Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. An analysis of polyphenolic blackcurrant (*Ribes nigrum*) extracts for the potential to modulate allergic airway inflammation

> A thesis presented in partial fulfilment of the requirements for the degree of

Master of Science

in

Nutritional Science

at Massey University, Palmerston North, New Zealand.

Janet Lynley Taylor

2009

Statement of originality

'I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which to a substantial extent has been accepted for the qualification of any other degree or diploma of a university or other institution of higher learning, except where due acknowledgement is made in the acknowledgements'.

Signed.....

Date.....

Abstract

The allergic disease of asthma is characterized by an infiltration of inflammatory cells to the lung, a process co-ordinated by T-helper (TH) cells. The TH2 cytokine Interleukin (IL)-4 promotes infiltration of eosinophils to sites of inflammation. Eosinophil-selective chemoattractant cytokines (eg. eotaxins) are synthesized by lung epithelial cells. Eotaxin-3 is expressed at high levels in the asthmatic lung, predominantly after IL-4 stimulation. Eotaxin-3 is therefore a marker of inappropriate airway inflammation.

Polyphenolic (PP) compounds found in high concentrations in berries may have beneficial effects in inflammatory conditions. Plant and Food Research produced high-PP extracts of blackcurrant (BC) cultivars that were tested for inflammation modulating effects.

Since high doses of PPs have been shown to cause cell death, we tested two BC cultivars at a range of concentrations in a cell viability (WST-1) assay. While no toxic effects were attributable to the BC extracts (1-50µg/ml), a doserelated trend in cell death was observed and therefore 10µg/ml was chosen for further experiments. Ten BC cultivars were compared for efficacy by measuring eotaxin-3 production in IL-4 stimulated human lung epithelial (A549) cells *in vitro*. Cells were incubated with BC extracts (10µg/ml) and IL-4 (10ng/ml) for 24 hours. The supernatants were then quantified for eotaxin-3 levels by an enzyme-linked immunosorbent assay (ELISA). All ten BC extracts reduced eotaxin-3 levels after stimulation with IL-4, and six BC extracts were effective by statistically significant levels (P<0.05), (BC cultivars -01, -02, -03, -05, -09 & -10). Of those, BC extracts of four cultivars demonstrated a reduction of more than 65% from the IL-4 stimulated control. In addition, a positive trend in inflammation modulation vs. one anthocyanin (ACN) in the BC extracts was shown.

This study has demonstrated the beneficial inflammation modulatory effects of polyphenolic BC extracts, which could be related to cyanidin 3-*O*-rutinoside content. These results may have therapeutic potential for asthma.

Acknowledgements

For their invaluable guidance and encouragement, my thanks to my supervisors, Marlena Kruger and Roger Hurst, and to Birgit Schrage. I am especially grateful to Roger Hurst for the generous use of his time, and for the opportunity to undertake this project in his laboratory at Plant and Food Research. In addition, my thanks to Robyn Wells for her kind assistance with cell culture and laboratory techniques.

For their support, I am indebted to Plant and Food Research, and to the Institute of Food, Nutrition and Human Health, Massey University. Assistance was also provided by the Foundation for Research, Science and Technology, New Zealand government.

Table of Contents

Statement of originality	i
Abstract	ii
Acknowledgements	iv
List of figures	v
List of tables	v
Abbreviations	vi

Chapter 1

1.	Introduc	tion	1
	1.1.	Biochemical and Physiological requirements of food	1
	1.1.1.	Metabolic burden	3
	1.1.2.	Immune system signalling	4
	1.1.3.	Response to metabolic burden	6
	1.1.4.	Health benefits of fruit consumption	7
	1.1.5.	Flavonoid phytochemicals in fruit	8
	1.1.6.	Polyphenolic flavonoids and anthocyanins (ACNs)	10
	1.1.7.	Bioavailability of polyphenolics	12
	1.1.8.	Modulation of inflammatory conditions	15
	1.2.	Berryfruit	16
	1.2.1.	Berries and health	17
	1.2.2.	Polyphenolic berryfruit extracts	18
	1.2.3.	Blackcurrant cultivars	18
	1.3.	Physiology of asthma	19
	1.3.1.	Lung physiology	19
	1.3.2.	Asthma	20
	1.4.	Biochemical and cellular responses during asthma	22
	1.4.1.	Pulmonary alveolar signalling	23
	1.4.2.	Inflammatory cytokines and chemokines	23
	1.4.3.	Regulation of cytokine signalling	25
	1.4.4.	Chemokines	29
	1.4.5.	Eotaxins	30
	1.5.	Potential effects of fruit and polyphenolics on asthma	32
	1.5.1.	Antioxidant properties/Anti-inflammatory properties	33
	1.6.	Objectives	38

Chapter 2

2.	Materials	and methods	39
	2.1.	Cell culture	39
	2.1.1.	Routine cell line maintenance	39
	2.1.2.	Experimental conditions	41
	2.2.	Interleukin 4 (IL-4)	41
	2.3.	Cytotoxicity	42
	2.3.1.	Cell toxicity assay	42
	2.4.	Co-incubation of berryfruit (BC) extracts and IL-4	43
	2.4.1.	Blackcurrant extracts	43
	2.4.2.	Dimethyl sulfoxide (DMSO)	44
	2.4.3.	Co-incubation of blackcurrant extracts with IL-4	45
	2.5.	Pre-incubation	45
	2.6.	Eotaxin-3 detection by specific ELISA	45
	2.6.1.	ELISA procedure	47
	2.7.	Statistical analysis	49
	2.7.1.	Standard curves and linear regression	50
	2.7.2.	Analysis of variance	51

Chapter 3

3.	Results		52
	3.1.	Optimisation experiments	52
	3.1.1.	Eotaxin-3 standard curve	52
	3.1.2.	Activity of tetramethylbenzidine (TMB)	54
	3.1.3.	A549 cell number optimisation	54
	3.1.4.	Cell supernatant for ELISA assay	55
	3.2.	IL-4 cytokine challenge to cells	56
	3.2.1.	Dose response	56
	3.2.2.	Incubation time-course for IL-4	58
	3.3.	Cytotoxicity	59
	3.3.1.	Cell toxicity of selected blackcurrant cultivars	60

3.4.	Co-incubation with IL-4	62
3.4.1.	Blackcurrant extract dose response	62
3.4.2.	Dimethyl sulfoxide (DMSO) effects	63
3.4.3.	All blackcurrant cultivars co-incubated with IL-4	65
3.5.	Pre-incubation	66
3.5.1.	Pre-incubation of selected BC cultivars	67
3.6.	Comparison of co- and pre-incubation treatments	68
3.7.	Influence of ACNs on inflammation modulation	69
3.7.1.	Four major ACNs in BC extracts	69
3.7.2.	Total ACN glycosides in BC extracts	72

Chapter 4

4.	Discussi	on and conclusions	74
	4.1.	Interpretation of the results	74
	4.1.1.	Effects of polyphenolic (PP) BC extracts	74
	4.1.2.	Eotaxin-3 release by stimulated lung epithelial cells	75
	4.1.3.	Cytotoxicity, and effects of DMSO	77
	4.1.4.	Antioxidant and modulatory properties of PPs	79
	4.1.5.	Cellular environment and RONS	81
	4.1.6.	Fruit, polyphenolics and asthma	83
	4.1.7.	Anthocyanins	86
	4.2.	Conclusions	88
	4.3.	Limitations and suggestions for future improvements	89
	4.3.1.	Tissue culture limitations	89
	4.3.2.	Blackcurrant cultivars	90
Re	eferences		92

Appendices 99		
1.	Working spreadsheet for IL-4 incubation time course	100
2.	Cytotoxicity assay raw data	101
3.	Blackcurrant cultivar raw data	102

List of figures

Figure 1.1	Signal transduction processes	5
Figure 1.2	Synthesis of polyphenolics	9
Figure 1.3	HPLC of blackcurrant polyphenolic extract	19
Figure 1.4	Overview of the asthma inflammation reaction	22
Figure 1.5	Critical events in the cellular inflammatory response	26
Figure 1.6	Intracellular cytokine regulation	28
Figure 1.7	Structure of chemokines	30
Figure 2.1	Light micrograph of A549 cells	40
Figure 2.2	ELISA technique for quantification of eotaxin-3	46
Figure 2.3	Format of experimental design	49
Figure 3.1	Eotaxin-3 standard curve	52
Figure 3.2	Evaluation of tetramethylbenzidine (TMB)	54
Figure 3.3	Response to IL-4 by cell number	55
Figure 3.4	Cell supernatant dilutions for ELISA detection	56
Figure 3.5	Determination of optimum IL-4 concentration	57
Figure 3.6	Time course for IL-4 incubation with A549 cells	58
Figure 3.7	Positive control for cytotoxicity assay WST-1	60
Figure 3.8	Cytotoxicity of blackcurrant (BC) extracts	61
Figure 3.9	Comparison of BC extract doses	62
Figure 3.10	Co-incubation of DMSO and IL-4	63
Figure 3.11	Comparison of DMSO control with a BC extract	64
Figure 3.12	All BC extracts co-incubated with IL-4	65
Figure 3.13	Pre-incubation of BC cultivars	67
Figure 3.14	Comparison of BC extract treatments	68
Figure 3.15	Cyanidin glucoside vs. eotaxin-3	70
Figure 3.16	Cyanidin rutinoside vs. eotaxin-3	70
Figure 3.17	Delphinidin glucoside vs. eotaxin-3	71
Figure 3.18	Delphinidin rutinoside vs. eotaxin-3	71
Figure 3.20	Total glucosides vs. eotaxin-3	72
Figure 3.21	Total rutinosides vs. eotaxin-3	73
Figure 4.1	Structure of cyanidin 3-O-rutinoside	88

List of tables

Table 3.1	Measures of accuracy of eotaxin-3 standard curve	53
Table 3.2	Most effective inflammation modulating BC cultivars	66
Table 3.3	Anthocyanin levels in BC cultivars	69

Abbreviations

ACN	Anthocyanins
APC	Antigen-presenting cells
BALF	Bronchoalveolar lavage fluid
BC	Blackcurrant
BSA	Bovine serum albumin
CCR	CC chemokine receptor
CVD	Cardiovascular disease
Cy-glu	Cyanidin 3-O-glucoside
Cy-rut	Cyanidin 3-O-rutinoside
DMSO	Dimethyl sulfoxide
Dp-glu	Delphinidin 3-O-glucoside
Dp-rut	Delphinidin 3-O-rutinoside
EGCG	Epigallocatechin gallate
ELISA	Enzyme-linked Immunosorbent assay
H_2O_2	Hydrogen peroxide
HPLC	High performance liquid chromatography
HRP	Horseradish peroxidase
lgE	Immunoglobulin E
IL	Interleukin
iNOS	Inducible NO synthase
LPS	Lipopolysaccharide
NO	Nitric oxide
OONO	Peroxynitrite
PBS	Phosphate buffered saline
PP	Polyphenolic
RONS	Reactive oxygen and nitrogen species
RDA	Recommended daily allowance
STAT	Signal transducer activator of transcription
ТН	Thymus helper (cell)
TLR	Toll-like receptor
TMB	Tetramethylbenzidine