $ NCELLS 
122 'FACTOR' LEV $NL =(l ... 3)4 
123 'FACTOR' OPERAT $4 = 3(1 ... 4) 
124 'VARIATE! N 
125 OPERAT_L = 3(-1.5,-0.5,0.5,l.5) 
126 'SCALAR' Pl=l.O P2=0.0 P3=0.0 
127 'READ' N 
128 'RUN' 

IDENTIFIER MINIMUM MEAN HAXIMUM 
H 7.00 34.75 68.00 

134 'S?T/LIST=M' MODEL2=DUM(l) 
135 'SET/LIST=M' MODELl=OPERAT 
136 'USE' ORDINAL $ 

137 'RUN' 

FITTING A LINEAR MODEL TO UNDERLYING RESPONSES 

VALUES MISSING 
12 0 

PROPORTIONS OF LOGISTIC, NORMAL AND EXTREHE VALUE DISTNS ARE 

Pl 1.00000 

P2 0.00000 

P3 0.00000 
INITIAL ESTIMATES FOR MEAN & CLASS BOUNDARIES 

BOUNDS 
-14.1200 

0.0000 
1.7351 

13. 4407 

MN -0.3045 

DEV 10.8782 



245. 

136. I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

***** REGRESSION ANALYSIS***** 

Y-VARIATE: Z 
WEIGHT VARIATE: W 

*** REGRESSION COEFFICIENTS*** 

CONSTANT 
DUM(l) 
OPERAT 2 
OPERAT 3 
OPERAT 4 
* STANDARD ERRORS BASED ON SCALE 

DEV 3.6013 

ESTIMATE 

-0.578 
1. 735 
0.022 
0.428 
0.603 

PARAMETER 

DEG 

S.E. T 

0.202 -2.86 
0.143 12.09 
0.278 0.08 
0.274 1. 56 
0.276 2.19 

WITH VALUE 1.000 

3 

136 ................................................................. . 

***** REGRESSION ANALYSIS***** 

Y-VARIATE: Z 
WEIGHT VARIATE: W 

*** REGRESSION COEFFICIENTS*** 

COHSTANT 
DUM(l) 
OPERAT 2 
OPERAT 3 
OPERAT 4 
* STAl-lDARD ERRORS BASED ON SCALE 

DEV 3.5637 

ESTIMATE S.E. T 

-0.581 0.210 -2.77 
1. 756 0 .143 12.25 
0.009 0.289 0.03 
0.429 0.278 1. 54 
0.600 0.278 2.15 

PARAMETER WITH VALUE 1. 000 

DEG 3 

136 ................................................................. . 

***** REGRESSION ANALYSIS***** 

Y-VARIATE: Z 
WEIGHT VARIATE: W 

*** REGRESSION COEFFICIENTS *** 
ESTIMATE S.E. T 



246. 

CONSTANT -0.581 0.210 -2.77 
DUM(l) 1.756 0 .145 12.10 
OPERAT 2 0.008 0.290 0.03 
OPERAT 3 0.429 0.279 1. 54 
OPERAT 4 0.600 0.279 2.15 
* STANDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE 1.000 

DEV 3.5637 DEG 3 
ACTUAL AND FITTED CELL COUNTS AND RESIDUALS 

T3 
LEV 1 2 3 
ROW 

1 61 28 7 
2 68 23 13 
3 58 40 12 
4 53 38 16 

T3 
LEV 1 2 3 
ROW 

1 61.571697 25.974493 8.453816 
2 66.506371 28.266640 9.226990 
3 59 .172386 36.617966 14.209652 
4 53.004574 37.987713 16.007710 

T3 
LEV 1 2 3 
ROW 

1 -0.0729 0.3924 -0.5155 
2 0.1825 -1.0240 1.1693 
3 -0.1529 0.5506 -0.6025 
4 0.0000 0.0000 -0.0020 

138 'CLOSE' 

******** END OF DUMPING. MAXIMUM OF 4132 DATA UNITS USED AT LINE 136 
(28636 LEFT) 



247. 

GENSTAT V RELEASE 4.04B 
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT 
ION) 

1 
2 

-115 

'REFERENCE/NUNN=lOO' DUMPING 
'MACRO' ORDINAL$ 

''SEE SECTION 6.2.4.1.1 
-116 
-117 

FITTING A THREE-DIMENSIONAL LOGIT MODEL 
TO DUMPING SEVERITY DATA OF TABLE 4.8 

118 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 

USING MACRO OF SECTION 7.1.4 (STIRLING, 1984)'' 
'SCALAR' 
'UNIT' $ 
'FACTOR' 
'FACTOR' 

NL=3 NROWS=l6 MAXIT=lO NCELLS=48 
NCELLS 
LEV $NL =(l ... 3)16 

OPERAT '$4 = 12(1 ... 4) 
HOSPITAL $4 = 3(1 ... 4)4 

'VARIATE' N 
OP_LIN = 12(-1.5,-0.5,0.5,1.5) 

'SCALAR' Pl=l.O P2=0.0 P3=0.0 
'READ' N 
'RUN' 

IDENTIFIER MINIMUM MEAN MAXIMUM 
N 1.000 8.688 24.000 

135 'SET/LIST=H' MODEL2=DUM(l) 
136 'SET /LIST=M' MODEL! =OP _LIN+ HOSPITAL 
137 'USE' ORDINAL $ 

138 'RUN' 

FITTING A LINEAR MODEL TO UNDERLYING RESPONSES 

VALUES MISSING 
48 0 

PROPORTIONS OF LOGISTIC, NORMAL AND EXTREME VALUE DISTNS ARE 

Pl 1.00000 

P2 0.00000 

P3 0.00000 
INITIAL ESTIMATES FOR MEAN & CLASS BOUNDARIES 

BOUNDS 
-14.1200 

0.0000 
1.7351 

13.4407 

MN -0.3045 



248. 

DEV 31.6381 

137 ........................................................... 11 •••••• 

***** REGRESSION ANALYSIS***** 

Y-VARIATE: Z 
WEIGHT VARIATE: W 

*** REGRESSION COEFFICIENTS*** 

CONSTANT 
DUM(l) 
OP _LIN 
HOSPITAL 2 
HOSPITAL 3 
HOSPITAL 4 
* STANDARD ERRORS BASED OH SCALE 

DEV 22.5287 

ESTIMATE 

-0.423 
1.735 

0.2262 
0 .113 
0.426 
0.019 

PARAMETER 

DEG 

S.E. T 

0.163 -2.59 
0.143 12.09 

0.0870 2.60 
0.251 0.45 
0.280 1. 53 
0.262 0.07 

WITH VALUE 1.000 

26 

137 ................................................................. . 

***** REGRESSION ANALYSIS***** 

Y-VARIATE: Z 
WEIGHT VARIATE: W 

*** REGRESSION COEFFICIENTS*** 

COllSTANT 
DUM(l) 
OP _LIN 
HOSPITAL 2 
HOSPITAL 3 
HOSPITAL 4 
* STANDARD ERRORS BASED OH SCALE 

DEV 22.4782 

ESTIMATE S.E. T 

-0.429 0.166 -2.58 
1.762 0 .143 12.29 

0.2264 0.0883 2.56 
0 .102 0.253 0.40 
0.429 0.277 l. 55 
0.027 0.267 0 .10 

PARAMETER 1HTH VALUE 1.000 

DEG 26 

137 ......................................................... · ........ . 

***** REGRESSION ANALYSIS***** 

Y-VARIATE: Z 
· ·WEIGHT VARIATE: W 



249. 

*** REGRESSION COEFFICIENTS*** 
ESTIMATE S.E. T 

COflSTANT -0.429 0.166 -2. 58 
DUM (l) 1.762 0.145 12 .12 
OP _LIN 0.2267 0.0884 2.56 
HOSPITAL 2 0 .104 0.254 0.41 
HOSPITAL 3 0.429 0.277 l. 55 
HOSPITAL 4 0.027 0.267 0.10 
* STAllDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE 1.000 

DEV 22.4781 DEG 26 
ACTUAL AND FITTED CELL COUNTS AND RESIDUALS 

T3 
LEV l 2 3 
ROW 

l 23 7 2 
2 18 6 l 
3 8 6 3 
4 12 9 l 
5 23 10 5 
6 18 6 2 
7 12 4 4 
8 15 3 2 
9 20 13 5 

10 13 13 2 
11 11 6 2 
12 14 8 3 
13 24 10 6 
14 9 15 2 
15 7 7 4 
16 13 6 4 

T3 
LEV l 2 3 
ROW 

1 21. 864841 7.775896 2.359262 
2 16.509319 6.462050 2.028632 
3 9.931291 5.217273 1. 851436 
4 14.903255 5.433831 1. 662914 
5 24.028255 10.522032 3. 449714 
6 15.804072 7.602905 2.593021 
7 10.566076 6.775257 2.658669 
8 12.520808 5.618610 1.860582 
9 21.972786 11. 797505 4.229710 

10 15.475719 9.108009 3.416274 
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11 8.962210 6.973101 3.064690 
12 14.291278 7.858732 2.849991 
13 20.887819 13.680888 5.431294 
14 12.902023 9.238433 3.859544 
15 7.484497 7.016993 3.498509 
16 11.855894 7.947727 3 .196381 

T3 
LEV 1 2 3 
ROW 

1 0.2407 -0.2831 -0.2402 
2 0.3616 -0.1840 -0.8016 
3 -0.6345 0.3346 0.7738 
4 -0.7787 1.3965 -0.5556 
5 -0.2113 -0.1623 0.7816 
6 0.5403 -0.6038 -0.3838 
7 0.4317 -1. 1553 0.7649 
8 0.6792 -1. 2134 0.1010 
9 -0.4274 0.3444 0.3640 

10 -0.6473 1.2111 -0.8312 
11 0.6571 -0.3776 -0.6498 
12 -0.0773 0.0502 0.0881 
13 0.6650 - 1. 0457 0.2399 
14 -1. 1494 1.7370 -1. 0438 
15 -0.1791 -0.0065 0.2621 
16 0.3271 -0.7225 0.4324 

139 'CLOSE' 

******** END OF DUMPING. MAXIMUM OF 5218 DATA UNITS USED AT LINE 137 
(27550 LEFT) 



'REFERENCE/NUNN=IOO' DUMPING 
1

' SEE SECTION 7.1.5 
FITTING A MODEL BASED ON THE 
NEGATIVE EXTREME VALUE DISTRIBUTION 
TO DUMPING SEVERITY DATA OF TABLE 1.6 '' 

'MACRO' ORDINAL$ 
'' STIRLING, 1984'' 
'' Macro to fit linear models to ordinal responses 

Input parameters : 
MODEL! - model formula with explanatory variables 

251. 

MODEL2 - DUM(l)+DUM(2)+ .... +DUM(no of response levels-2) 
LEV factor with response levels 
N variate with numbers in each cell of table. They 

must be ordered in rows (i.e. with all response 
levels for the first combination of 
explanatory variables, then those for the 
second, etc. 

NROWS scalar vith no of rows in the table 
MAXIT 

Pl 
P2 
P3 

scalar vith maximum no of iterations 
(10 should be enough) 
Scalars giving the proportions of logistic, normal 
and extreme value distributions (Make sure they 
add up to 1.0) 

Output 
BETA 
z 
FIT 

parameter estimates 
variate vith residuals 
variate vith fitted values'' 

'CAPTION' ''FITTING A LINEAR MODEL TO UNDERLYING RESPONSES 
PROPORTIONS OF LOGISTIC, NORMAL AND EXTREME VALUE DISTNS ARE' 

'PRIN' Pl,P2,P3 $ 8.5 
'SET' JLIST= DEV,NTOT,NLEVP1,NLEVM2,MN,NLEVS,OLDDEV,LPL,LPU,PDFL, 

PDFU,W,ROWTOT,Tl,T2,T3,BOUNDS,CONV,DEG,ROW 
'LOCAL' JLIST 
'SCALAR' DEV,NTOT,NLEVP1,NLEVM2,MN,NLEVS,OLDDEV,DEG 
'START' 
'CALC' NLEVS=NLEV(LEV) NLEVM2=NLEVS-2 NLEVPl=NLEVS+l 
'RUN' 
'FACTOR' ROW $NROWS = NLEVS! (1 ... NROWS) 
'SET' ILIST=l ... NLEVM2 

'VARIATE' LPL,LPU,FIT,PDFL,PDFU,W,Z,DUM(ILIST),ROWTOT 
'TABLE/N' Tl $LEV T2 $ROW 
'TABULATE' N ; Tl N ; T2 
'VARIATE' BOUNDS $NLEVP1 
'EQUATE' BOUNDS= O,Tl 
'EQUATE' Z $NROWS = T2 
'CALC' ROWTOT=ELEM(Z ; ROW) 

NTOT=SUM(BOUNDS) 
FIT=ELEM(BOUNDS ; LEV+l)/NTOT 
BOUNDS=CUM(BOUNDS) 
BOUNDS= BOUNDS/NTOT+ 
((BOUNDS.EQ.0)-(BOUNDS.EQ.NTOT))*0.000001 



BOUNDS= Pl*LOG(l.O/BOUNDS-l.O)-P2*NED(BOUNDS)­
P3*LOG(-LOG(l-BOUNDS)) 
LPL=ELEM(BOUNDS ; LEV) 
LPU=ELEM(BOUNDS ; LEV+l) 
DEV=2*SUM(N*LOG(N/ROWTOT/FIT + (N.LT.0.5))) 
MN= ELEM(BOUNDS ; 2) 
BOUNDS= MN-BOUNDS 

'CAPTION' ''INITIAL ESTIMATES FOR MEAN & CLASS BOUNDARIES'' 
'PRIN' MN,BOUNDS,DEV $ 10.4 

'FOR' I=l ... MAXIT 
'CALC' OLDDEV=DEV 

Z=EXP(-LPL) 
PDFL=Pl*Z/(l+Z)**2 + P2*0.39894228*EXP(-0,5*LPL*LPL) 
PDFL=(LEV.GT.l.S)*(PDFL + P3*Z*EXP(-Z*(Z.LT.100))* 

(Z.LT.100)) 
Z=EXP(-LPU) 

252. 

PDFU=Pl*Z/(l+Z)**2 + P2*0.39894228*EXP(-0.5*LPU*LPU) 
PDFU=(LEV.LT.NLEVS-0.5)*(PDFU+P3*Z*EXP(-Z*(Z.LT.100))* 

(Z.LT.100)) 
W=ROWTOT*(PDFL-PDFU)**2/FIT 
Z=(PDFL*LPL-PDFU*LPU+N/ROWTOT-FIT)/(PDFL-PDFU) 

'FOR' J=ILIST DUMJ=DUM(ILIST) 
'CALC' DUMJ=((LEV.EQ.J+l)*PDFU-(LEV.EQ.J+2)*PDFL) 

/(PDFL-PDFU) 
'REPEAT' 

'TERMS/WT=W' MODEL2+MODELl+Z 
'Y/SCALE=l.O" Z 
'FIT/PRIN=C' MODEL2+MODEL1 ; FVAL=FIT ; COEFF=BETA DF=DEG 
'CALC' BOUNDS= 0.0 

'EQUATE' BOUNDS$ X,X,NLEVM2 =BETA$ X,NLEVM2 
'CALC' LPU=ELEM(BOUNDS ; LEV+l)-ELEM(BOUNDS ; LEV) 

LPL=FIT-PDFU*LPU/(PDFL-PDFU) 
LPU=FIT-PDFL*LPU/(PDFL-PDFU) 
PDFL=Pl/(1.0+EXP(-LPL)) + P2*NPI(LPL) + 

P3*EXP(-EXP(-LPL)) 
PDFU=Pl/(1.0+EXP(-LPU)) + P2*NPI(LPU) + 

P3*EXP(-EXP(-LPU)) 
FIT=(LEV.LT.l.S)+(LEV.GT.l.S)*PDFL­

(LEV.LT.NLEVS-0.S)*PDFU 
'CALC' DEV=2*SUM(N*LOG(N/ROWTOT/FIT+(N.LT.0.5))) 

DEG=DEG-NROWS 
'PRIH/P' DEV,DEG $ 10.4,8 
'JUMP' CONV*(OLDDEV-DEV.LT.l.OE-4) 
'REPEAT' 

'CAPTION' '' TOO MANY ITERATIONS ! ! ! ! ! IF THE PARAMETER 
ESTIMATE FOR A FACTOR LEVEL rs TENDING TO INFINITY, CHECK 
WHETHER ALL CELLS FOR THAT LEVEL ARE ZERO APART FROM THE 
HIGHEST OR LOWEST RESPONSE LEVEL; IF SO OMIT ALL OBSERVATIONS 
AT THAT FACTOR LEVEL AND REFIT'' 

'LABEL' CONY 
'CAPTION' '' ACTUAL AND FITTED CELL COUNTS AND RESIDUALS'' 
'CALC' FIT=FIT*ROWTOT 



253. 

Z=SQRT(2*(N*LOG(N/FIT+(N.LT.0.5))+FIT-N))*(2*(N.GT.FIT)-l) 
'TABLE/N' T3 $ROW,LEV 
'TABULATE' N ; T3 
'PRIN' T3 $ 10 
'TABULATE' FIT ; T3 
'PRIN' T3 $14.6 
'TABULATE' Z ; T3 
'PRIN' T3 $ 10.4 
'DEVALUE' JLIST 

'EHDMACRO' 

'SCALAR' NL=3 NROWS=4 MAXIT=lO 
'UNIT' $ NCELLS 
'FACTOR' LEV $NL =(l ... 3)4 
'FACTOR' OPERAT $4 = 3(1 ... 4) 
'VARIATE' N 

OPERAT_L = 3(-1.5,-0.5,0.5,1.5) 
'SCALAR' Pl=O.O P2=0.0 P3=1.0 
'READ' N 
I I NOTE TABLE IN REVERSE ORDER TO 
FIT HEGATIVE EXTREME VALUE DISTRIBUTION '' 
'RUH' 

7 28 61 
13 23 68 
12 40 58 
16 38 53 

'EOD' 
'SET/LIST=H' HODEL2=DUM(l) 
'SET/LIST=M' MODELl=OPERAT 
I USE I ORDINAL $ 
'RUN' 
'CLOSE' 
'STOP' 

NCELLS=l2 
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GENSTAT V RELEASE 4.04B 
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT 
ION) 

l 
2 

-114 
-115 
-116 

117 
119 
120 
121 
122 
123 
124 
125 
126 

-127 
128 
129 

'REFERENCE/NUNN=lOO' DUMPING 
'MACRO' ORDINAL$ 

'' SEE SECTION 7.1.5 
FITTING A MODEL BASED ON THE 
NEGATIVE EXTREME VALUE DISTRIBUTION 
TO DUMPING SEVERITY DATA OF TABLE 1.6 

'SCALAR' NL=3 NROWS=4 MAXIT=lO 
I UNIT I $ llCELLS 
'FACTOR' LEV $NL =(1 ... 3)4 
'FACTOR' OPERAT $4 = 3(1 ... 4) 
'VARIATE' ff 

OPERAT_L = 3(-1.5,-0.5,0.5,l.5) 
'SCALAR' Pl=O.O P2=0.0 P3=1.0 
'READ' N 
I I NOTE TABLE IN REVERSE ORDER TO 
FIT NEGATIVE EXTREME VALUE DISTRIBUTION I I 

'RUN' 

I I 

NCELLS=l2 

IDENTIFIER MINIMUM MEAH MAXIMUM VALUES MISSING 
N 7.00 34.75 68.00 

135 'SET/LIST=M' MODEL2=DUM(l) 
136 'SET/LIST=M' MODELl=OPERAT 
137 'USE' ORDINAL $ 

138 'RUN' 

FITTING A LINEAR MODEL TO UNDERLYING RESPONSES 

12 0 

PROPORTIONS OF LOGISTIC, NORMAL AND EXTREME VALUE DISTNS ARE 

Pl 0.00000 

P2 0.00000 

P3 1.00000 
INITIAL ESTIMATES FOR MEAN & CLASS BOUNDARIES 

BOUHDS 
-11.7010 

0.0000 
1.5080 
4. 7262 

MN 2.1014 



2 55. 

DEV 10.8782 

137 .. t • t, • f, t t It I I alt t f • t • • t t It It t • t t • t • t • t t t t It t It I I It t t t I I• I ■ f, t •It t t t I 

***** REGRESSION ANALYSIS***** 

Y-VARIATE: Z 
WEIGHT VARIATE: W 

*** REGRESSION COEFFICIENTS*** 

CONSTANT 
DUM(l) 
OPERAT 2 
OPERAT 3 
OPERAT 4 
* STANDARD ERRORS BASED ON SCALE 

DEV 3.2027 

ESTIMATE S.E. T 

2.303 0.200 ll.52 
1.508 0 .132 ll .43 
0.022 0.218 0.10 

-0.340 0.216 -1.58 
-0.459 0.217 -2.ll 

PARAMETER WITH VALUE 1. 000 

DEG 3 

137 ...................................................... , .......... . 

***** REGRESSION ANALYSIS***** 

Y-VARIATE: Z 
WEIGHT VARIATE: W 

*** REGRESSION COEFFICIENTS*** 

CONSTANT 
DUM(l) 
OPERAT 2 
OPERAT 3 
OPERAT 4 
* STANDARD ERRORS BASED Orl SCALE 

DEV 3 .1729 

ESTIMATE 

2.321 
1.517 
0.030 

-0.344 
-0.455 

PARAMETER 

DEG 

S.E. T 

0.210 11.03 
0.131 11.57 
0.237 0.13 
0.220 -1.56 
0.218 -2.09 

WITH VALUE 1. 000 

3 

137 I et t t • t t •II t It. t It a•• t I I It• t I I• I• t I It t It I• I It I It t •ff I I It I I• f, It It I I 

***** REGRESSION ANALYSIS***** 

Y-VARIATE: Z 
WEIGHT VARIATE: W 
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*** REGRESSION COEFFICIENTS*** 
ESTIMATE S.E. T 

CONSTANT 2.321 0.212 10.97 
DUM(l) l. 518 0 .132 11.46 
OPERAT 2 0.031 0.238 0.13 
OPERAT 3 -0.344 0.221 -1.55 
OPERAT 4 -0.455 0.219 -2.08 
* STANDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE 1.000 

DEV 3. 1729 DEG 3 
ACTUAL AND FITTED CELL COUNTS AND RESIDUALS 

T3 
LEV l 2 3 
ROW 

1 7 28 61 
2 13 23 68 
3 12 40 58 
4 16 38 53 

T3 
LEV l 2 3 
ROW 

1 8.973919 25.668829 61. 357254 
2 9.443013 27.185537 67. 371445 
3 14. 214483 37.266232 58.519287 
4 15.337992 38.829819 52.832195 

T3 
LEV l 2 3 
ROW 

l -0.6856 0.4534 -0.0456 
2 1.0943 -0.8248 0.0764 
3 -0.6037 0.4425 -0.0680 
4 0.1678 -0.1336 0.0231 

139 'CLOSE' 

******** END OF DUMPING. MAXIMUM OF 4138 DATA UNITS USED AT LINE 137 
(28630 LEFT) 
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GENSTAT V RELEASE 4.04B 
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT 
ION) 

1 'REFER' DUMP2WAY 
-2 1

' SEE SECTION 8.1.1 
-3 FITTING A MEAN RESPONSE MODEL TO 
-4 OPERATION BY DUMPING DATA OF TABLE 1.6 

5 USING WEDDERBURN' S METHOD ' ' 
6 1 UNITS' $ 12 
7 'VARIATE' COUNT 
8 AST AR 
9 

10 
11 
12 
13 
14 
15 

'FACTOR' 

'SCALAR' 

A 
OPERATION 
DUMP 
DEV 
SLlETA 
SL2ETA 
SL3ETA 

16 SL4ETA 
17 SL5ETA 
18 SL6ETA 

$ 
$ 

19 'READ/PRIN=Z' COUNT 
20 'RUN' 

4 = 3(1. .. 4) 
3 = (1,2,3)4 

26 'TABLE/M' Tl $ OPERATION, DUMP 
27 'READ/PRIN=Z' LlSTAR,L2STAR,L3STAR,L4STAR,L5STAR,L6STAR 
28 'RUH' 

42 'READ/PRIN=Z' T 
43 'RUN' 

46 'READ/PRIN=Z' AHASH 
47 'RUN' 

50 'CALC' ASTAR = AHASH/3 
51 'PRINT/P' LlSTAR, L2STAR,L3STAR,L4STAR,L5STAR, 
52 L6STAR,T,AHASH,ASTAR $ 8(7.0),6.4 
53 'RUN' 
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LlSTAR L2STAR L3STAR L4STAR L5STAR L6STAR T AHASH ASTAR 
-1 0 1 0 0 
-2 0 1 0 0 
-3 0 1 0 0 

2 1 0 1 0 
4 2 0 1 0 
6 3 0 1 0 

-1 -2 0 0 1 
-2 -4 0 0 1 
-3 -6 0 0 1 

0 1 0 0 0 
0 2 0 0 0 
0 3 0 0 0 

54 'CALC' Ll = LlSTAR/T 
55 'CALC' L2 = L2STAR/T 
56 'CALC' L3 = L3STAR/T 
57 'CALC' L4 = L4STAR/T 
58 'CALC' LS = L5STAR/T 
59 'CALC' L6 = L6STAR/T 
60 'CALC' A = ASTAR*T 
62 I PRINT/PI T,A,Ll, L2,L3,L4,L5,L6 
63 'RUN' 

T A Ll L2 L3 
96 32 -0.0104 0.0000 0.0104 
96 32 -0.0208 0.0000 0.0104 
96 32 -0.0313 0.0000 0.0104 

104 35 0.0192 0.0096 0.0000 
104 35 0.0385 0.0192 0.0000 
104 35 0.0577 0.0288 0.0000 
110 37 -0.0091 -0.0182 0.0000 
110 37 -0.0182 -0.0364 0.0000 
110 37 -0.0273 -0.0545 0.0000 
107 36 0.0000 0.0093 0.0000 
107 36 0.0000 0.0187 0.0000 
107 36 0.0000 0.0280 0.0000 

64 'CALC' ETA= COUHT 
65 'CALC' Z = COUNT - A 
66 I PRINT/P, COUNT,ETA,Z $ 7, 
67 'RUN' 

COUNT 
61 

ETA Z 
61 29.0000 

L4 
0.0000 
0.0000 
0.0000 
0. 0096 
0. 0096 
0. 0096 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

7.0, 

0 96 1 0.3333 
0 96 1 0.3333 
0 96 1 0.3333 
0 104 1 0.3333 
0 104 1 0.3333 
0 104 1 0.3333 
0 110 1 0.3333 
0 110 1 0.3333 
0 110 1 0.3333 
1 107 1 0.3333 
1 107 1 0.3333 
1 107 1 0.3333 

$ 5, 5, 2(8.4), 4(7.4) 

LS L6 
0.0000 0.0000 
0.0000 0.0000 
0.0000 0.0000 
0.0000 0.0000 
0.0000 0.0000 
0.0000 0.0000 
0.0091 0.0000 
0.0091 0.0000 
0.0091 0.0000 
0.0000 0.0093 
0.0000 0.0093 
0.0000 0.0093 

10.4 
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28 28 -4.0000 
7 7 -25.0000 

68 68 33.3333 
23 23 -11. 6667 
13 13 -21.6667 
58 58 21.3333 
40 40 3.3333 
12 12 -24.6667 
53 53 17.3333 
38 38 2.3333 
16 16 -19.6667 

68 'TABULATE/PRIN=T' ETA Tl 
69 'RUN' 

Tl 
DUMP 1 2 3 MARGIN 

OPERATIO 
1 61.00 28.00 7.00 96.00 
2 68.00 23.00 13.00 104.00 
3 58.00 40.00 12.00 110. 00 
4 53.00 38.00 16.00 107.00 

MARGIN 240.00 129.00 48.00 417.00 

70 ' FOR' I = l. .. 3 
71 'CALC' W = 1/ETA 
72 'CALC' Pl = ETA*Ll 
73 'CALC' P2 = ETA*L2 
74 'CALC' P3 = ETA*L3 
75 'CALC' P4 = ETA*L4 
76 'CALC' PS= ETA*L5 
77 'CALC' P6 = ETA*L6 
78 'CALC' SLlETA = SUM(Pl) 
79 'CALC' SL2ETA = SUM(P2) 
80 'CALC' SL3ETA = SUM(P3) 
81 'CALC' SL4ETA = SUM(P4) 
82 'CALC' SL5ETA = SUM(P5) 
83 'CALC' SL6ETA = SUH(P6) 
84 'TERHS/WT=W' Z+Pl+P2+P3+P4+P5+P6 
85 I y I z 
86 'FIT/INT=N,PRIN=Z' Pl+P2+P3+P4+P5+P6; FVAL = PRED 
87 'CALC' ETA= COUNT - PRED 
88 'TABULATE/PRIN=T' ETA ; Tl 
89 'CALC' DEV= 2*(SUM(ETA-COUNT) + SUM(COUNT*LOG(COUNT/ETA))) 

90 'PRINT' DEV $ 10.4 



91 'REPEAT' 
92 'RUN' 

DUMP 
OPERA TIO 

1 
2 
3 
4 

MARGIN 

Tl 
1 

61.93 
66.19 
58.52 
53.27 

239.91 

DEV 0.2220 

Tl 
DUMP 1 

OPERATIO 
1 61.89 
2 66.19 
3 58.50 
4 53.26 

MARGIN 239.84 

DEV 0.2216 

Tl 
DUMP 1 

OPERATIO 
1 61.89 
2 66.19 
3 58.50 
4 53.26 

HARGHl 239.84 

DEV 0.2216 

93 'CLOSE' 
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2 3 MARGIN 

27.45 6.62 96.00 
23.69 14.12 104.00 
39.74 11. 74 110.00 
37.90 15.83 107.00 

128.78 48.31 417.00 

2 3 MARGIN 

27.46 6.65 96.00 
23.65 14.16 104.00 
39.75 11. 75 110. 00 
37.90 15.84 107.00 

128.76 48.40 417. 00 

2 3 MARGIN 

27.46 6.65 96.00 
23.65 14.16 104.00 
39.75 11. 75 110. 00 
37.90 15.84 107.00 

128.76 48.40 417.00 
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GENSTAT V RELEASE 4.04B 
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT 
ION) 

3 'REFERENCE' MONKEY 
-4 ''SEE SECTION 8.2.4 
-5 FITTING THE LOGLINEAR MODEL OF 
-6 QUASI-INDEPENDENCE TO SQUIRREL MONKEY 

7 TABLE WITH FIXED ZEROES (TABLE 1.8) 
8 'UNITS' $ 30 
9 'FACTOR' ACTIVE $ 5 = 6(1. .. 5) 

10 PASSIVE $ 6 = (1 ... 6)5 
11 'VARIATE' COUNT 
12 'READ/PRIN=D' COUNT 
13 'RUH' 

14 * l 5 8 9 
15 29 * 14 46 4 
16 2 3 l * 38 
17 0 0 0 0 * 
18 9 25 4 6 13 
19 'EOD' 

0 
0 
2 
l 
* 

20 'TABLE' Tl$ ACTIVE, 
21 'TABULATE' COutlT ; T 1 
22 'PRINT' Tl $ 10 
23 'RUN' 

Tl 
PASSIVE 1 2 

ACTIVE 
1 0 1 

2 29 0 

3 2 3 

4 0 0 

5 9 25 

PASSIVE 

3 

5 

14 

1 

0 

4 

24 'TERMS' COUNT+ACTIVE+PASSIVE 

4 

8 

46 

0 

0 

6 

I I 

5 6 

9 0 

4 0 

38 2 

0 1 

13 0 



25 'Y /ERROR=POISSON' COUNT 
26 'CAPTION' II (A,P) II 

27 'FIT/PRIN=A' ACTIVE+PASSIVE 
28 'RUH' 

(A, P) 

262. 

FVAL = PRED 

27 •II I I I I I I I I I I I I I I I I ♦ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 15 135.2 

29 'TABULATE' 
30 'PRINT' 

PRED ; Tl 
Tl $ 10.3 

31 'RUtl' 

Tl 
PASSIVE 1 2 

ACTIVE 
1 0.000 5.260 

2 19. 186 0.000 

3 10.936 12. 474 

4 0.220 0.251 

5 9.658 11.016 

32 'CLOSE' 

9. 011 

3 4 

2.481 8.216 

10.322 34.185 

5.884 0.000 

0 .118 0.392 

5.196 17.208 

5 6 

6.648 0.396 

27.661 1.647 

15.767 0.939 

0.000 0.019 

13.924 0.000 

******** END OF MONKEY. MAXIMUM OF 1416 DATA UNITS USED AT LINE 27 ( 
31352 LEFT) 
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GENSTAT V RELEASE 4.04B 
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT 
ION) 

1 'REFER' HEALTH 
-2 I I SEE SECTION 8.2.5.1 
-3 FITTING THE LOGLINEAR MODEL (SA, SH) 
-4 TO TABLE 8.3 
-5 SEX X AGE X HEALTH CONCERNS 
6 {WITH STRUCTURAL ZEROES) I I 

7 'UNITS' $ 16 
8 'VARIATE' COUNT $ 16 
9 PRED $ 16 

11 'FACTOR' CONCERN $ 4 = 4(1. .. 4) 
12 SEX $ 2 = 2(1,2)4 
13 AGE $ 2 = (1,2)8 
15 'READ/PRIN=D' COUNT 
17 'RUN' 

18 4 2 9 7 
19 * * 4 8 
20 42 7 19 10 
21 57 20 71 31 
22 'EOD' 

23 'TABLE' 
24 'TABULATE' 
25 'PRINT' 

TABl $ CONCERN, SEX, AGE 
COUNT ; TABl 
TABl $ 9 

26 'RUN' 

TABl 
AGE 1 

CONCERH SEX 
1 1 4 

2 9 
2 1 0 

2 4 
3 1 42 

2 19 
4 1 57 

2 71 

27 'TERMS' COHCERN*SEX*AGE+COUNT 
28 'Y/ERROR=POISSON' COUNT 

2 

2 
7 
0 
8 
7 

10 
20 
31 



264. 

29 'FIT/PRIN=A' 
30 'RUN' 

SEX*AGE+CONCERN+SEX.CONCERN FVAL = PRED 

29 .••....•••........•...•..••............•....................•..... 

*** LINEAR DEPENDENCE DETECTED WHILE FITTING TERM CONCERN.SEX 
1 PARAMETER(S) OF THIS TERM ARE ALIASED. 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 5 

31 'TABULATE' 
32 'PRINT' 
33 'RUH' 

CONCERN 
1 

2 

3 

4 

34 'CLOSE' 

9.426 

PRED TABl 
TABl $ 10.2 

AGE 
SEX 

1 
2 
1 
2 
1 
2 
1 
2 

1. 885 

TABl 
1 2 

4.68 1. 32 
10.36 5.64 
0.00 0.00 
7.77 4.23 

38.23 10.77 
18.79 10.21 
60.08 16.92 
66.08 35.92 

******** END OF HEALTH. MAXIMUM OF 1648 DATA UNITS USED AT LINE 29 ( 
31120 LEFT) 



265. 

GENSTAT V RELEASE 4.04B 
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT 
ION) 

3 'REFERENCE' MOBILITY 
-4 I I SEE SECTIOtl 8.3.1.1 
-5 FITTING THE LOGLINEAR MODEL OF QUASI-INDEPENDENCE 
6 TO BRITISH SOCIAL MOBILITY DATA OF TABLE 8.6 
7 'UNITS' $ 25 
8 'FACTOR' FATHER $ 5 = 5(1. .. 5) 
9 SON $ 5 = (1. .. 5)5 

10 'VARIATE' COUNT 
11 I READ/PRIN=D I COUNT 
12 'RUN' 

13 * 45 8 18 8 
14 28 * 84 154 55 
15 11 78 * 223 96 
16 14 150 185 * 447 
17 0 42 72 320 * 
18 'EOD' 

19 'TABLE' Tl $ FATHER, SON 
20 'TABULATE' COUNT ; Tl 
21 I PRINT I Tl$ 10 
22 'RUN' 

Tl 
SON 1 2 3 

FATHER 
1 0 45 8 
2 28 0 84 
3 11 78 0 
4 14 150 185 
5 0 42 72 

23 'TERMS' COUNT+FATHER+SON 
24 'Y/ERROR=POISSON' COUNT 
25 'CAPTION' ' ' QUASI - INDEPENDENCE ' ' 
26 'FIT/PRIN=A' FATHER+SON ; FVAL = PRED 
27 'RUN' 

QUASI-INDEPENDENCE 

4 

18 
154 
223 

0 
320 

I I 

5 

8 
55 
96 

447 
0 
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26. e. t t •• t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t It t t t t t t t t t t t I I ♦ t It ♦ f It f ♦ ♦ ♦ t t 

I I ♦♦ t ♦ ♦ ♦ ♦ f ♦ ♦ ♦ ♦ t t ♦ ft t ♦ ♦ ♦ ♦ t ♦ t ff ♦♦♦♦♦ I ♦ f IJ ♦ t t ♦ ff ♦♦ • ♦♦♦♦♦♦♦♦♦ I ♦ t ♦ ♦ ♦ f 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 11 

28 'TABULATE' 
29 'PRINT 1 

30 'RUN' 

SON 
FATHER 

1 
2 
3 
4 
5 

31 'CLOSE' 

249.4 

PRED ; Tl 
Tl$ 10.3 

Tl 
1 2 

0.000 9.540 
6.565 0.000 
8.522 56.059 

27.510 180.965 
10.403 68.436 

22.68 

3 

11.020 
49.885 

0.000 
209.042 

79.053 

4 

38.488 
174.231 
226 .173 

0.000 
276.107 

5 

19.952 
90.319 

117. 246 
378.483 

0.000 

******** END OF MOBILITY. MAXIMUM OF 1352 DATA UNITS USED AT LINE 26 
(31416 LEFT) 



267. 

GENSTAT V RELEASE 4.04B 
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT 
ION) 

l 'REFER' EYE 
-2 I I SEE SECTION 8.3,3.l AND APPENDIX 6 
-3 FITTING THE MODEL OF QUASI-SYMMETRY TO 

4 EYE-TESTING DATA OF TABLE 8.9 I I 

5 'UNITS' $ 16 
6 'VARIATE' COUNT $ 16 
7 PRED $ 16 
9 'FACTOR' LEFT $ 4 

10 RIGHT $ 4 
11 DUMMY$ 7 
13 'READ/PRIN=D' RIGHT,LEFT,COUNT,DUHHY 
15 'RUN' 

16 l l 1520 l 
17 l 2 266 l 
18 l 3 124 l 
19 l 4 66 l 
20 2 l 234 l 
21 2 2 1512 2 
22 2 3 432 5 
23 2 4 78 6 
24 3 l 117 l 
25 3 2 362 5 
26 3 3 1772 3 
27 3 4 205 7 
28 4 l 36 l 
29 4 2 82 6 
30 4 3 179 7 
31 4 4 492 4 
32 'EOD' 

34 'TABLE' TAB! $ RIGHT, LEFT 
35 'TABULATE' COUNT ; TAB! 
36 'PRINT' TAB! $ 9 
37 'RUll' 

TAB! 
LEFT l 2 3 4 

RIGHT 
l 1520 266 124 66 
2 234 1512 432 78 
3 117 362 1772 205 
4 36 82 179 492 



39 'TERMS' LEFT+RIGHT+DUMMY+COUNT 
40 'Y/ERROR=POISSON' COUNT 
42 'FIT/PRIN=A' LEFT+RIGHT+DUMMY FVAL = PRED 
43 'RUN' 

268. 

42. • t •ff t t ft t t ft• ft ft ff t ff t t I I I I I I I It t I I I It I I It It I I I I I It I I I It I It I It I 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE HEAN DEVIANCE 

RESIDUAL 3 

44 'TABULATE' 
45 'PRHlT' 
46 'RUN' 

LEFT 
RIGHT 

1 
2 
3 
4 

47 'CLOSE' 

7.271 

PRED TABl 
TABl $ 10.2 

TABl 
1 2 

1520.00 263.38 
236.62 1512.00 
107.42 375.01 
42.96 71.61 

2.424 

3 

133.58 
418.99 

1772.00 
182.43 

4 

59.04 
88.39 

201. 57 
492.00 

******** END OF EYE. MAXIMUM OF 1430 DATA UNITS USED AT LINE 42 {313 
38 LEFT) 



269. 

GENSTAT V RELEASE 4.04B 
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT 
IOll) 

2 'REFER' EYE 
-3 I I SEE SECTION 8.3.3.1 AND APPEllDIX 6 
-4 FITTING THE MODEL OF QUASI-SYMMETRY 

5 EYE-TESTING DATA OF TABLE 8.9 
6 'UNITS' $ 16 
7 'VARIATE' COUNT $ 16 
8 PRED $ 16 

10 'FACTOR' LEFT $ 4 
11 RIGHT $ 4 
12 HIGH $ 4 
13 .LOW $ 4 
15 'READ/PRIN=D' RIGHT,LEFT,COUNT,HIGH,LOW 
17 'RUH' 

18 1 1 1520 1 1 
19 1 2 266 2 1 
20 1 3 124 3 1 
21 1 4 66 4 1 
22 2 1 234 2 1 
23 2 2 1512 2 2 
24 2 3 432 3 2 
25 2 4 78 4 2 
26 3 1 117 3 1 
27 3 2 362 3 2 
28 3 3 1772 3 3 
29 3 4 205 4 3 
30 4 1 36 4 1 
31 4 2 82 4 2 
32 4 3 179 4 3 
33 4 4 492 4 4 
34 'EOD' 

36 'TABLE' 
37 'TABULATE' 
38 'PRINT' 
39 'RUH' 

LEFT 
RIGHT 

1 
2 
3 
4 

TABl $ RIGHT, LEFT 
COUUT ; TABl 
TABl $ 9 

TABl 
1 2 3 

1520 266 124 
234 1512 432 
117 362 1772 
36 82 179 

4 

66 
78 

205 
492 

TO 
I I 



41 'TERMS' LEFT+RIGHT+HIGH*LOW+COUNT 
42 'Y/ERROR=POISSON' COUNT 
43 'FIT/PRIN=A' LEFT+RIGHT+HIGH*LOW FVAL = PRED 
44 'RUN' 

2 70. 

43. t f •.ft t I I I I I I I I I I I I It I I ♦ If I I I I I I I I I I I I I I I I I I I I I I I I I I I It ♦ I I I I I I I It 

*** LINEAR DEPENDENCE DETECTED WHILE FITTING TERM LOW 
ALL PARAMETER(S) OF THIS TERM ARE ALIASED. 

*** LINEAR DEPENDENCE DETECTED WHILE FITTING TERM HIGH.LOW 
6 PARAMETER(S) OF THIS TERM ARE ALIASED. 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG 
Y-VARIATE: COUNT 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 3 

46 'TABULATE' 
47 'PRINT' 
48 'RUN' 

LEFT 
RIGHT 

1 
2 
3 
4 

49 'CLOSE' 

7.271 

PRED TAB! 
TAB! $ 10.2 

TABl 
1 2 

1520.00 263.38 
236.62 1512.00 
107.42 375.01 
42.96 71.61 

2.424 

3 

133.58 
418.99 

1772. 00 
182.43 

4 

59.04 
88.39 

201.57 
492.00 

******** END OF EYE. MAXIMUM OF 1884 DATA UNITS USED AT LINE 43 (308 
84 LEFT) 



271. 

GENSTAT V RELEASE 4.04B 
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT 
ION) 

2 'REFER' EYE 

-3 I I SEE SECTION 8.3.4.2 AND APPENDIX 7 
-4 FITTING THE MODEL OF MARGINAL HOMOGENEITY TO 
-5 EYE-TESTING DATA OF TABLE 8.9 
6 USING THE METHOD OF SOLVING SIMULTANEOUS EQUATIONS I I 

7 'UNITS' $ 16 
8 'VARIATE' COUHT $ 16 
9 'FACTOR' RIGHT $ 4 

10 LEFT $ 4 
11 'SCALAR' DEV 
12 'READ/PRIN=D' RIGHT,LEFT,COUNT,Pl,P2,P3,P4,P5,P6,P7,P8,0FF 
13 'RUN' 

14 1 1 1520 0 0 0 0 0 0 0 0 1520 
15 2 1 234 3 2 4 -2 2 -1 3 2 -2181 
16 3 1 117 -2 -1 -3 1 -2 1 -3 -2 2181 
17 4 1 36 0 0 0 1 0 0 0 0 0 
18 1 2 266 1 0 0 0 0 0 0 0 0 
19 2 2 1512 0 0 0 0 0 0 0 0 1512 
20 3 2 362 0 0 0 0 0 0 0 l 0 
21 4 2 82 0 0 l -1 l -1 1 0 0 
22 1 3 124 0 1 0 0 0 0 0 0 0 
23 2 3 432 -2 -2 -3 l -2 0 -2 -1 2181 
24 3 3 1772 0 0 0 0 0 0 0 0 1772 
25 4 3 179 0 0 0 0 0 1 0 0 0 
26 1 4 66 0 0 1 0 0 0 0 0 0 
27 2 4 78 0 0 0 0 l 0 0 0 0 
28 3 4 205 0 0 0 0 0 0 l 0 0 
29 4 4 492 0 0 0 0 0 0 0 0 492 
30 'EOD' 

31 'RUN' 
32 'TABLE/M' PR EDT ABLE $ RIGHT, LEFT 
33 'TABULATE/PRIH=T' COUNT ; PREDTABLE 
34 'RUN' 

PREDTABL 
LEFT 1 2 3 4 MARGIN 

RIGHT 

1 1520.00 266.00 124.00 66.00 1976.00 
2 234.00 1512.00 432.00 78.00 2256.00 
3 117. 00 362.00 1772. 00 205.00 2456.00 
4 36.00 82.00 179. 00 492.00 789.00 

MARGIN 1907.00 2222.00 2507.00 841.00 7477.00 



272. 

35 'TERMS/OFFSET=OFF' Pl+P2+P3+P4+P5+P6+P7+P8+COUNT 
36 'Y/ERROR=POISSON,LINK=IDENTITY' COUNT 
37 'FIT/INT=N' Pl+P2+P3+P4+P5+P6+P7+P8 ; FVAL = PRED 
38 'RUN' 

37 ...............••.....•......•..........•......................•.. 

***** REGRESSION ANALYSIS***** 

ERROR DISTRIBUTION: POISSON LINK FUNCTION: IDENTITY 
Y-VARIATE: COUNT 

OFFSET VARIATE: OFF 

*** REGRESSION COEFFICIENTS*** 

Pl 
P2 
P3 
P4 
P5 
P6 
P7 
P8 
* STANDARD ERRORS BASED ON SCALE 

*** RESIDUAL DEVIANCE*** 
SCALE PARAMETER IS 1.000 

ESTIMATE 

252.5 
111. 84 

56.95 
42.77 
70.59 
188.4 
195.3 
383.l 

PARAMETER WITH 

DF DEVIANCE MEAN DEVIANCE 

RESIDUAL 8 11.99 1. 498 

39 'TABULATE/PRIN=T' PRED PREDTABLE 
40 'RUN' 

PREDTABL 
LEFT 1 2 3 

RIGHT 
1 1520.00 252.49 111. 84 
2 247.24 1512.00 409.43 
3 131. 27 383 .14 1772. 00 
4 42.77 91.62 188.40 

MARGIN 1941.28 2239.25 2481. 67 

S.E. 

11.8 
9.29 
6.89 
6.11 
7.65 
10.6 
10.6 
13.4 

VALUE 1.000 

4 

56.95 
70.59 

195.27 
492.00 

814.80 

T 

21.47 
12.04 
8.26 
7.00 
9.23 

17.79 
18.34 
28.56 

MARGIN 

1941. 28 
2239.25 
2481. 67 
814.80 

7477.00 
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