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Abstract 

The role oxygen plays in the developing ovarian fol l icle is  of interest not only to the 

field of developmental biology but also to in-vitro fertilisation (IVF) technologists, as 

oxygenation of the oocyte is considered to be a potential determinant of oocyte 

competence. 

Oxygen transport through the developing ovarian fol l icle, and practical aspects of the 

analysis of oxygen in human fol licular fluid were investigated in this work. 

Mathematical modell ing of oxygen transport in the pre-antral, and antrallpre­

ovulatory fol licle revealed a number of interesting findings. 

Contrary to previous conclusions (Gosden & Byatt-Smith, 1 986), oxygen can reach 

the oocyte in the small pre-antral fol l icle. Improved estimates of diffusion coefficients 

through the granulosa cell layer and the inclusion of fluid voidage in this l ayer 

showed that oxygen can also reach the oocyte in large pre-antral follicles. The amount 

of oxygen that reaches the oocyte in the pre-antral fol licle is a function of its size and 

degree of vascularisation. Symmetrical ly distributed vascularisation is superior in 

achieving a well oxygenated fol l icle. 

However, the large pre-antral fol l icle wil l  eventually reach a size beyond which it  

cannot grow without anoxic regions developing. The size at which thi s  occurs i s  

consistent with the size at which antrum formation is observed in human fol l icles. 

The model predicts that the fol l icle can avoid an anOXIC state through antrum 

formation, and shows that the fol l icle develops in a way that is consistent with 

overcoming mass transport l imitations. The oxygen status of the fol licle during the 

antral/pre-ovulatory phase of growth requires that the volume of granulosa cells be 

balanced by the volume of foll icular fluid. 

Further predictions suggest that oocyte respiration becomes sub-maximal at fol licular 

fluid volumes below approximately 4ml, vascularisation levels below 3 8%, or fluid 



dissolved oxygen levels below 5 . 1  vol%. These values are consistent with 

observations in the literature. It was also shown that the measurement of fol licular 

fluid dissolved oxygen levels could provide a simple measure of the respiratory status 

of the oocyte, and this may be superior to the measurement of fol l icular 

vascularisation which requires knowledge of more parameters. 

Methodology for the analysis of foll icular fluid oxygen solubility and diffusivity was 

developed using a Clark oxygen electrode. Analysis of these parameters showed that 

they are similar to human p lasma, and allowed the predictive uncertainty of the model 

to be reduced. 

Experimental studies into the effects of IVF aspiration on foll icular fluid were carried 

out. Aspiration results in significant changes in the properties of fol licular fluid. 

Disso lved oxygen levels rose 5 ± 2 vol%, pH increased by 0.04 ± 0 .0 1  pH units, and 

temperature dropped by 7.7 ± 1 .3 QC. Mathematical modelling of b lood contaminated 

fol licular fluid also showed that contamination results in significant changes in the 

dissolved oxygen of the fluid. This suggests that if the composition of follicular fluid 

is to be determined (particularly dissolved oxygen), sampling and/or measurement of 

fluid must take place before the collection vial of the aspiration kit, and blood 

contamination must be eliminated. 

Based on this result, the design and testing of devices capable of reliable sampling 

and/or measurement of oxygen levels of fol l icular fluid was considered. This presents 

a continuing challenge, including the integration of routine fol l icular fluid oxygen 

measurement into cl inical practice. 
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Note that some symbols which are used only once are defined in  the text where they 

occur and are not i ncluded on this l ist. 

A cathode surface area m2 

Bi dimensionless ratio of membrane to sample layer 

resistance to mass transport 

cp heat capacity J.kg-1 .K-1 

Cpjj heat capacity of fol l icular fluid J.kg-1 .K-1 

C oxygen concentration mol .m-3 

Co oxygen concentration at the foll icle surface mol.m-3 

CcrU Oxygen concentration of critical interest I -3 
mO.m 

( most notably the critical oxygen concentration at which 

oocyte is only just respiring maximally (Ro = O.99Romax)) 

COmean the mean surface concentration of a partially mol .m-3 

vascularised follicle 

Carterial oxygen concentration in the plasma portion of  mol .m-3 

arterial blood 

Cnovasc oxygen concentration at a un-vascularised surface mol .m-3 

of the foll icle 

Ci oxygen concentration at the granulosa/antrum mol.m-3 

interface 

Cimin minimum oxygen concentration required at the mol.m-3 

granulosa/antrum interface to sustain the oocyte at 

Ro=O.99Romax 

Comin minimum oxygen concentration required at the mol .m-3 

foll icle surface to sustain the oocyte at Ro=O.99Romax 

Cii concentration of oxygen at the cumulus/antrum mol.m-3 

interface 

Ca analyte concentration mol .m-3 

Cp analyte concentration in plasma mol .m-3 

Cl analyte concentration in  follicular fluid mol .m-3 
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CH concentration of haemoglobin in blood mol .m-3 

dmil1 minimum distance from oocyte centre to outer edge of mm 

either compact or expanded cumulus mass 

dmax maximum distance from oocyte centre to outer edge of mm 

either compact or expanded cumulus mass 

dj follicle diameter m 

Dg diffusion coefficient of oxygen in the granulosa cell layer 2 -I m .s  

Dcel/ diffusion coefficient of oxygen through the cellular 2 -I m .s  

fraction of tissue 

Dp diffusion coefficient of oxygen in plasma m2. s-1 

Dejj effective diffusion coefficient of oxygen through t issue 2 -I m .s  

Da diffusion coefficient of oxygen in the antral fluid m 

Dc diffusion coefficient of oxygen in the cumulus 2 -I m .s  

cell layer 

Dm diffusivity of oxygen in the membrane of a 2 -I m .s  

dissolved oxygen electrode 

Ds diffusivity of oxygen in the sample solution 2 -I m .s  

Dw diffusivity of oxygen in water m2.s- 1 

Drel relative diffusivity of oxygen in sample compared to water 

F Faradays constant coulombs.mor 1 

(number of Coulombs per mol of electrons) 

iJHvap enthalpy of vaporisation of water J .morl 

1 current produced by Clark oxygen electrode A 

Ig steady-state gas phase current A 

Is steady-state current with sample solution layer A 

in place 

1w steady-state current with water layer in place A 

js number of nodes in the sample solution l ayer 

jm number of nodes in the membrane layer 

J oxygen flux mol . s-I 

KI first integration constant m -2 

K2 second integration constant mol.m-3 

Km Michaelis-Menton constant mol.m-3 
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Lm 

Ls 

Lw 

m 

n 

M02 

P 

po 

Pi 

Pg 

pm 

Ps 

p02 

p02b 

p02! 

p02m 

PI 

P2 

P3 

P4 

PATM 

Pm 

Ps 

Pw 

Pret 

membrane thickness m 

sample thickness m 

water layer thickness m 

flow rate kg.s-I 

number of electrons involved in the reduction of e 

oxygen at the cathode 

molecular mass of oxygen g.mo rl 
oxygen partial pressure mmHg 

oxygen partial pressure at follicle surface mrnHg 

partial pressure of oxygen at the granulosa/antrum mmHg 

interface or membrane/sample interface 

patiial pressure of oxygen in the gas phase mmHg 

partial pressure of oxygen in the membrane mmHg 

partial pressure of oxygen in the sample solution mmHg 

partial pressure of oxygen mmHg 

partial pressure of oxygen in blood mmHg 

partial pressure of oxygen in foll icular fluid mmHg 

partial pressure of oxygen in blood/fol licular fluid mmHg 

mixture 

number of p ixels occupied by oocyte pixels 

number of pixels occupied by oocyte and compact pixels 

cumulus 

number of pixels occupied by cumulus-oocyte complex pixels 

(cel ls and fluid) 

number of p ixels occupied by cumulus-oocyte complex pixels 

(cells only) 

atmospheric pressure 

permeability of oxygen in the membrane of a 

dissolved oxygen electrode 

permeability of oxygen in the sample solution 

permeabi lity of oxygen in water 

relative permeabil ity of oxygen in sample 

compared to water 

atm 

I -I -I H - 1 mO .m . s  .mm g 

I -I -I H -I mO .m . s  .mm g 

I -I - 1 H -1 mO .m . s  .mm g 
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Pso 

r 

rj 

ra 

ranaxie 

rjerit 

ra 

re 

Rgmax 

Rg 

Ramax 

Ra 

R 

Ra 

Rc 

S 

Sa 

Sm 

Ss 

Sw 

Srei 

Sp 

t 

tj 

tw 

partial pressure of oxygen at which 50% of haemoglobin 

oxygen binding sites are ful l  

radial distance from fol l icle centre 

fol licle radius 

oocyte radius 

(note this parameter expressed in mm in Chapters 7 and 8) 

distance from fol l icle centre at which follicle becomes 

depleted of oxygen 

critical fol l icle radius beyond which no oxygen will reach 

the surface of the oocyte. 

distance from the follicle centre to the 

granulosa/antrum interface 

distance from the follicle centre to the 

cumulus/antrum interface 

maximal oxygen consumption rate by the granulosa cell s  

oxygen consumption rate of the granulosa cells 

maximal oxygen consumption rate by the oocyte 

oxygen consumption rate by the oocyte 

gas constant 

oxygen consumption rate in the fluid antrum 

oxygen consumption rate of the cumulus cel ls  

solubil ity of oxygen in solution 

solubility of oxygen in the antral fluid 

solubility of oxygen in the membrane of a 

dissolved oxygen electrode 

solubility of oxygen in the sample solution 

solubil ity of oxygen in water 

relative solubility of oxygen in sample compared to water 

solubility of oxygen in plasma 

time 

time required for fol licular fluid sample to travel through 

viscometer 

time required for water to travel through viscometer 

mmHg 

m 

m 

m 

m 

m 

m 

m 

mol.m-3 . s- 1 

mol .m-3 . s-1 

mol .m-3 .s-1 

mol .m-3 .s- 1 

L .atm.morl.K-1 

mol .m-3 . s- 1 

mol .m-3 .s- 1 

mol .m-3 .mmHg-1 

I -3 H - 1 mo .m .mm g 

I -3 H -1 mo .m .mm g 

I -3 H -1 mo .m .mm g 

I -3 H - 1 mo .m .mm g 

mol .m-3 .mmHg- 1 

s 

s 

s 
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T temperature K 

Umin minimum gas stream velocity required to produce cm.s -I 

sustained waves on a flat l iquid surface 

%vasc mean symmetrical vascularisation % 

Vg volume of granulosa cell s  in fol l icle m3 

Vcel/ volume of a single granulosa cell m3 .celrl 

VI total volume of fol licle m3 

Va volume of antral fluid m3 

Vo volume of the oocyte m3 

Vb volume of blood contamination m3 

Vp volume of plasma m3 

Vff volume of fol l icular fluid m3 

VRBC total volume of red blood cell sediment m3 

x position in membrane/sample solution system m 

x position in sample layer of analytical solution m 

X weight fraction 

YH fraction of haemoglobin saturated by oxygen 

y mass of evaporated fluid kg 

Y mass of aspirated fluid kg 

cp cel l fraction 

cfJL heat flux W 

PI density of fol licular fluid kg.m-3 

Pw density of water kg.m-3 

P02 density of oxygen gas g. L-1 

e fluid voidage 

r dimensionless time 

/-la kinematic viscosity of fol licular fluid mm2s-1 (cSt) 

/-lw kinematic viscosity of water mm2s-1 (cSt) 

e temperature °C 
Je temperature change QC 
Jetal total temperature change over entire aspiration kit °C 
Jel temperature drop over the collection vial when °C 

aspiration is performed normally 

XXlV 



LlB2 temperature drop over the collection vial when the QC 

collection vial is heated and then insulated prior to aspiration 

temperature drop over the collection vial when 

the collection vial is insulated only prior to aspiration 
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