Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Mercury Clusters

from van der Waals molecules to the metallic solid

I

L

L

A thesis submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy in Theoretical Chemistry at Massey University, Albany New Zealand.

> Nicola Gaston August 3, 2005

Abstract

The nature of mercury clusters is studied in an attempt to reconcile the behaviour of the solid with that of the smallest molecules. Related systems such as Zn, Cd, and Ba are investigated for comparison. A range of *ab initio* methods are employed, and their accuracy assessed. Density functional theory (DFT) based methods are shown to be unreliable. Different functionals vary widely in their description of a particular system, such as the dimer, while individual functionals vary in accuracy when applied across a range of system sizes. This is related to the neglect of van der Waals forces by DFT for the smaller systems, but raises interesting questions about the solid.

Wavefunction-based methods are seen to be much more reliable than DFT, although a high-level description of correlation is required. Hartree-Fock (HF) calculations are shown to be consistent in their description of systems of all sizes, and therefore although inadequate on its own the addition of a correlation potential derived from the many-body perturbational (MP2) calculation for the dimer corrects HF to produce exactly the correct bond lengths (when compared to the best known data) for all sizes up to the bulk lattice. The use of higher order many-body potentials is investigated and compared to the situation observed for the noble gases, since for small sizes these are the closest analogues of the neutral mercury clusters.

The question of how to simulate transitions in large clusters is addressed. Transitions of interest in clusters are the liquid to solid phase transition, the metal to non-metal transition, or a structural transition from one isomeric motif to another. Therefore the ability to calculate the properties of these clusters accurately is as important as the question of structure. Four-component DFT calculations for the mercury dimer polarisability agree well with the anisotropy derived from Raman spectroscopy.

Various isomers proposed in the literature are compared for the smaller mercury clusters. The structures of cationic clusters are also optimised, and their electronic excitation spectra are investigated through CIS(D) and TD-DFT calculations and compared to experimental results. The structures of anionic zinc clusters are obtained and the density of states compared with experiment. The structures and spectra of these clusters are related to those seen for the magnesium analogues, and the effect of the d-electrons in perturbing the jellium model description of these clusters is considered.

ii

Acknowledgements

I wish to acknowledge the support of the Tertiary Education Commission in the form of a Top Achiever Doctoral scholarship. Thanks to the physics department at the Albert-Ludwigs-Universität, Freiburg, especially Dr Michael Moseler, Dr Bernd von Issendorf, and Professor Dr Hellmut Haberland. Thanks are also due to the Deutsche Akademische Austauschdienst.

I wish to thank Trond Saue for his hospitality in Strasbourg, and help with the frequency dependent polarisability calculations. I appreciate also the assistance of Beate Paulus with the work on solid mercury, for helpful discussions and material.

I am grateful to many coworkers who have helped at various stages of progress. In semi-chronological order, thanks go to Ralf Wesendrup, Gloria Moyano, Ivan Lim, Ralf Tonner, Johannes Gierlich, Tilo Söhnel, Radovan Bast, Bernd Huber, Robert Krawczyk, Behnam Assadollahzadeh, and Mattias Lein. Thanks to Inez Lees for ruthless editing advice.

By far the most important person to thank is my supervisor Peter Schwerdtfeger. Thank you for the privilege of working with you, and for the many useful discussions which I hope will be ongoing for some time yet.

Contents

1	Mer	cury,	and clusters	1
	1.1	Mercu	ıry	2
		1.1.1	Relativistic effects	3
		1.1.2	Weak interactions and van der Waals bonds	5
		1.1.3	Simulations	9
	1.2	Cluste	ers	12
		1.2.1	The jellium model	13
		1.2.2	The geometry of clusters	15
		1.2.3	Structural optimisation of clusters	16
		1.2.4	Experimental synthesis	17
		1.2.5	Spectra	18
		1.2.6	Charged clusters	20
		1.2.7	Metal cluster polarisabilities	20
2	Me	thod r	eview and the dimer potential	23
	2.1			
		Quant	tum mechanics and molecules	24
	2.2	Quant Basis	tum mechanics and molecules	24 25
	2.2 2.3	Quant Basis Hartre	tum mechanics and molecules sets	24 25 26
	2.22.32.4	Quant Basis Hartro Densit	tum mechanics and molecules	24 25 26 27
	 2.2 2.3 2.4 	Quant Basis Hartro Densit 2.4.1	tum mechanics and molecules	24 25 26 27 28
	2.2 2.3 2.4	Quant Basis Hartro Densit 2.4.1 2.4.2	tum mechanics and molecules	 24 25 26 27 28 29
	2.2 2.3 2.4	Quant Basis Hartro Densit 2.4.1 2.4.2 2.4.3	tum mechanics and molecules	 24 25 26 27 28 29 30
	2.2 2.3 2.4	Quant Basis Hartre 2.4.1 2.4.2 2.4.3 2.4.4	tum mechanics and molecules	 24 25 26 27 28 29 30 31
	2.2 2.3 2.4	Quant Basis Hartre Densit 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5	tum mechanics and molecules	 24 25 26 27 28 29 30 31 31
	2.2 2.3 2.4	Quant Basis Hartre Densit 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6	tum mechanics and molecules	24 25 26 27 28 29 30 31 31 31
	2.2 2.3 2.4	Quant Basis Hartre 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.4.7	tum mechanics and molecules	24 25 26 27 28 29 30 31 31 31 32 32

CONTENTS

	2.6	Coupled cluster theory	5
		2.6.1 $CCSD(T)$	8
	2.7	Pseudopotentials	8
	2.8	Dimers	0
		2.8.1 The Hg dimer	0
		2.8.2 The Cd dimer	3
		2.8.3 The Zn dimer	5
		2.8.4 The Ba dimer	6
	2.9	Basis set optimisation 4	8
3	Mer	rcury dimer polarisability 5	1
	3.1	4-component calculations 5	2
	3.2	Molecular properties and linear response	4
	3.3	The calculation of the diatom polarisability 5	8
		3.3.1 Details	8
		3.3.2 Polarisabilities $\ldots \ldots 6$	2
		3.3.3 Second refractivity virial coefficient	3
		3.3.4 Comparison with experiment	9
		3.3.5 The simulation of the Raman spectrum	1
	3.4	Conclusions	2
4	Ma	ny-body decomposition 74	5
	4.1	Mercury	7
	4.2	Noble gases He, Ne, Ar, and Kr	0
		4.2.1 Helium	0
		4.2.2 Neon	1
		4.2.3 Argon	4
		4.2.4 Krypton	7
	4.3	Conclusions	8
5	Bul	lk mercury 9	1
	5.1	Density functional calculations	2
		5.1.1 Density of states	8
		5.1.2 Band structure	8
		5.1.3 Non-relativistic solid Hg	4
	5.2	Two-body forces and the bulk	9
		5.2.1 A two-body correlation potential	9

vi

CONTENTS

	5.3	Optimising the lattice with HF and correlation	1
		5.3.1 Scaling of the correlation potential	2
	5.4	Accuracy of the correlation potential	4
	5.5	Two-body correlation in small clusters	6
	5.6	Conclusions	9
6	Neu	itral Clusters 12	1
	6.1	Isomers	1
		6.1.1 Structural optimisation	2
		6.1.2 Lennard-Jones isomers	2
		6.1.3 Low symmetry isomers	5
		6.1.4 Hg ₇	9
		6.1.5 Tetrahedral isomers	0
	6.2	Energies	1
	6.3	Frequencies	7
	6.4	Optimised structures and the BSSE	8
	6.5	Polarisabilities	9
7	Cat	ionic Clusters 14	5
	7.1	Isomers and relative stabilities	7
	7.2	Absorption spectra and CIS(D) calculations	2
		7.2.1 Basis set effects	3
		7.2.2 Excitation energies	4
		7.2.3 SAC-CI calculations	1
		7.2.4 SAC-CI for Hg_3^+ and Hg_4^+	2
		7.2.5 A CIS comparison with other isomers	5
	7.3	Conclusions $\ldots \ldots \ldots$	6
8	Ani	onic Zinc Clusters 16	9
	8.1	Metal clusters and the jellium model	9
	8.2	Plane wave DFT and clusters	0
	8.3	Photoelectron spectra and the calculated density of states	'1
		8.3.1 Isomers	'1
		8.3.2 Comparison with experiment	6
	8.4	Conclusions	0
9	Cor	nclusion 18	1

vii

CONTENTS

Α	Basi	is sets		i
	A.1	Noble gases	•	i
В	Car	tesian Coordinates		vii
	B.1	Lennard-Jones type Mercury clusters		vii
	B.2	Hartke isomers		xix
	B.3	Tetrahedral isomers		xxvi
С	Free	quencies	x	xvii

viii

List of Figures

1.1	NR vs R CCSD(T) atomic polarisabilities	6
1.2	NR vs R CCSD(T) atomic ionisation potentials	7
1.3	The radial distribution function $g(r)$	11
1.4	The band gap	12
1.5	Jellium model magic numbers	19
0.1		4.1
2.1	Perfomance of various density functionals for the Hg dimer	41
2.2	Perfomance of various methods for the Hg dimer	42
2.3	Perfomance of DFT and other methods for the Cd dimer	43
2.4	Perfomance of DFT and other methods for the Zn dimer	46
2.5	Perfomance of DFT and other methods for the Ba dimer	47
2.6	The dimer potential for Hg_2 with the small cc-basis. $\hdots \hdots $	49
0.1		-
3.1	A comparison of the dimer potentials	58
3.2	Poles of the (LDA) frequency-dependent polarisability	61
3.3	The static polarisability components	64
3.4	The dynamic polarisability components	65
3.5	The integrand in equation (3.50) with LDA α	67
3.6	The integrand in equation (3.50) with B3LYP α	67
3.7	Temperature dependence of $B(\omega, T)$ with LDA and B3LYP	68
3.8	Temperature dependence of $\alpha(\omega, T)e^{-V(R)/kT}R^2$, static LDA	68
3.9	The static polarisability α and β	69
3.10	The frequency dependent polarisability α and β	70
3.11	Scaling of the static anisotropy	71
3.12	Raman spectrum of Hg_2	72
3.13	Raman spectrum times the square of the Raman shift	73
4.1	A X_6 octahedral cluster $\ldots \ldots \ldots$	76

4.2	Distant dependent n-body contributions to Hg_6	78
4.3	The n-body contributions to Hg_6	79
4.4	Many-body decomposition for He_6	81
4.5	Many-body decomposition for Ne_6	82
4.6	Ne ₆ DKH-CCSD(T) n-body component binding potentials	83
4.7	$Ne_6 DKH-CCSD(T)$ n-body contributions to $Ne_6 \ldots \ldots \ldots \ldots$	84
4.8	Many-body decomposition for Ar_6	85
4.9	Ar ₆ DKH-CCSD(T) many-body component binding energies	86
4.10	Ar ₆ DKH-CCSD(T) many-body components.	86
4.11	Ar_6 comparison of HF, MP2, MP3 and $CCSD(T)$	87
4.12	Ar_6 comparison of MP2 and CCSD(T)	88
4.13	Many-body decomposition for Kr_6	89
F 1		0.1
5.1	The rhombohedral primitive cell	91
5.2	Solid mercury in the hexagonal cell	92
5.3	The Hg lattice	93
5.4	The PW91 potential curve for Hg_2	97
5.5	The DOS as obtained with HF and DFT	99
5.6	Brillouin zone of mercury	100
5.7	The Hartree-Fock band structure of mercury.	101
5.8	The B3LYP band structure of mercury.	101
5.9	The BP86 band structure of mercury.	102
5.10	The LDA band structure of mercury	102
5.11	The PW91 band structure of mercury.	103
5.12	The PBE band structure of mercury.	103
5.13	The non-relativistic Hg dimer potential.	106
5.14	The non-relativistic LDA band structure of mercury.	107
5.15	The non-relativistic PW91 band structure of mercury.	108
5.16	The HF and correlation description of $Hg_2 \ldots \ldots \ldots \ldots \ldots$	110
5.17	The HF and correlation energy vs a	112
5.18	The HF and correlation energy vs c	113
5.19	The HF and correlation energy vs scaling factor	114
5.20	The HF potential and correlation potentials	115
5.21	The HF potential for $N = 2 - 5 \dots \dots$	116
5.22	The correlation potential for $N = 2 - 5$	117
5.23	The total (HF + correlation) potential for $N = 2 - 5 \dots \dots \dots \dots$	118

LIST OF FIGURES

6.1	Structures of 'magic' Lennard-Jones clusters
6.2	Structures of small Hg Lennard-Jones type clusters
6.3	LDA optimised structures of Hartke clusters
6.4	MP2 optimised structures of the Hartke clusters $\hfill \ldots \hfill \ldots \hfill 126$
6.5	The lowest energy structures of the two Hg7 isomers
6.6	Tetrahedral Hg_{10}
6.7	Total binding energy of LJ clusters
6.8	Binding energy of LJ clusters per atom
6.9	Binding energy of different isomers
6.10	Energy difference between isomers
6.11	Bond lengths of LJ clusters
6.12	Energy and bond lengths
6.13	Extrapolation to the bulk limit E_{ZPVE}
6.14	Polarisabilities and basis sets
6.15	Polarisabilities of different isomers for $N = 7 - 14$
6.16	The PW91 polarisabilities of LJ clusters
6.17	$\Delta \alpha$ as $\alpha(N) - \alpha(N-1)$
6.18	$\Delta \alpha$ as $\alpha(N) - \alpha(N-1)$ for different isomers
7.1	Photoabsorption spectra of doubly charged mercury clusters 145
7.2	Photoabsorption spectra of singly charged mercury clusters \ldots 146
7.3	Photoabsorption energies
7.4	Mercury cation structures
7.5	The CIS and CIS(D) results compared to experiment. $\ldots \ldots \ldots 160$
7.6	Hg_n^+ molecular orbitals
7.7	CIS, CIS(D), and SAC-CI spectra for Hg_n^+
7.8	Simulated spectra for Hg_n^+
8.1	Properties of anionic Zn clusters
8.2	Optimised isomers for Zn_n^- , $N = 5, \ldots, 10, 12$
8.3	Ground state Zn_n^- clusters
8.4	Density-of-states for Zn clusters, $N = 5 - 10, 12 \dots 175$
8.5	DOS and PES for $N = 7, 8, 9, 10, 12$
8.6	Core and valence orbitals for Zn_{10}^-

xi

List of Tables

2.1	Large basis set used for $Hg_2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 40$
2.2	Mercury relativistic pseudopotential 41
2.3	Spectroscopic parameters for the Hg, Cd, Zn and Ba dimers 44
2.4	Large basis set used for $Cd_2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 45$
2.5	Large basis set used for Zn_2
2.6	Large basis set used for $Ba_2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots 47$
2.7	Small basis set used for $Hg_n \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 48$
2.8	Spectroscopic parameters of the Hg dimer 50
9.1	D7 all alastran managements having act
3.1	DZ all-electron mercury basis set
3.2	TZ all-electron mercury basis set
3.3	The atomic polarisability
3.4	The first three dimer Cauchy moments
3.5	The second refractivity virial coefficients
4.1	Many-body components of Hg_6
5.1	The basis set used for the DFT calculations
5.2	Binding energies for bulk mercury obtained from DFT 96
5.3	Lattice parameters for bulk mercury obtained from DFT 96
5.4	The non-relativistic pseudopotential
5.5	The non-relativistic basis set
5.6	Non-relativistic lattice parameters
5.7	Large uncontracted basis set for Hg
5.8	Coefficients a_{2n} of the correlation potential $\ldots \ldots \ldots$
5.9	Lattice parameters obtained from HF + correlation $\ldots \ldots \ldots$
5.10	The HF + correlation optimised clusters $N = 2 - 6$

6.1	Optimised LJ isomers
6.2	Optimised Hartke isomers
6.3	Optimised parameters for the Hg7 isomers. $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 130$
6.4	A comparison of the PW91 structures for Hg_{10}
6.5	BSSE and spin-orbit interaction, estimated for $N = 2 - 6$
6.6	A summary of optimised Hg_N for $N = 2 - 6 \dots \dots$
6.7	The PW91 atomic polarisability
6.8	The polarisability basis set for Hg (small+spf)
-	
7.1	LDA optimised Hg cations
7.2	PW91 optimised Hg cations
7.3	MP2 optimised Hg cations
7.4	Binding energies for the different Hg_5^+ isomers
7.5	Basis set comparison for Hg_3^+
7.6	The excitation energies and oscillator strengths of Hg_3^+
7.7	The excitation energies and oscillator strengths of Hg_4^+
7.8	The excitation energies and oscillator strengths of Hg_5^+
7.9	The excitation energies and oscillator strengths of Hg_6^+
7.10	The excitation energies and oscillator strengths of Hg_7^+
7.11	The excitation energies and oscillator strengths of Hg_8^+
7.12	SAC-CI energies and oscillator strengths of Hg_3^+
7.13	SAC-CI energies and oscillator strengths of Hg_4^+
7.14	A comparison of isomers for Hg_5^+
7.15	A comparison of isomers for Hg_6^+
A 1	
A.1	Basis set used for helium
A.2	Basis set used for neon
A.3	Basis set used for argon
A.4	Basis set used for krypton - <i>s</i> -functions
A.5	Basis set used for krypton - p, d, f, g -functions
B.1	Coordinates for LDA optimised LJ isomers. $(N = 1 - 6)$
B.2	Coordinates for LDA optimised LJ isomers. $(N = 7 - 10)$
B.3	Coordinates for LDA optimised LJ isomers. $(N = 11 - 12)$
B.4	Coordinates for LDA optimised LJ isomers $(N = 11 - 12)$
B 5	Coordinates for MP2 optimised LJ isomers. $(N = 2 - 6)$
B.6	Coordinates for MP2 optimised L1 isomers $(N - 7, 0)$
D.0	Containates for the 2 optimised is isometry. $(1 - 1 - 3) + \cdots + N$

B.7	Coordinates for CCSD(T) optimised LJ isomers	
B.8	Coordinates for small PW91 clusters $\hdots \hdots \hdots$	
B.9	Coordinates for PW91 clusters $N = 7 - 10$	
B.10	Coordinates for PW91 clusters $N = 11 - 12$	
B.11	Coordinates for PW91 clusters $N = 13 - 14$	
B.12	Coordinates for LDA Hartke isomers. ($N = 7 - 10$)	
B.13	Coordinates for LDA Hartke isomers. ($N = 11-12$)	
B.14	Coordinates for LDA Hartke isomers. (N = 13-14) \ldots	
B.15	Coordinates for MP2 Hartke isomers $\ldots \ldots xxii$	
B.16	Coordinates for CCSD(T) Hartke isomers $\ldots \ldots \ldots \ldots \ldots \ldots xxii$	
B.17	Coordinates for PW91 Hartke isomers $N = 7 - 10$	l
B.18	Coordinates for PW91 Hartke isomers $N = 11 - 12 \dots \dots \dots \dots \dots \dots \dots$ xxiv	
B.19	Coordinates for PW91 Hartke isomers $N = 13 - 14 \dots \dots$	
B.20	Coordinates for PW91 Tetrahedral Hg_{10}	
C_{1}	Frequencies for $N = 1.6$	
C_{2}	$I = 1 - 0. \dots $	1
C.2	LI Frequencies for $N = 0$	
C.J	LJ Frequencies for $N = 10$	•
C.5	L.I. Frequencies for $N = 11$	í
C.6	L.I. Frequencies for $N = 12$	ii
C.7	L.I. Frequencies for $N = 13$	
C.8	L.I. Frequencies for $N = 14$	iv
C.9	Hartke Frequencies for $N = 7.8$.	v
C.10) Hartke Frequencies for $N = 9$.	vi
C.11	Hartke Frequencies for $N = 10, \ldots, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots$	vii
C.12	Hartke Frequencies for $N = 11, \ldots, n$	viii
C.13	Hartke Frequencies for $N = 12$	ix
C.14	Hartke Frequencies for $N = 13$.	
C.15	Hartke Frequencies for $N = 14$	
C.16	Frequencies for tetrahedral $N = 10$	
	- · · · · · · · · · · · · · · · · · · ·	