Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A DEVELOPMENT OF AN ELECTRICAL ANALOGUE FOR THERMAL PROCESSING

A thesis presented in partial fulfilment of the requirement for the degree

MASTER OF TECHNOLOGY

in Biotechnology

At Massey University Palmerston North New Zealand

SURAPONG NAVANKASATTUSAS

1973

ACKNOWLEDGEMENTS

The writer wishes to express his gratitude for the generous assistance and guidance which he received throughout this work, without which this study would have been impossible.

The writer would like to thank Professor R.L. Earle for his continual teaching and guidance throughout this study.

To Mr. R.E. Hendtlass, Chemistry, Biochemistry and Biophysics Department, whose suggestions and contribution of the electrical circuits is deeply appreciated.

Thanks are also due to the staff of the Food Science and Biotechnology Faculty, Massey University, for their aid. i

TABLE OF CONTENTS

			Page
I.	SUM	MARY	1
II.	INTRODUCTION		
	Α.	THERMAL PROCESSING IN GENERAL	3
	Β.	PROBLEMS IN FORMULATING AND MANIPULATING	
		PROCESSING CONDITION	4
	С.	THE OBJECTIVE OF THIS STUDY	5
III.	LIT	ERATURE SURVEY	
	Α.	KINETICS OF THERMAL PROCESSING	6
		1. Reaction Rate Equation	6
		2. Temperature Dependency of Reaction	
		Rate Constant	8
	Β.	THERMAL PROCESSING EVALUATION	13
	С.	ANALOGUE SYSTEM FOR THERMAL PROCESSING	15
IV.	THE	ORY	
	Α.	GENERATION OF REACTION RATE FOLLOWING THE	
		ARRHENIUS EQUATION	17
		1. Thermistor Sensor	17
		2. Generation of a Primary Reaction Rate	
		Following the Arrhenius Equation	18
		3. Modification of the Primary Reaction	
		Rate Constant	19
	Β.	INTEGRATION OF THE GENERATED REACTION RATE	20
	С.	CORRELATION OF ANALOGUE OUTPUT VOLTAGE VO	
		WITH PROGRESS OF IRREVERSIBLE REACTION IN	
		THERMAL PROCESSING	22
		1. Irreversible Unimolecular First-order	
		Reactions	22
		2. Irreversible Bimolecular Second-order	
		Reactions	24
		3. Irreversible Trimolecular Third-order	
		Reactions	27

ii

		Page
	4. Irreversible Reaction with Empirical Rate	
	Equation of the n th Order	30
	5. The Relationship of the Ratio of	
	Frequency Factor and the Ratio of	
	Reaction Rate Constants at a Constant	
	Temperature	31
V .	APPARATUS	
	A. REGULATED FOWER SUPPLY FOR THE ANALOGUE SYSTEM .	33
	B, ELECTRICAL ANALOGUE SYSTEM	33
	1. Primary Reaction Rate Generator	33
	2. Analogue Multiplier	34
	3. Analogue Integrator	34
	C. THERMAL PROCESSING REACTOR	35
	D. MEASURING EQUIPMENT	36
	1. Voltmeter	36
	2. Potentiometer and Thermocouple	36
	3. Potentiometric Recorders	36
VI.	PROCEDURE	
	A. ARRANGEMENT OF APPARATUS FOR EXPERIMENTAL	
	TESTING OF THE ANALOGUE SYSTEM	43
	B. DETERMINATION OF GENERATED PRIMARY REACTION	
	RATE V, AT VARIOUS TEMPERATURE T	43
	C. DETERMINATION OF GENERATED SECONDARY REACTION	
	RATE v ₂ at Various temperature t	44
	D. TESTING OF THE ANALOGUE INTEGRATOR	44
	E. APPLICATION OF THE ELECTRICAL ANALOGUE IN	
	THERMAL PROCESSING	45
VII.	RESULTS	50
VIII.	DISCUSSION OF RESULTS	
	A. TESTING OF THE ANALOGUE SYSTEM	64
	1, Generation of the Primary Reaction Rate v_1 .	64
	2. Generation of the Reaction Rate v_2 with	
	Application of the Analogue Multiplier	64
	3. The Analogue Integrator	65

	B. THE ANALOGUE SYSTEM IN THERMAL PROCESSING	Page 67
IX.	CONCLUSIONS	88
	APPENDIX	90
	BIBLIOGRAPHY	101

.

LIST OF TABLES

VII.1	Results of Primary Reaction Rate v1	
	Generated by the Analogue	51
VII.2	Results of Reaction Rate v2	
	Generated by Application of Analogue	
	Multiplier (n=2)	52
VII.3	Results of Reaction Rate v2	
	Generated by Application of Analogue	
	Multiplier (n=4)	53
VII.4	Results of Reaction Rate vo	
	Generated by Application of Analogue	
	Multiplier (n=6)	54
VII.5	Results of Reaction Rate v.	
	Generated by Application of Analogue	
	Multiplier (n=8)	55
VII.6	Results of Reaction Rate v.	
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Generated by Application of Analogue	
	Multiplier (n=10)	56
VII.7	Results of Reaction Rate v _o	
	VII.1 VII.2 VII.3 VII.4 VII.5 VII.6 VII.7	 VII.1 Results of Primary Reaction Rate v₁ Generated by the Analogue

- Table VII Generated by Application of Analogue Multiplier (n=12) 57
- Results of Reaction Rate v_2 Table VII.8 Generated by Application of Analogue Multiplier (n=16) 58
- Table VIII.1 Summary of Results in Reaction Rate Generation by the Analogue 70

Page

			Page
Table	VIII.2	Measured Output Voltage Changes of	
		Integrator at Various Input Voltages	71
Table	VIII.3	Comparison of Progress of the Thermal	
		Sterilization Detected by the Analogue	
		and that by the Temperature-time	
		Profile	72
Table	VIII.4	Comparison of Progress of the Thermal	
		Destruction of the Chemical Species	
		Detected by the Analogue and that by	
		the Temperature-time Frofile	73
Table	A.1	Characteristics of Copper-constantan	
		Thermocouple	91
Table	A.2	Relationship of Inverse Absolute	
		Temperature at Hot Junction and	
		Electrical Potential of the Copper-	
		constantan ^T hermocouple	92
Table	C.1	Pertinent Values Associated with Analysis	
		of Experimental Reaction Rates Generated	
		by the Analogue	98

LIST OF FIGURES

			Page
Figure	V.1	Circuit Diagram of the Voltage Regulated Power Supply	38
Figure	V.2	Circuit Diagram of the Primary Reaction Rate v ₁ Generator	39
Figure	V.3	Circuit Diagram of an Analogue Multiplier	40
Figure	V.4	Circuit Diagram of the Analogue Integrator	41
Figure	V.5	Diagram of Wiring Through the Door of the Autoclave	42
Figure	VI.1	Arrangement of Apparatus for Testing the Analogue	49
Figure	VII.1	Results of Analogue Integrator Testing	59
Figure	VII.2	Output Voltage from the Analogue System in Following the Progress of the Sterilization of a Microorganism	60
Figure	VII.3	Temperature and Time Profile in the Vicinity of the Sensor of the Analogue in a Microbial Sterilization	61
Figure	VII.4	Output Voltage from the Analogue System in Following the Progress of the Thermal Destruction of the Chemical Species	62

vii

Page Figure VII.5 Temperature and Time Profile in the Vicinity of the Sensor of the Analogue in a Chemical Destruction Figure VIII.1 Plot of the Primary Reaction Rate Generated by the Analogue According to the Arrhenius Equation (n=1) 74 Figure VIII.2 Plot of the Reaction Rate Generated by the Analogue According to the Arrhenius Equation (n=2) 75 Figure VIII.3 Plot of the Reaction Rate Generated by the Analogue According to the Arrhenius Equation (n=4) 76 Figure VIII.4 Plot of the Reaction Rate Generated by the Analogue According to the Arrhenius Equation (n=6) 77 Figure VIII.5 Plot of the Reaction Rate Generated by the Analogue According to the Arrhenius Equation (n=8) 78 Figure VII.6 Plot of the Reaction Rate Generated by the Analogue According to the Arrhenius Equation (n=10) 79 Figure VIII.7 Plot of the Reaction Rate Generated by the Analogue According to the Arrhenius 80 Equation (n=12) Figure VIII.8 Plot of the Reaction Rate Generated by the Analogue According to the Arrhenius Equation (n=16) 81

viii

Page Relationship between Temperature Figure VIII.9 Coefficient of Generated Reaction Rate and Integer Multiple n 82 Figure VIII.10 Measured Output Voltage Changes of Integrator at Various Input Voltages 83 Figure VIII.11 Reaction Rate and Time Profile in the Vicinity of the Sensor of the Analogue in a Thermal Sterilization 84 Figure VIII.12 Progress of the Thermal Sterilization Detected by the Analogue and that by Temperature and Time Measurement 85 Figure VIII.13 Reaction Rate and Time Profile in the Vicinity of the Sensor of the Analogue in a Thermal Destruction of a Chemical Figure VIII.14 Progress of the Thermal Destruction of the Chemical Species Detected by the Analogue and that by Temperature and Time Measurement 87 Figure A.1 Characteristics of Copper-constantan Thermocouple 93 Figure A.2 Relationship of Inverse Absolute Temperature at Hot Junction and Electrical Potential of the Copperconstantan Thermocouple 94

ix

I. SUMMARY

The objective of this study was to investigate some general principles in thermal processing and some methods for following this processing experimentally. The emphasis of the investigation was to develop a simple electrical analogue system for following the progress of a single stage irreversible thermal processing reaction. 1

Documented data and principles of the kinetics of thermal processing of biological material showed that such process reaction could be approximated by the kinetic model of a single stage irreversible reaction. Temperature dependency of the thermal processing rate could also be approximated by the Arrhenius equation.

Functional principles of electrical analogue computers were applied to develop the electrical analogue system. The structure and mode of operation of this system is described. The relationship between the output voltage of the analogue system and the progress of the thermal processing are derived for different known thermal processing reactions, following the kinetic model of a single stage irreversible reaction.

The performance of the electrical analogue system in this study was tested. The results indicated that the electrical analogue system so constructed could approximate the function described in theory. Non-ideality of the electrical circuitory, however, restricted the application of the electrical analogue system for its qualitative value only. The parameter governing the temperature dependence of an irreversible reaction rate could be generated with error of approximately ± 4.55%. The error associated with application of the analogue integrator for integrating the generated reaction rate was approximately ± 7.25%. The overall error in application of the analogue system for detecting thermal processing varied with the time span of processing cycle, and processing effect achieved at temperatures other than the set temperature of processing.

2