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Abstract 

The nature of mercury clusters is studied in an attempt to reconcile the behaviour of 

the solid with that of the smallest molecules. Related systems such as Zn, Cd, and 

Ba are investigated for comparison. A range of ab initio methods are employed, and 

their accuracy assessed. Density functional theory (DFT) based methods are shown 

to be unreliable. Different functionals vary widely in their description of a particular 

system, such as the dimer, while individual functionals vary in accuracy when applied 

across a range of system sizes. This is related to the neglect of van der Waals forces 

by DFT for the smaller systems, but raises interesting questions about the solid. 

Wavefunction-based methods are seen to be much more reliable than DFT, al­

though a high-level description of correlation is required. Hartree-Fock (HF) calcu­

lations are shown to be consistent in their description of systems of all sizes, and 

therefore although inadequate on its own the addition of a correlation potential de­

rived from the many-body perturbational (MP2) calculation for the dimer corrects 

HF to produce exactly the correct bond lengths (when compared to the best known 

data) for all sizes up to the bulk lattice. The use of higher order many-body poten­

tials is investigated and compared to the situation observed for the noble gases, since 

for small sizes these are the closest analogues of the neutral mercury clusters. 

The question of how to simulate transitions in large clusters is addressed. Tran­

sitions of interest in clusters are the liquid to solid phase transition, the metal to 

non-metal transition, or a structural transition from one isomeric motif to another . 

Therefore the ability to calculate the properties of these clusters accurately is as 
important as the question of structure. Four-component DFT calculations for the 

mercury dimer polarisability agree well with the anisotropy derived from Raman 

spectroscopy. 

Various isomers proposed in the literature are compared for the smaller mercury 

clusters. The structures of cationic clusters are also optimised, and their electronic 

excitation spectra are investigated through CIS (D) and TD-DFT calculations and 
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compared to experimental results. The structures of anionic zinc clusters are obtained 

and the density of states compared with experiment. The structures and spectra of 

these clusters are related to those seen for the magnesium analogues, and the effect 

of the d-electrons in perturbing the jellium model description of these clusters is 

considered. 
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