Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Massey University
 Llbrary

FACTORS AFFECTING THE ESTABLISHMENT

OF

LEPTOSPERMUM SCOPARIUM J.R. et G. Forst. (MANUKA)

A Thesis
presented in partial fulfilment of the requirements for the degree, Master of Agricultural Science
at
Massey University

David Alan Grant

$$
\text { October } 1966
$$

ACKNOWLEDGEMENTS

The author would especially like to thank Mr . A. D. Esler, Senior Lecturer in Agronomy at Massey University, for his supervision and encouragement.

Thanks are due to Mr. E.R. Hodgeson, Senior Lecturer in Physics and Engineering at Massey University, for devising the light meter circuit and making available facilities for construction and calibration.

The statistical guidance of Mr . A.C. Glenday, Biometrician, D.S.I.R., Palmerston North, is gratefully acknowledged as is the service provided by the Library staff at Massey University, and the excellent reproduction of diagrams, drawing, graphs and photographs by the staff of the Photographic Unit at Massey University.

Also acknowledged is the help of Dr. J.M. Hoy, Director, Entomology Division, D.S.I.R., Nelson, in supplying identified specimens of Australian Leptospermum; personnel of the Seed Testing Station, Department of Agriculture, Palmerston North, in making available facilities; Rukuhia Soil Research Station, Department of Agriculture in carrying out soil chemical analyses; Mr. J.A. Pollok, Senior Lecturer in Soils at Massey University, for soil identification; Mr. J.S. Dugdale, Scientist, F.R.I., New Zealand Forest Service, for insect identification.

To Dr. R.W. Brougham, Grasslands Division, D.S.I.R., Palmerston North; Prof. B.R. Watkin, Professor of Agronomy at Massey University; Mr. C.w. Van Kraayenoord, Soil Conservator, Ministry of Works, Palmerston North; Mr. W.R. Edwards and other friends the author expresses his appreciation of interest and helpful discussion.

Special acknowledgement must be made to Miss Wendy McNabb for her care and forbearance in typing this manuscript.

This study was carried out while the author was holder of a State Services Commission Study Award.

TABLE OF CONTENTS

page
INTRODUCTION 1
SECTION IREVIEN OF LITERATURE

1. DEFINITION OF ESTABLISHMENT 2
2. THE PLANT 2
3. INTRINSIC FACTORS AFFECTING ESTABLISHMENT 4
3.1 MODE OF REPRODUCTION 4
3.2 AGE AT FLOWERING AND FLOWERING SEASON 5
3.3 SEED MATURATION AND TIME OF SHEDDING 5
3.4 SEED NUMBERS, WEIGHT, AND VIABILITY 5
3.5 SEED DISPERSAL 6
3.6 SEED DORMANCY 6
3.7 SEED LONGEVITY 7
3.8 GROWTH RATE 7
4. ENVIRONMENTAL FACTORS AFFECTING ESTABLISHMENT 7
4.1 LIGHT 7
4.2 TEMPERATURE 8
4.3 MOISTURE 8
4.4 ALTITTUDE 9
4.5 SOILS 9
4.6 INTERACTION WITH PASTURE SPECIES 9
4.7 THE GRAZING ANIMAL 11
4.8 PARASITES AND DISEASE 11
page
SECTION II
5. FACTORS EXAMINED IN THE STUDY 13
6. THE STUDY AREAS 13
6.1 LOCATION 13
6.2 SOILS 14
6.3 CLIMATE 15
7. SEED 15
8. DATA ANALYSIS 16
SECTION IIIOBSERVATIONS AND EXPERIMENTS
9. SEED WEIGHT, PRODUCTION, AND TIME OF SHEDDING 17
9.1 SEED WEIGHT 17
9.2 SEED PRODUCTION 17
9.3 SEASONAL VARIATION IN SEED FALL 18
9.3.1 METHOD 18
9.3.2 RESULTS 18
9.4 DISCUSSION 18
10. GERMINATION 19
10.1 TÉRAZOLIUM EMBRYO VIABILITY TEST 19
10.1.1 METHOD 19
10.1.2 RESULTS 19
10.1.3 DISCUSSION 20
10.2 THE EFFECT OF LIGHT 20
10.2.1 METHOD 21
10.2.2 RESULTS 21
10.2.3 DISCUSSION 21
page
10.3 THE EFFECT OF TEMPERATURE 22
10.3.1 METHOD 22
10.3.2 RESULTS 22
10.3.3 DISCUSSION 22
10.4 THE EFFECT OF SEED AGE 23
10.4.1 METHOD 23
10.4.2 RESULTS 23
10.4.3 DISCUSSION 24
10.5 THE EFFECT OF EXPOSURE 24
10.5.1 METHOD 24
10.5.2 RESULTS 24
10.5.3 DISCUSSION 25
11. THE EFFECT OF SEASON ON GERMINATION AND SEEDLING SURVIVAL ON BARE GROUND 26
11.1 METHOD 26
11.2 RESULTS 27
11.3 DISCUSSION 27
12. THE EFFECT OF SEASON ON GERMINATION AND SEEDLING 29 SURVIVAL IN PASTURE
12.1 METHOD 29
12.2 RESULTS 30
12.3 DISCUSSION 33
13. THE EFFECT OF COVER, APPLIED FERTILIZER AND CUTTING FREQUENCY ON GERMINATION AND SEEDLING SURVIVAL IN 34 GRASSED AND BARE PLOTS
13.1 METHOD 34
13.1.1 PLOT CONSTRUCTION AND SWARD ESTABLISHMENT 35
13.1.2 SOWING THE L. SCOPARIUM SEED 36
page
13.1.3 RELATIVE ILLUMINANCE 38
13.1.4 PROFILE DIAGRAMS 39
13.1.5 PERCENTAGE BARE GROUND 40
13.1.6 LZAF AREA INDEX 40
13.1.7 TILLER NUMBERS 40
13.2 RESULTS 41
13.2.1 GERMINATION AND SURVIVAL OF L. SCOPARIUM 41
13.2.2 RELATIVE ILLUMINANCE 42
13.2.3 PROFILE DIAGRAMS 42
13.2.4 Leaf area index 43
13.2.5 TILLER NUMBERS 44
13.2.6 PERCENTAGE BARE GROUND 45
13.2.7 HERBAGE YIELDS 46
13.3 DISCUSSION 47
14. VARIATION IN L. SCOPARIUM 49
14.1 METHOD 50
14.2 RESULTS 51
14.3 DISCUSSION 52
15. SUMMARY AND CONCLUSIONS 53
SECTION IV
APPENDICES 56 - 105
BIBLIOGRAPHY 106 - 111

LIST OF TABLES

TABLE

1 CHEMICAL ANALYSES OF SOILS 14
2 THE EFFECT OF SEASON ON SEED SHED 18
3 COMPARISON BETWEEN TETRAZOLIUM AND GERMINATION TEST 19
4 THE EFFECT OF LIGHT ON GERMINATION 22
5 THE EFFECT OF TEMPERATURE ON GERMINATION 22
6 THE EFFECT OF SEED AGE ON GERMINATION 23
7 THE EFFECT OF EXPOSURE ON AND BELOW THE GROUND 25
SURFACE ON GERMINATION
8 THE EFFECT OF SEASON ON GERMINATION AND SEEDLING 26
9 THE EFFECT OF COVER, APPLIED FERTILIZER, AND CUTTING FREQUENCY ON GERMINATION AND SEEDLING SURVIVAL 41 IN GRASSED AND BARE PLOTS
10 RELATIVE ILLUMINANCE 42
11 LEAF AREA INDEX (LEAF MEASUREMENT AND DRY WEIGHT BASIS) 42
12 LEAF AREA INDEX (PROFILE DIAGRAM BASIS) 43
13 TILLER NUMBERS (CORE BASIS) 43
14 TILLER NUMBERS (PROFILE DIAGRAM BASIS) 44
15 \% BARE GROUND IN GRASSED PLOTS AS DETERMINED BY 44 POINT ANALYSIS
16 HERBAGE YIELDS 45
17 GROWTH RATE INDICATORS IN L. SCOPARIUM (EXPERIMENTAL GARDEN SPECIMENS) 51
18 RESPONSE OF CdS LIGHT METER TO RADIATION TRANSMITTED 101
19 BECKMANN DU (200-2000 mu) PHOTOMETER DETERMINATION OF PVC ABSORPTION SPECTRUM 103
20 CdS LIGHT METER CALIBRATION DATA 105

LIST OF FIGURES

FIGURE after page
1 LOCATION OF TIRITEA FIELD AREA 12
2 PROFILE DIAGRAM OF L. SCOPARIUM STAND 15
3 PATTERN OF REVERSION IN THE TIRITEA 15
4 POSITIONING OF A SEED CATCHING TIN 15
5 VARIATION IN SOME FACTORS OF CLIMATE OVER THE STUDY PERIOD 15
6,7,8 CHART QUADRATS A, B, C 15
9 THE EFFECT OF SEASON ON SEED SHED 18
10 THE EFFECT OF SEASON ON GERMINATION AND SEEDLING SURVIVAL 26
11 CHANGES IN TOTAL SEEDLING NUMBERS IN PASTURE WITH SEASON 30
12 THE EFFECT OF SEASON 30
(a) IN SEEDLING MORTALITY IN PASTURE
(b) ON SEEDLING APPEARANCE IN PASTURE
13 THE EFFECT OF SOME HABITAT FEATURES ON SEEDLING GERMINATION AND SURVIVAL IN PASTURE 30
14 L. SCOPARIUM SEEDLINGS IN PASTURE, NOVEMBER. QUADRAT C 31
15 L. SCOPARIUM SEEDLINGS IN PASTURE, MARCH. QUADRAT C 31
16 QUADRAT FRAME, $1 \times \frac{1}{2} m_{\bullet}$, ON QUADRAT C, FEBRUARY 1965 31
17 APPEARANCE OF PLOTS, MARCH 1966 37
18 APPEARANCE OF L. SCOPARIUM PLANTS IN VARIATION 37 EXPERIMENT, MARCH 1966
19 TEMPLATE AND FUNNEL FOR SEED SOWING 37
20 MARKING WIRES INSERTED IN UNCUT GRASS PLOTS 37
21 TRANSECT DELINIATION FOR GRASS PLOT PROFILE DIAGRAMS 37
22 THE EFFECT OF COVER, APPLIED FERTILIZER, AND CUTTING FREQUENCY ON GERMINATION AND SEEDLING SURVIVAL IN GRASSED 41 AND BARE PLOTS
23 GRASS PLOT PROFILE DIAGRAMS, NO APPLIED FERTILIZER TREATMENT 41
24 GRASS PLOT PROFILE DIAGRAMS, NO APPLIED FERTILIZER TREATMENT 41
25 GRASS PLOT PROFILE DIAGRAMS, LOW RATE OF APPLIED FERTILIZER TREATMENT 41
26 GRASS PLOT PROFILE DIAGRAMS, LOW RATE OF APPLIED FERTILIZER TREATMENT 41
27 GRASS PLOT PROFILE DIAGRAMS, HIGH RATE OF APPLIED FERTILIZER TREATMENT 41
28 GRASS PLOT PROFILE DIAGRAMS, HIGH RATE OF APPLIED FERTILIZER TREATMENT 41SOURCES OF MATERIAL USED IN THE VARIATION EXPERIMENT,AND LEAVES (x 2)50
(a) FROM HERBARIUM SPECIMENS
(b) FROM EXPERIMENTAL GARDEN SPECIMENS
30 RELATIONSHIP BETWEEN GROWTH RATE INDICATORS FOR 51
I. SCOPARIUM FROM DIFFERENT AREAS
51
31 LEAVES OF SOME AUSTRALIAN SPECIES OF LEPTOSPERMUM
32 LEAVES OF LEPTOSPERMUM SCOPARIUM FROM HERBARIUM COLLECTION x 2 51
33 LEAVES OF LEPTOSPERMUM SCOPARIUM FROM EXPERIMENTAL GARDEN x 2 51
34 THE INFLUENCE OF FUNGICIDES ON THE GERMINATION OF 99
35 ABSORPIION AND SENSITIVITY SPECTRA 103
36 CdS LIGHT METER CIRCUIT DIAGRAM 103
37 CdS LIGHT METER PROBE HEAD CONSTRUCTION 103
38 CdS LIGHT METER 103
39 CdS LIGHT METER CALIBRATION CURVES WITH EEL METER COMPARISON 105
40 CHANGE IN RESPONSE OF CdS LIGHT METER TO ILLUMINANCE 105
41 ANGULAR RESPONSE OF CdS LIGHT METER 105

LIST OF APPENDICES

page
1.1 THE EFFECT OF SEASON ON SEED SHED 56
1.2 ANALYSIS OF VARIANCE 56
2 THE EFFECT OF LIGHT ON GERMINATION 57
3 THE EFFECT OF TEMPERATURE ON GERMINATION 57
4.1 THE EFFECT OF SEED AGE ON GERMINATION 58
4.2 ANALYSIS OF VARIANCE 58
5 THE EFFECT OF EXPOSURE ON AND BELOW THE GROUND 59 SURFACE ON GERMINATION
6.1 THE EFFECT OF SEASON ON GERMINATION AND SEEDLING SURVIVAL ON BARE GROUND 60
6.2 ANALYSIS OF VARIANCE 61
7 THE EFFECT OF SEASON ON SEEDLING APPEARANCE IN PASTURE 61
8 THE EFFECT OF SEASON ON SEEDLING MORTALITY IN PASTURE 62
9 CHANGES IN TOTAL SEEDLING NUMBERS IN PASTURE WITH SEASON 63
10 THE EFFECT OF SOME HABITAT FEATURES ON SEEDLING 64 GERMINATION AND SURVIVAL
11.1 THE EFFECT OF COVER, APPLIED FERTILIZER AND CUTTING 65 FREQUENCY ON GERMINATION AND SEEDLING SURVIVAL IN GRASSED AND BARE PLOTS
11.2 ANALYSIS OF VARIANCE 66
12.1 RELATIVE ILLUMINANCE 6.3 mm . ABOVE GROUND 67
12.2 ANALYSIS OF VARIANCE 68
13.1 LEAF AREA INDEX (LEAF MEASUREMENT AND DRY WEIGHT BASIS) 69
13.2 ANALYSIS OF VARIANCE 69
14.1 LEAF AREA INDEX (PROFILE DIAGRAM BASIS) 70
14.2 ANALYSIS OF VARIANCE 71
15.1 TILLER NUMBERS (CORE BASIS) 72
15.2 ANALYSIS OF VARIANCE 72
page
16.1 TILLER NUMBERS (PROFILE DIAGRAM BASIS) 73
16.2 ANALYSIS OF VARIANCE 74
17.1 \% BARE GROUND IN GRASSED PLOTS AS DETERMINED BY POINT ANALYSIS 75
17.2 ANALYSIS OF VARIANCE 75
18.1 HERBAGE YIELD 76
18.2 ANALYSIS OF VARIANCE 77
19.1 LEAF FEATURES OF SOME AUSTRALIAN SPECIES OF LEPTOSPERMUM 78
19.2 ANALYSIS OF VARIANCE 79
19.3 MEAN SPECIES VALUES 80
20.1 LEAF FEATURES OF L. SCOPARIUM (HERBARIUM SPECIMENS) 81
20.2 ANALYSIS OF VARIANCE 83
20.3 MEAN VALUES 84
21.1 LEAF FEATURES OF L. SCOPARIUM (EXPERIMENTAL GARDEN 85 SPECIMENS)
21.2 ANALYSIS OF VARIANCE 89
21.3 MEAN VALUES 90
22.1 LEAF FEATURES OF L. SCOPARIUM (TIRITEA SPECIMENS) 91
22.2 ANALYSIS OF VARIANCE 93
22.3 MEAN VALUES 94
23.1 GROWTH RATE INDICATORS IN L. SCOPARIUM (EXPERIMENTAL GARDEN SPECIMENS) 95
23.2 ANALYSIS OF VARIANCE 96
24 PHENOLOGICAL OBSERVATIONS IN L. SCOPARIUM (EXPERIMENTAL 97 GARDEN SPECIMENS)
25 FUNGICIDE TOXICITY TEST 98
26 CONSTRUCTION AND CALIBRATION OF A CADMIUM SULPHIDE LIGHT METER 100

INTRODUCTION

L. scoparium is one of New Zealand's most important weeds of unploughable infertile hill country. The plant is an indigenous shrub, characteristic of the early stages of succession to forest in a wide range of habitats (Cockayne, 1928).

In the eight years prior to $1959 / 60$ nearly 40,000 acres of unimproved grassland reverted to scrub, fern and second growth each year. Lo scoparium is one of the most important components of the scrub, fern and second growth category. By 1959/60 the total area of reverted land in New Zealand was 5.7 million acres of which 3.65 million were in the North Island. (Rigg, 1962).

Control of L. scoparium on unploughable hill country has been limited to pulling, cutting, or cutting and burning, depending on stage of growth. Chemical methods and standing burns have generally proved unsuccessful. Most methods are expensive.

Levy (1932, 1940, 1946) postulated that establishment of L. scoparium in pasture could be prevented by good farming techniques. Today there is a growing body of practical evidence to support this hypothesis (Suckling, 1959; New Zealand Farmer 83 (42, 43, 45))。

This study was carried out to determine what intrinsic factors favour the establishment of L. scoparium, and the quantitative effect of farm management techniques on this process.

SECTION I

REVIEW OF LITERATURE

1. DEFINITION OF ESTABLISHMENT

Establishment is a process, starting from the arrival of the propagule in the habitat, during which the plant germinates, attains independence from propagule reserves, and becomes an individual capable of surviving the prevailing environmental conditions. Whether or not establishment occurs is determined by the environment. The process is also influenced by the species genotypes, mode of reproduction, reproductive capacity, propagule characterstics and efficiency of propagule dispersal. The importance of reproductive capacity and efficient propagule dispersal in weed establishment was stressed by Harper (1960) who attributed the success of many weeds to an efficient dispersal mechanism enabling colonization ofnew areas from a distance, and high seed output enabling rapid expansion in an infected area. Species reproducing apomicticly have considerable advantages in propagule production and/or establishment because these processes are not affected by the environment to the same degree as in sexually reproducing plants.

2. THE PLANT

Few experimental studies have been conducted into the biology of L. scoparium but there is considerable information based on observation. The majority of the knowledge has been contributed by Silvester (1962), Burrell (1963), Cockayne (1928) and Levy (1923). Unqualified references in this text apply to these publications.

The genus Leptospermum (Myrtaceae) comprises some 35 species, mostly Australian (Allan, 1961). The haploid chromosome number of most members of the Myrtaceae is 11 and of 12 Australian species of

Leptospermum only one exhibits polyploidy (Darlington and Wylie, 1955). Three species of Leptospermum are found in New Zealand, L. scoparium being the most widespread and abundant. Allan (1961) regarded the New Zealand Leptospermum species as endemic but L. scoparium is present in Tasmania and Victoria (Hoy, 1959). Oliver (1953) regarded L. scoparium in New Zealand as a tertiary immigrant from Australia.
L. scoparium is extremely plastic in growth form. It may be a shrub of diverse habit or a small tree. (Allan, 1961). - Cockayne recorded the plant as a prostrate mat on subalpine moor. Within a stand the species varies in size, shape, and colour of the leaf, texture of bark, time of flowering, sepal colour, and whether the leaves change colour with season. Some characters such as colour of the young stem growth, and the growth form are relatively constant (Burrell, 1963). Allan (1961) listed 5 variants of the type which had earlier been classed as separate varieties. As he stated "the status of the multitudinous forms is very imperfectly known". Burrell suggested that the greater part of the morphological variation is environmentally induced.
L. scoparium is a pioneer prominent in the early seral stages of succession on a wide diversity of sites. More or less permanent communities of the species may occur in swamps, windswept areas, dunes, acid soils and other adverse habitats (Cockayne, 1928). Communities have been described by the following workers: Mark, Scott, Sanderson and James (1964), Percy (1955-56), Bellingham (1955-56), Atkinson and Percy (1955-56), Wheeler (1963), Burrell (1963), Silvester (1962).

It was postulated by Cockayne that, except adjacent to
active volcanoes, large areas of I. scoparium must have been rare in primitive New Zealand. The present abundance and distribution of I. scoparium is due principally to human disturbance of the habitat. By the late eighteenth century possibly 33% of all virgin North Island forest had been destroyed and replaced by scrub forest, L. scoparium scrub, and Pteridium aquilinum var. esculentum (bracken fern) as a result of fires started by Polynesian man. (New Zealand Forestry, 1964). Habitat disturbance on as great, or greater scale, and certainly within a shorter time occurred under the influence of European man. Between 1890 and 1920 ten million acres of forest and scrub covered land, mainly in Taranaki, King Country, Hawkes Bay and Wellington districts, were cleared and sown to pasture. (Rigg, 1962). Much of this land was steep and infertile, and L. scoparium and other native secondary growth plants quickly invaded the poor open pastures present after the initial fertility from the bush burn had gone. It was estimated in 1925 that 1.1 million acres of hill grassland in the North Island had reverted in the previous eight years. (Special Committee Report, 1925).

3. INTRINSIC FACTORS AFFECTING ESTABLISHMENT

3.1 MODE OF REPRODUCTION

L. scoparium reproduces by sexual means only. Flowers are pollinated principally by a mosquito-like fly of the genus Bibio. Other insects observed visiting the flower in Otago include honey and bumble bees, houseflies and bluebottles. (Burrell, 1963). Burrell. also demonstrated that the species is self-compatible.
3.2 AGE AT FLOWERING AND FJOWERING SEASON

Plants have been observed flowering at $3-5$ years (Small, 1961; Burrell, 1963; Marshall, 1962) and at 5 cm . in height (Cockayne, 1928).

In Otago L. scoparium flowers from November to February with a peak in December. Male and hermaphrodite flowers are produced. Over the winter male flowers only are produced (Burrell, 1963). Silvester recorded flowering from August to November in the Hunua Ranges.

3.3 SEED MATURATION AND TIME OF SHEDDING

From current season's flowers seed becomes mature during summer or autumn depending on the environment (Levy, 1923; Silvester, 1962; Burrell, 1963).

Season of seed shed also appears to vary with environment. In the Hunua Ranges most seed is shed in February - March (Silvester, 1962), while in Taranaki most seed is shed in August (Levy, 1923)。

A small proportion of capsules remain closed (Levy, 1923; Burrell, 1963) and capsules tagged by Burrell remained unopened for three years, the seed retaining viability. Capsules may open after the adult plant has been cut or burnt, so providing a source of infection for re-establishing the stand (Levy, 1923; Burrell, 1963).

3.4 SEED NUMBERS, WEIGHT, AND VIABILITY

L. scoparium produces from 200-500 seeds per capsule, (Silvester, 1962; Small, 1961). Levy regarded the profuse seed production of the species as the main reason for its importance as a weed.

The average seed weight of Lo scoparium in the Hunua Ranges is 0.07 mg . (Silvester, 1962).

Germination percentage varies from $12-16 \%$ (Silvester, 1962) although Burrell recorded germination percentages as high as 20%. Silvester found initial viability was strongly related to capsule size and Burrell noted a considerable variation in percentage viable seed between capsules from different bushes and from the one bush.

3.5 SEED DISPERSAL

Wind appears to be the usual form of seed dispersal agent in L. scoparium. Burrell observed young plants one-quarter mile down wind from an isolated bush and Marshall (1962) found cleared ground downwind and up to half a mile away from a stand was subject to reinvasion. Sheep carrying seed in their wool are also thought to act as dispersal agents (Small, 1961; Marshall, 1962). Silvester attributed much of the success of the species to the efficient dispersal of its minute seed, and Small (1961) and others stressed the importance of minimizing seed dispersal in controlling L. scoparium invasion of pasture.

3.6 SEED DORMANCY

It has been observed that seeds of L. scoparium germinate soon after they are shed, appearing to have no dormancy. However, investigation by Silvester showed that germination will not occur in darkness. A light requirement for germination was also suggested by Levy. Because the seeds are exalbuminous Silvester hypothesized that radicle emergency depends on the embryo first photosynthesizing. He found that
0.5% normal daylight in winter and 0.25% normal daylight in summer was sufficient for germination. Silvester also noted a perceptible increase in germination occurred with stratification at $5^{\circ} \mathrm{C}\left(41^{\circ} \mathrm{F}\right)$ for three or more days, but otherwise the temperature at which seeds were germinated did not affect the final germination percentage. Burrell on the other hand found no dormancy effects due to light or temperature requirement.

Levy regarded the apparent readiness of L. scoparium to germinate as the weak point in its life cycle. By cutting, and then burning the bushes after the seed has shed and germinated, all sources of infection within the area are destroyed. Silvester stated "the prime limiting factor in establishment of L. scoparium is its requirement of light for germination and later, seedling development."

3.7 SEED LONGEVITY

Viability of seed of L. scoparium in storage rapidly reduces to 2% six months after harvesting and by two years all seed is inviable (Silvester, 1962).

3.8 GROWTH RATE

The growth rate of $I_{\text {. scoparium }}$ seedlings is slower than that of the majority of herbacious plants, especially annuals and grasses, and scrub hardwoods (Silvester, 1962).
4. ENVIRONMENTAL FACTORS AFFECTING ESTABLISHMENT

4.1 LIGHT

As noted previously (Section 3.6), light may be necessary for germination.

For seedlings of L. scoparium to survive relatively high illuminance is necessary. Silvester found that the growth rate of seedlings of the species was negligible compared with scrub hardwood species below 9% daylight, due possibly to the severe depression in root growth of L. scoparium at low illuminance. He also calculated the theoretical compensation point for seedlings as 2.6% daylight, yet within L. scoparium communities no seedlings of the species occur until illuminance is greater than 12% daylight. Bieleski (1959) also found light levels under L. scoparium stands were normally too low for regeneration of the species. Silvester suggested that root growth below 12\% daylight was insufficient to allow the plant to survive soil surface desiccation.

4.2 TEMPERATURE

Silvester found that at $46^{\circ} \mathrm{F}$ germination took 30 days, but only 3.5 days at $77^{\circ} \mathrm{F}$. The delay of germination at low temperature was attributed to the effect of the low temperature on the rate of pre-emergence photosynthesis.

Silvester also found that the growth rate of seedlings was limited below $65^{\circ} \mathrm{F}$ and above $72^{\circ} \mathrm{F}$.

Frost may have a significant effect on survival in some areas. Cockayne observed that almost constant frost for six weeks with temperatures not below $-11^{\circ} \mathrm{C}\left(12^{\circ} \mathrm{F}\right)$ killed adult L. scoparium.

4.3 MOISTURE

Silvester found that under conditions of adequate light and suitable temperatures seed germinates on contact with water, the seed coat apparently offering little resistance to water entry.

Burrell recorded L. scoparium as growing in areas of Otago receiving less than 50 cm . (20 in.) of rain per year and Cockayne found the species present in areas of high precipitation and maximum dryness. 4.4 ALITITUDE
L. scoparium occurs from sea level to 800-900 meters (2620 - 2950 ft 。) above sea level in Otago, with the species being restricted to northerly aspects at high altitudes (Burrell, 1962). Silvester gave the altitude range of the species as from sea level to 4500 feet (1370 m.) on Mt. Ruapehu.

4.5 SOILS

The species may be found on alluvium, clays, loess, sand, gravel, calcareous or non-calcareous soils, and on volcanic debris of different sorts. It is frequently dominant on poor soils (Cockayne, 1928). Apparently the species does not occur on brown-grey earths (Burrell, 1963).

4.6 INTERACTION WITH PASTURE SPECIES

It was recognized by Levy that L. scoparium would not germinate and establish within a grass sward intercepting practically all the light. Silvester postulated that the reason L. scoparium has not established in abandoned pasture in the Hunua Ranges is because of complete light interception by the undisturbed grass cover. Any factor weakening the sward decreases light interception and consequently increases the chance of weed invasion (Levy, 1940). The main environmental factors controlling pasture vigour and density are (Levy, 1940; Glue, 1957):

```
grazing animal effects,
moisture extremes,
temperature extremes,
insect attack.
```

Soil fertility and animal grazing probably have most influence on the susceptibility of pasture to invasion by L. scoparium.

Under the low fertility conditions characteristic of unimproved hill country, high-fertility demanding grasses and clovers e.g. Lolium perenne (perennial ryegrass), Dactylis glomerata (cocksfoot), Trifolium repens (white clover) do not thrive and much hill land reverted originally because these species were sown after bush burns. Initial establishment was often good but after the bush burn fertility was depleted these species weakened, leaving poor open pasture readily invaded by weeds. (Special Committee Report, 1925). To overcome this problem Levy (1932) advocated sowing such species as Agrostis tenius (Browntop) and Notodanthonia which could grow on low fertility country and maintain a close sward. However, Madden (1940) found that 7.98 million acres of North Island hill pastures composed of low fertility demanding species were most susceptible to invasion by L. scoparium.

The advent of aerial topdressing and clover oversowing provided an easy method of increasing pasture vigour. Practical experience of farmers showed that on land subject to reversion high fertility demanding grasses and clovers thrive after an initial dressing of 5-10 cwt. per acre of superphosphate plus deficient trace elements, followed by annual maintenance dressings of 2-4 cwt. per acre. Establishment of a vigorous sward with the associated increased stock carrying capacity results in L. scoparium ceasing to be a serious
problem (New Zealand Farmer, 83 (42, 43, 45)).

Grazing animals may influence pasture vigour. Dung and urine stimulate pasture growth but trampling and pugging cause opening of the sward. Possibly the most potent influence is in the manner and timing of defoliation. Hard, continuous close grazing is most conducive to weakening the sward and permitting weed invasion (Levy, 1940).

4.7 THE GRAZING ANIMAL

Glue (1957) and Levy (1940) have stressed the effect of the grazing animal, through trampling damage and nipping off the young plant, on weed seedling survival.
4.8 PARASITES AND DISEASE

The most important parasite of I_{0} scoparium is Eriococcus orariensis, a scale insect. The presence of the insect is indicated by the covering of black mould growing on a honey dew produced by the parasite. Death of the host may result from removal of sap (Hoy, 1961), although Mulcock (1950) suggested reduction of photosynthetic activity by the black fungal coating shading the leaves may have an effect. The effectiveness of E . orariensis is limited by a fungus Myrangium thwaitessi, parasitic on the scale insect (Hoy, 1961), especially in high humidity areas of the North Island.

The roots of L. scoparium are parasitised in some lacalities by Gastrodia minor Petrie a non-green orchich (Campbell, 1963) but it is not known what influence this parasite has on vigour.

Seeds of the species can be destroyed by a capsule borer of
the Carjosina genus (Duguale, pers. commo).

Paddock Area: 40ac approx.
Fences:
Streams:

Manuka:
Seed Collecting Tin Sites: ()
Chart Quadrat Sites:
Plan of Variation Sampling Traverse:
1
......... \square sample no

Scale: $\quad \overrightarrow{=} 5$ chain

Grid Ref:
NZMSI,N149(1942)
228314

5. FACTORS EKMITNLD IN THE STUDY

Information was collected on seed characteristics and production in a local I. scoparium stand for comparison with the results of other worters, and an attempt was made to determine seasonal variation in seed shed. Because establishment is dependent on germination and seeding survivel efforts were concentrated on examining:
(1) The effect of light, temperature, seed age, and exposure on seed germination, using a Tetrazolium test to indicate basic seed viabilityo (Burrell and Silvester had already examined the erfect of light and temperature on germination but their results differed.)
(2) The effect of seacon on gemination end seedling survival on bawe ground and in pasture.
(3) The effect of cover, applied fertilizer, and cutting frequency in grassed and bare plots on germination and seedling survival.

Establishment of I. scoparium in sone districts may be favoured by plants genetically capable of faster growth. Variation in growth rate between plants from different districts was studied in a uniform environment. Supplementary phenological and morphologjcal information was collected.

6. THE STUDY AREAS

6.1 LOCATION

Studies were carried out on two areas in the Manawatu. All plot experiments and the variation experiment were carried out on an
area of flat, apparently homogeneous land at Massey University. Field studies were carried out in a farm paddock containing a stand of L. scoparium. The paddock borders part of the Palmerston North City Council water reserve in the Tiritea area and is typical of a belt of country, runing along the Tararua foothills, (see Fig. 3) which is subject to invasion by scrub plants. The location of the paddock, the areas covered by scrub and the siting of sample points are shown in Fig. 1. Indications of the nature of the I. scoparium stand are shown in Figs. 2 and 4, and of the pasture bordering its edges in Figs. 6, 7, 8.
6.2 SOILS

The soil type of the field area is similar to Raumai sandy loam hill soil, a common terrace slope soil of the upper terraces in the Manawatu, and that of the plot area, to Ashhurst silt loam stony phase. Descriptions of these are given by N.Z. D.S.I.R. Soil Bureau, and Pollok (pers. comm.) respoctively. The soil used in the experiment described in Section 13 consisted of a 4 in . overlay of a soil similar in type to the Raumai sandy loam hill soil, on the existing subsoill of the plot area.

Details of the chemical analyses of (a) the overlay soil used in the experiment, and (b) the existing topsoil on the remainder of the plot area are given in Table 1.

TABLE 1

Chemical Malyses of Soils

	pH	$\begin{gathered} \mathrm{Ca} \\ \mathrm{pp} 40,000 \end{gathered}$	fuick Test K pp 250,000	$\stackrel{P}{\mathrm{pp}}{ }_{50 \mathrm{~m}}$	$\begin{aligned} & \text { Exchan } \\ & \text { Ca } \\ & \text { moe. } \% \end{aligned}$	$\begin{gathered} 2 a b l e \\ \text { K } \\ m \cdot e . \% \end{gathered}$	$\begin{gathered} \text { Total } \\ \mathrm{N} \\ \% \end{gathered}$
(a)	5.2	3	4	1	1.8	0.11	0.09
(b)	4.9	7	11	1	5.9	0.6	0.40
	(5.6)		(7)	(10)		(0.3)	(0.3)

Analyses were carried out at Rukuhia Soil Research Station. The possible levels below which a deficiency may exist are shown in brackets (based on information from Agriculture Department and Massey University Soils Dopartment).

6.3 CuIMAME

Mean monthly rainfall, mean monthly temperature, and associated normal values during the period of the experiment are shown in Fig. 5 along with frost days recorded.

7. SEED

All I. scoparium seed for experiments in this study was collected from the Tiritea field area, with the exception of seed from other areas used in the variation trial. Fart way through the study it was found to be possible to select viable seed with the aid of a binocular microscope. Non-viable seeds consist of brown empty testas. Wi.th proper adjustment of lighting, viable seeds can be distinguished by their creamy brown colour and plump appearance. Tests proved that seed so selected had 100% germination ability. This technique was subsequently used to provide seed samples of known viability so reducing the variability of experimental results.

FIGURE 3: PATTERN OF REVERSION IN THE TIRITEA
I. scoparium and Ulex
on gully sides in mid $\frac{\text { eurous }}{\text { distance. (Gorse) growing }}$ Field area
out of photo to left.

FIGURE 4: FOSITIONING OF A GRED CATCHING TIN
Also showing interior of L. scoparium stand.

FIGURES 6, 7, 8

QUADRAT Charms A, B, ant C

Recorded in the Miritea field area 22/3/65

Symbols: as for Figure 2, plus:
Ho.1. Eolcus lenatus
Leontodon hispidus
Plentago lanceolata
$x \times x \quad$ Intinate species mixture
Mioss (principally Thuidium furfurosum)

CHART OF QUAD.A. 22/3/65.

CHART OF QUAD. B. 22/3/65.


```
CHART OF QUAD. C. 22/3/65.
```


FTGURE 5

VARIARION TH SOME FACTORS OF CLIMATE OVLR THE STUDI PERIOD
Data extracted from the meteorological records of D.S.I.R., Palmerston North. A frost day is recorded when the grass minimum temperature is $30.3^{\circ} \mathrm{F}$ or below. Normal values (taken from New Zealand Gazette) based on period 1931-1960 for temperature and 1921-1950 for rainfall.

8. DATA ANALYSIS

Dxperimental results were subjected to analyses of variance in conformity with experimental design, with the exception of all but one of the experiments examining factors influencing germination. In these the significance of treatinent effects was determined by comparing means on a binomial \% basis in which

$$
\text { S.B. } \%=\sqrt{\frac{\%(100-\%)}{N}}
$$

(Glenday, pers. comm.)
Differences between means were taken as significant if greater than three times the standard error of either mean. Resulis of the experiment determining the influence of seed age on germination were subject to analyses of variance on a one way classification basis.

Where the data range was great transformations to $\sqrt{\mathrm{x}}$ or $\sqrt{x+\frac{1}{2}}$ were made。 Percentages were transformed to arc sine $\sqrt{\%}$ and herbage yields to logarithms. None of the variation experiment data or the tiller count data was transformed prior to analysis. Substitutes had to be determined for missing values in some of the variation experiment data.

Where all replicates in a treatment gave more or less zero data this treatment was excluded from the analysis, except in the case of the experiment described in Section 13 which was factorial in design。

The pasture feature data of the experiment described in
Section 13, being supplementary, was analysed only on a plot average basis.

Where treatments were shown to differ significantly by the variance ratio test individual treatment means were compared using the t-test.
9. SEBD VZIGHT, PRODUCHION, AND TIRE OF SHEDDING

9.1 STED METGHT

Seeds of L. scoparium are very small and light. The

individual weight/14,000 selected vi.able seeds ($2.0 \times 0.3 \mathrm{~mm}$. in plan view with triangular to rectangular cross section) was 0.005 mg . This is about one-tenth of the seed weight given by Silvester.

Salisbury (1942) classified plants with seeds of this weight as pioneers of open habitats, the small seed being an importent advantage in dispersal to new habitats, while the low food reserve is of little significance because of the lack of competition in such habitats. However, Grime and Jeffrey (1965) demonstrated that seedlings of many small seeded species were unable to grow out of a layer of shade no deeper than that found in herbaceous communities. Harper and Benton (1966) suggested that small seeds might be an advantage to pioneers of open habitats because they have a larger soil contact/surface area ratio than large seeds and so are less liable to desiccation.

9.2 SEED PRODUCTION

The main flowering season in the Tiritea stand was from November to January but flowering and seed setting occurred at a low rate throughout the year. This corresponded closely to observations by Burrell in Otago but she claimed that winter flowers were male only.

The number of seeds per capsule, $240-470$ with the average around 300 , was similar to that determined by other workers (Section 3.4)。

9.3 The errect of season on seed shed

To determine the seasonal variation in seed fall seed traps were set, up in the I. scoparium stand.
9.3.1 METHIOD

Six tins 15 cm . diameter $\times 20 \mathrm{~cm}$. deep were placed above ground, to avoid interference from stock, throughout the stand (Fig. 4). Jocations are shown in Fig. 1. A 30 cm . diameter filter paper held in place by a spring steel wire hoop, covered the perforated bottom of each tin. The filters were collected monthly, dried, and the number of I. scoparium seeds counted.

9.3.2 RESULTS

The resulis (Table 2 and Fig. 9) show that seed was shed throughout the year with a minor peak in autumn and a major peak in spring. (Original data, analysis of variance: Appendices 1.1, 1.2).

9.4 DISCUSSION

The difference in numbers of seed shed in the corresponding month at the beginning and the end of the experiment was probably due to a difference in environmental conditions affecting the rate of shed, or to a greater number of seed bearing capsules being forned in the season covered by the experiment then in the previous season.

As suggested by Levy and Silvester the production of large numbers of small, extremely light and readily dispersed seed, explains in part the high invasion potential of I. scoparium. This is reinforced by the major seed fall occurring in the periods of the year most favourable for germination. The shedding of some seed throughout

TABLE 2

THE EFPECT OF SEASON ON SEED SHED

Nean number of seeds per tin

Collection Date	Transformed Mean	True Mean
$23 / 12$	5.64	49
$26 / 1$	10.32	162
$22 / 2$	7.24	70
$22 / 3$	9.23	127
$27 / 4$	17.63	388
$24 / 5$	15.24	305
$21 / 6$	14.39	268
$19 / 7$	12.89	209
$16 / 8$	25.58	722
$13 / 9$	26.24	780
$13 / 10$	28.59	972
$8 / 11$	19.52	437
$8 / 12$	14.78	253
S.E.	1.53	
d.05(.01)	$4.32(5.74)$	

Note: Data transformed to \sqrt{x}

the remainder of the year enables germination with the ocurrence of isolated opportunities.

10. GERMIMTTON

10.1 THTRAZOIIUM RIRRYO VJABIITTY PEST

A Tetrazolium embryo viability test was carried out to provide information on basic seed viability for subsequent tests of facturs affecting germination. Tetrazolium (2, 3, 5 triphenyl tetrazolium chloride), as a $1-2 \%$ aqueous solution soaked into seeds, is reduced by dehydrogenases present in the viable embryo resulting in a red colouration, due to the presence of formazin. A detajled account of the test is given by Smith (1952).

10.1.1 METHOD

Four samples each of 100 fresh unsorted seeds were tested by Seed Testing Station personnel for viability by the Tetrazolium method. Another four samp?es each of 400 seeds were germinated on moist blotter in an illuminated 100\% humidity germination cabinet at $65^{\circ} \mathrm{F}$. Counts were made as soon as the first cotyledons appeared (on the fourth day after setting out). At this stage all seeds showing signs of germination were counted. This process was repeated at weekly intervals but no further seeds germinated after the first count.

10.1.2 Results

As indicated in Table 3 basic seed viability is low. There was no significant difference between the results of the Tetrazolium and the germination tests.

TAPLE 3

COMPARISON BZRYGEN TEMRAZOLIUM

AMD GLDMIMTTON TESME
\% germination por sample (a, b, c, d) per treatment

	Tetrazoliun	Germination
a	10	17.5
b	23	17.5
c	15	22.5
d	27	18.7
Mean	18.75	19.05
S.E. $\%$	1.95	0.98

Note: Data analysed on a binomial
$\%$ basis.

10.1 .3 DISCUSSION

These results verify the low germination \% found by other workeris (Section 3.4) and emphasize the importance of a large seed production. The apparent lack of dormancy (except in derkness) and rapid germination must partly offset the disadvantages of small seeds and seedlings in interspecific competition. However, rapid germination of all seed can be a disadvantage in itself as unfavourable conditions may destroy all the seedlings. Year round seed dispersal counteracts this effect.

10.2 THE EFFECT OF ITGHT

In a preliminary test unsorted seeds were kept on moistened blotter in a dsrk germinator except for exposure to about 100 foot csandles of fluorescent light for periods varying from 5 to 40 minutes every day. There was no significant difference in \% germination. To determine the effects of darkness and shorter exposure periods a
further experiment was carried ont.

Abstract

10.2 .1 MTHOD

Croups of unsorted seeds were exposed to about 100 foot candles of fluorescent light for periods of 1, 2, 3 and 5 minutes per day with onc group of seods kept as a control in complete darlmess in a gemmator at $20^{\circ} \mathrm{C}\left(63^{\circ} \mathrm{F}\right)$. Each group consjosted of two lots of 400 meorted seeds set ont on moist blotter. Groups under the light trentments were covered with moist blotter topped by towelling and kept in the dark germinator with the control when not exposed. Counts were carried out as in the experiment described in Section 10.1.1.

10.2 .2 RESULTS

As shom in Table 4 , al.though germination was not completely inhibited by darkness, it was greatiy reduced. Apart from a delay In germination at exposure levels of less thon five minutes final germination \% did not differ significantly between any of the treatments exposed to light. (Original data: Appendix 2).

```
10.2.3 DISCUSSION
```

These results support those of Silvester and the emphasis which he and Levy placed on light at ground level as a vital factor in the ingress of L. scoparium into pasture. It can only be presurned that in the experiment conducted by Burrell some small amount of light must have reached the geeds. Silvester suggested that photosynthesis had to ocour before germination could proceed. However, the complexity of domancy mechanisms in which light is the
trigger has been discussed in reviems by Majer and Poljakoff-Mayber (1963), Ieopold (1964) and others. Investigation of the basis of the light response in I. scoparium seeds was beyond the scope of this study.

10.3 THE ZFRECD OF TEMPERTURE

The following experiment was carried out to determine the influence of temperature on germination.

10.3 .1 MHTHOD

Groups of unsorted seeds were exposed to temperatures of $40,60,65$ and $90^{\circ} \mathrm{F}$ inside illuminated germination cabinets. Each group consisted of two lots of 400 unsorted seeds set on moistened blotting paper. Counts were made as in the experiment described in Section 10.1.1.

10.3 .2 RESULTS

From Table 5 it is apparent that temperature has a significent effect on final gemination $\%$ and rate of germination below $65^{\circ} \mathrm{F}$. However, although the time required for germination increased from 16 deys at $60^{\circ} \mathrm{F}$ to 43 days at $40^{\circ} \mathrm{F}$, the drop in gemination $\%$ between $60^{\circ} \mathrm{F}$ and $40^{\circ} \mathrm{F}$ was negligible. (Original data: Appendix 3).

10.3 .3 DISCUSSION

These resulta differ somewhat from those of Silvester who found that there was 0 decrease in rate of germination bnt not in final germination \% with decrease in temperabure. Perhaps the suaden crop in \% germination at $60^{\circ} \mathrm{F}$ was due to a proporition of seeds reaching a mortality threshold but it could be expected that death due to decreasing lemperature would increase progressively.

TABLI 4

THE RERECT OR LIGHT ON GLRMINATIOM

Nean germination \% ! treatment

$\begin{aligned} & \text { Cime after } \\ & \text { setting out } \end{aligned}$		Exposure Time (min.)				
		0	1	2	3	5
9 days	Vean \%	-	15.35	14.37	16.25	18.50
	: S. $3 . \%$	-	1.27	1.24	1.30	1.37
16 days	Mean \%	0.62	19.75	16.00	17.37	18.50
	= S.E. \%	0.88	1.41	1.29	1.34	1.37

TABLE 5

ThL EFFECT OF TEMPERATURE ON GERAIMAmION Hean germination \% / treatment

Time after setting out		Semperature (OF)				
	Mean \%	0	60	65	90	
16 days	Mean \%	0	14.62	19.37	19.00	
43 days	Mean \%	13.62	14.62	19.37	19.00	
	\pm S.I.	1.21	1.25	1.39	1.33	

Note: Data analysed on a binomial \% basis.

Obviously temperature effects need to be studied at moro levels over a groater xange to give a cloarex picture. As genotype and seed age influence the temperature response of gemination (Grocker and Barton, 1953) these should also be taken into account.

From these results there is no apparent reason, with other conditions favourable, why gemination cannot ocuur throughout the year in the field.

10.4 THE BFFSCT OF SEPD AGE

To examine the effect of this factor on seed germination the experiment described below was carrijed out.
10.4.1 MSTHOD

Unsorted seed was stored in a screwtop jar under normal room conditions. At monthly intervels four samples each of 200 seeds Were placed on moist filter paper in fetri dishes and left to germinate. At some stages of the experiment a $65^{\circ} \pi$ germination cabinet was not available. Under these circumstances the Petri dishes were placed on a bench above a water heated wall radiator, cere being taken to ensure thet desiccation did not occur. This change in experimental conditions may have influenced the results.

Counts of seedlings were made as in the experiment described in Section 10.1.1.
10.4 .2 RTSUTIS

Over the 18 -month period of this experiment no significant reduction in germination \% ocurred. Considerable variation is evident in the results (Table 6), both between months and between

TABLL 6

THE BFFECT OF SEED AOE ON GHMTNATION

Mean germination \%

	Transformed Means	True Means
$16 / 10$	24.52	17.25
$17 / 11$	23.72	16.25
18,12	26.65	20.12
$18 / 1$	26.45	19.87
$18 / 2$	25.90	19.12
$24 / 3$	25.35	18.37
$21 / 4$	23.08	15.50
$20 / 5$	25.11	18.12
$18 / 6$	25.73	18.87
$19 / 7$	26.52	20.00
$18 / 8$	24.20	16.87
$18 / 9$	26.15	19.50
$18 / 11$	27.60	21.50
$17 / 1$	25.28	18.25
$14 / 2$	26.23	19.62
$14 / 3$	26.45	18.87
$11 / 4$	26.16	19.50
$18 / 5$	23.52	16.00
S. $2 . \pm$	0.99	
d.05(.01)	$2.82(3.78)$	

Note: Data transformed to arc sine $\sqrt{\%}$
samples within months, possibly due to the change in experimental conditions mentioned above although this would not explain within month voriation. (Oricinal data, analysis of variance: Appendices 4.1, 4.2).
10.4.3 DTSCUSSIOM

These results do indicate that although the seeds are small with a thin seed coat, they possess a degree of hardiness. Cocker and Barton (1953) emphasized the influence of storage conditions on seed longevity and it is probable that differences in storage conditions accounted for the difference in the above results and those obtained by Silvester.

10.5 THE BFPECT OR RMPOSURE

To determine the effect of exposure on germination the following experiment was conducted.

10.5.1 METHOD

Fine mesh nylon bags each containing 50 viable seeds vere fixed to a bare soil surface, others being buried $1-2$ in. in the soil, early in March. In each troatment there were six bags arranged in a randomized block design, replicated three times. Every two weeks three bags were removed from each treatinent and the seeds tested for viability by germinating on blotting paper in Petri dishes as previously described. Germinations were recorded as normal, abnormal, or as having occurred while the seeds were exposed.

10.5.2 RESULTS

Seed on the soil surface had a relatively short life,

THE SFFECT OF EXPOSURE ON AND BELOW THE
GROUND SURFACE ON GERMINATION
Mean germination \% / treatment.

		Time of Exposure					
		2 weeks	4 weeks	6 weeks	8 weeks	10 weeks	12 weeks
Seeds on	Mean \%	$50.66(8.66)$	$14.00(4.00)$	$2.00(0)$	$2.00(0)$	$0(0)$	$0 .(0)$
surface	\pm S.E. $\%$	$4.08(2.29)$	$2.83(1.60)$	1.14	1.14		
Seeds be-	Mean \%	87.34	74.66	77.34	$78.66(3.34)$	$74.66(4.00)$	$72.00(3.34)$
low surface	\pm S.E. \%	2.71	3.55	3.42	$3.35(1.46)$	$3.55(1.60)$	$3.66(1.46)$

Note: Figures in brackets in the surface section represent \% abnormal germinations with their associated \% S.E.; those in the sub surface section, \% seeds germinated underground and their \% S.E.

Data analysed on a binomial \% basis.
viability being low after four weeks (14\%) and zero after eight weeks. After the first two weeks of exposure embryo damage resulted in abnormal germinations. The viability of seed buried in the soil suffered an initial drop (to 87%) but did not decrease significantly after this point (Table 7). (Original data: Appendix 5).

10.5.3 DISCUSSION

The nylon mesh bags, not being air-tight or waterproof were presumed not to have a great effect on the conditions to which the seed would have been subject if lying directly on or in the soil. In fact, the seeds on the surface were probably subject to much greater desiccation than if unenclosed because of the difficulty in keeping the bags tight against the soil. A small proportion of seed sown directly onto the soil surface in December 1965 survived 14 weeks in the experiment described in Section 11. Macro-fauna would not have the same opportunity for destroying seed enclosed in a bag. However, it was impractical to place seed directly on or in the soil because the minute size would make recovery for viability determination extremely difficult.

The germination of a small proportion of seeds while buried in the darkness of the soil supports the results of the experiment described in Section 10.2. It is doubtful if a buried seed not protected from micro- and macro-organisms by a substantial seed coat would last for any period longer than six months to a year. Also under field conditions the opportunities for burial and subsequent uncovery within the life of the seed would not be great. However, this ability to survive for a time under conditions that, except for
the absence of light, must be favourable to germination, could be of considerable significance to establishment within pasture where periodic defoliation may allow light penetration to ground level. The demonstration of a negligible effective carry-over of dormant seed on or in the soil from one season to the next emphasizes the importance of year round seed shed.

Environmental conditions at the time of the experiment would have considerable influence on the results. The relative differences in survival between seed on the soil surface and buried in the soil would be likely to remain however.
11. THE EFFECT OF SEASON ON GERMINATION AND SEEDLING

An experiment was laid down to determine the effect of season on germination and seedling survival on bare ground.

11.1 METHOD

Twelve plots $61 \times 61 \mathrm{~cm}$. were laid down in a randomized block design, replicated three times。

Each month 81 selected viable seeds were sown singly at
6.16 cm . square spacings in each appropriate plot.

Plots were hoed, raked and firmed prior to sowing. Spacings were determined by a hardboard template (similar to that in Fig. 19), the seed being placed on top of the soil in a small depression made with the end of a pencil. This hollow was intended to prevent the seed being blown away.

The sown plots were examined every fortnight and the number of seedlings recorded.

TABLE 8

THE EFFECT OF SEASON ON GERMINATION AND SEEDLING SURVIVAL ON BARE GROUND.

Mean final seedling number per treatment

Sowing Date	Transformed Means	True Means
$12 / 4$	3.18	9.67
$10 / 5$	2.23	5.00
$7 / 6$	4.84	23.67
$5 / 7$	3.71	13.33
$2 / 8$	3.57	12.33
$30 / 8$	3.64	13.00
$27 / 9$	2.61	6.67
$25 / 10$	-	0
$22 / 11$	-	0.33
$20 / 12$	-	0.67
$31 / 1$	1.03	1.33
$7 / 3$	2.22	4.67
S.E. \pm	0.41	
d.05(.01)	$1.23(1.69)$	

Note: Results from seed sown on $25 / 10$, 22/11, 20/12 excluded from analysis. Data transformed to $\sqrt{\mathrm{x}+\frac{1}{2}}$

FIGURE 10

THE EFFECT OF SEASON ON GERMINATION
AND SEEDLING SURVIVAL ON BARE GROUND.

Each curve shows the changes in seedling numbers from 243 viable seed sown (81 on each of three plots) in any one month. The number at the foot of each curve indicates week of sowing. Discrepancy between this number and the horizontal week and date scale was caused by time required for germination and seedling appearance.

FIGURE 10

11.2 RESULTS

Seed germination and seedling survival on bare ground is subject to considerable seasonal influence (Table 8 and Figure 10). In the year under study germination was most rapid and complete in autumn and early spring. Germination was delayed in winter (June and July) and delayed and often zero or very low over the late spring and summer (October, November, December, January and February). Following frequent rain in April germination occurred on three sets of plots, one set of which had been sown 14 weeks earlier. Although the greatest number of germinations for any one time of sowing occurred in the autumn sowing, the number of seedlings surviving from this sowing was lower than in the winter or early spring months due to the effect of frost lift. Seedling survival was greatest from seed sown in early June. Few or no seedlings established from seed sown in October, November or December. (Original data, analysis of variance: Appendices 6.1, 6.2).

11.3 DISCUSSION

The ability to germinate and survive on bare ground from seed sown in eleven months of the year indicates great physiological plasticity. This could explain why the species can grow in so many diverse environments and has such a high invasion potential. Although the number of seeds germinating and surviving in any one month must be greatly influenced by the environment at the time of sowing and shortly after, there seems to be a definite trend in Fig. 10 which suggests overall seasonal influences rather than day to day variations in environment may have played the more important part in controlling numbers. It is presumed that the major factor influencing germination
and seedling survival on bare ground was frost in winter and desiccation in summer. However, Harper (1956) demonstrated that under low temperatures many germinating seeds have increased susceptibility to pathogen attack. Also at low temperatures increasing soil moisture content increased the susceptibility of germinating seeds to pathogen attack. (Harper, Landragin and Ludwig, 1955).

Differences in plot microtopography between months could have influenced germination. Harper, Williams and Sagar (1965) found the optimum germination of Chenopodium album (fathen) and Brassica oleracea acephala (green marrow-stemmed kale) occurred under different surface conditions, coinciding in each case with maximum water absorption by the seeds. They concluded that the type of contact between seed and soil determined the rate of uptake of water necessary for germination. Consequently the type of contact could be critical in determining whether or not a seed germinates and this contact may be affected by the interaction of size and shape of the seed with topographical variations.

Climatic variations from district to district could be expected to have a major effect. Where summer rainfall is higher there may be a high level of germination and establishment over this period.

Also the topographic variations of hill country under similar climatic conditions may have provided many sheltered moist situations more suited to germination and survival of seedlings on bare ground.

12. THE RFFECT OF SEASON ON GERMINATION AND SEPDLING SURVIVAL IN PASTURE

To determine the seasonal pattern of germination and seedling survival under pasture the following observations were made.

12.1 METHOD

Three quadrats $1 \times \frac{1}{2} \mathrm{~m}$. within two meters of the Tiritea L. scoparium stand were permanently pegged. These areas were selected because of the large numbers of L. scoparium seedlings present. Location of the chart quadrat sites is given in Fig. 1.

At monthly intervals from late summer 1965 to autumn 1966 a quadrat frame divided into one decimeter squares (Fig. 16) was placed over each area and seedling locations with associated vegetation, charted on graph paper (based on the technique given in Weaver and Clements, 1938). The areas covered per quadrat were:

quadrat	A	$30 \mathrm{sq} \cdot \mathrm{dm}$.
"	B	$15 \mathrm{sq} \cdot \mathrm{dm}$.
"	C	$25 \mathrm{sq} \cdot \mathrm{dm}$.

Surface unevenness, causing parallax errors, prevented the whole of each quadrat from being recorded. Charts from each quadrat were later compared to provide information on numbers of new seedings and their associated vegetation, and seedling mortality. However, confusion resulted from the difficulty of recording seedlings in identical positions from month to month. This was overcome by drawing the charts on transparent PVA sheeting, overlaying successive months charts to ensure seedlings were noted down in the same position.

Once new seedlings ceased to appear the chart method was abandoned and replaced by a simple count, note being made of whether the
seedlings were this season's, or older.
To estimate if the numbers of seedlings recorded on the three quadrats were typical of a greater area a transect (not shown in Fig. 1) was run across the open ridge down the middle of the paddock.

On the initial quadrat charts (charted on $22 / 3 / 65$, see Figs. $6,7,8)$ all vegetation was recorded, providing an indication of the structure and composition of the pasture communities involved.

12.2 RESULTS

Because of the major differences in aspect and pasture type, and areas recorded in the three quadrats data was generally impossible to analyse statistically. Changes in total seedling numbers, trends in seedling ingress and mortality, and association between seedling appearance and some habitat features are presented in Figs. 11, 12, 13.

It is apparent that there is a definite seasonal influence on germination and seedling survival. However, much of the variation in seedling appearance would be caused by seasonal variation in seed fall. Seedlings appeared in the pasture from late autumn through to December with a very pronounced peak on all quadrats (Fig. 12b) in October and November, at the same time, or slightly later than the peak in seed fall. At this time current seasons numbers were at a maximum. Fig. 14 indicates seedling size at this stage, and relationship to pasture components. From early December pasture growth exceeded the demands of set-stocked ewes and lambs and by January grass height (extended foliage height) had increased from the winter - early spring level of

FIGURE 11: CHANGES IN TOTAL SEEDLING NUMBERS IN PASTURE WITH SEASON

$1.5-2.5 \mathrm{~cm}$. up to a maximum of 10 cm . depending on site and grazing pattern. During late January or early February all stock were removed from the paddock for two months and grass growth continued unchecked. Etiolation occurred in many L. scoparium seedlings from early December. It is also apparent from Fig. 11 that seedling numbers began to decline rapidly on two of the three quadrats from this time. Quadrat A was on steeper ground with a more scattered cover than the other two (Figs, 6, 7,8) so presumably factors affecting mortality did not come into force until later.

Following the initial rapid fall the decline of seedling numbers appeared to ease over late February - early March (Fig. 12a) even though pasture at this stage had an extended height of 15 cm . in some places. L. scoparium seedlings surviving to this stage were often 5 cm . high with 16 leaves (Fig. 15). Others were only 1.5 cm. high and very suppressed, or etiolated with relatively few leaves. Previous seasons seedlings were $15-30 \mathrm{~cm}$. high (Fig. 16). Mob stocked ewes began grazing the paddock during April and the sharp increase in mortality rate at this time (Figs. 11, 12a) was due to the effect of stock grazing. On quadrat C especially dead seedlings were found lying on the ground after having been pulled free of the soil. Others were nipped back, some to below the lowest leaves. During 1965 observations were carried out through the winter and it was obvious that even greater damage was done to seedlings when cattle were introduced in June. The effect of heavy grazing was twofold however. Although seedling mortality was high as a result, the stock greatly reduced the pasture cover exposing much moss, Nertera and bare ground. The hoof action of cattle was particularly effective in baring the soil.

FIGURE 14: L. SCOPARIUM SEEDLINGS IN PASTURE, NOVEMBER 1965, QUAD. C
The seedlings are shown ringed in white. The habitat in which they appear corresponds to the grass and moss category in Figure 13 or the intimate species mixture mapped in Figure 8.

FIGURE 15: L. SCOPARIUM SEEDLINGS IN PASTURE, MARCH 1966, QUAD. C

FIGURE 16: QUADRAT FRAME, $1 \times \frac{1}{2}$ METER, ON QUAD. C, FEBRUARY 1965
Previous season's seedlings ($15-20 \mathrm{~cm}$. high) showing.

This bare state persisted until October by which time seed shed was at a maximum and germination and seedling growth could occur with little competition from pasture plants.

The number of seedlings surviving one season was small and almost none survived two seasons. However, the survival of one seedling per quadrat over the whole area would be sufficient to form a dense stand.

An indication of the nature of the pasture on each quadrat can be gained from Figs. 6, 7, 8. It is obvious that major differences exist in structure and composition but that all represent poor hill pastures of various types.

Fig. 13 shows that there is no consistent pattern for the three quadrats in the association between seedling appearance and habitat features. To determine whether the associations shown represent a departure from random, the area covered by the repective habitat features in each quadrat would have to be determined. The charts presented in Figs. 6, 7, 8 were drawn on $22 / 3 / 65$ and species cover would have altered considerably, due to grazing and trampling, by the time of seedling appearance. Analysis of these charts would therefore provide little information.

The results of the transect across the bare ridge indicated that only in gaps in the stand edge and within a meter or two of the edge did seedlings appear to be as numerous as in the quadrats. Beyond 12 m . from either side of the ridge it was impossible to find one seedling within a $1 \times \frac{1}{2} \mathrm{~m}$. quadrat. The age of the marginal L. scoparium plants in the stand is 5-8 years (Fig. 2). Thus, even although
there is a large seedling ingress into the surrounding pasture each year the stand has ceased to enlarge. Presumably this is due to the present management policy as outlined previously although there may be some unobserved limiting environmental factor.

Major sources of error in the chart quadrat method were double recording of seedlings along decimeter boundaries due to parallax caused by the quadrat frame not sitting hard down on the uneven surface, the physical discomfort and tedium involved in the method, and the difficulty of relocating many seedlings due to their small size. (Original data: Appendices 7, 8, 9, 10).

12.3 DISCUSSION

It is apparent that although seedlings appear over seven months of the year, the majority appear in the spring, when seed fall is highest. The results of the transect also suggest that seedling ingress occurs in great numbers only where much seed falls i.e. around the margin of the stand. This fact emphasizes the importance of removing all L. scoparium when clearing reverted land, and in clearing from the windward side so that marginal infection from adjacent stands is also at a minimum.

Possibly the most important observation is that even under poor hill country pasture conditions suitable stock and pasture management can prevent the establishment of a large number of seedlings which appear in the pasture each year. Removal of all stock from a paddock for a period sufficient to allow a greater cover of herbage than normal to develop, followed by heavy mob stocking appear to be effective in control. Because most seedlings appear in spring a similar policy
in late spring may prevent seedling ingress altogether. Equally important is the demonstration that heavy grazing may result in large amounts of bare ground, favourable for seedling establishment.
13. THE EFFECT OF COVER, APPLIED FERTILIZER, AND CUTTING FRERUENCY ON GERMINATION AND SEEDLING SURVIVAL IN GRASSED AND BARE PLOTS

These factors were examined under semi-controlled conditions to obtain information on their influence on germination and seedling survival.

13.1 METHOD

A plot experiment arranged in a factorial design replicated four times contained the following treatments:
presence or absence of Browntop
3 rates of applied fertilizer (none)
(low)
(high)
3 cutting frequencies

(no cutting)
(fortnightly
cutting)

(monthly cutting)

Black (1958) has discussed the use of boxes to obtain a high degree of control without loss of application to field conditions. In this case the extra cost and effort required to set up a full scale box experiment necessitated a compromise using wooden frames set on the ground and filled with soil. This enabled the experiment to be conducted on a flat relatively homogeneous area with a monospecific sward and known fertility differences, thus simplifying and reducing the number of variables and interactions.

13.1.1 PLOT CONSTRUCTION AND SWARD ESTABLISHMENT

The experiment was laid out using $61 \times 61 \mathrm{~cm}$. plots delimited by wooden frames 10 cm . deep set 15 cm . apart on the plot sub soil. To ensure a sufficiently low level of fertility on the appropriate plots, all the frames were filled with a soil similar to Raumai sandy loam hill soil (see Table 1 for chemical analyses) which had been mixed and sieved through a 1.3 cm . mesh prior to being placed in the frames. Care was taken to compact all plots to the same degree so that effects on root penetration and soil water relations would be similar. Pure Browntop seed of 90% viability was sown on the grass treatment plots during the summer of 1964-65 at the rate of $1.62 \mathrm{gm} . / \mathrm{plot}$. Irrigation using a soak hose spray system was carried out when necessary.

Black (1961) demonstrated that a 2 in (5.1 cm.) border where no edge restrictions on roots or shoots were applied, was sufficient to give homogeneity of Trifolium subterraneum plants. Although a 3 in. (7.6 cm.) border around the inside of each frame had been allowed for, with the growth of the grass it was obvious that there was considerable edge effect, although not often extending further than 3 in . (7.6 cm 。) into the plots. To reduce edge effect soil between the frames was excavated to 8 in. (20.3 cm.) and replaced with sawdust topped with shingle. No shades to prevent lateral illumination were erected.

The presence of a fungus disease, tentatively identified in the field as Rhizoctonia brownspot by Dr. Latch of D.S.I.R., on the Browntop necessitated spraying with Thiram at a rate equivalent to $1 \frac{1}{2}-2 \mathrm{lb} / 100 \mathrm{gal}$. water at ten days intervals during danger periods. These coincided with warm moist autumn and spring conditions. Unfort-
unately, control was difficult and considerable damage was done to some plots, resulting in an uneven tiller distribution and unthrifty growth.
D.D.T. was also sprayed on the plots ($\frac{1}{2}-1 \mathrm{lb} / 100 \mathrm{gal}$. water) in the autumn and spring to control macro-organisms which may have damaged the grass or the L. scoparium seedlings.

Applications of fertilizer to give the desired fertility levels were based on recommendations by Levy (1949) for bowling greens. Nitrate of soda, superphosphate, and potassium chloride combined to give an $N: P: K$ ratio of $3: 2: 3$ were applied as a split dressing in April and August at the rate of 65.0 gm . per plot for the high fertilizer application rate treatment and 32.5 gm . per plot for the low fertilizer application rate treatment.

Cutting with hand shears $1.5-2.5 \mathrm{~cm}$. above ground was carried out from mid winter as dictated by treatment. Clippings were discarded.

Oven dry herbage weights, inside the 7.6 cm . buffer strip, were recorded from the time the L. scoparium seed was sown until the experiment finished.

The appearance of plots prior to the autumn sowing is shown in Fig. 17 •
13.1.2 SOWING THE L. SCOPARIUM SEED

Field observations indicated greatest ingress of seedlings in spring and sowing was carried out accordingly. On each plot at the beginning of September 196 selected viable seeds were sown. Four seeds were sown at each of 49 points spaced 7.6 cm . apart leaving a
7.6 cm . buffer around the plot edge. Sowing was carried out using a small funnel and a sheet of hardboard with holes drilled at suitable intervals to mark the spacing (Fig. 19). On the grassed plots the grass under the holes was parted and the L. scoparium seed sown on the ground. On the bare plots the seed was sown at each point into a small depression made on the soil surface with a pencil. All bare plots were surface hoed, raked and firmed prior to sowing. Sowing points were marked by coloured headed pins in the cut grass plots, by lengths of fine wire in the uncut grass plots (Fig. 20), and not at all on the bare plots.

Sowing was followed by irrigation (as described in Section 13.1.1) whenever the bare plots appeared likely to dry out on the surface. Sufficient water was applied to keep the soil surface moist for 24 hours. The irrigation was designed to remove any differential water stress effects from the experiment as a whole and from between grassed and ungrassed plots.

Spraying the grassed plots with Thiram for control of Rhizoctonia brownspot resulted in the failure of this seed sowing. (Appendix 25). The plots were resown between $22 / 3 / 66$ and $24 / 3 / 66$. Treatment fertility differences were re-established by adding Nitrate of Soda at the rate of 9.2 and 4.65 gm . per plot to the high and low fertilizer application rate treatments respectively, at monthly intervals for three months prior to sowing. After the last application the plots were well watered before sowing to ensure that the fertilizer could have no direct effect on germination. Grass growth was also stimulated by irrigation. Thiram spraying was ceased one month before seed sowing.

FIGURE 19: TEMPLATE AND FUNNEL FOR SEED SOWING

.FIGURE 20: MARKING WIRES INSERTED IN UNCUT GRASS PLOTS

FIGURE 21: TRANSECT DELINIATION FOR GRASS PLOT PROFILE DIAGRAMS

Germination and seedling survival were recorded by seedling counts made every fortnight. The first full count was made on the 7/4/66 and the last count a month later on the $4 / 5 / 66$. When making counts the outer row of seedlings in each plot was recorded separately in case edge effects were present. Counts give no indication of differences in growth or etiolation between seedlings in different treatments but growth was followed for too short a period to warrant measuring dry weights, stem length, and leaf numbers.

13.1.3 RELATIVE ILLUMINANCE

In this experiment
R.I. $=\frac{\text { light value } 0.63 \mathrm{~cm} \text {. above ground under Browntop }}{\text { light value in the open }}$
L. scoparium requires light for germination and a relatively high illuminance for seedling survival. In this experiment it was presumed that treatments would influence germination and seedling survival through soil surface shading.

To determine inter-treatment differences in relative illuminance near ground level a light meter causing minimum disturbance in short pasture and sensitive to radiation $400-700 m \mu$ in wavelength was constructed (Appendix 26). Using this meter light values were recorded during the second week of March, just prior to the cutting of the fortnightly and monthly cut grass plots and before the autumn sowing of L. scoparium seed. Six readings 15 cm . apart were taken per plot on a systematic pattern in a manner such that personal bias was minimized. Another set of 20 readings per plot at 7.5 cm . spacings was taken at the end of the experiment during the second week of May, just prior to applying all cutting treatments. Readings on both days were taken in early afternoon under sunny conditions with some scattered
cloud. Light values in the open were checked after every two or three readings.

Relative.illuminance differences between the grass plots must have been caused by differences in community structure resulting from the fertilizer and cutting treatments. Pasture features normally measured to provide information on structure involve destructive sampling. Incorporation of sufficient area to allow destructive sampling would have made the experiment impractical. To overcome the problem profile diagrams were drawn. Tiller numbers and Leaf Area Indices were determined for all plots at the end of the experiment.

13.1.4 PROFILE DIAGRAMS

For each grassed plot a drawing was made on graph paper of the side view of a $30 \times 0.5 \mathrm{~cm}$. band in the middle of the plot, at right angles to the edge. A 30 cm . ruler with pins 0.5 cm . long projecting from its edge at 2 cm . intervals was used to delimit the band at ground level (Fig. 21). All tillers and leaves coming from this band were drawn as accurately as possible. Leaf width half way from the tip was measured or estimated. Time involved varied from one-quarter hour for frequently cut plots to one-half hour for uncut plots. By counting the number of tillers recorded and by calculating the area of the leaves shown (length x width) estimates of tiller density and leaf area indic (L.A.I.) were derived.

Profile diagrams were drawn for each plot a fortnight before the autumn sowing of L. scoparium seed (3-5 days before all the plots in the cutting treatments were cut) and again at the end of the
experiment, nine days after the previous fortnightly cut.

13.1.5 PERCENTAGS BARE GROUND

Percentage bare ground in the cut grass treatments was determined at the end of the experiment by point analysis. On each plot 117 - 132 points were taken, first hit only being recorded. Cover points included hits on stem as well as leaf. Points were taken at 5 cm . spacings with the plot being resampled at right angles to give the desired number of points.

13.1.6 LEAF AREA INDEX

Leaf area was taken as the product of width half way from the tip, and length. Because of the regular taper of Browntop leaves this was considered to be sufficiently accurate. The plots were finally harvested during the period $18-25 / 5 / 66$, one replicate at a time. Leaf area indices were determined only for plots in reps. C and D. From a sub-sample divided into leaf and stem, 40 leaves were taken at random and measured. All material was dried in an oven for 36 hours at $80^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$ and then weighed. The proportion of leaf to stem ratio from which leaf weight of the total plot herbage could be determined.

$$
\begin{aligned}
& \text { LAI }=\frac{(W)(A)}{P} \\
& W=\text { total leaf weight } \\
& A=\text { leaf area/unit weight determined from } \\
& \text { measured leaves }
\end{aligned}
$$

13.1.7 TILLER NUMBERS

Tiller counts were made on ten 5 cm . diameter cores taken
systematically from each grassed plot after all other measures had been made. A further ten samples from each of the high rate of applied fertilizer frequently cut grassed plots in reps. A and D, and each of the low rate of applied fertilizer monthly cut plots in all reps., were later taken.

13.2 RESULTS

(Bracketed figures in the text are true mean treatment values per plot.)

13.2.1 GERMINATION AND SURVIVAL OF L. SCOPARIUM

Seedlings were observed in fortnightly cut grass plots on $28 / 3 / 66$, less than a week after seed sowing. By $31 / 3 / 66$ seedlings were appearing on the bare plots.

Preliminary analysis showed no difference between results from outer row seedlings and the remainder so these counts were combined.

Analysis of the final seedling count gave the following results (Table 9, Fig. 28):
(1) Seedling numbers differed significantly between the three cutting treatments, most seedlings occurring on fortnightly cut plots (55) and least on uncut plots (17).
(2) Seedling numbers were significantly greater on plots without applied fertilizer (60) than on plots with low or high rates of applied fertilizer (28 and 19 respectively).
(3) Uncut grass plots had few or no seedlings, monthly cut-grass plots did not differ significantly from bare plots but fortnightly cutgrass plots had significantly more seedlings (83) than bare plots (26).

TABLE 9

THE EFFECT OF COVER, APPLIED FERTILIZER, AND CUTTING FREQUENCY ON GERMINATION AND SEEDLING SURVIVAL IN GRASSED AND BARE PLOTS

Mean seedling number/treatment

Initial Count 7/4/66

Fertilizer	Cover	Mean	$\begin{gathered} \text { Fortnightly } \\ \text { Cut } \end{gathered}$	Monthly Cut	Uncut
0	grass bare	7.56 (67)	$\begin{array}{r} 12.17(148) \\ 5.63(36) \\ \hline \end{array}$	$\begin{array}{rr} 10.35 & (109) \\ 6.40 & (44) \\ \hline \end{array}$	$\begin{aligned} & 3.54(12) \\ & 7.29(54) \\ & \hline \end{aligned}$
L	$\begin{aligned} & \text { grass } \\ & \text { bare } \end{aligned}$	5.88 (39)	$9.54(93)$ $5.99(36)$	$5.28(31)$ $5.52(32)$	$\begin{aligned} & 3.63(13) \\ & 5.32(32) \end{aligned}$
H	$\begin{aligned} & \text { grass } \\ & \text { bare } \end{aligned}$	5.20 (33)	$\begin{array}{r}9.88 \\ 3.53 \\ \hline\end{array}$	$5.18(29)$ $4.82(23)$	3.44 $4.38(23)$
$\begin{array}{r} \text { S.E. } \\ \text { d.05(.01) } \end{array}$		$\begin{gathered} 0.35 \\ 0.99(1.32) \\ \hline \end{gathered}$		$\begin{gathered} 0.85 \\ 2.42(3.24) \\ \hline \end{gathered}$	
Mean cutting frequency effect			7.79 (71)	6.25 (45)	4.60 (24)
$\begin{array}{r} \text { S.E. } \pm \\ \mathrm{d.05(.01)}^{2} \\ \hline \end{array}$				$\begin{gathered} 0.35 \\ 0.99(1.32) \\ \hline \end{gathered}$	
	grass bare	$7.00(61)$ $5.43(32)$	$0 \cdot \square$		
S.E. \pm 0.28 d.05(.01) $0.81(1.08)$					

Final Count 4/5/66

Fertilizer	Cover	Mean	$\begin{gathered} \text { Fortnightly } \\ \text { Cut } \end{gathered}$	Monthly Cut	Uncut
0	grass bare	6.88 (60)	$\begin{array}{rr} 11.70 & (137) \\ 5.93 & (40) \\ \hline \end{array}$	$\begin{aligned} & 8.82(84) \\ & 6.17(44) \\ & \hline \end{aligned}$	$\begin{array}{lr} 1.37 & (2) \\ 7.28 & (52) \\ \hline \end{array}$
L	grass bare	4.72 (28)	$7.12(57)$ $5.40(29)$	4.32 (20) 5.54 (35)	$\begin{array}{ll}0.84 & (0) \\ 5.1 & (29)\end{array}$
H	grass bare	3.71 (19)	$\begin{array}{r}7.12 \\ 3.00 \\ \hline\end{array}$	$3.20(12)$ 4.30 (18)	0.84 3.82
S.E. \pm 0.39 $\mathrm{d.05(.01)}$ $1.13(1.51)$			$\begin{gathered} 0.96 \\ 2.76(3.68) \end{gathered}$		
Mean cutting frequency effect			6.71 (55)	5.39 (36)	3.20 (17)
$\begin{array}{r} \text { S.E. } \pm \\ \mathrm{d} .05(.01)^{ \pm} \end{array}$			$\begin{gathered} 0.39 \\ 1.13(1.51) \\ \hline \end{gathered}$		

	grass bare	$5.04(41)$
	$5.17(30)$	
S.E. \pm	0.32	
d.05(.01)	$0.93(1.24)$	

Note: $\quad 0=$ no applied fertilizer
$L=$ low fertilizer application rate
$\mathrm{H}=$ high fertilizer application rate
Data transformed to $\sqrt{x+\frac{1}{2}}$
Bracketed figures in main body of tables represent true means.

FIGURE 22

THE EFFECT OF COVER, APPLIED FERTILIZER, AND CUTMING FREQUENCY ON GERMINATION AND SEEDLING SURVIVAL IN GRASSED AND BARE PLOTS
(a) Mean treatment numbers from initial count
(b) " " " final count
$0=$ no applied fertilizer
$L=$ low rate of applied fertilizer
$H=$ high rate of applied fertilizer
UC $=$ uncut
$4 \mathrm{C}=$ monthly cut
$2 \mathrm{C}=$ fortnightly cut

FIGURE 22

FIGURE 23: GRASS PLOT PROFILE DIAGRAMS

$$
\begin{aligned}
& \text { No applied fertilizer treatment } 10 / 3 / 66 \text {. } \\
& \text { Numbers in the profiles are leaf widths (mm.) }
\end{aligned}
$$

FIGURE 24: GRASS PLOT PROFILE DIAGRAMS
No applied fertilizer treatment 5 and $6 / 5 / 66$.

FIGURE 25: GRass plot profile diagrams

$$
\begin{aligned}
& \text { Low rate of applied fertilizer treatment } \\
& 10 \text { and } 11 / 3 / 66 \text {. }
\end{aligned}
$$

FIGURE 26: GRASS PLOT PROFILE DIAGRAMS
Low rate of applied fertilizer treatment 5/5/66.

FIGURE 28: GRASS PLOT PROFILE DIAGRAMS

$$
\begin{aligned}
& \text { High rate of applied fertilizer treatment } \\
& 5 \text { and } 6 / 5 / 66 \text {. }
\end{aligned}
$$

The initial count differed from the final one in that seedling numbers were higher on low and high rate of applied fertility grassed plots. (Original data, analyses of variance: Appendices $11.1,11.2)$.

13.2.2 RELATIVE ILLUMINANCE

Results of the analysis of variance of R.I. values determined on $9 / 5 / 66$ (Table 10) show that:
(1) R.I. was significantly greater within fortnightly cut swards (10\%) than in monthly cut swards (5\%). Little or no light penetrated uncut swards.
(2) R.I. was significantly greater within unfertilized swards (14\%) than in those fertilized at low or high rates (5% and 4% respectively)。

Values determined on $14 / 3 / 66$ differed in that the R.I. within fortnightly cut swards was much lower (6%), not differing significantly from the value in monthly cut swards. R.I. under low and high rates of applied fertilizer was also lower than the equivalent 9/5/66 values. (Original data, analyses of variance: Appendices 12.1, 12.2).

13.2.3 PROFILE DIAGRAMS

Differences in community structure between treatments for rep. C are shown in Figs. 23-28.

It is apparent that:
(1) Uncut plots had long rank herbage and fewer tillers. For clarity the stems and leaves are shown erect. In fact these formed a tangled mat up to 25 cm . thick.

RBLATIVE ILLUMINANCE

Mean \% R.I./treatment.
$14 / 3 / 66$

Applied Fertilizer		
0	L	H
19.39 (11.60)	7.61 (2.32)	6.16 (1.20)
$\begin{aligned} & \text { S.E. }= \pm 1.35 \\ & \text { d.05 }(.07)=4.07(5.63) \end{aligned}$		
Cutting frequ	y: tnightly thly	$\begin{aligned} & 12.69(6.00) \\ & 9.41(4.08) \\ & \hline \end{aligned}$
$\begin{aligned} & \text { S.E. } \pm \\ & \text { d.05(.01) } \end{aligned}$		$\begin{aligned} & 1.13 \\ & 3.32(4.60) \end{aligned}$

9/5/66

Applied Fertilizer		
0	L	H
21.24 (13.71)	12.25 (4.86)	10.92 (3.96)
$\begin{aligned} & \text { S.E. }= \pm \pm .11 \\ & \text { d.05 } .01)=3.34(4.63) \end{aligned}$		
Cutting Frequ	cy: rtnightly nthly	$\begin{aligned} & 17.38(9.78) \\ & 12.23(5.24) \end{aligned}$
$\begin{aligned} & \text { S.E. }= \pm \pm .90 \\ & \text { d.05 }(.01)=2.71(3.75) \end{aligned}$		

Note: Data transformed to arc sine $\sqrt{\%}$ Bracketed figures in main body of the tables represent true means.
(2) Fortnightly cut plots had the shortest herbage.
(3) The amount of herbage was reduced under all cutting treatments on plots without applied fertilizer, especially in comparison with high rate of applied fertilizer plots.
(4) The amount of herbage present on fortnightly and monthly cut plots decreased over the period 10/3/66-6/5/66.

Rep. C. profile diagrams were presented because these showed treatment differences most clearly.

13.2.4 LEAF AREA INDEX

Analysis of leaf area indices determined on material cut 18-25/5/66 gave the following results:

TABLE 11
LEAF AREA INDEX (LEAF MEASUREMENT AND DRY WDIGHT BASIS)
Mean LAI/treatment
19/5/66

Fortnightly Cut	Monthly Cut	Uncut
$1.20(0.94)$	$1.52(1.81)$	$3.02(8.90)$
Applied Fertilizer		
0	$1.74(3.18)$	
L	$2.03(4.44)$	
H	$1.96(4.42)$	
S.E. $= \pm \pm$	0.14	
d.05(.01).	$=0.45(0.65)$	

Note: Data transformed to $\sqrt{x+\frac{1}{2}}$
Bracketed figures in the main body of the table represent true means.
(1) L.A.I. was significantly higher on uncut plots (8.90) than on fortnightly or monthly cut plots (0.9 and 1.8 respectively).
(2) Fertility treatments did not significantly affect leaf area.

Although the actual values differ, L.A.I.'s determined from profile diagrams drawn on $10 / 3 / 66$ and $5 / 5 / 66$ present a similar

TABLE 12
LEAF AREA INDEX (PROFILI DIAGRAM BASIS)
Mean LAI/treatment

9/3/66

Fortnightly Cut	Monthly Cut	Uncut
$1.62(2.17)$	$2.18(4.60)$	$3.30(10.75)$
Applied Fertilizer		
0	$1.91(3.63)$	
L	$2.50(6.50)$	
H	$2.70(7.38)$	
$=$	0.11	
S.E.		
d.05(.01)	$=0.31(0.42)$	

Fortnightly Cut	Monthly Cut	Uncut
$1.45(1.65)$	$1.58(2.08)$	$2.68(6.89)$
Applied Fertilizer		
0	$1.58(2.30)$	
L	$2.07(4.21)$	
H	$2.06(4.12)$	
S.E. $=$	\pm	$0.067($
d.05(.01)		
		$0.196(0.27)$

Note: Data transformed to $\sqrt{x+\frac{1}{2}}$ Bracketed figures in main body of the tables represent true means.
pattern (Table 12) except for a significant decrease in L.A.I. on plots with no applied fertilizer. Also L.A.I. determined from 9/3/66 profile diagrams was significantly higher on monthly cut plots, but still lower than on uncut plots. L.A.I. decreased on all plots between $10 / 3 / 66$ and $5 / 5 / 66$ except on those without applied fertilizer. (Original data, analyses of variance: Appendices 13.1, $13.2,14.1,14.2)$.

13.2.5 TILLER NUMBERS

The results of analysis of tiller numbers determined from plugs taken on $6 / 6 / 66$ show that:

TABLE 13

TILLER NUMBERS (CORE BASIS)
Mean core number/treatment. Core area $20.3 \mathrm{sq} . \mathrm{cm}$.

6/6/66

Fortnightly Cut	Monthly cut	Uncut
89.95 (450)	80.13 (401)	24.29 (121)
Applied Fertilizer		
0	$62.91(315)$	
L	$70.85(354)$	
H	$60.62(303)$	
S.E. $= \pm$	4.90	
d.05(.01) $=$	$14.30(19.43)$	

Note: Data not transformed. Bracketed figures in main body of table represent tillers/sq.dm. x 10 gives approximate number of tillers/sq.ft.
(1) Tiller numbers were significantly lower on uncut plots ($121 / \mathrm{dm}_{\mathrm{o}}{ }^{2}$) than on fortnightly or monthly cut plots (450 and $401 / \mathrm{dm}^{2}{ }^{2}$ respectively).
(2) Tiller numbers did not differ significantly with different fertilizer treatments.

An identical pattern of results with similar values was shown

TABLE 14

TILLER NUMBERS (PROFILE DIAGRAM BASIS)
Mean transect number per treatment. Transect area $15 \mathrm{sq} . \mathrm{cm}$.

9/3/66

Fortnightly Cut	Monthly Cut	Uncut
56.67 (378)	59.08 (394)	29.00 (193)
Applied Fertilizer 0 L H	$\begin{aligned} & 48.50(323) \\ & 50.92(339) \\ & 45.33(302) \end{aligned}$	
$\underset{\mathrm{d.O} .05(.01)}{\text { S.E. }}= \pm$	$\begin{aligned} & 3.26 \\ & 9.48(12.88) \end{aligned}$	

4/5/66

Fortnightly Cut	Monthly Cut	Uncut
72.25 (482)	$52.58(350)$	27.00 (180)
Applied Fertilizer		
0	$45.25(302)$	
I	$60.17(401)$	
H	$46.42(309)$	
S.. $=$ d.05(.01)$\quad=\quad 12.32$		

Note: Data not transformed.
Bracketed figures in main body of table represent tillers/sq.dm.
x 10 gives approximate number of tillers/sq.ft.
by tiller number determined from 10/3/66 profile diagrams (Table 14). However, tiller numbers determined from 5/5/66 profile diagrams (Table 14) were significantly greater on fortnightly cut plots and on low rates of applied fertilizer plots. (Original data, analyses of variance: Appendices 15.1, 15.2, 16.1, 16.2).

13.2.6 PERCENTAGE BARE GROUND

The results of analysis of percentage bare ground values
(Table 15) show that:
TABLE 15
\% BARE GROUND IN GRASSED PLOTS AS DETERMINED BY POINT ANALYSIS

Mean \% / treatment.
9/5/66

Applied Fertilizer				
0		L	H	
47.42 (54.22)	40.69 (42.		38.54 (38.94)	
$\begin{aligned} & \text { S.E. }= \pm \begin{array}{l} 1.32 \\ \text { d.05(.01) }= \\ 3.96(5.49) \end{array} \end{aligned}$				
Cutting Frequency fortnightly monthly cut		$43.30(47$ 41.14	.15)	
$\begin{aligned} & \text { S.E. }= \pm \\ & \text { d. } .05(.01) \end{aligned}=3.07(4.48)$				

Note: Data transformed to arc sine $\sqrt{\%}$ Bracketed figures in main body of table represent true means.
(1) The \% bare ground did not differ significantly between fortnightly and monthly cut plots (47% and 43%) respectively. Uncut plots were assumed to have complete cover (Fig. 17).
(2) Plots with no applied fertilizer had significantly more bare ground (54\%) than plots with low or high rates of applied fertilizer (43\% and 39% respectively)。
(Original data, analysis of variance: Appendices 17.1, 17.2).

TABLE 16

HERBAGE YIELDS

20/5/66		
Applied Fertilizer		
0	L	H
$\begin{aligned} & 1.0435 \\ & (11.24) \end{aligned}$	$\begin{array}{r} 1.1717 \\ (14.95) \\ \hline \end{array}$	$\begin{array}{r} 1.1789 \\ (15.19) \end{array}$
$\begin{aligned} & \text { S.E. }= \pm \pm .016 \\ & \text { d.05 }\left(.0 \frac{1}{1}\right)=0.049(0.068) \end{aligned}$		
```Cutting fortnigh cut monthly cut```		
$\begin{aligned} & \text { S.E. }= \pm \pm .013 \\ & \text { d.05 }\left(.0 \frac{1}{1}\right)=0.04(0.056) \end{aligned}$		

Note: Data transformed to logs. Bracketed figures in main body of tables represent true means.

### 13.2.7 HERBAGE YIELDS

The results of analysis of herbage yields from plots cut between 18 - 25/5/66 (Table 16) show that :
(1) Fortnightly cut plots yield significantly less ( 12.9 gm .) than monthly cut plots ( 14.7 gm.$)$.
(2) Plots with no applied fertilizer had a significantly lower yield ( 11.2 gm .) than plots with low or high rates of fertilizer application ( 14.9 gm . and 15.2 gm . respectively).

With the exception of plots, without applied fertilizer the yield on all plots decreased between 13/4/66 and 18-25/5/66. (Original data, analyses of variance: Appendices 18.1, 18.2).

Comparison of the results shows that R.I. values varied between treatments in exactly the same fashion as seedling numbers. For example, both R.I. values and seedling numbers are highest on plots without applied fertilizer and lowest on uncut plots. Thus germination and seedling survival appear to be dependent on R.I. or some closely correlated factor, supporting the hypothesis put forward in Section 13.1.3.

The differences in R.I. between treatments must have resulted from differences in the amount of herbage shading the ground. Of the pasture features measured to indicate the structure of the plot communities, herbage yield was the only one showing an identical relationship to R.I. under all treatments. It was thought that L.A.I. and \% bare ground would have given accurate estimates of the amount of herbage shading the ground but neither measure differentiated significantly between fortnightly and monthly cutting treatments
(except for L.A.I. determined from $10 / 3 / 66$ profile diagrams). Tiller numbers were notinfluenced by the treatments except under no cutting conditions (discounting the results of analysis of tiller numbers determined from 5/5/66 profile diagrams).

The increase in R.I. between $14 / 3 / 66$ and $9 / 5 / 66$ was paralleled by decreasing L.A.I. and herbage yields.

In comparison with conventional methods of measuring tiller numbers and I.A.I., the estimates of these features from profile diagrams showed identical trends in most cases although the actual values differed. Differences are also obvious visually. Considering the errors inherent in measuring or estimating leaf width and length under field conditions and the difficulty in accurately delimiting the $30 \times 0.5 \mathrm{~cm}$. band from which the profile diagram was drawn, these results suggest that the profile diagram method may have application in recording differences in pasture structure.

### 13.3 DISCUSSION

The most significant features of this experiment were the demonstration that:
(1) Few or no seedlings would germinate and survive in uncut grass.
(2) Germination and seedling survival was highest on grass plots without applied fertilizer than on any other, including bare plots.
(3) Where large numbers of seedlings did appear mortality was greatest under low and high fertility conditions.

In all cases low seedling numbers were coupled with low illumination values.

These results fully support the hypothesis of Levy (Section 4.6) that maintenance of a complete ground cover by use of fertilizer and sound stock management is essential for control of L. scoparium. The results of other workers (Lazenby, 1953; Harper and Chancellor, 1959) also indicate that weed seedling numbers are normally reduced in the presence of grass especially under conditions of high fertility.

In this experiment seedling numbers were higher and germination was faster on fortnightly cut grass treatments than on bare ground. Also, relative germination and seedling survival on bare ground was lower than on bare ground in some sowing months of the experiment described in Section 11. Because of warm temperatures at the time of the experiment moisture stress may have occurred on bare plots in spite of irrigation. Lazenby (1955) found that establishment of Juncus effusus was greater under patchy grass than on bare ground because of the adverse effect direct exposure to sunlight had on germination.

Except on uncut grass plots it is doubtful that the direct influence of shading was responsible for the pattern of seedling numbers recorded in this experiment. Only under uncut plots was there insufficient light for germination. Consequently initial seedling counts should have been higher under all other grass treatments. After a period of time it could be expected that seedling survival would be less in plots with lower relative illuminance where light values were possibly below compensation point. However, as decapitated seedlings were observed it was considered possible that low seedling numbers in the more shaded treatments may have resulted from mortality caused by greater populations of macro- and micro-organisms.

Favouring the presence of pests and diseases was regarded by Harper (1964) as a competive interaction capable of influencing plant survival。

Unfortunately the fate of seedlings in this experiment was not followed for a longer period. It is conceivable that at the end of two or three months only cut plots without applied fertilizer would contain I. scoparium seedlings. Even so the results show that seedling ingress can be reduced, in some circumstances to zero, by pasture manipulation. As suggested by Levy the vital factor is shading at the ground surface. Once seedlings have emerged above the pasture canopy they cannot be controlled without grazing. At a still later stage they would have to be cut.

## 14. VARIATION IN I. SCOPARIUM

There is great morphological variation in L. scoparium (Section 2). The basis of this variation has not been determined but Burrell suggested that most is a plastic response to environmental influences. The amount and form of physiological variation within the species is unknown.

Establishment of plants within pasture must be partly dependent on seedling growth rate. Seedlings with a high rate of growth could have a greater chance of escaping pasture shade. To determine whether establishment of I. scoparium in some districts may be favoured by individuals genetically capable of faster growth, variation in growth rate was studied in a uniform environment. To provide supplementary information on the degree of genetic differentiation between plants from different areas studies were made on variation in some leaf features. A preliminary study had shown that these leaf features
differed significantly between some Australian species of Leptospermum (Appendices $19.1,19.2,19.3$, Fig. 31). Records of phenological variation were also made.

### 14.1 METHOD

Seeds were collected from one or two bushes in each of eleven districts (Fig. 29). Seedlings from this seed were potted, and after six months in a cold frame, transplanted into open ground in May 1965. Plants were spaced two feet apart in a randomized block design replicated nine times.

In May 1966 accumulated differences in growth rate between the even aged seedlings were assessed by height and crown width measures (based on the average of two measures made at right angles).

Leaf features measured on these plants were:
(1) density (i.e. the number of leaves per cm . of branch).
(2) width mid-way along the leaf, and length.

These measures were used to derive indices of leaf shape, (L) (W) and (L) (W)

Leaf features were also measured on herbarium specimens collected in the eleven areas where seed was gathered (Fig. 29), and on samples collected from 40 shrubs in the Tiritea field area (a plan of the sampling traverse is shown in Fig. 1). Measures were made on a subsiduary branch about 20 cm . long. Shoots up to 7.5 cm . long were carried in the axils of the lower leaves. Leaf density was determined on three of these shoots and the other features were derived from measures made on four mature leaves attached to the branch. Records of bud break and flowering were made from fortnightly observations of
(a) FROM HERBARIUM SPECIMENS
(b) FROM EXPERIMENTAL GARDEN SPECIMENS

the experimental garden plants.
14.2 RESULTS

Analysis of crown width and height measures shows that (Table 17, Fig. 30) significant differences between some districts occur in these cumulative indicators of growth rate. The district means of each measure can be divided into three significantly different groups with indistinct boundaries. There is no apparent correlation between the measures. The graph of mean crown width against height for each area produces a moderately compact cluster (Fig. 30). Although it is apparent that the environment was not completely uniform (Appendix 23.2) most of these differences must have been genetic in origin.
(Original data, analyses of variance: Appendices 23.1, 23.2.).

The results of analysis of leaf feature measurements -
(1) on experimental garden plants (Appendix 21.3) show that mean values of leaf features when arranged in order of size can be broken into three or four significantly different groups. Some boundaries between groups are wide, covering up to five district means not differing significantly from either group. The hierachical analyses of variance show that significant differences between plants from the same area occur. As for the above section most of these differences must have been genetic in origin.
(2) on herbarium specimens (Appendix 20.3) show that, as for experimental garden specimens significant differences do occur between areas in the features measured although these could be

## GROWTH RATE INDICATORS IN L. SCOPARIUM

(EXPERIMENTAL GARDEN SPECIMENS)

Mean Height and Crown Width


Note: Data not transformed.
Bracketed figures in main body of table represent area code (see Fig. 29).


FIGURE 30: RELATIONSHIP BETWEEN L. SCOPARIUM FROM DIFFERENT AREAS FOR
GROWTH RATE INDICATORS
Data from experimental garden specimens
Area Code:

1. Ruatoria
2. Parihauhau
3. Parakanapa
4. Aokautere
5. Te Karaka
6. Mangaone
7. Awakino
8. Te Karaka
9. Tiritea
10. Katikati
11. Blowhard
12. Mangleton Block
```
LEAVES OF SOME AUSTRALIAN SPECIES
```

Lower surface appearance. Leaf on right in each group shows venation apparent on dissection.

L. Lanigerum
west of Kiama. N.S.W.

L. juniperinum

Sale. Victoria.

L. sericeum

Sister Hills. N.W. Tasmania

L. myrtifolium

Mt. Kosciusko.N.S.W.

L.ericoides (Kunzea peduncularis)

Fernbank. Victoria.

L. Lanigerum

Christmas Hills. N.W.Tasmania.

L. flavescens

Brisbane, Queensland.

FIGURE 32
LEAVES OF LEPTOSPERMUM SCOPARIUM FROM HERBARIUM COLLECTION. x2
Lower surface appearance. Leaf (leaves) on right in each group shows venation on dissection.


```
FIGURE 33
 LEAVES OF LEPTOSPERMUM SCOPARIUM
 FROM EXPERIMENTAL GARDEN. }\times
```

Lower surface appearance of an average leaf from 9 reps ( 7 for Aokautere) of each area. Leaf/leaves on right shows venation apparent on dissection.

cont. next page

0000010000
0000000000
00000000000
00000000000
corodedede
due to environmental influence. The boundaries between significantly different groups are indistinct. In many cases where several samples from each area were included in the analyses these lie in significantly different groups.
(3) on Tiritea field area specimens (Appendix 22.3) show that a similar pattern is presented as in (1) and (2). In this case boundaries between significantly differing groups are even less distinct. The range of values in each feature is almost as great as the total range of values in each feature for plants from the eleven districts. As in (2) much of the significant variation must be due to variable environmental influence.

The drawings of leaves from herbarium specimens and experimental garden specimens in Figs. 29, 32, 33 indicate the visible differences in leaf features between areas, and the influence of transfer to a different environment.
(Original data, analyses of variance: Appendices $20-22$ ).

Timing of bud break and the age at first flowering and flowering season also varies between districts (Appendix 24).

### 14.3 DISCUSSION

This experiment has shown that a degree of genetic differentiation exists between plants from different areas in growth rate leaf features, and phenology. There are no sharp boundaries.

Differences in leaf features present in the field are retained to a considerable degree under uniform environmental conditions. Although the great range in leaf features present in the Tiritea
samples may be due to environmental influence significant differences in leaf features also occur between plants from the same area when grown in a uniform environment. Thus variation in growth rate between districts may be little greater than the total variation in growth rate present in one area. It could be expected that an apparently cross pollinated species with wide dispersal of seed, and growing in a large range of habitats in any one district would be highly variable.

The apparently faster growth in some areas is probably insufficient to increase the likelihood of establishment in that area. However, this experiment was carried out in one environment only and plants from some areas may have possessed physiological adaptions which could have benefited them relative to others in another environment. Ideally a reciprocal transplant experiment would have to be carried out over a wide range of environments and the plants observed for differential fitness. Also, material from the various areas was collected in the form of seed from a limited number of plants. Thus the samples used may not express the typical form of the species in that district, or they may include off-types which normally would not have survived the seedling stages.

## 15. SUMMARI AND CONCLUSIONS

This study has shown that intrinsic factors favouring the establishment of L. scoparium include:
(1) The production of large numbers of extremely light seed.
(2) Year-round shedding of seed with greatest numbers being shed in spring.
(3) The ability to germinate rapidly.
(4) The ability to germinate over a wide range of temperatures.
(5) The ability to remain viable for some months in dark conditions which are otherwise favourable to germination.
(6) The ability to germinate and survive when sown on bare ground, over eleven months of the year.

The high invasion potential of the species must result
from these factors allowing germination with the occurrence of isolated opportunities at almost any time of the year.

There is no evidence that establishment in some districts may be favoured by the existence of genotypes capable of much faster growth.

As stated by Silvester, probably the major factor limiting establishment of the species is its requirement of light for germination, and relatively high illuminance for seedling growth. It was demonstrated quantitatively that decreasing the amount of light penetrating to ground level in Browntop plots, by increasing the level of fertility and decreasing the frequency of defoliation progressively reduced seedling survival. The necessity for continuous cover is emphasized by these results, but in practice it is impossible to maintain a complete cover on steep hill country because of slips and steep banks, and droughts, etc.

Observations showed that seedling numbers can be greatly reduced by heavy non-selective grazing. Very heavy grazing during winter, however, can favour germination of L. scoparium in the spring by baring the ground. Because the majority of seedlings appear in
pasture over a moderately short period, control by pasture spelling to increase shading, followed by heavy non-selective grazing is possible. Observation also showed that two-year-old seedlings up to 30 cm . high can be effectively controlled by grazing. Re-infection of cleared areas can only be from adjacent stands or isolated plants as the seed, once shed, has a limited life.

APPENDICES
BIBLIOGRAPHY

APPENDIX 1.1 THE EFFECT OF SEASON ON SEED SHED

Seed numbers per tin per month

	Tin Number						
	1	2	3	4	5	6	
	1	54	89	130	22	0	
$26 / 1$	0	260	305	226	178	0	
$22 / 2$	9	93	195	85	35	3	
$22 / 3$	8	80	449	129	93	2	
$27 / 4$	23	607	770	555	318	52	
$24 / 5$	23	409	570	622	191	16	
$21 / 6$	7	300	576	515	157	52	
$19 / 7$	20	192	560	312	134	38	
$16 / 8$	334	574	1410	1196	613	207	
$13 / 9$	188	1032	1071	1456	755	182	
$13 / 10$	59	1487	1153	2346	783	225	
$8 / 11$	77	705	620	749	362	110	
$8 / 12$	45	483	371	339	229	52	

APPENDIX 1.2 ANALYSIS OF VARIANCE OF THE EFFECT OF SEASON ON SEED SHED

Data transformed to $\sqrt{\mathrm{x}}$

Source of variation	d.f.	M.S. and F test	
Tins	5	$817.822^{* *}$	
Month	12	$323.377^{* *}$	
Residual	60	13.98	
Total	77		
V\%	23		

\% germination per sample ( $a, b$ ) per exposure level

		Exposure Time (min.)					
Time After Setting   Out		0	1	2	3	5	
9 days	a	0	15.00	15.00	15.00	19.50	
	b	0	15.75	13.75	17.50	17.50	
16 days	a	1.0	21.25	17.00	16.75	19.50	
	b	0.25	18.25	15.00	18.00	17.50	

APPENDIX 3 THE EFFECT OF TEMPERATURE ON GERMINATION
\% germination per sample ( $a, b$ ) per temperature level

		Temperature (0${ }^{\circ}$ )			
Time After Setting Out		40	60	65	90
9 days	a	0	0	19.25	18.75
	b	0	0	19.50	19.25
16 days	a	0	15.75	19.25	18.75
	b	0	13.50	19.50	19.25
43 days	a	14.50	15.75	19.25	18.75
	b	12.75	13.50	19.50	19.25

APPENDIX 4.1 THE EFFECT OF SEED AGE ON GERMINATION
\% germination per sample per month

Date	a	S	Sample	
$16 / 10$	15.0	16.5	19.5	18.0
$17 / 11$	15.0	16.0	20.0	14.0
$18 / 12$	21.5	19.5	19.0	20.5
$18 / 1$	22.5	21.0	17.5	18.5
$18 / 2$	21.0	16.5	21.5	17.5
$24 / 3$	17.5	17.0	17.0	22.0
$21 / 4$	13.0	17.0	20.0	12.0
$20 / 5$	14.0	22.0	20.5	16.0
$18 / 6$	19.0	21.0	16.5	19.0
$19 / 7$	18.5	16.5	22.5	22.5
$18 / 8$	17.5	16.0	20.5	13.5
$18 / 9$	15.0	22.0	20.5	20.5
$18 / 11$	20.5	23.0	24.0	18.5
$17 / 1$	19.5	17.0	17.5	19.0
$14 / 2$	24.5	17.5	16.5	20.0
$14 / 3$	19.0	20.5	17.5	22.5
$11 / 4$	20.0	23.5	17.5	17.0
$18 / 5$	13.5	14.0	19.0	17.5

APPENDIX 4.2 ANALYSIS OF VARIANCE OF THE EFFECT
OF SEED AGE ON GERMINATION
Data transformed to arc sine $\sqrt{\%}$

Source of variation	d.f.	M.S. and $F$ test	
Month	17	6.12	N.S.
Residual	54	3.92	
Total	71		
V\%	8		

APPENDIX 5 THE EFFECT OF EXPOSURE ON AND BELOW THE GROUND SURFACE ON GERMINATION
\% normal germination, \% abnormal germination and \% underground germination per sample ( $a, b, c$ ) per fortnight

Time After SettingOut		Seeds on Ground		Seeds Underground	
		Normal	Abnormal	Normal	Underground
2 weeks	a	52	16	92	
	b	56	4	84	
	c	44	6	86	
4 weeks	a	0	0	86	
	b	24	8	96	
	c	18	4	42	
6 weeks	a	2	0	76	
	b	2	0	80	
	c	2	0	76	
8 weeks	a	2	0	76	2
	b	4	0	80	4
	c	0	0	80	4
10 weeks	a	0	0	84	4
	b	0	0	68	4
	c	0	0	72	4
12 weeks	a	0	0	84	4
	b	0	0	68	4
	c	0	0	64	2

APPENDIX 6.1
THE EFFECT OF SEASON ON GERMINATION AND SEEDI,ING SURVIVAL ON BARE GROUND

Seedling numbers per rep ( $a, b, c$ ) per treatment


APPENDIX 6.2 ANALYSIS OF VARIANCE OF THE EFFECT OF SEASON ON GERMINATION AND SEEDLING SURVIVAL ON BARE GROUND

Only final results analysed Treatments 8, 9, 10 excluded from analysis

Data transformed to $\sqrt{x+\frac{1}{2}}$

Source of Variation	d.f.	M.S. and F Test	
Replicates	2	0.135	N.S.
Sowing Time	8	$3.720 \quad$ **	
Residual	16	0.499	
Total	26		
V\%	24		

Number of seedlings per month per quadrat (A, B, C)

	$24 / 5$	$21 / 6$	$19 / 7$	$16 / 8$	$13 / 9$	$11 / 10$	$8 / 11$	$6 / 12$	$10 / 1$
A	0	4	15	15	27	74	61	19	0
B	0	1	4	7	41	77	44	22	0
C	0	1	10	12	27	185	293	42	0

## APPENDIX 8 THE EFFECT OF SEASON ON SEEDLING MORTALITY IN PASTURE

Number of deaths per month per quadrat ( $A, B, C$ )
$1965-66$ season's seedlings

	A	B	C
$24 / 5$	0	0	0
$21 / 6$	0	0	0
$19 / 7$	0	1	1
$16 / 8$	2	1	0
$13 / 9$	4	0	9
$11 / 10$	0	6	10
$8 / 11$	8	23	5
$6 / 12$	1	0	0
$10 / 1$	0	39	18
$31 / 1$	0	1	39
$26 / 2$	43	23	61
$28 / 3$	17	0	0
$25 / 4$	26	35	109
$23 / 5$	30	29	92

Note: area: quad A $30 \mathrm{dm} .^{2}$
quad B $15 \mathrm{dm} .^{2}$
quad $C 25 \mathrm{dm} .{ }^{2}$

APPENDIX 9 CHANGES IN TOTAL SEEDLING NUMBERS IN PASTURE WITH SEASON

Number of seedlings per month per quadrat ( $A, B, C$ )

	Current A	$\begin{gathered} \text { Season's } \\ \text { B } \end{gathered}$	$\underset{\mathrm{C}}{\text { Seedlings }}$	$\begin{aligned} & \text { Previous } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { Season's } \\ & \text { B } \end{aligned}$	Seedlings
24/5	0	0	0	48	26	45
21/6	4	1	1	35	22	23
19/7	19	4	10	32	17	21
16/8	32	10	22	32	11	17
13/9	55	51	40	20	7	15
11/10	129	122	215	20	3	15
8/11	182	143	503	13	1	11
6/12	200	165	545	13	1	9
10/1	200	126	527	11	1	9
31/1	200	125	488	5	1	7
26/2	157	102	417	4	1	5
28/3	140	102	417	4	1	5
25/4	114	67	308	4	1	1
23/5	84	38	216	4	1	1

Note: area: quad A $30 \mathrm{dm} .{ }^{2}$
quad B $15 \mathrm{dm} .{ }^{2}$
quad $C 25 \mathrm{dm} .2$

## APPENDIX 10 THE EFFECT OF SOME HABITAT FEATURES

 ON SEEDLING GERMINATION AND SURVIVAL IN PASTURENumber of seedlings per habitat feature per quadrat ( $A, B, C$ )

	A		B		C	
	112	$(52.09)$	80	$(40.82)$	119	$(20.88)$
Bare ground	38	$(17.67)$	31	$(15.82)$	74	$(12.98)$
Nertera	0	$(0)$	11	$(5.61)$	0	$(0)$
Flatweeds	5	$(2.33)$	12	$(6.12)$	23	$(4.03)$
Grass	$39(18.14)$	36	$(18.37)$	43	$(7.54)$	
Grass and Nertera	0	$(0)$	18	$(9.18)$	0	$(0)$
Grass and moss	0	$(0)$	0	$(0)$	311	$(54.56)$
Grass, moss and Nertera						
Moss and Nertera	16	$(7.44)$	0	$(0)$	0	$(0)$
	5	$(2.33)$	8	$(4.08)$	0	$(0)$

Note: Bracketed figures represent \% of quadrat total
area: quad $A 30 \mathrm{dm}^{2}{ }^{2}$
quad B $15 \mathrm{dm}^{2}{ }^{2}$
quad $C 25 \mathrm{dm}_{0}{ }^{2}$

APPENDIX 11.1 THE EFFECT OF COVER, APPLIED FERTILIZER AND CUTTING FREQUENCY ON GERMINATION AND SEEDLING SURVIVAL IN GRASSED AND BARE PLOTS

Total seedling number per rep. (A,B,C,D) per treatment.


Final Count 4/5/66

$0=$ no fertilizer applied
$\mathrm{L}=$ low fertilizer application rate
$H=$ high fertilizer application rate

APPENDIX 11.2 ANALYSES OF VARIANCE OF THE EFFECT
OF COVER, APPLIED FERTILIZER AND CUTTING
FREQUENCY ON GERMINATION AND SEEDLING SURVIVAL IN GRASSED AND BARE PLOTS

Data transformed to $\sqrt{x+\frac{1}{2}}$

Initial Count 7/4/66

Source of Variation	d.f.	M.S. and F Test	
Replicates	3	1.04	N.S.
Cover	1	44.48	* *
Time of Cutting	2	60.89	* *
Fertilizer	2	35.48	* *
C x T	2	87.22	* *
C $\times \mathrm{F}$	2	4.90	N.S.
$\mathrm{F} \times \mathrm{T}$	4	2.86	N.S.
C $\times \mathrm{T} \times \mathrm{F}$	4	7.73	*
Residual	51	2.88	
Total	71		
V \%		27	
Final Count 4/5/66			
Source of Variation	$d$ 。f.	M.S. and F Test	
Replicates	3	4.37	N.S.
Cover	1	0.32	N.S.
Time of Cutting	2	75.31	* *
Fertilizer	2	62.83	* *
C x T	2	102.25	*
C $\times \mathrm{F}$	2	6.62	N.S.
$\mathrm{F} \times \mathrm{T}$	4	2.15	N.S.
C $\times \mathrm{T} \times \mathrm{F}$	4	7.83	N.S.
Residual	51	3.73	
Total	71		
V \%		38	

RELATIVE ILLUMINANCE
6.3 mm . ABOVE GROUND

Mean \% R.I. per rep ( $A, B, C, D$ ) per treatment 14/3/66 (based on 6 readings/plot)

Fortnightly Cut											Monthly Cut			Uncut		
0	L	H	0	L	H	0	L	H								
A	18.78	0.60	1.18	16.33	0.18	1.13	0.08	0	0							
B	8.52	6.55	1.33	10.47	1.12	0.50	0.78	0	0							
C	14.73	5.83	1.13	13.12	0.98	1.08	0.05	0	0							
D	8.22	2.85	2.32	2.70	0.45	0.95	0.25	0	0							

9/5/66 (based on 24 readings/plot)

	Fortnightly Cut			Monthly Cut			Uncut		
	0	L	H	0	L	H	0	L	H
A	19.56	3.04	2.59	15.12	1.99	1.59	0.02	0	0
B	19.45	7.12	9.99	15.75	4.20	5.05	0.04	0	0
C	17.06	9.65	5.80	4.81	3.11	2.42	0.01	0	0
D	12.89	7.49	2.76	5.07	2.25	1.49	0.04	0	0

$0=$ no fertilizer applied
$L=$ low fertilizer application rate
$H=$ high fertilizer application rate

ANALYSIS OF VARIANCE
OF RELATIVE ILLUMINANCE

Data transformed to arc sine $\sqrt{\%}$
Data from uncut treatments excluded from analysis

14.3 .66
Source of Variation d.f. M.S. and F Test    Replicates 3 13.49 N.S.   Time of cutting 1 64.55 N.S.   Fertilizer 2 421.47 $*$ *   Tx F 2 13.27 N.S.   Residual 15 14.64    Total 23     V\%  35


9.5 .66			
Source of Variation	d.f.	M.S. and F Test	
Replicates	3	32.59	$*$
Time of Cutting	1	159.03	$* *$
Fertilizer	2	251.66	$* *$
Tx F	2	3.60	N.S.
Residual	15	9.85	
Total	23		
V\%		21	

LEAF AREA INDEX (LEAF MEASUREMENT AND DRY WEIGHT BASIS)
L.A.I. per rep ( $C, D$ ) per treatment

19/5/66

	Fortnightly Cut			Monthly Cut			Uncut		
	0	L	H	0	L	H	0	L	H
C	0.68	0.76	0.72	1.20	2.04	1.90	? 3.01	8.19	9.33
D	0.97	1.33	1.21	1.90	2.12	1.68	11.31	12.17	9.41

Note: L.A.I. determined by this method only for reps. $C$ and $D$.

APPENDIX 13.2 ANALYSIS OF VARIANCE OF LEAF AREA INDEX (LEAF MEASUREMENT AND DRY WEIGHT BASIS)

Data transformed to $\sqrt{x+\frac{1}{2}}$

Source of Variation	d.f.	M.S. and F test	
Replicates	$19 / 66$	0.48	N.S.
Time of Cutting	2	5.68	$* *$
Fertility	2	0.13	N.S.
T x F	4	0.05	N.S.
Residual	8	0.13	
Total	17		
V\%		17	

APPENDIX 14.1 LEAF AREA INDEX (PROFILE DIAGRAM BASIS)
L.A.I. per rep. ( $A, B, C, D$ ) per treatment

9/3/66

Fortnightly Cut				Monthly Cut				Uncut		
	O	L	H	0	L	H	0	L		
A										
A	0.98	2.20	3.40	1.15	4.10	10.80	9.96	14.44		
B	1.76	2.82	1.45	2.40	4.10	6.35	3.28	17.00		
C	1.33	2.30	3.57	2.00	6.90	6.35	10.30	8.50		
D	2.16	1.92	2.16	1.74	3.35	5.92	6.55	10.35		


| $4 / 5 / 66$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fortnightly Cut |  |  | Monthly Cut |  |  | Uncut |  |  |  |
| A | L | H | 0 | L | H | 0 | L | H |  |
| A | 1.24 | 1.79 | 1.45 | 0.69 | 1.95 | 2.07 | 4.05 | 5.28 | 7.25 |
| C | 1.54 | 2.22 | 1.18 | 0.81 | 2.44 | 2.51 | 2.48 | 9.83 | 8.05 |
| D | 0.73 | 1.52 | 2.32 | 1.75 | 2.45 | 3.11 | 5.00 | 7.20 | 8.65 |
| 0.65 | 2.48 | 2.66 | 1.36 | 3.08 | 2.76 | 7.27 | 10.28 | 7.38 |  |

$0=$ no applied fertilizer
$L=$ low fertilizer application rate
$\mathrm{H}=$ high fertilizer application rate

APPENDIX 14.2 ANALYSIS OF VARIANCE OF LEAF AREA INDEX
(PROFILE DIAGRAM BASIS)

Data transformed to $\sqrt{x+\frac{1}{2}}$
9/3/66

Source of Variation	d.f.	M.S. and F Tests	
Replicates	3	0.13	N.S.
Time of Cutting	2	8.85	$* *$
Fertility	2	2.02	$* *$
Tx F	4	0.27	N.S.
Residual	24	0.13	
Total	35		
V\%	15		

4/5/66

Source of Variation	d.f.	M.S. and F Tests	
Replicates	3	0.15	N.S.
Time of Cutting	2	5.51	$* *$
Fertility	2	0.94	$* *$
T x F	4	0.01	N.S.
Residual	24	0.054	
Total	35		
V \%			

Mean number per core per rep. ( $A, B, C, D$, ) per treatment Core area 20.3 sq. cm.

6/6/66

Fortnightly Cut				Monthly Cut			Uncut		
O	L	H	0	L	H	0	L	H	
A	78.8	130.5	92.4	89.5	80.3	83.6	24.4	19.4	
B	107.2	108.1	33.7	74.6	77.8	46.9	16.6	29.1	
C	72.5	83.1	86.8	72.3	82.6	114.2	41.2	21.5	
D	94.8	118.1	73.4	61.2	77.2	101.4	21.8	22.5	

APPENDIX 15.2 ANALYSIS OF VARIANCE OF TILLER NUMBERS (CORE BASIS)

Source of Variation	d.f.	M.S. and F Test	
Replicates	3	231.55	N.S.
Time of Cutting	2	$15,051.35$	$*$ *
Fertility	2	346.08	N.S.
Tx F	4	645.97	N.S.
Residual	24	288.88	
Total	35		
V \%		26	

APPENDIX 16.1 TILLER NUMBERS (PROFILE DIAGRAM BASIS)

Number per transect per rep. ( $A, B, C, D$ ) per treatment Transect area $15 \mathrm{sq} . \mathrm{cm}$.

9/3/66									
	Fortnightly Cut			Monthly Cut			Uncut		
	0	L	H	0	L	H	0	L	H
A	49	48	70	58	65	83	56	33	30
B	57	57	54	60	63	45	18	37	15
C	45	63	58	42	64	51	39	22	20
D	80	60	39	43	77	58	35	22	21

4/5/66

									Fortnightly Cut			Monthly Cut				Uncut		
	O	L	H	0	L	H	0	L	H									
A	64	81	54	45	53	33	16	23	14									
B	84	78	48	62	79	33	12	41	28									
C	50	66	98	51	69	51	55	27	24									
D	47	101	96	33	75	47	24	29	31									

o = no applied fertilizer
$\mathrm{L}=$ low fertilizer application rate
$\mathrm{H}=$ high fertilizer application rate

APPENDIX 16.2 ANALYSIS OF VARIANCE OF TILLER NUMBERS (PROFILE DIAGRAM BASIS)

Source of Variation	d.f.	M.S. and F Tests	
Replicates	3	186.99	N.S.
Cutting Time	2	3.352 .58	$* *$
Fertility	2	94.08	N.S.
T x F	4	213.17	N.S.
Residual	24	127.24	
Total	35		
V\%			


$4 / 5 / 66$					
Source of Variation	d.f.	M.S. and F Tests			
Replicates	3	272.70	N.S.		
Cutting Time	2	$6,177.69$	$* *$		
Fertility	2	825.86	$*$		
Tx F	4	240.36	N.S.		
Residual	24	224.33			
Total	35				
V\%					

\% bare ground per rep. ( $A, B, C, D$ ) per treatment
9/5/66

Fortnightly Cut				Monthly Cut		
	O	L	H	0	L	H
A	53.04	29.55	29.55	51.52	30.31	46.21
B	58.34	46.98	49.25	53.79	46.22	38.65
C	58.98	56.42	39.33	53.00	43.60	42.74
D	57.20	51.30	35.90	47.86	36.76	29.92

Note: uncut plots assumed to have complete cover

APPENDIX 17.2 ANALYSIS OF VARIANCE OF THE \% BARE GROUND IN GRASSED PLOTS AS DETERMINED BY POINT ANALYSIS

Data transformed to arc sine $\sqrt{\%}$

Source of Variation	d.f.	M.S. and F Tests		
Replicates	3	40.82	N.S.	
Time of Cutting	1	28.15	N.S.	
Fertility	2	171.77	$* *$	
Tx F	2	11.14		
Residual	15	13.84		
Total	23			
V\%	9			

Monthly total gm. dry weight per rep ( $A, B, C, D$ ) per treatment

Fortnightly Cut				Monthly Cut			
0	L	H	0	L	H		
9.98	20.53	16.68	7.59	22.69	21.94		
9.43	16.14	19.88	6.64	17.64	29.84		
8.68	13.88	20.08	11.14	21.79	26.14		
12.13	18.68	21.38	13.84	20.64	25.94		

20/5/66

A
B
C
D

Fortnightly Cut			Monthly Cut		
0	L	H	0	L	H
10.09	14.23	13.08	10.06	13.46	13.92
10.74	13.51	13.69	9.65	15.32	16.32
8.74	12.21	14.46	12.29	16.52	17.87
12.27	16.90	14.73	16.10	17.46	17.44

$0=$ no applied fertilizer
$\mathrm{L}=$ low fertilizer application rate
H $=$ high fertilizer application rate

Data transformed to logs

13/4/66			
Source of Variation	d.f.	M.S. and F Test	
Replicates	3	0.0091	N.S.
Cutting Time	1	0.0210	$*$
Fertility	2	0.2953	$* *$
Tx F	2	$0.0219 \quad *$	
Residual	15	0.0045	
Total	23		
V\%	5.6		

20/5/66

Source of Variance	d.f.	M.S. and F Test		
Replicates	3	0.0122	$* *$	
Cutting Time	1	0.0184	$*$	
Fertility	2	0.0464	$* *$	
Tx F	2	0.0003	N.S.	
Residual	15	0.0021		
Total	23			
V\%	3			

Density of leaves and measurements of leaf length and midwidth

(1)		(2)		(3)		(4)		(5)		(6)	
D		D		D		D		D		D	
1.5		1.5		1.8		2.1		2.2		2.0	
2.0		$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$		$\begin{array}{r} 1.9 \\ 1.6 \\ \hline \end{array}$		$\begin{aligned} & 2.4 \\ & 2.2 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.3 \\ & 2.3 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.2 \\ & 1.5 \\ & \hline \end{aligned}$	
1.											
L	W	L	W	L	W	L	W	L	W	L	W
21.5	7.0	16.0	4.5	15.5	5.0	12.8	2.2	10.0	2.8	15.0	5.0
20.0	6.5	14.5	4.5	12.0	5.0	13.5	1.5	11.0	2.8	15.0	4.5
16.0	6.5	16.0	4.8	14.0	4.5	13.0	2.0	9.5	2.8	14.5	5.0
16.5	7.5	14.0	4.8	14.0	4.0	10.0	1.8	11.5	2.8	13.5	4.8


(7)		(8)		(9)		(10)		(11)		(12)	
D		D		D		D		D		D	
1.6		2.0		1.2		4.0		2.3		2.0	
1.3		2.1		2.0		4.0		1.5		4.0	
2.0		1.8		1.7		3.8		2.0		2.5	
L	W	L	W	L	W	L	W	L	W	L	W
13.0	3.0	12.0	2.5	9.5	3.5	6.0	2.5	9.5	1.5	10.0	1.5
13.0	3.0	11.0	2.5	9.5	3.5	6.0	2.5	9.2	1.5	10.0	1.5
12.0	3.5	12.5	2.5	9.0	3.2	6.0	2.5	10.0	1.5	9.0	1.5
12.5	2.8	12.5	2.8	6.5	3.2	6.0	3.0	9.0	1.2	8.5	1.2



APPENDIX 19.2 ANALYSIS OF VARIANCE OF LEAF FEATURES OF SOME AUSTRALIAN SPECIES OF LEPTOSPERMUM
Leaf Density

Source of Variation	d.f.	M.S. and F Test		
Species	11	$1.478 \quad * \quad *$		
Residual	24	0.15		
Total	35			
V \%	19			

Leaf (length) (midwidth) Ratio

Source of Variation	d.f.	M.S. and F Test
Species	11	$4,254.11 \quad * *$
Residual	36	193.37
Total	47	
V \%	34.08	

Leaf $\frac{(\text { length })}{(\text { midwidth })}$ Ratio

Source of Variation	d.f.	M.S. and F Test	
Species	11	$11.42 \quad * \quad *$	
Residual	36	0.396	
Total	47		
V\%			

APPENDIX 19.3 LEAF FEATURES OF SOME AUSTRALIAN
SPECIES OF LEPTOSPERMUM
Mean species values

(10)	(12)	(5)	(4)	(8)	(11)	(3)	(1)	(7)	(9)	(6)	(2)
3.93	2.83	2.26	2.23	1.96	1.93	1.76	1.70	1.63	1.63	1.56	1.43
S.E. $= \pm 0.22 \quad \mathrm{~d} .05(.01)=0.66$ (0.89)											


Mean Leaf $\frac{\text { (length) }}{(\text { midwidth })}$ Ratio											
(4)	(11)	(12)	(8)	(7)	(5)	(2)	(3)	(6)	(1)	(9)	(10)
6.72	6.71	6.60	4.98	4.14	3.75	3.25	3.03	3.01	2.70	2.56	2.30
S.E. $= \pm 0.31 \quad \mathrm{~d} .05(.01)=0.90$ (1.21)											

Mean Leaf (length) (midwidth) Ratio

$(1)$	$(6)$	$(3)$	$(7)$	$(2)$	$(5)$	$(8)$	$(9)$	$(4)$	$(10)$	$(11)$	$(12)$
127.06	69.95	64.12	38.75	36.00	29.40	29.37	29.02	23.10	15.75	13.46	13.42
S.E. $= \pm 6.95$ d.05(.01) $=20.05(27.03)$											

Note: Species code (bracketed figures) as in Appendix 19.1

Density of leaves and measurements of leaf length and midwidth

(11.1)		(11.2)		(11.3)		(11.4)		(10.1)		(10.2)	
$\begin{aligned} & D \\ & 3.7 \\ & 3.0 \\ & 3.4 \end{aligned}$		$\begin{aligned} & \text { D } \\ & 1.7 \\ & 3.0 \\ & 2.3 \end{aligned}$		$\begin{aligned} & D \\ & 1.8 \\ & 2.2 \\ & 3.8 \end{aligned}$		$\begin{aligned} & D \\ & 2.3 \\ & 1.6 \\ & 1.1 \end{aligned}$		$\begin{aligned} & D \\ & 3.0 \\ & 1.8 \\ & 2.4 \end{aligned}$		$\begin{aligned} & D \\ & 2.2 \\ & 3.5 \\ & 2.0 \end{aligned}$	
L	W	L	W	I	W	L	W	L	W	L	W
6.5	2.5	7.0	2.5	4.0	2.2	7.0	2.2	7.0	2.1	7.0	2.2
6.0	2.2	8.0	3.0	5.0	2.0	8.5	2.5	6.0	2.0	6.8	1.8
5.0	2.0	6.0	2.0	5.0	2.0	7.0	2.5	6.0	2.0	6.5	2.2
5.0	2.0	6.0	2.2	5.0	2.2	5.5	3.0	7.0	2.0	7.5	2.2


(9.1)		(9.2)		(9.3)		(6.1)		(5.1)		(5.2)	
$\begin{gathered} D \\ 3.5 \\ 2.2 \\ 2.0 \end{gathered}$		$\begin{gathered} \hline D \\ 2.1 \\ 2.4 \\ 1.9 \end{gathered}$		$\begin{gathered} \hline D \\ 1.3 \\ 1.2 \\ 1.2 \\ \hline \end{gathered}$		$\begin{gathered} D \\ 2.0 \\ 2.0 \\ 3.2 \\ \hline \end{gathered}$		$\begin{gathered} \hline D \\ 2.2 \\ 1.9 \\ 2.0 \\ \hline \end{gathered}$		$\begin{gathered} D \\ 3.4 \\ 2.3 \\ 2.8 \\ \hline \end{gathered}$	
L	W	L	W	L	W	L	W	L	W	L	W
16.5	3.0	9.5	2.5	10.0	3.0	6.0	2.8	8.0	1.5	10.0	1.5
16.0	3.0	10.0	2.2	13.0	2.8	5.5	2.2	8.0	1.5	10.0	1.5
13.0	2.5	9.5	2.2	10.5	3.0	6.0	2.5	8.0	1.2	10.0	1.5
14.0	2.5	9.5	2.5	11.5	3.0	6.0	3.2	8.5	1.8	9.0	1.5


(4.1)		(4.2)		(3.1)		(3.2)		(2.1)		(2.2)	
$\begin{gathered} \hline D \\ 2.8 \\ 3.1 \\ 2.6 \end{gathered}$		$\begin{gathered} \hline D \\ 2.7 \\ 1.9 \\ 2.4 \end{gathered}$		$\begin{gathered} \hline D \\ 2.8 \\ 3.0 \\ 2.7 \end{gathered}$		$\begin{gathered} \hline D \\ 2.7 \\ 2.3 \\ 2.7 \\ \hline \end{gathered}$		$\begin{gathered} \hline D \\ 1.2 \\ 2.2 \\ 1.3 \end{gathered}$		$\begin{gathered} \hline D \\ 1.4 \\ 2.0 \\ 3.2 \end{gathered}$	
L	W	L	W	L	W	L	W	L	W	L	W
6.5	1.8	9.5	2.0	5.0	2.0	5.5	2.5	11.2	3.2	12.0	3.2
8.0	2.2	8.0	2.0	6.5	2.0	6.5	3.5	9.0	2.5	12.0	4.0
7.5	2.0	8.5	2.0	6.5	2.0	6.5	2.5	9.5	2.5	11.0	3.0
6.8	1.5	8.0	2.0	6.0	2.0	6.5	2.5	9.5	2.5	10.0	3.0


(1.1)		(1.2)		(1.3)		(8.1)		(7.1)	
$\begin{gathered} D \\ 3.8 \\ 17.0 \\ 20.0 \end{gathered}$		$\begin{array}{r} \text { D } \\ 9.4 \\ 13.0 \\ 14.6 \end{array}$		$\begin{gathered} \text { D } \\ 18.0 \\ 15.0 \\ 15.1 \\ \hline \end{gathered}$		$\begin{gathered} \hline D \\ 1.4 \\ 1.7 \\ 1.5 \\ \hline \end{gathered}$		$\begin{gathered} D \\ 3.5 \\ 3.0 \\ 3.1 \\ \hline \end{gathered}$	
L	W	L	W	L	W	L	W	L	W
7.0	1.5	6.5	1.8	8.0	1.8	11.0	2.5	6.5	1.8
6.0	1.8	7.0	2.0	7.5	1.5	11.0	1.8	7.5	2.0
8.0	2.0	7.0	2.0	7.5	2.0	11.0	2.2	7.0	2.0
7.5	1.8	6.0	1.8	7.0	1.8	8.5	1.8	6.0	1.5

$D=$ leaf density/cm. of branch
$L=$ leaf length (m. $m_{\bullet}$ )
$W=$ leaf midwidth (m.m.)
(1.) $=$ Ruatoria
(2.) $=$ Parihauhau
(3.) = Parakanapa
(4.) $=\mathrm{Te}$ Karaka
(5.) $=$ Katikati
(6.) $=$ Mangleton Block
(7.) $=$ Aokautere
(8.) = Mangaone
(9.) $=$ Awakino
(10.) $=$ Tiritea
(11.) $=$ Blowhard
(.1), (.2) etc. gives sample identification within areas.
Leaf Density

Source of Variation	d.f.	M.S. and F Test		
Area	22	$49.75 \quad{ }^{*}$		
Residual	46	3.93		
Total	68			
V $\%$	51			

Leaf $\frac{(\text { length })}{(w i d t h)}$ Ratio

Source of Variation	d.f.	M.S. and F Test
Area	22	4.79
Residual	69	0.21
Total	91	
V\%	12	

Leaf (length) (width) Ratio

| Source of Variation | d.f. | M.S. and F Test |
| :--- | :---: | :---: | :---: |
| Area | 27 | $285.75 *^{*}$ |
| Residual | 69 | 14.98 |
| Total | 91 |  |
| V\% | 21 |  |

Mean values

D		$\mathrm{L} / \mathrm{W}$		$(\mathrm{L})(\mathrm{W})$	
$(1.3)$	16.00	$(5.2)$	6.50	$(9.1)$	41.25
$(1.1)$	13.00	$(5.1)$	5.51	$(2.2)$	37.35
$(1.2)$	12.33	$(9.1)$	5.41	$(9.3)$	32.72
$(11.1)$	3.36	$(8.1)$	5.06	$(2.1)$	26.46
$(7.1)$	3.20	$(4.2)$	4.31	$(8.1)$	21.70
$(5.2)$	2.83	$(1.3)$	4.27	$(9.2)$	20.35
$(4.1)$	2.83	$(9.2)$	4.11	$(11.4)$	17.66
$(3.1)$	2.83	$(1.1)$	4.04	$(3.2)$	17.25
$(11.3)$	2.60	$(4.1)$	3.88	$(4.2)$	17.00
$(10.2)$	2.57	$(9.3)$	3.78	$(11.2)$	16.67
$(9.1)$	2.57	$(7.1)$	3.71	$(6.1)$	15.77
$(3.2)$	2.56	$(2.1)$	3.67	$(5.2)$	14.62
$(10.1)$	2.40	$(1.2)$	3.48	$(10.2)$	14.61
$(6.1)$	2.40	$(2.2)$	3.44	$(4.1)$	13.62
$(11.2)$	2.33	$(10.2)$	3.33	$(1.3)$	13.31
$(4.2)$	2.33	$(10.1)$	3.21	$(10.1)$	13.17
$(2.2)$	2.20	$(3.1)$	3.00	$(1.1)$	12.70
$(9.2)$	2.13	$(11.2)$	2.81	$(1.2)$	12.62
$(5.1)$	2.03	$(11.4)$	2.80	$(7.1)$	12.42
$(11.4)$	1.67	$(11.1)$	2.58	$(11.1)$	12.36
$(2.1)$	1.56	$(3.2)$	2.31	$(5.1)$	12.22
$(8.1)$	1.53	$(11.3)$	2.27	$(3.1)$	12.00
$(9.3)$	1.23	$(6.1)$	2.22	$(11.3)$	9.95

Note: Area code (bracketed figures) as in Appendix 20.1

Density of leaves and measurements of leaf length and midwidth

D		D		D		D		D		D		D		D		D	
10.0		14.0		10.0		10.0		7.0		12.0		14.0		10.0		10.0	
12.0		16.0		11.0		9.0		10.0		10.0		11.0		12.0		11.0	
14.0		15.0		10.0		11.0		8.0		12.0		15.0		12.0		8.0	
L	W	L	W	L	W	L	W	L	W	L	W	L	W	L	W	L	V
8.5	1.5	4.5	1.3	8.5	1.3	6.5	1.5	5.0	1.0	7.5	1.5	6.0	1.5	6.0	1.5	7.0	1.8
8.0	1.5	5.0	1.3	6.5	1.1	7.0	1.5	4.0	0.8	7.5	1.8	6.5	1.5	8.0	1.8	7.5	1.8
8.0	1.5	5.5	1.5	8.5	1.5	6.0	1.5	4.0	1.0	8.0	1.5	6.0	1.5	7.2	1.8	7.0	1.8
8.5	1.5	6.0	1.5	7.0	1.2	6.5	1.5	4.0	1.0	7.5	1.5	6.0	1.5	6.5	1.5	7.0	1.8

(2)

D		D		D		D		D		D		D		D		D	
$\begin{aligned} & 5.3 \\ & 4.3 \\ & 4.6 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.0 \\ & 3.3 \\ & 4.6 \end{aligned}$		$\begin{aligned} & 4.6 \\ & 4.0 \\ & 2.2 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.4 \\ & 3.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 3.6 \\ & 3.5 \\ & 2.4 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 5.5 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 3.2 \\ & 2.8 \\ & 3.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.0 \\ & 1.4 \\ & 1.2 \\ & \hline \end{aligned}$		$\begin{aligned} & 5.0 \\ & 4.0 \\ & 5.0 \end{aligned}$	
L	W	L	W	L	W	L	W	L	W	L	W	L	W	L	W	L	W
10.0	3.0	11.0	3.0	9.0	3.0	8.5	2.5	10.0	2.5	9.2	3.0	11.0	2.5	10.0	2.8	10.5	2.8
9.5	3.0	11.0	3.0	9.0	3.0	8.5	2.5	10.0	2.8	10.5	3.2	10.5	2.5	9.5	2.5	10.5	2.8
10.0	3.0	11.0	3.0	9.0	2.8	8.5	2.5	8.5	2.8	9.0	2.6	11.0	2.0	9.5	2.5	10.0	2.5
10.0	2.8	11.0	3.0	9.0	3.0	8.5	2.5	8.5	3.0	8.5	2.5	11.0	2.2	11.0	2.8	10.5	2.5

(3)

D		D		D		D		D		D		D		D		D	
$\begin{aligned} & 6.0 \\ & 4.5 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 6.5 \\ & 4.6 \\ & 7.0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 3.6 \\ & 3.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 3.2 \\ & 2.4 \\ & 2.6 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 8.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.5 \\ & 5.3 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.5 \\ & 3.4 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 3.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 3.3 \\ & 3.6 \\ & 5.0 \end{aligned}$	
L	W	L	W	L	W	L	W	L	W	L	W	L	W	L	W	L	W
7.0	2.0	8.0	1.5	6.2	2.0	6.2	1.8	7.5	2.2	7.5	2.0	8.5	2.0	6.0	2.2	8.0	5.8
7.0	2.0	7.5	1.5	7.0	2.2	7.0	1.8	6.5	2.0	8.0	2.0	8.5	2.2	6.0	2.0	8.0	2.5
6.5	2.0	7.5	1.8	7.0	2.5	7.0	1.8	7.0	2.5	8.0	2.0	9.0	2.2	6.5	2.5	8.5	2.2
6.5	2.0	7.5	1.5	6.0	2.0	6.0	1.8	6.0	1.8	7.0	1.8	8.5	2.2	6.0	2.0	8.0	2.5

(4)

D		D		D		D		D		D		D		D		D	
$\begin{aligned} & 4.0 \\ & 2.8 \\ & 2.2 \\ & \hline \end{aligned}$		$\begin{aligned} & 5.0 \\ & 6.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 6.0 \\ & 8.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 3.6 \\ & 3.6 \\ & 6.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 6.0 \\ & 3.4 \\ & 5.3 \end{aligned}$		$\begin{aligned} & 6.6 \\ & 6.0 \\ & 7.3 \end{aligned}$		$\begin{aligned} & 3.2 \\ & 4.0 \\ & 5.3 \end{aligned}$		$\begin{aligned} & 4.6 \\ & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 6.0 \\ & 5.0 \\ & 5.3 \\ & \hline \end{aligned}$	
L	W	L	W	L	W	L	W	L	W	L	W	L	W	L	W	L	W
6.0	2.0	7.0	2.0	6.0	2.0	8.0	2.8	7.5	2.0	11.0	2.0	8.0	2.2	7.5	2.2	5.5	2.5
6.0	1.8	8.0	2.2	6.0	2.2	7.5	2.2	7.5	2.2	12.0	2.0	8.5	2.5	5.5	1.8	5.0	2.0
6.0	2.0	7.0	2.0	6.0	2.2	8.0	2.2	7.0	2.0	10.5	1.8	7.0	2.0	7.0	2.2	6.0	2.2
6.5	2.	8.5	.	5.5	2.0	8.0	2.5	6.2	2.0	12.0	2.0	8.0	2.5	5.0	2.0	6.0	2.5

(5)

D		D		D		D		D		D		D		D		D	
6.05.56.0		$\begin{aligned} & 3.6 \\ & 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 4.5 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 3.8 \\ & 4.5 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 3.3 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 4.0 \\ & 3.3 \end{aligned}$		$\begin{aligned} & 2.8 \\ & 3.2 \\ & 5.3 \end{aligned}$		$\begin{aligned} & 3.3 \\ & 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 2.6 \\ & 2.4 \\ & 3.0 \end{aligned}$	
L	W	L	W	L	W	L	W	L	W	L	W	L	W	L	W	L	W
10.0	1.8	11.5	3.0	12.0	2.0	15.0	3.0	9.0	2.5	8.8	2.2	12.0	2.2	11.0	2.5	13.5	2.5
11.5	2.2	12.0	2.8	11.5	2.2	13.0	2.2	9.5	2.2	10.0	2.5	12.0	2.2	11.0	2.5	10.0	1.8
10.0	2.0	12.0	3.5	11.5	2.5	14.0	2.8	9.0	2.2	9.0	2.0	11.0	2.0	11.0	2.5	11.5	1.8
10.0	2.0	12.0	3.0	13.0		13.0	2.2	9.0	2.	9.0	2.0	12.0	2.2	10.0			2.0

(6)

D		D		D		D		D		D		D		D		D	
$\begin{aligned} & 2.4 \\ & 2.4 \\ & 2.4 \end{aligned}$		$\begin{aligned} & 2.8 \\ & 3.2 \\ & 3.4 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.8 \\ & 3.6 \\ & 3.2 \end{aligned}$		$\begin{aligned} & 2.8 \\ & 3.6 \\ & 4.6 \end{aligned}$		$\begin{aligned} & 2.4 \\ & 3.6 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 2.2 \\ & 2.2 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 2.4 \\ & 3.2 \\ & 2.2 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 3.2 \\ & 3.6 \end{aligned}$	
L	W	L	W	L	W	L	W	L	W	L	W	L	W	L	W	L	W
6.0	2.2	5.0	2.5	6.5	3.0	5.5	2.2	6.2	2.2	7.5	3.0	7.0	3.0	6.0	2.0	6.0	2.0
6.5	3.0	4.5	2.5	6.8	3.0	5.5	2.2	6.0	2.2	6.5	2.0	7.0	3.0	6.0	2.2	6.0	2.0
6.5	3.0	6.0	3.0	5.8	2.5	5.5	2.5	6.0	2.2	7.0	3.0	6.5	2.5	6.0	2.2	6.0	2.0
6.0	3.0	6.0	3.0	6.0	3.0	5.5	2.2	6.0	2.2	6.5	2.0	6.5	2.8	6.0	2.2	6.0	2.0

(7)

D	D	D	D	D		D	D	D	D	D	D	D	d				
4.	6	7.	5	2.		4.	8	3.		4.	0	2.					
2.	2	8.	0	4.	8	5.	0	3.		7.	0	2.					
	. 0	7.	0	4.	4	3.	0	4.6		8.	0	2.					
L	1	L	W	L	W	L	W	L	W	L	W	L	W	L	W	L	W
8.0	2.2	8.0	3.0	7.0	2.8	5.5	2.5	5.5	2.2	7.0	2.8	8.0	2.8				
7.0	2.2	8.0	2.8	6.5	2.2	6.0	2.5	7.0	2.2	8.0	3.0	7.5	2.5				
8.0	2.2	8.0	2.8	6.5	2.2	6.0	2.8	6.0	2.5	8.0	2.5	7.5	2.5				
8.0	2.5	7.0	2.5	7.0	2.2	6.5	3.0	5.0	2.5	8.5	3.0	7.0	2.5				

(8)

D		D		D		D		D		D		D		D		D	
2.2		8.0		2.4		3.2		4.0		2.4		1.6		2.2		4.0	
2.0		7.0		3.0		2.4		3.5		4.0		3.2		1.4		2.8	
1.6		6.0		2.4		3.0		5.0		3.8		2.2		2.6		2.8	
L	W	L	W	L	W	L	W	L	W	L	W	L	W	L	W	L	W
8.0	3.0	8.5	2.5	9.0	3.2	8.0	2.5	10.0	3.0	8.0	3.0	7.0	3.0	10.5	2.8	8.0	3.0
8.0	3.0	10.0	3.0	8.0	2.8	8.5	2.2	11.0	3.0	7.5	2.8	7.5	3.2	10.5	2.8	6.5	2.5
7.5	3.0	8.0	3.0	8.0	2.5	9.0	2.5	10.8	3.0	8.0	2.8	7.0	2.5	9.0	2.2	8.0	3.0
9.0	3.5	7.5	2.5	8.0	3.5	8.0	2.2	11.0	3.0	8.0	2.5	8.5	3.2	9.5	2.5	7.5	3.0

(9)

D		D		D		D		D		D		D		D		D	
5.04.63.2		$\begin{aligned} & 2.0 \\ & 2.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.5 \\ & 5.0 \\ & 4.7 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.2 \\ & 2.2 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.0 \\ & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 6.0 \\ & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \\ & 1.8 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 4.6 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.0 \\ & 5.0 \\ & 3.5 \\ & \hline \end{aligned}$	
L	W	L	W	L	W	L	W	L	W	L	W	L	W	L	W	L	W
9.0	2.5	10.5	2.8	9.0	2.5	10.5	3.0	13.0	3.0	13.0	3.0	15.0	3.5	13.0	3.0	17.0	3.8
9.0	2.5	9.5	2.0	9.0	2.5	11.0	3.0	13.0	3.0	12.0	2.5	15.0	3.5	14.0	3.0	16.0	3.5
9.0	2.8	11.0	2.8	9.5	2.5	11.0	3.0	11.0	2.5	12.5	3.0	13.0	3.0	13.0	3.0	17.0	4.0
9.0	2.5	10.0	2.5	9.0	2.5	11.0	3.0	11.5	2.5	11.5	2.5	13.0	3.0	13.5	3.0	15.0	3.0

Note: Numbers underlined are replacements for missing items.
(10)

D		D		D		D		D		D		D		D		D	
5.0		7.0		6.0		2.5		3.2		6.0		4.0		2.8		7.0	
7.0		9.07.0		$\begin{aligned} & 6.0 \\ & 5.3 \end{aligned}$		$\begin{array}{r} 3.2 \\ 5.0 \\ \hline \end{array}$		$\begin{aligned} & 3.2 \\ & 3.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 2.4 \\ & 3.0 \end{aligned}$		9.08.0	
	. 0																
L	W	L	W	L	W	L	W	L	W	L	W	L	W	L	W	L	W
7.5	2.8	6.0	1.8	8.5	2.5	7.0	1.8	7.0	2.0	5.5	2.0	6.0	2.2	7.0	2.2	7.0	2.5
6.5	2.0	7.0	2.0	7.0	2.5	6.5	1.5	6.0	2.0	6.0	2.0	8.0	2.5	8.0	2.5	7.0	2.5
7.0	2.5	5.5	1.8	7.0	2.5	7.5	2.2	6.0	1.8	6.0	2.0	6.8	2.2	6.0	2.2	7.5	2.8
5.0	2.0	6.5	1.8	7.0	2.0	5.0	1.5	7.5	2.0	6.0	2.0	7.0	2.2	6.5	2.2	7.5	2.5

(11)

D		D		D		D		D		D		D		D		D	
8.0		6.0		2.8		2.4		2.2		3.2		10.0		2.8		8.0	
9.0		$\begin{aligned} & 7.2 \\ & 7.0 \end{aligned}$		$\begin{aligned} & 2.8 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 3.6 \\ & 4.1 \end{aligned}$		$\begin{aligned} & 3.2 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 3.2 \\ & 3.4 \end{aligned}$		$\begin{aligned} & 9.0 \\ & 3.2 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		9.08.0	
	0																
L	W	L	W	L	W	L	W	L	W	L	W	1	W	L	W	L	W
8.0	2.0	7.0	2.5	7.0	2.2	6.0	2.5	6.0	2.2	6.2	2.8	10.0	2.5	7.0	2.8	7.0	2.8
8.0	2.0	7.0	2.5	7.5	2.0	6.5	2.5	6.0	2.5	6.0	2.8	8.5	2.0	7.0	2.8	8.0	2.5
8.0	2.0	6.5	2.0	7.5	2.0	8.0	3.0	6.0	2.5	5.5	2.8	8.0	2.2	7.0	2.8	7.0	2.5
8.0	2.0	7.0	2.0	6.5	2.5	6.0	2.5	6.0	2.2	8.0	3.0	6.0	2.0	7.0	2.5	8.0	2.5

(1) $=$ Ruatoria
(2) $=$ Parihauhau
(3) = Parakanapa
$(4)=$ Te Karaka
(5) $=$ Katikati
(6) $=$ Mangleton Block
$(7)=$ Aokautere
(8) $=$ Mangaone
(9) $=$ Awakino
(10) $=$ Tiritea
(11) $=$ Blowhard

D = leaf density/cm. of branch
$\mathrm{L}=$ leaf length (mm.)
$\mathrm{W}=$ leaf width (mm.)

APPENDIX 21.2 ANALYSES OF VARIANCE OF LEAF FEATURES OF L. SCOPARIUM
(EXPERIMENTAL GARDEN SPECIMENS)

Leaf Density			
Source of Variation d.f. M.S. and F Tests   Replicates 8 20.81   Between areas 10 136.81   $* * *$     Within area 78 5.98   Residual 194 $* *$   Total 290 0.87   V\%			


Leaf $\frac{\text { (length) }}{(\text { midwidth })}$ Ratio			
Source of Variation	d.f.	M.S. and	F Tests
Replicates	8	0.43	N.S.
Between areas	10	19.91	* *
Within areas	78	1.47	* *
Residual	291	0.081	
Total	387		
V \%		47	

Leaf (length) (midwidth) Ratio

Source of Variation	d.f.	M.S. and F Tests		
Replicates	8	101.48	N.S.	
Between areas	10	1931.10	${ }^{*}$ *	
Within areas	78	87.85	$* *$	
Residual	291	10.33		
Total	387			
V\%				

## APPENDIX 21.3 <br> LEAF FEATURES OF L. SCOPARIUM <br> (EXPERIMENTAL GARDEN SPECIMENS

Mean values

Leaf Density	L/W	(L) (W)
(1) 8.44	(5) 4.90	(9) 35.14
(10) 4.00	(1) 4.55	(2) 26.66
(11) 3.86	(9) 4.12	(5) 25.78
(4) 3.78	(2) 3.61	(8) 24.12
(3) 3.40	(3) 3.57	(7) 18.57
(7) 3.35	(4) 3.44	(11) 17.02
(9) 2.92	(10) 3.17	(4) 15.66
(5) 2.92	(8) 3.06	(6) 15.30
(2) 2.76	(11) 2.99	(3) 14.79
(8) 2.46	(7) 2.78	(10) 14.38
(6) 2.26	(6) 2.51	(1) 9.87
$\mathrm{SE}= \pm 0.47$	0.2	1.56
d.05(.01) $=1.33(1.77)$	$0.56(0.74)$	4.42(5.88)

Note: Area code (bracketed figures) as in Appendix 21.1

Density of leaves and measurements of leaf length and midwidth

(1)		(2)		(3)		(4)		(5)		(6)		(7)		(8)	
D		D		D		D		D		D		D		D	
$\begin{aligned} & 5.0 \\ & 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 8.0 \\ & 8.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 4.0 \\ & 5.0 \end{aligned}$		$\begin{array}{r} 10.0 \\ 3.0 \\ 8.0 \end{array}$		$\begin{aligned} & 4.5 \\ & 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 8.0 \\ & 7.0 \\ & 7.0 \end{aligned}$		$\begin{aligned} & 9.0 \\ & 3.0 \\ & 7.0 \end{aligned}$		$\begin{array}{r} 7.0 \\ 10.0 \\ 4.0 \end{array}$	
L	W	L	W	L	W	L	W	L	W	L	W	L	W	L	W
9.0	1.7	8.5	1.8	8.0	2.0	7.0	2.0	6.8	2.2	8.5	1.8	5.5	2.0	8.0	2.8
7.0	1.7	8.0	2.0	8.0	2.0	7.5	2.0	5.0	2.0	9.0	1.8	5.0	2.2	9.0	3.0
7.0	1.5	8.0	1.8	8.0	2.8	7.5	2.0	6.0	2.1	7.5	2.1	7.0	2.5	9.0	3.1
9.0	2.0	9.0	1.8	7.0	1.7	7.0	2.0	6.5	2.0	7.0	2.1	6.0	2.2	9.0	2.0


(9)		(10)		(11)		(12)		(13)		(14)		(15)		(16)	
D		D		D		D		D		D		D		D	
$\begin{aligned} & 7.0 \\ & 4.0 \\ & 6.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 5.0 \\ & 4.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 6.0 \\ & 4.0 \\ & 7.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 8.0 \\ & 9.0 \\ & 9.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 8.0 \\ & 8.0 \\ & 6.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 9.0 \\ & 5.0 \\ & 7.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 9.0 \\ & 6.0 \\ & 8.0 \end{aligned}$		$\begin{aligned} & 6.0 \\ & 8.0 \\ & 6.0 \end{aligned}$	
L	W	L	W	L	W	L	W	L	W	L	W	L	W	L	W
7.0	1.8	5.0	2.8	7.0	3.1	6.5	1.8	7.5	1.5	7.0	1.5	8.5	2.0	7.0	1.9
6.0	1.8	5.0	2.5	6.5	2.8	5.0	2.0	8.0	2.0	6.0	1.8	7.0	2.0	8.0	2.2
6.0	1.8	4.5	1.7	7.0	3.5	6.5	1.8	8.0	1.8	6.0	1.5	8.2	1.8	7.0	1.9
6.5	2.0	4.5	1.8	7.0	3.2	5.5	2.0	8.5	1.8	6.8	1.8	9.0	2.2	6.5	1.5


(17)		(18)		(19)		(20)		(21)		(22)		(23)		(24)	
D		D		D		D		D		D		D		D	
$\begin{aligned} & 7.0 \\ & 5.0 \\ & 6.0 \\ & \hline \end{aligned}$		$\begin{array}{r} 5.0 \\ 5.0 \\ 3.0 \end{array}$		$\begin{aligned} & 7.0 \\ & 9.0 \\ & 7.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 7.0 \\ & 4.0 \\ & 6.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 3.0 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 9.0 \\ & 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 9.0 \\ & 8.0 \\ & 5.0 \end{aligned}$		$\begin{array}{r} 12.0 \\ 7.0 \\ 10.0 \end{array}$	
L	W	L	W	L	W	L	W	L	W	L	W	L	W	L	W
6.0	2.1	7.0	2.4	7.0	1.8	6.0	2.1	7.0	2.2	8.0	2.5	4.5	1.8	6.4	2.0
6.8	2.1	7.2	2.4	8.0	1.8	7.0	1.8	7.0	2.2	7.0	2.2	4.5	1.8	6.2	2.0
5.8	1.8	6.8	2.4	8.0	2.2	6.5	2.0	7.5	2.0	8.0	2.5	5.0	2.2	5.2	2.2
6.0	2.0	6.0	2.2	8.2	1.8	6.0	2.0	7.0	2.5	7.5	2.8	6.5	2.0	6.2	2.0


(25)		(26)		(27)		(28)		(29)		(30)		(31)		(32)	
D		D		D		D		D		D		D		D	
11		$\begin{aligned} & 5.0 \\ & 4.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 9.0 \\ & 3.0 \\ & 8.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 3.0 \\ & 4.0 \\ & 6.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 8.0 \\ & 9.0 \\ & 7.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 6.0 \\ & 8.0 \\ & 7.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 6.0 \\ & 7.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{array}{r} 8.0 \\ 12.0 \\ 10.0 \end{array}$	
12															
L	W	L	W	L	W	L	W	L	W	L	W	L	W	L	W
6.5	1.8	5.5	1.5	7.0	2.0	5.1	2.0	5.2	2.1	9.0	2.0	8.0	2.0	7.8	2.5
6.0	1.8	6.5	2.0	7.5	2.0	4.1	2.0	6.0	2.5	7.0	1.8	9.0	2.2	5.0	2.0
6.0	1.8	5.2	1.5	7.0	2.0	6.0	2.0	5.8	2.2	8.5	2.0	7.5	2.0	6.2	1.8
6.8	2.0	5.2	1.5	6.0	1.8	4.8	2.0	5.0	1.8	8.0	2.0	8.0	2.0	6.5	1.8


(33)		(34)		(35)		(36)		(37)		(38)		(39)		(40)	
(		)		D		D		D		D		D		D	
9.0		10.0		7.0		3.0		7.0		4.0		6.0		6.0	
10.0		$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$		$\begin{array}{r} 3.0 \\ 5.0 \\ \hline \end{array}$		$\begin{aligned} & 6.0 \\ & 8.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 8.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{array}{r} 6.0 \\ 6.0 \\ \hline \end{array}$	
12															
L	W	L	W	L	W	L	W	L	W	L	W	L	W	L	W
8.0	2.5	8.5	2.2	7.0	2.1	7.0	2.0	6.0	1.8	7.6	2.1	6.0	2.1	7.0	2.0
8.5	2.5	9.0	2.0	7.0	2.5	6.2	2.0	6.0	1.8	6.5	2.0	7.5	1.8	6.5	2.5
8.5	2.5	8.5	2.5	6.0	2.6	6.0	2.5	5.2	1.8	7.8	2.4	6.0	2.0	8.0	2.0
7.5	2.0	8.0	2.0	6.0	2.8	7.0	2.5	6.0	1.5	7.2	2.2	7.5	2.0	8.3	2.0

Note: Bracketed figures represent sample identification number.

```
D = leaf density/cm. of branch
L = leaf length (mm.)
W = leaf midwidth (mm.)
```

Leaf Density

Source of Variation	d.f.	M.S. and F Tests	
Samples	39	8.57	$* *$
Residual	80	3.47	
Total	119		
V $\%$	29		

Leaf $\frac{\text { (length) }}{\text { (width) }}$ Ratio

Source of Variation	d.f.	M.S. and F Tests	
Samples	39	2.56	$* *$
Residual	120	0.15	
Total	159		
V \%	11		

Leaf (length) (width) Ratio

Source of Variation	d.f.	M.S. and F Tests	
Samples	39	41.30	$* *$
Residual	120	5.24	
Total	159		
V\%	16		

(TIRITEA SPECIMENS)

Mean values

Leaf	Density	L/W	(L) (W)	
(33)	10.33	(1) 4.71	(8)	23.82
(32)	10.00	(2) 4.54	(11)	21.70
(24)	9.67	(13) 4.54	(33)	19.37
(25)	9.00	(30) 4.16	(22)	19.10
(34)	9.00	(6) 4.13	(34)	18.49
(29)	8.00	(19) 4.13	(31)	16.70
(12)	8.00	(15) 4.10	(3)	16.57
(15)	7.67	(31) 3.96	(15)	16.39
(19)	7.67	(34) 3.94	(35)	16.15
(13)	7.33	(14) 3.94	(18)	15.90
(2)	7.33	(16) 3.76	(30)	15.90
(6)	7.33	(3) 3.74	(38)	15.88
(4)	7.00	(4) 3.62	(21)	15.82
(8)	7.00	(40) 3.56	(40)	15.71
(14)	7.00	(29) 3.52	(6)	15.49
(30)	7.00	(26) 3.46	(2)	15.47
(16)	6.67	(9) 3.45	(19)	14.84
(23)	6.67	(33) 3.44	(36)	14.72
(27)	6.67	(25) 3.42	(4)	14.50
(37)	6.67	(37) 3.39	(13)	14.24
(7)	6.33	(38) 3.38	(1)	13.92
(17)	6.00	(39) 3.38	(16)	13.49
(40)	6.00	(8) 3.31	(27)	13.45
(31)	6.00	(20) 3.25	(7)	13.17
(36)	5.67	(32) 3.17	(32)	13.09
(22)	5.67	(12) 3.12	(39)	13.02
(20)	5.67	(21) 3.10	(5)	12.64
(11)	5.67	(22) 3.08	(20)	12.55
(9)	5.67	(17) 3.08	(17)	12.33
(26)	5.00	(36) 2.95	(24)	12.26
(35)	5.00	(24) 2.94	(29)	11.92
(38)	5.00	(5) 2.92	(9)	11.80
(39)	5.00	(18) 2.87	(25)	11.72
(3)	4.67	(19) 2.75	(12)	11.10
(1)	4.33	(7) 2.64	(14)	10.63
(5)	4.33	(35) 2.64	(10)	10.56
(18)	4.33	(23) 2.63	(23)	10.05
(28)	4.33	(28) 2.50	(28)	10.00
(10)	4.00	(10) 2.73	(37)	9.99
(21)	3.33	(11) 2.19	(26)	9.21
SE $= \pm$	1.08	0.19		
d.05(.01)	$=3.04$ (4	0.53 (0.71)	3.21	(4.24)

Bracketed figures represent sample identification number.

APPENDIX 23.1 GROWTH RATE INDICATORS IN L. SCOPARIUM
(EXPERIMENTAL GARDEN SPECIMENS)

Crown width (cm.) 26/5/66
Average of 2 measurements taken at right angles at the widest point

Rep   Area	a	b	c	d	e	f	g	h	i
1	90	58	65	50	48	48	55	62	53
2	90	72	84	78	73	70	75	90	80
3	90	58	73	55	80	63	65	75	60
4	83	70	43	60	65	73	75	75	78
5	83	82	98	65	65	75	87	72	92
6	88	61	60	60	40	48	67	50	52
7	64	77	60	60	85	52	60	64	60
8	90	93	75	63	93	63	75	85	70
9	70	77	80	83	73	80	70	58	45
10	43	48	58	59	45	52	60	55	50
11	63	72	63	63	62	58	47	47	45

Height (cm.) 26/5/66

Rep   Area	a	b	c	d	e	f	g	h	i
1	112	106	122	120	90	114	103	116	111
2	99	100	107	130	103	123	124	120	112
3	102	99	99	117	110	111	130	114	100
4	130	121	133	130	114	113	126	126	145
5	104	120	130	103	129	128	123	112	134
6	121	100	133	139	120	131	105	135	140
7	110	117	130	111	115	125	116	119	124
8	128	121	135	133	124	121	121	109	120
9	86	101	100	106	98	101	90	80	109
10	103	111	113	113	88	118	110	123	111
11	102	90	99	98	103	101	93	104	106

Note: Numbers underlined are replacements for missing items. Area code as in Appendix 21.1

APPENDIX $23.2 \frac{\text { ANALYSES OF VARIANCE OF GROWTH RATE }}{\text { INDICATORS IN L. SCOPARIUM }}$

Crown width (cm.)

Source of Variation	d.f.	M.S. and F Tests	
Replicates	8	$257.05 \quad *$	
Areas	10	$825.30 \quad * *$	
Residual	78	110.79	
Total	96		
V\%	16		

Height (cm.)

Source of Variation	d.f.	M.S. and F Tests	
Replicates	8	$232.00 \quad *$	
Areas	10	$885.60 \quad * *$	
Residual	78	88.79	
Total	96		
V\%	8		

Time of Bud Break
Number of plants from each area showing bud break since previous observation

Area	1	2	3	4	5	6	7	8	9	10	11
$11 / 8 / 65$		1		2	1	1					
$25 / 8 / 65$	6	7	5	7	8	7	2	5	6	3	3
$9 / 9 / 65$	3	1	4	0	0	1	5	4	3	6	6

Flowering Season
Number of plants from each area flowering in spring and/or autumn

Area	1	2	3	4	5	6	7	8	9	10	11
spring	1	2	0	0	3	3	1	2	0	0	0
Autumn	0	0	1	0	0	4	0	1	0	0	1

Note: Area code as in Appendix 21.1

Fungicides in sufficiently high concentration are toxic to higher plants.

Following the failure of L. scoparium seed sown into grassed plots to which Thiram was applied (Section 13.1.2), the effect of the fungicide at recommended spray concentrations was tested on germination. A preliminary test showed that germination proceeded to the stage of testa shedding but no root or shoot growth occurred.

In a more comprehensive test the effects of a range of fungicides on germination of L. scoparium were determined.

## METHOD

The tests were carried out in Petri dishes each containing 50 selected viable L. scoparium seeds resting on filter paper. To each dish was added a liquid suspension of one of the fungicides under test, at recommended spray concentrations. Sufficient suspension was added to moisten the filter paper and the seed, and further suspension was added if signs of desiccation appeared. One lot of 50 seeds was also tested against the wetting agent used in plot spraying. As a control 50 seeds were moistened with water. There was no replication.

The fungicides and wetting agent tested, and the concentrations used, are listed below.

DITHAN亡 M22 (Manganous ethylene bisdithiocarbamate) 1 $1 \frac{1}{2}-2 \mathrm{lb} / 100$ gal CAPTAN 50\% (N- Trichloromethyl mercapto 4 cyclo $2-4 \mathrm{lb} / 100 \mathrm{gal}$ hexene 1,2 dicarboximide)

THIRAM	(Tetramethylthiuram disulphide)	$1 \frac{1}{2}-2 \mathrm{lb} / 100 \mathrm{gal}$
P.C.N.B.	(Pentachloronitrobenzene)	$1 \frac{1}{2}-2 \mathrm{lb} / 100 \mathrm{gal}$
AGRAL LN	(wetting agent)	$1 \mathrm{tsp} \cdot / 3 \mathrm{gal}$

The Petri dishes were placed in a germination cabinet and examined one
week after setting out.

## RESULTS

(a) DITHANE - Germination, $18 \%$. Seedlings $0.22-0.37 \mathrm{~cm}$. long. Apparently normal shoot development. Cotyledons green and normal. No root development.
(b) CAPTAN $50 \%$ - Germination, $100 \%$. Seedlings $0.13-0.37 \mathrm{~cm}$. long. Most shoots twisted and tinged brown. Many cotyledons colourless. No root development.
(c) THIRAM - Germination, $100 \%$ Seedlings 0.2 - 0.34 cm . long. All but three showing no colour and no further signs of development after testa shed.
(d) P.C.N.B. - Germination, $94 \%$. Seedlings 0.35 cm . av. length. Cotyledons green. Root elongation and root hair development apparent.
(e) AGRAL LN - Germination, $98 \%$. Seedlings $0.19-0.24 \mathrm{~cm}$. long. Little cotyledon colouration and no root elongation or root hair development.
(f) CONTROL - Germination, $100 \%$. Seedlings av. 0.71 cm . long. Cotyledons green. Stems tinged red. Root elongation and profuse root hair development apparent.

The effect of the various treatments can be seen in Fig. 34 .
On the evidence of these tests no further attempt was made to control Rhizoctonia brownspot.


FIGURE 34: THE INFLUENCE OF FUNGICIDES ON THE GERMINATION OF L. SCOPARIUM

a. Dithane	d. P.C.N.B.
b. Captan	e. Agral
c. Thiram	f. control

## APPENDIX 26: <br> CONSTRUCTION AND CALIBRATION OF A CADMIUM SULPHIDE LIGHT METER.

GENERAL
Canopy disturbance is a major problem in measuring light values within short swards.

In the experiment described in Section 13 cut grassed plots with no applied fertilizer seldom carried herbage exceeding a height of $1-2 \mathrm{~cm}$. and no cut grassed plots had foliage greater in height than 12-14 cm. (Figs. 23-28). Inserting the probe of a light meter, similar to that described by Barrowman (1956), into the sward of a fortnightly-cut grass plot with no applied fertilizer spread the canopy to such an extent that the probe was completely exposed. Disturbance to the canopies of other cut grass treatments occurred also. The same problem would arise using the light meters developed by Allan and McCree (1955), and Giovanelli (1953).

An investigation was made into the possibility of constructing a light meter causing minimum canopy disturbance and sensitive to radiation in the $400-700 \mathrm{~m} \mathrm{\mu}$ wavelength band. Restriction to this wavelength band is necessary because it is thought that most important photobiological processes are activated by radiation in the range $400-$ $760 \mathrm{~m} \mathrm{\mu}$. Also Loomis (1965) showed that vegetation intercepts 80 $75 \%$ of blue ( $400-500 \mathrm{~m} \mathrm{\mu}$ ), $60-80 \%$ of green ( $500-600 \mathrm{mp}$ ), and $80-$ $90 \%$ of red ( $600-700 \mathrm{~m} \mathrm{\mu}$ ) light, and that above $700 \mathrm{~m} \mathrm{\mu}$ absorption by vegetation fell rapidly to about $5 \%$, the remaining proportion being almost equally divided between reflection and transmission.

Devices commonly used in measuring solar radiation were
discussed by Anderson (1964), Stern (1962), Geiger (1965), Gates (1962), and others. Briefly these devices fall into two categories: (a) Photometric devices consisting of semiconductors or chemical integrators. These have various spectral sensitivites and are normally calibrated in photometric units (based on the spectral sensitivity of the human eye).
(b) Radiometric devices, working on a black body principle, responding equally to all incident radiation or some portion of this as delimited by filters. Radiation received is measured in terms of energy units.

Solar radiation reaching a plant community varies in quantity and spectral quality. The transmission, absorption, and reflection of different wavelengths of this radiation by plants varies with species. Under these circumstances interpreting the readings of a device of variable sensitivity reading in photometric units is difficult. Comparison of the results of workers using different photometers would be confusing. However, because of their cheapness and availability, photometers are used. To reduce the confusion liable to arise Anderson (1964) stressed the importance of stating the spectral sensitivity of the instrument and the conditions under which measurements were made.

Within the same plant community interception of light can differ depending on numerous factors (Stern, 1962; Anderson, 1964). Ideally an integrating recorder is necessary to record "typical" light values within a community. Where treatments within an experiment are being compared a large number of spot readings could be sufficient.

LIGHT METER CONSTRUCTION AND CALIBRATION

A Phillips ORP 63 Cadmium sulphide photosemiconductor $6 \times 30 \mathrm{~mm}$. with high spectral sensitivity in the visible range, was used as the basis of a spot reading light meter. Full technical data on the cell are available in the Phillips Semiconductor Manual 1963.

The major disadvantage of the CdS cell was sensitivity to radiation of wavelengths greater than $700 \mathrm{~m} \mu$ (radiation transmission by vegetation increases greatly above this point; Loomis, 1965). (Fig. 35). Selective absorptance by white PVC film used to shield the photocell reduced this effect (Fig. 35), and subsequent tests have shown that sensitivity to light transmitted by leaves is very low (Table 18).

TABLE 18
RESPONSE OF CdS LIGHT METER TO RADIATION
TRANSMITTED BY LEAVES

Scale reading per additional leaf
covering probe head

No. of leaves	0	1	2	3	4	5
Senecio petasites	6700	210	47	15	8	4
Hibiscus sp.	6200	180	49	21	11	7

Spectral absorptance of the white PVC film was determined on a Beckmann DU photometer (Fig. 35 and Table 19). The relative transmission of the PVC film was determined over a range of wavelengths working either way from the maximum wavelength transmission point which was taken as 100. A similar procedure was adopted without the PVC film in place i.e. using unfiltered Tungsten filament light. The difference between the resultant curves, after rescaling because the maximum transmission of PVC did not coincide with maximum wavelength
radiation of unfilter Tungsten filament light, was taken as the absorptance of PVC film. The presence of PVC film over the photocell reduced the amount of light falling on the cell to one-fifth.

Details of the probe head construction and the positioning of the photocell can be seen in Fig. 37.

The light meter circuit diagram is given in Fig. 36 and a picture of the completed instrument can be seen in Fig. 38.

The CdS photosemiconductor decreases its resistance to an applied voltage, as the amount of light falling on the sensitive surface increases. This process is non-linear (Phillips Semiconductor Manual 1963). The photocell was set in parallel with a 0-1 milli-ammeter. Light falling on the photocell lowered its resistance causing more current to flow around the photocell loop with a consequent alteration in meter reading. By varying the resistance load in various parts of the circuit and incorporating a diode, three ranges were possible each occupying over two-thirds scale reflection with a total coverage of 10,00 arbitrary units. The coverage of each range was

A	0	-
B	$100-100$	
C $100-10,000$		

Basic circuitry for each range was designed by Mr. E.R. Hodgson, Senior Lecturer in Physics, Massey University. The actual resistance values to give most satisfactory scale coverage were determined by trial and error on the light bench described below.

Calibration was carried out in a dark room on a 3 m . light bench using a Phillips 250 watt P28S Tungsten filament lamp as the


FIGURE 35: ABSORPTION AND SENSITIVITY SPECTRA
Green leaf absorption spectra. Loomis (1965)
CdS photo cell sensitivity. Phillips Semiconductor Manual 1963. PVC film absorptance (determined on a Beckmann Photometer).


FIGURE 36: CdS LIGHT METER CIRCUIT DIAGRAM
Switches (S1, S2) are shown set for range A. Shifting $S 1$ sets for range $B$. Shifting $\mathrm{S} 1, \mathrm{~S} 2$ sets for range C .
750 resistance in circuit is permanent setting point for voltage regulator rheostate shown in Fig. 38.
fiberglass


FIGURE 37: CdS LIGHT METER PROBE HEAD CONSTRUCTION


## FIGURE 38: CdS LIGHT METER

Voltage supply (four heavy duty Penlite cells) housed in black box. Probe lead connects to socket on left.
Setting switches to: A, A \& B gives range A (low illuminance) $B \& C, A \& B$ gives range $B$ (medium illuminance)
$B$ \& C, $C$ gives range $C$ (high illuminance)
Scale reads right to left. Figures at scale ends apply to nearest division towards the centre (except for 0 where nearest division is 3). Reading taken by setting range switches appropriately and pressing push button. Voltage will influence reading. To check voltage set to range A, place head in darkness. Reading should lie to extreme right of scale. 0-1000 rheostat was intended as a voltage balance but shifting from the 750 position severely influences $B$ and $C$ scale readings.

BECKMANN DU (200-2000 mu) PHOTOMETER DETERMINATION OF PVC ABSORPTION SPECTRUM.
\% wavelength transmittance

Wavelength			
mp	(a)	(b)	
400	0	5.5	
450	0.5	15	
500	3.0	30	
525	4.9	39	
550	5.9	41	
575	6.2	38	
600	5.7	30	meter blue/red
625	1.7	7.8	sensitivity change
650	2.8	11	
675	4.4	15.5	
700	6.7	21.2	
725	10.0	27.8	
750	14.0	35	
775	18.5	42	
800	24.0	49	
. 850	36.0	60	
900	52.5	72	
950	79.0	93	
980	--	100	
1000	98	98	
1010	100	--	
1050	89.3	75	
1100	51.5	37	
1150	20.2	11.8	
1200	5.4	2.8	
1250	0.9	0.7	

(a) light filtered through white PVC film
(b) unfiltered Tungsten filament light
light source. By variation of the distance between the light source and probe head the meter was calibrated in arbitrary units using the law:

$$
\text { Illuminance }=\frac{\text { Intensity }}{\left(\text { Distance }^{2}\right.}{ }^{2}
$$

Illuminance was taken as 10,000 units at 5 cm . from the light source. Error could result from the fact that the above formula applies to a point light source, a requirement which a Tungsten filament lamp may not meet over short distances.

Calibration data are given in Table 20 and the calibration curves in Fig. 39. The relationship between values given by the Cds meter and the readings in foot candles of an Evans Electroselenium meter as determined on the light bench can be seen in the same figure. The ratio between the two sets of readings varies from three at very low illumination to 1.6 when the Evans meter shows an illuminance of 1000 foot candles. Readings of afternoon sunlight by the Cds meter and an Eppley pyroheliometer (transformed into foot candles) correspond at about 2000 foot candles.

Conversion of the log intensity scale in Fig. 39 to an arithmetic scale as in Fig. 40 gives some idea of the accuracy of the meter within each range. In all cases response is greatest to the lowest values of illuminance covered by each scale. Inaccuracies also arise in estimating values between the marked divisions on a log scale thus accuracy is probably limited to the units into which each scale is divided (see Fig. 38).

The results of an angular response test are given in Fig. 41.

Meter performance could be improved by ensuring a constant voltage supply, and accuracy increased by recalibration using a more powerful light source to enable high illuminance positions to be determined at a greater distance from the source, and a detailed spectral response determination for the probe head.

Under field conditions the meter was easy to use and gave satisfactory results.


## CdS LIGHT METER CALIBRATION DATA

Readings of 0-1 milli-ammeter with distance (cm.) from Tungsten filament light source.

cm.	mA
4	.34
5	.39
6	.46
7	.49
8	. .93
9	.58
10	.63
11	.68
12	.725
13	.77
14	.81
15	.84
16	.89
range	change


$\mathrm{cm} \cdot$	mA	$\mathrm{cm} \cdot$	mA
16	.16	50	.25
18	.21	60	.31
20	.25	70	.36
22	.30	80	.41
24	.34	90	.45
26	.40	100	.49
28	.43	110	.53
30	.49	120	.56
22	.53	130	.59
34	.56	140	.62
36	.60	150	.65
38	.64	160	.67
40	.67	170	.69
42	.70	180	.70
44	.74	190	.72
46	.77	200	.74
48	.79	210	.75
50	.82	220	.77
range change	230	.78	
		240	.79
		250	.80
		260	.81
		280	.82
		290	.825
		300	.835

Note: A re-test gave readings within $\pm .005 \mathrm{~mA}$.

## BIBLIOGRAPHY

ALLAN, H.H. 1961. Flora of New Zealand. Vol. 1. N.Z. Govt. Printer. pp 1085.

ALLAN, A.H., and McCREE, K.J. 1955. Integrating meters for comparing light intensities in plant growth studies. J. scient. Instrum., 32:422-424.

ANDERSON, M.C. 1964. Light relations of terrestrial plant communities and their measurement. Biol. Rev., 39:425-486

ATKINSON, I.A., and PERCY, C.A. 1955-56. An account of the vegetation of Mayor Island. Tane, 7:29.

BARROWMAN, J.N. 1956. A simple portable instrument for measuring the light transmission of pastures. Dom. Phys. Lab.. N.Z. D.S.I.R. Rept. No. R259

BELLINGHAM, N.O. 1955/56. Some Leptospermum communities on Marotiri Island. Tane, 7:23-28.

BIELeSKI, R.L. 1959. Factors affecting growth and distribution of
Kauri. Aust.J.Bot., 7:252-294.
BLACK, J.N. 1958. The growth of a clover sward. In, Nutrition of the Legumes. Ed. E.G. Hallsworth, London.

BLACK, J.N. 1961. Border and orientation effects and their elimination in experimental swards of subterranean clover (Trifolium subterranean L.) Aust. J. agric. Res., 12:203-211.

BURRELL, J.P. 1963. Leptospermum in Otago. Unpublished M.Sc. Thesis, University of Otago.

CAMPBELL, E.O. 1963. Gastrodia minor Petrie, an epi-parasite of Manuka. Trans. R. Soc. N.Z., 2(6) 73-81.

COCKAYNE, L. 1928. The vegetation of New Zealand. 2nd edn. H.R. Englemann. Leipzig. pp 456.

CROCKER, W., and BARTON, L.V. 1953. Physiology of seeds: An introduction to the experimental study of seed and germination problems. Chronica Botanica Co., Waltham Mass. pp 267.

DARLINGTON, C.D., and WYLIE, A.P. 1955. Chromosome atlas of flowering plants. 2nd edn. Allen and Unwin. pp 397.

GATES, D.M. 1962. Energy exchange in the Biosphere. Harper and Row, New York. pp 151.

GEIGER, R. 1965. The climate near the ground. Translated by Scripta Technica inc. Cambridge, Mass, Harvard University Press. pp 611. Translation of 4th German ed. of Das Klima der bodennahen Luftschicht.

GIOVANELLI, R.G. 1953. An omnidirectional photometer of small dimensions. J. scient. Instrum, 30:326-328.

GLUE, D.I. 1957. Pasture management and weed control. Proc. 10th N.Z. Weed Control Conf.

GRIME, J.P., and JEFFREY, D.W. 1965. Seedling establishment in vertical gradients of sunlight. J. Ecol., 53:621-642.

HARPER, J.L. 1956. Studies in seed and seedling mortality. V. Direct and indirect influences of low temperatures on the mortality of maize. New Phytol. 55:35-44.

HARPER, J.L. 1960. Introduction. In, The Biology of Weeds. ed. J.L. Harper. Symp. Brit. Ecol. Soc. No. 1. Blackwell Oxford. pp 256.

HARPER, J.L. 1964. The nature and consequence of Interference among plants. In, Genetics Today, Proc. 11th International Congress of Genetics. The Hague, The Netherlands, Sept. 1963. Permagon Press.

HARPER, J.L., and BENTON, R.A. 1966. The behaviour of seeds in soil. II. The germination of seeds on the surface of a water supplying substrate. J. Ecol., 54:151-166.

HARPER, J.L., and CHANCBILOR, A.P. 1959. The comparative Biology of closely related species living in the same area. IV. Rumex: Interference between individuals in populations of one and two species. J. Ecol. 47:679-695.

HARPER, J.L., LANDRAGIN, P.A., and LUDWIG, J.W. 1955. The influence of environment on seed and seedling mortality. II. The pathogenic potential of the soil. New Phytol., 54:119-131.

HARPER, J.L., WILLIAMS, W.T., and SAGAR, G.R. 1965. The behaviour of seeds in soil. I. The heterogeneity of soil surfaces and its role in determining the establishment of plants from seed. J. Ecol., 53:273-286.

HOY, J.M. 1959. Species of Eriococcus (Targ) (Homoptera, Coccoidea) associated with the genus Leptospermum Forst. in South Eastern Australia and Tasmania. N.Z. Jl. Sci., 2:1-34.

HOY, J.M. 1961. Eriocuccus orariensis Hoy and other Coccoidea associated with Leptospermum Forst. species in New Zealand. N.Z. D.S.I.R. Bull. 141 pp 70.

LAZENBY, A. 1953. Some aspects in the life history of the common rush, with special reference to seed and seedling s.tages. Froc. Brit. Weed Control Conf. 1.

LAZENBY, A. 1955. Germination and establishment of Juncus effusus L. I. The effects of different companion species and of variation in soil and fertility conditions. J. Ecol., 43:103-119.

LEOPOLD, A.C. 1964. Plant Growth and Development. McGraw-Hill N.Y. pp 466.

LEVY, E.B. 1923. The Grasslands of New Zealand. Series II. The Taranaki Back Country. 2. Growth form and habits of secondary growth in relation to control. N.Z. Jl. Agric., 27:281.

LEVY, E.B. 1932. Grassing experiments on hill country in Whangamomona County. N.Z. J1. Agric., 44:79.

LEVY, E.B. 1940. Pasture Weeds. Imperial Bureau of Pastures and Crops.Herbage Publication Series. Bulletin 27:143-151.

LEVY, E.B., 1946. The King Country. Report to the Marginal Lands Committee.

LEVI, E.B. 1949. Construction, care and renovation of the Bowling green. N.Z. Inst. for Turf Culture pp 84.

LOOMIS, W.E. 1965. Absorption of radiant energy by leaves. Ecol. 46:14-16.

MARK, A.F., SCOTT, G.A.M., SANDERSON, F.R. and JAMES, P.W. 1964. Forest succession on landslides above Lake Thompson, Fiordland. N.Z. J1. Bot., 2:60-89.

MARSHALL, K.R. 1962. Manuka to grass on steep hill country. Massey Sheepfarming Annual.

MAYER, A.M. and POLJAKOFF-MAYBER, A. 1963. The germination of seeds. Vol. 3. International series of Monographs on Fure and Applied Biology. Plant Physiology Division Permagon Press, Oxford.

MULCOCK, A.P. 1950. Some aspects of a disease causing the death of Manuka - Leptospermum scoparium Forst. M.Sc. Thesis University of New Zealand.
N.Z. D.S.I.R. Soil Bureau Bulletin (n.s.) 5. 1954. General Survey of the soils of North Island, New Zealand. N.Z. Govt. Frinter.
N.Z. FARMER. 1963. Young settler succeeds fromscratch in King Country. Vol. 83 (42): 10-11.
N.Z. FARMER. 1963. Aviation firm shows faith in land as an investment. Vol. 83 (43):2-3
N.Z. FARMER. 1964. Scrub and Bush submit to fertilizer seed and stock. Vol. 83 (45): 12-13.

NEW ZEALAND FORESTRY, 1964. N.Z. Forest Service Information Series 41. OLIVER, W.R.B. 1953. Origin of the New Zealand Flora. Proc. 7th Pac. Sci. Congr., 5:131.

PERCY, C.A. 1955/56. A primary survey of the vegetation of Marotiri
Island. Tane, 7:3.
RIGG, T. 1962. The Farm Estate of New Zealand. N.Z. Soil News 2, 1962: 53-70.

SALISBURY, E.J. 1942. The Reproductive Capacity of Plants. Bell. London pp 244.

SILVESTER, W.B. 1962. Regeneration in the Hunua Ranges. Unpublished M.Sc. Thesis. University of Auckland.

SMALL, E.M. 1961. The problems of undeveloped hill country with particular reference to the Dast Coast. Massey Sheepfarming Annual.

SMITH, F.G. 1952. The mechanism of the Tetrazolium reaction in corn embryos. Pl. Physiol., 27:445-456.

SPECIAL COMMITTE INVESTIGATION AND REPORT. 1925. Deterioration of Crown Lands in Mid-West districts of the North Island. N.Z. Jl. Agric., 31:36.

STERN, W.R. 1962. Light measurements in pastures. Herbage Abstracts, 32:91-96.
.SUCKLING, F.E.T. 1959. Pasture management trials on unploughable hill country at Te Awa. II. Results for 1951-57. N.Z. Jl. Sci. Technol., 2:488.

WEAVER, J.E., and CLEMENTS, F.E. 1938. Plant Ecology. 2nd edn. McGraw Hill, N.Y. pp 601.

WHEALER, J.M. 1963. The vegetation ofthe North Cape area. Tane, 9:63.

