Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Monoclonal antibody production: a comparison of *in vitro* and *in vivo* methods and their use in Clostridial vaccine manufacture.

A dissertation presented in partial fulfilment of the requirements for the degree of Master of Science in Veterinary Medicine at Massey University, Manawatu, New Zealand.

Kathryn Nicole Bonistalli 2013

Institute of Veterinary, Animal and Biomedical Sciences Massey University Palmerston North, New Zealand

Table of Contents

Abstract	iii
Acknowledgements	v
Abbreviations	vii
Chapter 1: Introduction	9
Historical importance of Clostridial diseases	9
The bacterium	9
Clostridial diseases	9
Disease and immunity	10
Host, pathogen, and environment interaction	10
Mechanism of immunity	11
Vaccines and vaccine manufacture	13
Vaccine principles and types	13
Vaccination: key component of disease prevention	13
Clostridial vaccines	14
Monoclonal antibodies	16
History and definition	16
Production process	17
Enzyme-linked immunosorbent assays (ELISA)	18
Study objectives	19
Chapter 2: Materials and methods	21
Production and assessment of ascites-derived MAbs	21
Hybridoma preparation and MAb harvest from culture	21
Assessment of MAb affinity by ELISA	24
Ascites production	27
Production of CELLine-derived MAbs	29
Seeding and monitoring CELLine culture	29
Development and optimization of an ELISA for vaccine toxoid potency testi	ng 30
Fast protein liquid chromatography (FPLC) purification of MAbs	31
ELISA setup	33
ELISA technique	33
Optimisation	34
Implementation	35
Chapter 3: Results	37
Verification of hybridoma viability, reactivity, and specificity	37
Ascites and CELLine culture production	37

Ascites production	37
CELLine culture	38
ELISA potency assay	
Chapter 4: Discussion	40
Comparison between in vitro and in vivo MAb production methods	40
ELISA assay performance relative to live-animal testing	42
Problems encountered during the study	43
Purification problems	43
Low MAb yields	43
Summary and conclusions	46
References	47
Tables	51
Figures	63

Abstract

The genus *Clostridium* contains rod-shaped, endospore forming, gram-positive bacteria that are obligate anaerobes (Delano, Mischler, & Underwood, 2002; Hatheway, 1990; Rood, 1997). Clostridial diseases are important diseases of livestock in New Zealand, and are considered by some to be the most economically important diseases of sheep and other livestock (Walker, 1992). They are characterized by systemic vascular failure and/or necrotizing enteritis within hours after exposure—a speed that out-paces a naïve individual's ability to control and effectively counteract the toxin's effects. Vaccination is an important management practice that can decrease the morbidity and mortality associated with Clostridial infections, and vaccination has been used safely and successfully in New Zealand livestock for many years.

Vaccine manufacture and quality assurance (QA) often involves production of monoclonal antibodies (MAbs) derived from culture of hybridoma cells. Traditionally, large numbers of animals have been used to support research, development, and manufacture of Clostridial vaccines (for use in toxin neutralization, vaccine challenge studies, and potency determination) and for MAb manufacture (ascites model). There is currently a great emphasis on finding ways to reduce, refine, and replace animal use in research.

Studies were undertaken that involved MAb production techniques and assay development related to *C. perfringens* Type C beta toxin and Type D epsilon toxin. Two different methods for MAb production were evaluated: a traditional *in vivo* murine ascites method and an *in vitro* method based on use of a commercially available two chamber plastic bioreactor system (CELLine; Becton Dickinson). Two hybridoma lines with historic MAb activity against the lethal and dermo-necrotizing effects of epsilon toxin (EP82) and beta toxin (CP68) were cultured in each production system. In addition to comparing the quantity of MAbs produced by each method, a sandwich ELISA based on use of the anti-epsilon MAbs was developed. This ELISA was implemented for use as a diagnostic tool for internal investigation of batches of epsilon toxoid-containing vaccines that were identified as having low potency in the standard QA test (rabbit antibody induction) for potency.

These studies showed that an *in vitro* method of hybridoma culture was more time and cost effective than conventional live animal ascites production, based on the total quantity of

MAb produced for both of the hybridoma lines that were studied. Additionally, the sandwich ELISA that was developed was effective in detecting very small amounts of toxoid.

Acknowledgements

I would like to thank all the people involved in this project for their guidance and infinite wisdom in helping to make this a successful project. Thank you to Tao Zheng and his laboratory staff (Natalie Parlane, Faith Cox, Allison McCarthy, Hanna Barton) for their time, expertise, and use of their space and equipment; Roy Meeking for his help in navigating MAF and Hopkirk regulations; and Debbie Chesterfield and the staff at SAPU for their assistance with the ascites production phase of the project.

Thank you to Marion Callus, Rod Ravenhall, and Robin Mofle at Schering Plough Animal Health (now Merck) for the opportunity to do this project and the support and advice that you provided. Thank you to Eric Neumann for your patience, encouragement, and guidance.

Abbreviations

BA/BSA	Bovine albumin, bovine serum albumin
ССМ	Cell compartment media
CDC	United States Centers for Disease Control and Prevention
CMI	Cell-mediated immunity
DMSO	Dimethyl sulfoxide
ELISA	Enzyme-linked immunosorbent assay
FBS	Fetal bovine serum
FPLC	Fast protein liquid chromatography
IgG	Immunoglobulin G
MAb	Monoclonal antibody
mAU	Absorbance units
MHC	Major histocompatibility complex
NCM	Nutrient compartment media
PET	Polyethylene terephthalate
PBS	Phosphate buffered saline
OD	Optical density
QA	Quality assurance