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We calculate the change in density within a uniform distribution of field
stars (point masses) caused by a single massive body passing through with
a constant velocity. Starting with the simplest case in which the field stars
are initially stationary this leads to an infinite density wake behind the body.
Introducing a small thermalisation within the field stars removes this infinity
whilst leading to similar results off the path of the massive body. Results are
in good agreement with those previously derived. An approximation can be
made for the density in the thermalised case and this can be used to deduce
the force exerted on the massive body due to the drag caused by the accretion
wake.

1 Introduction

We consider a massive body passing at velocity though a background field of stars.
The gravitational attraction of the massive body perturbs the field stars leading to
a change in the density of these stars about the body. In particular the field stars
tend to concentrate towards the axis behind the massive body leading to a wake of
higher density behind the body. The gravitational interaction effectively leads to
a drag on the massive body slowing it down. This drag may also be modelled by
calculating the force backwards due to the enhanced density in the wake.

We shall consider simplified models of the process. We assume that prior to
the influence of the massive body, the field stars are distributed uniformly across
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space. We assume that the single massive body is moving at a constant velocity
and that the wake has already been established so that the density of field stars
about and relative to this body is unchanging. For this to be realistic we require
the velocity of the massive body to be large in comparison with the relative motion
of the field stars to one another. By making use of this assumption we can compute
approximate expressions for the density wake and drag.

We calculate the increased density directly in the cases when the field stars are
initially stationary and when they have a small initial thermalisation. For the latter
case, we also compute the drag exerted by the wake on the massive body.

2 Wake density for a background of stationary field stars

We consider a single massive body mass M moving with speed V in a positive di-
rection along the x-axis through a background field of stars which have unperturbed
density ρ0. There is symmetry about the x-axis. Field stars are perturbed creat-
ing an accretion wake. We ignore gravitational interaction between field stars. We
calculate the density of the wake ρ that will occur if the massive body continues
moving with the same velocity (we neglect any slow down due to drag).

In this section we consider the case where the field stars are initially stationary.
We consider the case where they have a non-zero velocity dispersion in the next
section.

The problem is equivalent to that of a stationary body bombarded by a cloud of
stars. We adopt the rest frame of the massive body (which we locate at the origin)
for our ensuing calculations.

2.1 The trajectories of the field stars

In the rest frame of the massive body the field stars have an initial mean velocity of
magnitude V towards the negative x-axis. Under gravitational attraction each field
star follows a simple hyperbolic orbit about the massive body (at the origin).

Consider a field star of impact parameter p at x = ∞. Using its polar coordinates
(r, θ), with θ measured relative to the positive x-axis,

a(e2 − 1) = r(1 + e cos(θ − θ0)) = r + e(x cos θ0 − y sin θ0),

where e is eccentricity, a semi-major axis, and θ0 is the angle at which pericentre
occurs.

As r →∞ we have x→∞, y → p and θ → 0 so that we deduce that

(1 + e cos(θ − θ0)) = 0

and

ep sin θ0 = a(e2 − 1).



Properties of a body moving through a uniform stellar distribution 125

Figure 1: Creation of a wake behind a fast-moving body (after Heggie & Hut(2003)
(6)).

Eliminating e and θ0 we obtain

r =
p2

a(1− cos θ) + p sin θ
(1)

so that

p =
1

2
r sin θ ±

√
1

4
r2 sin2 θ + ra(1− cos θ).

Note that two orbits with differing p pass through each off axis point (Figure 1). We
must add together contributions from both when computing the perturbed density.

2.2 Balancing the mass flux

The mass flux of field stars at x = ∞ in the annulus of impact parameters from p
to p + dp is 2πρ0V pdp . Taking ρ1 to be the density of this specific mass stream,
the corresponding mass flux at (r, θ) is

2πρ1vr sin θdn = 2πρ1vr sin θ cosφdr

where v is the field star’s speed, dn is the width of the flux along the normal direction
to its flow, and φ is the angle which the normal makes with the radial vector r. The
mass flux is conserved and hence we deduce

ρ1

ρ0

=
V | p |

vr sin θ cosφ | ∂r
∂p
|
.

Now tanφ = 1
r
dr
dθ

and v =
√
V 2 + 2GM

r
= V

√
1 + 2a

r
(as the energy of the field

star is E = GM
2a

= 1
2
V 2). So substituting for cosφ and v

ρ1

ρ0

=
| p |

√
1 + (1

r
∂r
∂θ

)2

r sin θ
√

1 + 2a
r
| ∂r
∂p
|
.
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From our expression (1) for r we derive

1

r

∂r

∂θ
= − a sin θ + p cos θ

a(1− cos θ) + p sin θ

∂r

∂p
=

2p− r sin θ

a(1− cos θ) + p sin θ

and with some further work this leads to

ρ1

ρ0

=
p2

r | sin θ || 2p− r sin θ |

=
p2

r | sin θ |
√
r2 sin2 θ + 4ra(1− cos θ)

. (2)

The first of these expressions is given in Bisnovatyi-Kogan et al(1979) (3) (equation
(1.1)), however, these authors do not sum together the terms from both of the
different streams, with different values of p, that reach the point (r, θ). We do this
now to obtain the overall density enhancement

ρ

ρ0

=
r2 sin2 θ + 2ra(1− cos θ)

r sin θ
√
r2 sin2 θ + 4ra(1− cos θ)

=
y2 + 2a(r − x)

| y |
√
y2 + 4a(r − x)

. (3)

An equivalent expression is derived by a different approach in Danby & Camm
(1957) (4) (equation 3).

Substituting a = GM
V 2 and using sin2 θ

1−cos θ
= 1 + cos θ

ρ

ρ0

=

(
1 + V 2r(1+cos θ)

2GM

)
√(

1 + V 2r(1+cos θ)
2GM

)2

− 1

=
1√

1−
(
1 + V 2r(1+cos θ)

2GM

)−2
. (4)

We observe that ρ
ρ0

is infinite on the negative x-axis (θ = π) but is finite elsewhere.
For θ 6= π, we have

ρ

ρ0

→ 1 as r →∞,

so there is no effect at infinite distance as is to be expected. Also for θ 6= π, we have

ρ

ρ0

∼ 1

V

√
GM

r(1 + cos θ)
=

1

V cos( θ
2
)

√
GM

2r
as r → 0.
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Figure 2: Density contours in the wake behind a fast-moving body (after Heggie &
Hut(2003) (6)).

2.3 The contours of constant density

By rearranging (3) we obtain(
ρ

ρ0

)2

= 1 +
4a2(r − x)2

y2(y2 + 4a(r − x))
.

We may solve this expression as a quadratic in 2a(r−x)
y2

and then eliminating r yields:

κ2
ρy

2 + 2κρx = 1

where

κρ =
1

2a

(
ρ

ρ0

)2

− 1 +

(
ρ

ρ0

) √(
ρ

ρ0

)2

− 1

 .
On the curves of constant density κρ is constant too. Therefore the contours of
constant density are parabolae (Figure 2).

3 Wake density for thermalised field stars

We now consider a more realistic situation with thermalised field stars with a
Maxwellian distribution of velocities

f =
(
2πσ2

)−3/2
e−(u2+v2+w2)/(2σ2).
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Figure 3: The spherical geometry of the wake.

Figure 3 illustrates the view from downstream with a sphere of radius r overlaid.
As found in the previous section, without thermalisation an infinite density wake
occurs on the radius through P . For a cohort of field stars with (thermalised)
velocity −W = (u − V, v, w) this wake moves to the radius through Q. We shall
compute the density at R where without loss of generality PR lies in the xz-plane.
The density enhancement is (cf. non-thermalised result (4))

ρ

ρ0

=

∫
f(u, v, w)dudvdw√

1−
(
1 + W 2r(1−cosψ)

2GM

)−2
. (5)

Now cosφ = V−u
W

, tanα = v
w

and furthermore ψ, φ, π − θ and α are related by

cosψ = − cos θ cosφ+ sin θ sinφ cosα

and so

W 2 (1− cosψ) = W 2

(
1 +

(V − u)

W
cos θ − w

W
sin θ

)
. (6)

Henceforth, we will suppose that the massive body has a large velocity relative
to that of the field stars (V >> σ). As f is small for u, v or w >> σ, we treat the
integrand’s denominator in (5) for u, v, w << V .

3.1 Well away from the negative x-axis

Well away from the negative x-axis (θ = π) the dominant term in (6) is constant

W 2 (1− cosψ) ≈ V 2 (1 + cos θ) .



Properties of a body moving through a uniform stellar distribution 129

and (5) reduces to the non-thermalised case

ρ

ρ0

=

∫
f(u, v, w)du dv dw√

1−
(
1 + 1

2
rV 2

GM
(1 + cos θ)

)−2

=
1√

1−
(
1 + V 2r(1+cos θ)

2GM

)−2
.

3.2 On the negative x-axis

On the negative x-axis expression (6) is dominated by

W 2 (1− cosψ) ≈ 1

2

(
v2 + w2

)
and so (5) becomes

ρ

ρ0

=
1

(2π σ2)
3
2

∫
e−

1
2

u2+v2+w2

σ2 du dv dw√
1−

(
1 + 1

4
r

GM
(v2 + w2)

)−2
.

Integrating with respect to u and introducing polar coordinates

ρ

ρ0

=
1

2π σ2

∫ ∞

0

∫ 2π

0

e−
n2

2σ2 ndαdn√
1−

(
1 + 1

4
r

GM
n2

)−2

(n =
√
v2 + w2, α = arctan v

w
). A further integration with respect to α and by parts

leads to

ρ

ρ0

=
16G2M2

r2 σ4

∫ ∞

0

e−
4GMq

rσ2

√
q(1 + q)dq = zezK1(z)

where q = 1
8
rn2

GM
, z = 2GM

rσ2 and K1 is the modified Bessel function. (We have made
use of standard integrals and expressions (cf. Abramovitz & Stegun(1965) (1).)
This expression agrees with one obtained by Danby & Camm(1957) (4). In contrast
to the non-thermalised problem the density enhancement is finite except at r = 0.
As we go to an infinite distance away from the massive body r → ∞ (z → 0),

K1(z) ∼ 1
2
Γ(1)

(
z
2

)−1
= z−1 and so

ρ

ρ0

→ 1 as r →∞

which is the same as off the axis. As r → 0 (z →∞), K1(z) ∼
√

π
2z
e−z and so

ρ

ρ0

∼ 1

σ

√
πGM

2r
as r → 0

which is only a minor singularity at r = 0 and similar in order to those for θ 6= π.
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3.3 The general case

Close to but not on the negative x-axis w
W

sin θ is of a similar magnitude to the sum
of the two previously dominant terms of (6) considered in the last two subsections.
A hybrid approximation valid everywhere is

W 2 (1− cosψ) ≈ V 2

(
1

2

(w
V
−

√
2(1 + cos θ)

)2

+
v2

2V 2

)
.

Substitution into the expression (5) for ρ
ρ0

gives

1

(2π σ2)
3
2

∫
e−

1
2

u2+v2+w2

σ2 du dv dw√
1−

(
1 + 1

2
rV 2

GM

(
1
2

(
−
√

2 + 2 cos θ + w
V

)2
+ 1

2
v2

V 2

))−2
(7)

The integral with respect to u can be done immediately, and we may use scaled
polar coordinates (n =

√
(v2 + w2)/2V 2, α = arctan v

w
) to obtain

V 2

πσ2

∫ ∞

0

∫ π

0

(
1 + 1

2
rV 2

GM

(
1 + cos θ − 2

√
1 + cos θ n cos α + n2

))
e−

V 2n2

σ2 ndαdn√(
1 + 1

2
rV 2

GM

(
1 + cos θ − 2

√
1 + cos θ n cos α + n2

))2
− 1

. (8)

For θ 6= π set n2 = (1 + cos θ)p, κ = V 2(1+cos θ)
σ2 and k = 1

2
rV 2

GM
(1 + cos θ) to obtain

V 2(1 + cos θ)

2π σ2

∫ ∞

0

∫ π

0

(
1 + k

(
1− 2

√
p cosα+ p

))
e−κpdαdp√(

1 + k
(
1− 2

√
p cosα+ p

))2 − 1

An alternative approach is to set w = ω + V
√

2 + 2 cos θ in (7), use another set
of polar coordinates (n′, α′) and integrate with respect to α′ to obtain

ρ

ρ0

=
e−

V 2(1+cos θ)

σ2

2π σ2

∫ ∞

0

e−
1
2

n′2

σ2 I0(n
′V
√

1 + cos θ/(
√

2σ2))n′ dn′√
1−

(
1 + 1

4
rn′2

GM

)−2
.

where I0 is the modified Bessel function of zeroth order. Other general integral
expressions for this density have been given by Danby & Bray(1967) (5).

4 Computing the drag due to the accretion wake

As in the previous section we consider the case where the field star velocity distribu-
tion is Maxwellian but the dispersion (σ) is much smaller than the relative velocity
of the massive body (V ). Clearly the drag is infinite as well as the wake density for
the non-thermalised case.



Properties of a body moving through a uniform stellar distribution 131

To derive the drag we take the general expression for ρ
ρ0

(8), multiply byGMρ0 cos θ/r2

and integrate over space r(r, θ, φ). The spatial integral can be trivially integrated
over φ and we obtain

2GMρ0V
2

σ2

∫ ∞

0

∫ π

0

ne−
V 2n2

σ2

∫ ∞

0

∫ π

0

[(
1 + rV 2

2GM

(
1 + cos θ − 2

√
1 + cos θ n cosα+ n2

))
cos θ sin θdθdr√(

1 + rV 2

2GM

(
1 + cos θ − 2

√
1 + cos θ n cosα+ n2

))2 − 1
]dαdn.

Consider the inner part of this expression

∫ ∞

0

∫ π

0

(
1 + 1

2
rV 2

GM

(
1 + cos θ − 2

√
1 + cos θ n cosα+ n2

))
cos θ sin θdθdr√(

1 + 1
2
rV 2

GM

(
1 + cos θ − 2

√
1 + cos θ n cosα+ n2

))2 − 1
.

We may begin with the integration with respect to r, however, care is required as
there are terms which collectively cancel but individually blow up. (This is to be
expected as in any direction towards an infinite radius the density is uniform and
non-zero.) The inner expression becomes2GM

V 2

∫ π

0

√(
1+ rV 2

2GM (1+cos θ−2
√

1+cos θ n cosα+n2)
)2
−1

(1+cos θ−2
√

1+cos θ n cosα+n2)
cos θ sin θdθ

r=∞

r=0

.

Observe that as r →∞√(
1 +

rV 2

2GM

(
1 + cos θ − 2

√
1 + cos θ n cosα+ n2

))2

− 1

∼
√

V 2

2GM

(
1 + cos θ − 2

√
1 + cos θ n cosα+ n2

)
r + 1 +O(r−1)

and as r → 0 √(
1 +

1

2

rV 2

GM

(
1 + cos θ − 2

√
1 + cos θ n cosα+ n2

))2

− 1

∼
√

V 2

GM

(
1 + cos θ − 2

√
1 + cos θ n cosα+ n2

)√
r +O(r3/2)

→ 0

So making use of this in our inner integral we have[
2GM
V 2

∫ π

0

1
2

√
V 2

GM (1+cos θ−2
√

1+cos θ n cosα+n2) r+1

(1+cos θ−2
√

1+cos θ n cosα+n2)
cos θ sin θdθ

]r=∞
.
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Within the integral with respect to θ the term of order r vanishes leaving

2GM

V 2

∫ π

0

cos θ sin θdθ(
1 + cos θ − 2

√
1 + cos θ n cosα+ n2

)
=

4GM

V 2

∫ √
2

0

(s2 − 1)sds

(s2 − 2sn cosα+ n2)

where we have substituted s =
√

1 + cos θ (note that s > 0).
Reversing the integration order of α and θ in our overall expression for drag and

for brevity letting k = V 2

σ2 , we obtain

8G2M2ρ0

σ2

∫ ∞

0

ne− kn
2

∫ √
2

0

∫ π

0

dα

(s2 − 2sn cosα+ n2)
(s2 − 1)sdsdn

=
8G2M2πρ0

σ2

∫ ∞

0

ne− kn
2

∫ √
2

0

π(s2 − 1)s

|s2 − n2|
dsdn

=
4G2M2πρ0

σ2

∫ ∞

0

ne− kn
2[

signum(
√

2− n)(2 + (n2 − 1) ln |2− n2|) + (n2 − 1) lnn2 ]dn.
For further simplification we subsitute n2 = p and obtain

2G2M2πρ0

σ2

∫ ∞

0

e−kp[signum(2− p)(2 + (p− 1) ln |2− p|) + (p− 1) ln p]dp

=
2G2M2πρ0

σ2
[

∫ 2

0

e−kp(2 + (p− 1) ln |2− p|)dp

−
∫ ∞

2

e−kp(2 + (p− 1) ln |2− p|)dp+

∫ ∞

0

e−kp(p− 1) ln pdp].
The three integrals on the right-hand side may be calculated in terms of the standard
exponential integrals

Ei(x) = PV

∫ x

−∞

et

t
dt and E1 (x) = PV

∫ ∞

x

e−t

t
dt

and Euler’s constant γ ' 0.577215665. In the first integral by setting q = 2− p we
find ∫ 2

0

e−kp(2 + (p− 1) ln |2− p|)dp

= e−2k

∫ 2

0

ekq(2 + (1− q) ln q)dq

=
e−2k

k2
[(1 + (1− q)k)ekq ln q + (1 + 2k)ekq − (1 + k)Ei(kq)]

2

0

=
1

k2
[(1− k) ln 2 + (1 + 2k) + e−2k((1 + k)(γ + ln k − Ei(2k))− (1 + 2k))].
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In the second integral set q = p− 2:

−
∫ ∞

2

e−kp(2 + (p− 1) ln |2− p|)dp

= − e−2k

∫ ∞

0

e−kq(2 + (1 + q) ln q)dq

=
e−2k

k2

[
(1 + (1 + q)k)e−kq ln q + (1 + 2k)e−kq + (1 + k)E1 (kq)

]∞
0

= − e−2k

k2
[(1 + 2k) + (1 + k)(−γ − ln(k))] .

The third integral can be calculated immediately,∫ ∞

0

e−kp(p− 1) ln pdp

=
1

k2

[
(−1 + (1− q)k)e−kq ln q − e−kq − (1− k)E1 (kq)

]∞
0

=
1

k2
[1 + (1− k)(−γ − ln(k))] .

Adding these terms the expression for drag becomes

2πG2M2ρ0

σ2

1

k2
[(1− k)(ln 2− γ − ln(k)) + 2(1 + k)

+ e−2k((2(γ + ln(k))− Ei(2k))(1 + k)− 2(1 + 2k))]
=

2πG2M2ρ0

V 2
[(− ln(2) + ln(k) + γ + 2)

+
3
2

+ ln(2)− ln(k)− γ

k
− 3

4
k−2 − 1

2
k−3 +O(k−4)].

We recall that k = V 2

σ2 and by assumption k is large (higher order terms were
neglected in our earlier approximations for the density). Hence it is as well that with
comparatively small values of k, the first term in the expression for drag is dominant.
For example with the massive body’s velocity ten times the velocity dispersion of
the field stars (V = 10σ), the higher order terms make a difference of under half a
percent.

Removing the higher order terms our final expression for the drag force exerted
by the density enhancement is

2πG2M2ρ0

V 2
[− ln(2) + ln(k) + γ + 2] =

4πG2M2ρ0

V 2
ln(

V

σ

e1+γ/2√
2

)

The dependency of the drag upon the field star velocity dispersion σ is slight
as would be expected. The direct proportionality to initial field density ρ0 is also
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not surprising. The drag scales approximately with the square of the ratio of the
massive body’s mass divided by its velocity, the exponential term providing a slight
correction. The factor e1+γ/2

√
2
' 2.565 is negligable for large ratios V

σ
.

This result is of the same order as previous expressions derived for the drag by
alternative methods such as the Chandrasekhar dynamical friction formula (equa-
tion 7-17 in Binney & Tremaine(1987) (2)) and the similar expression in Binney
& Tremaine’s problem 7-11 although their expression’s dependency upon velocity
dispersion differs slightly from ours.
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