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ABSTRACT

Some models proposed for the analysis of contingency tables are
reviewed and illustrated with examples.

These include standard loglinear models; models which are suitable
for ordinal categorical variables such as ordinal loglinear, log-
multiplicative and logit models, and models based on an underlying
distribution for the response; and models for incomplete and square
tables.

Estimation methods and inference are also discussed.
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1.

CHAPTER I: INTRODUCTION

1.1 Categorical Variables

This thesis discusses different types of models that can be used to
describe categorical data. A categorical variable differs from a
continuous variable in that rather than being able to take on a
continuous range of values, it 1is only classified into a certain
number of categories. An example would be marital status, which could
have categories such as married, widowed, divorced, or "other". If we
classify each member of a sample simultaneously on two or more
categorical variables, then we can form a cross-classification table.
For example, we might classify 1000 people by their marital status and
age (where age has only been measured in categories) such as in Table
1. 1. '

Table 1.1: Cross-classification table of 1000 people by age and
marital status

Marital Status

Age (years) Married Widowed Divorced Other Total
< 25 100 10 10 180 300
25 - 40 - 200 50 100 50 400
> 40 120 75 80 25 300
TOTAL 420 135 190 255 1000

A cross-classification table is also referred to as a contingency
table or cross-tabulation.

For some variables such as marital status and sex, the only sensible
way to measure them is to classify them into categories. However,
scme other variables, such as age and income, can be measured on a
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continuous scale, but it is often more convenient to simply categorize
them,

1.2 Two-Dimensional Tables

Consider a two-way table of counts with the row variable, X, having r
categories, and the column variable, Y, having c categories - thus
there are r rows and ¢ columns. We will denote the actual count in
the ith row and jth column by nij, and the corresponding expected
count under some model as mjj. The row and column totals are:

Nj+ = Lnjj
J=1
r

Rej = L Dij
i=1

The total number of observations is

Ll nij=N
i]

Assuming that neither category has fixed marginal totals, the
probability that a given individual is classified into cell (i, j) is:

mij = P (X tables on level i and Y takes on level j)

where

Tij = mij
N

Lmig = ey

i

Lmij = mis
J
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Jimiy =1
ij

If X and Y are independent, then

mjj = P (X tables on level i) x P (Y takes on level j)
= Ti+ T4
Since the expected value of njj is
miy = Nmij
then under the model of independence
mij = N mit m4qg

Later, we will discuss models that allow X and Y to be associated in
some way. For these models the expected values depend on more than
just the marginal probabilities.

1.3 Three-Dimensional Tables

We can extend the notation introduced in Section 1.2 to the case of
three-way tables. A three-way table with variables X, Y and Z having
r, ¢ and g categories respectively, will be said to have observed
counts njjk with corresponding expected counts mjjx and population
probabilities mjjk.

An example of a three-way table is Table 1.2 which classifies a sample
of 1593 people by their age, religion and frequency of church
attendance (Knoke and Burke, 1980, p.68).



Table 1.2:

4‘

Effect of age and religion on church attendance

Church Attendance

Religion Age Low Medium High Total

Non-Catholic Young 322 124 141 587

0ld 250 152 194 59

Catholic Young 88 45 106 239

0ld 28 24 119 171

TOTAL 688 345 560 1593
Later, we will formulate models that allow various types of

association between the variables.

1.4 Sampling Models

There are three comon sampling models that are used for the
We will illustrate for the case

collection of cross—-classified data.

of an rxcxg table classified by variables X, Y and Z.
can be easily generalized to tables of a different dimension.

1.4.1 Poisson

These results

We observe a set of independent Poisson processes, one for each
cell in the table over a fixed time pericd, with no prior knowledge
The count njjk in
each cell will have a Poisson distribution with mean mijks i.e.

of the total number of observations to be taken.

the probability function for njjk has the form

£ (nijx) =

nijk

mijk e

ik

Xijkl
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The log likelihood function is

log L(njj) = § nijk log mijk - J mijk - L Dijk!
i'j’k ilj’k

Since the «cells contain counts having independent Poisson
distributions, the total count in the table, N, has a Poisson
distribution with mean

Myt = ) mijk
ik

1. 4.2 Multinomial

We take a fixed sample of size N and cross—classify each member of
the sample according to the categorical variables. The cell counts
{njjk} will have the multinomial distribution specified by the
sample size N and the rcg population probabilities {= ijk}.  The
probability of a particular set of cell counts {njjk} that sum to N
is the multinomial likelihood

L(nijk) = NI TT njjk
TT nigk: ik
i,j,k i,j,k

The log likelihood is

lag L(nijk) ‘=‘2 = njjk 1og Tijk + log 'Nl - Z log nijk!
i,3,k i,3,k

The expected value of each njjx is mjjx = Nmjjk.

1. 4,3 Product Multinomial

For each combination of one or more categorical explanatory
variables, we take a multinomial sample of fixed size which is
classified by the remaining response variable(s). For example,
suppose we fix the g layer totals and take a sample of size nyik

for each k. Let ;s\ be the probability of an observation
falling into the ith category of X and the jth category of Y, given
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that it falls into the kth category of Z (i.e. mjjk/m44k). The
cell counts within the kth layer have the multinamial distribution
specified by the sample size ny4r and the probabilities {miik
k = 1, ..., 2}, and cell counts from different layers are
independent. The cell counts in layer k have the probability
function

njjk
L{njj(k)) = Dyt . Tij(k)
T hijk!  1ed

and the product of these from the g layers gives the probability
function for the whole table (the product multincmial likelihood)

L(nisk) = Il I T niik
ijk K Ntk i, ij (k) ]

I,
i3 Pigxt

The expected value of each njjk is Mgk = Nk 15 (k)

1. 4.4 Equivalence of Results for Different Sampling Models

For the models that will be discussed in this thesis, the maximum
likelihood estimates (MLEs) are the same for all sampling schemes.
The one condition required is that a term corresponding to the
fixed margin(s) in the product multinamial sampling scheme be
included in the model (for more details see Appendix 1). Because
of this equivalence, generally models will be phrased as though the
sampling scheme was multinomial.

1.5 Response and Explanatory Variables

Each variable (i.e. margin) in a table can be thought of as either an
explanatory variable (factor) which affects others, or as a response
variable which depends on other factors.

For three-dimensional tables there are three possible cambinations:

(i) no explanatory, three response variables
(ii) one explanatory, two response variables

(iii) . two explanatory, one response variable.
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Examples of these three types of tables include Tables 1.2, 1.3 and

1. 4.

Table 1.3:

Occupation (0), Education (E), and Aptitude (A)
of World War II volunteers

0l (self employed, business)

02 (self employed, professional)

El E2 E3 E4 El E2 E3 E4
Al | 42 55 22 3 1 2 8 19
A2 |72 82 60 12 1 2 15 33
A3 |90 106 85 25 2 5 25 83
Ad |27 48 47 8 2 2 10 45
A5 8 18 19 5 0 0 12 19
03 (teacher) 04 (salary employed)

El E2 E3 E4 El E2 E3 E4
Al} O 0 1 19 172 151 107 42
A2 | O 3 3 60 208 198 206 92
A3 1 4 5 86 279 271 331 191
A4l O 0 2 36 99 126 179 97
A5 0 0 1 14 36 35 99 79

1.5.1 Three Responses

Type (1) tables are only rarely found in practice.
1.3 can be thought of as one.
p. 45) refer to the classification of 4353 World War II volunteers
into four occupational groups by four levels of education and five

However Table
The data, taken from Fienberg (1980,



levels of aptitude. Because of the sampling scheme and the way in
which the individuals were classified (see Fienberg for further
details), all three variables can be thought of as responses.

1.5.2 Two Responses

Table 1.4, taken from Fienberg (1980, p.27) is an example of the
second type of table. The data refer to the perch heights and
diameters of two different species of lizards. Species 1is an
expalanatory variable which affects the responses of height and
diameter.

Table 1.4: Perch height and diameter of two species of lizards

Sagrei Species Distichus Species

Perch height Perch height

Perch Diameter < 4.0" > 4.0" < 4.0" > 4.0"
>4.75" 32 86 61 73
<4.75" 11 35 41 70

1.5.3 One Response

Type (iii) tables are the most cammon three—-dimensional tables. An
example is given in Table 1.2 which illustrates the effect of the
explanatory variables, religion and age, on the response, frequency
of church attendance.

1.5.4 Types of Mcdels that can be Fitted

For type (i) tables only Poisson or multinomial sampling schemes
are usually appropriate, whereas for types (ii) and (iii) we would
also use a product-multinomial model in which the fixed marginal
totals correspond to explanatory variables.
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The distinction between explanatory and response variables
certainly affects the interpretation of the results, but often does
not affect the types of models that can be fitted. A sensible
approach for the analysis of tables with one or more explanatory
variables is to condition on the values of these margins, treating
them as fixed even in those cases where they are not. We will
discuss this approach more fully later.

1.6 Ordinal Categorical Data

When one or more of the variables in a cross-classification is
measured on an ordinal scale, we can use models which take account of
this to give more powerful tests of association and simpler, more
incisive measures of this association than models which simply treat
all the variables as nominal.

An illustration of an ordinal variable and the levels of its
corresponding scale would be education which might be measured as
primary school, high school, or tertiary education.

Other examples would be consumer rating of a new food product as
dislike a lot, dislike, indifferent, like, like a lot; or measuring
the softness of water as soft, medium or hard.

Ordinal scales commonly occur in many disciplines, such as the social
sciences (e.g.  for measuring attitudes and opinions), marketing (e.g.
for preference scales), medicine (e.g. for describing severity of an
injury, or degree of recovery from an illness). In many fields
ordinal scales often result when discrete measurement is used with
inherently continuous variables such as age, incame or social status.
Often it 1is possible to measure a variable perhaps even on a
continuous scale, but much quicker and more convenient to simply
measure it on an ordinal scale. For instance, the amount of sediment
left on a filter pad may be simply classified as none, slight,
moderate oOr excessive by camparing it to a photographic standard
rather than drying it and precisely weighing it.

A categorical variable is referred to as "ordinal" rather than
"interval" when there is a clear ordering of the categories but the
absolute distances among them are unknown. For example, the variable
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"education" is ordinal when measured with categories primary school,
high school, university, but it is interval when measured with the
integer values 0, 1, 2,... representing number of years of education.

An ordinal variable 1is quantitative because 1t corresponds to
different quantities of a certain characteristic, while qualitative
variables which are measured on a nominal scale have no such property.
Examples of nominal variables are race, religion or marital status.
The order of listing of the categories of a nominal variable is
obviously unimportant.

1.6.1 Advantages of Using Ordinal Methods

Most of the well-known methods for analysing categorical data (such
as the Pearson chi-squared test of independent or the cammon
loglinear models discussed in Chapter II) treat all variables as
nominal, i.e. the results are invariant to permutations of the
categories of any of the variables.

Since ordinal variables are inherently quantitative, Agresti (1984)
argues that their descriptive measures should be more like those
for interval variables than those for nominal variables.

The advantages of using ordinal methods instead of the standard
nominal procedures include:

1. Ordinal methods have greater power for detecting particular
kinds of association;

2. Ordinal data description is based on measures that are

similar to those (e.q. correlations, slopes) used in
ordinary regression and analysis of variance for continuous
variables;

3. Ordinal analyses can use a greater variety of models, most
of which are more parsimonious and have simpler
interpretations than the standard models for nominal
variables.

4, Interesting ordinal models can be applied in settings where
the standard nominal models are trivial or else have too many

parameters to be tested for goodness of fit.
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In Chapters IV to VII we will discuss particular classes of models
that can be used to model ordinal categorical data. These include
ordinal loglinear, log-multiplicative and logit models, as well as
models based on underlying distributions for the response.

1.6.2 0Odds Ratios for 2x2 Tables

The odds ratio is a measure that describes the degree of
association in a 2x2 table - it 1is especially important in the
study of ordinal models.

Consider the 2x2 ©population cross-classification with cell
probabilities wjj. Within row 1 the odds that variable 2 is in
column 2 instead of column 1 is

Q] =712
T11

Within row 2 the corresponding odds equals

2 =122
m21

Each Q@i is nonnegative, with value greater than 1.0 if column 2 is
more likely than column 1.

The ratio of these odds

6 =02 = m2/12]1
Q1 T12/711

= m11 T2

T2] T12

is the odds ratio. It is sometimes called the cross product ratio,
since it is the ratio of the products nll w22 and w12 w21 of
proportions fram cells that are diagonally opposite.

Each odds Qi can be expressed as
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Qi = mip/mi+
Ti1/T i+

T2(1)
T1(1i)

SO

8 = mp(2)/m1(2)
T2(1)/T1(1)

The row and column variables are independent if and only if 9 = q»
(and so 8 = 1.0). If 1 < 8 <, then individuals in row 2 are more
likely to be in column 2 than are individuals in row 1, i.e.

mTp(2) > w2(1)e If 0 < 6 <1, individuals in row 2 are less likely
to be in column 2 than are individuals in row 1, i.e. mp(p) <

T2(1)-

For sample cell frequencies {xij}, a sample analog of ¢ is

6 =n11 nyp
npj} ni2

The value of 6 does not change if both cell frequencies within any
row are multiplied by a nonzero constant, or 1if both cell
frequencies within any column are multiplied by a constant. So B
estimates the same characteristic (8) even if disproportionately
large or small samples are selected from the various marginal
categories of a variable. In particular, it estimates the same
characteristic regardless of whether sampling is full multincmial
or independent multinomial. It also takes the same value if the
orientation of the table is reversed so that the rows beccme the
columns and the columns became the rows.

If the order of the rows or the order of the columns is reversed,
the new value of 6 is simply the inverse of the original value. So
two values of 6 that are the inverse of one another (such as 3 and
1/3) represent the same degree of association, but in opposite
directions,

The odds ratio is a multiplicative function of  the cell
proportions. Its logarithm is an additive function, i.e.
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log 8 = log m1] - log mjp = log mp; + log wpp and may equal any
real number. The log odds ratio 1is symmetric about the
independence value of 0.0 in the sense that a reversal of the two
rows or the two columns results in a change of its sign.

l.6.2.1 Incidence of Colds Example

Pauling (1971) describes a double-blind study to evaluate the
effect of ascorbic acid (vitamin C) on the common cold. One
group of 140 skiers received a placebo, while a second of 139
received 1 g of ascorbic acid per day. The incidence of colds
was recorded and is shown in Table 1.5.

Table 1.5: Incidence of comon colds

Treatment No Cold Cold
Ascorbic acid 122 17
Placebo 109 31

The odds of catching a cold for the ascorbic acid group are
17/122 = ,14, while the odds for the placebo group are 31/109 =
0.28. The ratio of these odds is 0.28/0.14 = (122 x 31)/(109 x
17) = 2.04. This means that the odds of catching a cold were
2.04 times higher for the placebo group than for the ascorbic
acid group. This odds ratio is significantly higher than 1.0,
so it is plausible that administration of vitamin C helped to

prevent the occurrence of colds. '

1.6.3 0dds Ratio for rxc Tables

For the general rxc table odds ratios can be formed using each of
(rj = r(r-1)/2 pairs of rows in cambination with each of the (%) =
c(c-1)/2 pairs of columns. For rows a and b and columns ¢ and d,
the odds ratio (mac mpd)/(mpe mag) uses four cells occurring in a



14.

rectangular pattern (see Figure 1), and there are (§) (9 odds
ratios of this type. The independence of the two variables is
equivalent to the condition that all these population odds ratios
equal 1.0.

However, there is much redundant information when the entire set of

these odds ratios is used to characterize the association in a
table.

1.6.3.1 ILocal 0dds Ratios

A basic set of (r-1) (c-1) odds ratios is

eij = ﬂij 'ni'{"l’j'*'l 14 izl'oco ,r"‘l,
Tirj+l i+, ] j=lseee,c-1

Figure 1.1: General Odds Ratio mac mTphd/The Tad

ZR
N

\
7%
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Figure 1.2: Local Odds Ratio 81ij

+1

NN

N\Z/
\

This basic set determines all (§) (S odds ratios that can be
formed from pairs of rows and pairs of columns. Independence of
the two variables is therefore also equivalent to the condition
that the odds ratios in the basic set are equal to one.

These odds ratios are formed using cells in adjacent rows and
adjacent columns, as illustrated in Figure 1.2. Their volumes
describe the relative magnitude of "local" associations in the
table, so they are called local odds ratios.

1. 6. 3.2 Local-Global Odds Ratios

Another family of odds ratios is

8'i5 = (L mib) (I mi+1,b)

bx j b > j
(L mib) () 7™i+1,b)
b> be 3

i = l,ooo,r—l'
j = llonc yc—l

These odds ratios are local in the row variable but "global" in
the colunn variable, since all c¢ categories of the colunn
variable are used in each odds ratio (see Figure 1.3). They are
particularly meaningful when a distinction is made between
response and exXplanatory variables.
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1.6.3.3 Global Odds Ratios

A third family of odds ratios is

8"ij= (L L mab) () ) map)

a<j bxj a>i b>j
(L 2 ma) (1 1 7mav)
a<i b>j a>i b<j

These measures are the regular odds ratios computed for the 2x2
tables corresponding to the (r-1) (c-1) ways of collapsing the
row and colunn classification into dichotories. They treat row
and column variables alike and describe associations that are
global in both variables (see Figure 1. 4).

Figure 1.3: Local-Global Odds Ratio 6'jj
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Figure 1.4: Global Odds Ratio 8"ij
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For local, local-global and global odds ratios, independence is
equivalent to all log odds ratios equalling =zero. An
assocliation described by one of these measures is referred to as
"positive" or "negative" according to the sign of the log odds

.t
+
'...J

N

~

L

ratio.

If all log 6i3»0, then all log e'ij>0. If all 1o e'ij>0, then
all log 6"ij>0. The converses of these statements are not
true (Agresti, 1984). The condition that all local log odds
ratios be positive 1is therefore the most stringent of three
possible definitions for "uniformly positive association”.

The less localized the odds ratio, the more precise its sample
value tends to be as an estimation of its population value,
since the standard error involves the inverses of larger sample
totals. So if all the {6jj} are approximately equal, if the
{6'ij5} are approximately equal, and if the {8"jj} are
approximately equal, the sample estimates of the third set will
tend to be smoothest.

1.6. 3.4 Dumping Severity Example

We will illustrate these three types of odds ratios for ordinal
variables using the data in Table 1.6, from Grizzle, Starmer and
Koch (199). The data refer to a comparison of four different
. operations for’ treating ducdenal ulcer patients. The operations
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correspond to removal of various amounts of the stomach.
Operation A is drainage and vagotomy, B is 25% resection and
vagotomy, C is 50% vresection and vagotamy, and D 1is 75%
resection, The categories of operation are ordered, with A
being the least severe operation and D corresponding to the
greatest removal of stomach. The variable "dumping severity"
describes the extent of a possible undesirable side effect of
the operation. The categories of this variable are also
ordered, with the vresponse "none" representing the most
desirable result.

Table 1.6: Dumping severity and operation

Dumping Severity

Operation None Slight Moderate Total
A 61 28 7 9
B 68 23 13 104
C 58 40 12 110
D 53 38 16 107
TOTAL 240 129 48 417

Table 1.7 contains the sample values {gij} , {g'ij} and {8" ij} of
the ordinal odds ratios.

To illustrate the calculation of the values in Table 1.7:

N

817 = 2813 = 2.26
23x7

812" = (61428)x13 = 1.82
(68+23)x7

810" = (61+28)x(13x12x16) = 1.8

(68+23+58+40+53+38)x7
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Table 1.7: Values of Ordinal Odds Ratios for Dumping '
Severity Data

eij 8 'ij e"ij
i 1 2 1 2 1 2
1 0.74 2.26 0. 92 1. 82 1.38 1. 86
) 2.04 0.53 1.69 0. 86 1.74 1.33
3 .04 1.40 1.14 1. 44 1.55 1.53

£

The value of 312 means that the estimated odds that dumping is
moderate instead of slight is 2.26 times higher for operation B
than for A,

The value of ,512' means that the estimate odds that dumping is
moderate instead of none or slight is 1.82 times higher for
operation B than A.

The value of ’512" means that the estimated odds that dumping is
moderate instead of none or slight is 1.86 times higher when
some stomach is removed (operations B, C, D) than when none is
removed (A).

All three sets of measures indicate a generally positive
association, though the {5" ij} show the most consistency.

1.7 Estimation

For all the models discussed in this thesis, the parameters and
expected cell counts are estimated by the method of Maximum Likelihood
(Lindgren, 1976, p.269).

This well-known statistical principle gives parameter estimates with
certain known properties (e.g. asymptotic efficiency, consistency,
asymptotic normality with known parameters, etc.) as well as giving
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rise to powerful likelihood-ratio tests which can be used to test
whether specific models fitted are feasible.

1. 8 Model Testing

To test the goodness-of-fit of the various models, we can use either
of the following two statistics:

X2 =] (ng - mg)2

i m{
G2 =27) nj log nj
i mi

which are asymptotically equivalent. Under the null hypothesis, both
X2 and G2 are asymptotically distributed as chi-square. X2 is the
Pearson chi-square statistic (Pearson, 1900), and G2 is a
likelihood-ratio (LR) statistic, known as the "deviance" in the
terminology of generalized linear models., Although both tests usually
lead to very similar conclusions, we will use G2 as the IR statistic
is much more useful in testing significance of model terms.

1.9 Structural and Sampling Zones

Zero entries in contingency tables are of two types - structural and
sampling zeroes. Structural (fixed) zeros occur when it is impossible
to observe values for certain combinations of the variables, e.g.
males who have had a hysterectomy. Sampling (random) zeroes are due
to sampling variation and the relatively small size of the sample when
canpared with the large number of cells; they disappear when the
sample size 1s increased sufficiently.

When structural zeros occur in a table, it is still possible to
analyse the data using models which will be discussed in Section 8. 2.

When sampling zeroes are scattered haphazardly throughout the table,
there are usually no problems - the appropriate mcodels are fitted in
the normal manner,
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However, sometimes the zero entries are placed in such a way that when
canputing estimated values to satisfy the constraints, if one zero
entry is given a positive value, then another must be given a negative
value, If the extra constraint that all estimated values must be
non-negative is applied, then these entries will have estimated values
of zero. Table 1.9 gives an example of such a case:

Table 1.9: A table with two-dimensional marginal total equal to

zZero
Y1 Y2 | vl Y2
?
X1 | 0 5 6 10
X2 | o0 12 | 5 8

The n;1; marginal total is zero. Thus, any model which requires this
marginal total to be fitted must necessarily estimate the (1,1,1) and
(2,1,1) cells as zero.

It is this circumstance which has given risen to much debate about the
"correct" degrees of freedom applying to the deviance in such a case.

There are three views stated in the literature. The first and most
widely stated view is that in order to test the goodness-of-fit of a
model that uses a set of observed marginal totals with at least one
zero entry, the degrees of freedom associated with the test statistic
must be reduced (Bishop et al, 1975; Fienberg, 1980; Brown and Fuchs,
1983 and 1984; Aston and Wilson, 1984). This means that 1if an
observed marginal entry is zero, then both the observed and estimated
entries for all cells included in that total must be zero, and so the
fit of the model for those cells is known to be perfect. As a result,
the degrees of freedam associated with the fit of the zero cell values
must be deleted. The formula for the degrees of freedom is given as

df = (nc - ngz) - (np - np)

where
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ne = number of cells in the table,

n, = number of cells with estimated values equal to zero,

np = number of parameters specified in the model,

np = number of parameters that cannot be estimted because of zero

marginal totals.

However, in a recent paper, Baker et al (1985) have asserted that such
a treatment 1is incorrect. They state that if a zero occurs in a
margin that was fixed prior to the experiment, then by definition the
cells in the table contributing to that margin are structural zeros
(and are weighted out of all analyses of the table). Therefore, by
extension, if a table is analysed "conditional on a margin that was
not actually fixed in the experiment, then cells in the table that
were not structural zeroes in the experiment will become structural
zeroes in the analysis if they contribute to a zero cell in the
conditioning margin'. However, after having dealt with these
"structural" zeroes, if any other zero cells remain which contribute
to a margin which is not conditioned on, then no adjustment whatsoever
is to be made to the degrees of freedom.

The third view 1is that of Stirling (1986) who asserts that both the
previous two methods are incorrect. He states that to obtain the
correct degrees of freedom for any model, one should always use the
- formula '

df = difference between the number of estimable parameters for
the model in question and for the saturated model.

He explains that if this formula is used, then "it makes no difference
whether or not structural zeroces are kept in the data, whether the
margins are classified as responses or explanatory variables, or
whether log-linear or logistic models are used when there is a single
binary response". However, to correctly apply the formula, "we must
correctly identify all estimable parameters. This has been
incorrectly done by scme previous authors”.

It can therefore be seen that the literature on methods for sparse
contingency tables is still controversial.
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1. 9.1 Monkey Example

An example of a table containing both sampling and structural
zeroes 1is Table 1.8, which is taken in a slightly modified fomm
from Fienberg (1980, p.146). The table gives the distribution of
genital display among six squirrel monkeys (labelled R to W). For
each display there is an active and passive participant, but a
monkey never displays towards himself., Thus the dashes in the
table indicate structural zerces. There are also several sampling
zeroes such as in cell (1,6) where there is no a priori reason to
suppose that the event is impossible. We will assume that the
opportunity was not available to observe monkey T as an active
participant. '

Table 1. 8: Genital display in a colony of squirrel monkeys

Passive Participant
Active Participant| R S T U \Y W
R - 1 5 8 9 0
S 29 - 14 46 4 0
U 2 3 1 - 38 2
\Y% 0 0 0 0 - 1
W 9 25 4 6 13 -

1.10 Loglinear Models

Iet n' = (m, «.., ny) and m' = (my, ..., mp) denote the observed and
expected counts for the I cells in the table. For simplicity, we will
use a single index, though the table may be multi-dimensional.

Loglinear models have the form

logmj = x'; 8
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where B is a pxl vector of parameters and X'j is a row vector of known
constéﬁts, the choice of which depends on what kind of association one
wishes to model. 1In the nomenclature of analysis of variance x'j is
the ith row of the Ixp design matrix X, i.e.

logm=Xg
Many of the models discussed in this thesis are simply special cases
of the more general category of loglinear models. They can be used to

model many kinds of association, and so are probably the most common
models used in practice for contingency tables,

1.10.1 Fitting Loglinear Models

Loglinear models can be fitted quite easily using either the
Newton-Raphson algorithm or the Iterative Proportional Fitting
algorithm. These are discussed in Appendix 2.

1.11 Linear Models

Linear models relate the expected cell count to a linear function of
parameters. The two cammon methods of specifying these models are:

(i) directly, in a form such as A n1 = X3, or
(ii) indirectly, in terms of constraints.

They are not as commonly used as loglinear models, as they usually
specify fairly unusual kinds of relationships between the variables of
a contingency table. Nevertheless, they form a powerful and useful
class of models which can be used to test specific hypotheses that
could not normally be tested using loglinear models.

1.11.1 Linear models specified as Ay = X8

Consider the cell counts in a contingency table as making up an Ixl
vector m. The cell probabilities corresponding to these counts
make up an Ixl vector 1. The vector 7 may correspond to
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(i) a Poisson or single multinomial distribution, or to
(ii) a product-multinomial distribution.

In the former case )mj = 1, while in the product-multinomial case
the set of I cells is comprised of several subsets, each of which
corresponds to a separate multinomial sample, and the sum of the
elements of 1 over each subset is unity.

If 8 is a Kxl vector of unknown parameters, A is a known JxI matrix
with linearly independent rows, and X is a known JxK matrix, with
linearly independent columns, with I»J>K, then we can write the
expected cell probabilities in texrms of a linear function of the
model parameters as

B = Xg.
Haber (1985) discusses linear models which are formulated in this

way.

1.11.2 Linear models specified in terms of constraints

Suppose we have same hypothesis about the cell counts which can be
specified in terms of E constraints. We can write the constraints

as
Fm =0

where F is an ExI matrix with E linearly independent rows. Further

constraints are imposed by the sampling design. These constraints

guarantee that the sun of the probabilities within each sample will

be equal to one (or equivalently that the sum of the counts within

each sample will be equal to the correct marginal total). They can
be written

D'z = Ig

where S is the number of samples (S > 1) and D = {dig} is the IxS
matrix defined by

dig = {1 if cell i belongs to sample s
0 otherwise
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In terms of the cell counts the constraints can be written

D' Rm = lg
where R is the IxI diagonal matrix with diagonal elements rij =
l/m;j; , where mj+ is the marginal total of the ith sample
(i=1, ..., S), and off-diagonal elements zero.
Thus, the constraints on the cell counts can be written as

Lm=¢

where L' is the IX (E+4S) matrix L' = (F' : R'D) and c' is the
1x(E+S) vector consisting of E zeroes and S ones, i.e,
c' = (Op' : ls').

A vector a which satisfies these constraints is
a=r1ga*
where R™1 is the IxI diagonal matrix with diagonal elements rij =

mi+, and a* is the Ixl vector with ith element aj = 1/Bi where Bi
is the number of cells in the ith sample.

1.11.3 Fitting Linear Models

Linear models specified in terms of constraints can be easily
fitted using the algorithm of Wedderburn (1974). Details of this
are given in Appendix 3.

Linear models specified as A 1 = X8 can be most easily fitted by

reformulating in terms of constraints so that we can then apply
Wedderburn's algorithm. Appendix 3 gives further details.

1.12 Other Models

As mentioned previously, most models discussed in this thesis are
either linear or loglinear, and so can be fitted using the general
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algorithms appropriate for these. Where a model does not fall into
one of these two classes, details of estimation methods will be given
separately.
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CHAPTER ITI: NOMINAL LOGLINEAR MODELS

2.1 Two—-Dimensional Tables

Consider a two-way table of counts, with the row variable X having r
categories, and the column variable Y having ¢ categories.

2.1.1 Multiplicative Form of the Loglinear Model

2.1.1.1 Saturated Model

For the case of only two variables, the most general model that
specifies an association between them is called the saturated
model. The simplest way to express this model is

1]

From this expression it can be seen that the expected cell
counts can be adjusted to give any pattern. 1In particular, we
can easily arrange for the expected cell counts to be equal to
the actual counts.

However, a more useful parameterization is

XY
Mij =n ti¥ 137 143 (2.2)

The expected count is modelled as a multiplicative function of
parameters that depend on X and VY. The meaning of the
parameters will be explained shortly.

Although this expression is more complicated than (2.1), it is a
more useful parameterization for the other types of models that
we will meet later.,

There are rc cells in the table. There cannot be r independent

TjY parameters and rc independent 1ijXY parameters, or there
would be l+r+ctrc parameters for only rc cells. We will
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therefore add some identifiability constraints: a convenient
set 1s to restrict the parameters so that

'H TiX = ’HTjY = I TinY =i[ rinY =1 (2. 3)
i j i j
Then we will have only r-1 independent {ti¥X}, c-1 independent

{r5¥} and (r-1)(c-1) independent {tj¥}. Thus the number of
parameters will be 1+(r-1)+(c-1)+(r-1)(c-1) = rc.

Since the number of parameters equals the number of cells in the
table, we can see that the estimated expected counts under this

model will be equal to the actual counts, i.e. mjj = njj. In
fact, the model is called "saturated" because it contains all

possible effect parameters.

We can express the parameters in terms of the expected counts in
the following way:

i3 ij
= (n¥C)(1)(1)(1)

(because of the identifiability constraints), so
n o= (@ mi5)l/re (2.4)
i,3

The n parameter is thus the geametric mean of the counts. It is
analogous to the intercept term in a regression eguation. It is
a "baseline" or starting point fram which effects are measured.

Since

I mjj=nl (139)F
i

then

T3¥ = (M mj3)1/r

n
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i3 e (2.5)

which is the geametric mean of the jth column divided by the
geometric mean of the whole table.

Similarly

o = (g mp) Ve

n

= (1. miz)l/C

(n mi3]t7ee

i,] (2.6) _
Also
XY =

Tij mi §
n Ti® T3

J

mij (1 mij)1/Fe
i,]
(nmig)l/= (mmig)l/e
i J

The t parameters represent effects which the variables have on
the cell frequencies. The magnitude of an effect is measured as
a departure from the value of unity - effects of 1.0 have no
impact since they leave the product unchanged. If every effect
was equal to 1.0, then each cell count would be equal to every
other cell count, and all would be equal to n. If an effect
parameter is greater than 1.0, then there will be more than the
average number of cases expected in that cell, while if the T
parameters are less than 1.0, there will be fewer than the
average expected.

Since the estimated expected cell counts are equal to the actual
cell counts, the saturated model is not very informative.
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2.1.1.2 1Independence Model

The model of independence is unsaturated (i.e. it does not
contain all possible effect parameters), and corresponds to
setting ti5%¥ = 1.0 for all i,j, i.e.

mjy =n riX TjY.
The expected counts depend only on an effect due to X (rjX)

and an effect due to Y (zY). This is because of the
definition of independence:

the probability that a given individual is classified into °
cell (i,j) is

P(X=i and Y=j) = P(X=1i) x P(¥Y=j)
if and only if X and Y are independent.

In the saturated model of the previous section, the previous
counts also depended on the combination of X and Y effects
(t inY), so that the effect of level 1 of X could differ,
depending on whether it was cambined with level a of Y or
say, level b. The independence model specifies that X and Y
act quite independently on the cell counts, so that X and Y
are not associated.

The independence model has 1+(r-1) + (c-1) = r+c-1
independent parameters, so that we cannot always adjust the
parameters to make the fitted counts equal any observed
pattern of cell counts (since r»2 and <2 » r+c-1 <rc) so,
in general the fitted counts will not equal the actual counts.

2.1.2 Additive Form of the Loglinear Model

2.1. 2.1 Saturated Model

Taking natural logarithms of all terms in equation (2.2)
ylelds log mij = log n + log tiX + log 1Y + log 115%Y, which

is usually written as
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where y = log n, ¥ = log 1i%, etc.

The model assumes that the log of the counts is a linear
function of the parameters, hence the parameters cannot be
interpreted as directly as in the multiplicative form; this
additive form corresponds more closely to ordinary normal
linear models and we shall see later that the parameters can
be more directly estimated in this form.

Equation (2.4) becames
u = logn

= log (g mij)l/rc
i,3

]

_17) log mjj
rc i,j

while equation (2.6) becanes

A% = log t4¥
=109T[mijl/c
n
=1 ) logmij-u
c ]
=1) logmij -1 J log mjj
Cj rc l,]

and equation (2.5) becomes

Ai%¥ = logmijj +1 ] logmjj = 1) log mjj
rc 1i,] ri

- 1) log mij
C J
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The identifiability constraints given by equation (2.3) now
become

i 3 i i
The additive form of the logarithms 1is vreminiscent of

analysis of variance (ANOVA).

Whereas using the multiplicative form, the magnitude of an
effect is measured as a departure from 1.0, using the
additive form it is measured as a departure from zero.

2.1.2.2 Independence Model

The additive form of the loglinear model of independence is
log mjj =wu + PELIES AjY

where, as before,

This model specifies that X and Y are independent, as defined
in Section 2.1.1. 2.

This model can be fitted quite easily as described in Section
1.10 and Appendix 2.

The next section gives an example of fitting the independence
mcdel to a two-way table,

2.1.2.2.1 Abortion Attitude Example

Table 2.1 is taken from Knoke and Burke (1980, p.72). It
is a 4x2 cross-tabulation of religion by attitude to
abortion, The "attitude to abortion" variable reflects
agreement or disagreement with a questionnaire item asking
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whether a woman should be allowed to have a legal abortion
because she was too poor to support more children.

Table 2.1: Cross—tabulation of abortion attitude
by religion

Attitude to Abortion
Religion Favour Oppose Total
Protestant 460 498 958
Catholic 147 240 387
Jew 41 10 51
Other 65 17 82
TOTAL L 713 765 1478

Table 2,2 gives the estimated expected counts under the
model of independence.

Table 2.2: Estimated expected counts under independence

Attitude to Abortion
Religion Favour Oppose Total
Protestant 462.15 495, 85 958
Catholic 186.69 200. 31 387
Jew 24.60 26, 40 51
Other 39.56 42, 44 82

TOTAL - 713 765 1478
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2.1.2.3 Goodness—of-Fit Statistics

As mentioned in Section 1.9, to perform a statistical test of
the null hypothesis of independence, we can use either of the
following two statistics:

X2 =7 (nj 5 —-ﬁij)z
i,3 fﬁij
G2=27 nij log nij
i,] mij
which are asymptotically equivalent. Under the null

hypothesis both X2 and G2 are asymptotically distributed as
chi-square with degrees of freedaom (df) equal to the number
of parameters in the saturated model minus the number of
parameters in the independence model. The number of
parameters in the saturated model is rc, and the number of
parameters in the independence model is 1+(r-1)+(c+l) =
r+c-1, so the difference is

af = rc - (r+c-1) = (r-1)(c-1)

2.1.2.3.1 Abortion Attitude Example

For the data of Table 2.1 the goodness-of-fit statistics
are

X2 = (460 — 462.15)2 + ... + (17 - 42.44)2
= 69,06

G2 = 2(460 log 460 + ... + 17 log 17 )
462. 15 42. 44
= 72. 44

Both these statistics have an asymptotic chi-square
distribution with 3 df. Since x2 = 11.35

« 99(3)
both X2 and G2 are significant at the 1% level, leading to
rejection of the independence hypothesis. So the
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respondent's religion seemed to influence his/her attitude
to abortion.

2.2 Three-Dimensional Tables

We will now generalize loglinear models to three-dimensional tables.
Consider a three-way table, with variables X, Y and 2 having r, ¢ and
¢ categories, respectively. The observed count njjk has corresponding
expected count mjjk and population probability Tijke

The general loglinear model has the form

log mjjk = u + A% + A3 + kkz + 2135+ K2

+ A 3K%2 + X 3XY2 (2.7)

with identifiability constraints

.

Y = - YZ = s YZ =
i j i k ] k

.t~

i J k

2. 2.1 Association Between Three Variables

For simplicity, assume that all variables are responses and that
the multinomial sampling scheme applies (although the MLEs are
identical for the Poisson and product-multinomial sampling schemes;
and the classification of variables as explanatory of response
really only affects the interpretation of the models).

There are five basic kinds of relationships that can occur between
three variables:

(1) All three variables related so that the relationship between
any two depends on the value of the third., This is the
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(3)

(4)
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saturated model and can be represented by equation: (2.7).
This model imposes no restrictions on the {mjjk} and so the
estimated expected counts will be equal to the actual counts.

Pairwise relations among X, Y and Z, with each two-variable
relation being unaffected by the value of the third variable.
The representation of this model can be obtained from
equation (2.7) by restricting the three-factor interaction to
be zero, giving

log mjjk = u + A3% + AgZ

Conditional independence of X and Y given Z., This can be
obtained by setting Ajj)*¥2 = 0, and also Ai3%¥ = 0, to give
log migk = u + A% + a3¥ + 22 + a5Y2,

This model implies that X and Y are independent for each
fixed value of 2. For each fixed value of Z we get
independence in the corresponding rxc subtable of X and Y.

There are two other versions of this model, corresponding to
setting AikYZ = 0 (conditional independence of X and Y, given
y) and to Ajx¥2 = 0 (conditional independence of Y and Z,

given X).

Independence of (i) X, and
(ii) Y and Z jointly.

This can be obtained by setting

Ai3kEYZ = A i3%8Y = A3 X% = 0, to give

log mjjk = u + A% + A i¥ + Ak? + A 5¢Y2
This means that Y is independent of X, given Z and Z is
independent of X, given VY. Y and Z are conditionally

dependent, given X,

The two other versions of this model correspond to the sole
conditionally dependent pair being either X and Y or X and Z.
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(5) The final model corresponds to all three variables being
independent, i.e.

Tijk = P(X=i, Y=j, Z=k)

P(X=1i) P(Y=j) P(2=k)

The loglinear representation of this corresponds to setting

giving
log mjjk = u + Xi).( + )\jY + )\kz.

2.2.2 Hierarchical Models

In a hierarchical model higher-order association terms may be
included only if the related lower—order terms are included. For
example, if iy X2 is in the model, then so must be A jjXY, AikX?
and kY2, similarly, if A{j¥Y is in the model, then x;¥ and Aj¥
must also be included. An example of a non-hierarchical model is

log mijk = u + Ai% + A5¥ + A2 + A i3k8Y2

The main reason for using only hierarchical models is ease of
interpretation.

In hierarchical models successively higher association terms
measure deviations from lower-order terms. The lower—order terms
are said to be "marginal" to the higher—-order ones, e.g.

rij%Y is marginal to jjxXY2.

A useful notation is the abbreviated parentheses notation. A model
can be represented by including in parentheses the superscripts for
the highest-order term(s) for each variable. For instance, the
notation for the model

log mijk = + XX + A3Y + 42

is (X,Y,2). The notation for



39.

log mijk = u + A% + 5% + a2 + x5587 + A X2

is (X,Y,XZ). The notation for

log mijk = u + Ai% + A3¥ + A%+ A XY + AP AT+ a i

is (XYZ). This notation uniquely describes all hierarchical
loglinear models.

2.2.3 Estimation

The cell counts and parameters can be estimated as previously
discussed in Section 1.10 and Appendix 2. Appendix 4 gives further
details of maximum likelihood estimation for the case of three
variables.

2.2.4 Model Testing

As discussed in Section 1.9, the two goodness-of-fit statistics are

X2 =) (njjk Mijk)2
ijk Mmijk

and

G2 = 2 njjk log njjk
ijk fmy 5k

If the model fitted is correct and N is large, x2 and G2 have
approximate chi-square distributions with

df = # parameters in saturated model
- # parameters in model under consideration.

As an example of calculating degrees of freedom, consider the model
(XY, XZ). The parameters in the model are u, X1iX, Y, A2, xinY

and AikXZ, i.e. there are 1+(r-1) + (c-1) + (g-1) + (r-1)(c-1) +
(r-1)(g-1) parameters. The number of parameters in the saturated
_ model (XYZ) is rcp. Consequently the degrees of freedom associated
with the model (XY, XZ) are ‘



df = reg - [1+(r-1) + (c=1) + (g-1) +
' + (r=1)(2-1)]
= r(c-1)(g2-1)

2.2.5 Abortion Attitude Example

Consider again the data of Table 2.1.
was actually surveyed in 1972 and 1978
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(r-1) (c-1)

The "attitude to abortion”
Table 2.1 contains only

the 1972 data; the full table is shown in Table 2.3 (taken from

Knoke and Burke, 1980, p.72).

Table 2.3: Attitude to abortion by religion and year

1972 Attitude 1978 Attitude
Religion Favour Oppose Favour Oppose
Protestant 460 498 424 501
Catholic 147 240 151 225
Jew 41 10 23 6
Other 65 17 88 30

If all three variables were explanatory

, then there would be nine

possible hierarchical loglinear models that could be fitted to this
data. For the purposes of illustration, they have all been fitted

and both goodness-of-fit statistics for
in Table 2, 4.

the nine models are given
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Table 2. 4: Goodness~of-fit statistics for various loglinear
models

Model df X2 G2

(R,Y,A) 10 140, 85*** 143, 24%%*
(R,Y,A) 7 124, 88*** 130, 16%**
(R,YA) 9 140, 79%** 143, 02%**
(Y,RA) 7 14, 82* 14. 96*
(RY,RA) 4 1. 88 1. 89
(RY,YA) 6 124, 66%** 129, 94***
(RA,YA) 6 14. 60* 14.74%
(RY,YA,RA) 3 1. 46 1. 47
(RYA) 0 0 0

*, *** Dpenotes values in upper 5% and 0.1% tail
respectively, of corresponding XZ distribution, with
df as indicated

It -can be seen from Table 2.4 that the values of y2 and G2 are
usually quite close, except when both are large and are far out in
the tail of the corresponding y2 distributions. The values of the
goodness~of-fit statistics decrease as the number of parameters in
the models increases.

As mentioned earlier, it is not sensible to fit all these nine
models because there is only one response, attitude to abortion,
and religion and year are actually explanatory variables which may
affect this response.

Because of this we treat the religion by year margins as fixed
(irrespective of whether or not they were actually fixed by the
sampling desing), and so we only consider models which contain the
religion by year association term, AijRY, This gives us the choice

of five models:

(RY,A), (RY,RA), (RY,YA), (RY,YA,RA) and (RYA).
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The model (RYA) allows a possible association between religion and
year, as explanatory variables, but specifies that neither of these
affected attitude. However, this model does not fit at all well,
as evidenced by the huge values of G2 and y2.

The model (RY,RA) specifies that religion affected attitude (but
year did not). This is an example of model (3) of Section 2.2.1,
i.e. attitude 1is conditionally independent of year, given
religion. This model is

log migk = u + AiR + A5% + 0B+ A gRY + a5y RA

so has 1+3+1+1+3+3 = 12 parameters, therefore df = 16-12 = 4, This
model fits well and is the simplest model to do so.

The model (RY,YA) states that there was a change in attitude from
1972 to 1978, which was constant for all four religions. This
model fits very badly.

The model (RY,YA,RA) specifies that both year and religion affected
attitude. However, the absence of the three-factor interaction
implies that the effect of religion was the same in 1972 and 1978,
and the effect of year was the same for all religions.

This model fits well, but is more complicated than (RY,RA) which
also fitted adequately.

The saturated model (RYA) specifies that the effect of religion in
attitude varied, depending on the year. Alternatively, this could
pe thought of in terms of the effect of year on attitude varying,
depending on the religion of the person. The saturated model fits
perfectly, but provides no simplification of the data whatsoever.

2.2.6 Conditional Test Statistics

Consider the case where there are two loglinear models M1 and M2,
with estimated counts mjjk(1) and mjjk(2), where model 1 is a
special case of model 2 (e.q. (X,Y,Z) is the special case of
(XY,2) where xinY is assumed to be zero). Then the difference in
deviances, G2(1) - G2(2), can be used to test whether the
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difference between the expected values for the two models is.simply
due to random variation, given that the true expected wvalues
satisfy model 2. This is a property of the likelihood ratio test.
The difference in deviance will be

2Enijklog%g§~22nijklog%_ij_k
i3,k ijk(1) 1,30k ijk(2)

I~
2 ] njjk log mjijk(2)
irdek fijk(1)

G2(1) - G2(2)

This conditional test statistic has as asymptotic chi-square
distribution with degrees of freedom equal to the difference in the
degrees of freedom for the two models (which will also equal the
number of parameters of model 2 that are constrained to be zero in
model 1).

2.2.6.1 Partitioning Chi-Square

In a hierarchical set of models it is easy to partition the
deviance into several additive parts. Take for example the
hierarchical set

Deviance
Ml: log mjjk = U+XXi+AYj+ka G2(1)
M2: log myjk = u+xXi+ij+ka+xXYij G2(2)
M3: log mijk = uRAX e Yie B XYy X2y 5 G3(3)
M4z log mijk = utAXiaa Y3 Bera XYy 3 X2 4 Y25y G2(4)

2.2.6.2 Abortion Attitude Example

We have already seen that the model (RY, RA) provides quite a
good fit to the data of Table 2.3. So does the more complicated
model (RY, YA, RA) which specifies pairwise associations between
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all the variables. The model (RY, RA) assumes that the
association term Ay = 0. To test this assumption we can
compare the deviance of model (RY, RA) with that of (RY, YA, RA)
which has no restrictions on the A4k term. The conditional test
statistic is G2(RY, RA) - G2(RY, YA, RA) = 1.89 - 1.47 = 0. 42,
which is asymptotically distributed as chi-square with 4-3 = 1
df. Thus we have no evidence to reject the null hypothesis that
Ajk = 0.

The difference in deviances between model M3 and M4, G2(3) -
G2(4), can be attributed to the Kjk term. This difference 1is
the appropriate test statistic for testing whether Ajk = 0. In
a similar manner the X iy term can be tested by comparing G2(2) -
G2(3) to a y2 distribution with df = df(2) - df(3). This
process will hold true for the whole set because by the very
nature of any hierarchical set G2(1) » G2(2) > G2(3) > G2(4).

However, we cannot partition the Pearson goodness—of-fit
statistic, X2, in this manner, because this relationship does
not necessarily hold.

2.3 Higher-Order Contingency Tables

The models and methods discussed so far can be extended to
higher-order contingency tables in a relatively straightforward

1lcg Mijky = U+XAi+XBj+>\Ck+)\D,Q,+)‘ABi‘

manner, For example, the general loglinear model for a
four—-dimensional cross-classification of variables, A, B, C and D
would be:

J
+)‘Acik+>‘ ADi,Q, +)\ BCj HA BDj,?,+)‘ CDk!Z,
» +}\ABCij k+}‘ABDij,Q,+>‘ACDik2,+)‘BCDj ke

ABECD; 31

with appropriate identifiability constraints. Models specifying
different types of conditional independence can be obtained by setting
the appropriate A-terms to zero.
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2.4 Other Loglinear Models

There are other non-standard types of loglinear models that have
applications to different kinds of data. These will be described in
later chapters where they will be contrasted with non—-loglinear models
for similar kinds of data. For example, Chapter IV deals with
loglinear models for ordinal variables, while the models of symmetry
and quasi-symmetry are discussed in Chapter VIII.
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CHAPTER IIT: SOME GENERAL ISSUES

In this chapter we discuss some general issues that affect most of the
models discussed in this thesis. These issues can be more easily
explained by illustrating with particular examples, so we will use the
loglinear models of the previous chapter for illustration.

3.1 Model Selection

Complicated models involving many parameters always fit a set of data
more closely than a simpler model. that is just a special case of the
caomplicated one. For instance, the deviance of the loglinear model
(XY,Z) must be less than or equal to that of the simpler model
(X,Y,Z2)s On the other hand, a simpler model may be more parsimonious
and easier to interpret, i.e. we want a model that smooths rather
than overfits the data. Thus, there 1is a balance between
goodness-of-fit and simplicity. Just as there are many ways of
choosing an appropriate regression equation, there is no general best
method of model selection for a contingency table, and the "best"
model may well differ between one data analyst and another.

Generally, to balance simplicity and goodness-of-fit, the symplest
model possible is accepted as long as its goodness—-of-fit statistic,
G2 is not significant, and the more complicated parameters which could
be introduced into the model are not significant. In the case of
loglinear models, these parameters are the next higher order )-terms.

3.1.1 Abortion Attitude Example

Table 3.1 gives the five loglinear models that we can consider
fitting to the data of Table 2.3:
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Table 3.1: Loglinear models

Model daf G2
(RY,A) 7 130.16 ***
(RY,RA) 4 1. 89 ns
(RY,YA) 6 129. 49 ***
(RY, YA, RA) 3 1. 47 ns
(RYA) 0 0

The simplest model 1is (RY,A); however, when the deviance is
compared with an y2 distribution with 7df, it is significant at the
0.1% level, indicating that the model does not provide an adequate
explanation of the data. The model (RY,YA) also exhibits
significant lack of fit.

The simplest model that fits well is (RY,RA). The terms set to
zero in this model are Xrjkx and Aijke In Section 2.2.6.2 we
concluded that Ak was not significantly different from zero. The
Aijk term can be tested by comparing the deviance for (RY,YA,RA)
with an y23 distribution - again this is not significant.

So the model (RY,RA) seems the best choice as it fits adequately
and the terms it sets to zero are non-significant.

3.1.2 Residual Analysis

No analysis would be complete without a study of the standardized
residuals o

~

ri = ni - mj
V my

The squared standardized residuals are components of the Pearson
chi-square statistic, with 3rj2 = X2, If the null hypothesis
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holds, these residuals are asymptotically normal with mean 0, and
the average variance of the residuals equals df/number of cells.

3.2 Interpretation

After deciding on the best fitting model, it is necessary to interpret
it. Often the parameter estimates will shed light on specific
hypotheses of interest. The concepts of odds and odds ratios were
introduced in Section 1.6.2 and often these provide a very natural way
of interpreting a model.

3.2.1 Abortion Attitude Example

Table 3.2 gives the estimated expected counts under the model
(RY,RA) fitted to the data of Table 2.3:

Table 3.2: Fitted counts under the model (RY,RA)

1972 Attitude 1978 Attitude
Religion Favour Oppose Favour Oppose
Protestant 449,75 508. 25 434. 25 490,75
Catholic 151.15 235. 85 146. 85 229.15
Jew 40. 80 10. 20 23. 20 5. 80

Other ; 62.73 19. 27 90. 27 27.73

This model can be readily interpreted in terms of odds.

The estimated expected odds for opposing abortion rather than
favouring it is ﬁijZ/ﬁijl for religion i and year 3. For
Protestants the estimated expected odds is 508.25/449.75 = 490.75/
434,25 = 1,13 in both 1972 and 1978, The corresponding odds for
the other religions are
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Catholic : 1.56
Jew : 0.25
Other : 0.31

Thus, the model specifies that Protestants and Catholics were more
likely to oppose abortion, and Jews and "Others" were more likely
to favour abortion, for both the 1972 and 1978 questionnaires.

3.3 Collapsing Tables

Table 3.3 is the two-dimensional marginal table of counts {mj(+)k}
obtained by collapsing Table 3.2 over year:

Table 3.3: Marginal table of religion by attitude to abortion

Attitude to Abortion
(1972 and 1978)
Religion Favour Oppose Odds for Oppose/Favour
Protestant 884 999 1.13
Catholic 298 465 1.56
Jew 64 16 0. 25
Other 153 47 0.31

The fitted margins {ﬁi(+)k} are equal to the actual margins {nj(+)x}
because the model (RY,RA) includes the Xjx term. The estimated
expected odds that a respondent of a particular religion will oppose
rather than favour abortion are:

Protestant : 1.13
Catholic : 1.56
Jew s 0.25
"Other" : 0.31
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These are exactly the same values for the odds that were calculated
separately for both 1972 and 1978 from the fitted counts of Table 3, 2.
However, this result will not always hold true; the general rule can -
be stated as follows. 1In a three-dimensional table the association
between two variables X and Y (as given by AXYij) may be measured from
the table of sums obtained by collapsing over the third variable 7z if
Zz is independent of either X or Y or both (i.e. A%%Zjk = 0 and/or
AYZ5% = 0).

Bishop, Fienberg and Holland (1975) incorrectly implied that the
converse result is also true. However, Whittemore (1978) gives a
counter—~example.

Thus, we can see that for the model (RY,RA) we can collapse over year,
because AYAjk = (0., However, we would not be allowed to collapse over

either religion or attitude to measure the ARYjk term or the AYAjk
term respectively.

So, in general, it can be very misleading to simply examine the three
two-dimensional marginal tables resulting from a full three-
dimensional cross—classification without first checking whether this
is allowed (by testing whether the appropriate A-terms are zero). A
clear illustration of this point is given in the following example.

3.3.1 University Admissions Example

Table 3.4 is taken in a slightly modified form from Freedman,
Pisani and Purves (1978). The data relate to a study of possible
sex bias in graduate admissions to a university. The numbers of
admissions of both males and females to four departments are given.
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Table 3.4: Admission of males and females to four university
department courses

Males Admission Females Admission

Department No Yes No Yes
A 313 512 19 89

B 207 353 8 17

D 279 138 244 131

F 351 22 317 24

Table 3.5 gives the odds of being admitted, for each sex and
department:

Table 3.5: 0dds for admission for sex by department

0dds for Admission
Department Males Females
A 1.64 4.68
B 1.71 2.13
D + 50 .54
F . 06 .08

It can be seen that in each department females had a higher chance
of being admitted than males. However, if we simply look at the
sex by admission marginal table in Table 3.6, we would be led to
the false conclusion that females had less chance of being admitted
than males.
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Sex by admission marginal table
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Admission Odds for Admission
Sex No Yes
Male 1150 1025 . 89
Female 588 261 . 44

Table 3.7 gives the models that could be fitted to the three-way

table:

Table 3.7:

Various loglinear models fitted to admissions data

Model df Deviance
(D,S,A) 10 1435  ***
(SA,D) 9 1366  ***
(DA,S) 7 651.1 ***
(DS,A) 7 803, 9 ***
(DA,SA) 6 582, 4 ***
(DA,DS) 4 20,0 ***
(SA,DS) 6 735.3 ***
(DA,SA,DS) 3 11.6 **
(DSA) 0 0

It can be seen that none of the unsaturated models fit the data

adequately,

assumed to be =zero.

and consequently there are no A-terms that can be
Because of this we can tell immediately that

it would be misleading to look at the data collapsed over any of

the variables.
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CHAPTER IV: [LOGLINEAR MODELS FOR ORDINAL VARIABLES

4,1 Disadvantages of Ignoring Ordinal Nature of Variables

The concept of ordinal categorical variables has already been
introduced in Section 1.6.

The ordinary loglinear models of Chapter II treat all variables as
nominal, in the sense that parameter estimates and chi~square
statistics are invariant to orderings of categories. Thus, these
models fail to use all the available information when at least one of
the variables is ordinal.

4,1.1 Dumping Severity Example

To illustrate this, let us fit the loglinear model of independence
to the dumping severity data of Table 1.6. Fitting the model

log mjy =p +Ai0 + AgD gives a deviance (denoted by G2(I)) of 10. 88,
with 6 df. Since x2(g), 90 = 10.64 and x2(g). 95 = 12.59, there is
slight evidence of an association between operation and the
severity of the side effect, but we could not reject the model of
independence at the 5% level.

The fitted counts under this model are given in Table 4.1:

Table 4,1: Fitted counts under independence dumping severity

Dumping Severity

Operation None Slight Moderate
A 55. 25 29.70 11,05
B 59, 86 32,17 11. 97
C 63.31 34.03 12.66
D 61.58 33.10 12.32
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As noted in Section 1.6.2 the model of independence constrains
all local odds ratios to be equal to 1.0.
illustrated by calculating the six local odds ratios as follows:

611 = 55.25 x 32.17 = 1.0
59.86 X 29. 70

891 = 5986 x 34.03 = 1.0
63.31 X 32.17

B3] = 63.31 x 33.10 = 1.0

61.58 x 34.03

4,1.1.2 Residual Analysis

Table 4.2 contains the standardized

independence model:

This can be

812 = 29.70 x 11.97 = 1.0
32.17 x 11.05

B9 = 32.17 x 12.66 = 1.0
34.03 x 11.97

835 = 34,03 x 12.32 = 1.0

33.10 x 12.66

Table 4, 2: Standardized residuals

residuals from

the

Dumping Severity
Operation None Slight Moderate
A 0.77 -0.31 -1.22
B 1.05 -1.62 0. 30
C 0.67 1.02 -0.19
D -1.09 0. 85 1. 05

As discussed in Section 3.1.2,
then these residuals should be normally distributed.

if the model fitted is correct,
However,

far from looking "random" there seems to be some sort of trend

present in these residuals. Along row 1 (i.e.

operation A) the
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residuals are scattered about a line with negative slope. Along
row 2 the slope is less negative, along row 3 the slope is
positive, and along row 4 the slope is even more positive. The
pattern to these residuals suggests that for operations with a
small amount of stomach removal, there are more people than
would be expected with the lesser side-effects, whereas for
operations with a large amount of removal, there are more than
expected with more severe side—effects.

Thus, since there are systematic departures from independence,
the model of independence does not appear to fit as well as
might have been thought at first sight.

Since operation and dumping severity have a natural ordering, we
might want to ask questions such as "does dumping severity tend
to increase when more of the stomach is removed?". To help
answer this type of question, we will look at some loglinear
models which take into account the ordinality of the variables.

4,2 Ordinal-Ordinal Tables

Suppose that both the row and column variables, X and Y, of a two-
dimensional table are ordinal. A very simple type of association
would result from all the local odds ratios being the same fixed
constant, say i = a = exp(g). Equivalently the log odds ratio would
be log 65 = 8. We would call this model the constant local odds
ratio model, or the uniform association model.

4,2.1 Dumping Severity Example

Table 4,3 gives the estimated expected counts which result from
fitting this model to the data of Table 1l.6.

The estimated value of the local odds ratio is 1.18, which can be
obtained from the fitted counts, e.g.

1.18 = 62.51 x 30.94 = ... = 35.32 X 16.72
62. 84 x 26.15 36.59 x 13.72
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This means that the odds of having a slight side-effect instead of
none (or moderate instead of slight) are 1.18 timees higher for
operation B instead of A (or C instead of B, or D instead of C).

To illustrate the meaning of the odds ratio, Table 4.3 also shows
the estimated odds:

Table 4,3: Estimated counts and odds under uniform association

Dumping Severity Odds Qdds
Operation  None Slight Moderate |Slight vs None mpderate vs Slight
A 62.51 26,15 7.34 26,15 = 0,418 0.281
62.51 .
B 62.84 30.94 10.22 30. 94 = 0. 492 0.330
62. 84
C 60.97 35.32 13.72 35.32 = 0.579 0.388
60. 97
D 53.69 36.59 16.72 36.59 = 0.682 0. 457
: 53.69

Consider the odds of slight dumping vs none: the odds for
operation B of 0,492 are 1.18 times higher than the odds for C of
0.418. Similarly, the odds for C are 1.18 times higher than those
for B, and the odds for D are 1.18 times higher than those for C.

Exactly the same relationship holds for the odds of moderate vs
slight dumping.
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4,2.2 Linear by Linear Association Model

The uniform association model is a special case of the more general
linear by linear association model which can be represented as

log mjj = prA XA Y548 (ui-d) (v4-7) (4.1)

where gi{%

£r3Y = 0.

The {uj} and {Vj} are known scores which we have assigned to the
rows and columns respectively, where uj; < up < ... < uy and

vy < v < ... < ve.o Equally spaced scores result in the simplest
interpretation, and in practice the integer scores {uj = i} and {vj
= j} are the most commonly used.

This model has only one more parameter (g) than the independence
model, so it has df = (r-1)(c-1)-1 = rc~r—c for testing goodness~of
~-fit. So this model is unsaturated as long as one of the variables
has more than two categories. Unlike the general model for
association between X and Y,

log mjj = p+aZAY3nXY;5 (2.7)

model (4.1) does not require additional association parameters as
the number of categories of X or Y increases. Model (4.1) is the
special case of model (2.7) in which the general association term
Ai3%Y takes the structured form g(uj-G) (v4-%).

The B8 parameter describes the association between X and Y; the
independence model is the special case in which g = 0.

The association term 8 (uj-u) (v4-v) reflects a deviation of log mjj
from the independence model. If 8 > 0 more observations are
expected to have (large X, large Y) values or (small X, small Y)
values than if X and Y are independent. On the other hand, if g <
0, more observations are expected to have (large X, small Y) or
(small X, large Y) values than under the independence model. In
either case the deviation from independence increases in the
directions of the four corner cells of the table,

For an arbitrary pair of rows a < b and an arbitrary pair of
columns ¢ < d, the log odds ratio formed from the cells (ac), (ad),

(bc) and (bd) is:
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Mac Mpd
log mag mpe = 8 (up=ug) (vg-ve)

Whenever the row scores are one unit apart and the column scores
are one unit apart, the log odds ratio equals 8.

Goodman (1979) defined models in terms of the (r-1)(c-1l) local odds
ratios

i3 = Mij Mit+],5+1 1
mj,§+1 Mi+l,5 1

n
IR

< r-1

< c-1

defined for adjacent rows and adjacent columns. The uniform
association model discussed in the previous section is the special
case of (4.1) in which all the 8jj's are equal. In such a model the
{ui} and {vj} are equal-interval scores, i.e. Ug—U] = ese =
Uy—-Up-~] and vp—v] = ... = Vo=Ve-]e The use of equal-interval
scores assumes that the categories are "equally spaced" in some
sense.

The use of integer scores {uj = i} and {vy = 3} results in all 617
= exp(B) and all log eij = B, sO B can be interpreted simply as the
common value of the local log odds ratio.

4,2.3 Estimation
There is no closed-form expression for the maximum likelihood

estimates {mij} of the {mj 4} in model (4.1). Under the usual
sampling assumptions, the estimates satisfy the likelihood

equations
ﬁi+=ni+ 4 i=1r sesyr I
ﬁQj =Ny o T =1, eesys C
LRi5 ui vy = )) nij ug vy
1] 1]

However, the model is no more difficult to fit than those described
in Chapter II. We can simply use the methods described in Section
1.10 and Appendix 2.
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4,2.4 Dumping Severity Example

Table 4, 4 gives a comparison of the observed counts and the fitted
counts under the model of independence and also under the uniform

Table 4, 4: Observed and fitted counts under independence and
uniform association

Dumping Severity
Operation None Slight Moderate
A 61 28 7
55. 3 29.7 11.0
62.5 26. 2 7.3
B 68 23 13
59. 9 32.2 12.0
62.8 30.9 10.2
C 58 40 12
63. 3 34.0 12.7
61.0 35.3 13.7
D 53 38 16
61.6 33.1 12.3
53.7 36.6 16.7

a observed counts
D fitted counts under independence
C fitted counts under uniform association

association (UA) model. The latter model fits much better than
the independence model in the corners, where it predicts the
greatest departures from independence.

When integer scores are used, the estimate of the association
parameter is B = 0.163, with standard error 0.065. The positive
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value of § means that the side-effect tended to be more severe with
greater removal of stomach. As previously noted, the estimated
unif,?rm odds ratio for adjacent rows and adjacent columns if B ij =
exp(g) = 1.18.

4,2,5 Conditional Test of Independence

The deviance for the UA model is G2 = 4,59, with 5 df so it fits
well. The significance of the association between dumping severity
and operation can be assessed by testing Ho:8=0. This gives a
conditional test of independence, under the assumption that the
uniform association model holds. Table 4.5 gives an analysis of
deviance table for these nested models.

Table 4.5: Analysis of deviance

Model log mjj = §ij = daf Deviance

Independence y+\ 10+ 3D 1 6 10. 88

Uniform u+h 1041 4P

Association 48 (uj-u)(v§~V) a = eB 5 4.59

Saturated w0 3D @iy = njg ni1, 941 O 0
130D Ni+l,3 0i,j+1

The test statistic is the reduction in deviance denoted by G2(I|U),
obtained by adding the association parameter g to the independence
model. For this data G2(I|U) = G2(I) - G2(U)

= 10. 88 - 4.59 = 6,29,

with 6 - 5 = 1 df, which is significant at the 5% level. This is
much stronger evidence of association than was obtained with the
G2(I) statistic.
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If the uniform association model holds, the ordinal test based on
G2(1 |U) is asymptotically more powerful than the test based on
G2(1I) for detecting departures from independence. The G2(I)
statistic cannot use as efficiently a constant pattern in local
odds ratios, since it treats the variables as nominal. The G2(I)
statistic tests for any way in which two variables could be
associated, whereas the G2(I|U) statistic only tests for a specific
type of association, and thus is more powerful at detecting this
association. (This is analogous to the ANOVA situation where an
overall F test may not pick up a difference in means, but a linear
trend is significant.)

However, if in the population some local log odds ratios are
positive and some are negative, then the uniform association model
may fit poorly, and the parameter that B estimates may equal zero.
Thus independence implies that 8 = 0, but g = 0 does not imply
independence if the uniform association model does not hold. Since
the G2(I) statistic is designed to detect any departure from
independence, it is better than the G2(I|U) statistic at detecting
nonmonotonic dependencies for which B is zero or close to zero.
The alternative hypothesis in the ordinal test (8=0) is narrower
than the broad alternative of "dependence", so the ordinal test
sacrifices power for detecting dependencies that are not well
summarized by the uniform association model. However, the uniform
association model is still a very useful model in many situations.

4,3 Ordinal-Nominal Tables

Sometimes only one of the variables in a two-way table is ordered.
Even if both variables are ordered, we may want to use only the
ordinal nature of the response, for instance, if we do not want to
specify the "distances" between the ordinal categories of the
explanatory variable,

If the row variable, X, is nominal and the column variable, Y, is
ordinal, we can assign scores v] < vy < ... Ve (usually integer
scores) to the columns and form the row effects model

log mij = piniXag¥ir; (v - ¥) (4.2)
where 1A% = 1a3¥ = ztj = 0
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the {1i} parameters, r-1 of which are linearly independent. Thus the
model has

df = rc - [1+(r=-1)+(c=1)+(r-1)]
= (r-1)(c-2)

and is unsaturated when there are more than two columns.

The independence model is the special case of this model with all 14 =
0. The association term tj(v3-v) reflects the deviation of log mjj
from the independence model. The {tj} are called the row effects. If
a particular row effect ti is positive, then in row i the probability
of the Y variable being higher than V is higher than would be expected
if the variables were independent. If tj < 0, observations in row i
are more likely (compared to the independence case) to fall at the low
end of the scale on Y.

For an arbitrary pair of rows a and b, and columns j and j+1, the log
odds ratio is

log maq mpy+1
My Maj+l = (tp =~ 1) (Vi+l - ¥y)

so in a sense the ti map the categories onto a linear l-dimensional
scale where the distance between 15 and tp is directly related to how
"similar"” the categories are (i.e. how close to 1.0 the odds ratios
involving these categories are).

For integer scores the log odds ratio is constant and equals tp = 14
for all pairs of adjacent columns.

The row effects model has the same form and produces the same G2 value
if the rows are permuted.

It can also be applied to ordinal-ordinal tables. This might be done
if the departure of log mjj from the independence model is not linear
across the rows, as is necessary for the linear-by-linear association
model is the special case of the row effects model in which ti =

B (Ui"‘ﬁ).
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4,3,1 Estimation

The ML estimates of expected counts for the row effects model satisfy
the likelihood equations

o . .
Mij+ =Nj+ , 1 € 1<
N .
Myy = Ny 1< j<c

Zﬁij vy =3zInjj vy, 1< i<r

There is no closed form expression for these estimates; however, we
can simply use the general algorithm of Section 1.10.

4. 3.2 Dumping Severity Example

For the dumping severity data of Table 1.6, the fitted values under
the row effects model with integer scores are given in Table 4.6:

Table 4.6: Fitted counts under row effects model

Dumping Severity
Operation None Slight Moderate
A 61.7 26,6 7.7
B 64. 4 30,1 9. 4
C 60. 2 35.7 14.2
D 53.7 36.6 16.7

The estimates of the row éffects parameters are:

Operation A : 11 = -0.21
B :7Ty=-0.13
C:13= 0,10
D:Tg= 0,24



64.

This model predicts constant odds ratios for adjacent columns of
dumping, so the difference between the row effect parameters of row
1 and row 2

Tp - 11 = =0.13 = (-0.21)
0.08

means that the odds of being classified slight instead of none, or
moderate instead of slight are exp (0.08) = 1.08 times higher for
operation B instead of A,

Corresponding odds ratios for the other operations are

exp (0. 23)
exp (0.14)

1

1. 26
1.15

I

Cvs B : exp (0,10 - (0.13))
Dvs C s exp (0.24 - (0.10)

il
]

We can also obtain these odds ratios from the fitted values:

B vs A, slight vs none : 8611 = 61.7 x 30.1
64,4 X 26.6
= 1,08
B vs A, moderate vs slight : 619 = 26.6 x 9.4
3001 x 7.7
= 1.08
C vs B, slight vs none : 991 = 64.4 x 35.7
60.2 x 30.1
= 1. 26

Similarly for any other odds ratios.

If the variable "operation" was actually strictly nominal, we would
not be so interested in simply comparing row 1 to row i+l.
However, since it 1is actually ordinal, this comparison is very
relevant. Fitting the row effects model allows the odds ratios to
be different for every pair of adjacent rows, rather than
constraining them to be identical, as in the uniform association
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model (which gave an estimated cammon odds ratio of 1.18). The row
effect scores of (-0.21, - 0.13, 0.10, 0.24) seem to indicate that
the "distance" (in terms of operation severity) between operations
B and C is twice as great as that between A and B, or C and D.
This contrasts with using integer scores in the uniform association
model, which assumes that all adjacent operations are of equal
difference in severity.

4,3.3 Conditional Test of Independence

The deviance for this model is G2 = 4, 40, with 3 df, so there is no
evidence of lack-of-fit.

The significance of the association between the two variables in
the row effects model can be assessed by testing

Ho : 7i=¢ s « =190 =0

I1f the row effects model holds, this homogeneity of the row effects
corresponds to independence. A conditional test of independence
can therefore be based on

G2(I|R) = G2(I) - G2(R)
with df = (r-1){c1) = (r-1)(c-2) = r-1.

Given that the row effects model holds, this test is asymptotically
amore powerful at detecting an association than the G2(I) test,
since it concentrates the noncentrality on fewer degrees of
freedom. The G2(I) test ignores the ordinal nature of Y, whereas
the G2(I|R) test focuses on alternatives where the ordinal scaling
is utilized through a linear departure of log mij from
independence. These alternatives are narrower and usually of
greater interest than the general alternative to the null
hypothesis of independence.

For the dumping severity data testing
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G2(I) - G2(R)
= 10,88 - 4. 40
= 6, 48

gives G2(I|R)

with df = 6-3 =3, which 1is only significant at the 10% level.
Compare this with the G2(I|U) statistic of 6.29 with 1 df obtained
in Section 4.2.5. Since the X variable in this example (operation)
is actually ordinal, and the uniform association model seems to fit
better than the row effects model, it is not surprising to note
stronger evidence of association 1is provided by the G2(I | U)
statistic than by G2(I IR). As before, given that the uniform
association model holds, we would expect the G2(I|U) test to be
asymptotically more powerful at detecting an association than the
G2(I |R) test, since it concentrates the noncentrality on fewer
degrees of freedom.

Since operation is actually ordinal, and the uniform association
model is just a special case of the row effects model (in which ti
= g(uj-U)), we can see whether we are losing much information by
using the uniform association model (which, in a sense "averages"
the odds ratios) rather than the row effects model, by comparing
the deviances of the two models.

In this case G2(U|R) = G2(U)-G2(R)
= 4,59 - 4, 40
= 0.19

with 5-3 = 2 df, which is not significant. So the improved fit due
to the two extra parameters in the row effects model is not
significant.

The analysis of deviance table for this data is given in Table 4.7.
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Table 4.7: Analysis of deviance

Model log mjj=u+h 10 5P+ 0ij= df  Deviance
Independence 0 1 6 10. 88
Uniform
association B (ui~u) (v4-v) a =exp (B) 5 4.59
Row effects i (V§=V) aj = exp (Ti4] - 7i) 3 4. 00
Saturated 150D B4 = Nii Ny

ij aif 5 i3 Ni+l,9+1

ni+l,J M, 3+

4,4 Higher Dimensions

The models in Sections 4.2 and 4.3 can be readily generalized to
higher order tables having at least one ordinal variable. We will
illustrate for the rxcxgy cross-classification of three variables X, Y
and Z having expected frequences {mijKt.

The hierarchical models of interest for three dimensions range from
the simple mutual independence model

log mjjk = utr % T2

to the model that contains all the partial association terms but no
three-factor interaction term,

log mijk = p+r iX'H\ jYH‘ inY.*.)\ ikXZ.;.)\ jkYZ°

The next most complex model beyond this includes the term Ajjx and is
of little interest because it is saturated. However, 1if one or more
of the variables is ordinal, there is a richer hierarchy of models
that includes partial association models, and unsaturated three—factor
interaction models.
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4, 4.1 0dds Ratios

In interpreting these models, we refer to the odds ratios {8ij(k)}/
{ei(j)k} and {6(j)jk} that describe the 1local conditional
associations between two variables within a fixed level of the
third variable. The set of conditional odds ratios {8jj(k)}, where

ij(k) = Tijk Ti+l,j+1,k _
Ti,j+l,k Ti+l, 3,k 1< 1<l
1< j<c1

is the set of (r-1)(c-1l) local odds ratio at a fixed level of Z.
Similar definitions hold for 6j(j)k and 8(j)jk. The ratio of odds
ratios

8ijk = 9ij(k+l = 9i(j+1)k = 8i+1)k
8ij(k) 9i(j)k 8(1)ik

is used for describing local three-factor interaction. 81iik
describes the interaction in a 2x2x2 section of the table
consisting of adjacent rows, adjacent columns, and adjacent layers.
There is an absence of three-factor interaction if all
(r-1)(c-1)(2-1) of the 8ijk equal 1.0.

4, 4,2 All Variables Ordinal

Consider the case in which X, Y and Z are all ordinal. Once again
we have to choose (perhaps somewhat arbitrarily) scores {ui}, {vi}
and {wg} to assign to the levels of X, Y and Z respectively. A
model that utilizes the ordinal nature of the variables is

log myk = pHh %R Y248 Y2 (ui-0) (v4-9)
+ 0 BR2(ui=0) (w=@) +8 Y2 (v4=9) (W) (4. 3).

As we will see later, the gZY, gXZ and gY¥Z parameters describe the
pairwise partial associations. This model has only three more
parameters than the independence model, and df = rcg - [1+(r=1)+
(ctl)+(2+1)+1+1+1] = rcg-r-c-4-1, so the model is always
unsaturated.
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The association term for each pair of variables has the same form
as the association term in the linear—by-linear association model.
There 1is no three-factor interaction term in the model, and all
8ijk equal 1.0. Hence the partial association between each pair of
variables is the same for all levels of the third variable.

If integer scores are used for all three variables, the local
conditional log odds ratios simplify to

log 814(k) = XY
log 84(j)k = B%Z
log 6 (i)3k = BYZ

The local odds ratio is uniform for each pair of variables, and the
strength of association is homogeneous across the levels of the
third variable, which is why the model is called the homogeneous
uniform association model.

If this model holds, and if a particular g equals zero, then there
is conditional independence between those variables.

In some cases it 1is not relevant to utilize the orderings of
classifications for all the ordinal variables. This could be
because departures from independence are not linear, or because the
sampling design dictates fitting certain marginal distributions.
Then the variables in question could be treated as nominal, and the
models of the following section could be fitted.

4, 4,3 Ordinal and Nominal Variables

When there is a mixture of nominal and ordinal variables, the row
effects model of Section 4.3 can be generalized.

4, 4,3.1 One Nominal, Two Ordinal Variables

If X is nominal and Y and Z are ordinal, a basic model is:

log mijk = wh iZn Y2 + 11XZ (w-w)
+ BYZ(vy=V) (wiW) (4. 4)
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where £A %X = £a5¥ = pag? = griXY = 21iX2 = 0

This is usually the simplest model that would be formulated to
include all pairwise associations, but no three-factor
interaction. The Y-Z association term for the ordinal variables
has the same form as the association term for the linear-by-
linear association model. The X-Y and X~-Z association terms for
the pairs of nominal and ordinal variables have the same form as
the association term for the row effects model.

For model (4.4) applied with integer scores for the ordinal
variables,

log 8ij(k) = 8441 - 15X

log 8i(j)k = 182441 — Ti¥2
log e(i)jk = Y2
log 6ijk = 0

4, 4. 3.2 Two Nominal, One Ordinal Variable

Suppose that X and Y are nominal, and Z is ordinal, -then a basic
model would be

log mijk = u+r {%4n a2 15%Y
+ X8 (ww) +r3 Y (w-w) (4.5)

i

where 1i ;% ZXjY = Akl = 114%2 = ZTjYZ

]

A general association term.{kinY} is used for the association
between the naminal variables.

4, 4.3.3 Dumping Severity Example

Table 4.8 gives a 4x3x4 cross-classification of operation,
dumping severity and hospital. The data used earlier (Table
1l.6) is the marginal distribution of this table in which the
results are combined for the four hospitals.
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Table 4., 8: Cross—-classification of operation, hospital
and dumping severity

Hospital

Dumping Severity

Operation | N S M N S M N S M N S M

A 23 7 21718 6 1 8 6 3112 9 1
B 23 10 518 6 2 (12 4 4 15 3 2
C 20 13 5413 13 2 {11 & 2 14 8 3
D 24 10 o 9 15 2 7 7 4,13 6 4

Note: N = none, S = slight, M = moderate

A model that takes into account the ordinal nature of operation
and dumping is

log mijk = u+h Ok 5HmDea g OH + 80D (u;-T) (wyW)

According to this model, dumping severity and operation have a

uniform association that is the same for each hospital, and

dumping severity is independent of hospital for each operation.

The general association term 1j40H is used for the O-H

association, rather than the term TjOH(ui~ﬁ), because the O-H
marginal distribution . is regarded as fixed by the sampling

design. When this model is fitted using integer scores, the

deviance is G2 = 25.35, with 29 df, which is a very good fit.

Given that the model fits, the conditional independence of
dumping severity and operation corresponds to 8OD = 0, The next
model in the hierarchy that does not include the gOD term is

log mjjk = u+>‘io+>‘jH+)\kD+>\ijOHr Which is referred to as (D,CH).
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This model has deviance G2 = 31.64 with 30 df. Thus, the test
statistic for testing Hy:3OD = 0 is G2 = 31.64 - 25.35 = 6.29,
with 30-29 = 1 df, which is significant at the 5% level.

The model (OD,CH), i.e.
iy = O, . .. .
log mjjk = puri "’)\JH-F}\ kDA leH'H\ lkOD

contains a general O-D association term, and has deviance G2 =
20.76 with 24 df. To test whether a general O-D association
term, Ai{°P, is necessary (rather than simply a uniform
association term, gOD(uj-u)(w~w)), the statistic is G2 = 25,35
- 20.76 = 4,59, with 29-24 = 5 df, which is not significant. So
there is not a significant improvement in fit due to the extra
five parameters in the more complicated model (OD,OH).

The ML estimate of gOD is BOD = (,163. This means that the
estimated odds of moderate instead of slight, or slight instead
of no dumping, are exp (0.163) = 1.18 times higher for each
additional 25% of stomach removal.

To illustrate this, consider Table 4.9, which contains the
estimated expected frequencies under the O-D uniform association
model.

The estimated odds ratios for severity of slight vs none for
operation B vs A, for hospitals 3 and 4 are:

]

Hospital 3: 31(3)1 11.07x5.95

12.09x4.63 = 1.18
Hospital 4: 81(4)] = 14.32%5.95
12.09x5.99 = 1.18



Hospital
1 2 3 4
Dumping Severi.ty
N S M N S M N S M N S M
Operation
A 20.84 8.72 2.45 {16.28 6.81 1,91 11.07 4,63 1.30 14,32 5.99 1.68
B 22.96 11.31 3.73 [ 15.71 7.74 2.55 12.09 5,95 1.96 12,09 5.95 1.96
c 21.06 12.20 4,74 | 15.52 8,99 3.49 10,53  6.10 2.37 13.8 803 3.12
D 20.07 13.68 6,25 | 13.05 8,89 4.06 9,03 6.16 2.81 11.54 7.87 3,60
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The corresponding estimated odds ratios for adjacent operations
and adjacent levels of dumping severity are all 1.18.

Because the model does not contain an H-D association term, the
table can be collapsed over hospital, and the O-D association
term in the marginal operation by dumping table will be the same
as in the full table. This is why the estimate of the gOD
parameter is the same as in the uniform association model fitted
in Section 4.2.1.

4, 4,4 Three-Factor Interaction Models

The models introduced in the previous section can be generalized to
include three-factor interaction terms. A simple model for the
case when X, Y and Z are ordinal is

log mijk = p+r {¥0 V248 EY (ui-0) (v4-9)
+ BEZ(u ) (W) +8 Y2(v5=V) (wi—w)
+ gRYZ(ui-0) (v4-9) (wiw) (4.6)

This model has df = rcg-[{1+(r-1)+(c-1)+(g-1)+1+1+1+1] = rcg -
r-c-¢-z, and is unsaturated whenever there are more than two rows,
columns or layers.

When this model is applied with integer scores,

log 6jx = gXYZ
log 6j(k) = 8XY+sXYZ [k - (2+1)]
2

This model is described as a uniform interaction model because the
local interaction equals g8X¥Z for all 2x2x2 subtables formed from
adjacent rows, adjacent columns and adjacent layers.

Within a particular level of Z, the association between X and Y is
uniform with local log odds ratio gXY+gXYZ[k—(g+1)/2]. Thus, the
strength of the X-Y partial association is constant within the
levels of Z but changes linearly across the levels of Z, Similar
results hold for the X-Z and Y-Z partial associations.
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A more general interaction model would be

log mjjk = u+xiX+AjY+Akz+xinY+kikYz+kjkYZ
+  BXY¥Z(yy-Q) (V=) (wi=a)..

This model has df = rcg - [1+(r-1)+(c-1)+)e-1)+(x=1) (c=1)+(x=1)(g-1)
+(c-1)(g-1)+1] = (r-1)(c-1)(g-1)-1, so 1is unsaturated whenever
there are more than two rows, columns or layers. When this model
is applied with integer scores, there is a constant value for log
8ijk, and it is the most general uniform interaction model. Due to
the general forms for the association terms, this model does not
have uniform association within the partial tables.

Model (4.6) applied with integer scores may be described as a type
of heterogeneous uniform association model, since the strength of
the uniform partial association for each pair of variables changes
across the levels of the third variable.

However, a more general example of a heterogeneous uniform
association model would be to assume there is a uniform conditional
association between say X and Y which is allowed to change in an
unspecified manner across the levels of Z. In this case the
interaction is not uniform and Z is treated as nominal. This model
is

log mjjk = p+kiX+AjY+§kZ+Ai§XZ+AjkYZ
+ 3kXY(ui—u)(Vj—v)

For this model with integer scores gy%Y is the constant value of
the X-Y local log odds ratio at level k of Z.

4, 4. 4,1 Smoking Example

Table 4.10 is a cross-classification of age, smoking status and
breating test results of 2289 people (Forthofer and Lehren,
1981, p.21).
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Table 4.10: Age by smoking status by breathing test results

Breathing Test Results

Age Smoking Status Normal Borderline Abnormal
<40 Never smoked 577 27 7
Former smoker 192 20 3
Current smoker 682 46 11
40-59 Never smoked 164 4 0
Former smoker 145 15 7
Current smoker 245 47 27

The standard partial association model (AS, AB, SB) fits poorly,
with a deviance of 25.93 based on 4 df, so we consider models
having three-factor interaction terms.

The model

log mjjk = u+xiA+AjS+ka+AijAS+AikAB+AijB
+ 8BSB(ui=T) (v4=9) (wg-w)

with integer scores has only one additional parameter but fits
much better, with G2 = 2,74 with 3 df. To test Hg:8ASB = 0
use G2 = 25,93 - 2,74 = 23.19 with 4-3 = 1 df, which is
significant at the 0.1% level. So there is very strong evidence
that the association between smoking status and breathing test
results depends on age. The estimate of gSBA = (, 831 means that
the association between smoking status and breathing test result
is more positive at the higher age level. Any local odds ratio
for the 40-59 age group is estimated to be gijk = g(g)jk/é(l)jk
= exp (0.831) = 2,30 times higher than the corresponding local
odds ratio for the < 40 age group. To illustrate this concept
consider Table 4.11, which contains the fitted counts under this
uniform interaction model.
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Table 4.10: Age by smoking status by breathing test results

Breathing Test Results

Age Smoking Status Normal Borderline Abnormal
<40 Never smoked 577 27 7
Former smoker 192 20 3
Current smoker 682 46 11
40-59 Never smoked 164 4 0
Former smoker 145 15 7
Current smoker 245 47 27

The standard partial association model (AS, AB, SB) fits poorly,
with a deviance of 25.93 based on 4 df, so we consider models
having three~factor interaction terms.

The model

log mjjk = U+A1A4AjS+AkB+AijAS+xikAB+XijB>
+ BASB(ui—ﬁ)(Vj—§)(wk—w)

with integer scores has only one additional parameter but fits
much better, with G2 = 2,74 with 3 df. To test Hg:8ASB = 0
use G2 = 25,93 - 2.74 = 23.19 with 4-3 = 1 df, which is
significant at the 0.1% level. So there is very strong evidence
that the association between smoking status and breathing test
results depends on age. The estimate of gSBA = (, 831 means that
the association between smoking status and breathing test result
is more positive at the higher age level. Any local odds ratio
for the 40-59 age group is estimated to be gijk = g(Z)jk/g(l)jk
= exp (0.831) = 2,30 times higher than the corresponding local
odds ratio for the < 40 age group. To illustrate this concept
consider Table 4.11, which contains the fitted counts under this
uniform interaction model.
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Table 4.11: Fitted counts under the uniform interaction

model
Breathing Test Results

Age Smoking Status Noxrmal Borderline Abnormal
< 40 Never smoked 577. 43 27.09 6. 48
Former smoker 191.76 18,57 4,67

Current smoker 681. 81 47,34 9. 85

40-59 Never smoked 163.57 3.91 0.52
Former smoker 145. 24 15. 43 S. 33

Current smoker 245.19 45, 66 28. 15

The odds ratio for abnormal vs borderline breathing test, for
former smoker vs never smoked, at age < 40 estimated to be:

Age < 40: 8(1)12 = 27.09 x 4.67 = 1.05
18.57 x 6. 48

The corresponding estimated odds ratio for age 40-59 is:

Age 40-59: 6(2)12 = _3.91 X 5.33 = 2. 44
16. 43 x 0.52

So the estimated odds ratio for the 40-59 age group is 2.44/1.05
= 2.3 times higher than the estimated odds ratio for the < 40
age agroup.

The heterogeneous uniform S-B association model,

logmijik = u+ iAi-)\jSHkBH\ ij_AS _
+ A K ABHB iSB(Vj—v)(wk——w)

with integer scores, has a deviance of 10.80 with 6 df, and does
not fit quite as well as the uniform interaction model.
However, it yields the simple interpretation of constant local .



odds ratios exp (81SB) =

group. To confirm this,
under this model:

Table 4.12: Counts under heterogeneous uniform S-B

78.

exp (0.115) = 1.12 for the lower age
group, and exp (B,5B) - exp (0.781) = 2.18 for the higher age
Table 4.12 holds the fitted counts

association model

Breathing Test Results

Age Smoking Status Normal Borderline Abnormal
< 40 Never smoked 572. 42 32. 25 6. 33
Former smoker 199.61 12.62 2.78

Current smoker 678. 98 48,13 11. 89

40~-59 Never smoked 160.71 6. 44 0. 85
Former smoker 150.08 13.12 3. 80

Current smoker 243.21 46, 44 29, 35

At age < 40, the odds ratio for abnormal vs borderline
for former smoker vs never smoked is estimated to be:

Age < 40: 8(1)12 = 32.25 X 2.78 = 1.12

12,62 x 6.33

The corresponding estimated odds ratio for age 40-59 is

Age 40-59: 8(2)12 = 6.44 X 3,80 = 2,19

13,12 x 0. 85

results,

Since both 815B and B,SB are positive, breathing test results
tend to be more abnormal when an individual's smoking status is
more current. The association is estimated to be stronger for

the older age group.
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CHAPTER V: LOG-MULTIPLICATIVE MODELS

An obvious disadvantage of the ordinal loglinear models discussed in
Chapter IV is the need to assign scores to the categories of ordinal
variables. For many cases it is not obvious what scores should be
chosen., But the parameter estimates and goodness of fit of the models
depend on that choice.

However, we could treat the scores as parameters to estimate, rather
than as fixed values.

For two-dimensional tables a model of this type would be
log mjy = pHk {0 3¥48u v

where 71 jX = 1A4¥ = 0. Here the {uj} and {vj} are parameters to be
estimated. The model is called log-multiplicative because the log of
the expected count is a multiplicative function of the parameters.
Goodman (1979) called it the "RC model" because of its multiplicative
row and column effects. The basic form of the model is unchanged when
the {ui} or {vj} are replaced by linear functions of themselves. So
we can assume an arbitrary location and scale, such as

Zuj = Ivy =0 and Inil = Zvj2 =1

Because of the constraints on the model parameters, r-2 of the {ui}
and c-2 of the {vj} are linearly independent. So for testing goodness
of fit

df = re-[1+(r-1)+(c=1)+1+{r-2)+(c=2)]

(r-2) (c~2)

li

and so the table must be at least 3x3 for the model to be unsaturated.
The independence model corresponds to g=0. The log-multiplicative

model resembles the linear-by-linear association model discussed in
Section 4, 2.2

log mjj = u+KiX+XjY+s(ui—ﬁ)(Vj-§)
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The log-multiplicative model can be  interpreted 1like  the
linear-by-linear association model through the odds ratios if the
fixed scores {uj} and {vj} are replaced by the parameters {uj} and
{vj}. However, the parameters {uji} and {vj} need not be monotonic.
If the RC model fits well and produces parameter score estimates that
are monotonic, then the linear-by-linear association model would also
fit well if the fixed scores that were chosen for that model had
similar spacings.

The log-multiplicative model is invariant to interchanges of rows and
columns., For example, if we interchange rows a and b, then yz and up
simply switch places, so the variables are treated as nominal.
However, we can describe ordinal characteristics of the data through
odds ratios. The local log odds ratio is

log 845 = B(itl = ui) (Vj+1—v3)

so monotonicity in the scores means that all local associations have
the same sign. Lack of monotonicity in the scores indicates that
local associations are positive in some locations and negative in
others.,

The log-multiplicative model also resembles the row effects model
log mjj = p+kiX+AjY+ri(Vj—§)
if we treat the {ui} as row effects and the {vj} as parameter scores.

Generally in the RC model we regard the {ui} as row effects and the
{vj} as column effects.

The RC model can actually be used to give an ordering to the row and
colunn categories, i.e. we could order them in increasing order the

5.1 Estimation

Although the RC model is not actually loglinear, it can be fitted
using an iterative loglinear fitting procedure.
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If one set of parameter scores is treated as fixed, then the model has
a loglinear form.

Each cycle of the iterative procedure consists of two steps. First,
the column parameters are treated as fixed, and the row scores are
estimated as in a loglinear row effects model. Then the estimated row
effects are treated as fixed row scores, and column scores are
estimated as in a column effects model. Those estimates serve as
fixed column scores in the first part of the next cycle.

5.2 Inference for Log-Multiplicative Models

Testing for independence corresponds to testing Hp:3 = 0 in the RC
model. The test statistic G2(I) - G2(RC) does not have an asymptotic
chi-squared distribution, because the {uj} and {Vj} are undetermined
in the RC model if independence holds. Instead, Haberman (1981)
showed that the null asymptotic distribution of the statistic is the
same as that of the maximum éigenvalue of the (r-1) by (c-1) central
Wishart matrix with df = c-1.

5.3 Dumping Severity Example

Once again we will use the data from Table 1.6. Fitting the RC model
log mjy = U+A104Ajfhﬁu{v5

gives a deviance of G2(RC) = 2.85 with df = (4-2)(c-2) = 2, which is a
good fit. We have already seen that the independence model gives
G2(I) = 10.88, with 6 df. The test statistic G2(I) - G2(RC) - 10.88 -
2.85 = 8,03 can be used to test independence, given that the RC model
fits. The null distribution of this statistic is the same as that of
the maximum eigenvalue of the 3x3 central Wishart matrix, with 2 df.
Table 51 of Pearson and Hartley (1972) gives the upper 5% and 1%
critical values for this test, which are 10.74 and 14.57 respectively.
Thus, the G2(I) - G2(RC) test is significant at the 5% level, so there
is evidence that the operation affects the dumping severity.

The parameter estimates for the RC model are:
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H1 = 0.364 V1 = -0.797
o = -0.613 99 = 0.553
iz = 0.404 3= 0.244
fig= 0.573 and B = 0.442

The parameter estimates are not monotonic, which indicates that some
local associations are positive and some are negative. The estimate
of the local odds ratio is

813 = explB (ir111) (V34195)]
which gives the six estimated local odds ratios as

811 = expl0. 442(-0. 613+0. 364) (0. 553+0.797)]
= exp(-0.149)
= 0. 86

021 = expl0. 442(0. 404+0. 613) (0. 553+0. 797) ]
= exp(0.607)
= 1,83

631 = expl0. 442(0.573-0. 404) (0. 553+0. 797) ]

= exp{0.101)
= 1.11

612 = 1.04

650 = 0.87

§32 = 0.98

These are of course the same as those obtained using the fitted counts
in Table 5.1.



Table 5.1: Fitted counts under the RC model
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Dumping Severity
Operation None Slight Moderate
A 60. 28 25.59 10. 13
B 68.62 25.10 10. 23
C 57.59 38.64 13.77
D 53.50 39,68 13. 82

611 = 60.28 x 25.10 = 0. 86
68.62 X 25.59
§9] = 6862 X 38.64 = 1. 83
57.59 X 25. 10
531 = 57.59 x 39.68 = 1.11
53.50 X 36.64
etc.

This RC model states that the odds for heavier dumping severity are
sometimes increased by the removal of more stomach and sometimes
decreased. The simpler uniform association model

log mi4 = p+k {0 P48 (ui=0) (v3-)
which we fitted in Section 4.2.1,

exp(B) = exp(0.163) = 1.18 times

operation i. The uniform association model gives G2(U) = 4,59, with
5 df, and is the special case of the RC model where

i = uij-u and vy = Vj-_\;

states that the odds of having
slight dumping instead of none (or moderate instead of slight) are
higher for operation i+l than

The difference in deviance between the two models, G2(UIRC) = G2(U) -
G2(RC), provides a test of the null hypothesis that the {uj} and {vj}
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are linear transformations of the pre-selected scores for the
loglinear model, given that the RC model fits. 1In this case G2(U/RC)
= 4,59 - 2,85 = 1.74 based on 5-2 = 3 df, which is not significant, so
the equal interval scores of the uniform association model seem
permissible, since the increase in deviance is small compared to using
the parameter scores of the RC model. Therefore the simpler uniform
association model seems adequate for describing the relationship
between operation and dumping severity.

Although the example used here has both ordinal row and column
variables, we could of course have used a nominal-ordinal, or
nominal-nominal table.

5.4 Higher Dimensions

The log-multiplicative model can be generalized in various ways so
that it can be used with multi-dimensional tables. Log-multiplicative
models are obtained when parameters are substituted for scme or all
pairs of sets of fixed scores in the ordinal loglinear models of
Chapter 1IV. For example, a parameter-scores version of the
homogeneous linear—effects model (4.3) is

log mijk = u+h {540 ¥ 24 XYy j_vj+8XZMjmk+B Y2 sy

where 514X = 1A j¥ =122 = ¢

z
Zuj = Ivy = Lwk 0
Zu 1Z = Z\)Jz = Zwkz =1

This model is always unsaturated as it has df = rcg - 2(r+cty) + 5

The log odds ratios are

log 8ij(k) = (ui+t1ui) (v 3y41~v3)8%Y
loggijk =0

so that the model is quite simple to interpret when the parameter
scores are monotonic.
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CHAPTER VI: IOGIT MODELS

The models described in the previous chapters are suitable for tables
with one or more response variables. In contrast, the logit models of
this chapter are only appropriate for the situation where there is
only one response that is also ordinal. This response variable is
explained by a set of explanatory variables.

6.1 Dichotamous Response

A dichotomous response can take one of only two values, e.g. yes/no;
success/failure; low/high. It can be trivially treated as ordinal by
defining one level to be "high".

Dichotomous logit models can be thought of as simply a different way
of writing loglinear models for one dichotomous response.

To illustrate this, consider a cross-classification in which X and Y
are categorical explanatory variables and Z is a dichotomous response.
We will fit the loglinear model (XY, XZ, YZ) or

log mjjk = u+xiX+AjY+kkz+kinYQAikXZ+AjkYZ
We define the logit as log mjjp/mjji. This is equal to
log mjj2 - log mjj1

[u+kiX+XjY+Alz+KinY+X11Y2+%jlYZ]
(XZZ—AlZ)+(AigXZ—A11XZ)+(Xj2YZ—Xj1YZ)

1

Since z is dichotomous and £AkZ = 0, $A k%% = 0 and ijkYZ =0
k k k

then AlZ = ‘AZZ
Ai1X2 = -\ X2
and )\JlYZ = _)\JZYZ
so log mijZ/mijl = 202 + ;X2 + ijzYZ which can be written as

log mjjp/mij1 = atri¥ + ¥
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where 11X = z15¥ = 0
i j

This 1is the general form of the logit model for nominal X and Y
variables.

The logit for Z at level i of X and j of Y is defined to be

log ma(ij) = log m2(ij)
Tr2(13) T1(ij)

= log mij2
mijl

= log mijp
i1

Logit models always assume that the response is to be explained by a
conbination of explanatory variables, so the corresponding loglinear
model will always contain the most general interaction term for
describing associations among the explanatory variables, plus the
relevant interaction terms which specify relationships between the
explanatory variables and the response (these will depend on exactly
which model is being fitted). So, to rewrite a loglinear model in
terms of a logit model, we can simply omit any terms that don't
involve the response and remove the response subscript from all other
terms.

For example, suppose X 1is nominal but Y is ordinal with monotone
scores {V], ..., Vo} assigned to its levels. A loglinear model that
specifies that both X and Y affect Z (and also uses the ordinal nature
of Y) is

log mijk = u+A 1540 jY+)\ kz+)\ inY-H\ ikXZ
+ ijz (VJ—\‘7)

The logit equivalent of this model is

log mjj2 = a+'riX+3Y(Vj-—\7)
mij1
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with 314X = 0
i

6.2 Polytomous Response

Now we will extend these logit models to the case where a response has
two or more ordered categories. It makes sense to form logits in a
way that takes the category order into account. However, we don't
need to use only two categories at a time in forming the logits.
Three different types of logits we could use are:

(a) Adjacent—-categories logits

szlq; 'n’j-*-l r j=l, LI c—l
"3

(b) Continuation-ratio logits

Lj=lOg Trj+1 7 j‘-‘l, sese g C_l
T1Fe oo ]

(c) Cumulative logits

Lj = log mjerte.strc 3= 1 e, ol
ﬂl‘i‘ooo"}‘n—j

where 7 j is the probability of response category j at a certain
combination of levels of explanatory variables. When there are only
c=2 categories, all three of these logit types simply to the standard

logit, log (wo/m1).

Figure 6.1 gives an impression of these three types of logits.

Figure 6.1: Logits for an ordinal response
(a) Adjacent-categories
J+l .. C

i
V N \"s\\’k
// \\\f\}

|
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(b) Continuation-ratio

j+'1 s e C
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(c) Cumulative

1 see j+l (K C
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6.2.1 Adjacent—Categories Logits

Goodman (1983) presented models using adjacent-categories logits.
These models are equivalent to the ordinal loglinear models
discussed in Chapter IV, but they have a different emphasis in the
sense that they are only appropriate when there is only one

{(ordinal) response.

6.2.1.1 Ordinal-Ordinal

For a two-way table with ordinal explanatory row variable, X,
which has assigned scores {uj}, and ordinal response column
variable, Y, a simple logit model would be

Lj(i) = log mij+1 = aj + 8(uj-u)
mlj
1< i< r,
1< jg 1

Independence corresponds to the case where g = 0.

This model is equivalent to the loglinear uniform association
model

log mjj = 8 (uj-u) (v§=v)
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(i.e. with integer scores), and the association parameter g is
identical in the two models.

6. 2. 1.2 Ordinal-Nominal

If the row variable X is nominal, a simple logit model is

Lariy = 1 ms 4 = 4T
(1) Og mji+1 5! i
i
1< i<r
1< j<c1

where 11 = 0. This is referred to as the parallel odds model
by Goodman. Independence corresponds to the case where all the
11{ equal zero. The parallel odds model is equivalent to the log
linear row effects model with integer scores {vj = j}

log mij = p+ ti (v§ = ¥)

and the {rj} row effect parameters are identical in the two
models,

6.2.2 Continuation-Ratio Logits

Continuation-ratio logits have the feature that the results of
fitting models for separate logits are independent. Hence the C-1
G2 statistics and their df values can be sumed to obtain an
overall goodness—of-fit statistic that pertains to the simultaneous
fitting of C~1 models, one for each logit. However, if the
categories of the ordinal variable are listed in the opposite order
and continuation-ratio logits are formed from these (i.e. the
logits log [Wj/(ﬂj+1+...+nc)] are formed), the results will differ
from the original analysis.

Although they do not appear to have been used very much in the
literature, models can be formed for continuation-ratio logits in a
similar fashion to that described in Section 6.2.1, i.e. we model
the logit as a linear fuction of the explanatory variables. For
example, for an ordinal-ordinal table with explanatory row variable
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X with scores {uj}, we could model the logit as a linear function
of the scores

Lj(i) = log mij+1 =aj 8 (uj-u)
11T« 7
l<ix<r
1< j< cl

If X is nominal (or if we just wish to treat it as nominal) we
could model the logit as

Lj(i) =aj *T1i
l1<ix<r
1< j<c-l

]
(o]

LT

Fienberg (1980, p.l14) gives an example of the use of a
continuation ratio logits for a four-way table.

6.2.3 Cumulative Logits

The cumulative logits

Lj = “j+l+.co+'nc
T]Te oot

use all c categories for each logit, and satisfy Lj > Ly vee > Le-]

6. 2. 3.1 Heterogeneous Effects

6e2+3.1.1 Ordinal-Ordinal Tables

For a two—-way table with ordinal explanatory row variable, X,
which has assigned scores {uj}, and ordinal response column
variable, Y, a simple logit model would be

Lj(i) = 10g Mij41+ .o tmic

mil+°°-+mij
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=aj + B (uji=u), 1 =1, vee, T

For each fixed cutpoint j there are r logits and two
parameters, so that df = r-2. This model is simply the basic
logit model of Section 6.1 for a dichotomous response
variable and quantitative explanatory variable, applied to
all c-1 combinations of adjacent categories. For each
cutpoint j, the first category is obtained by combining the
response categories up to an indlucing the jth, and the
second category 1is obtained by combining the last c—j
categories. Thus we form c-1 separate rx2 tables and fit the
basic logit model to each. 1If the model holds and g j = 0,
then X and Y are independent when Y is collapsed in this
manner.

For fixed category cutpoint j this model, applied with

integer scores, 1is identical to the loglinear uniform
association model

log mjj = u + B(uj-u)(v4=v)

applied to the collapsed rx2 table.

6.2.3.1.1.1 Dumping Severity Example

We will now re-analyse the data of Table 1.6. The first
cumulative logit involves comparing "none" to “"slight"
plus "moderate", i.e. (w3 + w3)/m, the second cumulative
logit compares "none" plus "slight" to "moderate", i.e.
n3/(r1 + mp). These two collapsing are given in Tables
6.1 and 6. 2.



Table 6.1:
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Data for first cumulative logit (j=1)

Dumping Severity
Operation None Slight or Moderate Total
A 61 35 - 96
B 68 36 104
C 58 52 110
D 53 54 107
i
Table 6.,2: Data for second cumulative logit (j=2)
, Dumping Severity :
Operation | None or Slight Moderate . Total
A 29 7 %
B 91 13 104
C 98 12 110
D 91 16 107

Assigning integer scores to the operations and

linear logit models

Li(i) = aj+jlui-u)

gives the fitted counts of Tables 6.3 and 6. 4.

fitting the
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Table 6.3: Fitted counts from first collapsing (j=l)

Dumping Severity

Operation | None Slight or Moderate Total
A 63. 37 32.63 96
B 63.13 40. 87 104
c 40. 63 49, 37 110
D 52. 87 54,13 107

Table 6.4: Fitted counts from second collapsing (j=2)

Dumping Severity

Operation | None or Slight Moderate Total
A 87. 91 8. 09 96
B 93.39 10.61 104
c 96. 48 13.52 110
D 91.22 15.78 107

The deviances for the logit models are Gj2 = 1.49 and Gy2 =
0. 94, both with 2 df, so both cumulative logits are fitted
well.

The estimates of the slope parameters are g1 = 0.229 and 85 =
0. 211, so the odds that there is some side effect (instead of
none) is estimated to be exp(gl) = exp(0,229) = 1,26 times
higher for operation i+l than for operation i. Similarly the
odds that the dumping is moderate, rather than none or
slight, is estimated to be exp('éz) = exp(0.211) = 1.23 times
higher for operation i=1 than for operation i.

Of course, both these odds ratios can be obtained from the
tables of fitted counts. For example, the odds ratio for
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some dumping instead of none, for operation D vs C is
estimated as

K |
631(1) = 60.63 x 54.13 = 1.26
52. 87 X 49. 37

The odds ratio for moderate dumping instead of slight or
none, for operation D vs C, is estimated as

931(2) = 96.48 x 15.78 = 1.23
91.22 X 13.52

To test whether the B parameters are zero, we campare the
deviances of the models where they are unconstrained and of
the models where they are set to zero.

For the first cumulative logit, fitting the independence
model

Li(i) = a1

gave a .deviance of G2(I;) = 7.92 with 3 df. The
unconstrained model

L1(i) = a1+81(uj-u)

gave a deviance of G2(81) = 1.49 with 2 df, so the test
statistic for Ho:8] = 0 is G2(I1) - G2(B1) = 7.92 - 1.49 =
6. 43, with 3-2 = 1 df, which is significant at the 5% level.

For the second cumulative logit, G2(Ip) = 3.19 with 3 df, and
G2(Bp) = 0.94 with 2 df, so the test statistic for Hg:Bo = O
is G2(Iy) - G2(89) = 3.19 = 0.94 = 2.25 with 3-2 = 1 df,
which is not significant at the 10% level.
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6.2.3.1.2 Ordinal-Nominal Tables

For the two-way table where X is naminal, this approach is
not very enlightening because if we fit

Ly(i) = 109 Mi 41+, .. +mie
Mi]+e .o tyy

= oy + Tij
where zt1ij = 0, then for each fixed cutpoint j there are
1
1+(r-1) = r parameters, but only r logits, and the model

is saturated.

6. 2. 3. 2 Homogeneous Effects

6.2.3.2.1 Ordinal-Ordinal Tables

Consider again the heterogeneous—effects logit model which we
applied to the dumping severity data. The estimates of

Bi = a1+B1(uj-u) and Lo(i) = az(ui-0)

were 37 = 0.229 and 8o = 0.211. The fact that these
estimates are so similar suggests that we might be able to
assune 81 = B, and replace them by a single homogeneous

effect parameter g and fit the model:

Li(i) = a3tB(uj-u) i=1, «ou;, 1
j l] LI 4 G‘l

An amalgamated logit model of this type for the full rxc
table does not correspond to any loglinear model.

In general, there are c~1 logits in each of r rows, giving a
total of r(c-1) logits. There is one association parameter,
g8, and c¢-1 parameters, {aj}, relating to the various
cutpoints for forming the logits. Therefore, the residual d4f
= r(c-1)-1-(c~1) = rc-r-c. This is the same as the residual
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df for the linear-by-linear association model; however, the
loglinear and cumulative logit models are not equivalent
unless c=2.

Each of the c-1 logits is linearly related to the explanatory
variable, with slope B assumed the same for all logits. If
the model holds and 8=0, then the jth logit is the same in
each row (for all j), which implies that X and Y are
independent.

The difference in logits for adjacent rows

Ly (i+1)-Li(i) = k@1ﬁ}ld+Iﬂ.fﬁi+Lc'-lqgﬂid+rh.dﬁic
Ti+],1Fe e Ti+], 7 LI Te e

log (mij+eeetmiy) (Wi41, j41%e o ¥ i41,0)
Ti+],1Feee¥mit], 3 Ui, J+1FeeeFiric)

which is the log odds ratio for the 2x2 table obtained using
rows i and i+l and the dichotomous response having cutpoint
following category j. This 1is simply the log of the
local-global odds ratio 613" introduced in Section 1.6.3.2.
If integer row scores are used, then

Li(i+1) = Li(i) = ej+8(ui+1-u) - ay-8(uj-u)
B(uj+1-ui)

B

so exp(R) represents the constant value of the odds ratios
{eij'} for the (r-1)(c-1) 2x2 tables obtained by taking all
pairs of adjacent rows and all dichotomous collapsing of the
response, We will call this model the logit uniform
association model. McCullagh (1980) shows that the whole
class of homogeneous logit effect models are proportional
odds models. Taking the example of the logit uniform
association model, the proportional odds model states that
for a given row i, the odds that a category is less than or

equal to j, is

Tilte.otmig = «j exp-(§5+8 (uj-u)
Ti,j+ltesFUic



97.

where kj and §3 are just constants that depend on J.
Taking logs of both sides and multiplying through by -1
gives

s il+- oo TT lj

aj+B (uj-u)

which is simply the logit uniform association model.

6.2.3.2.1.1 Dumping Severity Example

We will now apply the logit uniform association model to
the dumping severity data of Table 1.6. The estimate of
the association parameter is g = 0.225, and the deviance
is G2 = 4,27 with 5 df, so the model fits well. The
estimate of the local-global odds ratio is §3j = exp(g) =
exp(0.225) = 1.25. This means that the odds that dumping
severity is some rather than none (or moderate rather than
slight or less) is 1.25 times higher for operation i+l
than for operation i. To illustrate this, consider the
fitted counts of Table 6.5:

Table 6.5: Fitted counts under logit uniform
association model

Dumping Severity
Operation None Slight Moderate Total
A 63.23 24, 87 7. 90 9%
B 63.08 30. 43 10. 50 104
C 60.70 35.75 13.56 110
D 53.05 37.94 16,01 107
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The first collapsing (corresponding to j=1) of these
counts is given in Table 6.6:

Table 6.6: Fitted counts, collapsed into dichotomous
response (j=1)

Dumping Severity
Operation None Some (=Slight+ Moderate)  Total
A 63.23 32.77 96
B 63.08 40. 93 104
C 60.70 49,31 110
D 53.05 53. 95 107

The odds for some dumping instead of none for operation A
is 32.77/63.23 = 0.52; for operation B it is 40.93/63.08 =
0.64, so the odds that there will be some dumping rather
than none is 0.64/0.52 — 1.25 times higher for operation B
compared to A, This is fo course just the local-global
odds ratio

%11 = 63.23 x 40.93 = 1.25
63.08 X 32.77

The gél and 551 are calculated in a similar manner to be
1.25. As always, this means that the odds for operation
i+1 is 1.25 times higher than the odds for operation i.

Operation Odds for Some vs None
A 32.77/63.23 = 0,52
B 40. 93/63.08 = 0.64
C 49.31/60.70 = 0. 81
D 53.91/53.05 = 1.02
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The second collapsing (j=2) corresponds to a comparison of
moderate dumping vs none plus slight, and the values of
the estimated local-global odds ratios, @iz ' 652 ,'832
are also all 1.25.

6.2.3.2.1.2 Conditional Test of Independence

Given that the logit uniform association model holds, one
can test independence by testing Hnp:3 = 0. The test
statistic is the difference between the deviances for the
independence model and the logit uniform association
model :

c2(1]u) = G2(1) - G2(u),
which has df = (r-1)(c-1) - (rc-r-c) = 1.

The logit independence model

Li(i) = aj
is equivalent to the loglinear independence model
log mij = p+r %435
For the dumping severity data, the test of Hy:3 = 0 is

based on G2(I|U) = 10.88 — 4.27 = 6.61, with 1 df, which
is significant at the 5% level.

6.2.3.2.2 Ordinal-nominal tables

If X 1s nominal, we can form a logit analog of the
loglinear row effects model:

Ly(i) = log Mj, g+1+e oo Hlic
my{i+... +mij

|
R
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+
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where zti; = 0. This model 1is also analogous to the one-way
ANOVA model for continuous response variables, In this
logit row effects model the ith row effect, 14, is assumed to
be the same for all c-1 ways of forming the cumulative logits
and {(c~-1)+(r-1) independent parameters, so the residual df =
(r-1)(c-2)., This is the same as the loglinear row effects
model, but the two are not equivalent unless c=2.

For each pair of rows a and b the difference in logits

Li(b) = Lj(a) = b ~ Ta

is constant for all c-1 logits, so the log odds ratio for
the 2x2 table formed by taking rows a and b of the table and
collapsing the response is constant for all c-1 collapsings.

McCullagh (1980) gives an example of what he calls a
proportional odds model, which is the same as this logit row
effects model, with one explanatory variable, with two
levels, and a response variable with three ordered
categories,

6.2.3.2.2.1 Dumping Severity Example

Once again using the data from Table 1.6, we can treat the
row variable operation as nominal, and fit the logit row
effects model. The model fits well, with G2 = 3,56 with
3 df. The fitted counts are g}ven in Table 6.7.

The estimates of the row effects parameters are:

Operation A : T, = 0.259
B : 1o =-0.251
C:13= 0.170
D:1g4= 0.341
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Table 6.7: Fitted counts under logit row effects

model
Dumping Severity
Operation None Slight Moderate
A 61.57 25. 97 8. 45
B 66.51 28.27 9.23
C 59.17 36.62 14,21
D 53.00 37.99 16,01

The model predicts constant log odds ratios for the two
collapsings of each pair of rows into 2x2 tables, so the
difference between the row effect parameters of rows 3 and
4, 74 - 13 = 0.341 - 0.170 = 0.171 means that the odds of
dumping being some instead of none (or moderate instead of
slight or less) are exp{(0.171) = 1.19 times higher for
operation D compared to A. ’

These «odds ratios can also be obtained from the fitted
values {Mij}. For example, Table 6.8 gives the first
collapsing of the response, corresponding to j=1.

The estimated odds ratio for operation D vs C is 1.02/0. 86
= (59,17x54.00)/(53.00x50, 83) = 1,18, Estimated odds
ratios can be calculated similarly for the other
operations. The values of the odds ratios obtained for
this collapsing are identical to the wvalues obtained for
the other collapsing (corresponding to j=2).
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Table 6. 8: Fitted counts, collapsed into dichotomy
(3=1)

Dumping Severity
Operation None Some Odds (Some vs None)
A 61.57 34. 43 0.56
B 66.51 37. 49 0.56
C 59.17 50. 83 0. 86
D 53.00 54.00 1.02

Treating operation as nominal and fitting the logit row
effects model allows the odds ratios to be different for
every palr of adjacent rows, rather than constraining them
to be identical, as in the logit uniform association
model.

6.2.3.2.2.2 Conditional Test of Independence

Independence is the special case of the logit row effects
model in which all the row effect parameters are zero.
Given that the row effects model holds, a conditional test
of independence can be based on G2(I|R) = G2(I) - G2(R),
with df = (r-1)(c-1) - (r-1)(c-2) = r-1.

For the dumping severity data, the test of Hpit] = ...
1y = 0 is based on G2(I|R) = 10.88 - 3.56 = 7.32 with 6-3
= 3 df.

Since operation is actually ordinal and the logit uniform
association model 1is Just a special case of the row
effects model (in which 14 = g(uj-0)), we can see whether
we are losing much information by using the logit uniform
association model rather than the row effects model, by
comparing the deviances of the two models. 1In this case
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G2(U|R) = G2(U) - G2(R)
= 4. 27 - 3-56
= 0.71

with 5-3 = 2 df, which is not significant, so the improved
fit due to the two extra parameters in the logit row
effects model is not significant.

The analysis of deviance table for this data is given in
Table 6.9:

Table 6.9: Analysis of deviance

Model Li(i) = log mj j41+...4mjc df  Deviance
fﬂil+...mij

Independence a5 6 10. 88
logit

uniform

association ai+8 (ui-0) 5 4,27
Logit row

effects ajtTi 3 3. 56

6. 2.4 Cumulative Iogit Models for Higher Dimensions

The cumulative logit models discussed in Section 6.2.3 can be
generalized to higher order tables where there may be both ordinal
and nominal explanatory variables. These models resemble multiple
regression models for continuous response variables. They are
simpler to construct than the analogous loglinear models of Chapter
IV, since it 1is unnecessary to model associations among the
explanatory variables.

Anderson and Philips (1981) give an application of the cumulative
logit model with multiple explanatory variables to the problem of
discriminant analysis with an ordinal classification,
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6. 2. 4.1 Homogeneous Linear Logit Effects

Consider an rxcxg table in which X and Y are explanatory
variables and Z is an ordinal response. .Within each of the rxc
combinations of X and Y, there are ¢-1 cumulative logits.

Lk(ij) = 1log mjjk+1+e .o 4Migy
mjijlte s« +0igk

k = 1,...]2"’1

Table 6,10 lists association terms for some simple models that
have linear effects of ordinal variables., None of these models
allows for three-factor interaction. The parameters have
similar interpretations to those given in Section 6.2.3.2, but
in terms of partial associations.

Table 6.10: Association terms for cumulative logit models

Scales of Explanatory Variables Association Terms

X Y X Y
Ordinal Ordinal g X (ui-1) BY(Vj~§)
Nominal Ordinal 3% 5Y(Vj—§)
Nominal Nominal T1% ¥

For example, when X and Y are nominal, the model used would
be

Lk(ij) = ak + 1% + 157

where 1tiX = 1t5¥ = 0. Differences between pairs of row effects
{11X} represent constant log odds ratios for comparing levels of
X (controlling for Y) on all g2-1 ways of collapsing the response
Z into two categories. The {13i¥} «can be interpreted
similarly.
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6.2.4.1.1 Dumping Severity Example

Consider the three-dimensional version of the dumping
severity data, given in Table 4.8. The sampling scheme is
assumed to be product multinomial, with an independent
multinomial sample being taken of the response dumping
severity at each of the 16 combinations of the explanatory
variables operation and hospital.

There are two logits at each of the 16 O-H combinations,
giving a total of 32 logits. The model

Lk(ij) = akr k =1,2 (6.1)

states that dumping severity 1is jointly independent of
operation and hospital. This model is equivalent to the
loglinear model

log mjjk = u+x O 3Dy 4 3OH

symbolised by (OH, D). Since the logit model has only two
parameters, its residual df - 32-2 = 30, and G2 = 31.64, so
the model fits quite well.

The model
Lk(ij) = ak + 80(ui=0) (6.2)

assumes a linear effect of operation on the logit of dumping
severity that is the same for both logits (k = 1,2) and the
same for each hospital. It also assumes that dumping
severity 1s conditionally independent of hospital for each
operation, This model has only one more parameter than the
independence model, and yields G2 = 25.03 based on 29 df when
fitted with integer scores. There is a marked improvement in
fit campared to the independence model, as G2 has decreased
by 31.64 - 25,03 — 6.61 based on 1 df. The estimate of the
association parameter is 80 = 0,225, Since this model
implies that D is conditionally independent of H, the table
can Dbe collapsed over hospital without changing the O-D
association if the model holds. This is why these results
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regarding the O-D association are the same as those obtained
with the logit uniform association model fitted to the
marginal O-D table in Section 6.2.3.2.1.

The model
Lk(i3j) = ak + 8O(ui=0) + 38 (6.3)

where erH = 0, states that the logit of dumping severity is
linearly related to operation and is also related to hospital
through additive effects. This model assumes that each
assoclation parameter is homogeneous for the two ways of
forming cumulative logits, and it assumes an absence of
three-factor interaction. The model yields G2 =.22.48 with
26 df, so the improvement in fit over model (6.2) is only G2
= 25.03 - 22.48 = 2.55, with 29-26 = 3 df, which is not
significant, So for each operation there is no strong
evidence that the distribution of dumping severity differs
among the four hospitals.

The analysis of deviance table 1is given for these three
models in Table 6.11:

Table 6.,11: Analysis of Deviance

Difference Difference

ok 30 31. 64
ak+8O(ui-1) 29 25.03 1 6. 61
aptaO(ui-i)+r3H 26 22. 48 3 2. 25

-

The loglinear model that is analogous to logit model (6.2)
is

log Mijk = p+h iO+,\jH+,\ PRIV ijOH"r*iSOD(ui—G) (Wi~
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When fitted using integer scores, this model yields G2 =
25.35 with 29 df. This is very similar to logit model
(6.2), although the models are not equivalent since the
number of response categories exceeds two.

6. 2. 4.2 Higher-Order Interaction Models

It is quite simple to formulate logit models that allow
higher-order interactions. For example, suppose that the logit
of Z is linearly related to Y, but that the slope of the
relationship differs across the levels of a nominal variable X.
An appropriate logit model would be

Lk(ij) = akttiZBY(vi=¥)+£i(vy-V)
where $tviX = $£4X = 0. This model has residual df = rcg-rc-g

6. 2. 4.3 Heterogeneous Effects

A feature of the logit models discussed in this Section is the
assumption that the effect of each explanatory variable is the
same for the different ways of forming the cunulative logits.
These models may be generalized to include non~hcmogeneous logit
effects, which means that the effects of the explanatory
variables change according to which logit is formed. Williams
and Grizzle (1972) give an example of the application of a model
that has non-homogeneous logit effects.

Models having homogeneous logit effects are easier to work with,
since the effects of explanatory variables are easier to
sunmarize and interpret. If homogeneous effect cunulative logit
models fail to £fit, 1t may still be useful to try fitting
similar models having another logit form (e.g. adjacent-
categories logits).
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CHAPTER VII — MODELS BASED ON AN UNDERLYING DISTRIBUTION
FOR THE RESPONSE

As in the previous three chapters, this chapter discusses the case
where there is a single response measured on an ordinal scale, with
one or more explanatory factors. The difference here 1is that we
assume there is a continuous random variable, Y, underlying the
observed categories of the response. We can formulate linear models
that describe how the distribution of the underlying continuous
unobserved response depends on the explanatory variable(s).
ordinality is an integral feature of these models and so we do not
need to improse arbitrary scores on the response categories.

The ¢ response categories can be thought of as contiguous intervals on
the continuous scale; the points of division or cut points will be
denoted by 61, «ees 8c—1s The jth of the response categories is
recorded when 64-1 < Y < 64, where — =060 < 8] < «c0 < 8c-]1 € 8¢ = =,
For the extreme case where there is one explanatory variable with only
one level, the probability that Y is less than or equal to a certain
value 83 is the cumulative distribution function of Y evaluated at 63,

$(84) = [83 f(y) dy
(where f(y) is the probability density function of y). The difference
between ¢(63) and ¢(65-1) = [83-1 £(y) dy
is the probability w4 that Y falls in category j, i.e.

T3 = ¢(65) = ¢(63-1) =1, «euy Cu

For the case where there is one explanatory row variable, we model the
expected value of the underlying response for the ith row as

i

E(Yi) =xi' g

(Xi0, Xilr eeer Xip) [BO
1!

1]

|
|
|
)
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Now §§g is a general linear function which will depend on the way that
the explanatory variable is expected to affect the response. B is a
vector of unknown parameters, and X is a vector corresponding to the
explanatory variable, consisting of dummy variables of 0's and 1's, or

of real

values.

To illustrate, consider a 3x4 table where the row variable A is purely
nominal, and the column variable B is an ordinal response. To model
association between A and B we would write

E(Y7)
E(Yp)
E(Y3)

where 81

wi«x el
w N
]

and B =

Bo + B1
Bo + 82
= gp *+ B3

+ B2 + 83 = 0.

AAA
b
o O
O - O
-0 O
e S

1’8 O‘

le
B2i
83)

So the xj contain dummy variables

but if the row variable is ordinal, with assigned scores -1, 0, 1, and
we expect a linear effect of A on Y, then we would model the

associat

E(Y7)
E(Yp)
E(Y3)

So the x

7
X
s

-4
4

nonu

_z

and ] —1

ion as

=80 - 1x81
=80 + 0 X B
=8p + 1 X 81
1 are

(1r “l)

(1, 0)

(1, 1)

B0

B1
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The probability that for row i the response falls into category j is

Tij = ¢(65 - x"iB) - ¢(65-1 - x'iB)
j = l] LI I 4 r

The counts (njj, nj2, ..., njc) recorded in response categories

(1, 2, «ee, c) out of nj+ individuals in row i are multinamial with
probabilities wmjj. The log likelihood is

lOg L(é', 017 eeey ec—-l) = XEnlJ log ﬂlj +§: log (ni. )
i] i Nil ... Dic

and the unknown parameters can be estimated by maximum likelihood.
For multi-dimensional tables with two or more explanatory variables,
we can just think of the combinations of the explanatory variables as

being arranged together to form a single row variable. Then the
expected value of the response for row i can still be modelled as

E(Yi) = x'ig
where x'j pertains to the cambination of explanatory variables that

gives rise to row i.

7.1 Distribution Functions

The shape of the distribution of the underlying response will
obviously affect the proportions in the observed ordered categories.
The probability density function (pdf) of Yi could be either symmetric
or skewed. If symmetric, then for a particular row i, if the expected
value of Yj, xi"8, is near the middle of the c ordered categories, the
sun of the counts to the left of xi”g would be expected to be roughly
equal to the sum of the counts to the right. If the pdf of Yi is
negatively skewed, i.e. there is a sharp drop to the right of the
mode, there will be a threshold which xj”g must reach before the
higher response categories are recorded. A slower drop in the pdf
means that increases in xj”g are accampanied by more gradual increases
in the proportions in higher response categories. The opposite
situation will occur with a positively skewed pdf. The tails of the
distribution are also important since a long tail to the right implies
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that high ordinal response categories are possible even when xji“g is
low and similarly in the left tail. Short tails imply that the counts
will be more tightly clustered about xi”“8, and outliers will be very
rare.

Some cammon distributions that are used are the normal, logistic or
extreme value distributions. If there are only c¢=2 response
categories, these correspond to probit, logit and complementary-log-
log models respectively for the binamial response.

7.1.1 Normal
The normal pdf (see Figure 7.1) is
fnly) = (2n)~Y2 exp (=12 y2)
with corresponding cumulative distribution function (cdf)
only) = [Y (20)7V2 exp (-}4 t2) dt
The normal distribution is often chosen because normality is the
standard regression assumption for a quantitative response.

However, the short tails of the normal distribution make outliers
unlikely, leading to a lack of fit for many tables.

7.1.2 Logistic

The logistic distribution is also symmetric and has a similar shape
to the normal distribution (see Figure 7.2), but has longer tails,
so it may fit better than the normal distribution. The logistic

pdf is

f1, (y) = exp (-y)
(I + exp(-y))2

with cdf
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o1(y) = 1
L 1 + exp(-y)

Using the logistic distribution gives exactly the same results as
the cumulative logit models discussed in Section 6.2.3 (Agresti,
1984, p.151).

As before, the local-global odds ratio for rows a and b is

I

odds that category > j, for row b

8”ab
odds that category > j, for row a

]

P (category > j | row b) ‘
P (category < j | row b) P (category > j | row a
P (category < j | row a

= (T\'b'j-{’l + s e e + Trbc) X (ﬂai + s a0 'Haj)
Thl T e+ T TD3) W1,3+1 T ++« T Tac)

= exp((Xp” ~ Xa") 8)

If the row variable is nominal, with parameters B4 and Bp for
levels a and b, the odds ratio is simply

exp (Bb - Ba)
So fitting the logistic distribution means the parameters can be
interpreted in terms of odds ratios. Anderson and Phillips (1981)

and McCullagh (1980) give examples of fitting the logistic
distribution.

7.1.3 Extreme Value

If it is thought that the underlying distribution is skew, then the
extreme value distribution (or its mirror image, the negative
extreme value distribution) can be tried. The extreme value pdf is

fr (y) = exply - exp(y))

with cdf
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¢p(y) = 1 — exp(- exp(y))

The negative extreme value pdf is

tNe(y) = exp(-y-exp(-y))
with cdf
= exp (-exp(-y))

ONE(Y)

The extreme value distribution is negatively skewed, i.e. there is
a very steep drop and short tail to the right of the mode, but a
long gradual tail to the left (see Figure 7.3), and the negative
extreme value distribution is positively skewed (see Figure 7. 4).
If yi folows the extreme value distribution, then it satisfies a
proportional hazards models (McCullagh, 1980), with consequent ease
of interpretation of the parameters. The ratio of

log P (category > j | row b) = 1og (mp,j4] + «es + Thc)
log P (category > j | row a) log (mg,§+1 * «es + mac)

exp ((%¥a” - X0 )8)
which also means that
P (category > j | row b) =

P (category > j | row a)exp ((Xxa” -~ 2p7)8)

7.1.4 Estimation

Stirling (1984) describes an iteratively re-weighted least squares
algorithm implemented as a Genstat macro that will fit linear
models assuming underlying distributions that are normal, logistic,
extreme value, negative extreme value or any mixture of these. He
analyses a contingency table with 126 cells using a model with only
eight parameters.
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7.1.5 Dumping Severity Example

We will re-analyse the data of Table 1.6 by this method. To choose
a suitable distribution, we fit a model where the linear part xi’g
is fully parameterized so that each uj = xj°8 is allowed to vary
freely. This corresponds to treating operation as nominal and

fitting
E(yi) =u + 14

iti = 0, for the four standard distributions. Table 7.1 gives the
deviances for these models. There are six independent parameters
(ur T1rs ej), three independent constraints (the four row totals),
and 12 cells; therefore df = 12 - 9 = 3,

Table 7.1: Fully parameterized models

Distribution df Deviance
Normal 3 4,10 ns
Logistic 3 3.56 ns
Extreme value 3 5.35 ns
Negative extreme value 3 3.17 ns

All these distributions fit quite well.
Treating operation as ordinal, we can fit the model
E(yi) = n + g(uj-u)

using integer scores. This gives the deviances in Table 7. 2.



Table 7.2: Using integer scores for operation

119,

Distribution df Deviance
Normal 5 4. 44 ns
Logistic 5 4,27 ns
Extreme value 5 5.37 ns
Negative extreme value 5 4,23 ns

Once again, all distributions seem to fit quite well.

In a small

table there 1is often not enough information to choose between
different distributions.

Since the negative extreme value distribution gave the smallest
deviance in both tables, and has easily interpretable parameters,
we will examine the fitted counts for the ordinal model, which are

in Table 7. 3.

Table 7.3: Fitted counts under the negative extreme value
distribution

Dumping Severity

Operation Moderate Slight None Total
i
A 838 24.29 63.32 96
B 10.75 29. 98 63. 26 104
C 13.45 35. 82 60.74 110
D 15, 43 38. 93 52.63 107

To fit the negative extreme value distribution we can just reverse
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the ordering of the response categories and fit the extreme value
distribution, so the order of dumping severity in Table 7.3 is the
reverse of the usual order.
The parameter estimates are

i =2.126, 8 = 0.178, 61 = 0, 8 = 1.516.

The expected values of y for operations A to D are:

Operation W+ g(ugmu)= 9y
A 2.126 - 0.178 x -1.5 = 2.39
B 2.126 - 0.178 x -0.5 = 2.21
C 2,126 - 0.178 x 0.5 = 2.04
D 2,126 - 0.178 x 1.5 = 1. 86

so the underlying extreme value distribution is shifted to the left
with increasing removal of stamach (bearing in mind that the
category order has been reversed so that the larger y is the more
desirable response, i.e. less side effect (see Figure 7.5). For
the extreme value distribution, instead of interpreting the 8
parameter in terms of odds ratios, as we have done with loglinear
and logit models in previous chapters, we interpret it in terms of
proportions. If we collapse dumping severity into a dichotamy of
moderate vs slight plus none (which corresponds to j = 1, see Table
7.4), then the log proportions of S+N for each adjacent row are
related by exp (-8) = exp (+0.178) = 1.95, i.e. Propn (S+N) for
row i+1 = [Propn (S+N) for row i] 1.95,

For example, the proportion of patients who had slight or no
dumping after operation A is 87.62/96 = 0.913. The corresponding
proportion for operation B is 93.25/104 = 0, 897. The ratio of the
log proportions is leg (0.897/log (0.913) = -0.109/-0.091 = 1.195,
and of course 0.897 = 0.9131.195,
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Table 7. 4: Fitted counts, collapsed into dichotomy (j=1)

Dumping Severity Propn log
Operation | Moderate Slight or None |[Total | SHN [(Propn S+N)

A 8 38 87.62 9% (0.913 -0. 0091
B 10.75 93. 25 104 |0. 897 -0. 109
c 13. 45 96. 55 110 0. 878 -0.130
D 15. 43 91.57 107 |0. 856 -0. 155

The same relationship holds true for the other collapsing
(corresponding to j=2) which compares moderate plus slight vs none
(see Table 7.5).

Table 7.5: Fitted counts, collapsed into dichotomy (j=2)

Dumping Severity Propn log (Propn
Operation | Moderate or Slight None M+S M+S)
A 32.68 63. 32 0. 660 -0. 416
B 40,74 63. 26 0. 609 -0. 497
C 49, 26 60,74 0. 552 -0.594
D 29, 37 52.63 0. 492 -0, 710

A similar interpretation holds for fitting the nominal model

E(yi) =u + 14

The fitted counts under the negative extreme value distribution are
in Table 7.6; they are collapsed into a dichtomy of moderate vs
slight plus none (corresponding to j=1) in Table 7.7.



123,

Table 7.6: Fitted counts
Dumping Severity

Operation Moderate Slight None Total
A 8 97 25.67 61. 36 96
B 9, 44 27.19 67,37 104
C 14.21 37.27 58,52 110
D 15.34 38,83 52, 83 107

Table 7.7: Fitted counts, collapsed into dichtomy (j=1)

Dumping Severity Propn log
Operation |[Moderate Slight or None |Total S+N  (Propn S+N)
A 8 97 87.03 9% . 907 -. 098
B 9, 44 94, 56 104 . 909 -. 095
C 14,21 95.79 110 . 871 -.138
D 15.34 91. 66 107 . 857 -. 154

The t parameters are estimated as

>
!

w

Ay A> A A
@]

w/
i

0.192
0.223
-. 0152
-0. 263

The expected log proportions for different rows are related by the

exponential of the difference

compared to row C

in parameters, e.g.

for row D



log propn (S+N) for row D = exp (T¢c - Tp)
log propn (SHN) for row C

(propn for C) €Xp (tc - Tp)

or propn for D

= 0. 871 exp (0.111)
0. 857

124.
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CHAPTER VIII — OTHER MODELS

8 1 Mean Response Models

Mean response models are appropriate for tables with a single ordinal
response. We assign scores to the levels of the response variable and
use its mean as the response function in a regression-type model.

For example, consider a two-way table classified by ordinal variables
X and Y having scores {uj} and {v3} respectively. Within level i of
X, the conditional mean of Y is

]

¢ =L v§mij
]

Ni+
i=1, vee, T
The usual linear regression model is ¢4 = a + 8 (uj-u)

The parameter o is the average of the conditional means, and 8 is the
change in the conditional mean per unit change in X. There are r
responses and two parameters, so df = r-2, and we need at least three
rows to obtain an unsaturated model. The model for the ordinal
nominal table is saturated.

The mean response model is a linear model and can be fitted by the
general algorithm described in Section 1.11 and Appendix 3.

& 1.1 Dumping Severity Example

Consider again the 4x3  operation by dumping severity
cross—classification of Table 1.6. Treating both variables as
ordinal and assigning integer scores {uj=i} and {v4=3} (somewhat
arbitrarily), we could fit the mean response model

¢i =a + 8 Ui

where ¢{ is the conditional mean of the dumping severity score,
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¢i = (mj] + 2 mjp + 3 mi3) / mj4
i =l, see g 4.

Table 8.1 gives the fitted counts obtained under this model.

Table 8 1: Fitted counts under mean response model

Dumping Severity

Operation None Slight Moderate
A 61. 89 27. 46 6.65
B 66.19 23.65 14,16
C 58.50 39.75 11.75
D 53.26 37. 90 15. 84

The estimates of the mean response scores are

$1 = (61.89 + 2x27.46 + 3x6.65)/196 = 1.425
%o = 1.500
%3 = 1.575
%4 = 1.650

The parameter estimates are yp = 1,538 and 8 = 0.075, which indicate
that for each additional 25% of stomach removal, the predicted mean
operation score is increased by 0.075. This model has deviance G2
= 0,22 with a 2 df, which indicates that it fits very well.

8. 1.2 Three-way Dumping Severity Example

Corresponding models for higher-order tables are easy to construct
and interpret., Haber (1985, p.5) gives an analysis of the data of
Table 4.8, using main effects for both hospital and operation in a
mean response model
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¢ij = w + ai + Bj
i'j 112'3,4

He shows that operation significantly affects dumping severity,
while the four hospitals do not significantly differ with regard to

their effect.

8, 2 Models for Incamplete Tables

The concept of structural zeroes was introduced in Section 1.9.
Structural zeroes occur when it is impossible to observe values for
certain combinations of the variables. Removing structural zeroes (or
other pre-determined values) from the analysis results in a table that
is said to be structurally incomplete.

8 2.1 Definitions

Iet S be the set of cells in a two-way rxc array that remain after
the exclusion of missing entries and fixed values. For those cells
not in S we put njj = mjj = 0. The general loglinear model can
still be obtained by setting

log mij = u + A% + 2q5%Y
for cells (i,j)€ S, with g xjX =1 XjY =0
i j

and T 815 xinY =1 84 xinY =0
1 J

where § ;5 = (1 for (i,j)< S
(0 otherwise

8 2.2 Quasi-Independence

The model of quasi-independence can be defined by setting

XY
Aij = 0 for (i,7)e s

. X. Y s
so that log mij = u + Xi + A3 for (i,j)e S.
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In other words, X and Y are quasi-independence if we can write the
expected counts in the form

mjj = (ajby for (i,j)€S
(0 otherwise

so quasi-independence is like independence, so it applies to the
non—-empty cells of a table.

The general rule for computing degrees of freedom 1is still
applicable here. 1If there are e cells that have missing or fixed
entries, then the set S contains rc-e cells, so the saturated model
needs only rc-g parameters. The number of parameters in the quasi-
independence model is 1 + (r-1) + (c-1) = r+c-1, so the degrees of
freedom are rc-e-(r+c-1) = (r-1)(c-1) - e.

8 2.3 Estimation

The maximum likelihood estimates under the model of quasi-
independence are the same under all three of the usual sampling
schemes and are usually unaffected by the presence of sampling
zeroes, providing no row or column has an observed zero total. The
MLES can be camputed by the general log-linear algorithm.

8 2.4 Monkey Example

ILet us consider the data of Table 1.8 which concerns the genital
display of monkeys. Fitting the model of quasi-independence

log mij = u + AP + A5F
(i,3)€ S

to the data yields the fitted values in Table 8.2. Inspection of
this table reveals that the quasi-independence model does not fit
well, This is also confirmed by the large value of the deviance
which is G2 = 135.17 with 15 df. There are 1+4+5 = 10 parameters
in this model, and 25 cells in S, therefore 25 parameters in the
saturated model, which is why the degrees of freedom equals 25~-10 =

15,
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Table 8,2: Fitted counts under the quasi-independence model

Passive Participant

Active Participant R S T U \" W
R - 5.26  2.48 8 22 6. 65 0. 40
S 9.19 - 10,32 34,19 27.66 1.65
U 0.94 12.47 5.88 - 15.77 0. 94
\Y 0.22 0.25 Q.12 0.39 - 0.02
W 9.66 11.02 5.20 17.21 13,92 -

Since the quasi-independence model does not fit, we can conclude
the various monkeys choose to display themselves more often towards
specific members of the colony.

8 2.5 Higher-Order Tables

When we deal with multi-dimensional tables, we can consider log-
linear models applied only to cells whose values are not structural
zeroes or fixed values. We will consider three-way tables; these
methods can be easily extended to higher—order tables. et S
represent the cells in an incomplete rxcxg table with observed
values njjk and expected values mjjk. We set njijk = mijk = 0 for
(i,j,k)e S. The most general loglinear model is

log Mijg =u + AiX + ij + Akz + xinY

where (i,j,k)€ S. The \A~terms are deviations and sum to zero over
each included variable. For example:

PR e

§iYZ yiX = g 5ijz )\ijxy
i i

i

i i
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with §i4x = (1 if (i,3,k)€ S
(0 otherwise
§i3% = (1 if 8i9¢ = 1 for some k

(0 otherwise

§ikY (1 if 8i3x = 1 for some j
(0 otherwise

§;Y2 = (1 if §ijk=1 for some (j,k)
(0 otherwise

We define various unsaturated loglinear models by setting A-terms
equal to zero, and, as in the analysis of complete tables, we
restrict our attention to hierarchical models.

The formula for the degrees of freedom of a particular model is
once again the difference between the number of parameters in the
saturated model and the number of estimable parameters in the model
in question. The word "estimable" has been used here to emphasize
that when dealing with structural =zerces, scmetimes not all
parameters in the quasi-loglinear model are table to be estimated.
In particular, this will happen when scme structural zeroes make up
a zero marginal total which is used in a model.

8 2.5.1 Health concerns example

Table 8.3, taken from Fienberg (1980, p.148), gives the results
of a survey enquiring into the health concerns of teenagers.
The respondents are classified by sex, age and health concern.
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Table 8. 3: Health concerns of teenagers, cross—classified by
age and sex

Males Females
Health concerns 12-15 16-17 12-15 1l6-17
Sex, reproduction 4 2 9 7
Menstrual problems - - 4 8
How healthy I am 42 7 19 10
Nothing 57 20 71 31

Since males do not menstruate, there are two structural zeroes
in the table, and a structural zero in the sex by health concern
two-dimensional marginal table.

We would normally treat age and sex as explanatory factors which
could affect the response health concerns. Thus, any
appropriate loglinear models would include the AijSA~ternu Table
8. 4 gives the five possible models that could be fitted to this
data.

Table 8, 4: Models for health concerns data

Model G2 af
(sA, H) 22.03 7
(sa, SH) 9. 43 5
(sA, AH) 13. 45 4
(SA, SH, AH) 2.03 2
(SAH) 0 0
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The simplest model that fits adequately is (SA, SH), i.e.

log mjjk = u + 235 + A3B + ARH + 21558 + 24y SA

for (i,j,k)€ S.

This model specifies that the age of the respondent does not
affect the health concern expressed, but that the sex does.
Fitting this model involves the marginal tables njj+ and njik.
The two-dimensional sex by health concerns marginal table is
given in Table 8.5. The marginal total nj4p is a structural
zero (because the two cells which it is the total of are both
structural zeroes) and so the parameter Aj55H is nom-estimable.
Thus, the number of estimable parameters is 1+1+1+3+1+2 = 9,

Table 8.5: Sex by health concerns marginal table

Sex
Health concerns Male Female
Sex, reproduction 6 16
Menstrual problems - 12
How healthy I am 49 29
Nothing 77 102

There are 14 cells in the table that are not structural zeroces;

therefore the saturated model needs only 14 parameters.

for the model is thus 14-9 = 5,

8.3 Models for Square Tables

The df

Square tables are two-dimensional tables where the variable for rows
has the same categories as the variable for columns.
are examples of ways in which such tables might arise:

The following
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1. In panel studies where each individual is classified at two
points in time;

2. When pairs of matched individuals, such as husbands and wives,
are classified, for each member of the pair;

3. When individuals are classified according to two essentially
similar variables (e.g. strength of right hand and strength of

left hand);

4, In experiments on matched pairs, the members of a pair are
subjected to different treatments.

Square tables correspond closely to paired quantitative data.

8 3.1 Quasi-Independence

Sometimes we might want to treat the diagonal cells differently
from the others. For instance, we may expect independence to be a
feasible model for the off-diagonal cells, but not for the diagonal
cells.

Consider an rxr square table classified by variables X and Y. The
loglinear formulation of quasi-independence is

log mij = p + A% + A5¥ + 2 35%Y

where Ajj = (A {* if 1 = j
(0 otherwise

For the off-diagonal cells this is simply the model of
independence

log mjj = + A% + a5%, i=]
while for the diagnonal cells the model is saturated
log mij =y + AiX + Ai% + 5%, i=j

and the estimated expected frequencies for the diagonal cells equal
the observed frequencies, i.e. aii = Njie
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The easiest way to fit this model is just to treat the diagonal
cells as structural zeroes and fit the model of quasi-independence

as described in Section 8. 2.

The number of parameters in this model is 1 + (r-1) + (r-1) = 3r -
1, the number in the saturated model is r2, therefore the degrees

of freedom equal r2 - 3r+l.

8 3.1.1 Social Mobility Example

Table 8.6 presents data on inter-generational social mobility in

Britain (Bishop, Fienberg and Holland, 1975, p.206).
the nature of social mobility it seems more likely that quasi-

Because of

independence, rather than independence, will hold in the table,
i.e. we would expect a disproportionate number of sons to have
the same social status as their fathers, but the status of the
sons whose status was different from their fathers might not be

affected by their fathers' status.

Table 8.6: British social mobility data

Fathers' status

Son's status

1 2 3 4 5
1 50 45 8 18 8
2 28 174 84 154 55
3 11 78 110 223 9%
4 14 150 185 714 447
5 0 42 72 320 411

Table 8.7 gives the fitted counts

under model of complete

independence. This model obviously doces not fit well, and was

G2 = 811.0 with 16 df.
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The model of quasi-independence also does not fit well, with G2
= 249, 4 with 25-15+1 = 11 df; however, it is a vast improvement
over the plain independence model. The fitted counts are given
in Table 8. 8.

Table 8.7: Fitted counts under complete independence

Fathers' status Son's status
1 2 3 4 5
1 3.8 18.0 16. 9 52.7 37.5
2 14.6 69. 2 65.0 202. 3 144, 0
3 15.3 72. 4 68.0 211.7 150. 6
4 44,5 211.2 198.2 617.0 439.1
5 24.9 118.2 110. 9 345.3 245.7

Table 8,8: Fitted counts under quasi-independence

Fathers' status Son's status
1 2 3 4 5
1 50. 0 9.5 11.0 38,5 20.0
2 6.6 174.0 50. 0 174. 2 90. 3
3 85 56. 1 110.0 226. 2 117.3
4 27.5 181.0 209.0 714.0 378.5
5 10. 4 68. 4 79.1  276.1 411.0

Bishop, Fienberg and Holland (1975, p.207) discuss more
complicated models which involve separate consideration of the
triangular sub-tables above and below the diagonal.
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This model specifies that the table is symmetric about the

diagonal, i.e.
mjj = mjj for all i % j

The loglinear representation of symmetry is
log mij =y + A% + A% + A%

where xinY = inXY

and £ AiX =3 2isX¥ = 0
i

pe B3

The maximum likelihood estimates are

ﬁi' =(nq5 + nii
J{—i-z—l— i3

n.. . .
ii i=73

There are r(r-1) off-diagonal cells; therefore there are r(r-1)/2
constraints on the fitted values, so the degrees of freedom are

r(r-1)/2).

8.3.2.1 Eye-Testing Example

Table 8.9 gives the results from eye tests on women. The table
is taken from Bishop, Fienberg and Holland (1975, p.284). The
model of symmetry specifies that the expected number of women
with right eye grade i and left eye grade j equals the expected
number of wamen with right eye grade j and left eye grade i. In
other words, we expect to have the same number of women with,
say, excellent right eye vision but terrible left vision, as
those with excellent left vision but terrible right vision. The
fitted counts under this model are given in Table 8.10. Along
the diagonal the fitted counts are equal to the actual counts,
while each fitted off-diagonal count, ﬁij, is equal to the

average of njj and nji, e.d.



mg) = (ng] + n1q) / 2

(36 + 66) / 2 =051

Table 8.9: Results of eye tests
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Left Eye Grade

Right eye Highest Second Third Lowest Total
Grade (1) (2) (3) (4)

Highest (1) 1520 266 124 66 1976
Second (2) 234 1512 432 78 2256
Third (3) 117 362 1772 205 2456
Lowest  (4) 36 82 179 492 789
Total 1907 2222 2507 841 7477
Table 8.10: Fitted counts under symmetry model

Left Eye Grade

Right eye Highest  Second Third Lowest | Total
Grade (1) (2) (3) (4)

Highest (1) 1520 250 120.5 51 1976
Second (2) 250 1512 397 80 2256
Third (3) 120.5 397 1772 192 2456
Lowest (4) 51 80 192 492 789
Total 1907 2222 2507 841 7477
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The deviance is calculated in the usual manner as G2 - 19,25,
with df = 4(4-1)/2 = 6, which is significant at the 1% level,
with indicates that the symmetry model does not fit well,

8 3.3 Quasi-Symmetry

The model of quasi-symmetry can be defined by
log mij = u + A% + A3¥ + A35%%
where xinY = )\jiXY

and $ A% =3 A3¥ = 3£ A{$Z¥ =0
i h| i

We can see that this is rather like the model of symmetry, except
that there are an extra (r-1) parameters, AiY, in the loglinear
representation. Thus, the degrees of freedom are equal to the df
for the symmetry model minus (r-1), which is r(»-1)/2 - (r-1) =
(r=2)(r-1)/2.

The model of quasi-symmetry is often fitted not because of interest
in the model itself, but because the difference in G2 for
quasi-symmetry and G2 for symmetry is a conditional test statistic
for the useful model of marginal homogeneity. This will be
discussed in more detail in the next section.

The quasi-symmetry model imposes no restrictions on the diagonal
cells, so the MIEs of these are

mii = Nijr
and so we can remove these from the model.

For any 2x2 table, the model of quasi-symmetry has df = 0, and so
is saturated.

For r=3, quasi-symmetry is equivalent to quasi-independence, i.e.
if we remove the diagonal cells, or think of them as structural
zeroes or fixed values, quasi-independence is independence as it
applies to the nomempty cells of the table.



For r > 3, with the diagonal cells removed,
implied by quasi-independence.

The MLEs of the diagonal cells are simply'ﬁii = Nji.
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quasi-symmetry is

There is no simple closed form expression for the estimates of the
However, since quasi-symmetry is a loglinear
model, it can be fitted in much the same way as the usual loglinear

off-diagonal cells.

models.

8 3.3.1 Eye-Testing Example

Fitting the model of quasi-symmetry to the data of Table 8.9

results in the fitted counts given in Table 8.11.

The deviance

is G2 = 7.27, with (4-2)(4-1)/2 = 3 df, which is not quite

significant at the 5% level,

Table 8.11:

Fitted counts under quasi-symmetry

Left Eye Grade

Right eye Highest Second Third Lowest
grade (1) (2) (3) (4)
Highest (1) 1520 263. 4 133.6 59.0
Second (2) 236.6 1512 419 88. 4
Third (3) 107. 4 375 1772 201.6
Lowest  (4) 43.0 71.6 182. 4 492

8 3. 4 Méfginal Homogeneity

The model of marginal homogeneity specifies that

Mi+ = mj
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for i =1, «.., ¥, i.e. corresponding marginal totals are equal.
Since there are r-1 constraints on the cell counts, the df for the

model equals r-1.
Marginal homogeneity is implied by, but does not imply, symmetry.

The constraints of marginal homogeneity plus quasi-symmetry give
the model of symmetry (see Bishop, Fienberg and Holland, 1975,
p.28 for a proof). Thus a conditional test for marginal
homogeneity is given by the difference in deviances between the
models of symmetry and quasi-symmetry, i.e. G2 (MHlQS) = G2(S) -
G2 (QS).

The degrees of freedom of this conditional test statistic are equal
to the difference in df for the models of symmetry and
quasi-symmetry, i.e. df = r(r-1)/2 - (r-1)(r-2)/2 = r~1. Stirling
(1986) has pointed out that if the model of quasi-symmetry does not
fit well, then a test which is conditional on quasi-symmetry does
not seem very sensible. He suggests testing the hypothesis of
marginal homogeneity directly by fitting the model and calculating
the deviance in the usual way.

8 3.4.1 Estimation

The marginal homogeneity model is a linear model because it
specifies linear constraints on the cell counts:

Mj] + M2 + oo + Mip = Mj + M2§ + ouu + Mpj

The MLEs of the diagonal cells {mjj} are equal to the observed
values in these cells, {nji}.

The MLEs of the off-diagonal cells can be obtained using either
the method of solving simultaneous equations (Stirling, 1984),

or generalized linear models specified in terms of constraints
(Wedderburn, 1974). For details dee Appendix 7.

8. 3. 4.2 Eye—-testing example

.We will consider again the data of Table 8.9. . The model of
marginal homogeneity specifies that Miy = Mpi, i,€6. mp4 = my],
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my+ = myp, etc. This means that the expected total number of
women with left eye grade of i equals the expected total number
with right eye grade of i.

We have already seen that the models of quasi-symmetry and
symmetry fitted to this data gave deviance of 7.27, with 3 df,
and 19,25, with 6 df, respectively. The test statistic for
testing the null hypothesis of marginal homogeneity, conditional
on the quasi-symmetry model holding, is G2 (MH|QS) = 19.25 -
7.27 = 11.98, with 6-3 = 3 df.

Fitting the marginal homogeneity model directly gives the
estimated expected counts of Table 8.12. The direct goodness—
of-fit test gives G2 = 11.99 with 3 df which is very close to
the conditional test statistic. Both test statistics are
significant at the 1% level, indicating that the model does not
appear to describe the data adequately.

Table 8,12: Estimated expected counts under the model of
marginal homogeneity

Left eye grade

Right eye Highest Second Third Lowest Total
grade (1) (2) (3) (4)

Highest (1) 1520 252. 49 111. 84 56. 95 1941, 28
Second (2) 247,24 1512 409, 43 70.59 [2239.25
Thixd (3) 131.27 383.14 1772 195,27 2481, 67
Lowest (4) 42,77 91.62 188. 40 492 814, 80

Total 1941.28 2239, 25 2481.67 814,80 7477.00
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8.3.5 Multi-dimensional tables

The models of symmetry, quasi-symmetry and marginal homogeneity can
be extended to higher-order tables. For further details see
Bishop, Fienberg and Holland, 1975, p.299.

8. 4 Linear Models

Many of the models that we have considered so far have been loglinear
models, i.e. the log of the expected cell count is assumed to be a
linear function of the model parameters. However, there are cases
where linear models are more appropriate. For instance, the marginal
homogeneity model of Section 8.3.4, which is specified by mjy = myq,
is a linear model. Many linear models are more easily specified in
terms of constraints, rather than formally writing the specified cell
counts in terms of parameters. Often linear models are used to
characterize the margins of a table. They can also be used to specify
non-standard hypotheses about a table that often could be difficult to
specify any other way.

Estimation is much easier when linear models are specified in terms of
constraints. For details see Section 1.11 and Appendix 3.

8 4,1 Drug example

Table 8.13, taken from Haber (1984, p.4) deals with the camparison
of the reaction (favourable/unfavourable) to three drugs, A, B and
C. Seven samples of subjects were used, with each sample
corresponding to a subset of the three drugs. Thus the 46 subjects
in the first sample received each of the three drugs: the 28
subjects in the second sample received only drugs A and B, etc.
Let 6a, 6p and 8¢ denote the probabilities of favourable reactions
to drugs A, B and C, respectively. The hypothesis that these
probabilities are the same for all seven samples can be formulated
in terms of the constraints

I}

Oal1 = a2 = 83 = 6a5 = 6p
6p1 = 0B = 6p4 = 9B = OB
8c1 = 6¢2 = 6¢3 = 8¢7 = 6C

il
]
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where 6pai, 6pi and 6¢ci are the probabilities of favourable
reactions to drugs A, B and C, respectively, in sample i, For
instance

8a1 = (m +my +m3 +my) / (m +mp +m3 +my +mg + mg + my +
m8)

8a2 = (mg + myg) / mg + myg + my] + myp)
0a3 = (m13 * m14) / (m3 +mpg +ms + mg)
6as = mpy / (mp1 + mpp)

The last column of Table 8,13 gives the maximum likelihood
estimates under the null hypothesis. The deviance is G2 = 1.25
with 9 df which indicates that the model fits well. Thus is- seems
reasonable to conclude that each drug worked just as well, whether
it was used individually, or in cambination with the others.

Another important hypothesis would be that the three drugs worked
equally well, i.e. 8p = 6p = O8¢. Haber (1974, p.5) discusses
testing this more restrictive hypothesis,



Table 8.13: Responses to drugs A, B and C
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Pattern of MLE of
Drugs Response * Observed Expected
Sample  Used A B C Frequency Frequency

1 A,B,C 1 1 1 6 6.11
(Nj=46) 1 1 0 16 16,03
1 0 1 2 1. 93
1 0 0 4 3. 80
0 1 1 2 2.11
0 1 0 4 4,14
0 0 1 6 5.98
0 0 0 6 5. 89
2 A,B 1 1 - 12 13,23
(Np=28) 1 0 - 4 3.74
0 1 - 4 4,06
0 0 - 8 6. 97
3 A,C 1 - 1 5 4, 92
(N3=25) 1 - 0 10 10. 23
0 - 1 4 3. 85
0 - 0 6 6. 00
4 B,C - 1 1 4 4.08
(Ng=26) - 1 0 12 11. 97
- 0 1 5 5.03
- 0 0 5 4, 92
5 A 1 - - 10 9 70
(Ns=16) 0 - - 6 6. 30
6 B - 1 - 11 9. 26
(Ng=15) - 0 - 4 5.74
7 C - - 1 5 4, 91
(N7=14) - - 0 909

* 1 denotes favourable response, 0 denotes unfavourable

response, - denotes that the drug was not received
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85 Summary

The preceding chapters have shown that there are many different kinds
of models that can be fitted to contingency table data. 1In general,
if there is more than one response variable, we would have a choice of
loglinear or log-multiplicative models. If there is only one
response, then we have a choice of six classes of models:

(1) loglinear, which is equivalent to the adjacent categories logit

(2) continuation ratio logit

(3) cumulative logit, which is equivalent to assuming an underlying
‘logistic distribution for the response

(4) underlying normal distribution
(5) underlying extreme value distribution
(6) log-multiplicative (RC).

The first three types are equivalent if the response has only two
levels.

Ioglinear or adjacent categories logit models are well known, easy to
fit and have readily interpretable parameters. They are usually
interpreted in terms of odds ratios. Unfortunately, if ordinal models
are fitted, they are reliant on the choice of arbitrary scores for the
response and/or explanatory variables.

Continuation ratio logits are simple to fit, and can be thought of as
a series of logits, adding up to the whole model. However, they
suffer from the disconcerting feature that different results will be
obtained if the ordering of the response category is reversed.

Cumulative logit models can be fairly easily fitted and also have
parameters are that easily interpreted in terms of odds ratios.
However, they are also reliant on the choice of suitable scores when
using ordinal explanatory variables.

Using models which assume the underlying response has a normal
distribution seem reasonable, as normality is the standard regression
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assunption for a quantitative response. However, the short tails of
the normal distribution makes outliers unlikely, leading to a lack of
fit for many tables.

Assuming an underlying extreme value distribution is appropriate if
the distribution is assumed to be skewed, the models are easily
interpreted in terms of proportions rather than odds ratios.

RC models are more difficult to fit than loglinear models, and test
statistics are more complicated. However, they eliminate the problem
of choosing scores as they are estimated in the course of fitting
these models. They are also appropriate for both nominal and ordinal
variables.

The choice between these models can sometimes be made on logical
grounds, i.e. for a given set of data, perhaps it might seem more
reasonable to use a proportional hazards model (such as assuming an
extreme value distribution) rather than assuming normality, or if the
analysis is to be performed on a logit scale, we may choose to use
cumulative rather than adjacent-categories logits because it might
seem more reasonable to assume that several categories collapsed
together will "behave better" (i.e. more like binamial) rather than
assuming we can compare each category to every other category.

Sometimes there are grounds for choosing one type of model over
another as a matter of simplicity. For example, although the RC model
may estimate scores for the categories of a variable, it may be more
parsimonious and easier to explain to a lay-person (as well as perhaps
not fitting much more badly) to simply use equal-interval scores.

Often there may be very little difference in the results of the
analysis, no matter which model is chosen. This is especially true
for small tables where there is just not enough data to differentiate
between the goodness-of-fit of various models. Take, for example, the
dumping severity data which was re-analysed repeatedly in the previous
chapters. Most of the different models fitted resulted in very
similar conclusions, and almost any of them could be justified on one
ground or another.

The other models discussed (for incomplete or square tables and linear
models) are appropriate for certain kinds of tables and it is usually
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fairly obvious when to use these,
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APPENDICES

APPENDIX 1l: FEQUIVALENCE OF MLEs UNDER POISSON, MULTINCMIAL AND
PRODUCT MULTINOMIAL SAMPLING SCHEMES

Al.1 MLEs

Consider an rxc table classified by variables X and Y. The Poisson
probability density function (pdf) is

£(nij) = mij nij e -Mij

njjt
with corresponding log likelihood for the whole table of counts

log L = 2 njj log mjj - mij + I log (njj!)

i,j ilj i’j

The multinomial log likelihood is

i

N! -
log L = log [T (nj4!) ] Tij Nij
1,] 1,3

X {nij log mj3) + log Nt + g log (nij!)
1,] 1,]

If we reparameterize in terms of the expected values in each cell, mj §
=Nmij, the log likelihood beccmes

]

log L z {nij log mij')-l~ log NI + 1 log (njj!)

1,] N i,]

=1 (njj log mij) - £ (njj log N) + log N! + 3 log (njj!)
i,3 1,] 1,]

We can treat the last three terms as constants because the derivative
of any of them with respect to mjj is zero.
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The maximum of log L with respect to mjj, subject to the constraint
L mjy =N, is found using the Lagrange multiplier ¢ by maximizing
i,3
M=1nijlogmiy +¢ (2 mij-N)
i,] i,]

with respect to ¢ and mjj. If we assume a loglinear model for the
expected cell counts, i.e. mjj = exp (njj) - exp (a + Xjj' B)

then we maximize

Q=13 njjnij +¢ (z exp (Mij) -N)
1,] ilJ

First differentiating with respect to a gives

M =1 njj + ¢ T exp (Nij)
da ilj ilj
=L njj + ¢ T Mjj
i,] i,j
= N + ¢N
Setting this to zero for a maximum gives ¢ = -1, so that we can

equivalently maximize

I nij logmij = ¢ mjj
i, i,

which is identical to what is maximized when using the Poisson model.
Therefore, the maximun likelihood estimates of o and g will be
identical for both sampling schemes.

It can be similarly shown that the product-multinomial sampling scheme
gives the same likelihood function to be maximized as the Poisson and
multinomial modéls, as long as the A-terms corresponding to the fixed
margins are included in the loglinear model.
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Al.2 Deviance
The deviance is defined as 2 (log Lgat — log L) where log Lgat is the

maximum log likelihood for the saturated model and log Lo is the
maximum log likelihood for the model under consideration.

Al.2.1 Multinomial

For the multinomial sampling scheme

z njj log 7ij + log N! + 1 log njj
i,3

log Io

I nij logmij - N log N + log N! + 3 log njj!
For the saturated model "r?lij = njj so
log Lgat = £ njj = N log N +log N! + 3 log njjl ,

so the deviance is

G2

il

2 (log Lgat - log Lo)
=2 [z (nij log njj) - & (nij log Mjj)]
=2 z n13 log nlJ

Al. 2.2 Poisson

For the Poisson sampling scheme log I, = g njj log fﬁij -5 ﬁij -
t log nij1,

1og Leat = & nij log njj = £ njj - & log njf

G2

i

2 (log Lgat - log Lo)
2 [z (njj log njj) + & mij - I njj]

and, since 3 njj = I Mjj = N

2—22 nlj lognlj
i,] IE[l]
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which is identical to the deviance obtained in the multinomial
model.

Al. 2.3 Product—multinomial

For the product-multinomial sampling scheme where we fix say the r
row totals and take a sample of size nj4+ for each i, the likelihood
function under some model is

Lo =,-n/ nj! W(%l:')nl]
1

Trnijt 3 \Ri+
j —
log Ip = & 1log nj+t - & log niji + & nij 1og T3
i i3 iJ TIF
=1 log njr1 - £ log nijji + £ njj log fyj
1 1,.] 1,3 mi+
log Lgat =

2 log nixt =7 log nijt 3 nij log nij
i i,] 1,3 i+

G2 = 2 (Lgat - Lo)
2 (z njj log pij - T nij log njy + L Nij log mit)
1,] I“ij 1,3 1,]

Il

if we have the term A;X in the loglinear model, then Mmj+ = nj4, SO
the last two terms cancel out and

G2 =273 nj log nj §
i, ] my 5

which is identical to the deviance obtained with the multinomial
and Poisson models.

These results can be easily generalized to multi-dimensional
contingency tables,
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APPENDIX 2: FITTING LOGLINEAR MODELS

A2,1 Newton-Raphson Algorithm

Let n' = (n3, oo, ny) and m' = (m, ..., my) denote the observed and
expected counts for the I cells in the table. For simplicity we will
use a single index, though the table may be multi-dimensional. Under
the Poisson sampling model the log likelihood is

log L(m) = £ nj logmj - mj - £ log nj!
Loglinear models have the form

logmj = x'i 8

where g is a pxl vector of parameters and x'j is the ith row of the
Ixp design matrix X, i.e.

logm = X8

A

The MLE 8 maximizes the log likelihood expressed as a function of the
parameter 8, namely

log L(B) =1 nj x'ig - ¢ exp (x'iB) - & log nj!

We will use the Newton-Raphson (NR) technique to maximize log L(B).

~

This is an iterative procedure that replaces an approximation to the

optimum, B8 € , by B(t+l) at each iteration, where

Blerl) = 3(8) - ?fz log L (ﬁ)}(t)"l 3 log L(B.))(t)
~ ~ 38" 3B

-

This can be expressed as

g(t+l) = (X*'WX)~1x"wz

where W ={my (t)
fnz(t)
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and yi = log mi(t) + ny - (%)

mj

which is weighted least squares (WLS) with a transformed response. 1In
other words, 8(t+l) is the WLS solution to the model

y=XB +e¢

where the {ei} are uncorrelated with variances {l/rﬁi(t)}. Thus the ML
estimate may be regarded as the limit of a sequence of WLS estimates.

We can begin the iterative process by setting all 1?13-_(0) = nj, or all
mi(0) = ny + 0.5 if any nj = 0. The m(t) and B(t) usually converge
rapidly to the ML estimates @ and g_ The estimated covariance maxtrix
ofE is (X*WX)~1 (where W is evaluated at:é).

The camputer packages GLIM (Baker and Nelder, 1978) or Genstat (Alvey
et al, 1983) use the N-R technique for fitting loglinear models to
contingency tables as part of the wider framework of generalized
linear models (Nelder and Wedderburn, 1972).

A2.1.1 Abortion Attitude Example

To illustrate the log m = X8 representation needed for fitting a
loglinear model using the Newton-Raphson method, consider the 4x2
table of religion and abortion attitude of Table 2. 1.
The model of independence

log mij = + AR + A5R
can be expressed as

log m = X8
with

log m' = (log myy, log mo, log myy, ..., log mgp)
B‘ = (u, AR, sz, >\3R, AlA)
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Here we use the fact that AgR = -A1R = AoR = A3R and A5A = 1A

A2.2 Iterative Proportional Fitting Algorithm

To illustrate the Iterative Proportional Fitting (IPF) algorithm
(Deming and Stephan, 1940) we will compute the estimated expected cell
counts for the no 3-factor interaction model (XY, XZ, YZ), i.e.

log mjjk = u + A% + A 5¥ + A35%Y + A X2+ a2
The {mjjk} must satisfy the ML equations

iﬁij-x- = Nij+
N

Mi+k = Ditk
M+ik = M+ik

We cannot write out the MLEs in closed form - the following IPF
procedure yields the MLEs.

Stage 1: Set ﬁijk(O) = 1 for all i,j,k
Stage 2: Successively adjust the {ﬁijk} so that they satisfy the

marginal constraints. The first cycle of the adjustment
process has the following three steps:

ij+

i+k
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Here we use the fact that AgR = AR - AR - A3R and A ph = x4

A2.2 Iterative Proportional Fitting Algorithm

To 1illustrate the Iterative Proportional Fitting (IPF) algorithm
(Deming and Stephan, 1940) we will compute the estimated expected cell
counts for the no 3-factor interaction model (XY, XZ, YZ), i.e.

The {mjjyx} must satisfy the ML equations

M = Njj+
A

fi+k = Nit+k
Myjk = nyik

We cannot write out the MLEs in closed form - the following IPF
procedure yields the MLEs.

Stage 1: Set aijk(O) = 1 for all i,j,k
Stage 2: Successively adjust the {ﬁijk} so that they satisfy the

marginal constraints. The first cycle of the adjustment
process has the following three steps:

~ 7~
Mgk (1) = @i, (0) nigs
ij+

i+k
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~ 2

+jk

Sunming both sides of the first expresion over k, we note
that after the first step, all ﬁij+(l) = njj+, so that the
estimated expected frequencies satisfy the first set of
marginal constraints. After the second step all ﬁi+k(2) =
Nj+k, as well as mjj4 = njj+ for all i and j. After the
third step all Gije3) = nyjk, but the first two sets of
constraints no longer hold.

Repeat stage 2 until the change in the {ﬁijg- from one
cycle to the next is sufficiently small.

A2.2.1 Lizard Example

We will use the IPF procedure to fit the model (SD, SH, DH) to the
data of Table 1.4. The observed marginal totals are

Species Diameter
1 J njj+
1 1 32 + 86 = 118
1 2 11 + 35 = 46
2 1 61 + 73 = 134
2 2 41 + 70 = 111
Species Height
i K Nji+k
1 1 43
1 2 121
2 1 102
2 2 143
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Diameter Height
i k n+jk
1 1 93
1 2 159
2 1 52
2 2 105

Table A2.1 shows various stages in the IPF procedure. We begin
with initial cell values equal to 1, i.e. fjjx(0) = 1. Each
marginal total fﬁij+(0) is obtained by suming the {fjjx(0)} over k,
€., ,Iﬁ]_z_;_(o) = ﬁlZl(O) + 1?1122(0) = 2.

To form the {fjjk(1)} we multiply each fijjx(0) by njj4/R;54(0),
e.g.

~ N
m 22(1) = my5,(0) Digr o)
=1x 46
2
= 23

Then we compute the {6&jk(2)} by aijk(z) = ﬁijk(l) Dit+k

mz;i(l)

e.g. Mo(2) = 23 x 1%

= 33. 939

The next step is to calculate the {mj;x(3)} by
J J nqj%(Z)

e.g. Mmy9y(3) = 33,939 x 105
98. 727

= 36.095

Then we repeat the whole cycle again, until the estimates have
converged sufficiently.



Cell (0) (1) (2) (3) (4) (12)
s s ~ A
(1,3,k)  nijk mijk mj jk ik mijk s §k Mk
(1,1,1) 32 1 59 30. 939 33.177 33.479 32. 80
(1,1,2) 86 1 59 87. 061 83.757 84.521 85. 20
(1,2,1) 11 1 23 12,061 10.763 10. 566 10. 20
(1,2,2) 35 1 23 33.939 36.095 35. 434 35. 80
(2,1,1) 61 1 67 55.788 59, 823 59, 351 60. 20
(2,1,2) 73 1 67 78.212 75. 243 74.649 73. 80
(2,2,1) 41 1 55.5 46. 212 41. 237 41.648 41. 80
(2,2,2) 70 1 55.5 64.788 68, 905 69.592 69. 20
(0) (1) ) 3)
AN ~ . A e N /\(4)
13 mjq+ ik mipk J ok mpjk 1) myij+ ik mipk
11 2 11 82 11 86727 | 11116.934 | 11 44.045
12 2 12 82 1 2165.273 |12 46.858 | 1 2 119,955
21 2 21 122.5 21 58273 [21 135,066 | 2 1 100.999
22 2 2 2 122.5 22 98727 | 22109.905| 2 2 144.241
(1) (2) (3) (4) (12)
oo . ~ n A ~
Mij+ = Nij+ | Mitk = Mijk = Nk | Mij+ = Dij+| Mije = Dij+
(2) (12)
N
mij+ = mitk = Ni+k

A(12)
m+3jk = n+jk

T ¢V 81qelL

-
-

aanpsooxd JdI sul ul safels snotaeA
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With only a slight modification, the iterative method can also be
used to compute estimated expected values for the other models.
For example, consider the model (XY, XZ). 1In this model each cycle
of the iterative method would have only two steps. The first
adjusts for the marginal totals {nij+} and the second for the
totals {nj4x}. The third set of marginal totals is not needed
here., Suppose the table is of size 2x2x2., The r'ﬁijk(o) = 1 and

migk(1) = nije/2,

A (1) = ns + ns = ns
mi+k = Dil+ Ni2+ = Ni+4
2 2 2

ral
s0 Mjjk(2) = njj+ X nprg
4 Nit+/2

= Nij+ Mtk
i++

This model could have been fitted directly using the observed
marginal totals njj+, nj+k and ni+4; however, the IPF method gives
a systematic way of estimating the expected cell counts for all
the usual loglinear models and we don't have to worry about whether
direct estimation is possible or not.
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APPENDIX 3: FITTING LINEAR MODELS

A3.1 Linear models specified in terms of constraints

Iet m be an Ixl vector of cell counts, with corresponding vector of
probabilities n. The Ixl vector m may correspond to

(i) a Poisson, or to
(ii) a product-multinomial distribution.

In the former case imi = 1, while in the product-multinomial case, the
set of I cells is comprised of several subsets, each of which
corresponds to a separate multinomial sample, and the sum of the
elements of n over each subset is unit.

If we have a hypothesis about the cell counts which can be specified
in terms of E constraints, we can write the constraints as

Fm=20

where F is an ExI matrix with E linearly independent rows. Further
constraints are imposed by the sampling design. These constraints
guarantee that the sum of the probabilities within each sample will be
equal to one (or equivalently that the sum of the counts within each
sample will be equal to the correct marginal total). They can be
written

where S is the number of samples (S > 1) and D = {dijg 1is the IxS
matrix defined by

dig = (1 if cell i belongs to sample S
(0 otherwise

In terms of the cell counts the constraints can be written

D'RM = lg
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where R is the IxI diagonal matrix with diagonal elements rijj = 1/mi+,
where mj4 is the marginal total of the ith sample (i=1, ..., S), and
off-diagonal elements are zero.

Thus, the constraints on the cell counts can be written as

Lm=c¢

~ ~

where L” is the IX(E+S) matrix L” = (F': R'D) andd 1is the 1x(E+S)
vector consisting of E zeroes and S ones, i.e. -

S; - (Q»E : ,];/S)

A vector a which satisfies these constraints is

~

a=rR1a*

where R~1 is the IxI diagonal matrix with diagonal elements rij = mj+,
and a* is the Ixl vector with ith element aj = 1/Bi where Bj is the
number of cells in the ith sample.

We can easily calculate the MILEs using the algorithm of Wedderburn

(1974) which is explained in the following section.

A3.1.1 Wedderburn's Algorithm for finding MLEs of generalized
linear models specified in terms of constraints

Wedderburn (1974) gives an iterative method for finding the MLEs of
generalized linear models specified in terms of constraints.

If we assume the cell counts, nj, are distributed according to the
Poisson distribution with mean, mj, which is a function of nj,
where nj is a linear function of the parameters associated with the
model we wish to fit, i.e. nj = xi”8, the pdf of n; is
p(nj) = exp (—mj) Mi T3
lll

We define Fi = log p(nj),
F{ = 3F§
oanyi
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and 2

F" = 34Fy
i 3ﬁfé

So F{ = -mj + n{ log mj - log (mj!)
= -nj + nji log mj - log (mj!)
Fl = nj -1
LES
Fi" = —nq
ﬂié
B [Fi"] =-1/m3

Wedderburn shows that if a model is expressed as E(n) =m = A

~

where Ai = £(n{)
with constraints Ln = 0

then instead of iteratively fitting E(n) = X8

?

we may fit E(n) = w1l L'y

-E [Flu]

1]

where W

) -F [an]

i

1/n1

-

Ql/ﬂn

and then use the residuals as the new value for n.

The algorithm takes the following form:

(a) Setn =n. Set z =n
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(b) cCalculate W =|1/n7 _

-

l/T\n
(c) Regress z on W-lL, using W as the weight matrix Setn = z - 2
(residuals). -
If the process has gone far enough, stop. Otherwise go to
step (b).

If we have inhomogeneous constraints of the form

Ln=2¢c

then we simply choose any vector a such that L a = ¢

~ ~

The algorithm then becomes

(a) Setn =n. Calculate z =n - a

~ ~ ~

(b) Calculate W = P/nl .
1
L /ﬂn-J
(c) RegressZz on W-lr', using W as weight matrix.
Set n = ;_-i- a - g.
If the procéss has gone far enough, stop. Otherwise go to
step (b).

The MLEs, ﬁi, will be the values of nj at the conclusion of the
algorithm,
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The deviance, G2, is calculated in the usual way, with associated
degrees of freedom equal to the rank of F, i.e. df = E.

A3.1.2 Drugs example

For the data of Table 8.13 the hypothesis of equally favourable
reactions to, say, drug A, for all seven samples can be written as

6a = 6a1 = 6a2 = 6a3 = 045

where 6p] = 1] + 713 + w3 + g
fa2 =mg + 10
a3 =013 + 114
Oa5 = w21

This implies that

T+ +twg-mg-m10 =0
mg+mig -~ "3 -~ 7m14 =0
T3 +m14-m21 =0

The constraints relating to drugs B and C can be written in a
similar manner, giving

F* 7 =0

~

where F* is the 9x26 matrix
11110000 -1-100

11 100 }—1~100
1100 /0000 | -10

*= 111001100 =-10-10
1010 0000 |-1-100
| 1100, 00 |-10
10101010 | 0000  -10-10 ;

1010 |-10-10 |
| 1010 | 00 | 00 =10

i ! ‘ =

and 1= (M1, 12, veey m26)
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We can write the constraints in terms of the cell counts, rather
than the probabilities as

F*r = F*R§’= Fm = 0

e

where R is the 26x26 diagonal matrix with diagonal elements rjj =
1/mjt.,

— —

1/46
R = T1/46
1/28 _
Tt 1/28
1/25.
T 1/14
1/14

and m* = (m3, mp, ... mg).

The constraints that the sum of the probabilities within each of
the S=7 samples will equal one can be written

,

D'n = 17

o~

where D© is the 7x26 matrix

- | | -
D= | 11111111 | | |
1111 i
1111 |
| 1111 LT
11 §
S on
11

or equivalently, in terms of cell counts
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Thus the constraints on the cell counts can be written as
Lril:LR-lRin:L*REx:S

where L*' = (F*' : D).

A vector/g which satisfies these constraints is
a=gla

wmxef“ = (1/8 «oeyr 1/8, 1/4) veu, /4, 1/2, vee, 1/2).

We can implement Wedderburn's algorithm using n, L and a as given

above,
The deviance is calculated in the usual way as G2 = 1.25, with 9 df.

A3.2 Linear Models Specified as Ar = X8

Haber (1985) discusses linear models which are formulated as

Ar = X8
where A is a known IXI matrix, ‘1 is an Ixl vector of cell
probabilities, X is a known JxK matrix, and B is a Kxl1 vector of
unknown parameters, with I » J > K. We assume that the rows of A, as
well as the columns of X, are linearly independent. We will now
formulate the linear model in terms of constraints, so that we can
apply Wedderburn's (1974) algorithm as discussed in Section (a).

We find a Jx(J-K) matrix W with independent columns (i.e. of rank
J-K) which when pre-multiplied by the JxJ matrix I—X(X'X)"lX'vgives a
Jx(J-K) matrix U (of rank J-K). U is orthogonal to X since X'U =
X"(I-X(X'X)-1x"W = (x'-x'x(x'X)"1x")W = 0. Thus

U‘A'Ll' = 0.

Now, since T = Rn, where R is as defined in Section (a), the equation
becomes
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U'ARn = 0
Writing L = U'AR gives the set of J-K = E linear constraints
Fm=20

in the same notation as Section (a).

The constraints imposed by the sampling design can once again be
written as
D'Rm = 15

Thus the constraints on the cell counts can be written as

Im = ¢

.

with L' = (R'A'U : R'D), and Wedderburn's algorithm can be used to
find the MLEs.

The degrees of freedom associated with the deviance is equal to the
rank of U'A, which is E = J-K.

A3.2.1 Drugs example

For the data of Table 8,13 the linear model which specifies that 6p
is the same for all seven samples, and similar restrictions on
6g and 6¢c , can be written

A ™ = Xg

where A is the 12x26 matrix



11110000
1100
1100
10
A =| 11001100
1010
1100
10
10101010
1010
1010
10

m = (M1, T2y sees T26)

X is the 12x3 matrix

OOOOOOOO!—JI—"'—'F—‘]

OO O Ok - OO OO0
o= - = O O O O 0O 0O OO0

|
|

and g' = (6a, 9B, 00C)

Now to write this model in the form

167.
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we chose the 12x9 matrix W with 9 linearly independent columns:

OO O O O OO0 OO O =
O OO OO0 OO0 OO C OO
O O O O O OO0 O MKO O
O O O O O OO MFHOOOO O
O C OO0 OoOHH OOC OO O
O OO OO HOOO OO O
O O O - O OO0 O OO o
O O H OO OCOoOOoOOoOOoOO OO
O OO0 O O0COoCOOoC oo o

I
]

Pre-multiplying W by I - X(X'x)~1xX', we obtain the 12x9 matrix U
which is orthogonal to X,

w = 3-1-1 0 00 0 0 O
-1 3-1 000 00 0
-1-1-3 0 0 0 0 0 0,
-1-1-1 0 00 00 0

|
000 3-1-1 00 O
000 -13-1 00 0
000 -1-1 3 00 0
000 -1-1-1 00 0

|
000 000 3-1-1
000 000 -1 3-1
000 000 =-1-1 3
000 000 =-1-1-1



169.

u'a,

We can then obtain the 9x26 matrix F*

3-1-1

0

3-1-1
3-1-1

0
0

3-1-1
3-1-1
3-1-1
3-1-1

0

3-1-1

0
0

0
3-1-1

0

0

3-1-1
3-1-1

0
0

0
0
0
0

0

3-1-1

0

0

0

0

0

0
0
0
0

0

3 -1
3 -1
0
0

-1 3 -1

0
-1 3-1

0

0

-1 3-1

0

0
0
0

0
0

-1 -1 3
-1 -1 3

0
-1 3-1

0

0
0

0

-1 -1 3

-1 -1 3
-1 -1 3

0
0

0
0
0
0

0
-1 -1 3

0

0

0

0

0
0

0 0

0

-1 -1 -1

0

0
0

-1 -1-1 0

0

0
0

-1 -1-1

0

0

0
0

0

4F*" =
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We can then proceed to write the model as
Lm=c¢

as explained in Section A3.1.2, and use Wedderburn's algorithm to
find the MLEs,
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APPENDIX 4: MAXTMUM LIKELIHOOD EQUATIONS FOR LOGLINEAR MODELS
FOR THREE-DIMENSIONAL TABLES

Consider an rxcxg table, classified by‘variables X, ¥ and 2. The
Poisson log likelihood function for this table is

log L = '2. njjk log mijjk = I mjjk + I log nijkl
i, j.k i,j,k i,3.k

Under the model of independence (X,Y,2)
1og mijk =y + )\ix + )\jY + )‘kz

so log L= ¢ njjk (n + XiX + AjY + sz)
i'j'k
-z oexp (u o+ A%+ agY + ax8)
1,J.k
+ I log njjyk!
i,j'k

To find the maximum of log L we can differentiate with respect to the
model parameters and equate to zero, e.d.

8 logL = £ njjk- & exp (p +ri% +a3¥ + 2
au i'j,k i,j,k
= L Dijk - I Mijg
1,3,k i,3.k
= 0 at T.P.
3 logL = % njijk - ¢ exp (p +ri% + 1% + 212)
axig 3.k J k J

0 at T.P.

]



172.

which gives the maximum likelihood (ML) equations

Mysy = N

Mipy = N4+
'/ﬁ}i-j+ = i+
Mptk = Mtk

Now mjty = I Mjijk
J/k

oexp (u+ A%+ a5Y + %)
jrk

=exp (u +1X) 1 exp (A3 + Ai?)
ek

=exp (p +1iX) 1 exp (A5Y) 1 exp (Ag2)
3 7Tk

mj+ = exp (u +13Y) £ exp (AiX) )}:{exp (A %)
i

Mtk = exp (u + Ak%) I exp (Ai%) I exp (A3Y)
1 J

My = exp (p) T exp (A3%) I exp (ij) 1 exp (Ak?)
{ 3 k

Combining these equations, we find that

Mijk = Mit4+ Mpg4 Mgk

(My4q) 2

so the maximum likelihood estimate (MLE) of mjjk is

Mijk = Nitt Niis Dpik

N 2

Thus the MLEs of the {mjjx} depend on the cell counts only through
certain sufficient statistics. For the model of independence, the
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minimal sufficient statistics are the one-dimensional margainal
frequencies {nji4+}, {444} and {np4xd.

The sufficient statistics for the other loglinear models can be found
in a similar manner. For example, for the model (XY,Z) or
log mijk = u + Ai% + A5% + AK2 +A43%Y

9 logL = I njjx - I MWjjk
d i,j.k i, .k

My = N

9 logL = I njjk- I mjjk

N

= Mg+ = i+

3logL = I njjk - I Mmijk
= M4k = Dk

The minimal sufficient statistics are {ny;x} and {nij+}, and the MLE
of mjjx is

~
Mijk = Nij+ ek

Table Ad.1 gives the minimal sufficient statistics and the expressions
for the MLEs for various models.
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Table A4.1: Minimal sufficient statistics and expected frequency
estimates for various models

Model Minimal Sufficient Statistics mjjk =

(X,Y,2) {nivsd, {044} {npnid Nit+ Npje Dppk/N2
(XY,2) {(nij+} s {npagd Njj+ Mptk/N
(XY,¥2) {njj4} » (4910 Nij+ Dyjk/Meg+

(XY,XZ,Y2) {nij+, {nisk}» {43k no closed form exists
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APPENDIX 5: FITTING MEAN RESPONSE MODELS

Mean response models can be thought of as simply special cases of
linear models, and can be fitted using the same techniques.

Using the same definitions of m, 7, A, X, B, L, L*, Cy etc as in
Appendix 3, we can write mean response models elther in the fomm

Amr =XBR
or in terms of constraints
L*t = ¢

We can then use Wedderburn's algorithm to calculate the MLEs.

A5.1 Dumping Severity Example

For the data of Table 1.6 the mean response model

¢1i =up + B uj

where ¢j = mi] + 2wjp + 3wj3, and uj = i
i l' se e g 4

can be written Anw = X 8

where A is the 4x12 matrix

123
123
A= 123
123

1
T = (11, T2, eeey T12)
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X is the 4x2 matrix

S
S W N e

andg' = (l—lr B)

To write this model in the form F*i = u'a 1 = 0, we choose the 4x2
matrix W with two linearly independent columns:

Pre-multiplying W by I-X(X'x)~1x', we obtain the 4x2 matrix U, which
is orthogonal to X

10Uu= -4 7

We then obtain the 2x12 matrix F* = U'A

10 F* =; 3 6 9-4-4-12-1-2-3 2 4 é_
Lf4 -1 -12 714 21 -2 -4 -6 -1 -2 -3 _

We can write the constraints in terms of the cell counts as
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F*r = F*Rm = Fm = 0

~ o~ A~

where R is the 12x12 diagonal matrix with diagonal elements rji=1/nj+

1/96
R = 1/104
1/110
1/107

and @f = (M1, M2, eee, M12).

The constraints that the sum of the probabilities within each of the
four operations will equal one can be written

Dm = 14

where D' is the 4x12 matrix

— —

111
D = 111
111
111

_ |

or, equivalently, in terms of cell counts, D'R@ = lg

Thus, the constraints on the cell counts can be written as
Iy = L*Rn = ¢

where I*' = (F*':D).

A vector a which satisfies these constraints is

a = R"lg*

where Ef' = (1/3, 1/3, eees 1/3).
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We can implement Wedderburn's algorithm usimg.g, L and'ﬁ as given
above.
The deviance is G2 = 0.22 with 2 df.
Alternatively, we can use the constraints implicit in the model

¢i =y + 8 uj
The ¢i are constrained to lie on a straight line:

92 = 91 = ¢3 ~ ¢2 = ¢4 - ¢3 =8

SO we can use any two sets of constraints:

(1) $2 = 41 = ¢3 — ¢2
2 =1+ 262 -9¢3=0

(2) - %4 -¢3 =493~ 92
= ¢2 - 203 + 94 =0

So the constraints can be written F*r = Q

where F* = | -1 -2-3 246 -1-2-3 000
0 00 123 -2-4-6 123

To use Wedderburn's algorithm we can write the constraints as
Lm=c¢

as illustrated previously.
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APPENDIX 6: QUASI-SYMMETRY

For a two-way table the model of quasi-symmetry is
logmjy =u + Ak o+ AjY + xinY

where 1 33%Y = x5i%Y,

A6.1 One Dumy Variable

In this method we use one dummy variable to force the xinY terms to
obtey the constraints. The dummy variable takes the value 1 for all
cells where i=1 or j=1 (i.e. the first row and the first column).
The dummy variable takes the values of the next consecutive r-1
integers for the remainder of the diagonal cells. Then, for every
pair of off-diagonal cells, of which neither cell is in the first row
or first column, the next consecutive integer is assigned to both
members of the pair.

The log-linear model involving X, Y and the dummy variable is then
fitted, i.e.

log mjj = p + A% + A5¥ + a 44D

A6.1.1 Eye-testing example

We will illustrate this method using the data of Table 8.9, and
will call the classifying variables "Right" and "Left", and the
dummy variable "Dummy". Table A6.1 gives the values of the dummy
variable corresponding to the levels of the classifying variables,
and Table A6.2 gives the values of the classifying and dummy
variables and the observed cell counts that would be used to fit
the quasi-symmetry model:.
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Table A6.1: Values of the dummy variable

Right Ieft
1 2 3 4
1 1 1 1 1
2 1 2 5 6
3 1 5 3 7
4 1 6 7 4

Table A6,2: Variables needed to fit quasi-symmetry model

Right Left Dummy Count

1 1 1 1520
1 2 1 266
1 3 1 124
1 4 1 66
2 1 1 234
2 2 2 1512
2 3 5 432
2 4 6 78
3 1 1 117
3 2 5 362
3 3 3 1772
4 1 1 36
4 2 6 82
4 3 7 179
4 4 4 492
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A6.2 Two Dummy Variables

This method involves using two dummy variables. The first dummy
variable takes on the value of the larger of i and j for the ijth
cell, while the second dummy variable takes on the smaller of i and j.
Then the log-linear model involving all the classifying and dummy
variables, plus the interaction between the two dummy variables, is
fitted, i.e.

log mij = u + A% + A3¥ + x4P1 + a3D2 + 5 4;DID2
The fitted values are then the MLEs 'fﬁij.

A6.2.1 Eye-testing example

Table A6.3 gives the values of the classifying and dummy variables,
and the observed cell counts that would be necessary to fit the
quasi-symmetry model to the data of Table 8. 9.

The dummy variables have been named "High" and "Low".

Table A6.3: Variables needed to fit quasi-symmetry model

Right Ieft High Low Count

1 1 1 1 1520
1 2 2 1 266
1 3 3 1 124
1 4 4 1 66
2 1 2 1 234
2 2 2 2 1512
2 3 3 2 432
2 4 4 2 78
3 1 3 1 117
3 3 3 2 362
3 3 3 3 205
4 1 4 1 36
4 2 4 2 82
4 3 4 3 179
4 4 4 4 492
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APPENDIX 7: MARGINAL HOMOGENEITY

For an rxr table, the marginal homogeneity model specifies

Mip = Myq
for i=1l, ..., Y.

The following sections explain two methods of estimation.

A7.1 Method of Solving Simultaneous Equations

For an rxr table, there are r constraints of the form mjt+ = myi, of
which r-1 are independent. There is also one constraint of the form

I mjj = N* (where N* = N - ¢ miile

i#]

We write down the equations which define these constraints, then
express r of the r(r-1) off-diagnonal cells {miy, i#j} in terms of N
and the other r(r-2) off-diagonal cells. We can then write these
equations as

Y=X8 +9+c¢

where Y is the vector of cell counts, X is the matrix containing the
coefficients of the expected cell counts in the equations, 8 is the
vector of ‘"parameters" (in this case x{(r-2) of the off:aiagonal
counts),vg is an off-set vector (containing zeroes, diagonal counts
and appropriate multiples of N*) and € is a vector of Poisson errors.
We can obtain the MLEs by using a Poisson error and an identity link
function in a package like Genstat.

A7.1.1 Eye-Testing Example

We will illustrate using the data of Table 8,9, There are four

constraints of the form mj+ = myj, of which only three are
independent:
(1) my =m) = mp+m3+myg=m] +m3] +my

(2) mpy =myp S mp) + mp3 + My = myp + M3p + Mgy
(3) m34 =my3 = m3] + m3p + mM3gq = M3 + Mp3 + my3
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The constraint that the cell counts must sum to the total can be
expressed as

(4) mp] +m3] +myg] +myp +mygpy + m3 + mp3 + Mg3 + mygq + mpgq +
*
m34 = N

We can write mpj, mgp, m3] and mp3 in terms of N, m4y, myp, m3o,
my3, mg3, M4, Mpgq and m34 to give

mpy] = N: +3myp + 2my3 + 4dmygq - 2mg] + 2mpg - my3 + 3m3g + 2m3p
m3; =N -~ 2mp - m3 - 3mpg +my) - 2mpyg +my3 - 3m34 - 2m3p
my2 . my4 = mg) + Mpg — Mg3 + M34

mp3 =N = Zmp = 2m3 - 3myjgq + my) - Mg — 2M34 ~ M3

We can obtain the MLEs by writing these equations in the form

Y=X8 +0 + ¢, i,e.

v1] (n11] |1520 00 000G 0O 0 1520
Yo | |ngy 234 3 2 4-2 2-1 3 2| 18
Y3 | |n3p 117 |-2-1-3 1-2 1-3-2| |my 2181
Y4 | |ng 36 0001000 0 (ms3 0
Y5 | |npo 266 100000 0 0 |my 0
Y6 | |mpyl 1512 0 0 000 0 0 0 |my|+ |1512|+ ¢
¥7 I=|n32| = | 362]= {0 0 0 0 0 0 0 0] |myg 0
Yg | |ngo 82 00 1-1 1-1 1 0] |ma3 0
Yo | Inp3 124 0100000 0] |ma 0
Y10 (|n23 432 -2-2-3 1-2 0-2-1| |m3p] 2181
Y11 |m33| 1772 00 00O0O0O 0O 1772
Yi2! ing3 179 0 0 0 00 1 0 O 0
Y31 |nyg 66 00100000 0
Y14 |n2a 78 0000100 0 0
Y15, |n3g 205 00 000GO0T10 0
Yi6, jnag| |492] [0 0000 0 0 0| | 492

'
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A7.2 Wedderburn's Method - Generalized Linear Models Specified in
Terms of Constraints '

This method was explained in Appendix A3. 1.
Basically, we consider the r2 cell counts as forming an nxl vector .
If we express the model as

E(n) = A

where Ai = f(nj), with constraints L n = 0

~

then we may fit E(n) = w1 'y

~

where W = | ~E[F]"] .

and then we use the residuals as the new value for n.

A7.2 Generalized Linear Models Specified in Terms of Constraints

We can simply use the Wedderburn's algorithm described in Appendix 3,
Section A3.1.1.

A7.2.1 Eye-testing example

For the eye-testing data of Table 8.9, the constraints mjy = myy
imply that

M2 -mp3 - mgq +myy +m3yy +my) =0
-Mp] — mp3 — mpq4 + myp + m3p +mgp =0
-m3] - m3p - m34 +my3 + mp3 +mg3 = 0

SOLn=LrE=

o~
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1/1520

so w1 L' would be

0 0 0
234 -234 0
117 0 -117

36 0 0
-266 266 0

0 0 0

0 362 -362

0 82 0

-124 0 0

0 —-432 432

0 0 0

0 0 179

- 66 0 0

0-178 0

0 0 -205

0 0 0

If we decide to also use the constraint I mjj = N, then the

constraints would be L n

1/234 -

1/492

= Im

—~

The first estimate of W would be

constraint matrix would have an extra column of 1's and the

186.

We would regress z on w-it', using W as the weight matrix, and then
set the new estimate of n to be the residuals, z - z.
then re-calculate W and cycle through the procedure until the
estimated expected values, ﬁ, and the deviance converged.

We would
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0111 -1000 -1000 -100T0m=0
0-1 00 1011 0-100 0-100| Jo
0 0-1 0 00-10 1101 00-10 0
1111 1111 1111 1111 N

A vector which satisfies these constraints can be formed from a
table with symmetry

— ———

1520
a= 250
- 120.5
51
250
1512
397
80
120.5
397
1772
192
51
80
192 5
492 ‘
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APPENDIX 8: FITTING MODELS USING GENSTAT

Genstat (Alvey et al., 1983) is probably the most powerful camputer
package commonly available for analyzing contingency tables. The GIM
directive fits generalized linear models (Nelder and Wedderburn, 1972)
using the Newton-Raphson algorithm. ILoglinear models can be easily
fitted by specifying independent Poisson sampling for the cell counts.
Genstat automatically selects the log link function and uses log mj §
as the response in the linear model. Iogit models for dichotomous
response variables can be fitted by specifying a binomial sampling
distribution for which the logit, log [w(l-r)], is the default 1link
function. Other types of models can be fitted using Genstat's
versatile programming features.

The remarks made here also apply to GLIM (Baker and Nelder, 1978),
which is virtually just a subset of Genstat with some differences in
syntax,

The following examples illustrate how Genstat can be used to fit the
models discussed in this thesis.

Table A8.1 contains the input for fitting the models (RY,A) and
(RY,RA) to the data of Table 3,2. The 'REFERENCE' directive simply
indicates the job-name, while 'UNITS' specifies there are 16
oObservations. RELIGION, YEAR and ATTITUDE are defined as factors,
while COUNT is defined as a variate. The 'TERMS' statement contains
all variables which might possibly be included in the model. The next
statement specifies that the response variable, COUNT, has a Poisson
distribution. The first 'FIT' statement fits the model (RY,A), i.e.

log mijk = u + A iR + ApB + 3 35RY

while the second one fits the model (RY,RA). RELIGION * YEAR means
include the main effects for RELIGION and YEAR, plus their
interaction, RELIGION, YEAR. The default output from the 'FIT'
statement is the regression coefficients, plus the deviance. To
obtain the estimated expected values as well, we could use

'FIT/PRIN = CAU'
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Table A8 2 contains the Genstat output. Instead of the usual
identifiability constraint that the sum of the parameter estimates
equals zero, Genstat uses the constraint that the parameter estimate
for the first level of any factor or interaction is zero. For
instance, for the model RELIGION * YEAR + ATTITUDE, the estimates of
RELIGION1, YEARL, RELIGIONl.YEAR], RELIGIONZ.YEAR1, RELIGION3, YEARI],
RELIGION4. YEAR], and RELIGIONl.YEARZ are all =zero. This makes no
difference whatsoever to the fitted values, etc, and the parameter
estimates such as AinY subject to the constraint

1 ]

can be calculated using a little algebra.

The remainder of this Appendix contains Genstat programes which can be
used to fit the models discussed in this thesis. They should be
self-explanatory if read in conjunction with the appropriate Sections
in the text, and also the previous Appendices in which estimation
methods are discussed.



'REFERENCE' RELIGION

SEE APPENDIX 2, SECTION A2.1.1

FITTING LOGLINEAR MODEL OF INDEPENDENCE

AND THE SATURATED MODEL

190.

TO TABLE 2.1 - RELIGION BY ATTITUDE TO ABORTION

FROM KNOKE & BURKE (1980)

'UNITS' §$ 8

'FACTOR' RELIGION %4 =1,1,2,2,
: ATTITUDE $2 = 1,2,1,2,

'VARIATE' COUNT

'‘READ/PRIN=DEM' COUNT

'RUN'

460 498

147 240

41 10

65 17

'EOD!

'TABLE' T1 § RELIGION, ATTITUDE

'TABULATE' COUNT ; Tl

'PRINT' Tl §$ 10

'RUN'

*TERMS' COUNT+RELIGION*ATTITUDE

'Y/ERROR=POISSON' COUNT

'CAPTION* '° (R, A) "

'FIT/PRIN=CAU' RELIGION+ATTITUDE
‘RUN’

‘TABULATE®' FIT ; Tl

'PRINT' T1 $ 10.3

'RUN'

'FIT/PRIN=CAU' RELIGION*ATTITUDE
'RUN'

'TABULATE' FIT ; T1

'PRINT'® TL § 10.3

'RUN'

'CLOSE'
'STOP!

’

1

; FVAL

; FVAL

i}

FIT

FIT ;

13

RES

RES

"

RESID

RESID
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15
16
17
18
19

20
21
22
23

24
25
26

'REFERENCE' RELIGION
SEE APPENDIX 2, SECTION A2.1.l1
FITTING LOGLINEAR MODELS OF INDEPENDENCE
AND THE SATURATED MODEL
TO TABLE 2.1 - RELIGION BY ATTITUDE TO ABORTION
FROM KHNOKE & BURKE (1980)

‘UNITS' ¢ 8

'FACTOR' RELIGION  $4
ATTITUDE  $2

'VARIATE' COUNT

'READ/PRIN=DEM' COURT

'RUN'

won

460 498
147 240
41 10
65 17
‘EOD®

IDENTIFIER  MINIMUM HEAN  MAXIMUM VALUES  MISSING

COUNT 10.0 184.8 498.0 8 0

'TABLE' Tl $ RELIGION, ATTITUDE
'TABULATE' COUNT ; Tl .
'"PRINT' Tl § 10

'RUN’

ATTITUDE 1 2
RELIGION
1 460 498
2 147 240
3 41 10
4 65 17

'TERMS' COUNT+RELIGION#*ATTITUDE
‘Y/ERROR=POISSON’ COUNT
‘CAPTION' "' (R,A) !
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27 'FIT/PRIN=CAU' RELIGION+ATTITUDE ;
28 'RUN'
(R,A)
27... . . LN - . . ¢ s 8 2 6 s 0

**%++ REGRESSION ANALYSIS #***%

ERROR DISTRIBUTION: POISSON
Y-VARIATE: COUNT

**+ REGRESSION COEFFICIENTS **%

FVAL

FIT ;

LINK FUNCTION: LOG

ESTIMATE S.E.
CONSTANT 6.1359 0.0421
RELIGION 2 -0.9064 0.0602
RELIGION 3 -2.933 0.144
RELIGION 4 -2.458 0.115
ATTITUDE 2 0.0704 0.0521
* STANDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE
**% RESIDUAL DEVIANCE *#*#
SCALE PARAMETER IS  1.000
DF DEVIANCE HMEAN DEVIANCE
RESIDUAL 3 72.44 24.15
**+ QBSERVED AND FITTED VALUES #%*%*
OBSERVED FITTED RESIDUAL
1 460.0 462.1 -0.1
2 498.0 495.9 0.1
3 147.0 186.7 -2.9
4 240.0 200.3 2.8
5 41.0 24.6 3.3
6 10.0 26.4 -3.2
7 65.0 39.6 4.0
8 17.0 42.4 -3.9
29 'TABULATE' FIT ; T1
30 ‘'PRINT' Tl $ 10.3

31 ‘RON?

RES

1.000
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RESID

ooooooooooooooooooooooooo

T

145.85
-15.05
-20.41
-21.37

1.35



ATTITUDE
RELIGION
1

2
3
4

32 'FIT/PRIN=
33 'RUN’

T1
1

462.148
186.692
24.603
39.558

2

495.853
200.308
26.397
42.442

CAU' RELIGION*ATTITUDE ;

*xxx%x REGRESSION ANALYSIS *##ix

ERROR DISTRIBUTION: POISSON

Y-VARIATE:

COUNT

t** REGRESSION COEFFICIENTS **%

CONSTANT
RELIGION
RELIGION
RELIGION
ATTITUDE
RELIGION 2 .ATTI
RELIGION 3 .ATTI
RELIGION 4 .ATTI

N o W N

TUDE 2
TUDE 2
TUDE 2

LINK FUNCTION:

ESTIMATE

6.1312
-1.1408
-2.418
-1.957
0.0794
0.411
-1.490
-1.421

FVAL = FIT ;

LOG

S.E.

0.0466
0.0947
0.163
0.133
0.0647
0.123
0.358
0.280

* STANDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE

*%% RESIDUAL DEVIAKNCE #*#*+#

SCALE PARAME
DF
RESIDUAL 0

TER IS

DEVIAKCE MEAN DEVIANCE

1.000

0

**+ OBSERVED AND FITTED VALUES #*#*x

B N

OBSERVED

460.00
498.00
147.00
240.00

FITTED

460.00
498.00
147.00
240.00

RESIDUAL

0.00
0.00
0.00
0.00

----------------------

131.
.04
.83
.11
.23
.34
.16
.07
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w30 W

34 'TABULATE'
35 'PRINT'
36 'RUN'

ATTITUDE
RELIGION

W N e

38 'CLOSE'

xxxxx+x+ END OF
(31516 LEFT)

41.00
10.00
65.00
17.00

FIT ; T1
T1 $ 10.

T1
1

460.000
147.000
41.000
65.000

RELIGION.

3

2

498.000
240.000
10.000
17.000

41.00
10.00
65.00
17.00

0.00
-0.00
0.00
0.00
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MAXIMUM OF 1252 DATA UNITS USED AT LINE 32
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‘REFER' DRUG
' APPENDIX 3, SECTION A3.1.2
FITTING THE LINEAR MODEL OF NO
INTERACTION BETWEEN DRUGS TO
TABLE 8.13 USING WEDDERBURN'S METHOD v

'UNITS' $ 26

'VARIATE' COUNT
: ASTAR
: A

'FACTOR' DRUGS & 7 = 8(1),4(2),4(3),4(4),2(5),2(6),2(7)

'SCALAR' DEV

'READ/PRIN=2' COUNT

‘RUN'

616 2 42 466

12 448

510 4 6

41255

10 6

11 4

59

'EOD’

'TABLE/H' T1 § DRUGS

'READ/PRIN=Z" L1STAR,L2STAR,L3STAR,L4STAR,L5STAR,L6STAR,
L7STAR,L8STAR,L9STAR

'RUN'

i
O OO OO OO OO0 OCOCOOM O OQOPF OOk

S OCOO0O OO OOCOCOOO0OOOHMEOOOOH -k
I
C OO OO OCOOOOOMFOOHIF OOOOOOOO
[}

COQCOOODOOCOOHQEOOOO0O0O MO Okt O

i !

O OO OOCOCOOMF MM OOOOOOMMOOODOO O OO

CO0OOOCOOMMOMOMMOMFOOLOOOODODCOOLOOO

C O OO OOOCOOCOFMFEFOOOCOOOCOoOCOOCO

OO OOCOOHFMFOOOOOODOOODOOODOCO
1

O OO OCOO MO OQOOCOO0OCOOOOO0OCOOO

‘EOD!
‘READ/P,PRIN=Z' L10STAR,L11STAR,L12STAR,L13STAR,
L14STAR,L15STAR,L16STAR



'RUN'

bt bt et et et ot ot et
COOOCOOOOO

[ I <o I <o Y e )

SO OO
oo o0oo
ot ot ot ot
CSCOO0CO

(=]
L= B v B B o]

OO OO

(=]
<O
(o)

o]
o
(=]

o
(=]

0

0
0
'EOD!
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0
0
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0
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ot

0
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'READ/PRIN=Z'

‘RUNK'

46 46 46 46 46 46 46 46 28 28 28 28 25 25 25 25
16 16 15 15

26 26 26 26

‘EOD’

'READ/PRIN=Z'

"RUN'

11111111111111111111111111

'EOD’

'READ/PRIN=2"

'RUN'

88888888 4444 4444 4

‘EOD!

‘CALC'
'CALC'
'CALC'
'CALC'
'CALC'
'CALC’
‘CALC'

ASTA

L1
L2
L3
L4
L5
L6

nonoowonou i

COOOOCOOO
SO O0O0COOO

(=2 = e B o]
[« T e I oo ] [= R R - I ] OO 0O

OO
[~ o]

st
o

01
01

T

AHASH

NO

= AHASH/NO

L1STAR/T
L2STAR/T
L3STAR/T
L4STAR/T
L5STAR/T
L6STAR/T
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'CALC! L7 = L7STAR/T

'CALC' L8 = L8STAR/T

'CALC' L9 = L9STAR/T
: L10 = L1OSTAR/T
: L1l = L11STAR/T
H L12 = L12STAR/T
: L13 = L13STAR/T
H Ll4 = L14STAR/T
: L15 = L15STAR/T
: L16 = L16STAR/T

'CALC' A = ASTAR=*T

'CALC' ETA = COUNT

'CALC' Z = COUNT - A
'PRINT/P*' COUNT,ETA,Z §$ 10.4
‘RUN'

'TABULATE/PRIR=T' ETA ; T1
'RUN'

'FOR' I = 1...3

'CALC' W = 1/ETA

'CALC' Pl = ETA%Ll

'CALC' P2 = ETA*L2

'CALC' P3 = ETA*L3

'CALC' P4 = ETA*L4

‘CALC' P5 = ETA*LS

'CALC' P6 = ETA*L6

'CALC' P7 = ETA*L7

‘CALC' P8 = ETA*LS8

'CALC' P9 = ETA*L9

‘CALC' P10 = ETA*L10

'CALC' P11 = ETA*L11

‘CALC' P12 = ETA*L12

'CALC' P13 = ETA*L13

'CALC' Pl4 = ETA*Ll14

'CALC' P15 = ETA*L15

'CALC' P16 = ETA*L16

*TERMS/WT=W' Z+P1+P2+P3+P4+P5+P6+P7+P8+P9+P10+P11+P12
+P13+P14+P15+Pl6

'Y 2

'"FIT/INT=N,PRIN=2' Pl1+P2+P34+P4+P5+P6+P7+P8+P9+P10+P11
+P12+P13+P14+P154P16 ;  FVAL = PRED

'CALC' ETA = COUNT - PRED
"PRINT/S' ETA §10.4

'CALC' DEV = 2*(SUM(ETA-COUNT) + SUM(COUNT*LOG(COUNT/ETA)})

'PRINT' DEV § 10.4

‘REPEAT'
'RUN'
'CLOSE!
*STOP'
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1 'REFER' DRUG

-2 v APPENDIX 3, SECTION A3.1.2

-3 FITTING THE LINEAR MODEL OF NO

-4 INTERACTION BETWEEN DRUGS TO

5 TABLE 8.13 USING WEDDERBURN'S METHOD

6 ‘'UNITS® $ 26

7 'VARIATE®' COUNT

8 : ASTAR

9 : A

10 'FACTOR' DRUGS § 7 = 8(1),4(2),4(3),4(4),2(5),2(6),2(7)
11 *SCALAR' DEV

12 'READ/PRIN=Z' COUNT

13 ‘'RUN?
22 'TABLE/M' Tl § DRUGS
23 'READ/PRIN=Z' L1STAR,L2STAR,L3STAR,L4STAR,LS5STAR,L6STAR,
24 L7STAR,L8STAR,L9STAR
25 ‘'RUN'

53 'READ/P,PRIN=Z'

54
55 ‘'RUN’

L10STAR,L11STAR,L12STAR,L13STAR,
L14STAR,L15STAR,L16STAR

89 'READ/PRIN=Z' T

90 'RUN'

94 'READ/PRIN=Z' AHASH

95 'RUN'

98 'READ/PRIN=Z' NO

99 'RUN'
102 ‘'CALC’
103 'CALC'
104 ‘'CALC'

ASTAR = AHASH/NO

L1STAR/T
L2STAR/T
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123
124
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'CALC’ L3 =
*CALC' L4 =
*CALC' L5 =
'CALC’ L6 =
'CALC' L7 =
'CALC' L8 =
*CALC' L9 =
: L10 =
: L1l =
: Liz2 =
: L13 =
: Ll4 =
: L15 =
: L16 =
'CALC! A =
*CALC’ ETA =
*CALC' Z=2C
*PRINT/P®
'RUN!
COUNT ETA
. 0000 6.0000
.0000 16.0000
.0000 2.0000
.0000 4.0000
.0000 2.0000
. 0000 4,0000
.0000 6.0000
.0000 6.0000
.0000 12.0000
.0000 4,0000
.0000 4.0000
.0000 8.0000
. 0000 5.0000
.0000 10.0000
.0000 4.0000
.0000 6.0000
. 0000 4,0000
. 0000 12.0000
.0000 5.0000
. 0000 5.0000
. 0000 10.0000
.0000 6.0000
. 0000 11.0000
.0000 4,0000
.0000 5.0000
.0000 9.0000

'TABULATE/PRIN=T' ETA ;

'RUN'

L3STAR/T
L4STAR/T
L5STAR/T
L6STAR/T
L7STAR/T
L8STAR/T
L9STAR/T
L10STAR/T
L11STAR/T
L12STAR/T
L13STAR/T
L14STAR/T
L15STAR/T
L16STAR/T
ASTAR*T
COUNT
OUNT - A

0.2500
10.2500
-3.7500
-1.7500
-3.7500
-1.7500

0.2500

0.2500

5.0000
-3.0000
-3.0000

1.0000
-1.2500

3.7500
-2.2500
-0.2500
-2.5000

5.5000
-1.5000
-1.5000

2.0000
-2.0000

3.5000
~-3.5000
-2.0000

2.0000

1

COUNT ,ETA,Z § 10.4

T1

199.



127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

153
154
155

T1
DRUGS
1 46.00
2 28.00
3 25.00
4 26.00
5 16.00
6 15.00
7 14,00
HARGIN 170.00
'FOR" I = 1...3
'"CALC' W = 1/ETA
'CALC' Pl = ETA*L]
'CALC' P2 = ETA*LZ2
'CALC' P3 = ETA*L3
‘CALC' P4 = ETA*L4
'CALC' P5 - ETA=2LS
'CALC* P6é = ETA*L6
'CALCY P77 = ETA*L7
‘CALC' P8 = ETA*LS
*CALC" P9 = ETA*L9
'CALC' P10 = ETA*LI1O
*CALC" P11 = ETA*L1ll
"CALC' P12 = ETA#*Ll12
'CALC' P13 = ETA*L13
'CALC' Pl4 = ETA*L14
*CALC' P15 = ETA*L15
'CALC' Pl6 = ETA*Ll6
‘TERHS/UT=W' Z+P1+P2+P3+P4+P5+P6+P7+P8+PO+P10+P11+P12
+P13+P14+P15+P16
Y! 2
"FIT/INT=H,PRIN=2' P1+P2+P3+P4+P5¢+P6+P7+P8+P9+P10+Pll
+P12+P13+P14+P15+P16 ;  FVYAL = PRED
"CALC' ETA = COUHT - PRED
*PRINT/S' ETA $10.4
"CALC' DEV = 2% (SUM(ETA-COUNT) + SUM{COUNT*LOG{COUNT/ETA}))

‘RUH

ETA

*PRIHT' DEV §$ 10.4
'REPEAT'

200.
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.1441
.1209
.9111
. 7564
L1171
.1683
.9405
.8417
.2604
. 7420
.1180
.8796
.9259
.2548
.8310
.9883
L1115
.0257
. 9957
.8671
. 7157
.2843
.3099
.6901
.9039
.0%961

DEV 1.2564

ETA

L1119
.0299
.9315
.8038
.1082
.1449
.9825
.8872
.2288
. 7399
.0551
.9763
.9187
.2319
.B499
. 9996
.0855
.9638
L0337
.9170
.6%64
.3036

201.
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.2592
. 7408
.9104
.0896

O 1O

DEV 1.2495

ETA
.1123
.0326
.9314
.8028
.1075
.1437
.9828
.8869
L2270
L7429
.0576
.9725
.9194
.2323
.8491
.9693
.0853
. 9647
.0340
.8161
.6971
.3029
.2596
L7404
.9104
.0896

W T OO N WO WWUOIUENWFEOO

DEV 1.2495

156 'CLOSE’

rxxixxxx END OF DRUG. MAXIMUM OF 3942 DATA UHITS USED AT LIHE 145 (2
8826 LEFT)
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GENSTAT V RELEASE 4.04B
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT
I0OR)

2 'REFER' DRUG

-3 v APPENDIX 3, SECTIOHN A3.2.1

-4 FITTING THE LINEAR MODEL OF HO

-5 INTERACTION BETWEEN DRUGS TO

-6 TABLE 8.13 USIHG WEDDERBURN'S HETHOD

7 USING A DIFFERENT FORM OF THE CONSTRAIHNTS c!
8 'UNITS' $ 26

9 'VARIATE' COUNT

10 : ASTAR

11 : A

12 'FACTOR' DRUGS $ 7 = B(1),4(2),4(3),4(4),2(5),2(6),2(7)
13 SCALAR’ DEV ’

14 'READ/PRIN=Z' COUNT

15 ‘'RUN'

24 'TABLE/H' Tl $§ DRUGS

25 'READ/PRIK=DEH' L1STAR,L2STAR,L3STAR,L4STAR,L5STAR,L6STAR,
26 L7STAR,L8STAR,L9STAR
27 'RUN!

28 3-1-1 3-1-1 3-1-+-1
29 3-1-1 3-1-1 0 0 O
30 3-1-1 0 0 0 3-1-1
31 3-1-1.0 0 0 O 0 O
32 0 6 0 3-1-1 3 -1-1
33 0 06 0 3-1-1 0 0 O
34 6 0 0 0 0 0 3 -1-1
35 6 0 0 0 6 0 0 0 O
36 -1 3-1-1 3-1 0 0 O
37 -1 3-1 0 0 0 0 0 O
38 60 0 0-1 3-1 0 0 O
39 6 0 0 0 0 0 0 0 O
40 -1 -1 3 0 0 0-1 3 -1
41 -1 -1 3 0 0 0 0 0 O
42 0 0 0 0 0 0-1 3 -1
43 60 6 0 6 0 0 06 0 O
44 0 0 0-1-1 3-1-1 3
45 0 0 0-1-1 3 0 0 O
46 60 0 0 0 0 0-1-1 3
47 6 0 6 0 0 0 0 0 O
48 -1-1-r 0 0 0 06 0 0
49 00 0 06 0 0 0 0 O
50 6 0 0-1-1-1 0 0 0
51 6 0 0 0 0 0 0 0 0



52

53
54

55
56
57

91
92

96
97

100
101

104
105
106
107
108
109
110
111
112
113
114

HAXIMUH

3.0000
3.00000
3.00000

3.0000
3.00000

3.00000

3.0000
3.00000

3.60000

VALUES
26
26
26

26
26

26

26
26

26

HISSIHG
0
0

0

L10STAR,L11STAR, L12STAR,L13STAR,

L14STAR,L15STAR,L16STAR

0 0 6 0 0 0-1-1-1
6 0 0 0 0 0 0 0 O
‘EOD'

IDENTIFIER  MINIMUM MEAN
L1STAR -1.0000 0.2692
L2STAR -1.00000 -0.03846
L3STAR -1.00000 -0.03846
L4STAR -1.0000 0.2692
L5STAR -1.00000 -0.03846
L6STAR -1.00000 -0.03846
L7STAR -1.0000 0.2692
L8STAR -1.00000 -0.03846
L9STAR -1.00000 -0.03846

'READ/P,PRIN=Z'
‘RUR’
‘READ/PRIHN=Z' T
"RUR'
'READ/PRIN=2' AHASH
‘RUR'
'READ/PRIN=Z' HO
"RUR'
'CALC! ASTAR = AHASH/HO
'CALC' Ll = L1STAR/T
'CALCY L2 = L2STAR/T
'CALCY L3 = L3STAR/T
‘CALCY L4 = L4STAR/T
'CALC! L5 = L5STAR/T
'CALC! L6 = L6STAR/T
‘CALC! 7 = L7STAR/T
*CALC! L8 = L8STAR/T
'CALCY L9 = LOSTAR/T

: L10 = L10STAR/T

204,

SKEW

SKEW

SKEW

SKEW

SKEW

SKEW
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120
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128

'CALC'
‘RUN"

'CALC!
'CALC'

*PRINT/P'

'RUN'

COUNT
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.00060
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

— b —
WU = N O UMM O @b NN DO

p—

ot

ot

L
L
L
L
L
L
A

E
Z

11
12
13
14
15
16

H oo o0 non

TA =
= C

COUHT ,ETA,2 §$ 10.4

ETA

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
. 0000
.0000
.0000
.0000
.0000
.00060
.0000
.0000
.0000
.0000

L11STAR/T
L12STAR/T
L13STAR/T
L14STAR/T
L15STAR/T
L16STAR/T
ASTAR*T

COUNT
OUNT - A

0.2500
10.2500
-3.7500
-1.7500
-3.7500
-1.7500

0.2500

0.2500

5.0000
-3.0000
-3.0000

1.0000
-1.2500

3.7500
-2.2500
-0.2500
-2.5000

5.5000
-1.5000
-1.5000

2.0000
-2.0000

3.5000
-3.5000
-2.0000

2.0000

'TABULATE/PRIH=T' ETA

‘RUN’

1

: T1

205.
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T1
DRUGS
1 46.00
2 28.00
3 25.00
4 26.00
5 16.00
6 15.00
7 14.00
HARGIN 170.00
129 'FOR' I = 1...3
130 'CALC' W = 1/ETA
131 'CALC' Pl = ETA*L1
132 'CALC' P2 = ETA*LZ
133 'CALC' P3 = ETA*L3
134 'CALC' P4 = ETA%*L4
135 ‘CALC' P5 = ETA*LS
136 ‘CALC' P6 = ETA*L6
137 "CALC' P7 = ETA*L7
138 'CALC' P8 = ETA%L8
139 ‘CALC' P9 = ETA*L9
140 'CALC' P10 = ETA%*L10
141 *CALC' P11l = ETA*L11
142 'CALC' P12 = ETA*Ll12
143 "CALC" P13 = ETA*L13
144 "CALC' Pl4 = ETA*L14
145 'CALC' P15 = ETA*Ll5
146 ‘CALC' P16 = ETAx*Llé6
147 '‘CALC' SL1ETA = SUM(Pl)
148 'CALC' SL2ETA = SUM(P2)
149 *CALC' SL3ETA = SUH(P3)
150 'CALC' SL4ETA = SUH(P4)
151 'CALC' SLSETA = SUM(P5)
152 'CALC' SL6ETA = SUM(P6)
153 'CALC' SL7ETA = SUH({P7)
154 *CALC' SLBETA = SUM(P8)
155 ‘CALC' SL9ETA = SUH(P9)
156 ‘CALC' SLIOETA = SUM(P1O0)
157 'CALC' SL11ETA = SUM(P11l)
158 'CALC' SL12ETA = SUHM(P12)
159 *CALC' SLI3ETA = SUM(P13)
160 "CALC' SL14ETA = SUH(Pl4)
161 'CALC' SL1S5ETA = SUM(P15)
162 'CALC' SL16ETA = SUM(Ple)
163 'TERMS/HWT=W' Z+Pl+P2+P3+P4+P5+P6+PT7+P8+PI+P10+P11]
164 +P12+P13+P14+P15+P16
165 'Y! Z
166 'FIT/INT=H,PRIN=2' Pl1+P2+P3+P4+P5+P6+P7+P8+P9+P10

167 +P11+P12+P13+P14+P15+P16 ; FVAL = PRED
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170

171
172
173
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'CALC' ETA = COUNT - PRED
'PRINT/S' ETA $10.4
'CALC' DEV = 2*(SUM(ETA-COUNT) + SUM(COUNT*LOG{COUHNT/ETA)))

'PRINT' DEV $ 10.4

'REPEAT'
‘RUN'

ETA

L1441
.1209
.9111
. 7564
L1171
.1683
.9405
.8417
.2604
. 7420
.1180
.8796
.9259
.2548
.8310
.9883
L1115
. 0257
. 9957
.8671
. 7157
.2843
.3099
.6901
.9039
.0961

DEV 1.2564

ETA

L1118
.0299
.9315
.8038
.1082
. 1449
.9825
.8872
.2288
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. 7399
.0551
.9763
.9187
.2319
.8499
. 9996
.0855
.9638
.0337
.9170
.6964
.3036
.2592
.7408
.9104
.0896

fu—
W O OO U b WO 0w

DEV 1.2495

ETA
L1123
.0326
.9314
.8028
. 1075
. 1437
.9828
. 8869
.2270
.7429
.0576
.9725
.9194
.2323
.B491
.9993
.0853
.9647
. 0340
.9161
L6971
.3029
.2596
. 7404
.8104
.0896

O N OO N WO RO WL NDW~OOD

DEV 1.2495

174 'CLOSE'
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GENSTAT V RELEASE 4.04B
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT
ION)

2 'REFEREHCE' RELIGIOHN

-3 't SEE SECTION 2.2.5

-4 FITTING VARIOUS LOGLINEAR MODELS

-5 TO RELIGION BY ATTITUDE TO ABORTION
-6 TABLE 2.3

-7 FROH KHOKE & BURKE (1980, P72)

8 11

9 'UNITS' § 16

10 'FACTOR' RELIGION $4 = 4(1...4)
11 t YEAR $2 = 2(1,2)4
12 ! ATTITUDE §2 = (1,2)8
13 'VARIATE® COURT
14 'READ/PRIN=D' COUHNT
15 'RUH'
16 460 498 424 501
17 147 240 151 225
18 4] 10 23 6
19 65 17 88 30
20 'EODY
21 'TABLE' T1 $ RELIGIOH, VYEAR, ATTITUDE
22 'TABULATE' COUHT ; Tl
23  'PRIHT' T1 § 10
24 'RUR'
T1
ATTITUDE 1 2
RELIGIOH YEAR
1 1 460 498
2 424 501
2 1 147 2490
2 151 225
3 1 41 10
2 23 6
4 1 65 17
2 88 30

25 'TERMS® COUHNT+RELIGIOH*YEAR*ATTITUDE



26
27
28
29
30
31
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'Y/ERROR=POISSON'
'CAPTIOR' "'

'PRINT'
‘RUN'

(R,T,A)

COURT

(R,T,A)
‘FIT/PRIN=A' RELIGION+YEAR+ATTITUDE ;
‘TABULATE' PRED ; Tl

T1 § 10.2

REGRESSION ANALYSIS ##%#%

DISTRIBUTION: POISSON

Y-VARIATE: COUNT

*** RESIDUAL DEVIANCE **%

S

RESID

32
33
34
35
36

---------------------------------------------------------------

[N}

T
54

.28

54
32
$3
30
32

t 1

HEAN DEVIANCE

14.32

4G6.
.31
201.
197.

21,
.66

486

20

52.
.65

51

FVAL

LINK FUNCTION: LOG

38
14
05
09

72

CALE PARAMETER IS 1.000
DF DEVIANCE
UAL 10 143.2
ATTITUDE
RELIGION YEAR
1 1 454,
2 445,
2 1 184
2 180.
3 1 19.
2 18.
4 1 48.
2 47.
'CAPTIOR® ! (RT,A)
"FIT/PRIN=A' RELIGION*YEAR+ATTITUDE; FVAL
‘TABULATE' PRED ; T1
'PRINT' T1 $ 10.2
‘RUN'
(RT,A)
REGRESSION ANALYSIS ##%##

PRED

PRED

210.
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ERROR DISTRIBUTION: POISSON  LINK FUNCTION: LOG
Y-VARIATE: COUNT

**%* RESIDUAL DEVIANCE *xx%
SCALE PARAMETER IS 1.000

DF DEVIAHCE MWEAN DEVIANCE
RESIDUAL 7 130.2 18.59
T1
ATTITUDE 1 2
RELIGIOH YEAR

1 1 458.05 499.95

2 442.27 482.73

2 1 185.04 201.96

2 179.78 196.22

3 1 24.38 26.62

2 13.87 15.13

4 1 39.21 42.79

2 56.42 61.58

37 'CAPTION® "' (R,TA) !

38 'FIT/PRIN=A' RELIGIOHN+YEAR*ATTITUDE; FVAL = PRED
39 'TABULATE' PRED ; T1

40 'PRIHNT' T1 ¢ 10.2
41  'RUN'
(R,TA)
1

---------------------------------------------------------------

**xx* REGRESSION ANALYSIS #%x#x2
ERROR DISTRIBUTIOH: POISSOH LINK FUHCTION: LOG
Y-VARIATE: COUNT
**% RESIDUAL DEVIAHCE **#
SCALE PARAHETER IS 1.000

DF DEVIAHCE MEAN DEVIANCE

RESIDUAL 9 143.0 15.89



42
43
44
45
46
47

---------------------------------------------------------------

L -5 4

RESI

ATTITUDE
RELIGION YEAR
1 1
2
2 1
2
3 1
2
4 1
2
'CAPTION' "' (T,RA

458.
441,
185.
178.

19,
.76
48.
46.

18

)

84
47
93
89
49

74
89

492,
4590.
199.
.70
20,
20.
52.
52.

198

'FIT/PRIN=A' RELIGION+YEAR+ATTITUDE
+RELIGION.ATTITUDE; FVAL

'TABULATE' PRED ; T1
"PRINT' T1 § 10.2
'RUN'

(T,RA)

* REGRESSION ANALYSIS #%#%#%%
R DISTRIBUTIOH: POISSOH
Y-VARIATE: COUHT

RESIDUAL DEVIAHCE *%%
SCALE PARAMETER IS 1.000

DF DEVIANCE HWEAN DEVIAHCE
DUAL 7 14.96 2.137
T1
ATTITUDE 1
RELIGIOH YEAR
1 1 446.53 504
2 437.47 494,
2 1 150.53 234
2 147.47 230
3 1 32.33 8
2 31.67 7
4 1 77.28 23
2 75.72 23.

*

LINK FUHCTIOH:

31
38
49

g2
83

29
08

= PRED

LOG

62

38

.88
12
.08
.92
.74

26

212.



48
49
50
51
52
53

---------------------------------------------------------------

'CAPTIOR' ' (RT,RA)

‘FIT/PRIN=A' RELIGION*YEAR+ATTITUDE
+RELIGION.ATTITUDE; FVAL = PRED

'TABULATE®' PRED ; Tl
'"PRINT' Tl $§ 10.2
‘RUR'

(RT,RA)

* REGRESSION ANALYSIS #%2#2

ERROR DISTRIBUTION: POISSOH  LINK FUNCTION: LOG

Y-VARIATE: COURT

**%* RESIDUAL DEVIAHCE x*#*%

RESI

54
55
56
57
58
59

SCALE PARAHETER 1S 1.000

DF DEVIAHNCE HEAN DEVIANCE
DUAL 4 1.888 0.4720
T1
ATTITUDE 1 2
RELIGIOH YEAR
1 1 449.75 508.25
2 434.25 490.75
2 1 151.15 235.85
2 146.85 229.15
3 1 40.80 10.20
2 23.20 5.80
4 1 62.73 19.27
2 90.27 27.73
"CAPTIOR' ! (RT,TA) '

'FIT/PRIN=A" RELIGIOH*YEAR+ATTITUDE
+YEAR.ATTITUDE; FVAL = PRED

‘TABULATE' PRED : T1
‘PRIRT' T1 § 10.2
"RUH'

(RT,TA)

213.
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...............................................................

x%%%+ REGRESSION ANALYSIS ##%#
ERROR DISTRIBUTION: POISSON  LINK FUNCTION: LOG
Y-VARIATE: COUNT

*x* RESIDUAL DEVIANCE #x%%*
SCALE PARAMETER IS 1.000

DF DEVIANCE HEAN DEVIANCE
RESIDUAL 6 129.9 21.66
T1
ATTITUDE 1 2
RELIGIOHN YEAR
1 1 462.15 495,85
2 438.23 486.77
2 1 186.69 200.31
2 178.13 197.87
3 1 24.60 26.40
2 13.74 15.26
4 1 39.56 42,44
2 55.90 62.10
60 'CAPTIOH' ! (RA,TA) '
61 'FIT/PRIN=A' RELIGIOH+YEAR+ATTITUDE+RELIGIOH.ATTITUDE
62 +YEAR.ATTITUDE ; FVAL = PRED
63 'TABULATE' PRED ; T1
64 'PRINT' T1 § 10.2
65 RUH'
{RA,TA)
Bl i e e e e e e e et e e e s e

...............................................................

*x%%% REGRESSION AHALYSIS ##xxt
ERROR DISTRIBUTIOH: POISSON LINK FUHCTIOH: LOG
Y-YARIATE: COURT

*+* RESIDUAL DEVIAHCE #%#
SCALE PARAHETER IS 1.000



215.

DF DEVIANCE MEAN DEVIANCE
RESIDUAL 6 14.74 2.457
T1
ATTITUDE 1 2
RELIGION YEAR
1 1 450.53 500.48
2 433.47 498.52
2 1 151.88 232.96
2 146.12 232.04
3 1 32.62 8.02
2 31.38 7.98
4 1 77.98 23.55
2 75.02 23.45
66 'CAPTION' ‘! (RT,TA,RA) '
67 'FIT/PRIN=A' RELIGION+YEAR*ATTITUDE
68 +RELIGION.ATTITUDE+RELIGION.YEAR : FVAL = PRED
69 'TABULATE' PRED ; Tl
70 'PRINT' T1 § 10.2
71 'RUN'
(RT,TA,RA)
=37 2 P

...............................................................

*%x%% REGRESSION AHNALYSIS *##%x2
ERROR DISTRIBUTIOH: POISSOH LINK FUHCTIOH: LOG
Y-VARIATE: COUHT

*x% RESTDUAL DEVIANCE #xx
SCALE PARAMETER IS 1.000

DF DEVIAHCE MEAN DEVIANCE
RESIDUAL 3 1.466 0.4886
T1
ATTITUDE 1 2
RELIGIOH YEAR
1 1 455,51 502.49

2 428.49 496.51
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2 1 153.38 233.62
2 144.62 231.38
3 1 40.95 10.05
2 23.05 5.95
4 1 63.16 18.84
2 89.84 28.16
72 'CAPTIOH' ! (RTAY '

73 ‘FIT/PRIN=A' RELIGION*YEAR*ATTITUDE ; FVAL = PRED
74 'TABULATE' PRED ; T1

75 'PRINT' T1 $ 10.2
76 'RUN'
(RTA)
B2 T S

...............................................................

*%%x%* REGRESSIOH ANALYSIS ##xx%
ERROR DISTRIBUTION: POISSOH LIHK FUNCTIOHN: LOG
Y-VARIATE: COUHT

*** RESIDUAL DEVIANCE *#*2
SCALE PARAMETER IS 1.000

DF DEVIANCE HMEAH DEVIANCE
RESIDUAL 0 0 %
T1
ATTITUDE 1 2
RELIGIOHN YEAR

1 1 460.00 498.00

2 424.00 501.00

2 1 147.00 240.00

2 151.00 225.00

3 1 41.00 10.00

2 23.00 6.00

4 1 65.00 17.00

2 88.00 30.00

78 'CLOSE'

txxtxxxt END OF RELIGIOH. HAXIMUM OF 1712 DATA UHITS USED AT LIHE 61
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GENSTAT V RELEASE 4.04B
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT

I0H)

17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33

'REFERERCE' DUMPING
t SEE SECTIONS 4.1.1, 4.2.1, 4.3.2
FITTING THE LOGLINEAR HODELS OF INDEPENDEHCE,
UHIFORH ASSOCIATION, ARD ROW EFFECTS TO THE
DUMPING SEVERITY DATA OF TABLE 1.6 o
'UNITS' $ 12
"FACTOR' OPERAT $4
DUMP $3
'VARTIATE' COUNT
H v
U
: uv
'READ/PRIN=D' OPERAT,DUHP,U,V, COUNT
‘RUN'

1
o

61
28

[
b O
~J

68
23
13
58
40
12
53
38
16

P D

e B B WD W W PO D N b e e
i
O - O

t73
(o]

3N = W = WY WN
[

GOV UT QT U Y G U U Y Ut
]
s o

'TABLE' T1 $ OPERAT, DUHP
‘TABULATE' COUNT; T1
'PRINT' T1 $10.2

'RUR'
T1
DUHP 1 2 3
OPERAT
1 61.00 28.00 7.00

2 68.00 23.00 13.00
3 58.00 40.00 12.00
4 53.00 36.00 16.00
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34 'CALC' uv = U=y

35 ‘'TERMS' COUNT+OPERAT+DUMP+UV+OPERAT.V

36 ‘'Y/ERROR=POISSON' COURT

37 '' HODEL OF IHDEPENDENCE '’

38 'FIT/PRIN=A' OPERAT+DUMP ; FVAL = PRED ; RES = RESID
39 ‘RUN'

---------------------------------------------------------------

*%%t+ REGRESSION ANALYSIS #*#%%
ERROR DISTRIBUTIOR: POISSON LINK FUHCTIOR: LOG
Y-VARIATE: COURT ’
*x%* RESIDUAL DEVIANCE **%
SCALE PARAMETER IS 1.000
DF DEVIANCE HEAN DEVIAHNCE
RESIDUAL 6 10.88 1.813

40 'TABULATE® PRED; T1
41  "PRINT'" T1 $10.2

42 'RUN’
T1
DUMP 1 2 3
OPERAT
1 55.25 29.70 11.05
2 59.86 32.17 11.97
3 63.31 34.03 12.66
4 61.58 33.10 12.32

43 'TABULATE' RESID; T1
44 'PRIHT' T1 $10.2
45 CRUR’

DUMP 1 2 3
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OPERAT

1 0.77 -0.31 -1.22
2 1.05 -1.62 0.30
3 -0.67 1.02 -0.19
4 -1.09 0.85 1.05

47 '' UHRIFORH ASSOCIATION MODEL ''

48 'FIT' OPERAT+DUMP+UV ; FVAL = PRED

49 'RUN’

---------------------------------------------------------------

*xx%x* REGRESSION ANALYSIS ##x#%

ERROR DISTRIBUTION: POISSOH LINK FUHCTIOH: LOG
Y-VARIATE: COURT

*%** REGRESSIOH COEFFICIENTS #*%

ESTIMATE S.E. T
COHSTAHT 3.891 0.120 32.30
OPERAT 2 0.168 0.147 1.14
OPERAT 3 0.300 0.158 1.91
OPERAT 4 0.336 0.16% 1.68
DUHP 2 -0.627 0.110 -5.73
DUMP 3 -1.654 0.162 -10.22
uv 0.1626 0.0656 2.48

* STAHDARD ERRORS BASED OH SCALE PARAMETER WITH VALUE 1.000
*x%x RESIDUAL DEVIAHCE ***
SCALE PARAMETER IS 1.000
DF DEVIANCE HMEAHN DEVIAHCE
RESIDUAL 5 4.590 0.9180
50 'TABULATE' PRED; T1

51 'PRINT' TI $10.2
52  'RUH'

o
™o
w

DUHP
OPERAT
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1 62.51 26.15 7.34
2 62.84 30.94 10.22
3 60.97 35.32 13.72
4 53.69 36.59 16.72
54 '' ROW EFFECTS HODEL "'
55 CFIT' OPERAT+DUMP+OPERAT.V ; FVAL = PRED
56 ‘RUR’
53T

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

*+x LINEAR DEPENDEHCE DETECTED WHILE FITTING TERM V.OPERAT
1 PARAHMETER(S) OF THIS TERM ARE ALIASED.
*xxx%* REGRESSION AHALYSIS x*##%%

ERROR DISTRIBUTION: POISSOH LIHK FUHCTIOH: LOG
Y-VARIATE: COUHT

**%* REGRESSIOH COEFFICIENTS #=+

ESTIHATE S.E. T
COHSTAHNT 3.665 0.192 19.07
OPERAT 2 0.124 0.185 0.67
OPERAT 3 0.293 0.176 1.67
OPERAT 4 0.318 0.173 1.84
DUMP 2 -0.384 0.161 -2.38
DUHP 3 -1.168 0.269 -4.35
V.OPERAT 1 -0.457 0.208 -2.19
V.OPERAT 2 -0.377 0.200 -1.88
V.OPERAT 3 -0.139 0.189 -0.74
V.0PERAT 4 0 % *

*»

STANDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE 1.000
*2* RESIDUAL DEVIANCE #*#%
SCALE PARAMETER IS 1.000
DF DEVIAHCE HEAHN DEVIAHNCE
RESIDUAL 3 4.403 1.468
57 'TABULATE' PRED; T1

58 'PRINT' Tl $10.2
59 'RUW'



T1
DUMP 1
OPERAT
1 61.69
2 64.44
3 60.17
4 53.70
60 'CLOSE'

kxxxxx+x END OF DUMPING.

{31322 LEFT)

26.61
30.13
35.67
36.59

7.69
9.44
14.17
16.70

MAXIMUM OF 1446 DATA UNITS USED AT LINE 55
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GENSTAT V RELEASE 4.04B
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT
ION)

2 'REFERENCE' DUMPING

_.3 t

-4 SEE SECTION 4.4.3.3

-5 FITTING VARIOUS LOGLINEAR HODELS

-6 TO DUMPING SEVERITY DATA OF TABLE 4.8
-1 FROM AGRESTI P67

8 1

9 'UNITS® § 48

10 'FACTOR' OPERAT $4 = 12(1...4)
11 : HOSPITAL $4 = 3(1...4)4
12 : DUMP $3 = (1...3)16
13 *VARIATE' COURT

14 'READ/PRIN=D' COUNT

15 ‘'RUH'

16 23 7 2 18 61 8 63 12 91
17 23105 18 6 2 12 4 4 153 2
18 20 13 5 13 13 2 11 6 2 14 8 3
16 24 10 6 g 15 2 77 4 136 4

20 ‘'EOD’

21 'TERMS' COUHT+OPERAT*HOSPITAL*DUHP

22 'Y/ERROR=POISSOH’ COUNT
23 'CAPTION' ' (0,D,H)y '
24 'FIT/PRIN=A' OPERAT+HOSPITAL+DUMP
25 ‘'RUWY
(0,D,H)
L

*t%x%% REGRESSIOH AHALYSIS *#*xx%
ERROR DISTRIBUTIOH: POISSON LINK FUHCTIOH: LOG
Y-VARIATE: COUHNT
**% RESIDUAL DEVIANCE =*x#
SCALE PARAMETER IS 1.000

DF DEVIAHCE HMEAN DEVIAHCE

RESIDUAL 39 32.61 0.8362
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26 'CAPTION' ! (0D, Hy !
27 'FIT/PRIN=A' OPERAT+HOSPITAL+DUMP+OPERAT.DUMP
28 'RUN'
(0D, H)
A

*x*xx+ REGRESSION ANALYSIS #*%x%
ERROR DISTRIBUTION: POISSOH LINK FUHCTION: LOG
Y-VARIATE: COUNT

**x RESIDUAL DEVIANCE *x#
SCALE PARAHETER IS 1.000

DF DEVIAHCE MEAHN DEVIAHNCE
RESIDUAL 33 21.73 0.6586
29 'CAPTION' ' (KD,0)

30 'FIT/PRIN=A' OPERAT+HOSPITAL+DUMP+HOSPITAL.DUHP
31  ‘RUN?

(HD,0)

**x%% REGRESSION AHALYSIS ##x%%
ERROR DISTRIBUTIOR: POISSOH LINK FUHCTIOH: LOG
Y-VARIATE: COUNT

**% RESIDUAL DEVIANCE ***
SCALE PARAHETER IS 1.000

DF DEVIANCE HEAN DEVIAHCE
RESIDUAL 33 24.51 0.7427
32 'CAPTIOH®* ' (0H,D) !

33 'FIT/PRIH=A' OPERAT+HOSPITAL+DUHP+OPERAT.HOSPITAL
34 'RUH'

(0H,D)

*xx%x* REGRESSION AHALYSIS ###x2



ERROR DISTRIBUTION: POISSON LIHK FUNCTION: LOG
Y-VARIATE: COUNT

**% RESIDUAL DEVIANCE **%
SCALE PARAMETER IS 1.000

DF DEVIAHNCE HEAN DEVIANCE
RESIDUAL 30 31.64 1.0565
35 'CAPTIOH' '! (HD,0D) "'
36 ‘'FIT/PRIN=A' OPERAT+HOSPITAL+DUMP+HOSPITAL.DUMP+OPERAT.DUMP
37 'RUN'
(HD,0D)
L

*x%4* REGRESSION ANALYSIS ###xx
ERROR DISTRIBUTION: POISSOHN LINK FUHRCTIOH: LOG
Y-VARIATE: COUNT

*+%x RESIDUAL DEVIANCE #%%
SCALE PARAMETER IS 1.000

DF DEVIAHCE MEAN DEVIAHNCE
RESIDUAL 27 13.63 0.5049
38 'CAPTIOH' ' {(0D,0H) !
39 FIT/PRIN=A' OPERAT+HOSPITAL+DUMP+OPERAT.DUHP
40 +OPERAT.HOSPITAL
4] ‘RUN’
(0D, 0H)
16 1

*%x%%x REGRESSIOHN ANALYSIS #%#xx%

ERROR DISTRIBUTION: POISSOH LIKK FUKRCTIOH: LOG
Y-VARIATE: COUNT

*x%x RESIDUAL DEVIAHNCE %%
SCALE PARAMETER IS 1.000

DF DEVIAHCE MEAN DEVIANCE

224.



RESIDUAL 24 20.76 0.8650
42 'CAPTION' ! (HD,0H) '
43 'FIT/PRIN=A' OPERAT+HOSPITAL+DUMP+HOSPITAL.DUMP
44 +OPERAT.HOSPITAL
45 ‘'RUN' :
(HD,OH)
3

*xxx+ REGRESSION ANALYSIS xx#%x*%
ERROR DISTRIBUTION: POISSOH LINRK FUHCTION: LOG
Y-VARIATE: COUNT

**% RESIDUAL DEVIANCE #**+%
SCALE PARAMETER IS 1.000

DF DEVIANCE HEAN DEVIANCE
RESIDUAL 24 23.54 0.9807
46 'CAPTIOH' '! (HD,0D,0H) '
47 'FIT/PRIN=A' OPERAT+HOSPITAL+DUMP+HOSPITAL.DUHP
48 +0PERAT.DUHP+OPERAT .HOSPITAL
49 'RUN'
(RD,0D,0H)
I

tx%%xt REGRESSION AHALYSIS *#x%x*%
ERROR DISTRIBUTION: POISSOH LINK FUHCTIOH: LOG
Y-VARIATE: COUHT
**% RESIDUAL DEVIANCE #*=**
SCALE PARAMETER IS 1.000
DF DEVIANCE HEAN DEVIANCE

RESIDUAL 18 12.50 0.6946

50 'CLOSE!

225,

*kxxxxtt END OF DUMPING. HAXIHUM OF 4348 DATA UNITS USED AT LINE 47

(28420 LEFT)
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GENSTAT V RELEASE 4.04B
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT
ION)

2 'REFEREHCE' DUMPING

__3 t
-4 SEE SECTIOH 4.4.3.3
-5 FITTING THE O-D UNIFORM ASSOCIATION HODEL
-6 TO DUHMPING SEVERITY DATA OF TABLE 4.8
-7 FROM AGRESTI P67
8 11
9 'UNITS®' § 48
10 'FACTOR' OPERAT $4 = 12(1...4)
11 : HOSPITAL $4 = 3(1...4)4
12 : DUMP $3 = (1...3)16
13 'VARIATE' COUHT
14 : U = 12(-1.5,-0.5,0.5,1.5)
15 : " = (-1,0,1)16
16 'READ/PRIN=Z' COUNT
17  'RUH'
23  'CALC Ud = U=xH
25 'TABLE' T1 $§ OPERAT, HOSPITAL, DUMP
26 'TABULATE' COUHT ; T1
27 'PRIAT' T1 $ 10
28 'RUN'
Tl
DUHP 1 2 3
OPERAT HOSPITAL
1 1 23 7 2
2 18 6 1
3 8 6 3
4 12 S 1
2 1 23 10 5
2 18 6 2
3 12 4 4
4 15 3 2
3 1 20 13 5
2 13 13 2
3 11 6 2
4 14 8 3
4 1 24 10 6
2 9 15 2
3 7 7 4
4 13 6 4



30 'TERMS' COURT+OPERAT+HOSPITAL+DUMP+OPERAT.HOSPITAL+UW

31 'Y/ERROR=POISSON' COUNT

33 'FIT' OPERAT+HOSPITAL+DUMP+OPERAT.HOSPITAL+UW ;

34 'RUN'
15 2 TP

FVAL

FIT

---------------------------------------------------------------

***x* REGRESSION ANALYSIS ##%%x

ERROR DISTRIBUTION: POISSON  LIHNK FUNCTIOHN: LOG
Y-VARIATE: COUNT

*%x* REGRESSION COEFFICIEHTS #*=x%

ESTIMATE
CONSTAHNT 2.793
OPERAT 2 0.260
OPERAT 3 0.336
OPERAT 4 0.450
HOSPITAL 2 -0.247
HOSPITAL 3 -0.633
HOSPITAL 4 -0.375
DUMP 2 -0.627
DUMP 3 -1.654
OPERAT 2 .HOSPITAL 2 -0.133
OPERAT 2 .HOSPITAL 3 -0.009
OPERAT 2 .HOSPITAL 4 -0.267
OPERAT 3 .HOSPITAL 2 -0.059
OPERAT 3 .HOSPITAL 3 -0.061
OPERAT 3 .HOSPITAL 4 -0.044
OPERAT 4 .HOSPITAL 2 -0.184
OPERAT 4 .HOSPITAL 3 -0.166
OPERAT 4 .HOSPITAL 4 -0.179
uH 0.1626

* STAHDARD ERRORS BASED OH SCALE PARAMETER WITH

*x% RESIDUAL DEVIAHCE #=*%

SCALE PARAMETER IS 1.000

DF DEVIAHCE MEAH DEVIAHNCE

RESIDUAL 29 25.35 0.8741

35 TABULATE' FIT ; T1
36 'PRINT® T1 ¢ 10.2

S.E.

.188
.243
.251
.255
.267
.300
.27
.109
162
.369
.407
.391
.365
.411
.378
. 367
.413
.381
0.0655
VALUE

O OO T OO O T OOOOOOCOOOCC

1.000

.86
.07
.34
.7
.93
.11

e

.

.73
.24
.36
.02
.68
.16
.15
12
.50
.40
.47
.48

227.
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37 'RUN'
Tl
DUMP 1 2 3
OPERAT HOSPITAL

1 1 20.84 8.72 2.45

2 16.28 6.81 1.91

3 11.07 4.63 1.30

4 14.32 5.99 1.68

2 1 22.96 11.31 3.73

2 15.71 7.74 2.55

3 12.09 5.95 1.96

4 12.09 5.95 1.96

3 1 21.06 12.20 4.74

2 15.52 8.99 3.49

3 10.53 6.10 2.37

4 13.86 8.03 3.12

4 1 20.07 13.68 6.25

2 13.05 8.89 4.06

3 9.03 6.16 2.81

4 11.54 7.87 3.60

38 'CLOSE!

xxxxxxx%x END OF DUMPING. HAXIHUM OF 2226 DATA UNITS USED AT LIHE 33
(30542 LEFT)



229.

GENSTAT V RELEASE 4.04B
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT
I0H)

2 'REFERENCE' DUMPING_ITERATIVE

-3 ‘' SEE SECTION 5.3 ‘

-4 FITTING A LOG-MULTIPLICATIVE (RC) MODEL
-5 TO DUMPING SEVERITY DATA FROM TABLE 1.6
6 (AGRESTI, 1984, P8l) "

7 'URITS' § 12

8 'FACTOR' OPERAT $4
: DUMP $3

10 ‘'VARIATE' COURT

3(1...4)
(1...3)4

[ . 1

11 : U = 3(-1.5,-0.5,0.5,1.5)
12 : v o= (-1,0,1)4

13 : USTD § 4

14 : VSTD § 3

15 ‘INTEGER' 1I7_10 = 3(7...10)
16 : 179 = (7...9)4
17 : 114710 = 1,4,7,10
18 : 1123 = 1,2,3

19 *SCALAR'  USSUM

20 : VSSUM

21 'READ/PRIN=D' COUNT

22 'RUN

23 61 28 7
24 68 23 13
25 58 40 12
26 53 38 16
27 'EOD'

29 'TABLE' T1 § OPERAT, DUMP
31 'TERMS' COUNT+OPERAT+DUMP+OPERAT.V+DUMP.U

32 'Y/ERROR=POISSON' COUHT

34 'FOR' I =1...8

35 "FIT/PRIN=2' OPERAT+DUHMP+OPERAT.V ; COEF = CFl ; DEV = DV

36 'COPY! U s = CF1 $ I7_10

37 ‘CALC’ U = U - MEAH(U)

38 'COPY! USTD $ = U $§ I14710

39 *CALCY USSUM = SQRT(SUM{USTD*USTD))

40 : U = U/USSUH

41 "PRIHT' DV §10.6

44 '"FIT/PRIN=2' OPERAT+DUHP+DUMP.U ; COEF = CF2 ; DEV = DV ; F
VAL = PRED

45 'COPY’ v $ = CF2 § I7_S

46 'CALC’ V = V - HEAH(V)

47 ‘COPY! VSTD § = V § 1123

48 ‘CALCY VSSUM = SORT(SUM(VSTD*VSTD))

49 : V = V/VSSUHM
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50 ‘PRINT' DV $10.6

52 'REPEAT'

53 ‘RUN'
5
**x LINEAR DEPENDENCE DETECTED WHILE FITTING TERH V.OPERAT

DY

* s .

.

LY

e

1 PARAMETER(S) OF THIS TERM ARE ALIASED.
DV 4.403389

------------------------------------------------------------------

------------------------------------------------------------

LINEAR DEPENDENCE DETECTED WHILE FITTING TERM U.DUKP
1 PARAMETER(S) OF THIS TERM ARE ALIASED.
DV 3.498055

..................................................................

------------------------------------------------------------

LINEAR DEPEHDERCE DETECTED WHILE FITTING TERM V.OPERAT
1 PARAMETER(S) OF THIS TERM ARE ALIASED.
DV 3.089726

------------------------------------------------------------------

------------------------------------------------------------

LIHEAR DEPENDEHCE DETECTED WHILE FITTING TERM U.DUHP
1 PARAMETER(S) OF THIS TERM ARE ALIASED.
DV 2.938355

..................................................................

...........................................................

LIHEAR DEPENDEHCE DETECTED WHILE FITTIRG TERH V.OPERAT
1 PARAMETER(S) OF THIS TERHM ARE ALIASED.
DV 2.885235

------------------------------------------------------------------

------------------------------------------------------------

LINEAR DEPENDENCE DETECTED WHILE FITTIHG TERK U.DUMP
1 PARAMETER(S) OF THIS TERM ARE ALIASED.
DV 2.866411

------------------------------------------------------------------

------------------------------------------------------------

LIHEAR DEPENDENCE DETECTED WHILE FITTING TERYM V.OPERAT
1 PARAHMETER(S) OF THIS TERM ARE ALIASED.
DV 2.859711



------------------------------------------------

..................

---------------------------------------------------------------

LINEAR DEPENDENCE DETECTED WHILE FITTING TERM
1 PARAMETER(S) OF THIS TERM ARE ALIASED.
DV 2.857305

................................................

------------------

---------------------------------------------------------------

LINEAR DEPENDEHRCE DETECTED WHILE FITTING TERHM
1 PARAMETER(S) OF THIS TERM ARE ALIASED.
DV 2.856437

------------------------------------------------

------------------

---------------------------------------------------------------

LINEAR DEPEHDEHCE DETECTED WHILE FITTING TERHM
1 PARAMETER(S) OF THIS TERM ARE ALIASED.
DV 2.856123

................................................

..................

...............................................................

LINEAR DEPENDEHNCE DETECTED WHILE FITTIHG TERH
1 PARAMETER(S) OF THIS TERM ARE ALIASED.
DV 2.856010

------------------------------------------------

..................

...............................................................

LINEAR DEPEHDENCE DETECTED WHILE FITTIHNG TERHM
1 PARAMETER(S) OF THIS TERH ARE ALIASED.
DV 2.855968

------------------------------------------------

------------------

...............................................................

LINEAR DEPENDENCE DETECTED WHILE FITTIHG TERH
1 PARAMETER(S) OF THIS TERM ARE ALIASED.
DV 2.855953

................................................

..................

...............................................................

LINEAR DEPENDENCE DETECTED WHILE FITTIHG TERHM
1 PARAMETER(S) OF THIS TERM ARE ALIASED.
DV 2.855948

................................................

..................

...............................................................

LINEAR DEPENDENCE DETECTED WHILE FITTING TERH
1 PARAMETER(S) OF THIS TERM ARE ALIASED.

.OPERAT
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DV 2.855946

---------------------------------------------------------------

*x%* LTHEAR DEPEHDENCE DETECTED WHILE FITTING TERM U.DUMP
1 PARAMETER(S) OF THIS TERM ARE ALIASED.

DV 2.855945

54 'FIT/PRIN=CA' OPERAT+DUMP+OPERAT.V ; COEF = CFl1 ; DEV = DV

55 'COPY’ U s = CF1 § I7_10

56 'CALC' U = U - HEAN(U)

57 *COPY' USTD ¢ = U $ 114710

58 ‘CALC' USSUM = SQRT(SUM(USTD*USTD))

59 : U = U/USSUM

60 "PRINRT' DV $10.6

63 ‘FIT/PRIN=CA' OPERAT+DUMP+DUMP.U ; COEF = CF2 ; DEV = DV ;
FVAL = PRED

64 'COPY! Vs = CF2 $ 17 9

65 "CALCY V = V - HEAN(V)

66 'COPY"’ VSTD § = V § 1123

67 'CALC! VSSUM = SQRT(SUM(VSTD*VSTD))

68 : ¥ = V/VSSUH

69 "PRINT' DV $10.6

71 'PRINT/P' U,V $10.6

72 'CAPTION' ! ACTUAL COUHTS''

73 'TABULATE' COUNT ; T1

74 'PRIHT' Tl $ S

75 'CAPTIOH' ' FITTED COUHTS''
76 'TABULATE' PRED ; T1

77 'PRINT' T1 § 10.3

78 'RUH!

...............................................................

*%%* LIHEAR DEPENDENCE DETECTED WHILE FITTIHG TERM V.OPERAT
1 PARAMETER(S) OF THIS TERM ARE ALIASED.
*%tx%% REGRESSION ANALYSIS #x#22

ERROR DISTRIBUTION: POISSOH LINK FUNCTION: LOG
Y-VARIATE: COUNT

**% REGRESSION COEFFICIENTS #%#

ESTIHMATE S.E. T
CORSTAHNT 3.770 0.167 22.60
OPERAT 2 0.042 0.163 0.26
OPERAT 3 0.225 0.153 1.47
OPERAT 4 0.210 0.153 1.38
DUHP 2 -0.299 0.205 -1.46
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DUHP 3 -1.353 0.210 -6.46
V.OPERAT 1 -0.414 0.224 -1.85
V.OPERAT 2 -0.524 0.222 -2.36
V.OPERAT 3 -0.074 0.212 -0.35
V.OPERAT 4 0 * *
* STANDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE 1.000

*** RESIDUAL DEVIARCE %%
SCALE PARAMETER IS 1.000

DF DEVIANCE HEAN DEVIANCE
RESIDUAL 3 2.856 0.9520
DV 2.855945

---------------------------------------------------------------

**%* LINEAR DEPENDENCE DETECTED WHILE FITTIHNG TERM U.DUMP
1 PARAMETER(S) OF THIS TERM ARE ALIASED.
*xxx% REGRESSION ANALYSIS *#%x%%%

ERROR DISTRIBUTION: POISSON LINK FUHCTION: LOG
Y-VARIATE: COUHT

*** REGRESSION COEFFICIENTS #*#*#

ESTIMATE S.E. T
CORSTANT 3.932 0.148 26.59
OPERAT 2 0.015 0.158 0.09
OPERAT 3 0.307 0.253 1.22
OPERAT 4 0.311 0.292 1.07
DUMP 2 ~-0.640 0.111 -5.77
DUHP 3 -1.617 0.160 -10.13
U.DUHP 1 -0.460 0.319 -1.44
U.DUHP 2 0.136 0.343 0.40
U.DUMP 3 0 * *

* STAHNDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE 1.000

*x% RESIDUAL DEVIAHCE ###

SCALE PARAMETER IS 1.000

DF DEVIAHCE HEAH DEVIAHRCE

RESIDUAL 4 2.856 0.7140

DV 2.855945
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U v
-0.363673 -0.796780
-0.363673 0.552843
-0.363673 0.243937
-0.613369 -0.796780
-0.613369 0.552843
-0.613369 0.243937

0.404214 -0.796780
.404214 0.552843
.404214 0.243937
.572828 -0.796780
.572828 0.552843
.572828 0.243937
ACTUAL COUHTS

OO0 OO

T1
DUMP 1 2 3
OPERAT
1 61 28 7
2 68 23 13
3 58 40 12
4 53 38 16
FITTED COUNTS
T1
DUHP 1 2 3

OPERAT
1 60.285 25.587 10.128
2 68.622 25.099 10.279
3 57.595 38.634 13.771
4 53.498 39.680 13.822

79  'CLOSE'

txxxtxx+ END OF DUMPING_. MAXIMUM OF 2210 DATA UNITS USED AT LINE 63
(30558 LEFT)



GENSTAT V RELEASE 4.04B
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT
I0ON)

3 'REFERENCE' DUMPING_ITERATIVE

-4 ‘' SEE SECTION 5.3

-5 ESTIMATING THE BETA PARAMETER FROH

-6 A LOG-HULTIPLICATIVE (RC) MODEL

-7 DUMPING SEVERITY DATA FROM TABLE 1.6

8 {AGRESTI, 1984, P81) v

9 'UNITS®' § 12

10 'FACTOR' OPERAT $4 = 3(1...4)

11 : DUHP $3 = (1...3)4

12 'VARIATE' COUNT

13 : U = 3(-.3636,-.6134,.4042,.5728)
14 : V = (-.7968,.5529,.2439)4

15 'READ/PRIN=Z' COURT

16 'RUN'

23 'TABLE' T1 $ OPERAT, DUHP *

24 'CAPTIOH® ! ACTUAL COUHTS'®
25 'TABULATE' COUNT ; T1

26 'PRINT' Tl $ 9

27 'RUN!

ACTUAL COUHTS

T1
DUMP 1 2 3
OPERAT
1 61 28 7
2 68 23 13
3 58 40 12
4 53 38 16

28 'CALC' UV = U=V
29 'TERHS' COUNT+OPERAT+DUMP+UV

30 'Y/ERROR=POISSOH' COUNT
31 'FIT/PRIH=CA' OPERAT+DUMP+UV ; FVAL = PRED
32 ‘'RUN'

...............................................................
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*%xxx REGRESSION ANALYSIS ###%x%%

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG
Y-VARIATE: COUNT

***x REGRESSION COEFFICIENTS #*%

ESTIMATE S.E. T
CONSTANT 3.971 0.110 36.18
OPERAT 2 0.042 0.143 0.29
OPERAT 3 0.225 0.144 1.56
OPERAT 4 0.210 0.145 1.45
DUMP 2 -0.640 0.111 -5.79
DUHP 3 -1.617 0.159 -10.20
uv 0.442 0.157 2.81

* STANDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE 1.000

**%x RESIDUAL DEVIAHCE ***
SCALE PARAMETER IS 1.000

DF DEVIAHCE MEAN DEVIANCE
RESIDUAL 5 2.856 ©0.5712
33 'CAPTIOH® ' FITTED COUHTS''

34 'TABULATE' PRED ; Tl
35 'PRINT' T1 $ 10.3
36 ‘'RUN’

FITTED COUNTS

T1

DUMP 1 2 3

OPERAT
1 60.284 25.588 10.128
2 68.623 25.098 10.279
3 57.595 38.634 13.771
4 53.498 39.680 13.822

37 'CLOSE®

txxxxxxx END OF DUMPING_. MAXIHMUM OF 1286 DATA UNITS USED AT LIHE 31
(31482 LEFT)
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GENSTAT V RELEASE 4.04B
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT
ION)

‘REFERENCE' DUMPING_LOGITI1
''SEE SECTION 6.2.3.1.1.1

FITTING SOME HETEROGEREOUS LOGIT MODELS

TO DUMPING SEVERITY DATA OF TABLE 1.6 v
"UNITS" § 4
*FACTOR' OPERAT $4
'VARIATE' COUNT

TOT

'READ/PRIN=Z' OPERAT,U,COUNT,TOT
"RUN'

[}
SO0 ~IO U W N

[

16 'CALC' PROP = COUNT/TOT

-17 ! IN THIS CASE A "SUCCESS" IS DUMPING = SLIGHT OR MODERATE,
18 AND "FAILURE" IS DUMPING = HNOKRE ''
19 'PRINT/P' OPERAT,U,COUNT,TOT,PROP $ 9, 9.1, 9, 9, 9.3
20  'RUN'
OPERAT U COURT TOT PROP
1 -1.5 35 96 0.365
2 -0.5 36 104 0.346
3 0.5 52 110 0.473
4 1.5 54 107 0.505
21  'TERHMS/TOTAL=TOT' COUHT+U
22 'Y/ERROR=BINOHIAL' COUNT
-23 ' THIS HMODEL ASSUMES OPERATION HAS NO EFFECT )
24 OH FIRST DUMPING LOGIT''
25 'FIT/PRIN=4'
26 'RUH'
2

...............................................................

*x% %% REGRESSIOH ANALYSIS *#x2%
ERROR DISTRIBUTION: BIHOHMIAL LINK FUHCTION: LOGIT
Y-VARIATE: COURT

%+ RESIDUAL DEVIANCE #*##
SCALE PARAMETER IS 1.000
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DF DEVIARCE MEAN DEVIANCE
RESIDUAL 3 7.920 2.640
-27 ! THIS MODEL ASSUMES OPERATION HAS AN EFFECT
28 ON FIRST DUMPING LOGIT"'
29 'FIT/PRIN=CAU' U
30 'RUN’
2

---------------------------------------------------------------

**%%%x REGRESSION ANALYSIS ##*%%%

ERROR DISTRIBUTION: BINOMIAL LINK FURCTION: LOGIT
Y-VARIATE: COUNT

t*%x REGRESSION COEFFICIENTS ##+#

ESTIHATE S.E. T
CONSTANT -0.320 0.100 -3.20
U 0.2291 0.0910 2.52

* STAHDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE 1.000

*x% RESIDUAL DEVIANCE *#z
SCALE PARAMETER IS 1.000
DF DEVIAHRCE HEAH DEVIANCE

RESIDUAL 2 1.485 0.7426

%% QBSERVED AHD FITTED VALUES ##%

OBSERVED FITTED RESIDUAL TOTAL
1 35 32.63 0.51 96
2 36 40.87 -0.98 104
3 52 49,37 0.50 110
4 54 54.13 -0.03 107
31 'CLOGSE'

txtxxxxx EHD OF DUMPIHG_. HAXIMUM OF 1012 DATA UHITS USED AT LIHE 21
{31756 LEFT)
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GENSTAT V RELEASE 4.04B
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAHMSTED EXPERIHMENTAL STAT
IoN)

'REFERENCE' DUHMPING_LOGIT2
''SEE SECTION 6.2.3.1.1.1

FITTING SOME HETEROGENEOUS LOGIT MODELS

TO DUMPING SEVERITY DATA OF TABLE 1.6 o
'UNITS' §$ 4
"FACTOR' OPERAT $4
"VARIATE' COURT

TOT

‘READ/PRIN=Z2' OPERAT,U,COUNT,TOT
'RUN'

= O WM NI U e WY

C et et

17 'CALC' PROP = COUNT/TOT

-18 '* IN THIS CASE "SUCCESS" IS DUMPIHG = MODERATE

19 AHD "FAILURE" IS DUMPING = HNORE OR SOHE ''

20 'PRINT/P! OPERAT,U,COUNT,TOT,PROP $ 9, 9.1, 9, 9, 9.3
21 'TERMS/TOTAL=TOT' COUNT+U

22 'Y/ERROR=BINOMIAL' COUHT

23 ''OPERATION HAS NO EFFECT ON SECOHD DUHPING LOGIT'®
24 'FIT/PRIH=4'

25 'RUNY
OPERAT U COUHT TOT PROP
1 -1.5 7 96 0.073
2 -0.5 13 104 0.125
3 0.5 12 110 0.109
4 1.5 16 107 0.150
S

...............................................................

*xx%% REGRESSIOH ANALYSIS *x%x%2
ERROR DISTRIBUTION: BINOMIAL LINK FURCTION: LOGIT
Y-VARIATE: COURT
*%x RESIDUAL DEVIANCE #x#
SCALE PARAHETER IS 1.000

DF DEVIAHCE HEAN DEVIANCE

RESIDUAL 3 3.187 1.062
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26 ''OPERATION HAS AN EFFECT ON SECOND DUMPING LOGIT''
27 'FIT/PRIR=CAU' U
28 'RUN'

---------------------------------------------------------------

**x%+ REGRESSION ANALYSIS #**#x+%

ERROR DISTRIBUTION: BINOMIAL LINK FUHCTION: LOGIT
Y-VARIATE: COUNT

**% REGRESSION COEFFICIENTS #*#*%

ESTIHATE S.E. T
CONSTANT -2.070 0.158 -13.13
U 0.211 0.142 1.49

* STANDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE 1.000

t*% RESIDUAL DEVIANCE *=*#
SCALE PARAMETER IS 1.000
DF DEVIANCE MEAN DEVIANCE

RESIDUAL 2 0.9384 0.4692

**% OBSERVED AND FITTED VALUES #x*

OBSERVED FITTED RESIDUAL TOTAL
1 7 8.09 -0.40 96
2 13 10.61 0.78 104
3 12 13.52 -0.44 110
4 16 15.78 0.06 107

29 'CLOSE’

txxxxxxt END OF DUHMPING_. HAXIMUH OF 1032 DATA UNITS USED AT LINE 21
(31736 LEFT)



GENSTAT V RELEASE 4.04B
- COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT
ION)

2 'REFERENCE/NUNN=100' DUMPING_LINEAR
4 ‘'HACRO' ORDINAL $§

-116 ''SEE SECTION 6.2.3.2.1.1

-117 FITTING A UNIFORM ASSOCIATION HODEL

-118 TO DUMPING SEVERITY DATA OF TABLE 1.6
119 USING MACRO OF SECTION 7.1.4 (STIRLING, 1984)'"
121 *SCALAR' HL=3 : HROWS=4 : MAXIT=10 : MNCELLS=12

122 'URIT' § HCELLS

123 'FACTOR' LEV $NL =(1...3)4

124 'FACTOR' OPERAT $4 = 3(1...4)
125 'VARIATE' W

126 : OPERAT L = 3(-1.5,-0.5,0.5,1.5)
127 'SCALAR' P1=1.0 : pP2=0.0 : P3=0.0
128 'READ' H
129  'RUN!
IDENTIFIER MINIMUH HEAHN HAXTHUH VALUES  MISSING
H 7.00 34.75 68.00 12 0

135 'SET/LIST=M' HMODEL2=DUM(1)
136 'SET/LIST=M' HODEL1=0PERAT_L
137 'USE' ORDIHAL §

138 'RUW’

FITTIHRG A LINEAR MODEL TO UNDERLYING RESPOHNSES
PROPORTIOHS OF LOGISTIC, NORMAL AND EXTREME VALUE DISTHS ARE

P1 1.00000
P2 0.00000

P3 0.00000
INITIAL ESTIMATES FOR HEAN & CLASS BOUNDARIES

HH -0.3045

BOUHNDS
-14.1200
0.0000
1.7351
13.4407

DEV 10.8782
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---------------------------------------------------------------

*%xx%* REGRESSION ANALYSIS x*%#%

Y-VARIATE: 2
WEIGHT VARIATE: ¥

*x* REGRESSION COEFFICIENTS ***

ESTIHATE S.E. T
CONSTANT -0.3149 0.0992 -3.18
DUM(1) 1.735 0.143 12.09
OPERAT_L 0.2236 0.0870 2.57

* STAHDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE 1.000

DEV 4,2952 DEG 5

---------------------------------------------------------------

**x %% REGRESSION ANALYSIS xx#%x%

Y-VARIATE: 2
WEIGHT VARIATE: W

*** REGRESSION COEFFICIENTS *%#

ESTIMATE S.E. T
CONSTANT -0.320 0.100 -3.20
DUM(1) 1.754 0.143 12.24
OPERAT_L 0.2247 0.0881 2.55

* STANDARD ERRORS BASED OH SCALE PARAMETER WITH VALUE 1.000

DEV 4,2701 DEG 5

...............................................................

*xx%% REGRESSION AHALYSIS ###%%z

Y-VARIATE: 2
HEIGHT VARIATE: W

**%x REGRESSION COEFFICIENTS **x

ESTIHATE S.E. T
CONSTANT -0.320 0.100 -3.20
DUM(1) 1.754 0.145 12.11

OPERAT_L 0.2247 0.0882 2.55



* STANDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE

DEV

LEV
ROW

W N e

LEV
ROH

e DN

LEV
ROV

W N

139 'CLOSE'

tkxsxtx%%t FHD OF

7 (28672 LEFT)

4.
ACTUAL AND FITTED CELL

DUHPING_.

2701

T3
1 2
61 28
68 23
58 40
53 38
T3
1
63.230961
63.075539
60.696751
53.050480
T3
1 2

.2822 0.6155
6122 -1.4075
.3488 0.6980
.0073 0.0103

DEG

24.
30.
35.
37.

13
12
16

2

867994
426111
746326
936993

-0.3270

0.7441
-0.4314
-0.0028

5

COUNTS AND RESIDUALS

3

7.901047
10.498355
13.556925
16.012526

1.000

HAXIMUM OF 4096 DATA UHNITS USED AT LINE 13



GENSTAT V RELEASE 4.04B
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT
ION)

2 'REFEREHCE/NUNN=100' DUMPING
4 ‘MACRO' ORDIRAL §

-116 ''SEE SECTION 6.2.3.2.2.1
-117 FITTIRG A LOGIT ROW EFFECTS HODEL
-118 TO DUMPING SEVERITY DATA OF TABLE 1.6
119 USING MACRO OF SECTION 7.1.4 (STIRLING, 1984)''
120 'SCALAR' HL=3 : NROWS=4 : MAXIT=10 : NCELLS=12

121 'UHIT' § NCELLS

122 'FACTOR' LEV $HL =(1...3)4

123 'FACTOR' OPERAT $4 = 3(1...4)
124 'VARIATE' N

125 : OPERAT_L = 3(-1.5,-0.5,0.5,1.5)
126 'SCALAR' P1=1.0 : P2=0.0 : P3=0.0
127 'READ' H
128 'RUR’
IDENTIFIER HINIHUH HEAH HAXIMUH VALUES  MISSIHG
N 7.00 34.75 68.00 12 0

134 'SET/LIST=H' MODELZ2=DUM(1)
135 'SET/LIST=M' HMODELI1=0PERAT
136 'USE' ORDINAL §

137 'RUN'

FITTING A LIHEAR HODEL TO UNDERLYIHNG RESPOHSES
PROPORTIONS OF LOGISTIC, NORMAL AND EXTREHME VALUE DISTNS ARE

Pl 1.00000
P2 0.00000

P3 0.00000
INITIAL ESTIMATES FOR MEAH & CLASS BOUHDARIES

HH -0.3045

BOUHDS
-14.1200
0.0000
1.7351
13.4407

DEV 10.8782
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---------------------------------------------------------------

*%%x% REGRESSION ANALYSIS #%*#x

Y-VARIATE: Z
WEIGHT VARIATE: W

*** REGRESSION COEFFICIENTS *#x

CONSTANT
DUM(1)

OPERAT 2
OPERAT 3
OPERAT 4

ESTIHATE

-0.578
1.735
0.022
0.428
0.603

S.E.

0.202
0.143
0.278
0.274
0.276

* STANDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE

DEV 3.6013

DEG

-2.86
12.09
0.08
1.56
2.19
1.000

...............................................................

**%%%x REGRESSION ANALYSIS ##%%x

Y-VARIATE: Z
WEIGHT VARIATE: W

*%*% REGRESSION COEFFICIENTS #*%

CONSTAHNT
DUM(1)

OPERAT 2
OPERAT 3
OPERAT 4

ESTIMATE

-0.581
1.756
0.009
0.429
0.600

S.E.

0.210
0.143
0.289
0.278
0.278

* STANDARD ERRORS BASED OH SCALE PARAMETER WITH VALUE

DEV 3.5637

DEG

-2.77
12.25
0.03
1.54
2.15
1.000

---------------------------------------------------------------

*%%x% REGRESSIOH AHALYSIS #x#x%#

Y-VARIATE: Z
WEIGHT VARIATE: W

**% REGRESSION COEFFICIENTS ##*#

ESTIHATE

S.E.



CONSTANT

DUM(1)

OPERAT 2

OPERAT 3

OPERAT 4

* STANDARD ERRORS BASED

DEV 3.5637

0.581
1.756
0.008
0.429
0.600

0.210
0.145
0.290
0.279
0.279

ON SCALE PARAMETER WITH VALUE

DEG

3

ACTUAL AND FITTED CELL COUNTS AND RESIDUALS

T3
LEV 1 2
ROW
1 61 28
2 68 23
3 58 40
4 53 38
T3
LEV 1
ROU
1 61.571697
2 66.506371
3 59.172386
4 53.004574
T3
LEV 1 2
ROW
1 -0.0729 0.3924
2 0.1825 -1.0240
3 -0.1529 0.5506
4 0.0000 0.0000
138 'CLOSE'

*xxtxxxx END OF DUMPIHG.

(28636 LEFT)

25.
28
36.
37

13
12
16

2

974493

.266640

617966

.987713

-0.5155

1.1693
-0.6025
-0.0020

3

8.453816
9.226990
14.209652
16.007710

246,

-2.77
12.10
0.03
1.54
2.15

HAXIHUM OF 4132 DATA UHITS USED AT LINE 136
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GENSTAT V RELEASE 4.04B
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT
I0N)

1 'REFERENCE/NUNN=100' DUMPING
2 'MACRO' ORDINAL $

-115 ''SEE SECTION 6.2.4.1.1
-116 FITTING A THREE-DIMEHNSIONAL LOGIT HODEL
-117 TO DUMPING SEVERITY DATA OF TABLE 4.8
118 USING MACRO OF SECTION 7.1.4 (STIRLING, 1984)"'
120 'SCALAR' MNL=3 : NROWS=16 : HAXIT=10 : NCELLS=48

121 'UNIT' ¢§ HCELLS
122 *FACTOR' LEV $NL =(1...3)16
123  'FACTOR' OPERAT '$4 = 12(1...4)

124 : HOSPITAL $4 = 3(1...4}4
125 'VARIATE' K
126 : OP_LIN = 12(-1.5,-0.5,0.5,1.5)
127 'SCALAR' P1=1.0 : P2=0.0 : P3=0.0
128 'READ' R
129 'RUN'
IDENTIFIER HINIHUH HEAH HAXIHMUH VALUES HISSIHG
il 1.000 8.688 24.000 48 0

135 'SET/LIST=M' MODEL2=DUH(1)
136 ‘'SET/LIST=H' MODEL1=0P_LIN+HOSPITAL
137 'USE' ORDINAL §

138 'RUN'

FITTING A LINEAR HODEL TO UNDERLYING RESPONSES
PROPORTIONS OF LOGISTIC, NORMAL AND EXTREME VALUE DISTHS ARE

P1 1.00000
P2 0.00000

P3 0.00000
INITIAL ESTIMATES FOR MEAN & CLASS BOUHDARIES

HH -0.3045

BOUNDS
-14.1200
0.0000
1.7351
13.4407
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DEV  31.6381

---------------------------------------------------------------

**xx%* REGRESSION ANALYSIS ***xz

Y-VARIATE: 2
WEIGHT VARIATE: W

*** REGRESSION COEFFICIENTS **#

ESTIMATE S.E. T
CONSTANT -0.423 0.163 -2.59
DUH (1) 1.735 0.143 12.09
OP_LIN 0.2262 0.0870 2.60
HOSPITAL 2 0.113 0.251 0.45
HOSPITAL 3 0.426 0.280 1.53
HOSPITAL 4 0.019 0.262 0.07

* STANDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE 1.000

DEV  22.5287 DEG 26

...............................................................

*xx%x% REGRESSION AHALYSIS #*#*xx%%

Y-VARIATE: 2
WEIGHT VARIATE: W

**% REGRESSION COEFFICIENTS #*#*#

ESTIHATE S.E. T
CONSTANT -0.429 0.166 -2.58
DUM(1) 1.762 0.143 12.29
OP_LIH 0.2264 0.0883 2.56
HOSPITAL 2 0.102 0.253 0.40
HOSPITAL 3 0.429 0.277 1.55
HOSPITAL 4 0.027 0.267 0.10

* STANDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE 1.000

DEV 22.4782 DEG 26

..............................................................

*xx+% REGRESSION ANALYSIS #*##x%

Y-VARIATE: 2
- HEIGHT VARIATE: W
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*** REGRESSION COEFFICIENTS #*#

ESTIHMATE S.E. T
CONSTANT -0.429 0.166 -2.58
DUM(1) 1.762 0.145 12.12
OP_LIN 0.2267 0.0884 2.56
HOSPITAL 2 0.104 0.254 ' 0.41
HOSPITAL 3 0.429 0.277 1.55
HOSPITAL 4 0.027 0.267 0.10

* STANDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE 1.000

DEV  22.4781 DEG 26
ACTUAL AND FITTED CELL COUNTS AND RESIDUALS

LEV 1
ROW

%]
w

23
18

12
23
18
12
15
20
10 13
11 11
12 14
13 24

fon

WO~ WU, H W
ODWWWhOOoOOOON

ot s

e b DO O W RN IR DU W N

st
'
O
[

[c20E BN I =]

16 13

T3
LEV 1 2 3
ROW

ot

21.864841 7.775896
16.509319 6.462050
9.931291 5.217273
14.903255 5.433831
24.,028255 10.522032
15.804072 7.602905
10.566076 6.775257
12.520808 5.618610
21.972786 11.787505
15.475719 §.108009

.359262
. 028632
.851436
.662914
.449714
.593021
.658669
.860582
.229710
.416274

O W IO U W
W = NN W~ NN

s
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11 8.962210 6.973101 3.064690
12 14.291278 7.858732 2.849991
13 20.887819 13.680888 5.431294
14 12.902023 9.238433 3.859544
15 7.484497 7.016993 3.498509
16 11.855894 7.947727 3.196381
T3
LEV 1 2 3
ROW

1 0.2407 -0.2831 -0.2402
2 0.3616 -0.1840 -0.8016
3 -0.6345 0.3346 0.7738
4 -0.7787 1.3965 -0.5556
5 -0.2113 -0.1623 0.7816
6 0.5403 -0.6038 -0.3838
7 0.4317 -1.1553 0.7649
8 0.6792 -1.2134 0.1010
9 -0.4274 0.3444 0.3640
10 -0.6473 1.2111 -0.8312
11 0.6571 -0.3776 -0.6498
12 -0.0773 0.0502 0.0881
13 0.6650 -1.0457 0.2399
14 -1.1494 1.7370 -1.0438
15 -0.1791 -0.0065 0.2621
16 0.3271 -0.7225 0.4324

139 'CLOSE'

*ixkxxxx END OF DUMPING., MAXIHMUM OF 5218 DATA UNITS USED AT LINE 137
(27550 LEFT)
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‘REFERENCE/NUNK=100' DUMPING
‘' SEE SECTION 7.1.5

FITTING A MODEL BASED ON THE

NEGATIVE EXTREME VALUE DISTRIBUTION

TO DUMPING SEVERITY DATA OF TABLE 1.6 ''
"MACRO' ORDINAL $
‘' STIRLING, 1984''
‘' Macro to fit linear models to ordinal responses

Input parameters

HODEL1 - model formula vith explanatory variables

MODEL2 - DUM(1)+DUM(2)+ .... +DUM{no of response levels-2)
LEV - factor with response levels

N - variate vith numbers in each cell of table. They

must be ordered in rovs (i.e. with all response
levels for the first combination of

explanatory variables, then those for the
second, etc.

NROWS - scalar vith no of rows in the table
MAXIT - scalar vith maximum no of iterations
{10 should be enough)
Pl - Scalars giving the proportions of logistic, normal
P2 and extreme value distributions (Make sure they
P3 add up to 1.0)
Output
BETA - parameter estimates
2 - variate vith residuals
FIT - variate with fitted values'’

"CAPTION' ''FITTING A LINEAR MODEL TO UNDERLYING RESPONSES
PROPORTIONS OF LOGISTIC, NORMAL AND EXTREME VALUE DISTHNS ARE’
'PRIN' P1,P2,P3 § 8.5
*SET' JLIST= DEV, NTOT,NLEVP1,NLEVM2, MN,NLEVS,OLDDEV,LPL LPU,PDFL,
PDFU,W,RONTOT,T1,T2,T3,BOUNDS,CONV,DEG, ROV
'"LOCAL' JLIST
'SCALAR' DEV,NTOT,NLEVP1,HLEVM2, HN,NLEVS,OLDDEV,DEG
'START'
'"CALC' NLEVS=NLEV(LEV) : NLEVM2=NLEVS-2 : HLEVPl=NLEVS+l
'RUN
'FACTOR' ROW $NROWS = NLEVS!(1l...NROWS)
'SET' ILIST=1...NLEVH2
'VARIATE' LPL,LPU,FIT,PDFL,PDFU,W,2,DUM(ILIST),ROUTOT
"TABLE/N' Tl $LEV : T2 $ROW
'TABULATE' N ; Tl c N T2
'VARIATE' BOUNDS $NLEVP1
"EQUATE' BOUNDS = 0,Tl
'EQUATE' 2 SNROWS = T2
‘CALC' ROWTOT=ELEM(Z : ROW)
: NTOT=SUM(BOUNDS)
FIT=ELEM (BOUNDS ; LEV+1)/NTOT
BOUNDS=CUH (BOUNDS)
BOUNDS= BOUNDS/NTOT+
((BOUNDS.EQ.0)- (BOUNDS.EQ.NTOT))*0.000001
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BOUNDS= P1*LOG(1.0/BOUNDS-1.0)-P2+NED(BOUNDS)-

P3*LOG(-LOG(1-BOUNDS))

LPL=ELEM (BOUNDS ; LEV)

LPU=ELEM(BOUNDS ; LEV+1)

DEV=2+SUM (N*LOG(N/ROWTOT/FIT + (N.LT.0.5)))

MN= ELEM(BOUNDS ; 2)

BOUNDS= MN-BOUNDS
'CAPTION' ''INITIAL ESTIMATES FOR MEAN & CLASS BOUNDARIES''
'PRIN' MN,BOUNDS,DEV & 10.4

'FOR' I=1...MAXIT

'CALC OLDDEV=DEV
Z=EXP (-LPL)
PDFL=P1#*%/(142)*#2 + P2%0.39894228+EXP(-0.5*LPL*LPL)
PDFL=(LEV.GT.1.5)*(PDFL + P3*Z#EXP(-2%(Z.LT.100))*

(2.LT.100))
2=EXP (-LPU)
PDFU=P1%%/(1+2)**2 + P2%0.39894228*EXP(-0.5*LPU*LPU)
PDFU= (LEV.LT.HLEVS-0.5)* (PDFU+P3*Z*EXP (-Z*(Z.LT.100))*
(Z.LT.100))

W=ROWTOT* (PDFL-PDFU) **2/FIT
2= (PDFL*LPL-PDFU*LPU+N/ROHTOT-FIT)/ (PDFL-PDFU)

'FOR' J=ILIST . DUMJ=DUM(ILIST)
'CALC' DUMJ=((LEV.EQ.J+1)*PDFU- (LEV.EQ.J+2)*PDFL)

/ (PDFL-PDFU)

'REPEAT"

'TERMS/WT=H' MODEL2+HODEL1+3Z

'Y/SCALE=1.0" 2

‘FIT/PRIN=C' MODEL2+MODELl : FVAL=FIT ; COEFF=BETA : DF=DEG

*CALC' BOUNDS = 0.0

'EQUATE' BOUNDS ¢ X,X,NLEVM2 = BETA ¢ X, NLEVM2

'CALC' LPU=ELEH(BOUNDS ; LEV+1)-ELEM(BOUNDS : LEV)
LPL=FIT-PDFU*LPU/ (PDFL-PDFU)
LPU=FIT-PDFL*LPU/ (PDFL-PDFU)
PDFL=P1/(1.0+EXP(-LPL)) + P2*NPI(LPL) +

P3*EXP (-EXP(-LPL))
PDFU=P1/(1.0+EXP(-LPU)) + P2*NPI(LPU) +
P3*EXP (-EXP (-LPU))
FIT=(LEV.LT.1.5)+(LEV.GT.1.5)*PDFL-
(LEV.LT.NLEVS-0.5)*PDFU

’CALC' DEV=2*SUM (N*LOG (N/ROWTOT/FIT+(N.LT.0.5)))
DEG=DEG-HROWS

‘PRIH/P DEV,DEG § 10.4,8

' JUMP' CONV* (OLDDEV-DEV.LT.1.0E-4)

‘REPEAT"

*CAPTIOH® '' TOO MANY ITERATIOHS !!'t'!! IF THE PARAMETER
ESTIMATE FOR A FACTOR LEVEL IS TENDING TO INFINITY, CHECK
WHETHER ALL CELLS FOR THAT LEVEL ARE ZERO APART FROM THE
HIGHEST OR LOWEST RESPONSE LEVEL; IF S0 OMIT ALL OBSERVATIOHS
AT THAT FACTOR LEVEL AND REFIT"'

‘LABEL® COHV

"CAPTION' '' ACTUAL AND FITTED CELL COUNTS AND RESIDUALS''
"CALC' FIT=FIT*ROWTOT
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Z=SQRT(2* (N*LOG(N/FIT+(N.LT.0.5))+FIT-H))*(2*(N.GT.FIT)-1)

'TABLE/N' T3 $ROW,LEV
*TABULATE' N ; T3
"PRIN' T3 § 10
'TABULATE' FIT ; T3
'PRIN' T3 $14.6
‘TABULATE' 2 ; T3
‘PRIN' T3 $ 10.4
*DEVALUE' JLIST
'ENDHACRO'

'SCALAR' NL=3 : NROUS=4 : MAXIT=10
'UNIT' $§ NCELLS
"FACTOR' LEV $NL =(1...3)4
‘FACTOR' OPERAT $§4 = 3(1...4)
"VARIATE' H
OPERAT_L = 3(-1.5,-0.5,0.5,1.5)

'SCALAR' P1=0.0 : pP2=0.0 : P3=1.0
‘READ' N
‘' MOTE TABLE IN REVERSE ORDER TO
FIT NEGATIVE EXTREME VALUE DISTRIBUTIOH '
‘RUN!

7 28 61

13 23 68

12 40 58

16 38 53
"EOD!
'SET/LIST=H' HMODEL2=DUM(1)
'SET/LIST=H' HODEL1=0PERAT
"USE' ORDIHNAL §
"RUN'
'CLOSE"
‘STOP'

NCELLS=12
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GERSTAT V RELEASE 4.04B
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT
I0N)

1 'REFERENCE/NUNN=100' DUMPIHG
2 'MACRO' ORDINAL $§

-114 *' SEE SECTION 7.1.5

-115 FITTING A MODEL BASED ON THE

-116 NEGATIVE EXTREME VALUE DISTRIBUTION

117 TO DUMPING SEVERITY DATA OF TABLE 1.6 '

119 'SCALAR' NL=3 : NROWS=4 : HAXIT=10 : HCELLS=12

120 'UNIT® $ NCELLS

121 'FACTOR' LEV $NL =(1...3)4

122 'FACTOR' OPERAT $4 = 3(1...4)
123 'VARIATE' R

124 : OPERAT_L = 3(-1.5,-0.5,0.5,1.5)
125 'SCALAR' P1=0.0 : P2=0.0 : P3=1.0
126 'READ' H
-127 '*' HNOTE TABLE IN REVERSE ORDER TO
128 FIT HEGATIVE EXTREME VALUE DISTRIBUTION '
129 ‘'RUN’
IDERTIFIER  MINIMUM HEAN HAXTIHUHM VALUES  MISSIHNG
] 7.00 '34.75 68.00 12 0

135 'SET/LIST=M' MODELZ2=DUM(1)
136 'SET/LIST=H' HODEL1=0PERAT
137 'USE' ORDINAL $§

138 'RUR'

FITTING A LINEAR MODEL TO UNDERLYING RESPONSES
PROPORTIONS OF LOGISTIC, RORMAL AND EXTREME VALUE DISTHS ARE

P1 0.00000
P2 0.00000

P3 1.00000
INITIAL ESTIMATES FOR MEAN & CLASS BOUNDARIES

MH 2.1014

BOUHDS
-11.7010
0.0000
1.5080
4.7262
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DEV 10.8782

---------------------------------------------------------------

**%+* REGRESSION ANALYSIS *#%xx%

Y-VARIATE: Z
WEIGHT VARIATE: W

*x* REGRESSION COEFFICIEHNTS #*#*%

ESTIMATE S.E. T

CONSTANT 2.303 0.200 11.52
DUM(1) 1.508 0.132 11.43
OPERAT 2 0.022 0.218 : 0.10
OPERAT 3 -0.340 0.216 -1.58
OPERAT 4 -0.459 0.217 -2.11

* STANDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE 1.000

DEV 3.2027 DEG 3

...............................................................

t*xx%x REGRESSION ANALYSIS *x#x#%%

Y-VARIATE: 2
WEIGHT VARIATE: W

**%* REGRESSION COEFFICIEHTS %%

ESTIMATE S.E. T
CONSTANT 2.321 0.210 11.03
DUH(1) 1.517 0.131 11.57
OPERAT 2 0.030 0.237 0.13
OPERAT 3 -0.344 0.220 -1.56
OPERAT 4 -0.455 0.218 -2.09

* STANDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE 1.000

DEV 3.1729 DEG 3

---------------------------------------------------------------

ti2+% REGRESSION ANALYSIS #%%%%

Y-VARIATE: 2
HEIGHT VARIATE: W
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**%x REGRESSION COEFFICIENTS #*#%

ESTIMATE S.E. T
CONSTANT 2.321 0.212 10.97
DUM (1) 1.518 0.132 11.46
OPERAT 2 0.031 0.238 0.13
OPERAT 3 -0.344 0.221 -1.55
OPERAT 4 ~0.455 0.219 -2.08

* STANDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE 1.000

DEV 3.1729 DEG 3
ACTUAL AND FITTED CELL COUNTS AND RESIDUALS

T3
LEV 1 2 3
ROW
1 7 28 61
2 13 23 68
3 12 40 58
4 16 38 53
T3
LEV 1 2 3
ROW
1 8.9736919 25.668829 61.357254
2 9.443013 27.185537 67.371445
3 14.214483 37.266232 58.519287
4 15.337992 38.829819 52.832195
T3
LEV 1 2 3
ROW
1 -0.6856 0.4534 -0.0456
2 1.0943 -0.8248 0.0764
3 -0.6037 0.4425 -0.0680
4 0.1678 -0.1336 0.0231
139 'CLOSE'

*xxxkxx: END OF DUMPING. MHAXIMUM OF 4138 DATA UHITS USED AT LINE 137
(28630 LEFT)



GENSTAT V RELEASE 4.04B
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPBRIMEHTAL STAT
I0W)

1 'REFER' DUMPZWAY

-2 v SEE SECTION 8.1.1

-3 FITTING A MEAN RESPONSE MODEL TO
-4 OPERATION BY DUMPING DATA OF TABLE 1.6
5 USING WEDDERBURN'S METHOD P
6 'UNITS' $ 12

7 'VARIATE' COUNT

8 : ASTAR

9 : A

10 'FACTOR' OPERATION §$ 4 = 3(1...4)

11 : DUMP $ 3= (1,2,3)4

12 'SCALAR’ DEV

13 : SL1ETA

14 : SL2ETA

15 : SL3ETA

16 : SL4ETA

17 : SL5ETA

18 SL6ETA

19 'READ/PRIH A COUNT

20 'RUN!

26 "TABLE/M' Tl & OPERATIOHN, DUMP

27 'READ/PRIN=Z' L1STAR,L2STAR,L3STAR,L4STAR,L5STAR,L6STAR
28 'RUNW'

42 'READ/PRIN=Z' T
43 'RUW'

46 'READ/PRIH=Z' AHASH
47 'RUN'

50 CALCY ASTAR = AHASH/3

51 'PRINT/P' L1STAR, L2STAR,L3STAR,L4STAR,L5STAR,
52 L6STAR,T,AHASH ASTAR $ 8(7.0),6.4
53 'RUN'



L1STAR L2STAR L3STAR L4STAR L5STAR L6STAR

54 'CALC'
55 'CALC'
56 'CALCY
57 'CALC'
58 'CALC'
59 ‘'CALC'
60 'CALC'

62 'PRINT/P'
63 ‘RUN'

T
96
96
96

104
104
104
110
110
110
107
107
107

A
32
32
32
35
35
35
37
37
37
36
36
36

64 'CALC'
65 'CALC!

66 'PRINT/P’
67 ‘'RUN'

COUNT
61

ET

0

W -=OOo

2
4

1
2
3

L1
L2
L3
L4
L5
L6
A

L1

L0104
.0208
.0313
.0192
.0385
.0577
.0091
.0182
.0273
.0000
.0000
. 0000

A

61

ETA
7 =

L1 A N € A U € 1 SN

OO OOOC OO b bt b
COOOO Ok DO O

L1STAR/T
L2STAR/T
L3STAR/T
L4STAR/T
L5STAR/T
L6STAR/T
ASTAR*T

L2
0.0000
0.0000
0.0000
0.0096
0.0192
0.0288
-0.0182
-0.0364
-0.0545

0.0093

0.0187

0.0280

SO O COOCOC OO OO0

= COUNT
COURT -

=

COUNT,ETA,Z

z

29.0000

COOHFRHODOOOO

T,A,L1, L2,L3,L4,L5,L6

L3 L4
.0104 0.0000
.0104 0.0000
.0104 0.0000
.0000 0.0096
.0000 0.0096
.0000 0.0096
.0000 0.0000
.0000 0.0000
.0000 0.0000
.0000 0.0000
.0000 0.0000
.0000 0.0000

$ 7, 7.0,

b bt = O OO OO OO OO

OO O OO OO OOoOOOCC

10.

.0000
.0000
.0000
.0000
.0000
.0000
.0091
.0091
.0091
.0000
.0000
.0000

T AHASH

96

96

96
104
104
104
110
110
110
107
107
107

bt bt Bt ot ot ot ot ot ot et et
OO OO OO OO OOOO

5, 5, 2(8.4),

L5

S OO CODOOOOOC

L6

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0093
.0093
.0093

258,

ASTAR

.3333
.3333
.3333
.3333
.3333
.3333
.3333
.3333
.3333
.3333
.3333
.3333

4(7.4)
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28 28 -4.0000

7 7 -25.0000
68 68 33.3333
23 23 -11.6667
13 13 -21.6667
58 58 21.3333
40 40 3.3333
12 12 -24.6667
53 53 17.3333
38 38 2.3333
16 16 -19.6667

68 'TABULATE/PRIN=T' ETA ; T1

69 'RUN'
T1
DUHP 1 2 3 HARGIN
OPERATIO
1 61.00 28.00 7.00 96.00
2 68.00 23.00 13.00 104.00
3 58.00 40.00 12.00 110.00
4 53.00 38.00 16.00 167.00
HARGIR 240.00 129.00 48.00 417.00
70 ‘FOR* I = 1...3
71 '*CALC* W = 1/ETA
72 "*CALC' Pl = ETA*Ll
73 ‘CALC' P2 = ETA*L2
74 "CALC' P3 = ETA*L3
75 "CALC' P4 = ETA*L4
76 "CALC' P5 = ETA*LS
77 'CALC' P6 = ETA*L6
78 'CALC' SLI1ETA = SUH(P1)
79 'CALC' SLZETA = SUM(P2)
80 'CALC' SL3ETA = SUM(P3)
81 'CALC' SL4ETA = SUM(P4)
82 ‘*CALC' SL5ETA = SUM(P5)
83 'CALC' SL6ETA = SUM(P6)
84 "TERMS/UT=W' Z+P1+P2+P3+P4+P5+P6
85 Y Z
86 ‘FIT/INT=N,PRIN=2' P1+P2+P3+P4+P5+P6; FVAL = PRED
87 ‘CALC' ETA = COUNT - PRED
88 'TABULATE/PRIN=T' ETA ; T1
89 'CALC' DEV = 2% (SUM(ETA-COUNT) + SUM{COUNT*LOG(COUHT/ETA)))

90 ‘PRINT' DEV § 10.4



91 'REPEAT'
92 'RUN'

DUMP
OPERATIO
1

2

3

4

HARGIN

DEV

DUMP
OPERATIO
1

2

3

4

HARGIN

DEV

DUHP
OPERATIO
1

2

3

4

HARGIH

DEV

93 'CLOSE’

61.93
66.19
58.52
53.27

239.91

0.2220

61.89
66.19
58.50
53.26

235.84

0.2216

61.89
66.19
58.50
53.26

239.84

0.2216

27.
23.
39.
37.

128.

27.
.65
39.
37.

23

128.

27.
23.
39.
37.

128,

45
69
74
30

78

46

75
90

76

46
65
75
S0

76

48.

11

48.

11

48.

.62
14,
11.
15,

12
74
83

31

.65
14.
.75
15,

16

84

40

.65
14.
.15
15,

16

84

40

MARGIN

96.00
104.00
110.00
107.00

417.00

HARGIN

96.00
104.00
110.00
107.00

417.00

HARGIH

96.00
104.00
110.00
107.00

417.00

260.
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GENSTAT V RELEASE 4.04B
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT

ION)
3 'REFERENCE' HMONKEY
-4 ‘'SEE SECTION 8.2.4
-5 FITTING THE LOGLINEAR MODEL OF
-6 QUASI-INDEPERDENCE TO SQUIRREL MONKEY
7 TABLE WITH FIXED ZEROES (TABLE 1.8) H
8 'UNITS' § 30
9 ‘'FACTOR' ACTIVE $5 =6(1...5)
10 PASSIVE §$ 6 = (1...6)5
11  'VARIATE® COUNT
12 'READ/PRIN=D' COUNT
13 'RUN’
14 1 5 8 9 0
15 29 * 14 46 4 0
16 2 3 1 * 38 2
17 0 0 0 0 * 1
18 9 25 4 6 13 =
19 'EOD'
20  'TABLE' T1 § ACTIVE, PASSIVE
21 'TABULATE' COUNT ; Tl
22 'PRINT' T1 $ 10
23  'RUN'
T1
PASSIVE 1 2 3 4 5 6
ACTIVE
1 0 1 5 8 9 0
2 29 0 14 46 4 0
3 2 3 1 0 38 2
4 0 0 0 0 0 1
5 9 25 4 6 13 0

24

"TERHS' COUNT+ACTIVE+PASSIVE



25
26
27
28

---------------------------------------------------------------

'Y/ERROR=POISSON' COUNT
'CAPTION' ! (A,P) "
"FIT/PRIN=A' ACTIVE+PASSIVE
‘RUN'

(A,P)

*xxx+ REGRESSION ANALYSIS #*xxx%

ERROR DISTRIBUTION: POISSON
Y-VARIATE: COUNT

*++ RESIDUAL DEVIANCE **%

SCALE PARAMETER IS 1.000

; FVAL = PRED

DF DEVIANCE HEAN DEVIANCE

RESIDUAL 15 135.2

29 'TABULATE' PRED ; Tl
30 ‘'PRINT' T1 ¢ 10.3
31 'RUNY
T1
PASSIVE 1 2
ACTIVE
1 0.000 5.260
2 19.186 0.000
3 10.936 12.474
4 0.220 0.251
5 9.658 11.016
32 'CLOSE’

*ixxx42x END OF MONKEY. MAXIMUM OF

31352 LEFT)

10

9.011

3
481 8
.322 34.
884 0
118 0
.196 17.
1416 DATA

LINK FURCTION: LOG

.216

185

.000

.362

208

6.648

27.661

15,767

0.000

13.924

262,

0.396
1.647
0.939
0.019

0.000

UNITS USED AT LINE 27 ({
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GENSTAT V RELEASE 4.04B
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT
I0ON)

1 'REFER' HEALTH

-2 '' SEE SECTION 8.2.5.1

-3 FITTING THE LOGLINEAR HODEL (SA, SH)
-4 T0 TABLE 8.3

-5 SEX X AGE X HEALTH CONCERHS

6 (WITH STRUCTURAL ZEROES) ''

7 'UNITS' § 16

8 'VARIATE' COUNT $ 16
9 : PRED $ 16
11 'FACTOR' COHNCERN $ 4 = 4(1...4)
12 : SEX $2=2(1,2)4
13 : AGE $2=(1,2)8
15 'READ/PRIN=D' COUNT
17 'RUN’
18 4 2 9 7
19 t x4 8
20 42 7 19 10
21 57 20 71 31
22 ‘'EOD!
23 'TABLE' TABl $ CONCERN, SEX, AGE
24 'TABULATE' COUNT ; TAB1
25 'PRINT' TABl $ 9
26 'RUN'
TAB1
AGE 1 2
CONCERH SEX
1 1 4 2
2 9 7
2 1 0 0
2 4 8
3 1 42 7
2 19 10
4 1 57 20
2 71 31

27 'TERMS' CONCERN*SEX*AGE+COUHNT
28 'Y/ERROR=POISSON' COUNT
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29 'FIT/PRIN=A" SEX*AGE+CONCERN+SEX.CONCERN ; FVAL = PRED
30 ‘RUN’
7 L

---------------------------------------------------------------

**x LINEAR DEPENDENCE DETECTED WHILE FITTING TERM COHNCERN.SEX

1 PARAMETER(S) OF THIS TERM ARE ALIASED.
**xxx% REGRESSION ANALYSIS *#x*x
ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG

Y-VARIATE: COUNT
**%x RESIDUAL DEVIANCE *#%

SCALE PARAHETER IS 1.000
DF DEVIANCE MEAN DEVIANCE

RESIDUAL 5 9.426 1.885

31 'TABULATE® PRED ; TAB1

32  'PRINT' TABL $§ 10.2
33 'RUN'
TAB1
AGE 1 2
CONCERN - SEX
1 1 4.68 1.32
2 10.36 5.64
2 1 0.00 0.00
2 7.77 4.23
3 1 38.23 10.77
2 18.79 10.21
4 1 60.08 16.92
2 66.08 35.92
34 'CLOSE'

txxxxxx+ END OF HEALTH. MAXIMUM OF 1648 DATA UNITS USED AT LIHE 29 (
31120 LEFT)



GENSTAT V RELEASE 4.04B
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT

ION)

13
14
15
16
17
18

19
20
21
22

23
24
25
26
27

'REFERENCE' MOBILITY
‘'SEE SECTION 8.3.1.1

265,

FITTING THE LOGLINEAR HODEL OF QUASI-INDEPENDENCE

TO BRITISH SOCIAL MOBILITY DATA OF TABLE 8.6

"UNITS' § 25
'FACTOR' FATHER $§5 =5(1...5)
SON $ 5= (1...5)5
"VARIATE®' COUNT
'READ/PRIN=D' COUNT
"RUN'
* 45 8 18 8
28 * 84 154 55
11 78 * 223 96
14 150 185 * 447
0 42 72 320 *
"EOD’
‘TABLE' Tl ¢ FATHER, SOX
'TABULATE' COUNT ; Tl
"PRINT' T1 $ 10
‘RUN'
T1
SOH 1 2 3
FATHER
1 0 45 8
2 28 0 84
3 11 78 0
4 14 150 185
5 0 42 72
‘TERMS' COUNT+FATHER+SON
"Y/ERROR=POISSON' COURT
"CAPTION® ! QUASI-INDEPEHRDENCE '

'FIT/PRIN=A' FATHEK+SON : FVAL = PRED
‘RUN

QUASI-INDEPENDENCE

18
154
223

320

11

55
96
447
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---------------------------------------------------------------

*xxx* REGRESSION ANALYSIS **#42
ERROR DISTRIBUTION: POISSON  LINK FUNCTION: LOG
Y-VARIATE: COUNT
**%* RESIDUAL DEVIANCE *%%*
SCALE PARAMETER IS 1.000
DF DEVIANCE MEAN DEVIANCE

RESIDUAL 11 249.4 22.68

28 'TABULATE' PRED ; Tl

29 'PRINT' Tl ¢ 10.3
30 'RUN'
T1
SON 1 2 3 4 5
FATHER
1 0.000 9.540 11.020 38.488 19.952
2 6.565 0.000 49,885 174.231 §0.319
3 8.522 56.059 0.000 226.173 " 117.246
4 27.510 180.965  209.042 0.000 378.483
5 10.403 68.436 79.053 276.107 0.000
31 'CLOSE'

*xxxxtxx END OF MOBILITY. MAXIHUM OF 1352 DATA UNITS USED AT LINE 26
(31416 LEFT)
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GENSTAT V RELEASE 4.04B
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT
ION)

1 'REFER' EYE
-2 ‘' SEE SECTION 8.3.3.1 AND APPENDIX 6
-3 FITTING THE MODEL OF QUASI-SYMHETRY TO
4 EYE-TESTING DATA OF TABLE 8.9 v
5 'UNITS' § 16
6 'VARIATE' COUNT $ 16
7 : PRED $ 16
9 'FACTOR' LEFT §$ 4
10 : RIGHT $ 4
11 : DUHMHMY § 7
13 'READ/PRIN=D' RIGHT,LEFT,COUNT,DUHMY
15 'RUN’
16 1 1 1520 1
17 1 2 266 1
18 1 3 124 1
19 1 4 66 1
20 21234 1
21 2 2 1512 2
22 2 3432 5
23 2 4 78 6
24 31 117 1
25 3 2 362 5
26 3 31772 3
27 3 4 205 7
28 41 36 1
29 4 2 82 6
30 43179 7
31 4 4 492 4
32 'EOD!
34 'TABLE' TAB1 $ RIGHT, LEFT
35 C'TABULATE' COURT ; TABl
36 'PRINT' TABl §$ 9
37 'RUW'
TABI
LEFT 1 2 3 4
RIGHT
1 1520 266 124 66
2 234 1512 432 78
3 117 362 1772 205
4 36 82 179 492
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39 'TERMS' LEFT+RIGHT+DUMMY+COUNT
40 'Y/ERROR=POISSON' COUNT

42 'FIT/PRIN=A' LEFT+RIGHT+DUMHMY ; FVAL = PRED
43 'RUN'
T 3

---------------------------------------------------------------

*xx*x* REGRESSION ANALYSIS **x#x

ERROR DISTRIBUTION: POISSON  LINK FUKRCTION: LOG
Y-VARIATE: COUNT

*** RESIDUAL DEVIANCE **#

SCALE PARAMETER IS 1.000

DF DEVIANCE MEAN DEVIANCE

RESIDUAL 3 7.271 2.424

44 'TABULATE' PRED ; TABlL

45 'PRINT' TABl § 10.2
46 'RUN'
TAB1
LEFT 1 2 3 4
RIGHT
1 1520.00 263.38 133.58 59.04
2 236.62 1512.00 418.99 88.39
3 107.42 375.01 1772.00 201.57
4 42.96 71.61 182.43 492.00
47 'CLOSE'

txkxx+x+ END OF EYE. MAXIMUM OF 1430 DATA UNITS USED AT LINE 42 (313
38 LEFT)
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GENSTAT V RELEASE 4.04B
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT
ION)

2 'REFER' EYE

-3 ‘' SEE SECTION 8.3.3.1 AND APPENDIX 6
-4 FITTING THE MODEL OF QUASI-SYHMHETRY TO
5 EYE-TESTING DATA OF TABLE 8.9 v

6 'UNITS' § 16
7 'VARIATE' COUNT $ 16

8 : PRED $ 16
10 'FACTOR' LEFT § 4
11 : RIGHT § 4
12 : HIGH § 4
13 : LOW  § 4
15 'READ/PRIN=D' RIGHT,LEFT,COUNT, HIGH,LOW
17 'RUN’
18 1115201 1
19 12266 21
20 13124 31
21 1466 41
22 21234 21
23 221512 2 2
24 23432 32
25 2478 42
26 31117 31
27 32362 32
28 331772 3 3
29 34205 43
30 4136 41
31 4282 42
32 43179 43
33 4 4 492 4 4
3¢ 'EOD
36 'TABLE' TABl $ RIGHT, LEFT
37 'TABULATE'  COUNT ; TABL
38 'PRINT' TABL $ 9
39 'RUN'
TAB1
LEFT 1 2 3 4
RIGHT
1 1520 266 124 66
2 234 1512 432 78
3 117 362 1772 205
4 36 82 179 192
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41 'TERMS' LEFT+RIGHT+HIGH*LOW+COUNT
42 'Y/ERROR=POISSON' COURT

43 'FIT/PRIN=A' LEFT+RIGHT+HIGH*LOW ; FVAL = PRED
44 'RUN'
3

---------------------------------------------------------------

*** LINEAR DEPENDENCE DETECTED WHILE FITTING TERHM LOW
ALL PARAMETER(S) OF THIS TERM ARE ALIASED.
*** LINEAR DEPENDENCE DETECTED WHILE FITTING TERM HIGH.LOW
6 PARAMETER(S) OF THIS TERM ARE ALIASED.
**xx%x REGRESSION ANALYSIS **xx%%

ERROR DISTRIBUTION: POISSON LINK FUNCTION: LOG
Y-VARIATE: COUNT
**% RESIDUAL DEVIANCE #*x
SCALE PARAMETER IS 1.000

DF DEVIANCE MEAN DEVIANCE

RESIDUAL 3 7.271 2.424

46 'TABULATE' PRED ; TAB1

47 'PRINT' TABl ¢ 10.2
48 'RUN’
TAB1
LEFT 1 2 3 4
RIGHT
1 1520.00 263.38 133.58 59.04
2 236.62 1512.00 418.99 88.39
3 107.42 375.01 1772.00 201.57
4 42.96 71.61 182.43 492.00
49 'CLOSE®

*xxkxxxx END OF EYE. MAXIMUM OF 1884 DATA UNITS USED AT LIRE 43 (308
84 LEFT)
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GENSTAT V RELEASE 4.04B
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STAT

I0N)

'REFER' EYE
'' SEE SECTION 8.3.4.2 AND APPENDIX 7
FITTING THE MODEL OF MARGINAL HOMOGENEITY TO
EYE-TESTING DATA OF TABLE 8.9
USING THE METHOD OF SOLVIRG SIMULTANEOUS EQUATIONS ‘!
'UNITS' § 16
'YARIATE' COUNT $ 16
'FACTOR' RIGHT $ 4
LEFT $ 4
'SCALAR' DEV
‘READ/PRIN=D' RIGHT,LEFT,COUNT,P1,P2,P3,P4,P5,P6,P7,P8,0FF
*RUN'
111%0 0 0 0 ¢ 0 0 0 0 1520
21 234 3 2 4-2 2-1 3 2 -2181
31117 -2-1-3 1-2 1-3-2 2181
4 1 36 0 0 01 0 0 0 0 O
1 2 266 1 0 6 0 0 0 0 0 O
221512 0 0 0 O O O O 0 1512
3 2 362 0 6 0 06 0 0 0 1 O
4 2 82 60 0 1-1 1-1 1 0 0
13 124 0 1 06 0 0 0 0 0 O
2 3432 -2 -2-3 1-2 0-2 -1 2181
331772 06 0 0 0 O O O O 1772
4 3 179 0 06 0 06 01 0 0 O
1 4 66 0O 01 0 0 0 0 0 O
2 4 78 06 0 0 06 1 0 0 0 O
34205 0 0 0 0 0 0 1 0 O
4 4 492 0 0 0 6 0 0 0 0 492
'EOD’
'RUN'
'TABLE/M' PREDTABLE $ RIGHT, LEFT
'TABULATE/PRIN=T' COUNT ; PREDTABLE
‘RUN!
PREDTABL
LEFT 1 2 3 4 MARGIN
RIGHT
1 1520.00 266.00 124.00 66,00 1976.00
2 234.00 1512.00 432.00 78.00 2256.00
3 117.00 362.00 1772.00 205.00 2456.00
4 36.00 82.00 179.00 492.00 789.00
MARGIN 1907.00 2222.00 2507.00 841.00 7477.00
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35 'TERMS/OFFSET=0FF' P1+P2+P3+P4+P5+P6+P7+P8+COUNT
36 'Y/ERROR=POISSON,LINK=IDENTITY' COUNT

37 ‘FIT/INT=N' P1+P2+P3+P4+P5+P6+P7+P8 ; FVAL = PRED

38 'RUN!

K

**xx* REGRESSION ANALYSIS **#x+#
ERROR DISTRIBUTION: POISSON LINK FUNCTION: IDENTITY

Y-VARIATE: COUNT
OFFSET VARIATE: OFF

*** REGRESSION COEFFICIENTS *xx

ESTIHATE S.E. T
Pl 252.5 11.8 21.47
p2 111.84 g.29 12.04
P3 56.95 6.89 8.26
P4 42.71 6.11 7.00
P5 70.59 7.65 9.23
P6 188.4 10.6 17.79
P7 1985.3 10.6 18.34
P8 383.1 13.4 28.56

* STANDARD ERRORS BASED ON SCALE PARAMETER WITH VALUE 1.000

*** RESIDUAL DEVIANCE *x%
SCALE PARAHETER IS 1.000

DF DEVIANCE MEAN DEVIANCE
RESIDUAL 8 11.99 1.498
39 'TABULATE/PRIN=T' PRED ; PREDTABLE
40 'RUN'
PREDTABL
LEFT 1 2 3 4 HARGIN
RIGHT
1 1520.00 252.49 111.84 56.95 1941.28
2 247.24 1512.00 409.43 70.59 2239.25
3 131.27 383.14 1772.00 195.27 2481.67
4 42.77 91.62 188.40 492,00 814.80

HARGIN 1041.28 2239.25 2481.67 814.80 7477.00
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