Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Edge Functionalisation of Graphene Nanoribbons with a

Boron Dipyrrin Complex

A thesis presented in partial fulfilment of the requirements for the

degree of

Doctor of Philosophy

in

Nanoscience

at Massey University, Manawatū,

New Zealand.

Ashley Jacqulyne Way

2017

Abstract

Chemical modification can be used to tune the properties of graphene and graphene nanoribbons, making them promising candidates for carbon-based electronics. The control of edge chemistry provides a route to controlling the properties of graphene nanoribbons, and their self-assembly into larger structures. Mechanically fractured graphene nanoribbons are assumed to contain oxygen functionalities, which enable chemical modification at the nanoribbon edge.

The development of graphene nanoribbon edge chemistry is difficult using traditional techniques due to limitations on the characterisation of graphene materials. Through the use of a chromophore with well-defined chemistry, the reactivity of the edges has been investigated. Small aromatic systems were used to understand the reactivity of the boron dipyrrin Cl-BODIPY, and with the aid of spectroscopic and computational methods, the substitution mechanism and properties of the compounds have been investigated.

The synthetic procedure was then applied to graphene nanoribbons. Results from infrared and Raman spectroscopy studies show that edge-functionalisation of graphene nanoribbons with BODIPY was successful, and no modifications to the basal plane have been observed.

Contributions

All work presented in this thesis was completed by Ashley Way

Except:

- All infrared spectroscopy data was acquired by Ewan Fisher
- NMR spectra utilising the 700 MHz NMR spectrometer were performed by Dr. Pat Edwards
- Mass Spectrometry measurements were performed by David Lun
- Emission lifetime calculations were performed by Geoffry Laufersky at Victoria University, Wellington, using data acquired by Ashley Way
- Raman spectra background removal was performed by Josiah Cleland
- X-ray crystallographic data was acquired by Prof. Shane Telfer and David Perl

Acknowledgements

I would like to thank my supervisor Associate Professor Mark Waterland for his guidance throughout this PhD. Thank you for your guidance on computational methods and assistance with Raman measurements.

I also thank my co-supervisors Professors Shane Telfer and Simon Hall for their assistance when needed. I would like to acknowledge Joran Taylor for her assistance and expertise in the microtomy techniques used to prepare the graphene nanoribbons used in this work. I also thank David Lun for his assistance and guidance in the lab, and Dr. Pat Edwards for his assistance with NMR measurements.

I thank Ewan Fisher for acquiring IR spectra, Josiah Cleland for assistance with Raman spectra background removal, and the rest of the Waterland research group for discussions of Raman and optimisation of techniques.

I thank Geoffry Laufersky for calculations of lifetimes from time resolved emission measurements performed at Victoria University, Wellington.

I would like to acknowledge the financial support from Massey University for a Doctoral scholarship, and the Institute of Fundamental Sciences for additional funding. I also thank the New Zealand Institute of Chemistry for assisting with conference funding throughout my studies.

Finally, I thank my family and friends, for their encouragement and support throughout my studies, especially the last 3 and a half years.

Contents

Abstract	i
Contributions	ii
Acknowledgements	iii
Figures	ix
Tables	xiv
Abbreviations	XV

Chapter 1.	Introduction1
1.1 Ma	terials2
1.1.1	Graphene2
1.1.2	The chemistry of graphene5
1.1.3	Graphene nanoribbons6
1.1.4	Light-harvesting molecules8
1.1.5	Potential applications10
1.2 Cha	aracterisation of Materials10
1.2.1	Raman spectroscopy of graphitic materials10
1.2.2	Infrared spectroscopy of graphene13
1.2.3	Computational studies of graphitic compounds14
1.3 Th	eory of interaction between dipyrrin and graphene14
1.4 Sta	bility of aromatic compounds19

Chapter 2.	Synthetic methods	23						
2.1 Syr	thesis of dipyrrin compounds							
2.1.1	Thioketone dipyrrin							
2.1.2	Ketone dipyrrin	24						
2.1.3	Cl-BODIPY	24						
2.2 Fu	nctionalisation of small-analogue compounds	25						
2.2.1	Phenol/BODIPY	25						
2.2.2	MeO/BODIPY	26						
2.2.3	Aniline/BODIPY	27						
2.2.4	1-naphthylamine/BODIPY	29						
2.2.5	2-naphthylamine/BODIPY							
2.2.6	1-naphthol/2xBODIPY	31						
2.2.7	2.2.7 2-naphthol/BODIPY							
2.2.8	2.8 2-naphthol/2xBODIPY							
2.2.9	1-aminoanthracene/BODIPY	34						
2.2.10	2-aminoanthracene/BODIPY	34						
2.2.11	9-aminophenanthrene/BODIPY	35						
2.2.12	9-hydroxyphenanthrene/BODIPY	35						
2.2.13	2-hydroxytriphenylene/BODIPY							
2.2.14	1-hydroxypyrene/BODIPY							
2.2.15	HBC(t-Bu)5OH/BODIPY							

2.2.16	HPB(t-Bu)50H/BODIPY
2.2.17	Benzoic acid/BODIPY
2.3 Fur	nctionalisation of graphene nanoribbons40
2.3.1	Calculation of nanoribbon quantity
2.3.2	General reaction for BODIPY-functionalisation of graphene
nanoril	obons
2.3.3	Purification of BODIPY-functionalised graphene nanoribbons
2.4 Cry	stallography
2.4.1	1-naphthylamine/BODIPY45
2.4.2	1-naphthol/2xB0DIPY
2.4.3	2-naphthol/2xB0DIPY
Chapter 3.	Computational studies of graphene nanoribbons
3.1 Gra	phene analogue computational studies
3.1.1	Description of analogues
3.1.2	Results and discussion55
3.1.3	Analysis of models
3.2 Gra	phene nanoribbon studies60
3.2.1	Graphene nanoribbon structures
3.2.2	Discussion of results
3.3 Fur	nctionalisation studies

3.4	Rea	action mechanism study7							
3.4.1		Calculation of pKa values							
3.4.2		Thermodynamics	76						
Chapter	r 4.	Spectroscopy of dipyrrins	87						
4.1	Qua	antitative absorption studies	88						
4.1	1	TD-DFT studies of excitations	90						
4.1	2	Solvent dependent excitations	91						
4.1.3		Effect of double-substitution on spectra							
4.1.4		Exciton coupling in multi-chromophore systems	01						
4.2	Qua	antitative emission studies10	04						
4.2	2.1	Determination of Quantum Yields10	04						
4.2	2.2	3-Dimensional emission plots10	07						
4.3	Tin	ne-resolved emission1	10						
4.4	Infr	rared spectroscopy	16						
4.5	Rar	nan spectroscopy1	24						
Chapter	r 5.	Dipyrrin-functionalised graphene nanoribbons	27						

mapter	5. Dipyrrin functionanseu graphene nanoribbons
5.1	Infrared spectroscopy
5.2	Raman spectroscopy131

Chapter 6.	Summary and Perspectives	135
		100
Bibliograph	у	139
Appendices		147
Appendix	A: NMR Spectra	147
Appendix	B: Conversion of Raman spectra units	164

Figures

Figure 1.1 - Graphene sheet
Figure 1.2 - Number of publications with title containing keywords "graphene"
(grey) and "nanoribbon" (gold) since 20043
Figure 1.3 - Number of graphene publications by field: chemistry (blue) and physics
(purple)
Figure 1.4 - Demonstration of zig-zag (blue) and armchair (orange) edges of
graphene
Figure 1.5 - Potential edge structure combinations of graphene nanostructures
(orange: armchair; blue: zig-zag)6
Figure 1.6 - a) Accumulation of graphene nanoblocks during mechanical fracturing;
b) Transfer of graphene nanoblocks
Figure 1.7 - Nucleophilic displacement in meso-halogenated BODIPY dyes
Figure 1.8 - Raman modes of graphene11
Figure 1.9 - Jablonski diagram showing photophysical processes15
Figure 1.10 - Illustraction of Franck-Condon factors for large and small vibrational
mode displacements16
Figure 1.11 - Franck-Condon principle for a radiative transition (absorption)18
Figure 1.12 - Kekulé (a) and Clar (b) representations of naphthalene20
Figure 1.13 - Clar structures of: a) anthracene; and b) phenanthrene21
Figure 2.1 - GNR edge "unit cell"
Figure 2.2 – Crystal structure of 1-naphthylamine/BODIPY45
Figure 2.3 – Crystal structure of 1-naphthol/2xBODIPY
Figure 2.4 – Crystal structure of 2-naphthol/2xBODIPY

Figure 3.1 - Comparison between PBE and B3LYP functionals for frequency
calculation for the transition state structure of phenol/BODIPY
Figure 3.2 - Zig-zag edged structures: a) anthracene; b) pentacene; c) heptacene; and
d) nonacene
Figure 3.3 - Armchair edged structures: a) phenanthrene; b) picene; c)
dibenzopicene; and d) dinaphthopicene50
Figure 3.4 - Ring structures: a) pyrene; b) coronene; c) ovalene; d) hexa-peri-
benzocoronene; and e) TBDBPP-ovalene51
Figure 3.5 - Calculated Raman spectra of zig-zag structures
Figure 3.6 - Calculated Raman spectra of armchair structures
Figure 3.7 - Calculated Raman spectra of ring structures
Figure 3.8 - Relative D mode intensity in calculated zig-zag Raman spectra
Figure 3.9 - Relative R mode intensity in calculated armchair Raman spectra 56
Figure 3.10 - Vibrational modes of ovalene (left) and hexa-peri-benzocoronene
(right)
Figure 3.11 - Comparison of Raman bond parameters for graphene fragments using
Hückel and DFT methods; good agreement is observed between low and high
levels of theory
Figure 3.12 - Skeletal structures of a) armchair and b) zig-zag edged nanoribbon
analogues
Figure 3.13 - Calculated IR spectra for armchair and zig-zag nanoribbon analogues
(individual points plotted)62
Figure 3.14 - Calculated IR spectra for armchair and zig-zag nanoribbon analogues
(artificially widened)63
Figure 3.15 - Calculated and experimental IR spectra for graphene nanoribbons . 63

Figure 3.16 - Crystal structures for basis set optimisation; left: 1-
naphthylamine/BODIPY; right: 2-naphthol/2xBODIPY65
Figure 3.17 - Optimised geometries of 1-naphthylamine/BODIPY67
Figure 3.18 - Optimised geometries of 2-naphthol/2xBODIPY69
Figure 3.22 - Molecular orbital diagrams for 1-naphthylamine (left) and 2-
naphthylamine (right)78
Figure 3.23 - Density of states for 2-naphthol with overlaid molecular orbitals80
Figure 3.24 - Density of states for 2-naphthylamine with overlaid molecular
orbitals
Figure 3.25 - HOMO for -O-BODIPY compounds with HOMO-LUMO gap stated82
Figure 3.26 - LUMO for -O-BODIPY compounds83
Figure 4.1 - Solvatochromism of Cl-BODIPY
Figure 4.2 - Beer-Lambert plot for 2-aminoanthracene/BODIPY in toluene
Figure 4.3 - Normalised absorption spectra of 1-naphthol/2xBODIPY92
Figure 4.4 - TD-DFT excitation spectra of 1-naphthol/2xBODIPY; Modes with
oscillator strength > 0.1 have been assigned to molecular orbital transitions94
Figure 4.5 - Occupied orbitals: 1-naphthol/2xBODIPY95
Figure 4.6 - Virtual orbitals: 1-naphthol/2xB0DIPY95
Figure 4.7 – Absorption spectra of 2-naphthol/1x and 2xBODIPY98
Figure 4.8 - TD-DFT excitation spectra of 2-naphthol/1x and 2xBODIPY; Modes with
oscillator strength > 0.1 have been assigned to molecular orbital transitions98
Figure 4.9 - Occupied (blue and red) and virtual (orange and teal) orbitals: 2-
naphthol/1xB0DIPY99
Figure 4.10- Occupied (blue and red) and virtual (orange and teal) orbitals: 2-
naphthol/2xB0DIPY99

Figure 4.11 - Absorption spectra of 2-naphthol/2xBODIPY in acetonitrile at different
concentrations100
Figure 4.12 - Transition dipole for BODIPY101
Figure 4.13 - Geometrical parameters used to define the orientation of two
transition dipole moments102
Figure 4.14 - Determination of geometrical parameters for 1-naphthol/2xBODIPY
(top) and 2-naphthol/2xBODIPY (bottom) with $lpha$ and $lpha'$ (left) and eta (right).
BODIPY planes (long axis = dipole) are shown for clarity103
Figure 4.15 - E_T^N scale for selected solvents
Figure 4.16 - 3D (left) and contour (right) plots of Cl-BODIPY in: ethyl acetate (top);
acetonitrile (centre); and toluene (bottom)108
Figure 4.17 - 3D (left) and contour (right) plots of Cl-BODIPY in: chloroform (top);
chlorobenzene (centre); and isopropyl alcohol (bottom)109
Figure 4.18 - Excitation data for Cl-BODIPY in three solvents; Data for λ_{ex} = 500 nm
has been scaled to match λ_{em} at approximately 525 nm111
Figure 4.19 - ln k _{nr} vs E _{em} for all compounds114
Figure 4.20 - ln $k_{nr}\ vs\ E_{em}$ for hydroxyl containing compounds; Data has been
separated between mono- (1x) and d- (2x) substituted analogues
Figure 4.21 - Comparison between calculated and experimental IR spectra of 1-
hydroxypyrene117
Figure 4.22 - Comparison between calculated and experimental IR spectra of 1-
hydroxypyrene/BODIPY117
Figure 4.23 - Experimental IR spectra of 1-hydroxypyrene and 1-
hydroxypyrene/BODIPY119

Figure	4.24	-	Calculated	IR	spectra	of	1-hydroxypyrene	and	1-
hydr	oxypyr	rene	/BODIPY						119
Figure 4	.25 - C	alcu	lated IR spec	ctra o	f HBC(t-B	u)501	H and HBC(t-Bu)50	H/BOD	IPY
									120
Figure 4	.26 - Vi	brat	ional modes	- BOE	DIPY funct	ionali	sation;		121
Figure 4	.27 - C	alcu	lated IR spec	trum	for 1-hyd	lroxyj	oyrene/BODIPY wit	h assig	ned
vibra	ational	mod	les						123
Figure 4	4.28 - (Calcı	ulated IR spe	ectrui	m for HB	C(t-Bı	ı)50H/BODIPY wit	h assig	ned
vibra	ational	mod	les						124

Tables

Table 2.1 - Crystallography data 44
Table 3.1 - Bonding energies for 1-naphthylamine 67
Table 3.2 - Bonding energies for 2-naphthol/2xBODIPY 68
Table 3.3 - Comparison of experimental and calculated pKa values 73
Table 3.4 - Comparison of experimental and calculated pKa values in water75
Table 3.5 - Comparison of experimental and calculated pKa values in dichloroethane
Table 3.6 - Calculated pKa values for analogues
Table 3.7 - Thermodynamic information for functionalisation studies
Table 4.1 – Summary of molar absorptivity coefficients (mol ⁻¹ Lcm ⁻¹) for Cl-BODIPY
and its small-analogue products. Standard errors (rounded to 1 significant
figure) are included in brackets90
Table 4.2 - Geometrical parameters for exciton coupling104
Table 4.3 - Relative quantum yields. * indicates reference standard used is Coumarin
6H; all others calculated with Coumarin 334 as standard106
Table 4.4 - Lifetimes in ethyl acetate112
Table 4.5 - Lifetimes in acetonitrile 112
Table 4.6 - Lifetimes in toluene 112

Abbreviations

General

GNR	Graphene nanoribbon
HOPG	Highly-oriented pyrolytic graphite
kT	Energy equal to 4.11×10^{-21} J at 298 K

Molecular orbitals

НОМО	Highest occupied molecular orbital
LUMO	Lowest unoccupied molecular orbital

Computational terms

STO	Slater-type orbital	
GTO	Gaussian-type orbital	
B3LYP	Becke, 3-parameter, Lee-Yang-Parr	(functional)
PBE	Perdew-Burke-Ernzerhof	(functional)
M06	Minnesota-06	(functional)
M06-2X	Minnesota-06, Hartree-Fock exchange	(functional)
DZP	Double-zeta, 1 polarisation (STO)	(basis set)

Notation for computational terms

(functional)/(basis set) Example: B3LYP/DZP

Notation for analogue compounds

analogue/BODIPY	Example: phenol/BODIPY
Solvents	
DCM	Dichloromethane
IPA	Isopropyl alcohol / propan-2-ol
DCE	1,2-dichoroethane
EtOAc	Ethyl acetate
MeCN	Acetonitrile