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Abstract

Srinivasa Ramanujan (1887-1920) was one of the world’s greatest mathemat-
ical geniuses. He work extensively in a branch of mathematics called “g-series”.
Around 1913, he found an important formula which now is known as Ramanujan’s

1%, summation formula.

The aim of this thesis is to investigate Ramanujan’s ;?; summation formula and
explore its applications to number theory and combinatorics. First, we consider
several classical important results on elliptic functions and then give new proofs of
these results using Ramanujan’s ;%; summation formula. For example, we will
present a number of classical and new solutions for the problem of representing an
integer as sums of squares (one of the most celebrated in number theory and com-
binatorics) in this thesis. This will be done by using g-series and Ramanujan’s 1%,
summation formula. This in turn will give an insight into how Ramanujan may
have proven many of his results, since his own proofs are often unknown, thereby

increasing and deepening our understanding of Ramanujan’s work.
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Chapter 1
Introduction

Srinivasa Ramanujan was an Indian mathematician who had to deal with a lack of ed-
ucation and resources, and so was largely self-taught. He was born on 22 December 1887
but had a short life. He died on 26 April 1920, and left behind three notebooks [92], a “lost
notebook” [93], other manuscripts [93], and published papers [61]. For an extensive biog-

raphy of Ramanujan, see [68].

The three notebooks and the “lost notebook™ are filled with over three thousand results
without proofs. Since 1974, B. C. Berndt has been finding proofs for these claims. It took
him over twenty years to complete the task of editing Ramanujan’s notebooks [92]. His
work has been published in five books [17]-[21]. Berndt said [68, p. 280], “I still don’t
understand it all. I may be able to prove it, but I don’t know where it comes from and where
it fits into the rest of mathematics,” after years of working through Ramanujan’s notebooks.
He also said [68, p. 280], “The enigma of Ramanujan’s creative process is still covered by
a curtain that has barely been drawn.” Therefore it is worthwhile to study Ramanujan’s

work and to gain a better understanding of his works.

This thesis contains nine chapters. This chapter gives a brief overview. Chapter 2 con-
tains preliminary results and will be used as a basis for Chapters 3—-8. In Chapter 3, we
study seven types of transformations such as the Gauss transformation, Landen transfor-
mations, and modular transformations. In Chapter 4, we study eighteen problems in the

area of sums of squares and triangular numbers. Sixteen series theorems will be given
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in Chapter 5. In Chapter 6, we study and discuss some applications of Ramanujan’s ;1),
summation formula to number theory and combinatorics. Chapter 7 deals with Eisenstein
series. Eighteen conjectures will be presented in Chapter 8. Chapter 9 summarises the

work of this thesis and gives suggestions for future work.

Around 1913, Ramanujan found one of his famous formulae which is now called Ramanu-

jan’s ;%; summation formula. The formula is

0 1 + zq2k 1) (1 + q2k—-l/z) (1 _ q2k) (1 U aﬂQZk)
E[1+aw%1(1+Bf“Vd(Lﬂm”M1—ﬁﬁU

l-a 1-8 ¢
+{1—ﬂ2 +1—aq2;}

(1-a)(¢* —a) 2, (1-8)(=B) (q)?
{1—ﬁq2 ~5g) ) +(1—aq2>(1—aq4><z)}
{ 1_a qz_a)(q4_a) (qz)3

1 — Bq¢?) (1 — Bq*) (1 — Bq®)

=B =-8)(*-8) (a\3\,
(1—aq2)( —aq“)(l—aqﬁ)( ) }+ ’

beud

I
—

+

+

(1.0.1)

where |8q| < |z] < 1/|ag| and |q| < 1.
This formula is a fundamental result and is related directly or indirectly to all the main re-
sults presented in this thesis. We will give a proof of this formula in Chapter 2, together

with more references and details.

We will define four functions, f, f1, f2, and f3, which arise from Ramanujan’s ;7/; summa-
tion formula and will construct twelve other functions from these, giving a total of sixteen
functions. We will show that function f is not an elliptic function but that its derivative f
is. On the other hand we will show that functions f;, fo, f3 are elliptic functions. Then we

will study a number of properties of these sixteen functions such as (a) Fourier series ex-
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pansions of functions fy, f1, f2, and f3; (b) infinite product expansions for f;, fo, and f3;
(c) the derivatives of the four functions; (d) Fourier expansions of their squares; and (e) ad-
dition formulae of functions f, f1, fo, and f;. We will obtain sixteen Lambert series by
expansions of the four functions fy, f1, fa, f3 at four points 0,7, 77, and 7 + w7. The
fundamental multiplicative identity and the Weierstrass p function will be introduced. We
will define functions 2, z, K, and E, then employ these to obtain the reciprocals and quo-
tients of the functions fi, fo, and f3. We will also demonstrate a connection between the

twelve functions and Jacobian elliptic functions.

Most of the methods and ideas in Chapter 2 are based on Venkatachaliengar’s monograph

[100].

The use of transformations is another important tool in this thesis. In Chapter 3 we will
study and apply various transformations to functions fy, fi, f2, fs,as wellas z, z, 1 — z

dz/dz,and E. These results will be used in Chapters 5-8.

The problems of representing an integer as sums of squares and sums of triangular num-
bers is one of the most celebrated in number theory and combinatorics. In Chapter 4 we
will study and give proofs of eighteen problems in this area. Some of these eighteen prob-
lems are known classical formulae. We will present a new identity which involves infinite

products and Lambert series expansions, namely

o0 l—q )4(1_q 00 .9
H (1 — g2-1 4( gk 2 Z q¥ (1.02)

k=1
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We will also give an arithmetic interpretation of this identity: the number of solutions in

non-negative integers of

Ty (1 +1 To (2o +1 T3 (x5 +1 Ty (x4 +1
1@+1) | Emt]) s +]) e+ ])

5 5 5 5 +z5(xzs +1)+zg(z6+1) =mn,

wheren =0,1,2,3,...,is

d-1 1%2
=3 (1) ("ji' ) , (1.0.3)

d|n+1

d odd
where we use d|n to denote d is a divisor of n. Another form of writing (1.0.3) will be
given in Chapter 4. The significant point is that our method is based on Ramanujan’s ;,

summation formula and the fundamental multiplicative identity to obtain these eighteen

formulae.

Ramanujan [92, Chapter 17, Entries 13—-17] gave fourteen families of identities. In each
case he gave only the first few examples, giving us the motivation to find the general solu-
tions in each family of identities. The aim of Chapter S is to develop a powerful tool (four
versatile functions fy, f1, f2, and f3) to collect all of Ramanujan’s examples together. We
will first express the sixteen Lambert series as various polynomials in terms of 2, z, and
dz/dz. This will give a total of sixteen infinite families of identities which contain all of
Ramanujan’s examples. We will also prove that Ramanujan’s Eisenstein series, namely P,
@, and R, can be expressed in terms of 2, z, and dz/dz. The results in Chapter 5 are the

key of this thesis and will be used in Chapters 6 and 8.

In Chapter 6 we will study and give proofs of a total of forty-four identities by using se-

lected transformations given in Chapter 3 and results from Chapter 5. From these forty-four
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identities, fourteen identities are new. For example

ﬁ (1+ ¢ 1) (1 - qzk)4 (1 — g*) 2 (=1Y (2] — 1)? %2
e (1= 1) (1+¢%)* (1 - qsk =4) 1 — g%-2

o0 o
;¢
+2) ot (1.0.4)
i=1

As for the identity (1.0.2) we showed earlier, we can give an arithmetic interpretation of

identity (1.0.4): the number of solutions in integers of
mf+$§+m§+$§+2y1(y1+1)+2y2(y2+1)zn,

wheren =0,1,2,3,...,is

dln+1
d odd
where
1 :n=0(mod4),
k(n)=<¢ 2 :n=1(mod?2),
3 :n =2 (mod4).

The aim of Chapter 7 is to rewrite the sixteen Lambert series in the form of Eisenstein se-
ries. From these sixteen Eisenstein series we will obtain an alternative path to see how the

sixteen Lambert series form one system.

In Chapter 8 we will present eighteen conjectures that lead to sums of 2¢ squares and tri-
angular numbers where ¢ > 3. We will prove that all eighteen conjectures are true for the

first five cases.

Finally, Chapter 9 summarises the work of this thesis and gives suggestions for future work.



1 Introduction 6

Four useful derivations are given in the Appendices; they are Fourier series, infinite prod-
ucts, squares functions, and Jacobian elliptic functions. A list of symbols is given in the

Index of Symbols.



Chapter 2
Preliminary results

2.1 Introduction

In this chapter, we summarise selected results of Venkatachaliengar [100] and S. Cooper
[38], [39]. These results will be used throughout the thesis. Firstly, we introduce some

notation.

2.2 Notation

Throughout this thesis, let 7 be a fixed complex number satisfying Im 7 > 0 and let ¢ = e*""

so that |g| < 1. Define
n—1

(@9), =]] (1-ad),

[
I
=)

where n is a positive integer, and

(@90 = [[ (1 - ag’).

j=

o

We may extend the definition of (a; g),, by defining

)

() mge= : 2.2.1
(@ 9), (aq™; @) L2

for all real numbers n.

We also use the following notation:

(a1,a2,...,8n; @) = (@130) & (62;9) o -+ * (An; @) o -
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2.3 Ramanujan’s ;7); summation formula

Around 1913, Ramanujan discovered an important formula, now known as Ramanujan’s

1%, summation formula, which is recorded in his Second Notebook in [92, Chapter 16,

Entry 17]. The formula is

Theorem 2.3.1 (Ramanujan’s ;7); summation formula)
q b
(a%; 9)oq (—;q) G <-;q>
ar "/ a
=3 (2.3.1)

) (% 2o <a%;q>oo (0;9) oo (%;q)oo

where |q| < 1 and |b/a| < |z| < 1.

By using the ratio test, the series on the left of (2.3.1) converges for |z| < 1 when n =
0,1,2,3,..., and for |b/a| < |z| whenn = —1,—2,-3,.... Therefore the series on
the left of (2.3.1) converges for |b/a| < |z| < 1. As a function of z in (2.3.1), the
right hand side has poles at z = bqg"/a, where n = 0,1,2,..., and ¢ = ¢ ", where
n =0,1,2,.... Under the condition |b/a| < |z| < 1, the two sets of poles are separated
into -+ - < bg?/a < bg/a < b/a <1< q7! < g %< -+ Theorem2.3.1 gives the Laurent

expansion, in powers of z, in the annulus |b/a| < |z| < 1.

Proof Let a, b, and ¢ be fixed, and define

(073 ) (i; q)oo

i (@) = o ( b > . (2.3.2)
T, 9) a_:r; q N
By Laurent’s theorem, we can expand (2.3.2) as a Laurent series
o0
fly= > G (2.3.3)

n=-0oo
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valid in the annulus < |z| < 1 where f (z) is analytic. Note that the coefficients c,

a
depend on a, b, and g, as well as on n. Next, consider the Laurent expansion of f (qz),

2 g @) = i Additionally assume that
aq lg]

f (z) and f (qz) are valid for ~£‘ < |z| < 1 and |g| < 1. Then consider the ratio
aq

which exists for < |z| < 1. Now both

fe) @50 (3559).. (#39) (aq%;q)w
f (qz) (%3 Q) oo (a%;q>oo (973 9) o <a%;q>oo

Hence we obtain the functional equation

q(1—z)f(z) = (b—aqz) f (g7). (2.3.4)

Substituting (2.3.3) into (2.3.4) gives

g(1—z) Y Caz"=(b—agz) »  Cng"z". 2.3.5)

n=-—oo n=-—00

Equating the coefficients of z" gives
gCn — qCy—1 = bCrq" — aCr_1g™.

Simplifying and making C,, the subject, we obtain the recurrence relation

(1—ag"™)

T =

Ca-1, (2.3.6)
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and iterating (2.3.6) we obtain

(1-ag"')(1-agq*?)---(1-a)

Ch (1 —bg™ 1) (1 —bg"2)---(1—b) G
((Z q))"co, n=1,23,.... 2.3.7)

Next replace n with 1 — n in (2.3.6), and rearrange into

Iteration yields

_ (1=bg) (1—bg™Y) - (1- by
“r T e T e ) (1= ag )
(b4 ™ Do (3:0)o0
b0 (0 0)0

a;q)_
- E--3)—2-:70, = 14258, ... (2.3.8)

(b5q)_,

using (2.2.1).

By combining the results of (2.3.7) and (2.3.8) we obtain

(a;q)
C, = 22 C,, EB 239
(bsq), ° " @)
Putting (2.3.9) into (2.3.3) gives
f (z) = Co i (0:0)n n (2.3.10)
e (B9)y,

It remains for us to find Cj.

For this, we need to use Abel’s continuity theorem [11, p. 504] which states that:

li » = a. Then li — " —.q, 3.
Suppose lim a, =a Then ac_1{{1_(1 x)n;wa:r a (2.3.11)
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Equation (2.3.9) gives at once

lim G, = C,\% %o (2.3.12)
n—+00 (55 9) oo
From equation (2.3.2),
(az;q) o (aq—x,q)
lim (1-2z)f(z) = lim (1—2) =
1" 1" (:E ) i_q
v q 00 ax’ -
q
(2;9) oo (—; q)
= Z N (2.3.13)
(45 9) o (5; q>oo
Therefore Abel’s continuity theorem, (2.3.12), and (2.3.13) imply:
q
(059) o (—; q)
Co = Z = (2.3.14)
(4 9) oo <a;q)oo
By substituting the result (2.3.14) into (2.3.10) we find:
q
(05@) 0 ( =39 ®© (.
flz) = (“ )°° > (:9)s n (23.15)

(¢:0)es (g;q)m 2 (ba),

Putting (2.3.15) into (2.3.2) and rearranging arrives at (2.3.1). Lastly, we employ analytic

continuation to extend the result from

<lz| < 1to

2| < |z| < 1. This completes

the proof. B

This proof is the same as the one given by Venkatachaliengar [100, pp. 24-27, pp.
29-30] and can be found in [8, pp. 503-504]. G. H. Hardy [60, p. 222] described it as
“a remarkable formula with many parameters”. The first published proofs of this formula
appeared in 1949 and 1950, by W. Hahn [59] and M. Jackson [66], respectively. Since then
other proofs have been found, for example R. Askey [11], S. H. Chan [34], and A. J. Yee

[104]. Ramanujan’s 1%, summation formula is a fundamental result and is related directly
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or indirectly to all the main results presented in this thesis.
Note that if we replace ¢ and z with ¢? and z, respectively, in (2.3.1), then replace 1/a, b/q?,

and —az/q with «, 8, and z, respectively, we arrive at (1.0.1).

Corollary 2.3.2 (Jacobi triple product identity)

00 5
S ()¢ 2" = (2,007}, 039) ., (23.16)

n=—0oo

where |q| < 1 and z # 0.

Proof Setz — z/a,a - ocoandletb=0in(2.3.1).®

Corollary 2.3.3 (g-binomial theorem)

(

02;9) o _ \~ (%9), n

X = ", (2.3.17)
(%39) oo ; (9:9),
where |q| < 1 and |z| < 1.

Proof Setb=¢qin(2.3.1).m

Corollary 2.3.4 (Geometric series)

l—2z

1 0
= E e (2.3.18)
n=0

where |z| < 1.

Proof Seta =qin(2.3.17).m
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2.4 The Jordan-Kronecker function

The Jordan-Kronecker function is a special case of the series on the left hand side of (2.3.1)

and is defined as follows

Definition 2.4.1 [100, p. 37] Let

(o.e]

F(a,b) = F(a,b;q) = F(a,blr) = 3

n=—00

an

where |¢%| < |a| < 1and b # ¢**, k € Z.

In Ramanujan’s 7, summation formula (2.3.1) replace g, z, a, and b with ¢2, a, b, and bq?,

respectively, then divide by 1 — b to obtain

(ab,a=b7'¢%, ¢%,¢% ¢*)
(@ o g2l - Tq% g2,

F(a,b;q) = (2.4.2)

The product converges for all values of ¢ and b except for a,b = ¢%, where k € Z.
The product extends the definition of the function to more general values of a by analytic
continuation.

The following properties follow immediately from (2.4.2)

F(a,b;q9) = F(baq), (2.4.3)
F(a,b;q) = —F 1L (2.4.4)
a’a aq e 0,, b)q ] B &8
F(a,b;q) = bF (ag®,b;q) =aF (a,bg’;q) . (2.4.5)

We can rewrite (2.4.1) as

0 n

a
F(a,biq) = ) b

n=-—0oo
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00 00 =5
et e e B
n=l n=l q
oo o0
1 —b 2n + b 2n -n
=l e e
e 1 — bg?n gl s
7 aanQn x a—nb—lq2n
- 1—-b+l—a+;1—bq2“ _gl—b‘lqr?“
1+b l1+a 2. abg?" e
~ 300 T2l —0) +nz=11—bq2“ _gl—b‘lqh
(2.4.6)
Using (2.4.3) and (2.4.6), replacing a and b by €% and e® respectively,
F (eib”eiv;q) = F(e",e i q)
_ 1+ eif N 1+ e o9 muezeq?n e—inve—i0q2n
-9 (1—e®) ~ 2(1 —ew) 1 1— ezoqzn 1 —eifgn | °
2.4.7)
The Bernoulli numbers B,, and Euler numbers E, are defined by
2N By
=) =, for |u| < 2, (2.4.8)
—~ nl
and
2" > Eu" T
T = > for |u| < 7 (2.4.9)
n=0
Add u/2 to both sides of (2.4.8) and then multiply by —1/u we have
1+e* 1 = Bnun_l

n=0

Using (2.4.10), we expand (2.4.7) in powers of v to give
F (ew, eiu; q)
10 .2n

i 01 Byt = elfg 2\ (inv)’
o 2c°t2 2 ; 4! +Zl equnz '

|
n=1 §=0 J:
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o0 —16‘ 211

=\ (—inv)’
_Zl_e—aﬂ 2nz 3!

=1

1 g 1 1 — B‘+1 e nJeSBQQn (_1)3‘ nje—iqun iy
= - ft— — — — — et e + _ : :
2 €0 2 2 1 + Z _? 41 Z T e:ﬂq2n | - 6"‘9(}2“ J'
=0

1 1 0 = e‘9q2“ 6—13q2n
= -—-"z—’; + §C0t| 5 + nZ: ( = 619q2ﬂ - ) [ e—i9q2n

1 f ne?¢™ ne~¥g?n ,
T [_1_2 L ; (1 — eifgn 1= e—iogen | | 1Y

00 Bj+1 00 n3618q2n (_1)3 nje—iﬂqzﬂ EJ'UJ
- e + = . — (2.4.11)
ng -l RX_; 1-efg  1—e g 7!
Additionally
% i0 ,2n —i6 ,2n ®©
€ q € q _ imf 2mn _ _—imf 2mn
> (10 - 1) = S5 (et - )
n=1 n=1m=1
&Y q2m
imf —imf
- Z — n2m (6 )
m=11 q
00 q2m
= 2i) T sinmf (24.12)
_qm
m=1

and

neifg?n ne-i9g2n I s
(1 — eifgn LT 8“'9q2") - Z Z (ne™g"™" + ne~"g"m)

NE

n=1 n=1m=1
Nt q2m
imb —imb
= Z — _2m\2 (e te )
m=1 (1 q )
29 q2m
= 2p = gy <™ (24.13)
m=1

By substituting (2.4.12) and (2.4.13) into (2.4.11) we find that
b oaf =~ T
ZCOt 2 +mZ=1 = gm sinm#é

1 20 q2m ‘
—= + D I 0
+[ 12+ Z_(l—q”")? cosm]w

1
i _ = .
F( € ;Q) - o, +2Z
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+Y -

j=2

J+1 i m1610q2m B (_1)j mje—i0q2m I
j+1 1— ezoqzm 1— e-ioqzm 3! ’
(2.4.14)

Next we consider four special cases of the function F (a, b; q).

2.5 Four functions

In this section we present four functions and show how they may be derived from Ramanu-
jan’s 19; summation formula. We then obtain the Fourier series expression for fy, fi1, f2, f3
using the Jordan-Kronecker function (2.4.1). Similarly the infinite products formulae for

f1, fa, f3 can be obtained by using (2.4.2). Lastly we determine the zeros of f;, fo, f3 and

the pOICS of an flv f2af3~

Four special cases of the function F (a, b;q) are considered by examining a = e and
b=1,¢e", e, e™ " respectively. Their properties follow from those of F (a, b; q) and

Ramanujan’s ;7; summation formula.

Let
B0 = folBia)= foBlr) =3 [ F (€%, q), 25.1)
16 = L6:0)=fi6ln) = 2F (% €%q), (252)
o2
f2(0) = fz(ﬁ;q)=fz(9|r):ei F (¥, e q), (2.5.3)
13,!'2 . . .
f50) = f3(0;9) = fa (8lr) = =—F (e, &™+; q). (2.5.4)

1
Note that we will use the notation of f, (8), f1(0), f2(8), f3 (6) in this chapter and the

other notations such as fq (6; ¢) and fo (6|7) will be used in the later chapters.
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Here the notation [v°] F (e, e”; q) means expand the function of F (e, ¢"; ¢) in powers
of v and extract the constant term. The factors 1/ and €#%/2 /i are included so that fo f1, fa,

and f; become real valued when 6 is real.

2.5.1 Fourier series expansion for fy, f1, f2, and f3

In this subsection, we give the Fourier series expansion for fy, fi, f2, and f3. First we

consider the constant term of (2.4.14) then the Fourier series for f, becomes

1 0 Sl q2m )
fo (6) = 5 cot 5 +2 mz::l T i mé. (2.5.5)

fo is the Weierstrass zeta function [101, p. 445] with period 27 and quasi-period 277; that
is, fo (60 + 277) = fo (0) —
Ramanujan used (2.5.5) to prove a number of identities for elliptic functions. For example,

he proved that [94, p. 139]

fE0) = - cot2 5+ 4 Z 5 cosnb + 2 Z —(1 — cosnf). (2.5.6)

1 =g*®
More details of (2.5.6) and another proof are shown in Section 2.8.

The Fourier series expansion for f; similarly follows from (2.4.6)

i0 o0 2
RO = 7 |5rmm ~ DT ¢ - )]
_ %cotg — 9 il 1 f:m sinm. 2.5.7)
Moreover, by using (2.4.6) and (2.5.3),
L) = 61'9‘/2 14g N 1+ei6). s eim0q2m+1 ~ oo e—im0q2m—1:|
i |2(1—q) 2(1—e®) La 1 gemtl m:1—1 )

ei0/2(1+q) 6i0/2(1+ei0) ei/2q

2%(1—q) = 2i(1—¢e) i(1—q)




Similarly,

f3(6)

2.5 Four functions

2m— 1
=—csc——221+q2m 1sm (m—§> 6.

The series (2.5.5)—(2.5.9) converge for — Im(277) < Im 0 < Im(277).

18

(2.5.8)

(25.9)

We can obtain another set of twelve functions by replacing 8 by  + 7,0 + 77,0 + 7 + 77,

in (2.5.5), (2.5.7)—(2.5.9), respectively. Their Fourier series expansions can be found in

Appendix A.

2.5.2 Infinite products for fi, fo, f3

The infinite product formulae for fy, f,, f3 follow from (2.4.2). They are

f1(6)

f2(6)

f3(6)

1 (=" g, ¢ ¢)
i (ew) q2e_i9a —1, —q27 q2)°o
(¢%¢%)% 6 ﬁ (1 + 2¢*" cos + ¢**)

cot )
= 2;‘12)20 2 o (1 — 2¢%ncos 6 + ¢*n)

q

e? (¢¢¥,9e7%,¢%,¢% ¢%)

(6'9 q Zevillgy q;qz)

@5 & H (1 - 2¢*1cosf + ¢*"2?)
i) (1 — 2¢?"cosf + ¢*n) ’

e (—qe ,—qe™, %, ¢% ¢%)
( i q TR 4G 9%) oo

2
1 ( e H (1 +2¢?"'cosf + ¢'"2)
2 ) (1 — 2¢?*cos § + q*")

(2.5.10)

(2.5.11)

(25.12)

(2.5.13)

(2.5.14)

(2.5.15)
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2.5.3 Elliptic functions

Definition 2.5.1 [101, p. 429]
Let w, and wy be two complex numbers for which the ratio w, /w, is not a real number. A

function satisfying the relations

fz+2wm) = f(2), [(z+2w)=f(2),

for all complex values of z at which f (z) exists, is called a doubly periodic function of =z
with periods 2w, 2w,. A doubly periodic function that is meromor phic in the finite part of
the complex plane is an elliptic function. A doubly periodic function f is completely defined
by its restriction to the so called fundamental parallelogram, that is, a parallelogram with

corners 0, 2wy, 2w, 2wy + 2w,, or translation.

Lemma 2.5.2

fo(=8) = —fo(8), (2.5.16)

fo@+2m) = fo(0), (2.5.17)

fo® +277) = %+ fo(8); (2.5.18)

fi(=0) = -f(6), (2.5.19)

f(=0) = —f2(0), (2.5.20)

f3(=0) = —f3(6); (2.5.21)

fi(@+2mrm+27mn) = (-1)" f1(6), (2.5.22)

fo(0+2rm+27mn) = (=1)" fo(6), (2.5.23)
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fs(0+2rm+2rmn) = (=1)™" f3(9), (2.5.24)
where m and n are integers.
Proof The proofs of (2.5.16) and (2.5.17) follow immediately from (2.5.5).
Making use of (2.5.5), the left hand side of (2.5.18) becomes
fo (6 + 27T)
1 9 2
= 5o L L Z s—sinm (0 + 277)
_ l i 1+ ¢ i(0+27T) oo e (9+2ﬁr)mq2m B e—i(9+2ﬁr)mq2m
¢ | 2(1 —et+aem)) 1—g?m I
_ l i 1 +ez5‘ 2 i ei&m (1 _q2m - 1)q2m B = e—z‘&m (1 __q2m +q2m)
i _2 2 (1 — eifq?) = 1—¢?m o 1—gq?m
1 Tk et9q2 eiﬂq2 e—iG o) 2m iiim g
T G201 efg? )_1_eieqz_1_e—i9+z=:11_q2m(e — )
1 "1
= % 2 _19-1- Zl— s;nmﬂ]
= A -1 L6 22 snmﬂ
T 2(1—e) 1—g@m
1 I
= =z 50t—+221_ sin m#
1
= = + fo (6). (2:5.25Y

This completes the proof of (2.5.18).

Use of the infinite products for fi, f2, f3, enable us to complete the proofs of (2.5.19)-

(2.5.21).

Replacing 6 by 8 + 2mm + 277n in (2.5.10), (2.5.12), (2.5.14), and simplifying gives the
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periodicity properties of (2.5.22)—(2.5.24), where m and n are integers. This completes

the proof of Lemma 2.5.2. I

The function f, is not an elliptic function but its derivative fj is. From (2.5.22)-
(2.5.24), f, is doubly periodic with periods 27 and 477, f, is doubly periodic with periods
4m and 277, while f; is doubly periodic with periods 47 and 277. That is, functions
f1, fa, f3 are elliptic functions.

In Section 2.7 it is shown that there is a connection between f] and the Weierstrass gp
function. The functions f;, f2, and f3 turn out to be the Jacobian elliptic functions namely

cs, ns, and ds, respectively, after rescaling. More details are given in Section 2.13.

2.5.4  Zeros, poles, and residues

From the Fourier series expansion of fg (2.5.5), it is clear that the function f; has zeros at
(2m + 1) m, where m is any integer. There are two zeros in any period parallelbgram by
general elliptic function theory [101], but it is unlikely that there is a simple formula for
the location of the zeros of fo, apart from the ones at (2m + 1) .

From the infinite product expansion (2.5.10) we see that f; has zeros when 1 + ¢"e'® = 0,
that is, when 8 = (2m + 1) 7 + 2nn7, where m and n are any integers.

Similarly, if we use (2.5.12) and (2.5.14), the zeros of f, and f3 are 2mm + (2n+ 1) 77
and (2m + 1) 7 + (2n + 1) 77, respectively.

From (2.5.5) the Fourier expansion of f, can be represented as

q2m

1 0
6) = zcotz+2> :
fo(0) 5 CO 2+2m=1l_q2msmm0
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11 i o (¢ — e=im0)

- 1 e 1 = q2m
1 0 1 e 2mn _im#@ 2mn _—im#

= gt L @ e
1 .0 1 ([ ge? g’re"

= = — i — — — |, 2.5.26
2 cot 9 F i HZ:; (1 - q2n619 ] = q2ne—19 ( )

This shows that f, has simple poles at § = 2m7 + 2n7 1, where m,n € Z.

From the infinite product expansions (2.5.11), (2.5.13), and (2.5.15), the poles of f;, fo,
and f3 are also the same as those of f,. Therefore all four functions have simple poles at
6 = 2mr + 2nwT, where m, n € Z, and no other singularities.

Section 3 of Chapter 7 gives another way to find the poles of fy, fi, fo, f3.

A summary of the results of the zeros and poles of fy, f1, fo, f3 as follows

Zeros Poles
fo(0) no explicit formula 2mm + 2nwT
f1(6) (2m+ 1) 7 + 2nwT 2mm + 2nwT (2.5.27)
f2(0) 2mm + 2n + 1) w7 2mm + 2nwT
f30) | Cm+1)7+ (2n+ 1) 77 | 2m7 + 2nnT

For any integer values of m and n, the residue of each function at each pole is 1.

2.6 The Fundamental multiplicative identity

In this section, we introduce the Fundamental multiplicative identity. It is a very useful

tool used frequently throughout this thesis.

Theorem 2.6.1 (The Fundamental Multiplicative Identity)

Let F be the Jordan-Kronecker function defined by (2.4.1).
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Then

F(a,t)F(b,t) = t%F(ab, t) + F(ab,t) [p1(a) + py(b)],

where

1
=3+ Z:
n#0
Proof Using the definition (2.4.1), the left hand side of (2.6.1) becomes

F(avt)F(b’ t) = Z Z 1 _ tq2n 1 . tq2m)

n—=——00 Mm=—00

o0
an bn an bm

Next by considering the first sum of (2.6.3),
i anb® i 9 (ab/g*)"
g = 3 (1 — #92n)
e =) i, 0t (1 — 1)
ED
5 .

= amb” d
¥, i)y 5z [t (ab, ?)]

2
S The= tq2n)

From (2.4.5), equation (2.6.4) can be rewritten as

d
= taF (ab,t) + F (ab,t).

X T S

23

(2.6.1)

(2.6.2)

(2.6.3)

(2.6.4)

(2.6.5)

By letting m = n + k, k # 0 in the second sum on the right hand side of (2.6.3) and using

partial fractions, we obtain

a"h™

,; (1 —tg*") (1 - tg°™)
o S . i

- — 1) (1t
K (1—tg>™)(1—tq )

nbn+k qzkanbn+k

= Z Z { T—tg2) (1—q%) (1— ¢%) (1 — tq>+2)

n=-—00 k#0

(2.6.6)
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Now by setting j = n + k in the second double sum of (2.6.6) we obtain

S
= n Py 2
2 T i) (1— 1)
- — 1 n 1T_ 2k 2j — 2k
n=—o00 1 tq k#0 1 4 j=—00 tq = k#£0 1 q
) Z bk —2k gk w
= F (ab,t ——
J _ 2k — 2k
ek sl 1 d

= bk
= F(ab,t) Zﬁ'{’Zm}

L k0 k#£0
= F(ab,t) [p(a) + p1(0) — 1]. (2.6.7)

Then we substitute (2.6.5) and (2.6.7) into (2.6.3) to prove (2.6.1). B
The proof of (2.6.1) is the same as that given in Venkatachaliengar [100, p. 40] or

Cooper [39, p. 66].

From (2.6.2) we have

1 a™
pl(a) = §+Zl_q2n

n#0
_ 1 = a™ o0 a~"
- §+Zl—q2"+zl—q*2n (268)
n=1 n=1
1 o0 an (1 q2ﬂ + q2n) [» o] q2na_n
= g7 Z 2n B Z: 2n
2 n=1 = q n=1 1 —4q
l+a = g™ " __n
T 20-a ; T—g (" —a™) (2.6.9)
= l4a iiqzﬂkan_iiqgnk 5
2(1—-a)
n=1 k=1 n=1 k=1
l+a 2. ag* ©  g-lg*
- ek Y e 3 (2.6.10)
21—a) & 1-ag®* “1-alq
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Since the series (2.6.10) converges for all values of z except z = ¢°™, m € Z (where there
are poles of order 1), (2.6.1) is valid for all values of a, b, and ¢.
The properties of
p1(a) =—p;, (a71) (2.6.11)
and
p1 (@) = p, (ag®) — 1 (2.6.12)
can be deduced using (2.6.10).

If weleta = € in (2.6.9) we obtain

; 1+e¥
) = e

= 8 ooily 5
- 2CO 9 ]

= ify(8). (2.6.13)

We end this section with the following two corollaries, which will be used to obtain formu-

lae (4.2.9) and (4.3.9), respectively.

Corollary 2.6.2

F (a,t) F (b,t)
F (ab,t)

= p1(a) + py (b) + py (t) — py (abt). (2.6.14)

Proof If we divide both sides of (2.6.1) by F (ab, t) then we obtain

F(a,t)F(bt) _,0
Flany) o oef @b +mla)+e (). (2.6.15)
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Next we use (2.4.2) to compute the logarithmic derivative of (2.6.15) and obtain

“p-1y-1,2 2 2.2
télOgF(ab,t) = télog[(abt’a L q,q,q,q)m}

ot ot (ab,a=1b71¢%,t,t71¢% ¢%)
B i B abtq2“‘2 N a—lb—lt—lq%
- it 1 —abtg?»—2 1 —qa-1h-lt-1¢2n
tq2n—2 t—1q2n
— 2.6.16
+1 = tq2n—2 11— t—1q2n ( 1 )
By using (2.6.10), we can rewrite (2.6.16) to become
0

t—log F (ab,t) = p, (t) — p; (abt). (2.6.17)

ot

By substituting (2.6.17) into (2.6.15), we complete the proof of (2.6.14). ®

The proof of (2.6.14) is the same as that given in Cooper and M. D. Hirschhorn in

[44] or Cooper [42].

Corollary 2.6.3

2.6.18
ww (wvwg, B8, B0 W g gy (000
where |q| < |uvw|, [ul, |v], |w]| < 1.
Proof Using (2.6.11), equation (2.6.14) can be written as
F(a,t) F (b,t) )
oD o ey OF e -G (2.6.19)

Ifweleta= 24,b= 1, ¢t= >1in (2.6.19) then we obtain

uw’ uv

F(%F%(?%F:_(q;)%ﬂ) = (%) i (%) - (E) i (Q_;) (2.6.20)
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By using (2.6.12), it can be shown that

uv uvq)
)= iz, A |
P (wq) P ( 3

and

3
vw) = ()
— | = — ] + 1.
Py (uvw) P\ ivw

Therefore equation (2.6.20) can be written as

PR (1) 1 (2) -0 ()0 (c5). s

Using (2.4.2) and (2.6.8) in (2.6.21) and simplifying, we find
(g’;s Uzs 19[251 U2, i;! 'UJ2, q2! q2; q2)

ﬂwﬂmywiw_w.qz)
(o o]

w’ v luw’ v P w’® w ) uww’® g

) - G G- (5
R R o Rl

By factorising the terms in the series we find

/

I
NgE

3
—

2.0 oklghil g2l o Dlzs
(]___L) (U1U1w=%1ﬂ?s£ﬁ1Q1Q1Q)
uyw 00
Ywg uwg uvq wq vg9 uq _q . .2
(1 e E}‘qﬂ) (uqu’ u ) v ) w?u!uw? yw’ uvw’ )oo

(un e u—n) (vﬂ - U—!’l) (wﬂ. s wﬂ)

; q—n p— qﬂ

I
]

(2.6.23)

Il

This proves (2.6.18).
Using the ratio test, the series of (2.6.18) on the left converges for |¢| < |uvw], |u], |v],

lw| < 1.8
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This proof of (2.6.18) was given in [42].

If we set u? = a,v? = b, w? = ab in (2.6.18) and simplify then we find that

%) n
q 1 1 1,
-——-—+ b — a™b"
Z 1 _q2n (anbn am bn a”+ 2

2 2 g9 LIsh
¢ (058505 ¢ 05¢)
ab (ag, 4,bq,1,abq, %,9,0;4%)

(2.6.24)

This was given by J. W. L. Glaisher [56] and an application of this formula can be found in

Bemdt [19, p. 303].

2.7 The Weierstrass (o function

We now derive the connection between the function p, and the Weierstrass p function. The

Weierstrass p function with periods 27 and 277 is defined by

p(0) = 912+ Z [(0_ = 2~ -

2
(Y E(0.0) 2rm — 2ntn)”  (2mm + 277Tn)

It can be shown [39, p. 68] that

i ot tﬂ 2n
p(6) = 5+ 22 —( — — n;ﬂ 619 oy (2.7.1)
—1 o q‘Zn d .
= —+2) ———+i—p, (). (2.7.2)
12 "= (1-gn)?  db
Let
P = Plg)=1-24y ——— (2.7.3)
ot (1—gR)
o [e ]
= 1- 242 quZm"
n=1m=1
o0, 2m
myq
= 1-24) = 2.74)
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then by (2.6.13)

1,0 = _mg*™ P
= =—csc’=—2 E - = 7.
p(6) el 1= - cos mf = (2.7.5)
P
— __fo( ~ B (2.7.6)

The Weierstrass invariants e;, e;, and ez are defined by

er = el(q)=p(), (2.7.7)
e2 = e(q)=p(n7), (2.7.8)
e3s = e3(q)=p(r+n7). (2.7.9)

If we putf = 7 into (2.7.5) we find

(@) = > 22 1+2i By (2.7.10)
@l = g 1—q2n 127 Tl "

1 >~ (2n — 1)g*"2

= 6+4 1_q4n—2
n=1
1 o0 nq2n 2nq4n
= _ 4 —
6 n=11_q2n n:ll_q4n n= 11_q4n
1 EY ann €3 nq4n
= —+4 —
1 & nq2n
= 6+4Z1+q2n' (2.7.11)
n=1

Similarly, by putting § = 77 and 7 + 77 into (2.7.5) respectively, then simplifying, we

obtain

s _ 2n—1
e2(q) = —=— A3) % 2.7.12)
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and

1 =, (2n — 1) g*1
n=1

From equations (2.7.11)—(2.7.13) we obtain the sum

e1(q) +e2(q) +es(q)

o0 2n oo o2 — 1) g2n-1 &Y o2n — 1) g2n!
_ 42 ng +22(n )q —9 (2n )q

o1+ g — 1+ g1 2T
= Qiliqun-i'?nil_qzn 1 ;%

= B w
- 2;111—(1(]"_ nz:zlln_qqn
=0 (2.7.14)

Next we consider the relationship of each of f;, f2, and f3 to the Weierstrass p function.

First let b — 1/a in the fundamental multiplicative identity (2.6.1) to arrive at

. ., 0 :
bl_l)rlr}aF (a,t) F(b,t) = bl—lglx}ataF (ab,t) + bgrlr}aF (abt) (py (@) + py (b)). (2.7.15)

The left hand side of (2.7.15) is simply F (a,t) F'(1/a,t). The first limit on the right hand

side of (2.7.15) is

0 nt®
lim t— — = i
b—l+r1r/la ot ;oo 1 — abg®™ b—irlr,}n RZ#O 1 — abg?"

nt™
- g 1 __q2'n.

d
faﬁl (t).
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By using (2.6.11) and the infinite product formula (2.4.2) for the function F', we see that

the remaining limit on the right hand side of (2.7.15) becomes

lim F (ab, ) (p1 (a) + p1 (b))

b—1/a
= lim (1 —ab) F (ab,t) lim p(@)+0 ()

b—=1/a b—1/a 1—ab
d (a’btv qz/a’btv q2, q2; q2)00 : pl (a) - pl (1/b) 1
_ - 1 L E
bglir/la(l gt} (t,q%/t,ab,q?/ab; ¢?) o b—lg}a a—1/b b
= (1) p} (a) (—a) .
Hence we have [100, p. 112]
it ) =ty ) — aeepn(a) 27.16)
a, /a,t) = prie! a P\ lee
If we set a = €', t = €' and use (2.7.6) on (2.7.16), we obtain [39, p. 122]
F (e, e®) F (e7, ) = p(a) — p (). (2.7.17)

2.8 Fourier series for squares of four functions

In this section we obtain the Fourier series for squares of fy, f1, f2, f3 using the Fundamen-
tal multiplicative identity.

First by letting a = b = €, ¢ = €% in (2.6.1) we obtain

F? (ei“,eis) = %%F (¥, €?) + 2F (e**,€¥) p, (). (2.8.1)
By (2.4.8), we observe that
. —l+i 3223823 251 (2.8.2)
cotu = = - 8.

j=1
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Now if we use (2.8.2) to expand (2.6.13) in powers of v then

, ) v =~ ¢
pi(e®) = §cot 3 + 22’2 T Sinmy
m=1 q
7 ] sz mZJ-lqzm (_1)1 -1
= —+42 —=_ = . 2.8.3
v+2;[4j ;__11—(;% @2 —1)! (28.3)

Using (2.8.3) and (2.4.14), equation (2.8.1) becomes

00 q2m
+|—-——=4+2 cosmb| w
12 mzﬂ 1 — ¢2m)?
+i _Bj+1 N i ( m]ezoqm N (_1)] mJe—qum YTy
. ] +1 ] — ei0q2m 1-— 6—10q2m ]l
g=2 m=1
= —l—lcotz——i—Qi o cos mf
4 4 2 —— 1—¢?m
10 1 2. g
+-= —— 42 —————cosmb| 2w
100 { 12 + mz.—_:l (1 — g2m)? me| e
. i _ Bju . i ( mieifgem B (—l)j mie=19g2m \ | 2igiyi
' j+ 1 1 - eieq2m 1 - e—i0q2m j!
]:2 m=1
+2 3+2z‘§: By _ 5 m"“’“_lqz’“] (—1)jv2j‘1}
: _ 2 Y
v — dgl - == Il — g (27 = 1)!
1 1 6 & ¢
——— 4+ 21 | —cot — in m@
x{ %70 + 2 |:4co 2 +n§ 1_q2m sin m
+ —i +2iqz—mcosm6 21V
12|~ il — g
N i _Bjn N i mieifg?m B (=1) mie=#q?m \ | 297y
e ] mi = i = ei9q2m | = 6—i0q2m ]l :

(2.84)
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By comparing the coefficients of v° in (2.8.4) we find

m=1 m=1
1 ) q2m
= _Z_ZCOt 3 QZZII_QchosmG
1 s mq2m 1 o0 q2m
— =2 - —8 - - 2.8.
+12 ;1—q2m+3 mzzl(l_qzm)zcosmO (2.8.5)

By simplifying and rearranging (2.8.5) we arrive at
1 0 o0 2n ¢
2 _ q .
5@ = <§cot§+2 E == 2nsmn9>

= —cot +4z l—q cosnﬁ—i-QZ1 o (1 — cosn#),

(2.8.6)

which is the same as (2.5.6). The proof we have given here is due to Venkatachaliengar
[100]. Ramanujan published an equivalent identity (2.8.6) in [61, p. 139] and gave a proof
by using series manipulations. B. Van Der Pol [99], J. Ewell [52], and L. C. Shen [98]
employed the heat equation to obtain identity (2.8.6). Other proofs of identity (2.8.6) can
be found in [38] and [100]. Hardy and E. M. Wright [62, p. 312] and Hardy [60, p. 134]

applied identity (2.8.6) to obtain the sums of four squares theorem.

Next if welet o = 7, 77, ™ + 77, respectively, in (2.7.17) we obtain [38, p. 72]

70 = p@)-p(), (2.8.7)
20 = p@)—p(rr), 2.8.8)

f20) = p@) —p(r+77). (2.8.9)
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By (2.7.7)—(2.7.9) and (2.8.7)-(2.8.9), we obtain [38, p. 72]

20)- 0 = e —e,, (2.8.10)
20)-f2(0) = es—ey, (2.8.11)
f20)-f20) = e1—es. (2.8.12)

By using the definitions of e;, e,, e3 and (2.7.17) the following hold [39, p. 123] or [100,

p. 66]
1(—q;¢%)?%, (%
e —e; = ZE ,qf?j((q q; (2.8.13)
(0% 025, (0% 0¥
s =5 ol o0 (2.8.14
L oF = q,ff)‘éo (g; %), )
1 (407 (0% 0D)a
iy e oo (2.8.15)
o 4(-g;¢%)5 (00

Note that since Im 7 > 0 this implies that e; # e,, e; # e3, and e; # e3. Substituting

(2.7.5) and (2.7.11) into (2.8.7), we see

2n
i > Cos né. (2.8.16)
f— q n

Similarly, by substituting (2.7.12) and (2.7.13) into (2.8.8) and (2.8.9), respectively, and

then using (2.7.5) gives us

13 (6) (2.8.17)
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2.9 Derivatives

The aim of this section is to give the first and second derivatives of fy, f1, f2, and f3.

2.9.1 The derivatives of fj, f1, f2, and f3

From equations (2.7.6) and (2.8.7) we have

P
/) = ~0O) -1 =70 -~p) -2
X 1\, 20
= —ro-3+ 5 = ——
n=1

by (2.7.10). Next we will examine the derivatives of f,, fo, and f3.

By changing the variable ¢ to €, the fundamental multiplicative identity (2.6.1) becomes

F(a,€e®)F(b,e?) = %aa—gF(ab, %) + F(ab,e®)(p,(a) + p,(b)). (2.9.2)

. —_ ; o 1
We let a = € and b = ™7, From (2.6.8), p,(e"*") = p; (™) = 3" Therefore

(2.9.2) becomes
i0 if 19 2 _if 2 _ib
F(q,€°) F (—q,e ):E%F(—q,e )+ F (—¢%€°). (2.9.3)
By applying the property of (2.4.5) on the right hand side of (2.9.3) we obtain
i i 18 ¢ 4 i —i :
F(q,€") F (—q,€°) = i50 [e7®F (-1,€*)] + e™“F (-1,¢€"). (2.9.4)

Employing (2.5.2)—(2.5.4), equation (2.9.4) becomes

e f (0)ie™®?f3(0) = =57 [1€7f1(0)] +ie™?f1(6)

—e 5 (0) f2(8) = —ie™f, (6) + €S (6) + ie~f, (6).
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Therefore we deduce that [39, p. 73]

f10)=—£2(0) 3 (0) .

36

(2.9.5)

Similarly by letting @ = '™, b = €™ and a = €'", b = €'™, respectively, in (2.9.2) this

gives us

f2(6)

—f(9) f5(0),
0 = —fH0) f2(09).

(2.9.6)

2.9.7)

Note that if we set ¢ = 0 in equation (2.9.5) and (2.9.6) then we obtain the well known

trigonometric results, respectively,

L .90 1 .8
2CO2 — 4CSC2

and

2.9.2 The second derivatives of fj, f1, fo, and f3

Lemma 2.9.1

0 (0) = 2f1(0) f2(0) f3(6),
Y(6) = 2ff(8) +3erf1(6),
2 (0) = 2f3(8) +3e2fa(8),

5(0) = 2f3(0)+3esfs(6).

(2.9.8)
(2.9.9)
(2.9.10)

(29.11)
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Proof Equation (2.9.8) is obtained by differentiating equation (2.9.1) and using (2.9.5).

By differentiating (2.9.5) and using the results of (2.9.6) and (2.9.7) we find

Y (0) = f1(6) (f(0)+ f3(9)) . (2.9.12)

By using (2.8.10) and (2.8.12) into (2.9.12) then simplifying, the proof of (2.9.9) is com-

pleted. The proofs of (2.9.10) and (2.9.11) are similar. B

Lemma 2.9.2

By; = m¥-1g?m | (—1) 6%71

—sb % 29.13
D D e sy B C

m=1

=1
1 <= [ Bajs2 o\ mAtlg?m | (—1)7 g%
R LI : 2.9.14
p(0) 92 +Z (2j+2 22 1 — ¢?m (27)! @S

m=1

Proof By employing the results of (2.6.13) and (2.8.3) we obtain (2.9.13). This proves
the first part of the lemma.

Next by substituting (2.9.13) into (2.7.6) and simplifying gives (2.9.14). B

Theorem 2.9.3

o' (0) = =2(f2(0) f3(0) + F2(0) £3(6) + 2 (6) £3 (9)) (2.9.15)
, P\’ Q@
= —6 (fo (6) + E) + 50 (2.9.16)
where
o n3q2n
QZQ(‘?)=1+24021_92,1- (2.9.17)
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Proof Differentiating (2.9.8) with respect to 6 and using (2.9.5)-(2.9.7) to simplify gives

(2.9.15).
Equation (2.9.15) may be rewritten as
5 (0) = £0)+ 30) +13(0) - (2 0) + 3 (6) + 13 (6))".
By substituting (2.8.7)—-(2.8.9) into this we obtain
o' (0) = (p(6) — 1)’ + (p(6) — €2)* + ((6) — e3)*
— (3p(0) — &1 — €2 — €3)°
= —6p%(0) + 4p(0) (e1 + €3 + €3)
—2(e1eq + e1e3 + eze3)
= —6p%(0) + 4p(0) (e1 + €3 + €3)
+e2 +e2+e2 —(e1+e+e3). (2.9.18)
By using (2.7.14), (2.9.18) becomes
V' (0) = —6p%(0) + €5 + €3 + €3 (2.9.19)

Now if we use (2.9.13) and (2.9.14) to expand (2.9.19) in powers of # then equate the

constant terms to give

el +es+e;= K (2.9.20)
24
By substituting (2.9.20) into (2.9.19) and using (2.7.6) gives (2.9.16).
Equation (2.9.16) may be rewritten as [100, p. 2]
i o 2 Q
©"(0) = 6p*(0) — —. (2.9.21)

24
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Ramanujan [61, p. 139] also gave an equivalent result to (2.9.21).

Corollary 2.9.4

! 2 3 Q R
= - — - — 2.9.22
(©'0))" = 4p°(6) — 50(6) — 57 (2.9.22)
where
o n5q2n
R=R(g)=1- 5042 —— (2.9.23)
Proof If we multiply both sides of (2.9.21) by ©’'(6) and integrate we obtain
! 2 _ 3 Q
(9'(0))" = 4p°(0) — < 0(0) + ¢, (2.9.24)

12

for some constant c.

If we employ (2.9.14) to expand (2.9.24) in powers of 6 and equate the constant term, this

gives

_a
216

By substituting (2.9.25) into (2.9.24) we complete the proof. B

CcC =

(2.9.25)

Equation (2.9.22) is the differential equation satisfied by the Weierstrass g function.

2.10 Higher derivatives

In this section we obtain sixteen Lambert series by expansions of the four functions f, f1, fo,

and f3 at the four points O, 7, 77, and 7 + 7 7.
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Since fy, f1, f2, and f; are analytic at m, 77, and 7 + 77, the coefficients in the ex-

pansions about these points can be obtained by differentiation.

From equations (2.5.5), (2.5.7)—(2.5.9), we see that functions fy, fi, f2, f3 have a simple
pole at § = 0 with residue 1. Therefore we can obtain the expansions about § = 0 by

differentiating the functions
: 1
fr(0) :== fi (6) — 7 where k = 0,1,2,3.

By expanding (2.5.5), (2.5.7)-(2.5.9) in powers of 6§ and then equating the coefficient of
g2-1
respectively, we have

fE00) = 2(-1) —i—;j—i"i——;z:n , (2.10.1)
L m=1 J

@1 (g) = 9(_1) %_; + mi:l nf:_;gfn"‘l (2.102)

21 (0) = 2(<1)i" (1—21 27 By; i zimlql?'ml (2.10.3)

e = gy | 822 mi 1+);ml 2] s

where 7 = 1,2,3,....
Note that f,EZj) (0) = 0, because fx is an odd function.
We obtain another set of twelve series by evaluating derivatives of fy, fi, f2, and f; at the

points § = m, 77, and 7 + 7T.

- . 223_1 B 00 m2i—1g2m |
) = oy |EDE S T s
L m=1 d
. . 2:‘_1)3 L& (1) migem ]
(2j-1) — 9(=1Y (2—23 1
@) (3 (1) i +Y TN ,  (2.10.6)

3
Il
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o m 1\27 2m—1]
@)\ _ i| B (-1)"(m—3)"q
() = 2(-1) 223+2_Z 1 — g2m-1
L m=1 i
“’1 2j om—1]
@)\ _ i | B )" (m—3)"4q
(m) = 2(-1) 22]+2+Z e
© _2i-1.m
2 j= m q
RV fwr) = 4EEVY T
m=1 q
0 2j ,m
(27) j-1 ]
P ar)y = 2(-1771) .
—1+gq
00 1\25-1 -1
2j-1 = (m— D7 g
@) = 2T Y
m=1
(o) 1\2j m—1
(2)) _ jinm (m=3)"4q
£9 (@) = 2 Y
m=1
e m __2j—-1,m
- —1\™ 2
D (war) = 2(apnt Y EER
m=1 l_q
oo m 24
s ()" g
(r+77) = 2i(=1) 12— Tt gm
m=1
o0 m 2j m— =
2 i (=)™ (m-13)"q
Nrgar) = 2(ap Y Mo
m=il
o) m 1\2j-1 1
2j—1 : : (-1) 2
FEV(r 7)) = 2@(—1)’2 (1+(122")‘_1
m=1

Equations (2.10.1)—(2.10.16) hold for 5 > 1.
Also [39, pp. 127-128],
2 ()

_ 1(2.7') (ﬂ.) = féQj_l] (7!')

167 (nr) = f770 (ar) = £ (n7) =

féz’ ) (r +77)

= ¥ () =0,
#970 (ar) =0,

P @+ 7r) = 5770 (w4 wr) = £ (w4 77)

41

. (2.10.7)

; (2.10.8)

(2.10.9)

(2.10.10)

(2.10.11)

(2.10.12)

(2.10.13)

(2.10.14)

(2.10.15)

(2.10.16)

= 0.
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42

Equations (2.10.1)—(2.10.16) are called Fourier series expansions of Eisenstein series, which

will be studied in more detail in Chapter 7. Equations (2.

Cooper [39, p. 127), where (f2)*™ (x), (f2)®™ (x7), (f2)*™

m 2m
@m) (rr), £

The following lemma completes this section.

stead of f{*™ (),

Lemma 2.10.1 Forj=1,2,3,...,

FE- Doy f8-Po) + £7 ()

O () + 7D (rr) + fED (w4 77)

Proof We observe that

10.5)—(2.10.16) can be found in

(m + m7) were used in-

(m + 7T) , respectively.

— (1 - 419) f®V (),

(2.10.17)

(49 —1) f#V(0). (210.18)

(m . %)2] 1q2m—1 B i (m _ %)2j—1 qzm_l ~ [e) m2j_1q2m
— 02m-1 2m—1 2
1 qm m=1 1+qm m=1 1+qm
e i (2m _ 1)23' 1 q4m—2 00 m2j—1q2m
= o L= q4m—2 — 1+ q2m

- 2] -1 2m 2] 1 4m o0 m2j-—1q2m
— 4 =3 —J = iy S =
Zl_qu r; 1_q4m r;l+q2m
@ 23 1 2m © m2j-—1q4m x m2j—1q2m
= 41-J _ i S .
mz_ 1_q2m mz::l lmq"‘m mzz:] l_qdm
_ 41—j i m2; 1q2m B o0 m?j—lq‘Zm
m=1 1- q2m m=1 1- g2m

. o0 12m

<=5/ I

4 121_q2m'
m=1

(2.10.19)
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By (2.10.2)—(2.10.4) and using (2.10.19), the left hand side of (2.10.17) becomes

PO+ 577 ) + 5777 0)

| By , _ ®©_ 2i-1,2m
= 2(—1y1 |2 (1 - 414 1 _ E KN
217 |G-+ ) D

= —(1-49) fF0).

This completes the proof of (2.10.17).

The proof of (2.10.18) can be obtained in a similar way. &

2.11 The functions z, z, iK', and £

In this section, we define functions of z, z, K, and E. We show that £’ and K may be
expressed in terms of z, 2z, and dz/dz. The results from this section will be used to

throughout this thesis.

Definition 2.11.1 Let

= 2
z = z(q)=<z q"2> , (2.11.1)

r = z(g)=|Z=2— |, (2.11.2)

© = (g = = . (2.11.3)
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Then by replacing g with ¢? in the Jacobi triple product identity (2.3.16) and setting z =

—q, —q?, q, respectively, we find that

> ¢ = (-¢,-0.¢50%),, (2.11.4)
n=-00
- (n+3)° by 8 _ 9 8 5
> d™) = 2t (-, -¢, 5 d),, (2.11.5)
" 2
Yo )" = (¢,9.9%50%),, 2.11.6)
n=-—00

Now using these results into (2.11.1)—(2.11.3) we obtain

z = (—¢¢)t (%), (2.11.7)
_2..2\8
r = 1607w (2.11.8)
2\8
(=49 &
. ,2)\8
5 = ((q—qi;’%— 2.11.9)
—q; %)%,

Using equations (2.8.13)—(2.8.15), equations (2.11.8) énd (2.11.9) may be represented as

€3 — €2

g = , (2.11.10)
€1 — €2
g = LTS 2.11.11)
eln— €2
Itis clear from (2.11.10) and (2.11.11) that
z+z =1, (2.11.12)

and hence we obtain Jacobi’s formula [100, p. 62]

8
o

(4:¢°)%, +16q (~¢% %)%, = (~4:6%) (2.11.13)
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The functions K and E' are discussed next. From [26, pp. 7-8] the complete elliptic

integrals of the first and second kind are defined, respectively, as

K = K(k):/’ s
0 v1-—k2sin?0
y B

:f dt . (2.11.14)
o (1-1)(1-k42)
and
_12[
E = E[k):/ 1 — k2sin® 0d6
0
L1 — k242
= —— 2.11.15
-/0 1—t2 dt! ( )

where z = k2.

In the integral (2.11.14), we make the following change of variable ¢t = % fola+7T).

Then dt = 22 f1 (@ + 77) f3 (@ + 77) do. If we set 6 = o + 77 in (2.5.12) we obtain
L ia /9 ia ,—ta 2 2.2
gzes (9%, e, ¢*, 0% ¢%)oo
a+nT) = , A . (2.11.16)
F ) i (qem qe‘“*,q, 49%)os
( = (1—2¢*"cos 6 + ¢*™)
2q2 2.11.17
(& qz 2 sin 5 H (1 - 22" Lcos 0 + ¢in-2)’ ( )

If we use (2.11.7), (2.11.8), and (2.11.17), then f5 (o + 77) increases from O to zk/2 as «
increases from Oto 7. Whent = 0, « = 0 and whent = 1, then @« = m. Thus K can be

rewritten as

K= / () fr (a+77) f3 (@ + 77) dax | QAT
\/ 1—k2 (X fo(a+n7)) ] [1 - (f—kfg(a+7r'r))2]
Using the results of (2.8.8), (2.8.9), (2.11.7), and (2.11.8) we obtain
272
f26) - £2(0) = (2.11.19)

4
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and
2 2 22
IHORSHOESS (2.11.20)
By using (2.11.19) and (2.11.20), equation (2.11.18) becomes
a+ 7T a+ da
K= / (5) fi ( )falatmr)de (2.11.21)
\/ (272 (@ +77)] [z f2 (o +77)]
Equations (2.5.10) and (2.5.14) imply
(—ge**, —qe™*, ¢%, ¢% ¢°)
, — 2.11.22
Sl = i (ge', qe““,—l,—qz;q2)m ( )
and
L&, 948 e—ia
VORI e o e ' L ELG (2.11.23)
2 (qem} qe m, —q,—q;9q )oo

Now if we substitute the infinite products (2.11.22) and (2.11.23) in (2.11.21) and select

the positive sign under the square root, then equation (2.11.21) becomes

Tz
K:f—da
0o 2

- gz. (2.11.24)

Similarly, if we use the same change of variable in (2.11.15) we find that

iy

/-fr 1- k2 (Zf, (6 +77))°
— (200 +77))*

/ \/ ffla 09-:-7;: <;k)f1(9+7”)f3(9+7rr)d9
22k2

z Jo
-9 (1 o0 ei(9+1r'r)n 2d9
Tz 5 i Z 1+ ¢%

(zk>f1(9+m)f3 6+ mT)do

n=—00

2
T M gl > "

= - —+2 6) db
z/_,,(2+ §1+q2ncosn>




2.12 Reciprocals and quotients of the functions fi, f5, and f3 47

! / i 4i " os?nf|dd  byorth lit
= - g ——— n orthogonali
zJ)_,\4 —~(1+ g*)? ¥ 2 :

n=1 m=1
4K |1 = (—1)” ng?
= 7[Z—QZW . (2.11.25)
n=1
Therefore

o |1 = (=1)" ng*"

F=—|--=-2 —_—— 2.11.26
z |i4 nZ:; 1—g¢% (2.11.26)

Equations (2.11.24) and (2.11.26) can be found in C. G. J. Jacobi [67, p. 159, eqn. (4) and

p- 169, eqn. (6)]. From [26, p. 9, eqn. (1.3.13)], we have

dK _E-K'K
. ke

where k' = /1 — k2. This can be rewritten in terms of z, z, and dz /dz as

dK
1 d 1
= sz(l—x)a(zm). (2.11.27)

2.12 Reciprocals and quotients of the functions f;, f,, and f;

The aim of this section is to write f; (§ + w) in terms of f; (6), f2 (), f3(0) , where w =

m,nT, 7+ 7T and k = 1,2, 3.
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Lemma 2.12.1

21— 1
LO+7) = =Z ; zfl(é?)’ 2.12.1)
0
f2(0+m) = %ﬁ‘ge; (2.12.2)
v1-— 0

fa@+1) = Z 5 szgoi (2.12.3)

_ iz f3(0)
fi@+77) = 2f2(0) (2.12.4)

2 1
0 = ”‘Ffl() 2.12.6
f3( +?TT) 2 f2( ) ( )
f0+7+77) = _’ZV;_”C}EEZ;, 2.12.7)

. Z\/_fl()
f20+m+mr) = —— 700’ (2.12.8)

i =
fi@+m+7r) = 2 ‘”il I)fsl(g). (2.12.9)

Proof Ifwesetf = 6+ 7 in (2.5.10) then the left hand side of (2.12.1) becomes
(et i)
Sl )= i (—e?,—q%e %, -1, —¢2 ¢?),, ——
Using (2.5.10), (2.11.7), and (2.11.9), the right hand side of (2.12.1) becomes
2 A 0 2,0 2 9. .92

"/ S S G i) ST 1 0 O (2.12.11)

4  f£1(0) i(—e? —q% ¥ —1,—¢2%¢?),

Comparing the right hand sides of (2.12.10) and (2.12.11) completes the proof of (2.12.1).

Equations (2.12.2)—(2.12.9) can be proved similarly. B
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2.13 Jacobian elliptic functions

In this section, we demonstrate the connection between the twelve functions and the Jaco-
bian elliptic functions, shown in tabular form at the end of this section.
Upon comparing the Fourier series (2.5.5), (2.5.7)—(2.5.9) and replacing § by 0 + =,  + 77,

0 + 7+ 77 in (2.5.5), (2.5.7)-(2.5.9), respectively, with those in [101, pp. 511-512] gives

<§> fi (2?'”*) = csi@m), 2.13.1)

@) % <22_“> — neupk), (2.132)

(g) fi (22_“) — GG (2.133)

(;Z%) fi (-?;'+7r> = (g) = (127“) —sc(u,k), (2134)

(Z) f2 (27“+7r> = ﬁgzg = dc (u, k), (2.13.5)

(;;j;?) 7 (%‘Hw) - ;j Ezg = nc (u, k), (2.13.6)

ng) h <2?“+m> = 2 Ezg = dn (u, k), (2.13.7)

(z—g\/—;) fa (2—;—+m> = (g) 2(127“) —sn(u,k), (2138)
<z%> i (2?”+m> - 2 Ei; =cn(u, k) (2.13.9)
(2\2;;) Il (27"+7r+m> = 2 Ezg =nd (u, k), (2.13.10)
(zja)fz (27”+7r+m) = ;;Ez::; = cd (u, k), (2.13.11)
(iz 23;1:') f (%’f +7r+7r7') = (3 = (12%) =sd(u, k). (213.12)
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Equations (2.13.1)—(2.13.12) are the twelve Jacobian elliptic functions. The Fourier series
expansions of (2.13.1)—(2.13.12) originally appeared in Jacobi [67, Sections 39, 41, and
42]. The Fourier series expansions of equations (2.13.4)—(2.13.12) can also be found in S.
C. Milne [88, pp. 11-12]. More Jacobian elliptic functions will be presented in Appendix
D.

A table is presented to show the connection between the twelve functions and the Jacobian

elliptic functions as follows:



‘suonouny
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a1 g S2(0) f2(6) = —ns 1‘9 k) ns(uk) = (% )fi (27“ )
gl Il Bl L) £0) = 74s(5.) “en= (E(%)
5 —i'k2 —
IEI A@+x) [ AE+r) = EE e = KK e (K2 k) sc(uk) = (J)’ (%+7)= (2)f ()
o gl o _Kf6) _K, (K8 u A(3)
g [-1] &*2 A +x) fa(f+x) \?EQ; xde (K k) @D (z)f( )'f(n.u .
. 9 L
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112 41012 kK2 K 2 - 1
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2.14 Special values

In this section we present four special values of fy (0), fi 0), f2 (6), and f, (6). By

substituting 6 = 0,7, 77, 7 + 77 into (2.5.5), (2.5.10), (2.5.12), and (2.5.14), respectively,

we obtain
0 T T T+ 7T
1 1
fo(6) | o0 0 % %

f1(9) - 0 z FAVA R

21 2i
(2.14.1)
% 2T
0 = 0 —
f2(0) | 00 ) )
zVv1l—1z | 2y/Z
The results of (2.14.1) will be used in Chapters 3-6.
2.15 Addition formulae
In this section we present addition formulae for the functions fy, f1, f2, and f.
Lemma 2.15.1
d ! !
g5 fo (@) = fo (B)] + fo (o B) — fola
g B ROA@QLE - H@AG

fo (@) = f5(B)
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Proof Leta = €™ b =€, andt = € in the fundamental multiplicative identity (2.6.1)

so that

F(e, 6)F(e?, €%) = T F(e+9), ¢*) 4 F(e®+), %) oy (%) + 1 (¢¥)). (2.152)

We apply 2 — £ to obtain

9B
0 ia v if v\ _ ia 4 if
aaF(e ,e')F(e*, e’) — F(e*°, )6[3 (e, e")
= %F(e"(ﬁﬁ),ev) zaipl( m)—z—pl(e‘ﬁ)] (2.15.3)

Note that

Using (2.4.14) we find
) .
= m, v
% (e, €7}
ol 2m bt 2mq2m
= 2i|— csc? + cosmeo | — ——————sinma| v
[3 Zl‘q ] lngl(l—qzm)z ]
{ oo
§=2

=) ia ,2m 1\ —ia 2m j !
Bjn me'*g*™  (=1)"me™*%q v
j = 5 | Z (1 == ei0q2m = e_,‘aqzm Jl . (2154)

m=1

Note that

d 2mg®™ .
—fo(8) = —_— 6.
qdqfo( ) mzz:l 1) sinm

We equate [vo] from equation (2.15.3) and use (2.4.14) and (2.15.4) to obtain

qdiq [fo @) = fo (B)] + 1) fo (B) = fo (@) £2.(B) = fo (e + B) £, (B) — £ (e)].
(2.15.5)

Rearrangement of equation (2.15.5) completes the proof. il
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An equivalent formula to (2.15.1) can be found in Lawden [72, p. 161, eqn. (6.8.4)].

In [38, p. 74], the addition formulae of f,, f2, and f3 are given by

_h (@) f2(B) f3(B) = f1 (B) fa (@) f3 ()
e+ 4) = B~ (@ |

_ fa(@) f5(B8) fL (B) = f2(B) f3(e) fi(a)
flaxd) = AORNAR |

_ I (o) f1(B) f2 (B) = f3(B) f1 (@) fa (@)
Ela) HOEIA®

(2.15.6)

2.16 Summary

We have introduced and given a proof of Ramanujan’s ;7); summation formula. Most of the
results presented in subsequent chapters will be directly or indirectly related to this formula.
By using a special case of Ramanujan’s ;7); summation formula, we obtained an infinite
product expansion of the Jordan-Kronecker function. We defined four functions, fy, fi, fo,
and f; that arise from Ramanujan’s ;4; summation formula and constructed twelve other
functions from these, giving a total of sixteen functions. We also obtained Fourier series

expansions of functions fy, f1, f2, f3 and infinite product expansions for f;, f,, and f3.

We also presented sixteen Lambert series, and showed how they arise as derivatives of
fo, f1, f2, and f3. Several of these Lambert series can be found in [2], [19], [66], [67],
[72]-[75], [88], [92], [97]. Glaisher [57] and Zucker [105], [106] presented the complete
set of sixteen Lambert series. The significant point is the sixteen Lambert series all origi-

nate from Ramanujan’s ;7, summation formula.
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The fundamental multiplicative identity and the Weierstrass g function have been intro-
duced. These were used to calculate the derivatives of the four functions, Fourier expan-

sions of their squares, and their addition formulae.

The functions z, z, K, and E have been defined, and we obtained the reciprocals and quo-

tients of the functions fy, f5, and f3. A connection between the twelve functions and

Jacobian elliptic functions is also known.

The sixteen Lambert series, functions z,z, K, and E will be used frequently throughout

this thesis.



Chapter 3
Transformations

3.1 Introduction

The aim of this chapter is to apply selected transformations to functions fy, f1, f2, and f3,

aswellas z,z,1 — z,and E.

In Section 2 to 4 three transformations are applied including the Gauss transformation (7
to 7+ 1), the Landen transformation (7 to 27), and the modular transformation (7 to —1/7)
to the functions fy, fi1, f2, and f3, respectively. From each of these transformations, we

establish connections between functions fy, f1, f2, and f3.
: : 3 2 3 2
In Section 5 we apply seven transformations (q to —g, g to g2, g to g*, g to —q?z, g to —q*,

qto iq%, and q to —iq%) satisfied by z, z, 1 — z, and E.

3.2 The Gauss transformation 7 — 7 + 1

If we change 7 to 7 + 1, then the Fourier series (2.5.5), (2.5.7)—(2.5.9) imply

foBlr+1) = fo(6l7), (3.2.1)
Hlr+1) = fi(0l), (3.2.2)
fo(0lr+1) = f3(0]7), (3.2.3)
fr0lr+1) = f(0]7). (3.2.4)

56
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3.3 The Landen transformation 7 — 27

Theorem 3.3.1

1

fo(202r) = 5fo(Ol7) + fo (6 + )], (3.3.1)
1
f@fer) = S1AGID)+ A0+, (332)
_ f2(6l7) f5(8]7)
it
fs20)21) = A1) = f (0 + )] (3.3.4)
Proof If we replace f with § + 7 in (2.5.5) and (2.5.7) we obtain
1, 0 = (=1)"g™
fo(@+7) = =5 tan 3 + ZmZﬂ (1_)—qzqm" sinm#f (3.3.5)
and
f1(9+7r)=—ltang—2§:wsinm0 (3.3.6)
5 5 2Ty e . 3.

Equation (3.3.1) follows immediately from the F_ourier series of (2.5.5) and (3.3.5). The
proofs of (3.3.2) and (3.3.4) are similarly straightforward by employing the Fourier series
of (2.5.7) and (3.3.6).

Using (2.5.10), (2.5.12), and (2.5.14), the right hand side of (3.3.3) may be manipulated as

follows

f2(6l7) f5 (6]7)
2f1 (07)

e (qe? /qer®—ge”y g7 % P11, -5 &),
N

1
i (€% q%e¥, —e®, —q?e~%,q,0 - g, —q;¢%),

1] 2 2160 2,-210 .4 4. .4
et (e gre="ig v s
1 4_—-21 ]

i (¥, g%, ¢%, % ¢%),
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By rearranging this we complete the proof of (3.3.3). B

Adding (3.3.2) and (3.3.4), rearranging the result gives
f1(0]7) = f1(26]27) + f3(260|27). (3.3.7)
Similarly, by subtracting (3.3.4) from (3.3.2) and rearranging the result we find
A (@+7|r) = fi(26]27) — f3(20]27). (3.3.8)

E. T. Whittaker and G. N. Watson [101, p. 507] wrote (3.3.3) as

kZsn (‘”‘—z kl) — ksn (&k) ed (& k) , (33.9)
[ ™ |
where
- k
S
N = %(1+k’) K.

Using the results of (2.13.1)-(2.13.3), (3.3.3) can be represented as

2 u _ sn(u, k) cn(u, k)
Zn(terw) - 208000 s

which is a much simpler form. Equation (3.3.10) is equivalent to (3.3.9).

3.4 The modular transformation 7 — —71

In this section the modular transformation is established for the functions of fy, fi, fo, and
fz. Then we expand the right hand sides of the functions fy, f1, f2, and f3 in powers
of 6, and equate the coefficients of §27'/ (25 — 1)! or 8%/ (2)! to obtain the modular

transformation on the sixteen Lambert series.
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Lemma 3.4.1

o 1 —ia0 ia 0 —1
F (e 10 . F ol L X
(e, e®|7) 7_exp(27r7_> (e ,€ |7_>
Proof Recall g =€, Letp = e~~. From [8, p. 538], we have

n (_71) = V=irn(7),

where

From [101, pp. 470 and 475], we have

il = =i (e ¥ oln, ("—ﬂ‘—l) ,

i T

where

61 (2,q) = —igie” (¢% ¢°) , (€% ¢%)  (e7%%¢%) . -

Rearranging equations (3.4.2) and (3.4.3) we obtain

1
2, 2y _ _ P. 2., 2
Equations (3.4.4) and (3.4.5) implies

gt (€%, g%, ¢% %),
2

. . 2 '2
<3 z iz iz . —is is
= (—i7) ;exp (—+—+-—) (P3P )ee (e T ,pgef,pz;p:z) ,
o0

dmit 21 2 ) (¢%¢%),

Using the results of (3.4.6) and (3.4.7) on the left hand side of (3.4.1), we obtain

F (e2, &%)
1 ; = 1 3
g3 (ee+0), g2e=et0) g% g?) g5 (¢ ¢%)

5, v ; Ty 2
qs (em’ q2e—wz, q2; qz)oo qa (810’ q2e—:9’ q2; q2)oo
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(3.4.1)

(3.4.2)

(3.4.3)

(3.4.4)

(3.4.5)

(3.4.6)

(3.4.7)
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al

2inT

exp (

1 —ilatf) o iatl) o
) pi (e = ke D
o0

G
=

1 Ol 2.,2\3
\/_—i;>p4(p§p)oo

—i6

TP

—ia

e
ab
2irT

A
(

Substitute (2.4.4) into (3.4.8) to complete the proof. B

,pze%,pz;zﬂ) pi (e
o0

-1
—exp
-

Theorem 3.4.2

ié
e, p?; p2)
o0

foBlr) = %f‘) (ngl) 2:17’
Ao = 1n(332).
RO = 1a(37),
A = 1n(232).
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(3.4.8)

(3.4.9)

(3.4.10)

(3.4.11)

(3.4.12)

Proof By employing (2.4.14), we can expand the right hand side of (3.4.1) in powers of

o to obtain
e 1 iof 1 [iaf\?
F (e 10 - . > % =
(e € |T) T < X ) <27T7'> >
T 1 0  ~— p™ mf
—— 4+ 21| —cot — + in —
x{ ia+ z<4co o7 Zl—pmsm'r
m=1
o 2m .
mp mb | o
——+2 cos — | —
m=1
+i . Bj 4 i me/Tp2m B me=#/7p2m iod
=2 ] +1 b 1-— eiO/‘rpZm ] — e—i9/7p2m j!’T’j

b

(3.4.13)
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Equate the coefficient of a® on both sides of (3.4.13) to give

) 1 il 0 p?™ mo 0
Olr) = = | Zcot— + 2 E :
zfo( |T) - <2co 2T~i— 11 5 SIn p +

Therefore, using the definition (2.5.1)

2mitT’

1 0 -1
ol =20 (H7) +
- T T
This completes the proof of (3.4.9).
Using (2.5.10) and (3.4.1), equation (2.5.2) may be presented as
1 ir _if
fi(6lr) = =F(e7,e"r)
= _—l-exp (;“9) F (e%,e’ﬂ_l) : (3.4.14)
T T

Using (2.4.5) and (2.5.3), this can be rewritten as

fi(@lt) = —exp (;)F(ef ,er| - >

T
1 1

_ L, (€| _>_ (3.4.15)
T T T

Hence proving (3.4.10).
If we replace T with :Tl and 6 with :} in (3.4.15), then rearrange we obtain

i T

f2(0l7) = —71f1 (__9|__1> : (3.4.16)

Then using (2.5.19) in (3.4.16) proves (3.4.11).
Similarly (3.4.12) can be obtained by using (2.5.4) and (2.5.14).

Venkatachaliengar [100, pp. 32-35] gave an elementary proof of (3.4.9). Cooper

[38, pp. 7-8] used Liouville’s theorem to prove (3.4.9).
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Corollary 3.4.3

o <0|“71) = 723 (o)r), (3.4.17)
fo (ﬂ%l) = 722 f&) (17)7), (3.4.18)
i) (ml;) = 223D (n)ry (3.4.19)

e (w v m|_71> = 2 (r g nrr); (3.4.20)

i (0\%1) = U2 (g|7), (3.4.21)

e <7r|%1> = 2422 (n7)7), (3.4.22)
e (m%l) = —r2*1 ) (g7, (3.4.23)
1(2j) <7T+7TTI_TI-> = —72j+1f2(2j) (r+77|7);5 (3.4.24)
o <O|_TI> = U2 {2 (o)), (3.4.25)

2(2j) <7r|_?1) = T2j+1f1(2j) (w7|7), | (3.4.26)
f(2]+1) <7r7'|_71> = —72j+2f1(2j+1) (m|7), (3.4.27)
B (w+m|_71> = —r¥ ) (r yrr) s (3.4.28)

7 (Ol_Tl) = TR (o)), (3.429)

£ (ﬂ%l) = 722 (rr|7), (3.4.30)
B (7r'r|—1) = 243 (n|7), (3.4.31)

Fla+) <7r+7r'r|_—1) = 722 (1 rrlr) (3.4.32)

Equations (3.4.17)—(3.4.20), (3.4.23), (3.4.24), (3.4.26), and (3.4.28) hold for j > 1, and

equations (3.4.21), (3.4.22), (3.4.25), (3.4.27), (3.4.29)—(3.4.32) hold for j > Q.
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For j =0in(3.4.17)~3.4.20), (3.4.23), (3.4.24), (3.4.26), and (3.4.28) we have

i (o 2L) = 0 e 3.433
(aF) = 72 0m - o (3439
-1 T
él) (ﬂj) = él) (m7|T) — oms’ (3.4.34)
(1) __1 - 2 £(1) _ _T_ 3.4.35
0 <7r7'| - ) ™ fo (|T) ol (3.4.35)
(1) =i 2 £(1) T
i/ {7+ 7I'7‘|T = 7°fy’ (m+77|T) — oy (3.4.36)
7O (m__l) = — £ (x|r) - o (3.4.37)
T 1
(0) —~1 (0) 1
T+ 7rT|—T— = —7fy (7 +7wT|T) — o5 (3.4.38)
=1 -
2(0) <7r|7-> = Tfl(O) (7rT|7') + :?—i, (3439)
il
. <7r + 7!'7'|—T——> = —7f{9 (7 +n7|r) - % (3.4.40)

Proof By using (2.10.1), equation (3.4.9) can be represented as

_+Z f(2J 1)

Equating the coefficient of 6 on both sides of (3.4.41) gives equation (3.4.33).

02] 1

(25-1) -1 02j_1 0 4
== — . . (3441
+Zf <0| T ) (25 — 1)!T2J+2m’7’ e )

Now by equating the coefficient of 2~/ (25 — 1)! on both sides of (3.4.41) we arrive at

(3.4.17).

The other formulae can be proved in a similar way. B

3.5 Seven transformations satisfied by 2z, z, 1 — z, and £

In this section, we apply seven transformations (g to —gq, ¢ to qz, qtoq? qto —q%, gto

—¢q%,qtoigz, and g to —igz)to z, 7, 1 — z, and E.



3.5 Seven transformations satisfied by z, ,1 — z,and £ 64

Lemma 3.5.1

q 11—z [ 2
1 T
T T
2
u— 4
g b [ va) vz 2(1+ 7) (3.5.1)

1+v2)? | (1+v3)°

2 4\/17 (1_\/;)2 lz !
(1+vz)’ | 1+ Va) |2 (1+Ve)

Proof The proof of the transformation ¢ —+ —q on z, z, and 1 — z follows immediately
by using (2.11.7)-(2.11.9).

Now observe that

( i q“2)2+ ( i (—1)"‘q’“2)2

n=-—00 n=—o0
(-] 00 00 o0
m?+n? m+n _m2+n?
= X P+ X
n=—00 mM=—00 n=—00 mM=—00
— 2 E qm2+n2
m—+n even

Set m +n = 2 and m — n = 23, then

co 2 oo 2 oo o0

n=-—00 n=-00 1=—00 j=—00

00 2
2 ( > qzﬂz) . (3.5.2)

n=-—0o0

By using (2.11.1) and (2.11.3), equation (3.5.2) may be represented as

2 (¢?) = %z (1+v7) (3.5.3)
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and setting § = 7 /2 in (3.3.7) gives

fi (x]27) + f5 (x]27) = fu (gh') .

65

(3.5.4)

Square both sides of (3.5.4), use (2.11.9), (2.14.1), and (3.5.3); and rearrange to give

g 1 (%%

T (q ) - 22 (qz) (_qz;qz)‘;
4T

(1+va)"

By using (2.11.12), z (¢?) holds.

If we replace g with q% in (3.5.5) then make z' (q%) the subject we obtain

2

il (1_\/5)
(@)= e

Similarly by (3.5.3) we have
z(q%> =z(1+Vx).

By using (2.11.12), z (q%) holds. B

B. C. Berndt [19, Chapter 17, pp. 125-126] also gave proofs of (3.5.1).
Next we investigate three transformations on function E.

First replacing ¢ with —¢g in (2.11.27) gives

B(/-%) = #(-asi( q>“dx5_q> Ei( )7} (g)

From (3.5.1) we have

(3.5.5)

(3.5.6)

(3.5.7)

(3.5.8)
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Using the results of (3.5.1) and (3.5.8) equation (3.5.7) becomes

Similarly,

—Vz)? : ’
E( %-&-—\/:;T)’)_z) = xﬁ%[(1~\/m_)z].

66

(3.5.9)

(3.5.10)

(3.5.11)

The following results can be easily obtained by applying the results of (2.11.27), (3.5.1),

(3.5.7), (3.5.10), and (3.5.11).

q 11—z & z
—a3 —(1 i \/5)2 —_4\/5 2(1—+yzx
1 v | a-ver | 0TV
2 (1+ Vx')z —(1_ Vx’)z 4/
e e o v
(3.5.12)
1 V' —1 $)2 4iv/ zz! :
1Q2 ] 5 | 2(vVZ' +ivT
TN wm) | (E+ivE) L i)
1| (Ve + z\/E)2 —4i/zz' A
—1q2 5 5 | 2 (V' —ivT
1 (V' —ivz)” | (V2' —iva) ( )
—4\/T 3 1 d 1
E( m =i 2% (1+x2)7r£ (Z.’I)‘), (3.5.13)
- (1-V&)* L4, A d A
E( W = 5o (1+x )ﬂEKl—x )z] (3.5.14)
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7 :z;\/;? e ' .1 !
E \h('\/él#\/i)z) = 2n(xm)‘(x%—zxz)%[z(xz)

E (\ (—_\/%) = B7 (xx')% (ar:'é + z':z%) :_:c [z (:1::1:')%] . (3.5.16)

The results of this chapter will be used in Chapters 4-6 and 8.

L g

] . (3.5.15)




Chapter 4
Sums of squares and triangular numbers

4.1 Introduction

Let k be a positive integer and 7, (n) denote the number of ways of expressing a non-
negative integer n as a sum of k squares. That is, rx (n) is the number of solutions in

integers of
2 2 =
$1+$2+"'+$k-—n.
We take into account the sign and order of z,, x5, ..., . For example,

5 = (£1)%+ (£2)% = (£2)% + (£1)?,

4 = 0%+ (£2)* = (£2)* +0?,

and therefore 7, (5) = 8, 7, (4) = 4, and also 7, (3) = 0.
Let ¢, (n) denote the number of ways of expressing a non-negative integer n as a sum of k

triangular numbers. Thus ¢, (n) is the number of solutions in non-negative integers of

1 1 1

$1(31+)+$2(372+ )+_._+37k(xk+ )=n.
2 2 2

The first few triangular numbers are 0, 1, 3, 6,10, 15, . ... For example,

6 = 0+46=64+0=3+3,

16 = 1+15=15+1=6+10=10+6,
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and therefore ¢, (6) = 3, ¢, (16) = 4. Alsot,(5) =0.

We define 7 (0) = ¢, (0) = 1. Let

el= > ¢,

j=—00

and
) = 3=
j=0

Then the generating functions for r (n) and ¢, (n) are

Zrk(n)qnzsok@) = (Z qu) )

69

(4.1.1)

(4.1.2)

(4.1.3)

n=0 j=—o00
and
D ti(n) gt =¢*(q) = (Z q“’“’/2> ; (4.1.4)
n=0 7=0
respectively.
Suppose Aj, Ag, ..., Ax are positive integers with \; < A < ---

T(A1,02,...,0) (1) Will denote the number of solutions in integers of

< Ak. The function

Mz2 + Aoz2 + -+ + N2k =, (4.1.5)
where n = 0,1,2,3.... The function (s, ,,...,A,) (n) will denote the number of solutions
in non-negative integers of

T (1 +1 T (T 1
}‘1_1_(__%___)__1...._*_)%%;*'__):”, (4.1.6)

wheren =0,1,2,3....

,,,,
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Then the generating functions for 7y, x,,...x,) (2) and t(x, a,,..0,) (n) are

(o ]
> tousan M@ = (@)@ (@) 0 ()
=0

oo 5 oo o <]
_ (Z q) ( 3 qma)...( 5 quz:),
I1=—00 Io2=—00 Ip=—00

4.1.7)

and

Z toarzeg) (M) g* = ¥ (a™) ¥ (a%) -y (a™)
n=0

oo o0 00
= (Z qz\x—u—z (zg H)) (Z q)‘z_z_z_I (_:2 H)) Y - (Z qd\k:__("k =2k+1 ) ,

a0 =0 z2=0 T =0

(4.1.8)

respectively.

If weset \; = Ay = --- = Ax = 1 on the left hand side of (4.1.5) and (4.1.6) we will use
rx (n) and t (n) instead of r(x, x,,..a) (1) and £(x, 2,00 (7).

The problems of representing an integer as sums of squares and triangular numbers have a
long and interesting history. More details can be found in Dickson [48], Milne [88], and

Section 4 of this chapter.
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The aim of this chapter is to study the functions listed in the following table:

Sums of squares | Sums of triangular numbers

T2 (1) ta (n)

re (n) ts (n)

re (1) ts (n)

g (n) tg (n)
raz2 (n) ta2) (n)
ra3) (n) ta3) (n)
ramn (n) ta,e (n)

T(1,1,3,3) (N) It(1,7) (n)
t(1,1,2,2) (n)
ta1,1,1,22) ()

We present self-contained proofs based on Ramanujan’s ;1; summation formula and the
Fundamental multiplicative identity.

So far, there is no Lambert series for the representation of n by

Ty ($12+1)+232(.'E;+1)+$3($;+1)+$4($42+1)

+ 25 (25 + 1) + 26 (6 + 1)

and the explicit formula for t(1,1,1,1,2,2) () in the literature. It appears that the result is new.

4.2 Sums of squares

From Jacobi’s triple product identity [67, p. 90] we have

2 a2
—-q,49%¢%)
E = ————;°°. @4.2.1)
(9, —4% 4%

j=—00

The following lemma is used to prove formulae (4.2.3), (4.2.4), (4.2.7), and (4.2.8).
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Lemma 4.2.1
(—ag,—a7'¢,¢* 6% &%)y — q"
=142 n+ i ) 422
(ag,a7'q, —¢%, —¢% ¢%) o, ; 1+ ¢ (" +a7) W
where |q| < |b| < |g7}].
Proof Letb = —1 and replace a with ag in the Jordan Kronecker function (2.4.1) and
(2.4.2) to obtain
(-ag,—a7'9,¢% 0% ) _ i a"g"
(g, 07, -1, ~¢%¢%), = 1+g™
By rearranging and simplifying, we further obtain (4.2.2). B
Theorem 4.2.2
o0 - oo q]
m? .
(z , ) SR,y @23)
m=—00 7=1
o0 4 (o] JqJ
2
‘e = 1+8 ) 4.2.4
(Z) LT e
o0 6 o0 : 2 o
: (-1 (2 - 1) %!
m=-—00 ij=1
oo ) ]
J°q
16 4.2.
= 8 <A
2
qTr = 1+16 : 4.2.6)
(=) T
Y ) (2 ) = 1423 L ey 7
L TIL ) = 2 g i) gy 42D
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s 125-8
q
+4Z (1 — ql27-8 Tl =

m=—00

where
1 ifj=1,20r4(mod7),
X1,7) (j) = =] if j =3,50r6(mod7),
0 if 7 = 0(mod 7).

m=—00 k=—00

3t

Proof Proofs of (4.2.3)—(4.2.11) are given one at a time.
Proof of (4.2.3): Follows by setting a = —1 in (4.2.2).

Proof of (4.2.4). Equation (4.2.2) can be represented as

_ -1 2 2, i) X n_n 1 2n _ .2n
(—aq, 1a q,zq,qz,q2)oo _ 1+22qa (14G™ =™
(ag,a71q, —¢%, —¢%¢?)

o gfman
= 142 "a" — 2 -

= = = 7k2 _ = X(1,)(j)(_Q)J-
(Z ! )(k;z—:ooqk) B 1—2; 17+(_Q)j

o0 2 o0 2 o0 o
= k2| _ g
(Zq ) (Zq ) B’ ey

X n.-n _ A2n.2n
= 1+aq+gzqa (1 - g**a*")
n=1

1 4g™

(4.2.10)

(4.2.11)

qﬂa—ﬂ
n=]1 1 F q2n

o0 i
qna n

2n
s 14 ¢

(4.2.12)

If we multiply both sides by (1 — aq) / (1 + ag) in (4.2.12) and set a — —1/q we arrive at

2, 24 00 n

. -1
(qqu"i=1+82( )" ng
(4% ¢%) o v,

(4.2.13)

Replacing ¢? with —q in (4.2.13) and then employing (4.2.1) gives (4.2.4).
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Proof of (4.2.5). The ideas of the following proof can be traced back to V. Ramamani [90]
although her methods are slightly different.

From (2.9.9), (2.9.10), and (2.14.1), it is shown
8fy (m) = 8if (m1) = 16f3 (1) + 24exfa (7) — 1612 (77) — 24ie, f; (77)
= 428 —12z(e; —€3). (4.2.14)

By comparing (2.8.13) and (2.11.7) it can be shown that

2

e1—ey ==, (4.2.15)
4
Therefore equation (4.2.14) can be rewritten as
8f5 (m) — 8ify (x7) = 2°. (4.2.16)

By (2.11.7) and (4.2.1)

e 2
z=¢?(q) = < N qm2> . (4.2.17)

Mm=—00

Substituting (4.2.17) into (4.2.16) gives

- 6
( > qm’> = 8fy (r) - 8if} (n7).

m=-—00

The Lambert series for f5 (7) and f)' (77) can be obtained by setting j = 1 into (2.10.7)

and (2.10.10). This completes the proof of (4.2.5).

Proof of (4.2.6). We set j = 2 into (2.10.5) and (2.10.9) to obtain

1 o0 -1 mm3 2m
ym) =23 EH_, (4.2.18)
m=1 q
and
o 3, m
irr) = —23 1"1 sz' (4.2.19)
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By (2.9.15) and (2.14.1) equations (4.2.18) and (4.2.19) become

0 () = —%z“ (1-12z), (4.2.20)
o (77) = —%24:6- 4.2.21)

From (4.2.18) and (4.2.19) we observe that

(=1)™ m3g®™ m3q™
S8+ (] = 14163 S+ 16 T
m=1 m=1
(2m)? g*m 2. (2m — 1)% gtm-2
= 1+162 1— g¢im 62 1 — gim-2
m=1 m=1
0 3 00 3 _om—1
(2m)” ¢*™ (2m—1)°q
+16 Z 1— q4m W 16 z T=— q4m—2
o~ (2m)° P o 2m — 1) !
= 1+16 + 16
oo qum
= 1+16 —_— (4.2.22)
,,12::1 B (=gP

Similarly from (4.2.20) and (4.2.21) we find that
—8[fy' (m) + fy' (x7)] = 2*. (4.2.23)

Substituting (4.2.23) into (4.2.22) and using (4.2.17) we obtain (4.2.6).

Proof of (4.2.7). In (4.2.2) replace q with g> and put a = gq :

(—a%,—4,9% ¢ 0" o~ 17 > ¢ _—
b Tub £ il =1+2% <7 5 4.2.
(0% 0 —a =% 0" e L g ; 1+ g% ( )

The left hand side of (4.2.24) simplifies into

(=, -0,6%, 0450 (—06%8) e (%, 0% 0Y) 4225)
(30, —¢% —0%5 0% (0% (—a%¢%) ' 6.2
y 4 ) ) foe) ) 00 ) 00
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Observe that

—a.0° = _(L’q)eg_
(9.4, = o

)
(— q,q)oo CH
9%) o (4 9) oo

(—q
1

(2,-9%¢%),.’

which was given by Euler. This may be written as
(-¢% 4% (6% q*) =1 (4.2.26)
By using (4.2.26) into (4.2.25) equation (4.2.25) can be rewritten as

(-¢*, 0,64 ¢4 0 (-0, %8 (—8% ¢4 0

(3,9 —¢%—9%50Y)  (¢,—0% 0% (6% —0% ¢Y) s

Substitution of this into (4.2.24) and making use (4.2.1) the proof of (4.2.7) is completed.

Proof of (4.2.8). Replace g with ¢%2 in (4.2.2) and let a = —q'/? to obtain

2 e et |
gq qqqq) ng q;:q ).
(=12, —a,—¢%—00°) l+gq

We simplify the left hand side and manipulate the right hand side as follows:

~g:9). (=g* ¢l

oo [ e) . - &

= 142 Y ()T 23S (1) (1 g
n=15=1 n=1 j=1
(o) 00 . & -

= 142X Y (Y 2 Y ()Y (6
Jj=1 n=1 j=1 =
£ ] oo 3

) ™ (—1) g¥-1

— 1+2ZT§‘”_2+22 T+ gu-1

j=1 p
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Replace g with —gq to obtain
(=9,4%0%)00 (=9° 9% ¢%) oo
(g, —q2' qz) (4%, —q‘"" %) oo
1)’ P o Vl
- 1+2Z 33—2 +22 1_|_(_q)3j—1

Jj=1

. 22 [ 652 . i Y }
6j—2 — 4635 — b1 65—4
= 1+ q% 1 —q% 1—¢% 1+4¢%

T

Using (4.2.1) in the left hand side and applying the identity T = on the right

hand side completes the proof of (4.2.8).

Proof of (4.2.9). By replacing g with q” and puttinga = —¢2,b = —¢*,t = —¢®in (2.6.14)

we obtain

(%50%) . (0™ )i,
e et T

2

1/1-¢® 1-¢* 1-—¢® 1-—g*
_ B ¢ 1-¢ 1-¢ 1l-g

2\14¢*> 1+4¢* 1+4+¢® 1+qM

i i ( g2 N gt—4 N ql4i—8 ~ gtii-14 )
145-2 1454 145-8 145-14
= | Syt 1 ig*® 1+ g4 1+ g%

0o q14]+2 q14j+4 q14J+8 q“”‘“
Z: (1 +q14]+2 =h- e q141+4 + 1+ q143+8 j e q143+14)

Replacing g% with —q and using (4.2.1) we arrive at

(Z) (£

B 00 ( Q)7J —6 00 ( )7_7 -5 o0 s 7_7 -4
= ] 2;1_*_( q)7j_6_2jz=1:1+( 7_75 Z: 7]4
00 75 ) 75—2 00 7 1
(—9)” (—q)" 7
"221+(_q)7j_3+221+ 712 Z_: q)i
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which may be written as

(£)(r)--Eoets

m=—00 k=-—00

where
1 ifj=1,20r4(mod7),
Xan () =4 -1 ifj=3,50r6(mod7),
0 if j =0(mod 7).
This completes the proof of (4.2.9).

Proof of (4.2.11). By letting @ = 7/3 and § = 7 in (2.7.17) we have
F (eirr)'S, e:‘n’) F (e—irr}'S, eiw) = (%) — p(;rr) " 4.2.27)

If we apply (2.4.2) on the left hand side and use (2.7.5) on the right hand side of (4.2.27)

then we find that

(0:9)% (¢ oo _ 1_42 (6n —5)g°"° 42(6 g
(-4 @)oo (—2% 0*) 1—46" - 1—‘?6" -
6n— 6n 2 (6n—1) 6n—1
+4E l_an_ -42—1—_(16— (4.228)

n=1

Now replace ¢ with —¢ and use (4.2.1) so that equation (4.2.28) may be represented as
m 2 Jq
m=—00 k=—00 ji=1 1 s (_q)
345
This completes the proof of (4.2.11).

The proof of Theorem 4.2.2 is now completed.

We remark that (4.2.3) can be obtained directly from Ramanujan’s summation for-
mula by replacing ¢ by ¢? and then setting z = ¢g,a = —1, and b = —¢? in (2.3.1).

Next we give an arithmetic interpretation of Theorem 4.2.2 as follows.
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Corollary 4.23 Forn>1,

ra(n) = 4 > 1- Y 1], (4.2.29)

dln d|n
d=1(mod 4) d=3(mod 4) )
re(n) = 8 ) 4, (4.2.30)
djn 41d
(d-1)/2 4n’ 2
re(n) = 4) (-1) ==, 4.2.31)
X
rg(n) = 16(=1)"> (-1)*d’, (4.2.32)
d|n
rapm) = 2| > 1+ Y 1- Y 1- Y 1], (4233
d|n d|n din dln
| d=1(mod 8) d=3(mod8) d=5(mod 8) d=T(mod 8)

(
rag(n) = 2| D> 1- Y 1

dn din
\dEl(mnd 3) d=2(mod 3)

+4 Z f = Z 1, (4.2.34)

d|n din
d=4(mod 12) d=8(mod 12)

ran () = 2(-1)" Y (-1)T x4 (d), (4.2.35)
din

raias (M) = 4(-1)" Y (-1)"d, (4.2.36)

dln
3td

where we use d|n to denote d is a divisor of n and x(; 7y (d) is defined in (4.2.10).

Proof We give complete details for formulae (4.2.29) and (4.2.31); the other formulae can
be proved in a similar way.

Proof of (4.2.29). If we use (4.1.3) in (4.2.3) and expand the right hand side using geomet-
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ric series then

ng(n)q“ = 1+4ZZ g?@m-1)
n=0 j=1 m=1
oo o0 oo oo
= il 42 Z qj(4m—3) _ 42 qu(4m-—1)
j=1 m=1 j=1 m=1
o[
= 1+4> | > 1- Y 1|
n=1 | j(4m-3)=n j(dm—1)=n
o]
= 1+4) [ Y 1- Y 1|
n=1 d|n dn
| d=1(mod4) d=3(mod 4)

By comparing the coefficients of g™ on both sides we prove that (4.2.29) holds.

Proof of (4.2.31). If we use (4.2.1) in (4.2.5) and expand the right hand side using geomet-

ric series then

o0
Y e (n)g"
n=0
o0 o0 )
= 1+44) Y (1Y (2j —1)* gk
J=1 k=1
o0 o0
i=1 k=1
= 1+4) | Y -@-1*+4 Y (-1
n=1 [(2j-1)k=n i(2k~1)=n

-

e 2
= 1) | ()P () f g
n= d|ln
g A

= 1+4ZZ (d 1)/2 [d_;_dz} i

n=1 d|n
d odd

We compare coefficients of ¢" on both sides to complete the proof of (4.2.31). B
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We remark that our proof of 7 (n) is the same as Berndt [22, p. 40].

A classical result in number theory can easily be deduced from (4.2.30).

Corollary 4.2.4

T4 (n) > 0.

Proof

r4(n) =8 Z d>8,

since d = 1 is a divisor of every positive integer n. il

We remark that [48, pp. 276-279] L. Euler tried unsuccessfully over 40 years to
prove r4 (n) > 0. J. L. Lagrange proved that every positive integer is the sum of four

squares in 1770.

Now we let p be an odd prime and denote a product over all odd primes p. Letn
p p P p p

be a positive integer and denote the prime factorisation of n by

n=2%]]o", (4.2.37)
P

where A; and ), are all nonnegative integers.

Corollary 4.2.5 Let the prime factorization of n be given by (4.2.37). Then

Ap
nm=4 [[ 0+ I 22 (42.38)

p=1(mod 4) p=3(mod 4) 2
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8H—1, :n=1(mod?2),
rs(n) = P pr+1 - (4.2.39)
U] ——, :n=0(mod?2),
p Pp—1
r¢(n) = 4 <22’\2+2— H (—1)’\”(1’—1)/2)
p
2p+2 _ (_1\(Ap+1)(p-1)/2
pr ( 1) P
X : (4.2.40)
1;-[ p? — (_1)(p—1)/2
16 3Ap+3 _
re(n) = (-1)" = (2% - 15) [] E—— —, (4.2.41)
- P’
1+ (=1)*
on@ =2 [ ey [T HED wm
p=1 or 3(mod 8) p=5or7(mod8)
1+ (—1)*
rag(®) = k& [ w+1) ]I —(2)— (4.2.43)
p=1(mod3) p=2(mod 3)

where

pod 2 (21"(‘1)'\2 - 1) :n=0(mod2),
2 :n=1(mod?2).

ran(m) = 2(=1)"(-1) [ O+

p=1,20r 4(mod 7)

14 {~1)"
x L e (4.2.44)

P=3,50r6(mod 7)
hgbl

raasg(n) = 4(=1)" (2% - Hp ; (4.2.45)

Proof The proofs of this corollary follow from the results in Corollary 4.2.3. First we
express the divisors of n in terms of their prime factorization. Then we sum the resulting

geometric series. We give complete details for r¢ (n) only; the other formulae can be

proved in a similar way.
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Let n be a positive integer, s = 1,2,3,...,and ¢ =1,2,3,.... Then
n = 20 H Pf’ H q;",
ps=1(mod 4) g:=3(mod 4)
where py, ¢; are odd primes and 3,, v, are nonnegative integers.
By formula (4.2.31) we observe that
d—1 | evenifj; +jo+ -+ +7j =0 (mod2),
2 | oddifj;+jo+---+3j=1(mod2),
where 0 < 7; < 7,0 < j2 < 7v9,...,0 < jt <, This implies that
d—1 T R
(_1) ST - (_1).71+.72 Jt .
Therefore formula (4.2.31) can be rewritten as
ra(n) = 4 Y > (-Lirerr [22+2ap2(51—11)p2(/52 i2) .. pAlBs=is)

0<41<B,0<51 <7,

0<12<6,0<72<72

0<is <B, 07t <,

q2(’71 Jl)qg("/z—h) - qtz('Yt—jt) p%np%z . pf”q%qg” .. ,thJ't]

= 4 22+2a Z o 2(B8—11) Z p2(ﬁ2 i2) . Z p2(ﬂ —14)
0<i1<8, 0<iz<B, 0<is <B,
X z (_1).71 qf(’h‘jl) Z (_1).12 q§(72—j2) . Z (_l)jg q?(’y,—j,)
0<i1<m 0<j2<7, 0<je<Te
- T oA T e 3
0<i1<B, 0<iz<B, 0<is <8,

% Z Z q212 . Z thjt

0<j1<m 0<j2<72 0<5¢<7;
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By summing the geometric series and simplifying the result, we obtain

Te (n) = 4 [22+2a _ (_1)-,«14_-,«24...._'_1‘]
< II gt —1 11 g "t 4 (=1)™
p2 = | qt2 s T )

BimlEbag) . q:=3(mod 4)

which is equivalent to formula (4.2.40). This completes the proof. &

4.3 Sums of triangular numbers
By Jacobi’s triple product identity [67, p. 90] we know that

b= L=

(¢:6%) 0
Together with (4.1.2) we have
= () (6% ¢%)
P(g) =) U= 2T (43.1)
) ;, O/
Theorem 4.3.1
( o) 2 o0 qj
qu"““’/2> = 2 =g 43.2)
k=0 J=-00 q
(& C &+
qu(k+1)/2 - Z T =g (4.3.3)
k=0 j=0
6 . i_o
/i qk<k+l>/2> _ Limﬂ_—lﬁ’i
j—1/2
- 16 — 1+ ¢qi-V
1 & (-1) (25 —1)%¢'T
+1—62 T (4.34)
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{:: k(k+1)/2 8 i g (4.3.5)
q . 1 — q2] ) ol=de
k=0 J=1
i k(k+1)/2 = m(m+1) _ = q% 6
9 9 = Y == G
k=0 m=0 j=—o0 q
i qk(k+l)/2 i q3m(m+1)/2 - i q3J (4 3 7)
L £ ] == q6j+1’ i

(4.3.8)

_ l4 ?
k=0 m=0 = i
(4.3.9)
= y 2 / = ( 2 jg
k(k+1)/2 m(m+1) =
(Zq > <Zq > - 1 — gh+3 @340
k=0 m=0 J=—00
- 4 =S 2 00 ;
k(k+1)/2 Z m(m+1) — Z I°g 4.3.11)

Proof Proofs of (4.3.2)-(4.3.11) are given one at a time.

Proof of (4.3.2). We replace q by ¢?, set a, b = g into (2.4.1) to obtain
(0%0D)  ~~ ¢
S E —_ 4.3.12)
. 4212 — gdi+1 (
CH' &) i Rl

By employing (4.3.12) on the right hand side of (4.3.1) we complete the proof of (4.3.2).

Proof of (4.3.3). If we divide the Jordan-Kronecker function (2.4.1) and (2.4.2) by 1—¢?/ab

and set b = q we obtain

1 i o (ag,a7'¢% 6% ¢% %),
(1-9),,1-¢9" (a,07'¢%0,¢0%),

(4.3.13)



4.3 Sums of triangular numbers

Next we manipulate the left hand side of (4.3.13) and find that

27+1
I q

2j+1

1 = o’ a o= a¥tl_
-2 Z 1 q@+l Z @I+ (1 — gai+ly’

]_—00

£ — g j=0
If we leta — ¢ in (4.3.14) and use (4.3.1) then we obtain (4.3.3).

Proof of (4.3.4). The proof is similar to the proof of Theorem 4.2.6.

(2.9.10), (2.9.11), (2.11.7), (2.11.8), and (2.14.1) we observe that

1 1
5 (m+77) — o3 I (1) = —= 271,

8¢} g} 64
By (2.11.7), (2.11.8), and (4.3.1) we also find that

1 za:z th (qu(k-'rl))

4q2
Substitution of (4.3.16) into (4.3.15) gives

1
( E qk(k+1)> === é’ (71' + 7TT) ) (7”')
k=0 8q? 8

q2

The Lambert series for fy (m +n7) and fi (77) can be obtained by setting j

(2.10.15) and (2.10.12). Then equation (4.3.17) becomes

2m—1) qm

86

(4.3.14)

From (2.8.14),

(4.3.15)

(4.3.16)

(4.3.17)

= 1in

m=1 m=1

6 6
e 16 T+ 1 16

By replacing g with qé in both sides we complete the proof of (4.3.4).

Proof of (4.3.5). Substituting (4.2.21) into (4.2.18) we have

00 3 _j
_z :Z 2}

By (2.11.7), (2.11.8), and (4.3.1) we observe that

1 8 _ (k+1)/
T6° fr=q¢¥’(g) =¢ <Zq :

(43.18)

(4.3.19)
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Using (4.3.19) into (4.3.18) we obtain (4.3.5).

Proof of (4.3.6). If we replace q with ¢%, seta = ¢ and b = ¢ in (2.4.1) then we obtain

(¢*,¢* ¢% 0% ¢*)oo _ i i
(¢,97,¢%,4% %) 1 — g8+’

(4.3.20)

j==00

The left hand side of (4.3.20) can be rewritten as

(¢%¢" ¢ % M _ (d4d)%

(0,47, ¢%,¢% 0% (490%)
(6% 0% o (6% 0% oo
(450700 (0% %)

Substituting this into (4.3.20), using (4.3.1) on the left hand side, completes the proof of

(4.3.6).

Proof of (4.3.7). Replace q with ¢3, set a = ¢% and b = ¢ in (2.4.1) to obtain

(¢",¢% ¢% 0% )0 _ i ¢*
(9:0°¢% 6% %) gt

n=—0oo

and then use (4.3.1) on the left hand side to complete the proof of (4.3.7).

Proof of (4.3.8). Replace q with g%, seta = ¢ and b = g in (2.4.1) to obtain

5]

(¢%,¢% ¢% 6% 6" _ i q
(9:97,4°%,¢% ¢%) 1 — g3+’

j=—00

and then use (4.3.1) on the left hand side to complete the proof of (4.3.8).

Proof of (4.3.9). Replace q with ¢” and set u = ¢,v = ¢%,w = ¢ into (2.6.18) to get

_ (4% 4% 9% ¢ ¢ 0", ¢ 0",
(@0 % 0%0%:0% 060 .
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Simplification and rearrangement enables us to obtain

(000 (0716")0o _ 5~ (1 — %) (1 — g¥) (1 — ¢%)
(49)0 (479")oo 1-q¥ '

j=1

Application of (4.3.1) to the left hand side completes the proof of (4.3.9).

Proof of (4.3.10). Replace q with ¢2, set b = ¢3 and apply aé% to (2.4.2) to give

5 5
®©  an q(aQS,%,q“,q“;q‘) 9 (aq3,%,q‘.q“;q“)w

5 - = +(a-0) 2
— ain+3 4 4
pemto L4 a (q3,q, a, 9,;;(1")oo da (q3,q,a, %;q“)m

On setting a = ¢, this becomes

oo

ng" (¢* ¢*)s
R =g = R (4.3.21)

S (9,¢% %)%

Then we observe that

4 2 2
Cin o' W e ™ ) 4322)
(@0%9Y)% (55692 (g%5a9)%

Using (4.3.1), (4.3.21), and (4.3.22) we obtain (4.3.10).

Proof of (4.3.11). Letb = —1 in (2.4.2) to give
i a" — (_a: _a_1q25q2! qzaqz)oo
1+¢*™ (a,07'¢% —1,—¢%¢%),

Apply a% to both sides of the above to obtain

oo n

e
Sl 1 + q2n
a(-a,-0"'¢ ¢ ¢ ) i . .
(a, a—1q2, _1, _q2, q2)m st j [ a2q4n—4 0,2(1 = a—2q4n)
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If we differentiate both sides with respect to a we obtain

n2an—1
2
n=-—00 1+ q "
 (—a,—a7'g%, ¢, qz.qz) i 2a¢2"~2 2¢2"
© (a,07'¢%-1,-¢%5 ), & (1%t a(l - am2gin)

2q2m -2 2q2m
X Z [ 2 4dm—4 2 =
— |1 —a?%q alll — @ €g™)

+(—a,—a ¢, ¢*d%d°) Z[Zqz" 21+a’q"7%) | 2™ (a2+q4")}

(a,a—lq ,_1,_‘(] ,q ey = 1_a2 4n— 4)2 (a2 _q4n)2

Set a = ¢ to arrive at

ik M 1 q %0 Z g™ Mg ) (4.3.23)

n:11+q2n— q 0 q 1_q4n 2)

CX) n=1
Next observe that
o0 q2n—2 (1 3 q4n—2)
(1 — gin—2)2
q2n——2 (1 — q4n—‘2 3 2q4n—2)
(1 — ¢in-2)2

(]

1

=2
Il

M8

3
L
-

2n—2 o0 6n—4
q q

1 — ¢*n—2 +2 Z (1 — ¢*n-2)2

n=1

q -2 2 (4m+2
1_q4,,2+222:mq g

I
[M]e

=
1l
—

Mg

n=1 n=1 m=1
- _ 4m—2 — 4m+2
m=l1 qm m—l1 qm+
00 2m 2m
q q
- Yim sy e
4 2 _ ,4m-2 _ p4m—
m=11 ™ 1 qm m11 qm
= (2m—1)q2m2
- Z 1— gim—2

3

Replace g with ¢2 in (4.3.3) and use (4.3.1) to obtain

g2 (L4  (ghgY)s
(1 — g*n-2)2 (% q4)io

n=1
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Substituting these in (4.3.23) gives

i 2" (%8s (0% 0V
“~1+g™  (g;4%)s, (¢%qY)%

(4.3.24)

Using (4.3.1) in (4.3.24) and rearranging the result gives (4.3.11), this completing the proof

of Theorem 4.3.1. W

Now we will show an arithmetic interpretation of Theorem 4.3.1 as follows.

Corollary 4.3.2 Forn > 1,

thn) = > 1-— > 1, (4.3.25)

djan+1 djdn+1

d=1(mod 4) d=3(mod4)
ta(n) = > d, (4.3.26)
d|2n+1
1 1
ts(n) = ¢ >, -3 > & (4.3.27)
d|an+3 d|4n+3
d=3(mod 4) d=1(mod 4)
n+1\°
ts(n) = > < y ) : (4.3.28)
dln+1
dodd
thy () = D> 1= > 1 (4.3.29)
d|8n+3 d|8n+3
d=1(mod 8) d=7(mod 8)
tay(n) = Y, 1- > 1 (4.3.30)
d|2n+1 d2n+1
d=1(mod 6) d=5(mod 6)
tag(m) = > 1- Y, (4.3.31)
d|8n+5 d|8n+5
d=1(mod 8) d=3(mod 8)
tan (n) = )RS G N § (4.332)
din+1 djn+1

d=1,90r11(mod 14) d=3,50r 13(mod 14)
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1
taren () = 7 ) d (4.3.33)
d|4n+3
e (n+1)2
ta,122) (n) = Z (-1)7 ( 7 ) . 4.3.34)
dln+1
d odd

Proof We give complete details for the proofs of tg (1) and t(;,1,1,1,2,2) (n) only. The other
formulae can be derived in a similar way.
Proof of (4.3.27). If we use (4.1.8) on the left hand side and expand the right hand side

using geometric series of (4.3.4), we obtain

3 1 Sy : -1 2j4+1\ K
) ts(n)q" = EZZ@JH)?Q 2 (_q . )
h lj wk:o ' 2 i=1 241\ K
_Egg(—n}@j‘i—l) q? (q 2 )
- %ii [(’1)k ~ (—1)j] (25 + 1)? glPa+D(2k+1)=3)/4
Jj=0 k=0

(4.3.35)

Itis clear that when j and k are of the same parity then the terms inthe sum (4.3.35) become

zero. Therefore we have

n=0
1 oo oo
— = (4] 4 3)2 q[(4j+3)(4k+1)—3]/4
8 7=0 k=0
1 00 00
§ZZ 4j +1 2 [(4]+l)(4k+3 )-3]/4

7=0 k=0
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> Yoo @+ - Y 4+ 3
n=0

[ (47+3)(4k+1)=4n+3 (47+3)(4k+1)=4n+3

[

oo —

1 — 2 2
S5 I SRE N o P
n=0 d|4n+3 d|4n+3
| d=3(mod 4) d=1(mod 4)

Now we equate the coefficient of g" on both sides to complete the proof of (4.3.27).

Proof of (4.3.34). If we use (4.1.8) on the left hand side and expand the right hand side

using geometric series of (4.3.11), we obtain

o0 00 00
Zt(l,l,1,1,2,2) ('n,) qn — Z Z ] + 1 2 q(J+1)(2k+l)
R0 j=0 k=0
= > DG g
n=0 [(j+1)(2k+1)=n+1

( :
= > (-1 (n;—1> q".

dln+1
L dodd

3
Il
o

By comparing coefficients of ¢" on both sides we obtain (4.3.34). B

Corollary 4.3.3 Let the prime factorization of n be given by (4.2.37). Then

1+ (=1)
ta(n) = H (Ap+1) H —(2)—, (4.3.36)
pl4n+1 pldn+1
p=1(mod 4) p=3(mod 4)
ta(n) = ] o (4.3.37)

p|2n+1



ta,2) ()

t,3) (n)

ta4) ()

ta,7) (n)

t,12,2) (n)

ta,1,1,1,2,2) (n)
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51 o
l H pzAp+2_(_1)( pt+1)(p—1)/2 Bt
% (_1)(p—1)/2 : o
plan+3 ' 4
3Ap+3 _
e T S5——= 1 , (4.3.39)
pln+1 p B
1 1+ {=11"
I O O | = = T
p|8n+3 p|8n+3
p=1lor3(mod8) p=5or7(mod 8)
14 (=1)>
IT o+ ]I —(2—) (4.3.41)
pl2n+1 p|2n+1
p=1(mod6) p=5(mod 6)
1 N
> [ @esn T = (43.42)
pl8n+5 p|8n+5
p=1(mod 4) p=3(mod 4)
14 (—1)%
11 (Ap + 1) M ———— (4343)
pln+1 pln+1
p=1,90r 11(mod 14) p=3,50r 13(mod 14)
Ap+l _
H E - (4.3.44)
pldn+3
22p+2 _ 1)('\p+1)(17 1)/2
2A p
92X2 H 1)(p_1)/2 (4.3.45)
pln+1

Proof The details are similar to the proof of Corollary 4.2.5 .1

44 Remarks

Formulae (4.2.3)—(4.2.6) are due toJacobi [67, pp. 159-170]. Formulae (4.2.7) and (4.2.8)

are due to P. G. L. Dirichlet [49] and L. Lorenz [87], respectively. Formulae (4.2.3), (4.2.4)

and (4.2.6) can be found in Ramanujan [92, Chapter 17] and he [92, Chapter 17, Entries 8

(iii) and (iv)] also gave different formulae without proof of (4.2.7) and (4.2.8); and Berndt
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has given proofs in [19, pp. 115-116]. Formulae (4.2.9) and (4.2.11) are due to Ra-
manujan [92, Chapter 19, Entry 17 (ii) and Entry 3 (ii)]. Fine [54, pp. 59-76] was the
first person to use Ramanujan’s ;1, summation formula to obtain formulae (4.2.3), (4.2.4),
(4.2.6)—(4.2.8), and (4.2.11). Proofs of (4.2.3) and (4.2.6) also appeared in Andrews [7].
Bhargava and Adiga [16] and Askey [12] have used Ramanujan’s ;7;, summation formula
to obtain formulae (4.2.3) or (4.2.4). Berndt [19], [22] has given proofs of (4.2.3)-(4.2.6),
(4.2.9), and (4.2.11). Proofs of (4.2.3), (4.2.7)—(4.2.9) also appeared in K. S. Williams
[102]. M. D. Hirschhorn [64] has given proofs of (4.2.3), (4.2.4), (4.2.7), and (4.2.8). G.
E. Andrews, R. Lewis and Z. G. Liu [10] have employed Bailey’s g1 summation formula
[13] to obtain (4.2.3)-(4.2.9). Cooper [39], Cooper and Lam [47], and Lam [71] have also
employed Ramanujan’s ;4, summation formula to obtain formulae (4.2.3)-(4.2.6). Chan
[33] has also given a proof of (4.2.5). Cooper and Hirschhorn [44] have used Ramanu-
jan’s 11, summation formula to obtain formulae (4.2.3), (4.2.7)-(4.2.9). Cooper [42] has
also employed Ramanujan’s ;4; summation formula to obtain formulae (4.2.3), (4.2.4),

(4.2.6)=(4.2.9).

Formulae (4.2.29)—(4.2.32) were probably known to Jacobi. See [46] for some histori-
cal details. Because Ramanujan knew (4.2.7)—(4.2.9) and (4.2.11), he probably also knew
(4.2.33)—(4.2.36). Formulae (4.2.33), (4.2.34), and (4.2.36) were given explicitly by Fine

[54, pp. 72-76]. We have not been able to find (4.2.35) in print.

Formula (4.2.38) was given by C. F. Gauss [55, p. 149] in 1801. It was also given by

Jacobi [67], Ramanujan [93, p. 281] and Hardy and Wright [62, p. 242]. Formulae
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(4.2.39)—(4.2.41) were given by Ramanujan [93, pp. 305-307].

Formulae (4.3.2)—(4.3.5) are due to Jacobi [67, pp. 159-170]. Formulae (4.3.2), (4.3.3),
and (4.3.5) can be found in Ramanujan [92, Chapter 17]. Ramanujan [92, Chapter 19,
Entry 3 (i) and Entry 17 (i)] also gave (4.3.7) and (4.3.9). Fine [54, pp. 73-77] was the
first person to use Ramanujan’s ;9; summation formula to obtain formulae (4.3.2), (4.3.3),
(4.3.6)—(4.3.8), and (4.3.10). Berndt [19], [22] has given proofs of (4.3.2)-(4.3.5), (4.3.7),
and (4.3.9). Adiga has given proofs of (4.3.2) and (4.3.3). Cooper and Hirschhorn [44]
have employed Ramanujan’s ;1; summation formula to obtain formulae (4.3.2), (4.3.7),
and (4.3.9). Cooper [42] has also used Ramanujan’s ; 7, summation formula to obtain for-
mulae (4.3.2), (4.3.3), and (4.3.5). Williams [102] has given proofs of (4.3.7) and (4.3.9).
Cooper [39], Cooper and Lam [47], and Lam [71] have also employed Ramanujan’s ;1),

summation formula to obtain formulae (4.3.2)—-(4.3.5).

See [23, pp. 79-84] for some historical comments about (4.3.25)-(4.3.28). It is unclear
who first explicitly gave (4.3.29)—(4.3.33). Fine [54, pp. 73-77] gave formulae which are
equivalent to (4.3.29)—(4.3.31), and (4.3.33). We have not been able to find (4.3.32) in
the literature although undoubtedly it was known to Ramanujan [19, p. 302]. Williams
[103] proved the equivalent formula for (4.3.33) but the proof we have given here is sim-
pler and Cooper [40] mentioned that the result can be proved directly using Ramanujan’s
1%, summation formula. Hirschhorn [65] has given proofs of (4.3.25), (4.3.26), (4.3.29),

and (4.3.31). We think (4.3.34) is new.

Alternative proofs of formulae (4.2.3)-(4.2.6), (4.3.2)—(4.3.5), (4.3.8), (4.3.10), and (4.3.11)
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will be presented in Section 3 of Chapter 6. Additional findings on sums of squares and tri-
angular numbers and several results involving both sums of squares and triangular numbers

will be derived in Sections 3 and 4 of Chapter 6.



Chapter 5
Sixteen series theorems

5.1 Introduction

Ramanujan [92, Chapter 17, Entries 13-17] gave several families of identities. For exam-

ple in [92, Chapter 17, Entry 14 (i)—(iv)], he gave

1+8i% = 22(1-12), (5.1.1)
k=1

1—16%% = 71—, (5.12)
k=1

1+8§% = (1-2)(1-z+2?, (5.1.3)
k=1

1?_3253(__11%1;_;(}:; = 28 (1-4%) (17 - 32z + 172%) . (5.1.4)
k=1

We will show that in general, forn > 1,

(_'l)ﬂ (22:1 _ 1) an ﬂ oo k2n-1 k
ey S

2n _
2n 1+q =2 (1-2)pp-1(2), (5.1.5)

k=1
where p,,_; (z) is a polynomial in z with rational coefficients of degree n—1. We also show
that p,_; (—1) = 0if nis even and a conjecture is presented for the case p,,_; (e”'/ 3) =0if
n is a multiple of 3. Ramanujan’s results (5.1.1)—(5.1.4) are the special cases n = 1, 2, 3, 4,
respectively, of (5.1.5). He gave fourteen families; in each case giving only the first few
examples. We give a total of sixteen infinite families which contain all of Ramanujan’s

examples. The sixteen families are those of Section 10 of Chapter 2, which arise by

97
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considering derivatives of fo, f1, fo, f3 at 0,7, 77, ™ + w7. For example

" 1 —1y" 22nﬁ Bn ﬂ°° k2n1k
) (;qh) = CET =D Bon Ly z—_Hq sl
i §

We prove that the functions e, e;, e3 and Ramanujan’s Eisenstein series, namely P, Q, R

can be expressed in terms of z, z, and dz/dz. We also show the function

E : A1 A9
60‘180’2803’
ogES3
0=(01,02,03)

{Ul 1027‘73}={172,3}

where A1, Ag, A3 > 0, is a polynomial in ) and R with rational coefficients.

5.2 Sixteen recurrence formulae

98

I

This section initially establishes recurrence formulae for the sixteen Lambert series by

employing the differential equations of p(6), f1 (8), f2 (6) , and f3 (6) in (2.9.21), (2.9.9)—

(2.9.11), respectively.

Theorem 5.2.1 Forn=2,34,...,

f'(2n+3) (0) = _6(n+ 1)(2n +1) . (271)

(n—1)(2n +5) - £ (0) S8 (0),

(5.2.1)

n—1
é2n+3] w) = 12p (w) fé2n+1) (W) —6 (2n> f(2j+1) (w) fé2"+1—2j) (w),

(5.2.2)
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@n+1)! [ =3 (0) &7 (0)
(2n+3)(n—-1) (2n —1)!

&7 0) £79(0)
= @ DIk D)

Jc'g(2n+1) (0)

jtk=n+1
Jk>1
. 12720 /57700 "7 (0) a3
GonEE—nia-n |- ©*
j+k+i=n+1 (J ’ ’
Gk, I>1
where w =T, T orm + 7T, g = 1,2 or 3.
(1) £(3) (5) -
The values of fy ', fo™', fo ' at0and win (5.2.1) and (5.2.2) are
: 12
20 = -5 (52.4)
P
W) = ), (5.2.5)
@) ) = .9
fo(0) = 120’ (5.2.6)
W) = 66 (W) + 52, 527)
(5) iy — _ 1t
fo7(0) = 55 (5.2.8)
2w = 120 W) £ (w). (5.2.9)
Forn=0and1in(5.2.3)we have
‘W gy — 1
f70) = —3e (5.2.10)
0 3 2m
(3) _ 1 mq
£ (0) T +2mz=:1 et (5.2.11)
[e ]
:(3) o 1 (2m — 1)3’(12""”‘1
0 = g5-72 T (5.2.12)
m=1
&Y 2m—1
iy — 1 1x(2m—1)%
70 = ge5+72 o (5.2.13)
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Theorem 5.2.2 Forn = 3,4,5,..., the recurrence relation formulae for fl(zn_l) (7),

"7 (n7) , and f& (x + r) are of the form

P @) = 3¢ fPY (w)

18770 (@) £ (@) 15770 (@)
2@n-3 >, 2j -1 (k-1 (20 —1)

JHk+i=n
1<j,k,I<n—2
(5.2.14)
Forn=1and?2in(5.2.14), we have
1 oo
Dr) = -2 -2 52.15
Pm = mZ qu , (5.2.15)
=\ (2m — 1) gm1/2
S = ) o= (5.2.16)
m=1
o0
1™ (2m — 1) g™1/2
O (r47r) = —iz( i l(m'm I il (5.2.17)
m=1 +g
O (w) = 3P (w). (5.2.18)
Theorem 5.2.3 Forn =3,4,5,...,
7 (W)
1 0 | ons
— 361+6(E+f1()(w)> ]fl( "—)(w)
(2J (2k)
L o fi ) (w)
— | —
+6 (2n — 4)! <2i + f (w)) > ]
J+k=n-2
1<j,k<n-3
(29) (2K) @)
+2(2n -4 Y h@h @ h- W) (5.2.19)

j+k+l=n—2 (25)! (2k)! (20)! )

1<j k,l<n—4
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where w = TT Or ™+ TT.

Forn =1and?2in (5.2.19) we have

TT) = ) (5.2.20)
1 ( ) r; 14 q2m
o0 m
. (=1)" mg™
1(0} (‘ﬂ' + 'IF'T) = -2 Z_ W’ (5.2.21)
m=1
1 s 1
fBAw = 2 (2—% + fO (w)) +3e; (z + fO (w)) . (5222)
Theorem 5.2.4 Forn = 3,4,5,..., the recurrence relation formulae for fz(zn—z) (7),

70 (w4 mr), 770 (n), and [ (n7) are of the form

() () £2F) () £ (y
F () = Bey S0 () +22n -4 YD 2 ((2;){9(%5!()2{;! =

j+k+l=n-2
0<j,k,1<n—2
(5.2.23)
Settingn =1 and 2 in (5.2.23) gives
1 = (-1)™g*m?
@) = 2%y (5.2.24)
m=1
) c3 1) m—1/2
s (m+mr) = =2 Z ot q2m_ : (5.2.25)
=
2m—1
(0) _ A 1)™q
(1) = 5+2 Z Ta g (5.2.26)
(©) N
= -2 ) ———m—r 5.2.27
3 (WT) zmzl 1 = q2m_1a ( )
fPW = 3ef® ) +2 [0 @) (5.2.28)
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Proof The proofs of Theorems 5.2.1-5.2.4 follow from the differential equations of p(6),
f1(8), f2(0), and f3 (f) in (2.9.21), (2.9.9)—(2.9.11), respectively. First we expand both
sides of (2.9.21), (2.9.9)—(2.9.11) in powers of 6, equate coefficients of §°*~! on both
sides and then simplify the result to obtain the recurrence relation formulae for f(52"+3) (0),
'1(2n+3) 0), .§2n+3) (0), f§2"+3) (0), respectively, where n > 2. We obtain another twelve
recurrence relations formulae in a similar way by replacing 6 with 8 + m,0+7T,0+T+ 7T
in (2.9.21), (2.9.9)—(2.9.11), respectively.
Next we give complete details for the proof of (5.2.3). The other formulae can be derived
in a similar manner.

All of (5.2.10)—(5.2.13) follow from (2.10.2)-(2.10.4). By expanding both sides of (2.9.9)

in powers of € and then using (5.2.10) we find that

02n 1

(2n+1)
+ Ef (2n—1)!
921).— p
(2n-1)
+ Ef (2n —1)! ]

+E fn-n gy } (5.2.29)

—6/M (0

2n—1)

n=1

We observe that

! +Zf2m—1) i r
9 (2m —1)!

— 934 Bfél) (0) = i 4 (0) (2m+1) (O .4 z (21—1) (0) f(2k—1) (O)
1! — 1" (2m+1)! 2]-1 (2k — 1)!
=l +kk;nl+1
g5

vy 2000 e

(25 — 1)1 (2k — 1)1 (2L — 1)! (5.2.30)

Jtk+l=m+1
J.k,1>1
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Now by substituting (5.2.30) into (5.2.29), equating coefficients of 2™~ on both sides and

then simplifying the result, the proof of (5.2.3) is completed.

This completes the proofs of Theorems 5.2.1-5.2.4. m

Ramanujan [62, p. 140] gave a formula equivalent to (5.2.1).

Corollary 5.2.5 Forn=1,2,3,...,

.é2n+1) (0) —

00 =

> A0 [0,

4r+6s5s=2n-+2
r,5>0

> B 0] [0 0],

2r+4s=2n
r,s>0

[(n+2)/2)

Z an[ (3) ] o (w)]n+2—2i,

L(n+1)/2J

> D[]

i=1
[(n+1)/2]

€

n+1-2i

Z Em[ (1) )] . 63+1—2i’

l(n+1)/2J

(5.2.31)

(5.2.32)

(5.2.33)

(5.2.34)

(5.2.35)

(5.2.36)

(5.2.37)

(5.2.38)

(5.2.39)

(5.2.40)
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n+l

21
) ( Z)C,,,[ O (nr)]" epi, (5.2.41)

where g= 15 20F 3 W= T, T Or ™+ 7T, -Ar.s: Br,.n Cn,i: Dn,i: gﬂ.,ir }-n,:‘s gn,i: Hﬂ,is In.h

Jn,i, and K, ; are constants.

Proof We give details for the proof of (5.2.34) only. The other formulae can be proved in
a similar way.
(5.2.34) is true for n = 1 and, by (5.2.14), it is true for n = 2. Suppose it is true for all the

valuesn = 1,2,3,...,m. We show itis true forn = m + 1 as well. Then

1(2m+1) (7&') — 3f1(2m—1} (ﬂ') e

(2j-1) (2k—1) (21-1)
1 (m) fi (m) i7" ()
R2Em-0! > e e

jHk+H=m+1
k1
(5.2.42)
By the induction hypothesis, we observe that
2j-1 2%-1 20-1) 2i-1
S OF el OF ( > D[] " )
1<21.1 l<]
2i2—-1
(T mua ] )
1<2i; - 1<k
2i3—1
<[ X ] ),
1<2i;—1<!

where j + k + [ =n + 1. This is a linear combination of terms of the form

[flm (?r)] 2(i1+iz+iz—1)—1 e(j+k+f+1)+1-2fi1 +i2+i3—1},

21-1

that is [ F (w)] e"*t2-2% where i = 4; + 1o + 13 — 1. Multiply by 2 and rearrange

2% —1= (2 —1)+ (2 — 1) + (23 — 1), implying 3< 2% — 1 < m + 1.
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Similarly 3f%™ ) (1) e, involves [fl(l) (7r)] e ent?72i 1 < 2i—1 < m. Hence (5.2.42)
follows from (5.2.34).

Hence if the statement is true for n = m then it is true for n = m 4 1. But itis true for
n = J therefore it is true for n = 3, 4, and so on. Therefore it is true forn = 3,4, 5, ....

This completes the proof of Corollary 5.2.5 by induction. B

5.3 The first few values of sixteen Lambert series in terms of
2, T, and dz/dx

The aim of this section is to rewrite equations (a) (5.2.4)—(5.2.9); (b) (5.2.10)—(5.2.13); (¢)

(5.2.15)—(5.2.18); (d) (5.2.24)—(5.2.28); (e) €1, e2, and e3; (f) P, Q, and R in terms of z, z,

and dz/dx.

The following lemmas are very important for later computations.

Lemma 5.3.1

D@y = —%w“ (~¢%), (53.1)

£ (ar) = %[l—soz(q)], (5.3.2)
O @+rr) = 12 (r-q), (533)
(@) = %soz (2), (53.4)
D @r) = ¢*v'(g), (5.3.5)
£ @+ar) = 2029* (¢), (5.3.6)

O (m) = 0 (m—g), (53.7)



5.3 The first few values of sixteen Lambert series in terms of 2, z, and dz/dz 106

O (rr) = =¥ (n+77;-9q), (5.3.8)

Da+nr) = —f (11, -q). (5.3.9)

Proof For the proofs of (5.3.1), (5.3.2), (5.3.4)—(5.3.6), we use (4.2.4), (4.2.6), (4.3.3),
and (4.3.5).
By replacing g with —gq in (5.2.20), (5.2.24), (5.2.25) and (5.2.16), we have (5.3.3), (5.3.7)-

(5.3.9), respectively. m

Using (3.5.1), (4.2.17), and (4.3.16), Lemma 5.3.1 can be rewritten as

O(m = —iz%/m, (5.3.10)

{ (nr) = %(1—2), (5.3.11)
FfOVr4nr) = %[1—::@, (5.3.12)
(@) = %z, (53.13)

D (rr) = %zZ\/E, (5.3.14)
D (r4ar) = %z G (5.3.15)
O@) = %zm, (5.3.16)

O (ar) = —%z z, (5.3.17)

() (r+77) = —412:2 #(l—%). (5.3.18)

Lemma 5.3.2

eg = 1, (2-1), (5.3.19)

12
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_12

= —2z(1 5.3.20
es Tk (L<4==z), ( )
= | o
= — - . 3.2
€3 T (1-2z) (5.3.21)

Proof By using (4.2.17) and (4.3.16) in the right hand side of equation (5.3.19), we have

L.
12

2@—rﬁ=§#@%-%¢ﬂfy (5.3.22)

If we use (4.2.4) and replace g with 2 in (4.3.3) then the right hand side of (5.3.22) becomes

I 49 4, 5 1 A~ mg® 4 o= (2m — 1) g*m-1
— — s — = + = o
6¢ (Q) 3¢ (q ) 6 3;1+(_q)m 3; 1_q4m—2
1 4= (2m—1)g?™ ! 4 2mg®™
= g T I
6 3 e = q2m—1 3 o 4 1+ q2m
4 Z mq™ 4 2mg*™
g — g2m _Z —
3 m=1 1 q 3 = 1 q4m
By applying the trivial identity
ng" ng"  2nq"
e =+ T2q  1—gn (5.3.23)
we have
1. 4q 4/ 2 1 2~ mg™ 2 mq™
g9 @ -3V (@) = 6+32;1—qm 32411 ¢
L DL MY L
3 = il q2m — 1+ q2m
1 2. mg?m
= - +4) ——. (5.3.24)
6 el e ol i

Substitution of (5.3.24) into (5.3.22) and use of (2.7.11) proves (5.3.19). The proofs of

(5.3.20) and (5.3.21) can be derived in a similar manner, using the results of (4.2.17) and
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(4.3.16) on the right hand side of (5.3.20) and (5.3.21), and finally by manipulating the

series in them. This completes the proof. il

Numerous identities can be derived in terms of e, e;, €3, serving as a translation be-
tween ey, €9, €3, and 2, .
Next, by employing Lemma 5.3.1 and Lemma 5.3.2, (5.2.10), (5.2.18), (5.2.22), and (5.2.28)

may be rewritten as

D) = —%z2(2—x), (5.3.25)
) = —11—6z4 T—z(2-1), (5.3.26)
(@) = %z%, (5.3.27)
O (m+ar) = —éz’*z\/ﬁ; (5.3.28)
g = 21—422(1+x), (5.3.29)

) (m) = %z‘* (1-2), (5.3.30)
) = —%24\/5(1+x), (5.3.31)
D (m+mr) = —%za‘\/i(l—x); (5.3.32)
(O 21—422 (1-2z), (5.3.33)

2 () = %z"’m, (5.3.34)
P @r) = LAVE, (5.3.35)

@ +ar) = f—sz4vx 1-2)(1-2z). (5.3.36)
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Ramanujan has given three classical Eisenstein series, namely P, (), and R in terms of
E, K, z, z, and dz/dz; and Lambert series expansion in his paper [94, p. 140]. The proofs

are presented in the following three lemmas.

Lemma 5.3.3

el 2m
mq _ o (3F

Proof Using the results of (2.11.25) and (5.3.24) the right hand side of (5.3.37) becomes

3E
z <7+x— >_1 242 1_q2m ZH —. (5.3.38)
Using (5.3.23), equation (5.3.38) becomes
3E _ 2mg*™ (2m — 1)¢*m-2
2 (7+x_2) - 1—2421_q Fol) SR
2mq2m mqﬁm
D TR Y
2 q4m mq2m
- 1-s) ) pfic e
m=1 1- q4m m=1 1— q2
2mq2m mq2m
483 >
— odm _ m
2m 2m 2
mg*™ (1+¢°") mg’™
= 1-96
Sl mq2m
= 1-24 ,
mzzl 1 — q2m

which completes the proof. B
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Note that by using (2.11.27), equation (5.3.37) may be represented as

P=(1-2z)22+6z(1 —1) zj—;. (5.3.39)

Ramanujan has given (5.3.39) in [92, Chapter 17, Entry 9 (iv)] and Berndt [19, pp. 121-
122] has given a proof of (5.3.39).

If we use Lemma 5.3.2 and (5.3.39), equations (5.2.4) and (5.2.5) can be rewritten as

(1) _ (1 - 2.’1)) 22 l _ %
20 = T 5% 1-z)z o (5.3.40)
o,y - _A-22 1 _ = dz
fo'(m) = 1 5z (1-2) ot (5.3.41)
2
i
D (@r) = % — 57 (1-ux) z%, (5.3.42)
1) _ o y,42
fo'(m+71) = 23:(1 x)zdx. (5.3.43)
Lemma 5.34
00 m3q2m
1+240) g = #1842, (5.3.44)
m=1
1 — 240 i mge. | L (8 — 8z — 72?) (5.3.45)
m=1 l T qzm 8 ,
o0 27 — 1)3g2m-1
7 — 240 ( "11 - qgmq_l = 2*(7- 222+ 72?), (5.3.46)
m=l
&S 2% — 1 3q2m—1
7T+240) ( = qgm_l = 2 (7+8z - 82?). (5.3.47)
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Proof Observe that

o8 (_ 2) + 256q2¢8 (qz)

3,4m—2

°™)

_ g (2m — 1)3q m3q¥ (1 4 ¢*™ —
= 1+12821_ 4m—162 +2562 e

— o4dm—2
m=1 1 qm

Zm_134m2 =9 34m
- 1_162 1 — gim-2 _162 1_q +25621_q2m

m=1

3,2m

oo
= 1—1621_q2m+2562 17”_‘22,"
=)

Using (3.5.1) and (3.5.12) we see that

¢ (-¢*) = 2 (1-12),

256¢°1)° (q2) = 222

Substitution of (5.3.49) and (5.3.50) into (5.3.48), gives (5.3.44).

The proof of (5.3.45) follows the same procedure by expressing
¢* (-¢°) —224¢%0° (¢%),

as a Lambert series and expressing in terms of z and z.
From the definition (2.9.17), (5.3.44) can be represented as

32m

Q—1+24021_q2m =24 (1-2+2%).

m=1

(5.3.48)

(5.3.49)

(5.3.50)

(5.3.51)



5.3 The first few values of sixteen Lambert series in terms of z, z, and dz/dz 112

Next we observe that

8Q-Q(¢t) = T+210)

= 7—240§:(

Using (3.5.1) and (5.3.44), we have

Substitution of (5.3.53) into (5.3.52), completes the proof of (5.3.46).

8Q - Q (g?)

-

2m)3q2m 00

o )

m=1

om — 1)3q2m—1

= q2m—1

24 (7 — 22z + 72%).

(5.3.52)

(5.3.53)

The proof of (5.3.47) leads by replacing g with q% in the left hand side of (5.3.46) and using

(3.5.1) for the right hand side. ®

Using Lemmas 5.3.2 and 5.3.4, equations (5.2.6), (5.2.7), and (5.2.11)—(5.2.13) may

be rewritten as

&0

f8) (wr)
18 (x + 77)
2(0)
Q)

@)

—s# (1-z 417,
—%24 (1-1),

%243: -z

—%24 (8 — 8z — 72%),
9%024 (7 — 22z + 7z%),
3 (7 + 8z — 82%) .

(5.3.54)
(5.3.55)
(5.3.56)
(5.3.57)
(5.3.58)
(5.3.59)

(5.3.60)
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Using Lemma 5.3.2, equations (5.3.55)—(5.3.57), equation (5.2.9) can be rewritten as

1
©) () = —"(1-2)@~-2), (5.3.61)
s (xr) = %z“x (1+z), (5.3.62)
1
O (r+77) = —g2z(1-12) (1 - 22). (5.3.63)
Lemma 5.3.5
= m5q2m o T
1—504;1—q2m=z (1+2) (1 - 22) (1—5). (5.3.64)

Proof Setting 7 = 3into (2.10.18) gives
O (1) + 18 (x7) + f& (7 +77) = 63 (0). (5.3.65)

By substituting (5.3.61)-(5.3.63) into the left hand side of (5.3.65) and using (2.10.1) to
rewrite the right hand side as a Lambert series and then rearranging, we complete the

proof. B

By Lemma 5.3.5, equation (5.3.65) may be rewritten as

&0 = —%2_26 (1+7)(1 - 2z) (1 _ g) . (5.3.66)

We summarise the results of functions P, @), and R. By (2.7.4), (2.9.23), (5.3.37), (5.3.39),

(5.3.51), and (5.3.64), we have shown that

P=1-24%" mq (5.3.67)
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= Z <%+x—2)

dz
= (1 - 2z) 22 —z)z—
(1 —2z)z°+ 6z (1 x)zdz,
e m3q2m
Q = 1+24021_q2m
m=1
= z4(l—x+x2),
and
£0 m5q2m
R = 1—504Zl_q2m
m=1
- 26(1+x)(1—227)<1~—)
Next we let

b e
Z 32, eagega Cin fn,b,c (811 €2, 63) ] a, ba (& 2 0.

oES3
0=(01,02,03)
{01302 303}={ 11213}

For example from (5.3.19)—(5.3.21), (5.3.71), and (5.3.73), it is easy to show that

faoo(e1,e2,e3) = 2(e2+e3+€3) = %,
firo(er,e2,63) = 2(erez +ere3 + eze3) = —96Q,
fl,l,l (el'l €2, 63) = 6616283 = .1_41.

The following two lemmas are needed to prove Theorem 5.3.8.

Lemma 5.3.6 Forn > 1,

fro0 (€1, €2, €3) = Z Cj,ijRk)
2j4+3k=n
3:k20

(5.3.68)
(5.3.69)
(5.3.70)

(5.3.71)

(5.3.72)

(5.3.73)

(5.3.74)

(5.3.75)
(5.3.76)

(5.3.77)

(5.3.78)
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where c; . is a rational number.

Proof The statement is true for n = 1 and 2 by (2.7.14) and (5.3.75), respectively. Sup-
pose it is true for all valuesn = 1,2,3,4,..., m. Weshow it is true forn = m+ 1. Itcan

be shown that
3f1,1,0 (61, €2, 83) fm-—l‘0,0 (61 y €2, 63)
= —6fm+1,00 (€1,€2,€3) + fi,11 (€1,€2,€3) fm—200 (€1,€2,€3). (5.3.79)

By (5.3.76) and (5.3.77), equation (5.3.79) can be represented as

fm+1,n,0 (61, €2, 63) = 48Qfm—1,0,0 (61, €2, 63) + @fm—z,o,o (61,82, 83) .

Using the induction hypothesis, we obtain

' R, B -
fm+100 (€1,€2,€3) = 48Q Z Cj,kQJRk'*'Sﬁ Z C;'f,kQJRk

2j+3k=m—1 2j+3k=m—2
3420 320
| pk
= ), k@R
2j+3k=m+1
320

Hence the statement of (5.3.78)istrue forn =m + 1. A

Lemma 5.3.7

1

Faioo (€1,€2,€3) = Zf,\l,o.o(61,62,63)1',\2,0,0(61,62,63)
1
"5f>q-+-,\2,0,0 (e1, €2, €3), (5.3.80)
1
§fA1,A9,0(81562163)fA3,0,0(61162563) = fAl,A2+,\3,u (61162,83)

+Faa+23,0 (€1, €2, €3) + fa a0 (€1,€2,€3) .

(5.3.81)
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Proof By (5.3.74), it is straightforward to check that

Fri,00 (€1, €2,€3) frz00 (€1,€2,€3) = 2fx, 425,00 (€1, €2,€3) + 4 f, 200 (€1, €2,€3) .

Rearrangement proves the first part.

The second part follows from the first part. B

The following theorem can now be proven.

Theorem 5.3.8 For A\ + A2+ 23 >1,

i Dk
f/\l,a\g,)\a (813825 83) = E Cj,kQ]R ’ (5382)
2j+3k=A1+A2+)A3
J,k20

where c; . is a rational number.

Proof Apply Lemma 5.3.6 to equation (5.3.81) and simplify the result. B

5.4 Sixteen Lambert series in terms of z, z, and dz/dz

In this section we show that the sixteen Lambert series can be represented as various poly-

nomials in terms of z, z, and dz/dz.

Theorem 5.4.1 Forn=1,2,...,

@ntl) (0 = 22 (7)), (5.4.1)
(@) = 21— @)pan (3), (5.4.2)
féznﬂ) (77) = 22"*2zp,_; (z), (5.4.3)

) (r+7r) = 20 (1 - ) pas (2), (S.44)
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fED0) = 2pala), (5.4.5)

@ D(r) = 2 "VT—apay (2), (5.4.6)
9 (x1) = i apy (1), (5.4.7)

) (1 +77) = 2221 = gpay (2); (5.4.8)
f£ (@) = 2" (1 —2)pa-i (a), (5.4.9)
Y (7)== 2MVapa (o), (5.4.10)
M (r ) = 21— 1) VIPaoi (2); (5.4.11)
() = 2T —zpay (2), (5.4.12)
JNrr) = g, A, (5.4.13)
WV (r+rr) = 22/ (1 = 2)pa-i (z); (5.4.14)

where g = 1,2, 3 and p,, (z) is a polynomial in x with rational coefficients of degree n.

Forn=0in(54.1)-(54.4), (54.7)~(5.4.9), and (5.4.11)—-(5.4.13), we have

(1) _ (=222 1 - dz
0 (0) = = +2x(1 x)zdx, (5.4.15)
(1) _ (-2 1 . dz
fo'(m) = e 2:c(l a:)zdx, (5.4.16)
2
(1) _ Fz 1 o y,9
foo (1) = = —ge(l-2)z, (5.4.17)
(1) _ 1 dz
o (m+7T) = 2%‘(1 w)zdm, (5.4.18)
) (r7) = %—%z, (5.4.19)
(0) it
fi (m4+71) = 5 ~5Vl-g, (5.4.20)
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2 (r) = %z, (5.4.21)
D (r+ar) = %z\/E, (5.4.22)
O = %z\/l—_x, (5.4.23)
0 ar) = —%zﬁ- (5.4.24)

Note that p,—1 in (5.4.2)~(5.4.4) and (5.4.6)—(5.4.14) are different polynomials.

Proof The proofs of this theorem follow from the results in Corollary 5.2.5 and Section
3. We give complete details for the proof of (5.4.6). The other formulae can be proved in
a similar way.

Substitution of (5.3.10) and (5.3.19) into (5.2.34) implies forn > 1,
l(n+1)/2]

; D, [—%zZM] o [11—222 2 x)]

= Dp12°"V1 = 2pp_1 (z) + Dpp2**V1 — zpp_s (z) + - -

o n+1-—2i
1 " )(W)

Il

+Dn,|(n+1)/2) 2" V1 = ZP|(n41)2) (2)
= 221 —-zp,_1(z),
where p,,_; (z) is a polynomial in z with rational coefficients of degree n — 1, completing

the proof of (5.4.6).

This completes the proof of Theorem 5.4.1. &

Ramanujan [62, p. 141] has given a result equivalent to (5.4.1). Cooper [39] has
given different proofs and equivalent results to (5.4.2)—(5.4.4), (5.4.7), (5.4.9), (5.4.11),

and (5.4.13).



5.4 Sixteen Lambert series in terms of z, z, and dz/dz

Theorem 5.4.2 Forn>1,

7 (0)
£ 0)
£ (0)
fo™ (m)

é4n+1) (77)

é4n+1) (71— + 7r'r)
170 (0)
'2(411-3) (0)
5 (0)
{7 (m)

£V ()

fé‘m_l) (r +mT)

ZG"‘2(1 -+ Iz)Psn—s (z),

"2 (1 4+ 1) (1 — 2z) (1 = E) Pan-2 (%)

2

£m+2(1 — 2 +2°)*pan-3 (7) 5

22 (1—z)[1+ (1 - 2)]p2n—2 (),
Z"+22(1 + 2)pan-2 (2)
#"2g (1 - 2)[(1 - 7) — 7] pon—2 (2)
2721+ (1= 2)] pon2 (2),
Z"72(1+ z)pan—2 (%),
A2 [(1 - z) — 2] P2 (T)
in (2 — ) V1 — zpan-2 (2)
(14 ) VzZpn-2 (7)

2" [(1 - z) — z] V& (1 — z)pon—2 (T) ,

where p, (z) is a polynomial in x with rational coefficients of degree n.

119

(5.4.25)
(5.4.26)
(5.4.27)
(5.4.28)
(5.4.29)
(5.4.30)
(5.4.31)
(5.4.32)
(5.4.33)
(5.4.34)
(5.4.35)

(5.4.36)

Proof We give complete details of the proof of (5.4.34) and the other formulae can be

proved in a similar way.

Using the result of (5.2.34) we can rewrite the left hand side of (5.4.34) as

1(41‘1—1] (ﬂ.)

Zn:'pn,:' [ffl)

2i—1 2
T ] e%‘!‘l+l 21

(1) ) ey Z D, [ (l) ] e%n—Z—Zi.

(5.4.37)
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Lastly, by substituting (5.3.10) and (5.3.19) into (5.4.37) and then simplifying the result,

we arrive at (5.4.34), which completes the proof of Theorem 5.4.2. &

Conjecture 54.3 Forn > 1,

@) = M +140-2)+ (1 -2)"] VI-2psns(z), (54.38)
A0 (rr) = (14 142 + 72) VEpan—s (3), (5439)

PV (m+mr) = i [(1-2)? - 142 (1 - 2) +2°) V2 (1 — 2)psn—s (),
(5.4.40)

where p,, (z) is a polynomial in x with rational coefficients of degree n.

We remark that formulae (5.4.38)—(5.4.40) have been verified for 1 < n < 100 by using a
Maple program.
The next three diagrams show the first five examples in each sixteen families of identities

and also show the interconnections between the various polynomials.
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5.4 Sixteen Lambert series in terms of z, z, and dz/dr
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5.4 Sixteen Lambert series in terms of z, z, and dz/dz
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5.4 Sixteen Lambert series in terms of z, z, and dz/dx
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5.5 Proofs of some of Ramanujan’s results

As we mentioned earlier, Ramanujan gave several families of identities in [92, Chapter 17,
Entries 13-17] and Berndt has given proofs in [19, pp. 126-138]. The aim of this section is

to give a simple proof by using some transformations from Chapter 3 and Figures 5.1-5.3.

For Entry 13: Proofs of (i) and (ii). We use (5.3.54) and (5.3.66), respectively.

Proofs of (iii) and (iv). Replace ¢ with q% into Figure 5.1 of f; (2m—1) ( ) and put m = 2
and 3, respectively, then employ (3.5.1).

Proof's of (v) and (vi). Replace g with ¢? into Figure 5.1 of fo (2m 1) (O) and put m = 2 and
3, respectively, then employ (3.5.1).

Proofs of (viii), (x), and (xi). Replace q¢ with qz into Figure 5.2 of f; f(2m—1) (0) and put
m = 1, 2, and 3, respectively, then employ (3.5.1).

Proofs of (ix), (xii), and (xiii). Employ Figure 5.2 of f'l(zm_l) (0) and put m = 1,2, and 3,

respectively.

For Entry 14: Proofs of (i)—(iv). Replace g with q? into Figure 5.2 of f; o) ( ) and put
m = 1 to 4, respectively, then employ (3.5.1).

Proof's of (v)-(viii). Replace g with g2 into Figure 5.1 of fém—l) (r) andputm = 2to 5,
respectively, then employ (3.5.1).

Proofs of (ix)—(xi). Use Figure 5.1 of féQm"l) (m) for m = 2, 3, and 4, respectively.

For Entry 15: Proofs of (i)—(iv). Employ Figure 5.1 of fém_l) (r7) and put m = 2to S,
respectively.

Proof's of (v)—(viii). Replace g with ¢2 into Figure 5.1 of f*™ % (r7) and putm = 2 to 5,
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respectively, then employ (3.5.1).

Proofs of (ix)—(xii). Replace q with ¢ into Figure 5.2 of fézm‘l) (

n7) and putm = 1 to 4,
respectively, then employ (3.5.1).

Proofs of (xiii)—(xvi). Use Figure 5.2 of fézm_l) (77) and put m = 1 to 4, respectively.

For Entry 16: Proofs of (i)—(v). Employ Figure 5.2 of ™" (1 + #r) and putm = 1 to
5, respectively.

Proof of (vi). Setn = 6,9 = 3, and w = 7 + 77 into (5.2.14), then employ the results of
Figure 5.2 of f*™ ™ (x4 7).

(2m)

Proofs of (ix)—(xiii). Use Figure 5.3 of f3°" (w7) and put m = 0 to 4, respectively.

For Entry 17: Proofs of (i)—(v). Employ Figure 5.3 of fl(zm) (w7) and put m = 0 to 4,
respectively.

Proofs of (vi)—(ix). Use Figure 5.3 of fézm) (7) and put m = 0 to 3, respectively.
This completes the proofs of Ramanujan’s identities.

The results in this chapter will be used in Chapters 6 and 8.



Chapter 6
Applications

6.1 Introduction

The aim of this chapter is to use selected transformations in Chapter 3 and results from

Chapter 5 to prove a large number of identities.
In Section 2, we prove ten Lambert series identities.

In Section 3, we study functions listed in the following table:

Sums of squares | Sums of triangular numbers

r2 (n) t2 (n)
r4 (n) ts (n)
76 (n) ts (n)
T (n) ts (n)
T1,4(n) t2,8) (n)
T(1,1,1,4) (n) t(2,2.4.4) (N)
T(1,1,2,2) (n) t2.2,28) (n)
T(1,1,4,4) (n) t1,1,1,1.22) (n)
T(1,2,2,4) (n)
7(1,4,4,4) (n)
7(1,1,1,1,2,2) (n)
T'(1,1,2,2,2,2) (n)

Note that the results of r; () , 74 (n) , 76 (n) , 78 (n) , t2 (n) , 4 (n) , 6 (n) , s () , t(2,8) (R),
t(2,2,4,4) (n), and t(1,1,1,1,22) (n) have been studied in Chapter 4. We give another way to

achieve these results.

So far, there are no Lambert series for the representations of n by ¢ (q) ¢ (¢*) , ¢* (¢) (2 (¢2)

126
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and ¢? (q) ¢* (¢?) in the literature. The result is possibly new.

Let k£ and m be positive integers. Let Ay, Ag, ..., Ax and py, po, - . ., i, be positive integers

where \; < Ay <+ < Apand p; < py < == < .. The function
rMO+ 204+ +M0+mA+pu A+ + p,A) (n)
will denote the number of solutions in integers of

)\155'% =+ /\2&73 S o /\kxi

v (y1 +1) Y2 (y2 + 1) Ym (Ym + 1
ul_l_(2___+u2T+...+#m._".i%‘_z

— @ (6.1.1)

wheren =0,1,2,3,....
We also define r(A O+ A0+ -+ MO+ A+ s A+ -+ + p, ) (0) = 1.
Then the generating function for (A O+ A0+ - -+ MO+ g A+ o A+ -+ -+ 1, A) (n)

is

Zr()\1[3+/\2[3+--'+/\kD+u1A+u2A+---+umA)(n)q"
n=0

) o () o (™) ¥ (g) ¥ (¢*2) - - (¢"). (6.1.2)

6
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In Section 4, we study functions listed in the following table:

Results involving both sums of squares and triangular numbers
r(O+8A)(n)

r (40 + 2D) (n)
r(0+0+0+84A)(n)
r(0+0+A+A4)(n)
r(O+0+4A +4D)(
r(O0+0+48A +8A) (

r(O0+8A+8A+8A)(n
r (40 + 2A 4+ 2A + 2A) (n)
r (0440 +4A + 44) (n)
r(O+ 20+ 20+ 8A) (n)
r(O+4A +4A + 8A) (n)
rO+0+A+A+A+AD)(n)
r(O+0+4A+40 +40 +4D) (
r(0+0+04+04+4A+4A) (n

n)
)

So far, most of the results in this section were not found in the literature except for ¢? (q) ¥ (q) ,

©? () ¥? (¢*), and ©? () ¥* (g), so they may be new.

Many people have invested a huge amount of time, only to yield one result at a time. We
unify a diverse set of these results and develop a powerful tool (four versatile functions

fo, f1, f2, and f3) to collect them all in one.
6.2 Proofs of ten Lambert series identities
In this section we will prove ten Lambert series identities.

Theorem 6.2.1

>\ (2n —1)° g% > (2n—1
Z("# - QZ(I—”_TJZi—, (6.2.1)



6.2 Proofs of ten Lambert series identities 129

n=1 n=1 4 n=1
o~ (=9) o~ _d" n® (—q)
17+32;1_qn = 1+24n2:11+‘1“ 1 sgl_qﬂ
o0 3 - n 2
+9{1+162”’(—Q)~} , (6.2.4)
1-g"
n=1
n’ (=q) —~ _ng" "(-9)
2{31—8; e = 1+24§1+n 17*‘32;:1 —
-~ (=9)" o (—g)"
+45¢14+16) ——— 131 -8) ——— 1,
(6.2.5)
[e ] 0o n5( )n g
691+1GZ 1_q ~ {1—82:7%}
n=1
+4 1+24i i 31—8iM
n=11+qn ) 1-¢g
)" "(=9)
+21{14+16) Q1T +32) = [
n=1
(6.2.6)

- 2
Z n*(—q)"
s 1+ q2n

o0 n2qn .
16 Z1+q2n +16

1 o= (-1 (2n+1)%2+ ]
—4 _Z+; 1 — g2l
= T2
1 o= (=1)"(2n+ 1)%g*+!
—gh =
4 + ; 1+ q2n+l

1 n°q*
e [1 = 5042 = q%} — [1 - 5042 ] ; (6.2.7)
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oo n3qn oo n3(_q)n
1+2 P
17{”240;1_@,;}{ + 4021_ N
o0 n?q2n 4n
= 27341+4 — 25641
7341+ 80;1_&1 56 +48021_q4n

—10368004* (qz; qz)io (q‘*; q")io, (6.2.8)

2 2
5 o= (=1)"(2n +1)* g2+ 5 < (=1)"(2n+1)* g
{Z T ; T = q2n+l + Z - Z 1 + q2n+1

n=0
2
— n'q" —~nt(-1)"¢"
16 +16 L e A
25 o n9q4n o0 n9q2ﬂ.
) _ —|1-264
i (1w ) - (1 S
+192{q C N (q2;q";)§2 , 62.9)
(-6 (@A) |
2
= 7179’” 2 16 16
Zl_ = | +16¢° (¢;9) o (2% %),
n=1 q
& 32
2
= 17¢* (¢4 ¢), @+ 2° - 17 lzq(“+%) ﬂ] . (6.2.10)
n=0

Proof The proof is divided into three parts. First we prove identities (6.2.1) and (6.2.2).

Then identities (6.2.3)—(6.2.6) and lastly proofs of (6.2.7)-(6.2.10) will be given.

Proofs of (6.2.1) and (6.2.2). Using (3.5.1), Figure 5.1, and Figure 5.2,

(. 2y _ N~ @m—1)g _ 12
B @may= ¥, Er el (6.2.11)
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o0 5 2m-1

(5) . 5 _ 1 (2m—1) q _ 1 6

5 ) = 1—6; g = 552z (1-z+47), (6.2.12)
o 9.m 1

) (1) = 2Z%=gz“’m(1+m) (1+ 29z +2?) (6.2.13)

m=1

i® (0. q%) - _L_gi LA S T (1+ 29z + 7?)

Nt 252 "4~ 1+g¢m 252 '

(6.2.14)

From (4.3.19), (5.3.71), (6.2.11)—(6.2.14), we can express both sides of (6.2.1) and (6.2.2)

as polynomials in 2z and z, completing the proofs of (6.2.1) and (6.2.2).

Proofs of (6.2.3)-(6.2.6). Replace g with q%, setw =m,n = 1,2,3, and 4 in (5.2.2),

respectively, use (2.10.5) and rearrange. This completes the proofs of (6.2.3)—(6.2.6).

Proofs of (6.2.7)—(6.2.10). Using the results in Section 10 of Chapter 2, identities (6.2.7)—

(6.2.10) may be rewritten as

2 [f® (ur)]" 2 [0 (nrs —a)] 8 [P )] -8 [#? (ms—a)]

10208 (04%) ¥ (03i0%)

= 27347 (0) + 256/ (0; ¢?) — 4320¢% (% ¢*)., (a*; ") » (6.2.16)
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64 [£0 (m)]" + 64 [10 )]~ 4 [#2 (xn)] 4 [£9 (r 47

25[ 9) (@) (o, 2] L 192 (@2 (g% 0D | B (d% 0D
= = (3379 (0) - 1056 (0;¢ ]+— o |
62 [ o () + 5 (-50%)0 (3695
(6.2.17)
2 16
[ A (m)] +64¢% (4 9)eg (6% 9°) o
. 4
= —8160¢% (¢ ¢%)2¢ /¥ (0) + 4624 [ ¥ (n7)] (6.2.18)
respectively. Next by using (2.11.7)—(2.11.9) and (4.2.26), we easily observe
2(2_28(4,48 _i82(1_ 6.2.19
qq,q)wq,q)m—QSsz ), (6.2.19)
2 (2. ,2)20 .
T 1 e gy, (6.2.20)
(=4 8%)oo 256
2 (2. ,2\20
; 1
uug;” = —2"%?(1-1), (6.2.21)
(2:9%) o 256
6 l 1
(592 (5D, = =% (1-2)", (6.2.22)
1
¢ (572 = — A (1~ )t (6.2.23)

Finally, by employing (3.5.1), (3.5.12), Figures 5.1-5.3, and (6.2.19)—(6.2.23), we express
both sides of (6.2.15)—(6.2.18) as polynomials in z and z, completing the proofs of (6.2.7)—
(6.2.10).
This completes the proof of Theorem 6.2.1. &

Identities (6.2.1) and (6.2.2) were given by Ramanujan [94, p. 146], [92, Chapterl7,
Entry 17 example (vi)]. Identity (6.2.7) was given by H. F. Sandham [95, p. 234]. Iden-
tities (6.2.8) and (6.2.9) appeared in Sandham [96, pp. 35-36]. Identities (6.2.3)—(6.2.6)

were given by Liu [85, pp. 168-169]. Identity (6.2.10) was needed by Chan, Cooper
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and W. C. Liaw in a preliminary version of [29]. Chan et. al used (6.2.10) to prove that
S17 (p?) /17 = Sz, (8p) /32 for odd primes p, where Sy (n) denotes the number of repre-
sentations of n as a sum of k positive odd squares. The proofs we have given here are

simpler.

6.3 Additional findings on sums of squares and triangular
numbers

In this section we present twenty infinite products and their Lambert series expansions.

From these results, we deduce the formulae for the number of representations of an integer

n by twenty different quadratic forms in terms of divisor sums or of some products of

integers which contain primes. The following lemma is required to prove Theorem 6.3.2.

Lemma 6.3.1

0 (q) = 2£ (), 6.3.1)
v(@e(d") = %+f2(°) (m) +if{) (7 + 77307 ; (63.2)
vt (e) = —4fi (W;iq%), (6.3.3)

o (@) e(d') = -2f (W;iq%) -2f (m;0%)
—2ifs (r+ 775 4%), (6.3.4)
&)@ (@) = -2 (midt) -2fi (), (63.5)

@) () = -f (W;iq%)—ﬂ{ (m¢%)

—~2ifs (v +77;¢°) — f1 (™), (6.3.6)
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v(q) ¢’ (¢") = —%f{ (m’q%) - gf{ () — 2f1 (73 ¢°)
—ify (v +7734%), (6.3.7)

@)@ (@) e(d) = - (w;iq%> — fi(m) = 2f{ (m;0°); (6.3.8)

¢ (q) = 8£ (r) —8if (x7), (6.3.9)
(@) (%) = 4f2 (x) — 4ifP (x7) + 4f2 () (6.3.10)
@t (¢?) = 472 () — 252 (n7) + 4 £ (), (6.3.11)
0 (g) = —8f(§3) (W;iq%); (6.3.12)
20y _ b L0 ( 1
Yi(g) = 2q%fs (q,q ) (6.3.13)
8y _ b () .g_ﬂ(m e
¥ () ¥ (&) = 8q%f:, (m,q) L (7r'r,zq ) (6.3.14)
i) = ql%fé(m), (6.3.15)
W ()6 () = —fi(nr) + — fy(m+77)5 (63.16)
8q2 8q>
1 )
Vv (®)v(¢®) = 7 f3 <7r + 7Ty —qz) — 321(1%f3 (7r+ WT,qi)
(—1):4_3 I} . : %
+Wf3 (7r+7r’r, —iq )
(_1)_Tl ! AT
o f (7r+7r'r,zq ) 6.3.17)
1 1 ) 1
Yo (q) = 'Sq—%fz(z) <W+7f7’;q2) - SqL% 3(2) (7r7';q2) A (6.3.18)
¥t ()9 (¢*) = %ff”(?rf), (6.3.19)
W) = ~—1 (nr). (6.3.20)

2q
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Proof Using (3.5.1), (3.5.12), (4.2.17), (4.3.16), and Figures 5.1-5.3, we express both
sides of (6.3.1)-(6.3.20) in terms of z and z . This completes the proof of Lemma 6.3.1. [
We now rewrite the right hand side of Lemma 6.3.1 as a Lambert series expansion.

Theorem 6.3.2

oY (1) (2 — 1) g%~

1+ qéj—2 1

(6.3.22)
j=1

¥ (@) ¢* (") = 1+4Z—3L+4Z(—1%~, (6.3.23)

1
(e ¢] -1 J ;45 fors) _q\J -
+4Z( ) jg ‘Z( V@ -1 a0

+4) (1 4e?. (6.3.26)

1 — g%-1
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2 (=1)7 (25 — 1)° %!
=3 Z TrE : (6.3.27)
1=1
°°()(2J—122Jl = j°¢
‘Pz(Q)‘P4 (q2) = 1+2Z 1_q2Jl Z 2]
=1 =1
N (—1) (25 — 1) g%
) Z e , (6.3.28)
j=1
1 X @2-1g'T | 1 &Y (2j- )T
3 2 8 T —
v ()Y (") = 32qu=1: 1— gi-1/2 +32qz 1+ gi-1/2
1 K@ -) (-9 i T (2= 1) (=9)'F
204 1- (=g~ 1/2 = LsEre
(6.3.29)

Proof Using the series expansions of the sixteen Lambert series in Section 10 of Chapter 2,
the right hand sides of the results in Lemma 6.3.1 can be represented explicitly as Lambert

series. This completes the proof.

Note that the Lambert series expansions for (6.3.1), (6.3.3), (6.3.9), (6.3.12)—(6.3.16),
(6.3.18)—(6.3.20) are the same as the ones given in Chapter 4. Therefore they are omitted
here.

We use the above theorem to establish an arithmetic interpretation of the following corol-

lary.

Corollary 6.3.3 Forn > 1,

rag@=k| Y 1- Y 1 (6.3.30)

din d|n
d=1(mod 4) d=3(mod 4)



where

where

where

where

where

6.3 Additional findings on sums of squares and triangular numbers

=

7‘4(

:n =0(mod4),
:n=1(mod4),
:n = 2,3 (mod4).

n)szd,

dln

d odd
n =1 (mod?2),
n = 0(mod?2).

S3I 333

() =k} _d
din
dodd
n =1 (mod?2),
n =2 (mod4),
n = 0(mod4)

T(1,1,4,4) (n) =k Z d

dln

d odd
:n=1,2(mod4),
:n =3 (mod4),
:n =4 (mod8),

:n = 0(mod 8).

137

(6.3.31)

(6.3.32)

(6.3.33)

(6.3.34)
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dln
d odd
where
2 :n=1(mod2),
PR A :n = 2(mod4),
) 8 :n =4 (mod8),
24 : n = 0(mod 8)
T(1,4,4,4) (n) =k Z d
dln
d odd
where
0 :n = 2,3 (mod4),
k- 2 :n = 1(mod4),
) 8 :n =4 (mod8),
24 :n = 0(mod8).

T(1,1,1,1,2,2) (R)

Y Fe-sy 0 (5)

dln din
d odd, n even dodd
4 d+l /N 2
rasaza (@) = 4 Y (DFE-aY () (B)
dln dn
d odd, n even dodd
g 2 4, : n is even,
t2,228) () = djan+7
0 otherwise.

Note the abbreviation k (n) = k.

138

(6.3.35)

(6.3.36)

(6.3.37)

(6.3.38)

(6.3.39)

Proof The details of (6.3.30), (6.3.37)—(6.3.39) are similar to the proof of Corollary 4.3.2.

We do give complete details for the proof of (6.3.32). Then equations (6.3.31), (6.3.33)-

(6.3.36) can be proved in a similar way.

First use (4.1.7) and expand the right hand side using the geometric series in (6.3.22), so
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that r(;,1,1,4) (n) can be represented as

ran14) (R) = 4Zd+2 z (_1)"L““22d+dd_2 z (_1)3%de

d|n d|n,n odd d|n,n odd
d odd d=1(mod 4) d=3(mod4)
+4E d—5§ d+3§ d—2§ d.
d|n dln dln d|n
d even 4|d 8|d 16(d

If n =1 (mod 4) then n = 4k + 1 and so

Ty (M) = 4> d+2 Y d+2 > d

d|n dj4k+1 d|4k+1
d odd d=1(mod 4) d=3(mod 4)
= 6 E d. (6.3.40)
dln
dodd

Similarly, if n = 3 (mod 4) then n = 4k + 3 and so

T(1,1,14) (n) = 4Zd—2 Z d—2 Z d

dln d|4k+3 d|4k+3
d odd d=1(mod 4) d=3(mod 4)
= 22 d. (6.3.41)
d|n
d odd

If n = 2 (mod 4) then n = 4k + 2 and so

T () = 4 ) d+4 > d

d|ak+2 d|ak+2
d odd d even
= 4) d+4) 2d
djn dln
d odd d odd
= 12) d (6.3.42)
dln

d odd
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If n = 4 (mod 8) then n = 8k + 4 and so

Taae (n) = 4 Z d+4 Z d-—5 Z d

d|8k+4 d|8k+4 d|8k+4
dodd d even 4|d
= 4) d+4) (2d+4d)-5) 4d
dln din dln
d odd d odd d odd
= 8 Z d. (6.3.43)
dln

d odd

If n = 0(mod 8) then n = 8 + 8 and so

raae (M) = 4 d+4 Y d-5) d+3 ) d

d|8k+8 d|8k+8 d|8k+8 d|8k+8
d odd d even 4d 8|d
= 4) d+4> (2d+4d+8d)—5) (4d+8d)+3) 8d
din dln din dn
d odd dodd d odd d odd
= 24) d (6.3.44)
e

If n = 27 (mod 16k + 16) where j, k = 0,1,2,3,..., then

T(1,1,1,4) (n) =

4 ) d+d > d-5 > d+3 Y d

d|2/ (16k+16) d|27 (16k+16) d|27 (16k+16) d|27 (16k+16)
d odd d even 4|d 8ld
—2 E d
d|27 (16k+16)

16ld

4) d+4) (2+4+8+...+2)d-5 (4+8+...+27+) 4

dd‘l’?d "d‘l’gd ddlgd
+3) (8+16+...+27*)d—2> (16+32+...+27")d
o .
24> d (6.3.45)
d|n

d odd

Combining (6.3.40)-(6.3.45), we arrive at (6.3.32).

This completes the proof of Corollary 6.3.3. 8
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Formulae (6.3.31)-(6.3.36) can be found in Liouville [76]-[82]. Identity (6.3.23)
was given by Ramanujan [93]; it also appeared in Fine [54, p. 89] and Chan [36, p. 620].
Fine [54] gave equivalent results of (6.3.31)-(6.3.33). Adiga, Cooper, and Han [4] gave
a remarkable formula which can lead to the results of (4.3.25)-(4.3.27), (4.3.29)-(4.3.31),
(6.3.39) and (4.3.33) directly from (4.2.29)-(4.2.31), (4.2.33), (4.2.34), (6.3.30)-(6.3.33),
respectively. Cooper [41] mentioned that Theorem 6.3.2 may be proved directly from

Ramanujan’s 1), summation formula.

Corollary 6.3.4 Let the prime factorization of n be given by (4.2.37). Then

14 (-1
T4 (n) =k H (Ap+1) H ———%—)‘ (6.3.46)
p=1(mod 4) p=3(mod 4)
where
4 :n=0(mod4),
k=< 2 :n=1(mod4),
0 :n=2,3(mod4).
Ap+1
g pr -1
rae) (n) =k 1;[ . pem (6.3.47)
where
6 :n =1 (mod4),
12 :n =2 (mod4),
k=<¢ 2 :n =3 (mod4),
8 :n =4(mod8),
24 : n = 0(mod8)
Ap+1
pr -1
ra22) () =k I;[ ] (6.3.48)
where
4 n =1(mod2),
k=4 8 n =2 (mod4),
24 n = 0(mod4)
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pAp+1 -1
T4, (R) =k (6.3.49)
B— 1
P
where
4 :n=1,2(mod4),
PR :n =3 (mod 4) ,
) 8 :n=4(mod38),
24 :n =0(mod8).
Ap+l
= pr —1
ra2.24) (n) = K 1;[ - = (6.3.50)
where
2 :n=1(mod2),
A ) 4 :n = 2 (mod 4) ,
) 8 :n=4(mod 8),
24 :n=0(mod8)
Aptl
— pr -1
T (1,4,44) (n)—k];[ = (6.3.51)
where
0 :n =2,3(mod4),
J— 2 :n =1 (mod4),
- 8 :n =4 (mod8),
24 :n = 0(mod 8)
2)p+2 (Apt+1)(p—1)/2
_ prett =il
T(1,1,1,1,2,2) (TL) =pk ’ p2 - (_1)0,_1)1,2 (6352)
where
- 8 :n=1(mod?2),
— | 422t -1) :n =0(mod?2).
p2xp+2 _ (_1)()\?“*’1)(17—1)/2
ra12222) (n) =k p R (6.3.53)
where

fo 4 :n=1(mod2),
T 4(2*-1) :n=0(mod 2).
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Ap+1 _ 1
tag (n) = H ARSI (6.3.54)

P18n+7

Proof The details are similar to those of the proof of Corollary 4.2.5. B

We end this section by presenting the formulae for ¢?" (q) and ¥*" (q) where n > 2,

which were given by Cooper [39].

Theorem 6.3.5 [39] Forn > 1,

—— (1) (2 — 1" g
|Eon| 9" (@) = |Ean| - Z 1— ¢%-1
+22"+2Z n, q’ g -t
1 +q2] q q )4n+2
[n/2) 245
( (¢% 6%
x Z d;167¢’ a— (6.3.55)
o0
92n (221: s 1) |Bz [ & 22n (2211 _ ) IB2 I 2n 1.5
n e n 2n+1 q
Ll g) 2 Z g
( __\8n [(n-1)/2) ( ! 2)24]
Z d;16%¢ J _q°;41, (6.3.56)

dnt2 (2 § : i — 1)2" gi—n-1 —

=1

n+4 [n/2]
( 8+4Z 1)Jd q q)24j

= 5 6.3.57
( q 4n+2 256q )24_} ( )
92n (22?1 = 1) Ianld)qn ((}2) B 1 oacd 1+ ( ]_ n+j jgn—lq_?—n
2n =1 2 1-— q2.?
4, 4\8n L(n— )f’2J 3 d 21245
+(q 10 oo (6% 8% (63.58)

(el = 256q it ol

for some integers d;.
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Liouville [83], [84] gave formulae for ©'° (¢) and ¢'? (q). Glaisher [58] gave formulae
for % (q) up to 2k = 18. In 1916 Ramanujan [94] stated a general formula for % (q),
proved by L. J. Mordell [89] in 1917. Note that these formulae will involve cusp forms for
©* (q), where k > 4. An excellent source of information can be found in Dickson’s book

[48].

Theorem 6.3.5 is equivalent to Ramanujan’s formulae [94, pp. 158, 159, and 191]. Cooper
[39] employed equations (2.9.5)-(2.9.7), (2.10.7), and (2.10.10) to obtain (6.3.55). Simi-
larly, using (2.9.5)—(2.9.7) with (2.10.5) and (2.10.9); (2.10.12) and (2.10.15); (2.10.9) and

(2.10.13); we obtain (6.3.56)—(6.3.58), respectively.

6.4 Several results involving both sums of squares and
triangular numbers

In this section we derive fourteen interesting infinite products and their Lambert series
expansions. From these, we deduce formulae for the number of representations of an
integer n by fourteen different quadratic form in terms of divisor sum or of some products

of integers which contain primes. The following lemma is now proven.

Lemma 6.4.1
1 1
v v () = % [—5 + 10 (nr) = if O (7 + 77y q2)} , (6.4.1)
1 1 1 1
® (q4) (' (qz) — - [ 250) (7r + 7T; qi) + Tf2(0) (7r + 7T in)J : (6.4.2)
4¢3 12

1 1 1 )
()9 (¢°) = - (m’q?)+5f{(7r;q2)+-2f§(7r+7rr;q2), (6.4.3)
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0’ (@) ¥’ (q) = i_;[fé <7TT;(1%) —ify (Tr+7r7;q%>], (6.4.4)
o (@) ¥* (") = ;—qlf{ (W;iq%) +§§f{ (), (6.4.5)

5 oy 1 1
(¥ (&) = el (W; zq;) + 5/t (mq?) + PRl (v + 773 q%)

1,
—@fl (), (6.4.6)
| - 3 ly m
v (q) 15’3 (QB) = —@ﬁ (77; “12) - @fl (m) + @fl (7r; q2)
+-8%f£ (r +773¢%), (6.4.7)
b2 (e Yottt (g
o)V @) = ph (i) + i (i)
12 ' o .12_ 1 f o %
= . fa (rrr,zq ) + _-—lﬁi%q% f3 (?T + 7T 1q ) ;
(6.4.8)
@V (@)6() = —=f (migd) + A (@) = = fi (x +77307)
e@¥* (@) ¢ (d") = ~hilmie?)+ 23 207,
(6.4.9)
@& (@A)v (@) = —=-f (ﬂ'iq%) ~Lpy2f () (6.4.10)
(p q ® q 2q 1 ) Qq 1 q 1 ) ) o
1 1 I »
()W ()9 () = —5fi (migh) + g A (m) + 4;2f3 (m+775¢%);
(6.4.11)
o (q)v*(q) = _q% @ (xr), (6.4.12)
1 i 1
o () ¥ (¢*) = 7 B (m) - 4—q2ff2) (r7) — @fa‘z) (),  (6.4.13)
1 ' 1
o' (q) ¥’ (¢") = = 2 (r) —%ff” (xr) - @ (7). (6.4.14)

Proof The details are similar to the proof of Lemma 6.3.1. il
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We can now rewrite the right hand side of Lemma 6.4.1 as Lambert series expansions.

Theorem 6.4.2

oo o2 (_1)jq2j—2* == (_1)jq2j—l
0¥ () = ;1—"1—@‘—1 J; T (6.4.15)
I n ()T 1 (=1 (—9)'F
0(¢)¥(?) = —3) G -5 ) (6.4.16)
2;1 1- g5 2142 1- (—q)%
; g = gt = (=1) jg¥ !
= B ) .
‘P(Q)d’('?) ;1+(—q)f ; 1+ g%
m . .
(1) (2§ —1)¢g¥~?
n Z T , (6.4.17)
J=1
I (2 —1)g'T 1 (1) (25 - 1) g™
2 2
@Y = 5 S - , (6.4.18)
D D B
o0 o =11 o0 ] . 2'_1
2 2/ 4 g (—1) jq%
= — ) 6.4.19
I J@2 O (=1)ggh?
2 2 (8 _ = _
v (q) ¥ (Q) = 2;1+(_q)1 ; 1+ g4
1o (17 (25 = 1) ¢¥% 1. N (1) jg¥~2
+2; P +§; e (6.4.20)
LA N Gl Vi
el@v’ () = 3 + 2
8;1‘*‘(—(1)] 8; 1+ g%
Lom (2175gY7% | 1™ (=1)7 (25 — 1) g%
—52—“—1+q41 +§E e (6.4.21)
J=1 Jj=1
1L (2 -1g'7 1 (1) (2 - Dg'T
4 3 2
p(g")v (@°) = = e
( ) ( ) ].6];1 ]_—qEJTL ].6];1 1_(_q%)2]—1
_1s (-1 (25 - 1)g’F" _Li(—l)% (2j — )¢z
25—1 25— ]
16~ 1-(-9)% 6= 1+ (—q) %

(6.4.22)
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¢* (q)¥* (q)
©* (q) ¥* (¢*)

¢* (@) ¥ (¢*)

_ 1i (-1 (25 - 1)* g% 1 i 3¢
T4 1 — q¥-2 +Zj_11+q23"

I Y CdCVl lS i
1 — g4i-2 2 T

j—2

q2

(6.4.23)

(6.4.24)

(6.4.25)

(6.4.26)

(6.4.27)

(6.4.28)

Proof Usingthe series expansions of the sixteen Lambert series in Section 10 of Chapter 2,

the right hand sides of the results in Lemma 6.4.1 can be represented explicitly as Lambert

series. This completes the proof. il

Next we use Theorem 6.4.2 to establish an arithmetic interpretation of the following

corollary.
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Corollary 6.43 Forn > 1,

r@+88)(m) = > (-1)FT =Y (-1)

dln+1 dln+1
d odd n,d odd

r(aD+28)(n) = > 1= > 1,

dl4n+1 dl4n+1

d=1(mod 4) d=3(mod 4)

r(@+0+0+848)(n) = k Y d,

dln+1
d odd
where
6 :n=1(mod4),
3 :n = 2(mod4),
k=< 8 :n = 3(mod8),
1 :n = 0(mod4),
0 :n =7 (mod8).
r@+0+A+4)(n) = > 4,
dldn+1
r(@+0+428+28)(n) = Y d,
d|2n+1
r(O+0+4A+48)(n) = k Y d,
din+1
d odd
where

0 :n = 3 (mod 4)

4 :n=1(mod4),
k= ,
1 :n=0(mod?2).

r@+0+8A+8A)(n)=k Y _ d,

dln+2
d odd

(6.4.29)

(6.4.30)

(6.4.31)

(6.4.32)

(6.4.33)

(6.4.34)

(6.4.35)
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where
1 :n=0,1(mod4),
p=d O :n = 3 (mod 4),
) 4 :n = 2(mod 8),
0 = 6 (mod 8) .
r(0+8A+8A+8A)(n)=k Y _ d, (6.4.36)
d|ln+3
d odd
where
2 :n =1 (mod8),
1
k=1 % :n = 0(mod4),
0 : otherwise.
r(40+208+20+20) () =k > 4, (6.4.37)
d|4n+3
where
0 :n =1(mod?2),
=l = :n =0 (mod?2).
4
r@+40+4A +40) (n) =k Y _ d, (6.4.38)
dln+1
d odd
where
2 :n=1(mod4),
k=< 0 :n=2,3(mod4),
1 :n =0(mod4).
r@+20+20+8A)(n) =k »_ d, (6.4.39)
dln+1
d odd
where
2 :n =1 (mod4),
.y L :n =0 (mod?2),
8 :n =3 (mod8),
0 :n = 7(mod8).
r@+40 +40 +8A8) (n) =k Y _ 4, (6.4.40)
d|n+2
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where 1
3 :n=1(mod4),
E=VY 0 =33 (modd),
1 :n = 0(mod4).
rO+0+A+A+A0+ D) (n)
2
= Y (% (2";1> _ (6.4.41)
d|2n+1
d odd
r(O+0+4A +4A + 4A +4A) (n)
a1 (n+2)\>
= k ~1)% 4,
> (-1) <d>, (6.4.42)
d|ln+2
dodd
where :
7 :n = 0(mod2),
k= % :n =1 (mod4),
0 :n =3 (mod4).
r@+0+0+044A +44) (n)
a-1 (n+1 2
= B ¥ (-1 ( : > , (6.4.43)
dln+1
dodd
where
1 ;nEO(m0d4),
k=g 2 :n =1(mod2),
3 :n =2 (mod4).

Proof The details are similar to the proof of Corollary 6.3.3. 8
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We remark that since equation (6.1.1) is equivalent to

2/\133? + 2/\233% + -+ 2/\,&:2

18 2 N2 1)\2
+/l’1 (yl+§) +I~b2<y2+§) ++/~‘Lm (ym+§)

It
= 2n+ —.
1

Then geometrically, 2™r(M O+ A0+ - - -+ MO+ p A+ py A+ - - + p,, A) (n) counts
the number of lattice points on the k + m dimensional ellipsoid centred at (0, 0, ..., 0, —1

27

—5E- T —%), the point whose first k£ coordinates are 0 and remaining m coordinates are
1 . ™
— 35, with radius /2n + 7.

Identities (6.4.16) and (6.4.26) were given by Ramanujan [92, Chapter 17]. Berndt [19, p.
140] has given a proof of (6.4.26). In [35, p. 71] and [36, p. 620], Chan gave proofs of

equivalent identities to (6.4.18), (6.4.19), and (6.4.26).

Corollary 6.4.4 Let the prime factorization of n be givenby (4.2.37). Then

r@+88)m =k [ u+1) ] Ll (6.4.44)
- P 2 » o
pln+1 p|ln+1
p=1(mod 4) p=3(mod4)
where
1 :n = 0(mod 2),
k=d 2 :n =1 (mod4),
0 :n = 3 (mod4).
rd+8)(n) =  J[ e+1) ] 1+ (1> (6.4.45)
P 9 )
p|8n+1 p|8n+1
p=1(mod 4) p=3(mod 4)
Ap+1
g =1
O+0+0+8A = & S — = 4.4
r(O+0+0+84)(n) = (6.4.46)

pln+1
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where
6 :n =1(mod4),
3 :n = 2(mod4),
k=< 8 :n = 3(mod8),
1 :n = 0(mod4),
0 :n = 7 (mod 8)
Ap+1l __ 1
r@+0+2+8) () = ] p——_T, (6.4.47)
pldn+1 p
ApFl o q
r@+0+28+28)(n) = [] =, (6.4.48)
pl2n+1 p
p)\p+1 -
r@+0+4A +40)(n) = k ] = (6.4.49)
pln+1 p
where
4 n =1 (mod4),
k=< @ n = 3 (mod4),
1 n =0 (mod 2)
pAp+1 —1
r(0+0+8A+8A)(n) =k [] s (6.4.50)
p|n+2 P
where
1 :n=0,1(mod4),
= 4 :n = 2(mod38),
] 0 :n = 3(mod4),
0 : n = 6 (mod 8)
p/\p+1 —_ 1
r(O+8A +8A+8A)(n) =k 1 (6.4.51)
p|n+3 P
where
2 n = 1(mod8),
k = % n=0 (mOd 4) -
0 : otherwise.



6.4 Several results involving both sums of squares and triangular numbers 153

1 pAp+1 -1
r0+A+48+40)(n) = - ][] =" (6.4.52)
plents P
L
r@+40+40 +40)(n) = k [] p%ll (6.4.53)
pln+1 p
where
2 :n =1(mod4),
k=1 0 :n = 2,3 (mod 4),
1 :n = 0(mod4).
pz\p+1 -1
r(@+20+20+88)(n) =k [] e (6.4.54)
pln+1 p
where
2 :n =1(mod4),
PR :n =0(mod?2),
) 8 :n = 3(mod 8),
0 :n =7 (mod8).
pAp+1 -1
r(@Q+44 + 40 +8A) (n) =k [] = (6.4.55)
p|n+2 p-
where
% :n =1 (mod4),
=10  .n=23(mod4),
1 :n = 0(mod4).

pn,+2 _ (_1)(z\p+l)(P—1)/2

rO+04+A+A8+A04+D)(n) =

p|2n+1 p* - (_1)@_1);2 ’
(6.4.56)
pPet2 _ (_1)(/\p+1)(z>—1)/2
r(O+04+4A+4A+40+4D)(n) = k 12
et P — (_1)(P— )/

(6.4.57)
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where

242 _ (1) Pe+D)(p-1)/2

r@+0+0+0+48+48)(m) =k [ 2 (6.4.58)

p? — (_1)(p—1)/2

pln+1
where
gzl :n = 0(mod 2),
k=4 1 n=1(mod4),
3 n = 3 (mod 4)

Proof The details are similar to the proof of Corollary 4.2.5. &

I thank Professor Michael D. Hirschhorn for the references [45] and [65].



Chapter 7
Eisenstein series

7.1 Introduction

The aim of this chapter is to rewrite the sixteen Lambert series in the form of Eisenstein
series. First we rewrite the sixteen Lambert series in the form of trigonometric functions,

which then are presented in the form of > >

n=-o0om=-00

1 .
S From these, we obtain the
sixteen Eisenstein series. The significant point is that the sixteen Eisenstein series all

originate from one source, namely Ramanujan’s ;7); summation forrnula.

We remark that all of the bilateral sums in this chapter are to be interpreted as their Cauchy

principal value. That is,

= ~ ol
n;w 0+n J}Eonzz_NG—kn
and similarly for
o] 00 o) N
| . 1
Z Z 9+m+n7'.:1\}l—lfnooz Z 6+m+nt
n=-o0om=-—00 n=—oo m=—N

7.2 Sixteen series in the form of trigonometry

The method used in this section is similar to the one used by Glaisher [57] with the excep-
tion that our notation is simpler. We can rewrite the results of (2.5.1)—(2.5.4) in terms of

trigonometric functions, namely the cotangent and the cosecant, as follows

155



7.2 Sixteen series in the form of trigonometry 156

Theorem 7.2.1

fo0) = %nzz_oocot<g+mrr>, (7.2.1)
) = E 3 " : 7.22
A0 = 5 Y (e (gnr), (122
hi(0) = 1 i csc Q+n7r’r> (7.2.3)
2 2n=_°° 2 y L
f2(0) = L i (=1)"csc <Q+n7r7'> (7.2.4)
3 2n:_°o 2 . ol

I @ u N 0
— ECOt§+§A}I-Igo [;wt( +n7rr> 2cot<——nm—>}

1 i 10q2n +1 il _+_e—-10q2n
= Feoto o 10 2n —if 2n.)
2 4 2 = Neg i — 1 1-—e%g
1 0 i o 2610 2n 26—i9q2n
- § Ger 5 + 5 Z <1 — 619q2n + 1~ e—i9q2n> ’ (7.2.5)
n=1

By using (2.5.26) in (7.2.5) we obtain (7.2.1). Similar methods can be used to prove

(7.22)«(7.2.4). R
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7.3 Sixteen series in the form of Z Z Fp———
n=—o0m=—00
The aim of this section is to rewrite the sixteen series in the formof )~ )" m
n=—0o00m=—00
Recall from G. E. Andrews, Askey and R. Roy [8, p. 11] that
0 = i ! (7.3.1)
co = lim 2 Bt mr 3.
A 1
escl = Iglr}r;om__N(—l) T — (73.2)
By applying these formulae in (7.2.1)—(7.2.4) and simplifying we find that
90) = [ i X : (7.3.3)
0 2 &~ Synnr+ma’ o
l & « (-1)"
) = — 73.4
f(6) 2n=Z_°omZoo%+mrT+m7r ( )
1 o0 o0 m
g) = - 7.3.5
f2 () 2 ;oom; 0+mr7’+m7r ( )
1 o0 o0 )m+n
0 -3 7.3.6
f3(6) 2;;0+nm+m (7.3.6)

- —00 2

Similarly, replacing 8 with 6 + 7,6 + 77, and  + +777 in (7.3.3)—(7.3.6), respectively,

and simplifying, gives

fo(0+ﬂ') =

@ +7m) =

f2(9+7r) =

fs(@+m) =

T e —

2 (7.3.7)

QRZZ_:mm Oo2+'n';'r'r+( -’

j I 2 ( )

2 7.3.

2n;mmzma+nﬂf+(m——) ) ( 38)
5 5 ()"

2 ; (7.3.9)
2n=z—:oom=i—:oog+ﬂ‘ﬂ7+ (m— %)'N
1 00 o0 (_1)m+n

_5 Z Z _g +nrT + (m _ %) 7T‘ (7310)



o0 o0
. . . 1
7.3 Sixteen series in the form of E E e
Nn=—0o00m=—0o0

fo(@+mT) = %Z Z 11
1 o= «— -1)"

(@+7T) = ~5 Z Z T )

f2(0+77) = %Z o (

fs(0+77) = —% >y )

1 — «— 1
f0(9+7r+7r'r) = 5 z Z g+(n_ )7”__'_(

H@+7m+7T) = —% Z Z L

g+(n-%)?r7'+(m—

1 =1
AEwhTE) = 2 Z z %+(n—,i—,§7r1')+(m—

1 oo o0 _1m+n
fas(@+7m+77) = §Z Z %+( E ) 1

where g (z) and h (z) are entire functions with A (z) # 0.

Equations (7.3.3)—(7.3.18) are examples of meromorphic function.
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(7.3.11)

(7.3.12)

(7.3.13)

(7.3.14)

(7.3.15)

(7.3.16)

(7.3.17)

(7.3.18)

We remark that by considering the denominators of (7.3.3)—(7.3.6), the results in (2.5.27)

are easily obtained.
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7.4 Sixteen series in the form of Eisenstein series

In this section, we obtain the sixteen series in the form of the Eisenstein series. The

Eisenstein series are defined by F. G. M. Eisenstein [51, p. 376],

1
Ex(r)y= Y —— (7.4.1)

(nmy2(0,0) (M + 17

where k = 2, 3,4, ...

Definition 7.4.1 [45]

A holomorphic function f satisfying the condition f (aT:f;) = (cr+d)ff (1) and
cT

ad — bc = 1, where a, b, c,d € Z, is called a modular form of weight k.

By using the above definition, it is easy to see that the function E (7) is a modular form

of weight 2k.

Theorem 7.4.2

- (2k—1) n2k
(n,m)E;é:(o,o)mnT_)% = —fo () TR (1.4.2)
<n,n§0,o)(2m(;—lz:ﬂ“* = 00 (r)—;r?:fl—). (7.43)
(71,171)2¢:(0,o)(?mii-lr?)n—’f)W - _f.2(2k_1) 0) (2_];%? (7.4.4)

2 (2—;% - _f?ka_l)(O)(%; (7.4.5)

(n,m)#(0,0)
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i i . = =1 () m2k 75
e (@m = 1)+ 207)* 2k — 1)’ -
5 - (_l)ﬂ _ (2k—1) ﬂ,Zk >
ﬂ;mm;m (2m—-1)+ 2n‘r)2k ! (7) (2k — 1)’ (7.4.7)
oo o0 (_l)m W2k+].
_E Z: ((2m == l) o 271T)2k+1 = 5 2(2k) (W) (2.‘9)‘ ’ (748)
oo oo (_1)m+n (% 2k+1
ﬂ=z—oom=z ((2m — 1) + 2n7)%**! (M7 2K (7.4.9)
o0 (=] i _ (2k—1) 2k N
fl:z—oomz 2m+ (2n—1) ) L (77) (2k — 1)V (7.4.10)
= T -1)" 2%k+1
_Z Z (2m + (én ) 7 T)2k+1 = (2k) (7T) ?Qk)[ ) (7.4.11)
3 = (_1)m — _ p(2k-1) w2k
n;m m_zm (gm +(2n—1) T)Qk - 2 (77) —(Qk e (7.4.12)
o0 00 )m+n B i ?1.2k+1 |
R—Z—:oo m—Z_:m 2m + ( 2n 1Pt =3 \*T) k) (7.4.13)
o0 00 ]| R = 7{25
n.—:z—:oo m—zoo ((2m - 1) (2n — 1) T)2k - fO (7T + 7TT) (Zk al 1)!a
(7.4.14)
= X (=1)" e r2k+1
n:z—:oo mzoo ((2m = 1) + (2n ]_) T)2k+1 L= 1 (‘JT =+ ?TT) (2;‘?)! ) (74.15)
S5 (=)™ e 2K+ ;
n;oo m;oo ((2?71. - 1) (2 = 1) T)2k+1 N 5 (ﬂ’ Kt 7TT) (2k)| ) (7 16)
- % (_1)m+ﬂ . (2k—1) 7T2k
n—z_:oo m:Z:m (@em-1)+@n-1)7)* 7 (m+77) G =
(7.4.17)

Equations (7.4.2)-(7.4.7), (7.4.10), (74.12), (7.4.14), and (7.4.17) hold for k > 2. Equa-

tions (7.4.8), (7.4.9), (7.4.11), (7.4.13), (7.4.15), and (7.4.16) hold for k > 1.
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Proof By expanding both sides of the expression (7.3.3) in ascending powers of § we find

that

B_%_~ o 2= 1q21] (_1)t92t—1
(

) —
4t Jll q% 2t —1)!

1 1 1 6/2 -
= -4 - —_— 1+—
6 2 . nrT + mm nrT + mmnw

I

nrT + mm)

1 = (-1)* 6
6 Z | 2t+1 (n7 + mmr)*t!

We observe that

Therefore

62]':—1 00

L = 1
g_z k_’g' Z

(Qnirr'r + 2m) e

q%

sz i 2= quj] (_Uk g2k—1
—1
= (2k —1)!
By equating the coefficients of 62! and simplifying we find that, if £ > 1, then

> ;ﬂcz(_l)

(nmy2(0,0) (2m + 2n7)

Using (2.10.1), this proves (7.4.2).

sz —9 — Jzk !

ng} 2k
—n? = T
2%k = 1—q¢% | (2t —1)!

Equations (7.4.3)—(7.4.17) can be proved similarly. B
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We remark that by applying the modular transformation (7 to —1/7) into Theorem
7.4.2 and then simplifying the results, the results of Corollary 3.4.2 are immediately ob-

tained.

Zucker [105] mentioned without proof that the sixteen Lambert series can only be found
in closed form for either even or odd, but never for both. In Section 10 of Chapter 2, we
show how the sixteen Lambert series arise from the Ramanujan’s y?); summation formula.
From the above theorem an alternative path is shown that the sixteen series form one sys-
tem. The numerator is either 1, (—1)*, (—=1)™, or (—1)™*™; and the denominator contains
one of the following combinations: both even numbers, one odd and one even number, or
both odd numbers. We now have a better understanding of how the sixteen Lambert series

arise from the way we derived the sixteen Lambert series.

In the next chapter, we will show how some of the sixteen Eisenstein series in this chapter

can be used to obtain the transformation 7 to _71 + 1.



Chapter 8
Conjectures

8.1 Introduction

In Chan and K. S. Chua’s paper [28], two new explicit formulae were derived for sums of
thirty-two squares and triangular numbers. They also gave five conjectures which are sums
of 8 + 2, 8t + 4, 8t + 6, 8t + 8 squares and sums of 8¢ + 8 triangular numbers for ¢ > 1.
For example an equivalent conjecture for sums of 8¢ + 8 triangular numbers was presented

as follows.

Fork > 1, let

, —
2k—1 (Q) i (22k i 1) sz < = q4j .

Then for any positive integer ¢ > 1,

t
g 28 () = ) " b Ay (@) Aspr—o (), (8.1.1)
=i

where b, € Q.

Surprisingly, Chan and Chua did not give conjectures for sums of 8¢+ 2, 8t + 4, and 8t + 6
triangular numbers for ¢ > 1. Therefore we present the conjectures for sums of 8¢ + 2,
8t +4, 8t+ 6 triangular numbers where ¢t > 1. We also derive further conjectures for sums
of 4t + 2, 4t + 4, 4t + 6, 8t, 8t + 4 squares and triangular numbers where ¢ > 1. Lastly

proofs that are true for the case 1 < ¢t < 5 are given for all the conjectures in this chapter.
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8.2 Conjectures for sums of 2¢ squares and triangular
numbers

In this section we present eighteen conjectures thatlead to sum of 2¢ squares and triangular

numbers for ¢ > 3.

Fork > 1, let
4k 0 j?.k—lqj

Ap-1(g) = 1- -, (8.2.1)

(22k — 1) By o 1—(—g)

4k 20 j2k—1q2j
; = : 8.2.2
.A2k—1 (Q] (22/: _ 1) B2k o 1 — q4] ) ( )
4k X, jk-lgi

B?k—l (q) = 1 + B o (823)

(2% =1) Bok < 1+ (—g)’

8k = (25 = 1)t gt

B . = - : , (8.2.4
2k-1 (Q) (24‘: . 22k) B2k ]; 1 — q4J_2 )

where By, are the Bernoulli numbers defined in equation (2.4.8).

For k > 0, let
4 o~ (@2 -D)*gt B g
C = 1—-—— . — (8.2.5)
2k () o Z T B 2140
¢ ) = 4 i (25— )* g2 | i (2) — 1) gi-1/2
N L e S j=1 1 — g% ,

(8.2.6)

where Ey; are the Euler numbers defined in equation (2.4.9).
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Conjecture 8.2.1 For any positive integer t > 1,

8 (g) = ZalAzzH ) Age1-21(q)
g2 ytre (¢®) = Zb, 2141 (@) Agry1-21 (@) 5
(g = Z aBa—1 (q) Ases1-2 (9)
gyttt ((12) = Zdl 21 (@) Abe1-2 (@) ;
P @) = Zgzczz ) Bag—1-2 (q)
qu%l/)BHz (‘12) = Zhlczl B4t 1= 21( )
g08t+6 (q) = Z 4Ca (q ) Ager1-21 (Q)

3
q2t+2¢8t+6 (qz) = lZchzt 'A4t+l 21 (Q)

where a;, by, ¢, di, i, huy 01, 51 € Q.

Note that

_ 27 -1 (2% - 1)B
ézk 1) (“’ITT) _ ( ) (2k ) 2k-A2k_1 (q)
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(8.2.7)

(8.2.8)

(8.2.9)

(8.2.10)

(8.2.11)

(8.2.12)

(8.2.13)

(8.2.14)

(8.2.15)

= 1)l =% 2 1
_ _E?k_l; >

. (2m — 1)+ n(r +1))*’

(—1)** (2% — 1) By,

f5*7) (nrl2r) = - -1 (0)

(8.2.16)

(8.2.17)
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I O VLR N 1
T g% n;wm;w (2m+2(2n —1)7)%*’
(8.2.18)
s T+1 (-D*(2*-1)B
Y (‘”"2 ) - | 2k ! = Bu-1(9) (8.2.19)

oo (e ¢]

_ k- 1)
- 2 2 2m—1 +n(r +1))%*

nN=—00 mM=—00

(8.2.20)
= —1)¥ (2% -1)B
70 (rrfary = U (2k ) 2 By (0) (8.2.21)
B 2k—1 i Z 55"
= 2m+2 (2n —1)7)*’
(8.2.22)
. -1)*E.
2(2’&‘) (7]‘) _ zfl(Zk) (71-7-) = (_2_2)’:_4‘.1_2’562’: (q) (8.2.23)
_ e N )
e ,,_Z_:mmgw (2m —1 +2‘n’r)2"‘+1

00 )ﬂ.
7r2k+1 Z Z 1)T)2k+1,(8.2.24)

n=—00 M=—00 (Zm +
. 1) By
é?k} (?TT) + zfi;(?k) (’Il' + WT) — Lﬁc% (q) (8225)
m+n
- 7|-2k+1 n_z_oo m_X_: 2m + 1) T)2k+1
="
?TQ"”“ n;mm; (2m —1) + (2n — 1) 7)1

(8.2.26)
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Chan and Chua [28] gave conjectures equivalent to (8.2.7)—(8.2.9), (8.2.11), and (8.2.13).

For k > 0, let

Dok (q)

I
—
!

i( 1) (25 -
Eyy 4 1 —q%-1

Dék (9 =

where FE,; are the Euler numbers.

Conjecture 8.2.2 For any positive integer t > 1,

¢*** (q)

g Epite (¢)
¥ (q)

g*v® (¢%)

8t+4 (

0 (q)

q2t+1,¢8t+4 (q2)

4142 (

0" (q)

qt+% ,¢)4t+2 (qz)
¢4t+4 (Q)

qt+lw4t+4 (q2)

= ZZkIA2I+1 ) Dar-2(q)
leA2l+1 ) Dot () 5
thBm 1(q) Bat—1-21 (),
anszz 1(@) Bye1-2 (9) 5

t

Z 71C (q) Cat—21 (q) ,

=1
t

Z siCo () Cir—2 (q) ;

=1

Z wBa - 1

t

G Z uBy_; (q) Dyy_2 (q);

=1

Z wiCa (g
Z yCa (g

q) Dar—2 (q)

) Dat—2 (q)

D2t 2! ( )

)

(8.2.27)

(8.2.28)

(8.2.29)

(8.2.30)

(8.2.31)

(8.2.32)

(8.2.33)

(8.2.34)

(8.2.35)

(8.2.36)

(8.2.37)

(8.2.38)



8.3 The first few values 168

where ki, lj, my, i, 1, 81, wi, v, wi, Y1 € Q.

Note that
) = (—_217),;&9%@) (8.2.39)
_ Wml u_z_:m;m((m_l +:m)2k+1, (8.2.40)
M @) = % 2 () (8.2.41)
- _gg; ni:wm; 2m+(2n m; et (8.2.42)

8.3 The first few values

In this section the first few values of (8.2.1)-(8.2.6), (8.2.27), and (8.2.28) will be given by
using the results of (3.5.1), (3.5.12), and Figures 5.1-5.3 in (8.2.15), (8.2.19), (8.2.23), and
(8.2.39). We find that the first few results for Agx_; (q) , Bax_1 (q) ,C2x (q) , and Doy (q)

areé

A = 2(1-2)+42(1-2) T,
As(g) = 24,

As(q) = 2°(1-2z),

A7(q) = 117 (17 - 32z +322?),

Ag(g) = %zm(l—n) (31 — 16z + 162?) ;

@il



and

B (q)
By (q)
Bs (q)
B7 (q)

By (q)
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= 22,

= 24(1_21:):
= 26(1—x+x2),

1
i ﬁzs (1-2z) (17 - 2z + 227),

1
= 3—1210 (31 — 77z + 782% — 22° + z*);

8.3.2)
= 1,
- 33,
= 2°(1-21),
= L. (61 — 91z + 912?),

61
— 21729 (1 - 2z) (277 — 82z + 8227) ;

(8.3.3)

2,
2(1-1x),

%zs(l—z) B2,

61—127 (1 —z) (61 — 46z + 2?),

1
1385

2°(1 — £)(1385 — 1731z + 4112% — z3).

(8.3.4)
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Lemma 8.3.1 If aff = mthen[19, p. 43]

2o (8_2“2) = \/Beazf‘iap (ehﬁz) % 8.3.5)

Recall p = e=r" from Section 4 of Chapter 3. Now if we substitute o = /—177, 8 =

\/7{_._ into (8.3.5), simplify and rearrange, then we obtain
—imT
¢ (—p) = 2Virgiy (). (83.6)
Lemma 8.3.2
Age_1 (=p) = (21)* Ay (0), (83.7)
By (—p) = (27)* By_, (q), (8.3.8)
Ca (=p) = 71y (a), (83.9)
Dok (—p) = 7Dy (q). (8.3.10)

Proof If we combine (8.2.15) and (8.2.16) then we can rewrite Ajx_; (q) to become

(2k — 1)12k (—
A1 (q) = (22k_1 ngr% E Z

=—00 nN=—0o0

(2m -1 +n(‘r+1))

-1
By changing g to —p, which implies changing 7 to — + 1, we find that

_ (2k-1) *2!«: = 1
Agp (=Rl = % _ 23: Z Z 2k
(2 szﬂ' - -1
== ((2m -1)+ R(T + 2))
(2k — 1)12k (- - 72
(22 -1 BQkﬂ'% ﬂzmm;m ((2(m +n) — 1)7 —n)*

_ (2k—1)12k (- Z i €10 ing
T (2% -1 szﬂw‘ e 2B —T)r+ 2n)*
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Using equations (8.2.17) and (8.2.18), we obtain

Agk-1(-p) = (27)2kA§k—1 (q).

This proves (8.3.7).

Equations (8.3.8)—(8.3.10) can be proved similarly. B

Using (3.5.1), (3.5.12), and (8.3.1)~(8.3.4), the first few results of A%, _; (q) , Byx_; (9) ,

o (@) , and D, (q) are as follows:

1 dz
Al(g) = gzx—x:c’%,
1
AQ(Q) = _Ez4x2,
1
A = S (+a),
1
Az(g) = —-4352z8x2 (17—2:c'+17:z:’2),
Al — 1 D2 ’ 62 31 ZAW
a(q) = T ek (1+x)(31—4x+ 2 );
(8.3.11)
1
Il(q) = —21'22.’3,
1 !
Bi(q) = EZ4I(1+3),
1
B (q) = —azﬁr(l—x'-t-x'z),
L) = eeedSmd) (17—32$'+17$'2)
! 4352 )
! — 1 10 - ! 2 3 /A .
o (q) = T4 x(31 472" + 332" — 472" + 31z ),
(8.3.12)
Colg) = 0,

Cilg) = s,
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Cilg = —iz%z3 (1+2),

Cig) = 6’—1z7x% (61 _31z' + 611:’2) ,

Ci(q) = —é—%zgx% VZ (1 +2') (277 — 472 + 2772:'2) ;
(83.13)
and
Dy(q) = iz*Va,
i) = —z2VE(+4),

Di(g) = z2've (1+44z+162?),

Dylg) = —qgge? V(1 +408z +9122% + 64°).
(8.3.14)

The results in this section will be used to give proofs that Conjectures 8.2.1 and 8.2.2 are

true for the first few cases.

8.4 Proof of the first few cases of the conjectures

In this section we show Conjectures 8.2.1 and 8.2.2 are true for1 < ¢ < 5.
Formula (8.2.7) is true for 1 < ¢ < 5 by using the results of (8.3.1) and verifying polyno-
mial identities.

The first few results are as follows:
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9
t | 8+8 | aq
16 1
1
2|24 3 (17, -8)
o
e —-124
3|32 72? (11056, —12400,6069) (8.4.1)
4 | 40 T0TAA0E, (8366121, —12079732, 14472304, —7484268)
1 631170572364, —978299900500,
5| 48 ————— | 1381991161869, —1752923659500,
B s 937071741892
For the proof of (8.2.8) we first employ (4.3.19) to rewrite the left hand side of (8.2.8) to
become
z4t$2t
NG = (8.4.2)

Then it is clear that formula (8.2.8) is true for 1 < ¢t < 5 by using the results of (8.4.2) and
8.3.11) to verify polynomial identities.

The first few results are as follows:

(@) = S4@F,

(@) = 5 (174 (0) A 0) - 8L4 (0)F)

t|8+8 b;l

1|16 oG

2124 3686411 (17, -8)

32 ORETR00 (11056, —12400,6069)

4 | 40 3433483468800 (8366121, —12079732,14472304, —7484268)

5| as . (132’1.333?‘1’2?223’1?523333333286 )
3674376668971008000 93707"1741892 ’

(8.4.3)
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The proofs of (8.2.9)-(8.2.14) and (8.2.29)—(8.2.38) are similarly straightforward by veri-

fying polynomial identities.

We remark that Conjectures (8.2.7)—(8.2.14), (8.2.29)—(8.2.38) are true for ¢ from 1 up to

85 by using a Maple algorithm to verify polynomial identities.



Chapter 9
Summary and conclusions

The aim of this thesis was to investigate and explore applications of Ramanujan’s 19,
summation formula to number theory and combinatorics. We employed Ramanujan’s 11,
summation formula to consider some important classical results on elliptic functions and

gave proofs of these results using methods which could have been used by Ramanujan.

9.1 Summary

In Chapter 2 we introduced and gave a proof of Ramanujan’s ;1; summation formula.
Then we constructed sixteen functions arising from Ramanujan’s y7; summation formula.
We have obtained (a) Fourier series expansions; (b) Fourier expansions of their squares; (c)
four special values; (d) addition formulae of the four functions fy, fi, f2, and f;. We have
also given the infinite products expansion, the reciprocals and quotients of the functions f;,
f2, and f3. We demonstrated that f, is not an elliptic function but its derivative fj is. We
have also shown that f, fo, f3 are elliptic functions. We obtained sixteen Lambert series
by expansions of the four functions fy, f1, f2, f3 at four points O, 7, 77, and 7 + 77. We

also obtained a connection between the twelve functions and Jacobian elliptic functions.

We examined selected transformations to functions fy, f;, fo, f3, as well as 2z, z, 1 — x,
dz/dz, and E in Chapter 3. In Chapter 4 we have shown that eighteen problems in the
area of sums of squares and triangular numbers can be proved by using Ramanujan’s ;v

summation formula and the fundamental multiplicative identity. From these eighteen prob-

175



lems, we deduced formulae for the number of representations of an integer n by eighteen
different quadratic forms in terms of their divisor sums. From these results, we further
deduced formulae for the number of representations of an integer n by eighteen different
quadratic forms using some product of integers which contain primes. We found a new

Lambert series for the representation of n by 9* (q) ¥* (¢?).

We mentioned that Ramanujan recorded fourteen families of identities and gave only the
first few examples in each case. In Chapter 5 we developed a powerful tool (sixteen
Lambert series) to collect them together. We presented the sixteen Lambert series as
various polynomials in terms of z, z, and dz/dz and then used these sixteen families of
identities to prove all of Ramanujan’s examples. We also have proved that functions
P, @, R, ey, ey, and e3 can be expressed as in terms of 2, z, and dz/dz; and that the

function ; extel2e)s, where Ay, A2, A3 > 0, is a polynomial in @ and R with
oES3
0=(01,02,03)
{01102 )63}:{]-;2’3}
rational coefficients.

In Chapter 6 we employed results from Chapters 3 and 5 to prove forty-four identities
which consist of ten Lambert series identities and thirty-four infinite products and their
Lambert series expansions. From these thirty-four identities, we deduced formulae for
the number of representations of an integer n by thirty-four different quadratic forms, in
terms of divisor sums or of some product of integers which contain primes. We also
found fourteen new Lambert series for the representation of n by ¢ (q) ¢ (¢*), ¥ (¢) ¥ (¢8),
p (@)Y (@), ¢ (@ ¥ (@), ¥ (@) v (@), ¥ (9)¥* (¢*), v (9) ¥ (¢¥), w(g*) ¥*(¢%),

0 (@) ¥ (6" ("), 0 (@) * (@) ¥ (67,0 (@) ¥ (¢*) ¥ (¢®),¥® (@) ¥* (¢%), ¢ (a) ¥? (¢?),
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and ¢* (q) ¥* (¢*).

In Chapter 7 we presented the sixteen Lambert series in the form of Eisenstein series.
These gave us another way to see how the sixteen series form one system. In Chapter 8
we employed selected sixteen Lambert series to construct eighteen conjectures that leads
to sums of 2k squares and triangular numbers for £ > 3. We proved that all eighteen con-
jectures were true for the first five cases. By using a Maple program to verify polynomial

identities, all eighteen conjectures were also found to be true for the first eighty-five cases.

9.2 Future research

Further research will be to carry on a deep investigation on the following three problems.
The first one is to find a formula for the zeros of fy. Zeros of the Weierstrass g function are
known [50] but the formula is complicated. A connection between fj and the Weierstrass
function was given in Section 7 of Chapter 2. There is unlikely to be a simple formula for
the location of the zeros of f, apart from the ones at (2m+1)7 where m is any integer. The
second problem is to give proofs of the conjectures given in Chapter 5. More investigation
is needed to achieve this goal. The third problem is to give proofs of the conjectures in

Chapter 8. This problem has resisted attempts by many people to date.

Another area to investigate is the cubic, quintic, and septic elliptic and theta functions.
Some published papers on those problems can be found in [24], [30]-[32], [43], and [86].
To achieve these, the development of ideas related to Ramanujan’s ;10, summation formula

may be required. This approach could be used to construct new proofs of some recent
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problems in elliptic function theory. This will increase and deepen our understanding of

the work of Ramanujan himself.



Appendix A

Fourier series

Replacing 0 with0+m,0+77,and 0+7+77in (2.5.5), (2.5.7)-(2.5.9), respectively,

and simplifying, we attain
fo(0+m)

fo (0 +77)
fo(0+7 +m7)
fi(0+7)
f1(0+77)
fir(0+7+m7)
f2(6+)
f2(0+7T)
f20+7+77)
f3 (0 +m)

f3 (0 +77)

fs(0+ 7+ 77)

NN N G Vi
_Etan§+2n§1__q2m——smm0,

(e o) m

1 q )
5—22 T— g2 sin m#,

m=1

z -2 Z T——qﬁ sin m9,

o_, {2 (=)™ g%

i sinm,
q

179

(A.1)

(A.2)

(A.3)

(A4)
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(A.6)

(A7)

(A.8)

(A9)

(A.10)

(A.11)

(A.12)



Appendix B

Infinite products

Replacing 8 by § + 7,0 + 77,0 + 7+ 77, in (2.5.10), (2.5.12), and (2.5.14), respec-

tively, we find

f1 (0+7T)

f2 (9+7T)

fa(6+m)

f1 (9+7TT)

f2 (0 + 77)

f3(8+7r7')

(€*,q%e™, ¢ 6% ¢°)

i (—€®, —q2e—0, -1, —q% ¢?)
— (g% %), tanl ﬁ (1 — 2¢°" cos 6 + ¢*")
(—g% )%~ 2.5 (1+2¢cosd +g*)’
e7 (—qe?, —qe™, ¢, ¢ ¢%)
(eEte g aradl,
CRT 1°—°[ (1+2¢*""*cosf +¢*"?)

1
= sec
2 @ ®3 (1 + 2¢?" cos 8 + ¢*n)

o)
n=1

e (qeie,qe“w,qz qz.qz)
0, —le Y, Sg %)
(¢? q"’)zo 6 ﬁ (1—2¢*"1cosf + ¢*"2)

: sec —
( q; qz)io 2 - (1 + 2g?" cos 6 + q4")

7

ue

(—e
1
2
&

e —ge=i, g2, qz.qz)
 (qefiae™", 710"
1 (¢%q ) = (14 2¢*" 1 cos @ + ¢*"2)
2i (—q?% q 2)2 1% (1—2¢?r~1cosf + ¢in-2)’
qie (g€, ,q2, % d%)
0 (qei" qe‘“’, 3 9 9%) s
20} i(g%al)s, (CiT'id gl 1°—°I (1 — 2¢*™cos 6 + ¢*")
(q, (1 —2¢*!cosf + g*n-2?)’
gie (- qe"’— ,q,q;q)oo
g (qe“’ ge="*, —q, —g: %),
2q7 (¢% ¢%) 05 (14 29> cos 8+ g*n)
__(T "% H (1 - 2¢?*1cosf + ¢g*n—2)’
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(g€, qe7, ¢%, ¢ ¢°)
0+m+7T) = — 00 B.13
A ) i (—qe?, —qe=¥, -1, —q%¢%) ®.13)

(¢% Ve ﬁ (1—2¢>"""cos 6 +¢*"?)
2

- i (—¢?; ¢?) - (1+2¢*~1cosf + gin-2)’ ®.14)

f0+m+7r) = ghet (( qq:, " _qei;q;” ‘;232:0 (B.15)
2 4n

= ((q, H LT 41-_2233 Tzz:zj:g‘m)?) (B-16)

fi0+7+77) = ‘?eq;o(qfqe’jo _’Z ’qqig §°° (B.17)

= 2iq? (( 2q 2) 2 "3 ﬁ (1 i;qggzt zzzg:gl) i)



Appendix C
Squares functions

Successively changing 6 to 8 + 7,0 + 77, and § + 7 + 77 respectively in (2.8.6),

(2.8.16)—(2.8.18) we have

1,0 o (-1)"¢™
2 _ 2
fo(@+m) = Ztan 3 4;(1_(12”)2005110
— ng’" ’
+2;1—q2"( — (=1)"cos nb), (C.1)
2 _ 1 - g—l)"nqz" 1 29 - (=1)" ng*
f@+m) = 4+2§ T +4sec 5 2;Wcosn9,
(C.2)
00 n 1 9 o g 2n
f2(0+m = 22 ag +—sec2——2z(—)—n;icosn0, (C3)

00 n o0 n
2 _ (=1)"ng" 1,0 (=1)" ng*" ,
f3 (0+7r) = QEII—_F"FZseC -2-—2;Wcosn0, (C4)
) 20 q2n nq2n
fO (0+7T’7') = 42(—1'_—‘?2“)—2COS710+2 11— 2n(1—COSTL9), (CS)
n=1 n=1
Il = (-1)" ng* = ng
2 — .
fO+nr) = 4+2"Z1 T 2;1_(12" cos né), (C6)
2 9 — - nqn 2 = nqn
f3@+7T) = 2;_1 — g ; T— cos nf, (C.7)
o0 n o0
2 _ (=1)" ng" "
fBO+7r) = 2§W—2;1_thosne; (C8)
o0 n o0
2 _ (=1)"g¢*" ng*" n
fo(@+m+7nT) = 4;(—1_—(125)—2cosn0+2§m( — (—1)" cosn#),
(C.9)
1 2 (1) ng?® = (-1)" ng®
ff(t9+7r+7rr) = —Z+22—1-17——2Z(1_)_—qucosn9, (ClO)
n=1 n=1
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2. ng* 2\ (=1)*ng"
f.22(9+7l'+7TT) — QZl—qzn—QZ*t—qTCOSTLG, (Cll)
n=1 n=1
o0 n oo n
= n -1 n
fi0+7+7r) = 22%—22%003%. (C.12)



Appendix D
Jacobian elliptic functions

Upon comparing the Fourier series in Appendices A and C, with those in [88, pp.

12-13, eqn. (2.14)—(2.16), (2.18)—(2.28)] gives

4 ,(2u
w22 (7 ”T)
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sn? (u, k),
sc? (u, k),
sd? (u, k) ;
sn (u, k) dn(u, k),

sn (u, k) cn (u, k),

sn (u, k)

dn? (u, k)’

sn(u, k) cn(u,k)
dn? (u,k) ’

sn(u,k)

cn? (u, k)’

sn (u, k) dn(u,k)
cn? (u, k)

(D.1)

(D.2)

(D.3)

(D.4)

(D.5)

(D.6)

(D.7)

(D.8)

(D.9)

(D.10)

(D.11)

(D.12)

(D.13)

(D.14)
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