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Abstract

In this thesis atomistic, statistical mechanical and coarse grained simulation tech-

niques are used to study the properties of biopolymers and in particular the plant

polysaccharide pectin. Spectroscopic aspects, structural and conformational be-

havior, and mechanical properties of the molecule in different physical states are

addressed.

After an introduction to the area and the theoretical techniques utilised herein

(chapter 1), chapter 2 deals with the spectroscopic characterisation of pectin.

Spectra were obtained theoretically by undertaking complete energy minimisation

and Hessien calculations using DFT techniques implemented in Gamess (PC &

US) packages. The calculated IR absorptions of different pectinic species and

oligomers coupled on different surfaces were compared with experimental results.

Herein, it is confirmed that experimental FTIR studies coupled with DFT cal-

culations can be used as an effective tool for the characterisation of pectin, and

studying chemical coupling of the biopolymer to surfaces.

In chapter 3, the properties of single chain polymer systems in controlled solvent

conditions were studied using Brownian dynamics simulations, motivated by the

formation of secondary structure architectures in biopolymer systems. We focus

on the conformational properties of the chain in the presence of an additional tor-

sional potential. New, interesting, and biologically relevant structures were found

at the single molecule scale when a torsional potential was considered in the cal-

culations.

In chapter 4, results from DFT calculations carried out on single pectin sugar

molecules (lengths and the free energies) are incorporated into a statistical mechan-

ical model of polymer stretching, in order to obtain the force-extension behaviour

of a single molecule pectin. This captures a good deal of the phenomenology of

the single molecule stretching behavior of pectin.

Chapter 5 summarises the conclusions of the work and finally chapter 6 suggests

direction for further work.
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