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Abstract 

In this thesis we examine the Graph Theoretic Facility Layout Problem (GTFLP) .  

The GTFLP i s  concerned with designing a building layout, with a specified number 

of facilities, with data relating to the facilities' areas, and proximity desirability 

ratings or material flows between the facilities. The objective is to design an 

efficient layout which incorporates these issues, by attempting to minimise the 

transportation cost of material flow between facilities, or maximise the desirability 

ratings, and designing regularly shaped facilities which allow effectiveness of the 

layout. 

The GTFLP proceeds as a two phase process; the first generates a highly 

weighted (maximal) planar graph, called an adjacency graph, which specifies the 

relative spatial location of each facility, with respect to its adjacent facilities. This 

phase has been extensively studied, and although not a focus of this thesis, we ad

dress adjacency graph generation and provide a worst case analysis of the so-called 

TESSA method. 

The main thrust of this thesis addresses the second phase of the GTFLP, where 

we examine the construction of the layout in light of the information given by the 

first phase. We review previous literature in this area, and extend this work by 

a series of enhancements to existing methods,  and introduction of new techniques 

including: introducing the Vertex Splitting Algorithm, the Tiling Algorithm, and 

the SIMPLE Algorithm; analysis of previous methods, by completing the theory 

of the Deltahedron and Contraction Layout Algorithms for instance. Initial steps 

in characterising adjacency graphs, which by their structure allow the easy con

struction of a corresponding layout, is introduced, by providing a series of template 

layouts; furthermore we compare and contrast algorithms which force an overly

ing grid structure against those more generic methods, which do not impose this 

rigidity; and introduce some simple procedures for improving the regularity of a 

layout. 



We formally define the concept of regularity, by presenting a series of quantifi

able measures, which can be calculated to give an evaluation of the effectiveness of 

a layout. Thereby we attempt to quantifiably compare and rank the layout gener

ation methods, by evaluating the regularity measures over a set of test problems. 

The effects of the various layout improvements, and initialisation processes will be 

shown within this computational process. We also examine the incorporation of a 
Material Handling System (MHS) within a layout . The calculation of the trans

portation costs involved in the implementation of each layout , via the Material 

Handling System, provides another mechanism for ranking the layout algorithms. 

Directions for future wotk are provided in the area of the Material Handling Sys

tem. Indeed our work in this area only highlighted the importance of modelling 

this concept. 

The final contribution of this thesis is the generation of a framework which 

attempts to look beyond the more theoretical GTFLP model. By invoking a three 

phase process, which allows the decomposition of the adjacency graph, interaction 

with a decision planner, and the ability to perturb the problem constraints, we can 

produce a range of alternative layout scenarios, since there is no right answer to this 

second phase, and indeed an infinite number of different layouts satisfy the problem 

constraints. This allows the design process to be directed in a more mean.ingful 

way, by exploiting structure within the adjacency graph and the working knowledge 

of a decision planner, providing a basis whereby the GTFLP can be effectively used 

within any building design process. 

We conclude that the GTFLP model is an important concept within the more 

general Facility Layout Problem. We provide evidence that the standard Graph 

Theoretic model is perhaps overly restrictive. Indeed we shall see that the gen

eration of a good adjacency graph does not in general correspond to obtaining a 

practical layout. With this in mind, we have identified the strengths and weaknesses 

of the various concepts and ideas used within Graph Theoretic Facility Layout De

sign, and consequently have created an integration of the adjacency graph and 

layout phases of this problem. This has provided a unification of the GTFLP into 

a more malleable form, which provides enough flexibility to accurately model the 

mechanics behind the design process. 
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