Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. THE EFFECTS OF PLANT COMPETITION ON VEGETATIVE AND REPRODUCTIVE GROWTH IN SOYBEAN [<u>Glycine max</u> (L.) Merrill]

WITH PARTICULAR REFERENCE TO REPRODUCTIVE ABORTION

A thesis persented in partial fulfilment of the requirement for the Degree of Doctor of Philosophy in Seed Technology at Massey University Palmerston North New Zealand

WANCHAI CHANPRASERT

1988

ABSTRACT

This thesis reports the results of three complementary studies in which the growth pattern of soybean cultivars Matara (semideterminate) and Amsoy (indeterminate) were compared. The first trial studied the effects of interplant competition on soybean plant growth with particular emphasis on reproductive development. A Nelder's radial spacing design (type 1a) was used which provided plant densities ranging from 5.8 up to 61.2 plants.m². The second study involved a histological and morphological study of glasshouse grown soybean flowers and field grown soybean pod samples to detect possible causes of floral and seed abortion. The third experiment determined the effect of intraplant competition on reproductive development using young leaf removal treatments with glasshouse grown soybeans.

Although interplant competition created by increasing plant density reduced vegetative growth and suppressed reproductive growth such as daily flower production, flowering period and total flower number per plant, it had no significant effect on the rate of reproductive abortion.

The semideterminate Matara showed less vegetative growth during the reproductive phase than Amsoy and produced about half the flowers in a flowering period which was on average 7 days shorter. However, Matara was capable of producing a similar seed yield to Amsoy at all densities. This was because Matara had significantly lower rates of reproductive abortion than Amsoy (average 65 vs 82%, respectively).

Neither problems in pollination nor lack of fertilization was found to be an important cause of flower abortion. It was found that 99 and 95% of the classifiable ovules in normal flowers of Matara and Amsoy, respectively, had been fertilized. Seed abortion within a pod occurred at every stage as a result of the curtailment of subsequent development, and was most frequent in the basal position.

Reproductive abortion in glasshouse grown soybean occurred at all

stages but was more pronounced at the flowering stage (68% for Matara and 71% for Amsoy). Young pod (≤ 2 -cm long) abortion was 9% for Matara and 11% for Amsoy, whereas large pod (>2-cm long) was less than 1% in both cultivars.

Mechanical manipulation to reduce intraplant competition by young leaf removal (YLR) proved that competition between vegetative and reproductive growth certainly existed. YLR In Amsoy diverted assimilate flow into reproductive growth, especially at the R3 growth stage. YLR by 50% starting at growth stage R3 increased flower and pod numbers per plant both by 44% in Amsoy, but did not significantly However, YLR in Matara, which showed a less increase seed yield. plastic pattern of growth, caused detrimental effects, especially with 100% YLR at growth stages R1 and R3 which significantly reduced seed yields. In this experiment, YLR did not change the rate of combined reproductive abortion in either variety.

The consistency of rate of total combined reproductive abortion in both field grown and glasshouse grown soybeans, regardless of large differences in inter- and intraplant competition suggests that reproductive abortion in soybean is under genetic control, possibly through hormone action. A model for explaining assimilate flow in reproductive development as affected by YLR is discussed and emphasizes the likelihood of a role for hormones in this process. Suggestions are made for future work in this area based on the detailed understanding of the reproductive morphology of these two cultivars which has been gained from this study. SEED APPEARANCE (100 SEEDS) FROM 6 HARVESTING TIMES

(DAYS AFTER PEAK FLOWERING, DAPF),

SHOWING RELATIVE SEED SIZE AND THE SIGNIFICANCE OF SEED ABORTION

OCCURRING AT THE BASAL POSITION OF THREE-SEEDED PODS

IN MATARA SOYBEAN

•

ACKNOWLEDGEMENT

I wish to express my heartfelt gratitude to Dr. Murray J. Hill, my chief supervisor and Director of the Seed Technology Centre, for his wise supervision, constructive criticisms and understanding.

I am also greatly indebted to Dr. Peter Coolbear, my co-supervisor for his warm encouragement, constructive criticisms and patience in discussing and reading my manuscripts.

My sincere thanks are also extended to :

Professor R. G. Thomas for his guidance concerning cytological techniques.

Dr. J. G. Hampton for reading and contributing valuable comments on my manuscript of the field study.

Mr. Angus Robertson for his help in preparing the <u>Rhizobium</u> culture for the field study.

Mrs. D. E. M. Meech, Mr. C. R. Johnstone, Mrs. K. A. Johnstone, Mr. D. Pegler, Mr. C. R. McGill, Mrs. A. M. Davies and Mrs. D. Humphrey and also the staff of the Botany department for their help in so many ways.

The New Zealand Government for providing my scholarship, the Thai Government for allowing me to study in New Zealand and the Helen E. Akers Scholarships for financial support.

All my friends for their help and encouragement.

Mrs. G. Eustace for her suggestions and kindness in providing us with a real home in New Zealand. Mrs. Sirilak Sinthawalai for her encouragement, suggestions and moral support. Finally, I would like to express my deep gratitude to my parents, whose love, support and encouragement has been invaluable to me. I also wish to thank my wife, Siree, most sincerely for her devoted support and for being by my side throughout this course of study. TABLE OF CONTENTS

				PAGE
ABSTRACT	C			ii
ACKNOWLE	EDGEME	ENTS		v
TABLE OF	vii			
LIST OF	TABL	ES		xiii
LIST OF	FIGU	RES		xv
LIST OF	PLATE	ES		xviii
LIST OF	APPEN	DICES		xix
CHAPTER	1	GENERAI	. INTRODUCTION	1
CHAPTER	2	PLANT (COMPETITION UNDER DIFFERENT POPULATION	
		DENSIT	IES IN SOYBEAN	5
	5			
	2.1	INTRODU	JCTION	5
	2.2	LITERAT	CURE REVIEW	7
		2.2.1	Plant Competition	7
			2.2.1.1 Definition	7
			2.2.1.2 Competition for light	9
			2.2.1.3 Competition for water	10
			2.2.1.4 Competition for nutrients	11
			2.2.1.5 Competition for carbon dioxide	11
		2.2.2	Growth and development as affected by	
			plant competition	12
			2.2.2.1 Vegetative growth	12
			2.2.2.2 Soybean growth habit	15
			2.2.2.3 Reproductive growth	17
		2.2.3	Economic yield as affected by plant	
			competition	23
			2.2.3.1 Yield and yield components	23
			2.2.3.2 The spatial distribution of	
			seed yield within plants	25
		2.2.4	Concluding remarks	27
	2.3	MATERIA	ALS AND METHODS	27
		2.3.1	Experimental site	27
		2.3.2	Soil preparation and seed treatment	27
		2.3.3	Planting and crop management	28

		2.3.4	Data collection	33
			2.3.4.1 Vegetative study	33
			2.3.4.2 Growth analysis	35
			2.3.4.3 Reproductive study	36
	2.4	RESULTS	5	40
		2.4.1	Plant growth and development	40
			2.4.1.1 Vegetative growth	40
			2.4.1.2 Reproductive growth	53
		2.4.2	Economic yield	67
			2.4.2.1 Yield and yield components	67
			2.4.2.2 Partitioning of seed yield	70
	2.5	DISCUSS	SION	74
		2.5.1	Radial spacing design in plant	
			density study	74
		2.5.2	Factors influencing vegetative plant	
			growth and development	74
		2.5.3	Crop growth and planting density	76
		2.5.4	Different responses in vegetative plant	
			growth and development between cultivars	77
		2.5.5	Relationship between vegetative and	
			reproductive growth	78
		2.5.6	Reproductive growth and reproductive	
			abortion	82
		2.5.7	Seed development	83
		2.5.8	Economic yield	84
	2.6	CONCLU	SION	87
CHAPTER	3	MORPHOI	LOGICAL AND HISTOLOGICAL STUDY ON SOYBEAN	
		FLOWER	S AND PODS IN RELATION TO FLOWER ABORTION	
		AND SEI	ED ABORTION WITHIN PODS	89
	3.1	INTRODU	JCTION	89
	3.2	LITERAT	TURE REVIEW	90
		3.2.1	The soybean flowers	90
		3.2.2	Ovule development	91
		3.2.3	Pollination and double fertilization	93
		3.2.4	Embryo and early seed development	94

	3.2.5	Relationship between fertilization and	
		flower abscission	94
	3.2.6	Clearing techniques for observation of	
		fertilization	96
3.3	MATERI	ALS AND METHODS	97
	3.3.1	Plant culture	97
	3.3.2	Pollination observation	98
	3.3.3	Histological observation	98
		3.3.3.1 Description of embryogenesis	98
		3.3.3.2 Fertilization examination on	
		'normal flowers'	100
		3.3.3.3 Fertilization examination on	
		'abscising flowers'	100
	3.3.4	Observations on seed abortion and changes	
		in seed dry weight at different positions	
		within pods during seed development	103
		3.3.4.1 Seed abortion within pods	103
		3.3.4.2 Changes in seed dry weight at	
		each position within 3-seeded	
		pods determined during seed	
		development	103
3.4	RESULT	'S	105
	3.4.1	Pollination observation	105
	3.4.2	Fertilization examination on 'normal	
		flowers'	105
	3.4.3	Fertilization examination on 'abscising	
		flowers'	109
	3.4.4	Seed abortion at different positions	
		within pods	109
	3.4.5	Changes in seed dry weight at different	
		positions within pods	109
3.5	DISCUS	SION	114
3.6	CONCLU	ISION	117

х

CHAPTER	4	EFFECT	S OF YOU	JNG LEAF	REMOVAL	ON	FLORAL	
		ABORTI	ON AND POI	D SET				118
	4.1	INTROD	UCTION					118
	4.2	LITERA	TURE REVII	EW				119
		4.2.1	Introduc	tion				119
		4.2.2	Flower	developmen	t and r	reprod	uctive	
			abortion					121
			4.2.2.1	The physio	logy of fl	loweri	ng and	
				factors	affectir	ıg	flower	
				developmen	t			121
			4.2.2.2	Reproducti	ve aborti	ion i	n crop	
				plants				122
			4.2.2.3	Reproducti	ve abortio	on in	soybean	
				plants				124
		4.2.3	Factors a	affecting	reproducti	ive ab	ortion	127
			4.2.3.1	Nutrient d	efiencies			127
			4.2.3.2	Hormonal c	ontrol			129
			4.2.3.3	Vascular c	onstrictio	on		137
		4.2.4	The plas	ticity of y	ield compo	onents		138
		4.2.5	The comp	etitive sin	k reductio	on cor	cept	139
	4.3	MATERI	ALS AND M	ETHODS				140
		4.3.1	Plant cu	lture				140
		4.3.2	Experime	ntal design				141
		4.3.3	Young le	af removal				141
		4.3.4	Reproduc	tive struct	ure class:	ificat	ion	. 142
		4.3.5	Yield an	d yield com	ponent de	termin	ation	144
	4.4	RESULT	S		_			144
		4.4.1	Effect o	f YLR on le	af number:	S		145

4.4.2	4.4.2	Effect of YLR on flower numbers			
		4.4.2.1	Cumulative flower number		
			per plant	148	
		4.4.2.2	Total flower number per plant	148	
		4.4.2.3	Vertical distribution of flowers		
			on control plants	152	
		4.4.2.4	Vertical distribution of flowers		
			on plants as promoted by YLR		
			in Amsoy	152	
	4.4.3	Effect o	f YLR on pod set	152	
		4.4.3.1	Cumulative large pod numbers		
			per plant	152	
		4.4.3.2	Mature pod number p er plant	155	
		4.4.3.3	Vertical distribution of mature		
			pods on control plants	159	
		4.4.3.4	Vertical distribution of mature		
			pods on plants as affected by		
			YLR in Amsoy	159	
	4.4.4	Effect o	f young leaf removal (YLR) on		
		yield an	d yield components	159	
	4.4.5	Reproductive abortion			
		4.4.5.1	Reproductive abortion in control		
			plants	165	
		4.4.5.2	Reproductive abortion as		
			affected by YLR	165	
		4.4.5.3	Reproductive abortion of early		
			and late flowers	168	
		4.4.5.4	Reproductive abortion a t ea ch		
			node	168	
4.5	DISCUS	SION		170	
	4.5.1	Effects	of YLR on reproductive		
		developm	ent	170	
		4.5.1.1	Responses of Matara plants	170	
		4.5.1.2	Responses of Amsoy plants	171	

		4.5.2	Effects	of YLR on yield and yield	
			componen	ts	174
			4.5.2.1	Responses of Matara plants	174
			4.5.2.2	Responses of Amsoy plants	174
		4.5.3	Reproduc	tive abortion	175
		4.5.4	A model	for explaining assimilate flows	178
	4.6	CONCLU	SION		183
CHAPTER	5	GENERA	L DISCUSS	ION AND SCOPE FOR FURTHER STUDY	185
	5.1	GENERA	L DISCUSS	ION	185
	5.2	SCOPE	FOR FURTH	ER STUDY	187
		5.2.1	Mechanic	al manipulation	188
		5.2.2	Chemical	manipulation	189
			5.2.2.1	Hormonal changes as influenced	
				by young leaf removal	190
			5.2.2.2	Further work in chemical	
				manipulation	191

REFERENCES

APPENDICES

xii

PAGE

193

.

LIST OF TABLES

TABLE		PAGE
2.1	Plant population densities used in the field experiment	29
2.2	Relationship between 'days after emergence' (DAE) and 'days after peak flowering' (DAPF) and	
	sampling times for reproductive growth study	38
2.3	Description of plant partitions for Matara and Amsoy	
	soybean	39
2.4	Effect of plant density on flowering period (days),	
	total flower production per plant and	
	reproductive abortion (%) of Matara and Amsoy	
	soybean	58
2.5	Effect of plant density on final seed quality of	
	Matara and Amsoy soybean	68
2.6	Effect of plant density on final seed yield of	
	Matara and Amsoy soybean	69
2.7	Effect of plant density on pod numbers per plant,	
	seed numbers per pod and seed weight (g.100	
	seeds ⁻¹) of Matara and Amsoy soybean	71
2.8	Seed yeild (g.plant part ^{-1}) from 5 different plant	
	parts for Matara and 6 different plant parts for	
	Amsoy from 3 plant densities (61.2, 23.8 and 5.8	
	plants.m ⁻²)	, 72
2.9	Summary of recommended optimum densities from	
	previous studies on soybean	85
3.1	Percentages of untertilized ovules (based on the	
	total number of classified ovules) at basal and	100
2 0	apical positions in Matara and Amsoy soybean	108
3.2	rercentage of aborted seeds in samples of field	
	grown soybeans examined at each position	
	within a pod	112

TABLE

4.1

4.2

4.3

4.4

Effect of young leaf removal on the remaining leaf	
number per plant (at growth stage R6, 66 DAP for	
Matara and 75 DAP for Amsoy), number of removed	
leaves and total number of leaves produced in	
Matara and Amsoy soybean	147
Effect of YLR on flower number per plant in Matara	
and Amsoy soybean	151
Effect of YLR on mature pod number per plant in	
Matara and Amsoy soybean	158
Effect of YLR on yield and yield components in	
Matara and Amsoy soybean	162

- 4.5 Effect of YLR on pod number per plant and seed weight of early and late formed reproductive structures in Amsoy soybean
- 4.6 Effect of YLR on the percentage of flower abortion, young pod abortion, large pod abortion and combined abortion (of total flower bud number) in Matara and Amsoy soybean
- 4.7 Effect of YLR on percentage of reproductive abortion
 of early and late flowers in Matara and Amsoy
 soybean 169

PAGE

164

167

LIST OF FIGURES

PAGE FIGURE 30 2.1 Diagram showing sample utilization in each semicircle 2.2 Effect on plant density on plant height (a) and 41 node number per plant (b) in Matara soybean 2.3 Effect on plant density on plant height (a) and node 42 number per plant (b) in Amsoy soybean Effect of plant density on internodal elongation in 2.4 44 Matara soybean 2.5 Effect of plant density on internodal elongation in 45 Amsoy soybean 2.6 Effect of plant density on leaf area (a) and above ground shoot dry weight (b) per plant of Matara 47 soybean 2.7 Effect of plant density on leaf area (a) and above ground shoot dry weight (b) per plant of Amsoy 48 soybean 2.8 Effect of plant density on branch number per plant 49 at maturity in Matara and Amsoy soybean 2.9 Effect of plant density on crop growth rate (CGR) (a) 51 and leaf area index (LAI) (b) in Matara soybean 2.10 Effect of plant density on crop growth rate (CGR) (a) and leaf area index (LAI) (b) in Amsoy soybean 52 2.11 Effect of plant density on daily flower numbers per plant in Matara soybean 55 2.12 Effect of plant density on daily flower numbers per plant in Amsoy soybean 56 2.13 Changes in pod numbers per plant (a) and seed numbers per pod (b) with time at different densities $(61.2, 23.8 \text{ and } 5.8 \text{ plants.m}^2)$ in 60 Matara soybean 2.14 Changes in pod numbers per plant (a) and seed numbers per pod (b) with time at different densities (61.2, 23.8 and 5.8 plants.m⁻²) in 61 Amsoy soybean

xv

FIGURE

2.15	Changes in seed fresh weight (a) and seed dry weight	
	(b) with time at 3 different densities (61.2,	()
0 16	23.8 and 5.8 plants.m ²) in Matara soybean	63
2.10	Changes in seed fresh weight (a) and seed dry weight	
	(b) with time at 3 different densities (61.2,	
0 17	23.8 and 5.8 plants.m ⁻) in Amsoy soybean	64
2.17	Changes in seed moisture content (a) and air-dried	
	seed germination (b) with time at 3 different	
	plant densities (61.2, 23.8 and 5.8 plants.m ⁻²)	
0.40	in Matara	60
2.18	Changes in seed moisture content (a) and air-dried	
	seed germination (b) with time at 3 different	
	plant densities $(61.2, 23.8 \text{ and } 5.8 \text{ plants.m}^2)$	
	in Amsoy	66
2.19	Some aspects of vegetative growth (leaf number and	
	leaf area per plant) and reproductive growth	
	in Matara soybean at 3 different densities	80
2.20	Some aspects of vegetative growth (leaf number and	
	leaf area per plant) and reproductive growth	
	in Amsoy soybean at 3 different densities	81
3.1	Description of sequence of embryogenesis in soybean	101
3.2	Flawers and flower structures of soybean	106
3.3	Percentage of each ovary type in normal flowers and	
	percentage of fertilized ovules (based on the	
	total number of classified ovules with 95%	
	confidence interval) in Matara and Amsoy soybean	107
3.4	Percentage of each pod type and percentage of	
	pods containing at least one aborted seed in	
	Matara and Amsoy soybeans grown in the field	111
3.5	Seed dry weight at each position in 3-seeded pods	
	during seed development in field grown soybean	
	var. Matara	113
4.1	Diagram showing factors associated with seed yield	
	of soybeans	120
4.2	Soybean flower identification for this study	143

xvi

FIGURE

4.3	Reproductive developmental stages in glasshouse-	
	grown soybeans varieties Matara and Amsoy and	
	frequencies of young leaf removal for each	
	treatment	146
4.4	Effect of YLR starting at growth stage R3 on	
	cumulative flower production per plant of Matara	149
4.5	Effect of YLR starting at growth stage R3 on	
	cumulative flower production per plant of Amsoy	150
4.6	Flower production at each node on control plants	
	of Matara and Amsoy soybean	153
4.7	Flower production at each node on Amsoy plants from	
	treatment R3-50 compared with the control	154
4.8	Effect of YLR starting at growth stage R3 on	
	cumulative large pod production per plant of	
	Matara soybean	156
4.9	Effect of YLR starting at growth stage R3 on	
	cumulative large pod production per plant of	
	Amsoy soybean	157
4.10	Mature pod production at each node on control plants	
	of Matara and Amsoy soybean	160
4.11	Mature pod production at each node on Amsoy plants	
	treated for R3-50 compared with the control	161
4.12	Diagram showing events of pod set and abortion at	
	each stage of the control plants	166
4.13	A model of assimilate flow	179
4.14	A model of assimilate flow used to summarize the	
	result of Amsoy variety	181

xviii

PAGE

.

LIST OF PLATES

PLATE

2.1	Field grown Matara and Amsoy soybeans in a radial	
	spacing design (type 1a): An overview of the whole	
	experiment at 55 days after planting	31
2.2	Soybean seedlings in a radial design (type 1a) with	
	20 density levels at 3 weeks after planting (a);	
	Matara and Amsoy soybeans at 55 days after	
	planting (b)	32
2.3	Above ground plant forms at final harvest of Matara	
	soybean grown at different plant densities	73
3.1	Fertilized (a - c) and unfertilized ovules (d)	102
3.2	Soybean pods showing seed abortion at different	
	positions	104
3.3	Ovules from abscising flowers showing mild to	
	severe shrinking (b - d) compared to an ovule from	
	a normal flower (a)	110
	a	

LIST OF APPENDICES

APPENDIX

- 1.....Soil analysis of the experimental field
- 2.....Climatic conditions at DSIR Research Station, Palmerston North
- 3.....Nelder's spacing design
- 4.....Curve fitting technique
- 5.....Graphs showing models, R² values and the response of vegetative growth of Matara and Amsoy soybean as affected by a wide range of plant densities
- 6.....Percent light interception of plants grown at different plant densities at 32, 48 and 62 DAE for Matara and at 30, 42 and 56 DAE for Amsoy
- 7.....Pod number per node at different plant parts (top, middle and bottom) of plants grown at 61.2, 23.8 and 5.8 plants.m⁻²
- 8.....Maximum and minimum temperatures and relative humidity in the glasshouse
- 9.....Modified half-strength hoagland's nutrient solution
 (g.litre⁻¹)
- 10.....Reproductive developmental stages as described by Fehr and Canivess (1977)
- 11.....Proportions of developed flowers to flower buds as
 affected by young leaf removal observed at 56 DAP
 for Matara and 61 DAP for Amsoy
- 12.....Analyses of variance in split block design for data from the field experiment
- 13.....Analyses of variance in completely randomized design (CRD) for data from the young leaf removal experiment