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”I do not quite understand you,” I said, with an uneasy foreboding as to what she
meant...
“Surely a man must do a day’s work first!”
I gazed in the white face of the woman, and my heart fluttered. She returned my
gaze in silence.
“Let me first go home,” I resumed, “and come again after I have found or made, in-
vented, or at least discovered something!”

- George MacDonald
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ABSTRACT

Random Discrete Groups in the Space of Möbius Transformations

Graeme K O’Brien

Discrete subgroups of random Möbius transformations are investigated using com-
putational methods together with collateral mathematical analysis. The main results
include quantification of the likelihood of occurrence of two generator discrete groups
and studies of the sharpness of the Hadamard inequality for random matrices and of
the scale invariance for the domain of definition for matrix entry distributions derived
by normalisation of matrices in GL(2,C) to SL(2,C).
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Chapter 1

INTRODUCTION

In this thesis, discrete subgroups of random Möbius transformations are investigated
using computational methods together with some collateral mathematical analysis.
The main results presented are as follows:

• quantification of the likelihood of occurrence of two-generator discrete groups

• a study of the sharpness of the Hadamard inequality for random matrices

• for normalisation of matrices in GL(2,C) to SL(2,C) accomplished by division
of all matrix entries by the square root of the determinant, a study of scale
invariance of the resultant distributions with respect to the magnitude of matrix
entry domains in GL(2,C)

• derivations of some algebraic expressions and determination of methodology for
distributions of random variables over domains not restricted to non negative
numbers, with particular interest in distributions of determinants of random
matrices

We use these results and observations to test the efficacy of standard criteria for
discreteness of Möbius groups, further work to prove the statistical inferences and
refine experimentally determined features will be the subject of a subsequent thesis.

1.1 Möbius transformation Groups

The complex plane C can be extended to the Riemann sphere Ĉ by the addition of
the point at ∞, Ĉ = C∪{∞}, and considering that all automorphisms on the sphere

are Möbius transformations, fractional linear mappings of the form f(z) =
az + b

cz + d
,

representation by matrices A in SL(2,C) of a standard form is possible:

f ↔ A =

(
a b

c d

)
a, b, c, d ∈ C, det(A) = ad− bc = 1 (1.1)

and composition of Möbius transformations corresponds to matrix multiplication.
The group of Möbius transformations under composition is homomorphic to a sub-
group of 2 × 2 complex matrices under multiplication, unique up to sign, allowing
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Möbius transformations to be studied by considering subgroups of the matrix groups
GL(2,C) and SL(2,C).

Groups of Möbius transformations can be identified with groups of hyperbolic
isometries, hence there are connections to 3-manifold theory, see e.g. Thurston [1],
Maskit [2].

Two-generator subgroups of SL(2,C) are important in the context of this thesis
as a result of theorems by Jørgensen [3], Gehring and Martin [5] and Klein (see [6]),
these theorems are discussed in the next section. Gehring and Martin show that the
subgroup G =< A,B >⊂ PSL(2,C) is uniquely determined up to conjugacy by the
three complex numbers, the parameters of the two-generator subgroup,

β(A) = trace2(A)− 4
β(B) = trace2(B)− 4
γ(A,B) = trace([A,B])− 2

⎫⎬
⎭ (1.2)

where here the commutator ABA−1B−1 of A and B (the generators of the subgroup
〈A,B〉) is designated by [A,B] and we assume γ(A,B) �= 0. The β and γ parameters
are dependent only on the traces of the matrices and of the commutator of a matrix
pair, and since the trace and determinant of a matrix in SL(2,C) are invariant under
conjugation, the study of many properties of two-generator subgroups of SL(2,C) is
possible via suitably chosen conjugate matrices. It is noted that conjugacy preserves
both geometric and algebraic invariants of a group.

Except where specifically indicated, in this thesis the term group refers to a finitely
generated subgroup of SL(2,C) (or of GL(2,C) etc), the generators A and B of
< A,B > are distinct and a matrix in standard form means with complex entries as
in (1.1).

Möbius transformations can be represented up to scalar multiple in GL(2,C)
and GL(2,R), up to sign in SL(2,C) and SL(2,R) and uniquely in PSL(2,C) and
PSL(2,R). The matrix spaces are elements of the sequences:

R
8 ⊃ GL(2,C) ⊃ SL(2,C) ⊃ PSL(2,C)

∪ ∪ ∪ ∪
R

4 ⊃ GL(2,R) ⊃ SL(2,R) ⊃ PSL(2,R)
(1.3)

The spaces of 2×2 complex and real matrices are R8 and R
4 respectively. Omission

of matrices with zero determinant allows GL(2,C) and GL(2,R) and their subsets to

2



be groups under matrix multiplication.

1.2 Discreteness

A group is discrete if it contains no sequence that tends to the identity (see Beardon,
[7]). Theorem 1.1 below (due to Jørgensen, see [7], [3]) shows that the discreteness of
the two-generator subgroups of Möbius transformations determines the discreteness
of the group. In a later theorem Jørgensen [4] shows that a similar condition on
single generator groups obtains for Möbius transformations that can be represented
by matrices in SL(2,R). A subgroup G of Möbius transformations is elementary if
any two of its elements of infinite order have a common fixed point in Ĉ (cf [4]), it
follows that for a non elementary subgroup G there must exist no finite G-orbits in
Ĉ (cf [7]).

Theorem 1.1. A non-elementary group G of Möbius transformations is discrete if
and only if for each f and g in G, the group 〈f, g〉 is discrete

Jørgensen also proves a theorem [3] which when restated in terms of the trace param-
eters provides a necessary condition for non elementary two-generator groups to be
discrete:

Theorem 1.2. |β(A)|+ |γ(A,B)| ≥ 1

The commutator shrinking property of Lie groups (see e.g. [9]) leads to an inequality
that we will use in the study of discrete groups as it describes neighbourhoods of the
identity:

‖[A,B]− I‖ ≤ sup{‖A− I‖ , ‖B − I‖} ∀A,B ∈ SL(2,C) (1.4)

Suppose now that a Möbius transformation in the space GL(2,C) maps the point z
to the point f(z) in Ĉ. Write the transformation:

f =
az + b

cz + d
(1.5)

hence
df

dz
=

ad− bc

(cz + d)2
(1.6)

3



If the transformations are represented by matrices using the standard form of
(1.1), then the numerator of (1.6) is recognised as the determinant of the matrix, and
for matrices in SL(2,C) the equation reduces to:

df =
dz

(cz + d)2
(1.7)

Ford [30] equates the absolute values of the differentials to determine the locus of
points in whose neighbourhood distances are preserved:

|df | = |dz| ⇔ |cz + d| = 1 (1.8)

which is a set of points for which A represents an isometric transformation.

The locus is a circle in Ĉ, which provided c �= 0 (that is, f(∞) �= ∞), is given by
the equation: ∣∣∣∣z + d

c

∣∣∣∣ =
∣∣∣∣1c

∣∣∣∣ (1.9)

and this is the isometric circle corresponding to the matrix, and is centered at the

point −d
c

with radius
1

|c| .

Ford notes that within the isometric circle, lengths and areas are increased under
the transformation A, outside the circle they are decreased, and the circle itself is
transformed into the isometric circle of the inverse transformation A−1 determined
by the equation:

∣∣∣z − a

c

∣∣∣ = ∣∣∣∣1c
∣∣∣∣ (1.10)

which is the equation of a circle centered at the point
a

c
with the same radius

1

|c|
as for the isometric circle of A. The three independent complex entries a, c and d of
the matrix determine the two isometric circles of a transformation uniquely. The two
complex coordinates of the centres of the isometric circles are determined by entries
d, a and c but the real radii are determined by the modulus of the entry c. Hence
the isometric circles of a matrix A in SL(2,C) characterise the matrix only up to
the modulus of the complex entry c, and for any two pairs of circles of equal radii
in Ĉ, there exist an infinite number matrices in SL(2,C) which have these pairs as
isometric circles.
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For matrices in GL(2,C):

dz1 =
(ad− bc)dz

(cz + d)2
(1.11)

The locus is a circle in C, which provided c �= 0, is given by:

∣∣∣∣z + d

c

∣∣∣∣ =
√∣∣∣∣ad− bc

c2

∣∣∣∣ (1.12)

centered at the point −d
c

with radius

∣∣√ad− bc
∣∣

|c| .

Both these quantities are scale invariant, that is, if A ∈ GL(2,C) then A and λA
have the same isometric circles, λ ∈ C. The scaling of the domain of definition for
entry distributions of random matrices in GL(2,C) is considered later in this thesis,
but it is clear that normalisation of individual matrices in GL(2,C) via division of
each entry by the square root of the determinant leaves centres of isometric circles
constant but the scales the radii. We note that although the square root function
is two-valued, by (1.1) the two resultant matrices represent the same Möbius trans-
formation and both also have determinant 1. It is immaterial to the transformation
which root is used for normalisation.

A well known result of Klein (see e.g. Gilman, [6]) shows that if the discs enclosed
by the isometric circles corresponding to the matrices (including inverses) of the two-
generators A and B of 〈A,B〉 ∈ SL(2,C) are disjoint (or at most tangential) then
the group 〈A,B〉 must be discrete. This criterion allows discreteness to be expressed
explicitly in terms of an inequality between the parameters of disjoint isometric circles.

In this thesis the main problem is the study of random groups of Möbius transforma-
tions in order to assess the efficacy of the discreteness criteria embodied in Theorem
1.2 and Klein’s Isometric Circle result by determining the likelyhood of corresponding
inequalities being satisfied.

1.3 Random matrices

The nature of random distribution of matrices can be considered both from a compu-
tational perspective and from consideration of precise theorems on entry distribution.
This thesis focuses on the computational approach (using Monte Carlo methodology),
but also addresses some of the issues relating to the required theoretical distributions.

5



A fuller study of the distributions is to be the subject of future research.

For computational analysis (unless otherwise indicated) the definition of a random
complex matrix will be a matrix of the form (1.1) where the eight real and imaginary
components of the entries a, b, c and d of a matrix A ∈ GL(2,C) are selected uni-
formly from a domain [−k, k] where k is a non-negative real number. Determination
of the complex square root ±√

ad− bc of the determinant allows rejection of matrices
not in GL(2,C) and also normalisation as required to SL(2,C) by division of every
entry by the positive value of this complex square root. For normalisation of matrices
in GL(2,R) the mapping to SL(2,R) is defined for positive determinant values only,
and matrices in GL(2,R) with negative determinants are rejected and replaced in the
normalisation process. We study the results for different values of k and also the limit
as k → ∞, together with the implications of the use of domains [−m,n], m �= n. Al-
ternative methods have been investigated, but are either impractical computationally
(such as putting a distribution on the non-compact space SL(2,C) ⊂ R

8) or result
in non homogeneous distributions (e.g. choosing three complex entries from a ran-
dom distributions then calculating the fourth subject to the determinant constraint).
Indeed certain geometric invariants of Möbius transformations can be computed di-
rectly from the GL(2,C) matrix without referance to the determinant. The chosen
procedure was used because it was efficient and resulted in homogeneous entry dis-
tributions in most cases; further justification lies in the identification of unexpected
results regarding subgroups of Möbius transformations.

There are other valid approaches however that will be studied in subsequent work.

The generation of random numbers requires some care in choice of algorithm to
maintain integrity and efficiency of computation. Almost without exception, random
number generators produce near uniform distributions. There is an immediate prob-
lem with investigation of geometry in unbounded spaces using uniform distributions
in that a finite interval must always be specified, such problems do not exist to the
same extent for Gaussian distributions. Recent work by Strang [8] makes this point
quite clearly and also concludes that Gaussian rather than uniform distributions seem
to give the right answers for many geometric problems. Where required, Box-Muller
transformations [10] were used for conversion of uniform distributions to Gaussian.
In practice, other considerations affected the choice of distribution.
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Chapter 2

COMPUTATIONAL ANALYSES

2.1 Mathematical Issues

We early determined that in generating random matrices in SL(2,C) from those
in GL(2,C) both the domain of entry distribution for GL(2,C) and the origin of
the GL(2,C) and SL(2,C) matrix spaces are significant as far as the nature of the
resultant distributions is concerned. Apart from distributions of matrix entries them-
selves, the following are important to the assesssment of discreteness of matrix groups
in SL(2,C):

• The determinant, or rather the square root of the determinant, involved in the
normalisation of matrices to SL(2,C)

• The norm ‖A− I‖, the distance between matrices and the identity used in
determining discreteness

• The quantity ‖[A,B]− I‖ as occurs in the Jørgensen (Theorem 1.2) and other
discreteness criteria

• The isometric distance between two matrices, here defined as the infimum of
the separations between the isometric circles corresponding to the two matrices;
if all four such separations are non negative then 〈A,B〉 is a discrete subgroup
of SL(2,C). Circle separation is defined by equation (2.1):

δA,B =
√
(yB − yA)2 + (xB − xA)2 − rA − rB (2.1)

(for circles of centres (xA, yA), (xB, yB) and radii rA, rB

With respect to the significance of the origin of the GL(2,C) and SL(2,C) spaces,
useful choices with respect to which distances (as defined by Euclidean norms on the
R

8 and R
4 embedding spaces) can be measured are 0 (the origin of the embedding

space) and

(
1 0
0 1

)
(corresponding to the identity of the matrix group). In zero

centred space the real and imaginary matrix entry components are distributed over
[−k, k]. In identity centred space the leading diagonal real components of matrix
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entries are distributed over [−k + 1, k + 1] while all other entry components are dis-
tributed over [−k, k]. It eventuates that both zero and identity centred SL(2,C),
SL(2,R), PSL(2,C) and PSL(2,R) spaces require consideration for analysis pur-
poses.

2.2 Computation and Presentation Issues

Programs to define the procedures for the experiments were written in Visual Basic,
and actual probabilistic events correspond to the sets of data files generated by pro-
gram runs. Data analysis and presentation was performed within either the Visual
Basic programs or with Mathematica via import of event files.

The standard random number generators that come with most software programs
are inadequate when dealing with large amounts of data, the main problem being
aliasing, whereby a reccurrance of the sequence of generated random numbers can
create spurious artifacts. Such problems can be visible to close inspection of unpro-
cessed data. A much better algorithm is embedded in the CryptoSys API [26] and
conforms to a very conservative specification [27] and [28] providing random numbers
having higher specification than required by ANSI X9.31 Appendix A for data en-
cryption. This means that fixed point numbers can be provided having an extremely
high quality of uniform randomness but with a severe concomittment speed penalty.
However the simple and faster algorithm is still highly uniform, and accordingly the
higher specification algorithm is used only where aliasing would otherwise be a prob-
lem as determined by the size of the set of numbers to be generated (which can be
considerably greater than that corresponding to the sample size) and the nature of
the random number algorithm specification. IEEE double precision floating point
numbers are used for raw number generation and provide precision and integrity far
in excess of that required for these statistical analyses.

Experimental parameters are chosen according to the following considerations:

• limitation of numerical resolution: restrict double precision numbers to 9 deci-
mal digits for calculation (to avoid overflow in certain processing routines), use
single precision floating point numbers for result arrays

• matrix sample size: dependent on context and the conflicting requirements for
speed and resolution, typically chosen to be 1,000,000 which allows use of the
faster random number generation algorithm without risk of aliasing

8



• quantile size: 1
100

of a standard deviation rather than a fraction of the total
range

• matrix space parameters: see later in this chapter for considerations

For distribution analysis we map the elemental events from experiments onto
quantiles of a partitioned occurrence frequency domain, the standard deviation of the
distribution being precisely the quantile size fraction with the above non-standard
definition of quantile. Division of the quantile occurrences by the total of occurrences
in the frequency domain gives probabilities. For comparison purposes a possibly con-
strained normal distribution having the same standard deviation and mean as the
event distribution is then created over an identical frequency domain.

A Kolmogorov-Smirnov analysis procedure (see for instance [12]) is used whenever
quantitative comparison of distributions is required. Unlike many competing tech-
niques, this is easily extended to non normal distributions. Our use of this technique
contains a refinement, in that we sum the computed probability density distributions
quantile by quantile in order to derive cumulative probability distributions having
substantially fewer but less variable data points than for ordered empirical distri-
butions. Prior to comparison, distributions are synchronised by truncation of the
domains so as to ensure that means and domains correlate; use of quantile sizes re-
lated to standard deviation ensures the validity of this procedure. The supremum of
the set of distances between each of the n quantile values determines the Kolmogorov-
Smirnov statistic Dn, and comparison of

√
nDn with standard published tables [11]

allows for assessment of the degree of correlation. Specifically, if
√
nDn > 1.52 then

the two distributions compared fail to satisfy an equality hypothesis at an 80% level
(a lower % figure is more stringent). In this thesis, if

√
nDn is of an order of magni-

tude below this 80% threshold then the compared distributions are adjudged to have
non-significant differences.

For graphical presentations we use the following conventions unless otherwise
stated. Horizontal axes represent the domain of a p.d.f (sometimes with outliers
suppressed) and the vertical axis the probability. Blue is used for event data, red for
comparative normal distributions. For overlaid cumulative distribution functions red
is used for the first mentioned function, blue for the second and green for a third,
then the colours recycled. In annotations, the variable k is the domain bound for
entries of matrices in GL(2,C) or GL(2,R).
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2.3 Discussion

It might be expected by reason of the isometric circle criterion for discreteness that
a random two-generator subgroup of PSL(2,C) would usually be discrete, but it is
shown experimentally that this is not the case. The reason is that with entries of
matrices A and B sampled from the same restricted distribution then A and B can
be expected to be close to the mean of the matrix distribution; we will see that for
matrices in PSL(2,C) this mean is the identity and [A,B] in consequence is close to
the identity. Iteration of this process in the following fashion:

[A,B] �→ [[A,B], A] �→ [[[A,B], A], A]...

will then be expected to result in a sequence converging to the identity and < A,B >

will accordingly not be a discrete group.

Similarly, it might be expected on the basis of fractions such as a√
ad−bc

that scale

invariance of resultant distributions in SL(2,C) would apply with respect to the
magnitudes of the entries of the matrix in GL(2,C) under the normalisation process,
and indeed experimental results generally support the expectation. We will show in
Chapter 3 that this is not a conclusion that can be drawn from such real or complex
number algebraic expressions, the algebra of distributions is via Fourier and Mellin
convolutions.

Bearing in mind the comments made in the introduction, it might be expected
that we could work with matrices in SL(2,C) and SL(2,R) having entry distributions
both identical and normal. However, it was seen from the early computational results
that freedom of choice of the nature of entry distributions is constrained, and our
objective necessarily becomes somewhat less, namely the generation of matrices in
SL(2,C) and SL(2,R) whose entries are identically randomly distributed. We note
that the generation of a set of random matrices with a certain entry distribution does
not mean that such distribution will be maintained after matrix operations within
subgroups, nor does it mean that identicality of entry distributions over all entries
of the matrices will be maintained. This will be demonstrated with computational
examples.

2.4 Entry Distributions of Random Matrices in SL(2,C) and SL(2,R)

The procedure of normalisation of random matrices in GL(2,C) and GL(2,R) via
division by the square root of the determinant must be demonstrated to be capable
of meeting the objective of all matrix entry components having identical distributions.
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We accordingly consider the nature of the entry distributions in these spaces in terms
of three parameters: uniform or normal entry distributions in GL(2,C), the size of
the domain interval, and the spatial origin in GL(2,C); we also consider variation in
the choice of particular entry components in SL(2,C) or SL(2,R) (e.g. whether they
are real components of leading diagonal entries or otherwise); our objective being a
suitable choice of parameters.

2.4.1 Random Matrices in SL(2,R) derived from uniformly and normally
distributed matrices in zero centred GL(2,R) space

The generation of random matrices in SL(2,R) from multiple sets of 1, 000, 000 matri-
ces in zero centred GL(2,R) is considered first. Kolmogorov-Smirnov analysis shows
the differences between the observed event distributions of leading diagonal entries
and otherwise of matrices in SL(2,R) generated from matrices in GL(2,R) having
positive or negative determinants and with entries uniformly distributed over do-
mains from [−0.01, 0.01] to [−107, 107], to be non-significant. In Figure (2.1), the
left hand graph shows a probability density distribution representative of these iden-
tical distributions while the identicality itself is indicated by the right hand graph,
which consists of twelve overlaid cumulative distributions corresponding to different
parameter selections. Kolmogorov-Smirnov statistics for these distributions range
from

√
nDn = 0.07 to

√
nDn = 0.17, all at least an order of magnitude below the

threshold of 1.52.
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Figure 2.1: Left: Representative entry distributions (see text) for matrices in SL(2,R)
generated by normalising 1,000,000 random matrices in GL(2,R) with positive de-
terminants and having entries distributed uniformly about 0, Right: Superimposed
cumulative distributions for real components of leading diagonal entries and otherwise
over the intervals [−0.01, 0.01] to [−107, 107], twelve distributions shown

The individual entry distributions can be characterised as identical at all scales
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and of primarily bimodal symmetrical form about 0 and with peak occurrences cen-
tred at ±1. As an indication of the size of the envelope that matrices so generated
occupy, we note that the probability that an entry of a random matrix in SL(2,R)
generated as specified is within the interval [−2, 2] is 0.9875. The distribution is such
that there is only a very small probability of any entry of a random matrix in SL(2,R)
generated as specified being outside a single digit radius of the centre 0.

The distributions of entries of matrices in SL(2,R) generated from normally dis-
tributed matrices in GL(2,R) differ only qualitatively, and similar conclusions apply.

2.4.2 Random Matrices in SL(2,R) derived from uniformly and normally
distributed matrices in identity centred GL(2,R) space

For random Matrices in SL(2,R) (generated from both uniformly and normally dis-
tributed matrices in identity centred GL(2,R) space) the situation is somewhat dif-
ferent. The qualitative nature of the distributions changes with entry domain size in
GL(2,R) and also differs for leading diagonal entries and otherwise, but the distri-
butions in all cases approach those for the generation from matrices in zero centred
GL(2,R) as the domain bound k → ∞. Figure (2.2) indicates distributions for real
components of leading diagonal entries for a selection of domain bounds.

�1.02 �1.01 �1.00 �0.99 �0.98
0.000
0.001
0.002
0.003
0.004
0.005
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0.015
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0.008
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Figure 2.2: Entry distributions for real components of leading diagonals of matrices
in SL(2,R) generated by normalising 1,000,000 random matrices with entries from
identity centred GL(2,R) space, entries being uniformly distributed over the intervals;
Left to Right: [−0.01, 0.01], [−1, 1], [−107, 107]

2.4.3 Choice of experimental parameters for the generation of random
matrices in SL(2,R)

We recall the objective of generated matrices in SL(2,R) having identical entry dis-
tributions. It is clear that this can be achieved with mimumum processing overhead
by using zero centred matrices in GL(2,R) with entries uniformly distributed over
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any domain and normalising the random matrices by suitable division by the square
root of the determinant. The resultant random matrices in SL(2,R) have identical
zero centred entry distributions which are however non normal, being composed of
bimodal distribution components about 0 and with peak occurrences about ±1.

2.4.4 Random matrices in SL(2,C)

We repeat the exercise for matrices in SL(2,C), first with uniformly distributed en-
tries then with normally distributed entries, and again find in both cases (using the
same procedure, generating from random GL(2,C) matrices in zero centred space)
that identical entry distributions together with scale invariance of the distributions
with respect to the domain of entries of matrices in GL(2,C) result. In Figure (2.3)
the left hand graph shows a representative probability density distribution as before,
while the identicality of all these entry distributions is indicated by the right hand
graph, which consists of twelve overlaid cumulative distributions corresponding to
different parameter selections.

The distributions of entries of matrices in SL(2,R) generated from normally dis-
tributed matrices in GL(2,R) differ only qualitatively, and similar conclusions apply.

Kolmogorov-Smirnov analysis shows differences between the distributions to be
non-significant for all the above cases, values of

√
nDn ranging about from 0.05 to

0.15, again at least an order of magnitude below the threshold of 1.52.
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Figure 2.3: For matrices in SL(2,C) generated by normalising 1,000,000 random ma-
trices in GL(2,C) having entries distributed uniformly about 0, Left: Representative
entry distribution (see text) Right: Superimposed cumulative distributions for real
components of leading diagonal entries and otherwise over the intervals [−0.01, 0.01]
to [−107, 107], twelve distributions shown
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Our conclusion is that the same choice of parameters will suit generation of suit-
able matrices in SL(2,C) as for SL(2,R), the only difference is that the resultant
entry distributions in SL(2,C) are unimodal about 0 (with distribution close to uni-
form between approximately ±1). Generation of matrices in SL(2,C) from identity
centred GL(2,C) matrices again results in distributions that are qualitatively dif-
ferent for lower domain bounds (and with differences between distributions for real
components of leading diagonal entries and otherwise), but the distributions tend to
that for the zero centred case as the domain bound k → ∞.

We summarise here our reasons for choosing to generate matrices in SL(2,C) and
SL(2,R) from uniformly distributed zero centred matrices in GL(2,C) and GL(2,R)
respectively and accept the resultant entry distributions rather than requiring matri-
ces to have normally distributed entries:

• The construction of large quantities of random matrices in SL(2,C) and SL(2,R)
with normally distributed entries with reasonable efficiency presents serious
problems at present

• There is no point in starting with normal distributions of the GL(2,C) entries as
the resultant distributions in SL(2,C) are qualitatively similar and generation
of normally distributed numbers takes more proccessing time

• The procedure does result in identical distributions for all matrix entry compo-
nents

The entry component distributions of the resultant SL(2,C) and SL(2,R) matrices
are a natural result of the normalisation process as described, are symmetric about
0, are identical for all components, and yield useful results.

2.5 Random matrices in GL(2,R) and GL(2,C)

Although our focus is on matrices in SL(2,C) and SL(2,R), we consider briefly the
distributions of traces, entry products and determinants in GL(2,C) and SL(2,R).
The reasons are for comparison with existing literature, correlation with some math-
ematical derivations in Chapter 3, and in the case of entry products, familiarisation
with the concept of non-invariance of distributions under some matrix operations.

2.5.1 Traces of Random Matrices

Figure (2.4) shows an experimentally determined distribution of traces of random
matrices in GL(2,R) with uniform entry distributions. The results for k >> 1 are
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indistinguishable for identity and zero centred spaces and for GL(2,C) and real or
imaginary components. This computational distribution has been determined math-
ematically in Chapter 3, and Figure (3.1) is identical with Figure (2.4) except for the
scales; frequency of occurrence is generally used in this thesis except for purposes of
comparison with published work.
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0.001
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0.004

Figure 2.4: Distribution of trace for 1,000,000 random matrices in GL(2,R), en-
tries from a zero centred space with entries uniformly distributed over the interval
[−106, 106]

2.5.2 Products of entries in GL(2,R)

Figure (2.5) shows for a matrix in the standard form (but with real entries) the dis-
tribution of products ad of the leading diagonal entries entries a, d for 1,000,000 uni-
form random matrices in identity centred GL(2,R) space, the distribution is identical
to that for zero centred space and distributions of leading diagonal entry products
ad are identical to those for non leading diagonal entry products bc. As matrices in
GL(2,R) (and GL(2,C)) are multiplied successively, resultant entry distributions nar-
row markedly. The evolution of distributions in single and two-generator subgroups
will be developed further in a subsequent thesis.

2.5.3 Determinants of matrices in GL(2,R) and GL(2,C)

The distributions of the real and imaginary components of determinants of uniform
random matrices in GL(2,C) for k >> 1 are very close to identical to each other
and also to the distributions of determinants of matrices in GL(2,R) and to those
for matrices in GL(2,C) or GL(2,R) spaces whether identity or zero centred. Figure
(2.6) shows an experimentally observed distribution for a domain bound k = 106 and
1, 000, 000 uniform random matrices in GL(2,R). The mathematical derivation is
only straightfoward for distributions with either all non negative or all non positive
domains. The nature of algebra with convolutions ensures that results for distribu-
tions over domains that cross 0 are qualitatively different to the simpler case, in the
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Figure 2.5: Distribution of entry products ad for 1,000,000 random matrices in
GL(2,R), entries from a identity centred space with entries uniformly distributed
over the interval [−106, 106]

case of determinants the mathematical derivation has complications, hence our in-
ability to provide correlation at this stage.
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Figure 2.6: Distribution of the determinant for 1,000,000 random matrices in
GL(2,R), entries from a zero centred space with entries uniformly distributed over
the interval [−106, 106]

2.6 PSL(2,C) and PSL(2,R)

While matrices in the spaces SL(2,C) and SL(2,R) serve well in general to rep-
resent composition, functions, and parameters of Möbius transformations they are
inadequate whenever a metric (as defined earlier on the embedding spaces) is re-
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quired, because the spaces represent double covers for the complex and real spaces of
Möbius transformations respectively. As a result distances between Möbius transfor-
mations are not well defined when represented by matrices in SL(2,C) or SL(2,R).
PSL(2,C) and PSL(2,R) are the quotient spaces of SL(2,C) and SL(2,R) respec-
tively for a homomorphism whose kernal is {−I, I}, and so an algorithm to convert
matrices SL(2,C) �→ PSL(2,C) and SL(2,R) �→ PSL(2,R) is sought. The follow-
ing formulations assume that all non diagonal entries of the matrices remain invariant.

For a matrix A in SL(2,C) in the form (1.1) embedded in R
8, we consider the

space defined by the complex diagonal entries a and d to be a pseudo-plane with the
complex numbers a along the x axis and d along the y axis. If we apply the following
mapping to the quadrants of this pseudo-plane:

(−a,−d) ∈ Q3 �→ (a, d) ∈ Q1 third quadrant to first
(a,−d) ∈ Q4 �→ (−a, d) ∈ Q2 fourth quadrant to second

(2.2)

then this does successfully map −I to I, leaves the determinant invariant, partitions
SL(2,C) into two cosets, and is a projection that allows antipodal points on zero
centred hyperspherical shells to be not distinguished; and accordingly is a mapping
function (which we will call φ) that takes the entire ad pseudo-plane onto the positive
half pseudo-plane as follows:

φ(a, d) =

{
1 Re(d) ≥ 0
−1 d < 0

(2.3)

A second mapping function ψ that would perform a projection with the required
properties equally well is:

ψ(a, d) =

{
1 Re(a) ≥ 0
−1 a < 0

(2.4)

These mappings meet all the requirements for the projective space PSL(2,C), and
mapping functions of precisely the same form apply for SL(2,R) �→ PSL(2,R) (where
a and d are now real numbers and the ad plane is real rather than a pseudo-plane), and
it can be seen that the resultant spaces represent the projective subgroups PSL(2,C)
and PSL(2,R) of SL(2,C) and SL(2,R) respectively. The particular subsets of
PSL(2,C) or PSL(2,R) generated by experimental events will have different mem-
bers depending on whether φ or ψ is used, we will compare distributions for random
matrices generated via both mappings. It is clear that to ensure that distance be-
tween Möbius transformations is well defined, one of these two mappings must first
be applied to matrices in SL(2,C) or SL(2,R).
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2.7 Random matrices in PSL(2,R) and PSL(2,C)

The use of PSL(2,R) and PSL(2,C) spaces rather than SL(2,R) and SL(2,C)
changes entry and parameter distributions in ways that are at times significant. For
all entries and parameters investigated distributions are indistinguishable for either of
the two possible mappings SL(2,C) �→ PSL(2,C) and also SL(2,R) �→ PSL(2,R);
scale invariance of distributions under normalisation is again seen with respect to
the domain of matrix entries in GL(2,R) and GL(2,C) in all cases. However, distri-
butions for real components of leading diagonal entries and otherwise differ in that
while entry distributions for other than real components of leading diagonal entries
are centred about 0, those for real components of leading diagonal entries are centred
asymmetrically about 1. This means that while matrices in SL(2,R) and SL(2,C)
are distributed about a null matrix in the embedding space of GL(2,R) or GL(2,C)
respectively, those in PSL(2,R) and PSL(2,C) are distributed about the identity.
This can be seen in the Figures (2.7) and (2.8), which are representative of the identi-
cal distributions. In both cases (PSL(2,R) and PSL(2,C)) the distributions of real
componens of other than leading diagonal entries are as for SL(2,R) and PSL(2,C)
respectively, but the real components of leading diagonal entries are distributed asym-
metrically about 1 and show a discontinuity at 0.
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Figure 2.7: Distribution of real components of leading diagonal entries (left) and for
all other components of entries (right) of 1,000,000 random matrices in PSL(2,R)

2.8 Distributions of Norms

It is not immediately obvious what form of norm should be used in the spacesGL(2,C)
or SL(2,C); inner product and Euclidean norms, norms based on the identity, norms
based on the adjugate, operator norms and chordal norms have all been considered.
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Figure 2.8: Distribution of real components of leading diagonal entries (left) and
otherwise (right) of 1,000,000 random matrices in PSL(2,C)

2.8.1 The Chordal Norm

Beardon[7] and Gehring and Martin [5] use the chordal norm on the extended com-
plex plane Ĉ as defined in Copson [29]:

Definition of Chordal Distance between z1 and z2 in C:

q(z1, z2) =
2 |z1 − z2|

(|z1|2 + 1)1/2(|z2|2 + 1)1/2
(2.5)

A metric on the group of Möbius transformations M:

d(f, g) = sup{q(f(z), g(z) : z ∈ C} (2.6)

A norm based on this metric, defined on M with identity e:

d(f) = d(f, e) = sup{q(f(z), z) : z ∈ C} (2.7)

and finally, if functions f in M are represented by matrices A in SL(2,C), the norm
is:

d(A) = d(A, I) = sup{q(Az, z) : z ∈ C} (2.8)

or

d2(A) = sup

{
4 |(A− I)z|2

(|Az|2 + 1)(|z|2 + 1)
: z ∈ C

}
(2.9)

2.8.2 Inner product and Euclidean Norms

Beardon [7] shows that the inner (scalar) product “on the vector space of all 2 × 2
matrices” satisfies the requirements of a norm, and it is easy to show that this is
equivalent to the Euclidean norm in R

8:
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‖A‖ =
√
a2 + b2 + c2 + d2 A ∈ C

2×2 (2.10)

Here we investigate the distributions of Euclidean norms in the four and eight
dimensional embedding spaces. From Hadamard’s inequality, we have that for any
2× 2 complex matrix A in the standard form of (1.1):

‖A‖2 = |a|2 + |b|2 + |c|2 + |d|2 ≥ 2 |ad− bc| = 2 |det(A)| (2.11)

and since the norm is by definition positive:

‖A‖ ≥
√
2 ∀ A ∈ SL(2,C) (2.12)

Further, we have for the distance between a matrix and the identity in the em-
bedding spaces:

‖A− I‖2 = ‖A‖2 − 2 trace(A) + 2 (2.13)

hence
‖A− I‖ ≥

√
4− 2 trace(A) ∀ A ∈ SL(2,C) (2.14)

The computational results that follow later in this section show that for random
matrices in SL(2,R) and SL(2,C) these inequalities seem to have a high probability
of holding with “near equality”.

2.8.3 The Operator Norm

An operator norm is defined in terms of the magnification of unit entries under the
action of an operation. Here operators are represented by matrices in SL(2,C) which
operate on complex quantities in Ĉ, and unit entries z in Ĉ have magnitudes |z| = 1;
they lie on the unit circle in Ĉ. That is,

‖A‖op = sup(|z|=1){‖Az‖}, z ∈ Ĉ (2.15)

this form based on [31]. The following expression for the operator norm is then derived
for SL(2,C):

‖A‖2op =
‖A‖2 +

√
‖A‖4 − 4

2
, A ∈ SL(2,C) (2.16)

As ‖A‖ → ∞, ‖A‖op → ‖A‖ and ‖I‖op = 1 as would be expected.
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2.8.4 Euclidean norms for matrices in GL(2,R) and GL(2,C)

Distributions of standard Euclidean norms for uniformly distributed matrices in
GL(2,R) and GL(2,C) identity centred spaces are shown in Figure (2.9). There
are low probabilities of random matrices in GL(2,R) or GL(2,C) being close to the
identity, and for an interval bound of 106 the expected value of the distance of a ran-
dom matrix in GL(2,R) to the identity is 1.1×106 while for GL(2,C) it is 1.65×106.
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Figure 2.9: Distributions of ‖A− I‖ for 1,000,000 uniformly distributed matrices A
in, Left: GL(2,R) and Right: GL(2,C)

2.8.5 Euclidean norms for matrices in SL(2,R) and SL(2,C)

Distributions of Euclidean norms for uniformly distributed matrices in SL(2,R) and
SL(2,C) spaces are shown in figure (2.10). The two distributions are far from iden-
tical, but agreement with Hadamard’s identity is clear in both cases. Of interest is
that the lower bound on the norms of

√
2 is sharp, with concentration of occurrences

close to the bound. Distributions of Euclidean norms for PSL(2,R) and PSL(2,C)
are identical respectively to those for SL(2,R) and SL(2,C).

Noting that the norm of the identity is
√
2, we consider now the distributions

of distances between matrices in SL(2,R) and the identity. Figure (2.11) shows the
distributions in question for SL(2,R), Figure (2.12) for SL(2,C). It is clear that the
probability is very high that matrices in SL(2,C) are separated from the identity, but
the qualifier “very” does not apply to matrices in SL(2,R).

By inspection of the frequency data files for the events, the expectations of dis-
tances to the zero and identity origins are determined as:

• E(‖A‖), A ∈ SL(2,R) = 2.63
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Figure 2.10: Distributions of ‖A‖ for 1,000,000 uniformly distributed matrices A in,
Left: SL(2,R) and Right: SL(2,C)
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Figure 2.11: Distribution of the standard Euclidean norm, matrices in SL(2,R) iden-
tity centred space, magnified on the right
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Figure 2.12: Distribution of the standard Euclidean norm, matrices in SL(2,C) iden-
tity centred space, magnified on the right

• E(‖A‖), A ∈ SL(2,C) = 2.94

• E(‖A− I‖), A ∈ SL(2,R) = 2.94

• E(‖A− I‖), A ∈ SL(2,C) = 2.36
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2.9 Distributions of Traces of matrices in SL(2,C), SL(2,R), PSL(2,C) and
PSL(2,R)

Distributions of traces of random matrices in SL(2,C) and PSL(2,C) are shown in
figures (2.13) and (2.14), noting that the traces in SL(2,R) and PSL(2,R) are iden-
tical to those of the real components of the trace in the corresponding complex groups.
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Figure 2.13: Distribution of (Left:) real and (Right:) imaginary components of the
trace of a matrix in SL(2,C)
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Figure 2.14: Distribution of (Left:) real and (Right:) imaginary components of the
trace a matrix in PSL(2,C)

From Equation (2.14) we see that the trace of a matrix in SL(2,C) determines
the lower bound of the distance between the matrix and the identity. The mean trace
in SL(2,C) and SL(2,R) is 0 and we conclude that this inequality is often sharp.

2.10 Inequalities

Here we derive and test some inequalities that might provide a means of assessing the
nature of subgroups of matrices close to the identity, further work will be reported in
a subsequent thesis.
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2.10.1 Commutator Inequalities

For matrices in single generator subgroups, the commutator is the identity since all
entries commute. For matrices in two-generator subgroups we first make the assump-
tion that A �= B; then if A,B ≈ I (according to 1.4), since [A,B] = ABA−1B−1 is in
the subgroup it is closer to I than either A or B, and for any such pair of matrices a
matrix can always be found within the subgroup that is closer to I. This would im-
ply that no two-generator subgroups are discrete whenever the generators A,B ≈ I,
which would make it important to know under what conditions A,B ≈ I.

Figures 2.15 and 2.16 show the distributions of sup{‖A− I‖ , ‖B − I‖} for PSL(2,R)
and PSL(2,C) respectively where A,B ≈ I (according to 1.4), and inspection of the
experimental event files reveals that while for PSL(2,R) there are no recorded occur-
rences for the first 10 quantiles (≤ 0.1), there are none for the first 91 quantiles (≤ 0.5)
for PSL(2,C). Most matrix pairs in PSL(2,R) which are close to the identity have
one component matrix at a distance 3 from the identity, while those in PSL(2,C)
have one component at a distance 2.55 from the identity. We note that in both cases
the distributions for A,B ≈ I and A,B �≈ I are not disjoint.
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Figure 2.15: Left: Distribution of sup{‖A− I‖ , ‖B − I‖} for pairs of matrices A,B ≈
I (according to 1.4) in PSL(2,R), Right: Distribution of inf{‖A− I‖ , ‖B − I‖} for
pairs of matrices A,B �≈ I in PSL(2,R)

It would have been nice to have established that a simple criterion for the discrete-
ness of two-generator subgroups based on the magnitudes of ‖A− I‖ and ‖B − I‖
applied, but unfortunately this is not the case. Accordingly we now look at derivation
of inequalities relating to the distance between the commutator and the identity.

We now derive two inequalities in SL(2,C). First:
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Figure 2.16: Left: Distribution of sup{‖A− I‖ , ‖B − I‖} for pairs of matrices A,B ≈
I (according to 1.4) in PSL(2,C), Right: Distribution of inf{‖A− I‖ , ‖B − I‖} for
pairs of matrices A,B �≈ I in PSL(2,C)

(B − I)(A−1 − I) = BA−1 − A−1 −B + I

(A−1 − I)(B − I) = A−1B − A−1 −B + I

⇒ BA−1 − A−1B = (B − I)(A−1 − I)− (A−1 − I)(B − I)
(2.17)

and since

[A,B]− I = ABA−1B−1 − I = A(BA−1 − A−1B)B−1 (2.18)

then

[A,B]− I = A(B − I)(A−1 − I)B−1 − A(A−1 − I)(B − I)B−1 (2.19)

Taking norms on both sides and applying the Cauchy-Schwarz inequality and the
triangle inequality, since ‖A‖ = ‖A−1‖ and ‖A− I‖ = ‖A−1 − I‖ ∀ A ∈ GL(2,C)
and norms are scalars, we have:

‖[A,B]− I‖ ≤ 2 ‖A‖ ‖B‖ ‖A− I‖ ‖B − I‖ (2.20)

The second inequality is derived from (2.20) using the reverse triangle inequality,

‖A− I‖ ≥ |‖A‖ − ‖I‖|
⇒ ‖A− I‖2 ≥ ‖A‖2 + ‖I‖2 − 2 ‖A‖ ‖I‖ = ‖A‖2 − 2

√
2 ‖A‖+ 2

⇒ ‖A‖2 ≤ ‖A− I‖2 + 2
√
2 ‖A‖ − 2 (2.21)

we square both sides of (2.20):

‖[A,B]− I‖2 ≤ 4 ‖A‖2 ‖B‖2 ‖A− I‖2 ‖B − I‖2 (2.22)
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and substitute for the square of the norms as derived in (2.21):

‖[A,B]− I‖2 ≤ 4(‖A− I‖2+2
√
2 ‖A‖−2)(‖B − I‖2+2

√
2 ‖B‖−2) ‖A− I‖2 ‖B − I‖2

(2.23)
For ‖A− I‖ , ‖B − I‖ small, we can neglect the squares of these terms inside the
brackets:

‖[A,B]− I‖2 ≤ 4(2
√
2 ‖A‖ − 2)(2

√
2 ‖B‖ − 2) ‖A− I‖2 ‖B − I‖2 (2.24)

and finally, by simplifying and taking positive square roots we arrive at the inequality:

‖[A,B]− I‖ ≤ 4 ‖A− I‖ ‖B − I‖
√

(
√
2 ‖A‖ − 1)(

√
2 ‖B‖ − 1) (2.25)

Experimental analysis (see Figure 2.17) shows (2.25) to be a sharper inequality
than (2.20), especially for random matrices in PSL(2,R) (2.25).

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.17: Comparison of inequalities in (2.20) and (2.25)for both PSL(2,C)
and PSL(2,R): Overlaid cumulative distributions for sup{‖A‖ , ‖B‖}, red =
inequality(2.20), green = inequality (2.25), Left: PSL(2,C), Right: PSL(2,R)

2.10.2 The K Inequality

The inequality in Equation (1.4) can also be tested by defining a parameter K:

K =
‖[A,B]− I‖

‖A− I‖ ‖B − I‖ (2.26)

We note from Figure (2.18) that the distributions for PSL(2,R) and PSL(2,C)
are qualitatively different. For matrices in PSL(2,R) the expectation is K = 2.45
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Figure 2.18: Distribution of parameter K for 1, 000, 000 pairs of uniformly random
matrices A,B in, Left: PSL(2,R), Right: PSL(2,C)

with probability peaking at K = 0.94 and falling towards 0 with non zero occurrences
in each quantile. For matrices in PSL(2,C) the expectation is K = 1.133 with prob-
ability peaking at K = 0.77 and falling towards 0 with zero observed occurrences in
the first three quantiles.

If we consider K values for just those A,B pairs for which A,B ≈ I (according
to 1.4), then for matrices in PSL(2,R), 0.861 of occurrences are in the quantile con-
taining 0 while for matrices in PSL(2,C) 0.868 of occurrences are in the quantile
containing 0. However, for those A,B pairs for which A,B �≈ I, 0.267 of occurrences
for matrices in PSL(2,R) are in the quantile containing 0 while only 0.49 × 10−2 of
occurrences for matrices in PSL(2,C) are in the quantile containing 0.

While these observations are of interest, further study is required to assess the
usefulness of the K parameter in determining discreteness.

2.11 Discrete Groups

This section though short contains probably the most important result, that discrete
groups of Möbius transformations seem to be much rarer than might be supposed.

Distributions are analysed for experimental events derived as occurrences of ran-
dom matrices in PSL(2,R) and PSL(2,C) generated via by either of the two map-
pings φ and ψ (discussed earlier) from matrices in SL(2,R) and SL(2,C), these ma-
trices derived via normalisation as described from zero centred matrices in GL(2,R)
and GL(2,C) having entries uniformly distributed over [−106, 106].

Inspection of event data files for processed experimental data reveals the following:
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• The probability that matrices in PSL(2,C) have disjoint isometric circle discs:
0.00394

• The probability that matrices in PSL(2,R) have disjoint isometric circle discs:
0.00844

• The probability that matrices in PSL(2,C) are discrete by Jørgensen’s inequal-
ity (Theorem 1.2): 0.993

• The probability that matrices in PSL(2,R) are discrete by Jørgensen’s inequal-
ity (Theorem 1.2) 0.998

What was not really expected was that the experimentally determined probabili-
ties of occurrence of discrete groups in SL(2,C) meeting the isometric circle criterion
be extremely low ( 0.004) and of occurrence of groups meeting Jørgensen’s criterion
(Theorem 1.2) would be extremely high ( 0.99).
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Chapter 3

MATHEMATICAL ANALYSIS OF DISTRIBUTIONS

Of central importance to the algebra of distributions (where the algebraic entity is
a distribution of a random variable rather than the variable itself) is the idea of
convolution of two piecewise continuous functions f and g, which can be defined on
an interval (possibly infinite) [a, b] as:

f ∗ g =
∫ b

a

f(x) g(t− x) dx (3.1)

where the convolution f ∗ g is a function of t and the interval limits a and b are
possibly functions of t. The Convolution Theorem referred to later in this section can
found in [21].

Mathematical analyses of convolutions of distributions, particularly with regard
to sums, differences, products and quotients have been performed in the past and
limited results have been applied to the calculation of distributions of determinants
of real matrices and hence of inverse matrices. However, the problem is significantly
greater for the normalisation of matrices representing Möbius transformations for two
reasons. Firstly, if the matrices are complex then what is involved is the division of a
random distribution by the complex square root of distributions. Secondly, the con-
volutions of distributions of random variables that can take negative values as well as
positive is vastly more complicated than for the non negative case, and the mathe-
matics for the more general case has not been previously derived. A high proportion
of the published work involves distributions of random variables over the real domain
[0, 1]. We commence the analysis of these more general convolutions here (including
some comparisons with experimental events) and a mathematical outline of what is
required for a more complete solution is given.

The prime interest in the distribution of the determinant here is because it de-
termines the homomorphisms between the general linear and special linear matrix
groups, and this provides motivation for the following literature review.

3.1 A brief review of the literature on distributions of determinants

Williamson and Downs [13] have accessed many of the papers and provide informa-
tion that allows their scope and relevance to be assessed, this is of importance since a
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significant number of the relevant papers are old and unattainable. Williamson and
Downs (in 1989) state that “There are very few results on the distribution of random
determinants” and unfortunately this opinion seems still valid. That the literature
review below shows the information published to date to be not highly relevant to
the task in hand is supported by closer inspection of the algebra of distributions of
random numbers on finite intervals.

Fortet([14] (1951), “Random Determinants” published in a National Bureau of
Standards (US) research journal, the particular volume is missing from the online
collection; Williamson and Downs imply that “a few special cases” are covered.

Nyquist, Rice and Riordan ([15] 1954), “On the Distribution of Random Deter-
minants” published in the Quarterly of Applied Mathematics of Brown University.
This journal is now distributed through the American Mathematical Society, but no
early issues are available online. According to Williamson and Downs, the authors
derive precise expressions for 2 × 2 matrices with “normally distributed entries with
zero means”.

Komlos ([16] 1967) published several papers in a Hungarian journal, no early edi-
tions of which are available online; Williamson and Downs again imply that “a few
special cases” are covered.

Alagar ([17] 1978) presents results for determinants with exponential distributions.

Williamson and Downs ([13] 1988) themselves consider the determinant of a ma-
trix with uniformly distributed entries over [0, 1] , their motivation being to derive
the distribution of the inverse of such a matrix.

Wise and Hall ([18] 1991) write in order to criticise Williamson and Downs’s use
of a series expansion and question the conclusions.

More recent papers appear to concentrate on particular scientific rather than pure
mathematical applications (e.g. [19]), while [13] still appears to be the most relevant
despite relating only to determinant entry distributions over [0, 1]. The paper does
not address complex determinants and the focus is on the determinant rather than
the square root of the determinant. What is really needed is an expression for the
square root of the determinant of a complex 2× 2 matrix with uniformly distributed
zero centred entries over a more general domain in R, and then C. No attempt to
derive such an expression has been found in the literature, and a foundation will be
established here, with a more complete determination to follow in a later thesis.
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3.2 Square Root of a Complex Determinant

Let

A =

(
a+ iα b+ iβ

c+ iγ d+ iδ

)
(3.2)

where the matrix entry components are a, b, c, d, α, β, γ, δ ∈ R, and then:

det(A) = (ad− bc)− (αδ − βγ) + i[(aδ − βc) + (αd− bγ)] (3.3)

The following expression then needs to be evaluated:

√
det(A) =

√
(ad− bc)− (αδ − βγ) + i[(aδ − βc) + (αd− bγ)] (3.4)

before performing a further convolution for complex division. As a first step then,
it is noted that in (3.4) the descriminant contains sums and differences of four real
component expressions of a form similar to ad − bc (which is the determinant of a
real matrix expressed in the standard form (1.1).

3.3 Random Variables and Distributions

Statistical terminology will be based on Papoulis and Pillai [23] and Springer [20].

Concept symbol comment
Experiment S −e.g. uniformly random matrices in SL(2,C)
Event T −e.g. 1, 000, 000 specific matrices A
Outcome ξ −e.g. index i ∈ [0, 999999]
Random variable X(ξ) −e.g. complex matrix Ai

Functional map X −analytic representation
of a random variable

Set of bounded outcomes {X ≤ x} −all experimental outcomes ξ
for which X(ξ) < the number x

{x1 ≤ X ≤ x2} −...x1 ≤ X(ξ) ≤ x2

In this thesis an experiment is defined by a computer program which encapsulates
an iteration of a random number generating algorithm that supplies arguments for
specific defined functions. Of the set S of all possible outcomes of an experiment,
actual events T are recorded from specific program runs. S is the domain of a random
variable function X, a particular instance of which from the event T ⊂ S is X(ξ),
for example a random matrix in SL(2,C) or a random real number depending on the
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experimental context. Note that the term distribution is unqualified, we will express
distributions as both cumulative probability functions (c.d.f ) and probability density
functions (p.d.f ) as required. Every experiment has imposed conditions, but there
is a minimum requirement for a random variable that the set of bounded outcomes
exist (which bounds may include −∞ and ∞ ) and that whatever the bounds the
probability of occurrence of events outside those bounds be zero, with the concomitant
requirement that the probability be unity within the bounds. The c.d.f of the random
variable X is defined over the domain S as a function of a moveable upper bound x:

Fx(x) = P ({X ≤ x}) (3.5)

and is necessarily non negative, and its derivative is the p.d.f. If the c.d.f Fx(x) is
linear over the domain then the p.d.f fx(x) is constant and the distribution is uniform.

Given an expression f(u) for a non negative monotonically increasing function,
then treated as a p.d.f its integral is the cumulative probability:

Fx(x) =

∫ x

−∞
f(u)du (3.6)

provided that the total integral of Fx(x) over the entire domain of S evaluates to
unity. For two random variables X and Y distributed over S × S and moveable
bounds x and y, the joint p.d.f is fx,y(x, y) s.t.

Fx,y(x, y) = P ({(X, Y }) ∈ B =

∫ ∫
B

f(x, y)dxdy (3.7)

where B ⊂ S × S is a rectangle bounded above by x and y. If S = [−k, k] ⊂ R, then
B = [−k, x]× [−k, y].

3.4 Algebra of Random Distributions

The algebraic calculations on real number components of matrix entries involved in
normalising a GL(2,C) matrix and calculating trace, determinant, norms and other
parameters for functions of matrices determine the elements that are required in an
adequate algebra of distributions.

Much of the work in deriving analytical algebraic expressions for distributions of
random numbers was not completed until the 1960s (Springer [20] has a good review),
and again no reference is found to the derivation of the square root of a distribution,
while other published results are in the main for real intervals between 0 and 1.
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The reason that most of the literature concentrates on non negative domains is
that the nature of the calculation changes qualitatively whenever the domain crosses
0. For just two variables x and y distributed over a real domain Δ = [−k, k] mapped
by a binary operation ⊕ to a two dimensional domain Δ × Δ, the resultant distri-
bution is over four quartiles. Whenever portions of domains in the four quartiles are
disjoint then those portitions may be summed algebraically, otherwise the summation
must be achieved via convolution.

Springer describes the historical work and uses Fourier and Mellin convolutions
to derive expressions for sums, differences, products and quotients for some specific
cases for positive domains, his work in chapters three and four is very instructive of
the basic techniques. What is required further is a generalisation of of the intervals
used as well as derivation of the square root of a determinant in order to normalise
a matrix. All the work that follows in this chapter is independant of Springer’s
contributions, he has other objectives.

3.5 Convolutions of Random Distributions

Suitable integral transforms and the convolution theorem can be applied to statistical
frequency analysis as long as the distributions of interest are either defined on finite
intervals or have ’tails’ that converge rapidly to zero. Hence from (3.7) the convolution
theorem allows the joint p.d.f of two such independent identical distributions to be
calculated:

f(x, y) = f(x)f(y) (3.8)

Convolution is plainly a binary operation which is closed on the set of integrable
functions. Considering the integration by components rule, since d(t−x) = −dx it is
easy to show from (3.1) that convolution is commutative, associative and distributive.
In the case of probability density functions, the integral transforms involved have in-
verses and the Dirac delta function acts as an identity for convolution (refer [20]).
Hence probability density functions form a commutative group under convolution and
expressions do exist for such derived functions as the square root of a distribution.

All distributions analysed in this chapter will be generally presumed to be positive
and with even symmetry about a mean, with the understanding that not all matrix
entry distributions will meet this criterion. The purpose is to provide some analysis
of matrix parameter distributions where such is lacking at present, and all marginal
(as opposed to joint) pre-convolution distribution functions that are of interest will be
of independent and identically distributed variables unless otherwise stated. Though
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the initial theory is based on Springer [20], he does not derive any of these detailed
distributions.

3.6 Sums and differences of Distributions

Let the probability density function of the sum of two identical distributions f(x), f(y)
over R be g(w) where w = x+ y, then from (3.1) and (3.8) g(w) can be expressed by
the Fourier convolution:

g(w) =

∫ ∞

−∞
f(w − y)f(y)dy (3.9)

But we require x and y to be distributed over finite domains, so let x, y ∈ [−k, k] ⊂
R, k > 0, then −2k ≤ w = x+ y ≤ 2k, and

−k ≤ x ≤ k ⇒ −k ≤ w − y ≤ k ⇒ w − k ≤ y ≤ w + k (3.10)

which allows derivation of the finite integration limits for (3.9):

(i) if w ≥ 0: then w − k ≤ y ≤ w + k ⇒ w − k ≤ y ≤ k

(ii) if w ≤ 0: then w − k ≤ y ≤ w + k ⇒ −k ≤ y ≤ w + k

An expression for the sum of two identical distributions as a piecewise function
follows:

g(w) =

⎧⎪⎨
⎪⎩

∫ w+k

−k
f(w − y)f(y)dy −2k ≤ w ≤ 0

∫ k

w−k
f(w − y)f(y)dy 0 ≤ w ≤ 2k

(3.11)

For g(w) to be a valid p.d.f the functional requirements stated earlier must be
satisfied, it should be noted that these do not preclude the existence of a singularity
at w = 0.

The probability density function g(w) for the difference between two identical
distributions f(x), f(y) over R where w = x − y can be determined in a similar
fashion. From (3.8) g(w) can be expressed by the Fourier convolution:

g(w) =

∫ ∞

−∞
f(w + y)f(y)dy (3.12)

But x must be distributed over a finite domain, so let x, y ∈ [−k, k] ⊂ R, k > 0,
then −2k ≤ w ≤ 2k, and

−k ≤ x = w + y ≤ k ⇒ −k − w ≤ y ≤ k − w
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The integration limits for (3.12) are required:

(i) if w ≥ 0: then −k ≤ y ≤ k − w

(ii) if w ≤ 0: then −k − w ≤ y ≤ k

hence an expression for the difference between two identical distributions over
[−k, k] as a piecewise function can be determined as:

g(w) =

⎧⎪⎨
⎪⎩

∫ k

−k−w
f(w + y)f(y)dy −2k ≤ w ≤ 0

∫ k−w

−k
f(w + y)f(y)dy 0 ≤ w ≤ 2k

(3.13)

We now define a uniform distribution over the interval [−k, k] as:

DU(x) =

⎧⎨
⎩

1
2k

∀x ∈ [−k, k]

0 otherwise
(3.14)

but whereas the domain of f(x) and f(y) is [−k, k], the domain of g(w) in (3.11)
and (3.13) is [−2k, 2k]; integration and evaluation over the established bounds yields
identical expressions for the sum and difference of two uniform distributions over
[−k, k] respectively:

DUS(w) = DUD(w) =
2k − |w|

4k2
− 2k ≤ w ≤ 2k (3.15)

Then for uniform functions DU(x) over [−k, k] the resultant distributions for sum
and difference are identically triangular over [−2k, 2k], and it can be seen in figure
(3.1) that the total area under the piecewise union of the lines between −2k and
2k for k = 1 is unity and that g(w) in (3.15) is indeed a valid p.d.f. This result is
consistant with Springer’s more limited example, which is for functions over [0, 1].

The situation with identical normal distributions is more complicated, not least
because of the constraint of necessarily finite domains. If σ is the standard deviation
then an expression for a standard normal p.d.f which has a mean of 0 can be written:

DN(x) =
1

σ
√
2π
e−

x2

2σ2 (3.16)

We note that if this distribution is constrained to the interval [−k, k], then the
integral of DN(x) over that interval is Erf( k√

2
), later discussion in this section shows

this only tends to unity under certain conditions.
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Figure 3.1: Convolution of Sum or Difference of Uniform Distributions over [−1, 1]

An expression for the sum of two identical normal distributions of variables which
are constrained to domains [−k, k] can be derived from (3.11):

g(w) =

⎧⎪⎪⎨
⎪⎪⎩

1
2πσ2

∫ w+k

−k
e−

2y2−2yw+w2

2σ2 dy −2k ≤ w ≤ 0

1
2πσ2

∫ k

w−k
e−

2y2−2yw+w2

2σ2 dy 0 ≤ w ≤ 2k

(3.17)

Evaluation of the integrals results in the following p.d.f for the sum of constrained
identical normal distributions:

DNS(w) =

⎧⎪⎪⎨
⎪⎪⎩

1
2σ

√
π
e−

w2

4σ2Erf(2k+w
2σ

) −2k ≤ w ≤ 0

1
2σ

√
π
e−

w2

42 Erf(2k−w
2σ

) 0 ≤ w ≤ 2k

(3.18)

It is seen that DNS(w) is a function of k as well as of σ, the extent of this multi-
variable relationship can be seen by inspection of the 3-dimensional plot for σ = 1 in
Figure (3.2).

A conclusion is that the sum of constrained normal distributions is only normal
for a domain sufficiently large with respect to the standard deviation. This contention
is at apparent odds with the oft quoted result that the sum of gaussian distributions
is gaussian, see for example [24] where Weisstein states “Amazingly, the distribution
of a sum of two normally distributed independent variates... is another normal distri-
bution”. All the proofs that this author has been able to peruse have in common the
assumption that the distributions run from −∞ to +∞; this is impossible to accom-
plish for distributions generated over finite intervals, the best that can be done is to
attempt to use large enough initial intervals and keep track of the effect of successive
convolutions. These do not preserve distributions for any of the groups SL(2,C),
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Figure 3.2: Sum of Normal Distributions over the domain interval [−k, k] for σ = 1

SL(2,R), PSL(2,C) or PSL(2,R), but it is much more difficult to generate normally
distributed matrices in these groups anyway.

We need an expression which allows us to determine the resultant of the sum of
two identical constrained normal distributions over an interval, and it is apparent
from figure (3.2) that for a standard deviation of 1, the resultant distribution de-
pends critically on the width of the interval. Given such a distribution, the total
probability within the range [−2k, 2k] only approaches unity for values of the interval
bound k ≈ 3 or greater, and similar considerations apply to all values of σ. Figure
(3.3) shows how the calculated probability given by (3.18) varies with the width of
the interval [−k, k] for standard deviation σ = 1 and σ = 3. The sum of identical
constrained normal distributions also depends critically on the standard deviation of
those distributions, the interval bound k must be ≈ 9 or more to assure total proba-
bility of close to 1 in [−2k, 2k].
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Figure 3.3: Variation of calculated probability for the sum of two normal distributions,
Left: σ = 1, Right: σ = 3
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The p.d.f for the sum of two identical constrained normal distributions for con-
stant k and σ is now considered by setting k = 1, σ = 1. Figure (3.4) shows the left
and right component convolution functions and the resultant piecewise p.d.f for the
sum of two constrained normal distributions with standard deviation 1 and interval
bound k = 1. The portion of the curve (Left) between w = −2 and w = 0 is combined
with the portion of the curve (Centre) between w = 0 and w = 2, to get the final
piecewise function g(w) (Right).
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Figure 3.4: Convolution functions, Left to Right: left, right then piecewise sum,

g(w) = 1
2
√
π
e−

w2

4 Erf(k + w
2
), σ = 1, k = 1

For the first two portions of the figure the domain has been extended to show
clearly how the final function over [−2k, 2k] (in this case [−2, 2]) is obtained from
its left and right components. The combined piecewise function is everywhere posi-
tive over [−2, 2] but the integrated area under the curve for this domain is 0.466 for
(k, σ) = (1, 1), not unity since the convolution is of constrained normal functions,
the resultant function otherwise meeting all the requirements for a p.d.f. As the do-
main bound k is increased, the total integrated area tends to unity and the resultant
function to a normally distributed p.d.f. For (k, σ) = (1, 1) the p.d.f of the sum of
two normal distributions is most definitely not normal. The error function is able
to be regarded as a measure of the departure of a derived probability function for
normal distributions constrained to finite domains from a true p.d.f, and accordingly
the term p.d.f will be used even for constrained domain results. This is in effect a
generalisation of the usual definition of p.d.f.

Now from (3.13) the difference betweeen two identical normal distributions con-
strained to [−k, k] is given by:

g(w) =

⎧⎪⎪⎨
⎪⎪⎩

1
2πσ2

∫ k

−k−w
e−

2y2+2yw+w2

2σ2 dy −2k ≤ w ≤ 0

1
2πσ2

∫ k−w

−k
e−

2y2+2yw+w2

2σ2 dy 0 ≤ w ≤ 2k

(3.19)
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Evaluation of these integrals yields a p.d.f for the difference between two identical
normal distributions which is precisely the same as that for the sum of two identical
normal distributions in (3.18):

DND(w) = DNS(w) (3.20)

Figure (3.5) which shows the error function component of equation (3.18) clari-
fies how closely the derived probability for sum and difference of constrained normal
distributions approaches a Gaussian curve.
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Figure 3.5: Error function Erf(2k+w
2

) as in the left component (in Figure 3.4) of of
the p.d.f expression for the sum of identical constrained normal distributions

It can be seen that for sufficiently large k the error function factor of the left
component (in Figure 3.4) of the p.d.f for the sum or difference of two normal distri-
butions tends to 1 (as does that of the right component (in Figure 3.4)), the result also
applies qualitatively for larger standard deviations. Hence for sums and differences
of normal distributions, from Equation (3.18):

DND(w) = DNS(w) → 1

2σ
√
π
e−

w2

4σ2 for sufficiently large k (3.21)

Since this is an expression for a Gaussian distribution, we conclude that the dis-
tributions of sums and differences of variables from identically normal constrained
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distributions can be regarded as normal for domain intervals sufficiently large com-
pared to the standard deviations of the distributions, but definitely not otherwise.

As has been noted earlier, the result for the domain bound k not large appears
contrary to general perception, but distributions derived from finitely bounded do-
mains are commonly encountered, especially with experimentally determined data.
An a priori assumption cannot be made that resultant sum or difference distributions
are normal given pre-image functions with normal distributions restricted to finite
domains. Even with judicious choice of domain size compared to standard deviation,
the convolutions involved in generating matrix parameters can result in distributions
that deviate markedly from an expected Gaussian form.

3.7 Products and quotients of Distributions

Here some important results are derived, most up to formulation of the integrals, and
some are evaluated completely. A method of evaluation is established, with the more
complicated examples left to a subsequent thesis.

The following variable and functional transformations are made in the expression
(3.9) for the sum of two identical distributions, noting that logarithmic transforms
can be applied to the positive intervals only and that w is on the way to becoming
xy:

x → log(x) x ≥ 0
y → log(y) y ≥ 0
w = x + y → log(x) + log(y) = log(xy) = log(w) w ≥ 0

(3.22)

then by substituting into (3.9):

g(log(w)) =

∫ ∞

0

f(log(w)− log(y))f(log(y))d log(y) x, y, w ≥ 0

=

∫ ∞

0

1

y
f

(
log

(
w

y

))
f(log(y))dy x, y, w ≥ 0 (3.23)

we now simply transform the logarithmic functions:

f(log(.)) → f(.)
g(log(.)) → q(.)

(3.24)

and the resultant expression is the probability density function of the product of
two identical distributions of non negative numbers, which can be seen to be a Mellin
convolution:
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q(w) =

∫ ∞

0

1

y
f

(
w

y

)
f(y)dy x, y, w ≥ 0 (3.25)

Here the variables x and y are probability distribution functions, and the probabil-
ity distribution of the product of identical distributions over a domain [−k, k]×[−k, k]
is obtained by summation of the infinitesimal probabilities δxδy over the level curves
y = w 1

x
for w ∈ [−k2, k2], since on the level curves w = xy. It is clear that both

the shape of the p.d.f curve and the total probability can be assessed by consider-
ing only the first quadrant (where x, y, w ≥ 0). Hence the full p.d.f for products
of all identical symmetrical distributions not limited to non negative numbers can
be obtained by summation of two copies of the function (since w ≥ 0 in two quad-
rants, noting that the process is not the same as doubling the function values) and
then including the reflection of the curve about the w axis (to take account of w ≤ 0).

In a similar fashion, the quotient of two identical distributions of non negative
numbers is derived as the Mellin convolution:

q(w) =

∫ ∞

0

y f(wy)f(y) dy x, y, w ≥ 0 (3.26)

Consideration of the lines y = wx over the domain [−k, k]× [−k, k] leads us to a
conclusion similar to that for products in that all the information we require can be
obtained by considering only the first quadrant (where x, y, w ≥ 0) then proceeding
via summation of two copies of the function (since w ≥ 0 in two quadrants) and
inclusion of the reflection of the curve about the w axis to get the p.d.f. In both these
expressions for q(w) the constituent p.d.f’s f(.) are presumed to be even functions
with symmetry about 0.

The partial convolution functions as described will be called quarter p.d.f ’s and
half p.d.f ’s, and for any half p.d.f h(w) the full p.d.f is given by:

g(w) = h (|w|) −∞ ≤ w ≤ ∞ (3.27)

The process of integration, summation of two copies and reflection, based on a
quarter p.d.f will be termed the quarter p.d.f method.

The method can then be used for any product or quotient of symmetrical distri-
butions about 0.

To consider the quarter p.d.f corresponding to the product of identical distri-
butions, let x, y ∈ [0, k] ⊂ R, k > 0 and w = xy, then 0 ≤ w ≤ k2 while
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x =
w

y
, 0 ≤ x ≤ k, 0 ≤ y ≤ k. Hence the integration limits for y can be de-

termined as:

0 ≤ x =
w

y
≤ k ⇒ 0 ≤ w ≤ yk ⇒ w

k
≤ y ≤ k

and the required quarter p.d.f is given by:

q(w) =

∫ k

w
k

1

y
f

(
w

y

)
f(y)dy 0 ≤ w ≤ k2 (3.28)

The domains of the p.d.f’s for the product of two distributions are then:

0 ≤ w ≤ k2 quarter p.d.f
0 ≤ w ≤ k2 half p.d.f
−k2 ≤ w ≤ k2 full p.d.f

(3.29)

In the case of products of uniform distributions (3.14) over [−k, k], the quarter
p.d.f method maps the original uniform distribution progressively as follows:

DU(w) =
1
2k

−k ≤ w ≤ k uniform p.d.f

q(w) = 1
4k2
log k2

w
0 ≤ w ≤ k2 quarter p.d.f for products

h(w) 0 ≤ w ≤ k2 half p.d.f for products

g(w) −k2 ≤ w ≤ k2 full p.d.f for products

(3.30)

This is where we begin to see the complexity of the integrals increasing. Since
the functions q(w) to be summed are not over disjoint domains, to calculate h(w) we
must convolute two copies of the quarter p.d.f:

h(w) =

∫ k2

0

1

4k2
log

(
k2

w − y

)
1

4k2
log

(
k2

y

)
dy

=
1

16k4

∫ k2

0

log

(
k2

w − y

)
log

(
k2

y

)
dy (3.31)

and the indefinate integral before evaluation is:

h(w) = y + y log

(
k2

w − y

)(
1 + log

(
k2

y

)
− y(−1 + log(y)) + w log(−w + y)

+

(
log

(
k2

y

)
+ log(y)

)
(y+w log(−w+y)−w(log(y)log

(
1− y

w

)
+Li2

( y
w

)
(3.32)
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where Li2(.) represents the dilogarithm of x [25], here defined as the integral
function:

Li2(x) =

∫ x

0

log(1− u)

u
du, x ∈ (−∞, 1] (3.33)

Further evaluation to obtain the full distribution g(w) (which in this case will be
called the Uniform Product Distribution, DUP ) will be left to a later thesis, as will
the remaining full evaluations in this thesis.

The quarter product of normal distributions from (3.25) and (3.16 by similar
arguments is given by:

q(w) =
1

2πσ2

∫ k

w
k

1

y
e
− 1

2σ2

(
w2

y2
+y2

)
dy 0 ≤ w ≤ k2 (3.34)

The quotient of identical distributions is now considered. Let x, y ∈ [0, k] ⊂
R, y �= 0, k > 0 and w = x

y
, then 0 < w < ∞ while x = wy, 0 ≤ x ≤ k, 0 ≤ y ≤ k.

Hence the integration limits for y can be determined:

(a) 0 ≤ w ≤ 1, ⇒ 0 ≤ x = wy ≤ k ⇒ 0 ≤ y ≤ k

(b) 1 ≤ w <∞, ⇒ 0 ≤ x = wy ≤ k ⇒ 0 ≤ y ≤ k
w

and the quarter p.d.f over [0, k] is given by:

q(w) =

⎧⎪⎨
⎪⎩

∫ k

0
y f(wy)f(y)dy 0 ≤ w ≤ 1

∫ k
w

0
y f(wy)f(y)dy 1 ≤ w <∞

(3.35)

Quotients of distributions about 0 are distributed over [−∞,∞].

The distribution of the quotient of two identical uniform distributions is k-invariant,
and has tails extending to ±∞ , unlike the distribution of the product of uniform
distributions which has finite bounds of ±2k2.

3.8 Difference between two Uniform Product Distributions

The distribution of the difference between two DUP distributions is required in order
to calculate (in the first instance) determinants of matrices in GL(2,R) with uni-
formly distributed entries. Suppose a matrix A in GL(2,R) is of the standard form
and that entries a, b, c, d ∈ [−k, k] ⊂ R are uniformly distributed over that interval.
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The general distribution of the difference between two identical distributions each
over [−k, k] has been derived in (3.13), that expression is now applied to two DUP

distributions over [−2k2, 2k2] to determine the quarter p.d.f:

q(w) =

⎧⎪⎨
⎪⎩

∫ 2k2

−2k2−w
DUP (w + y)DUP (y)dy 4k2 ≤ w ≤ 0

∫ 2k2−w

−2k2
DUP (w + y)DUP (y)dy 0 ≤ w ≤ 4k2

(3.36)

3.9 Unequal Domain Limits

Since almost all the published work involves the restriction to intervals [0, 1], investiga-
tion of a generalisation to uniformly distributed variables over [−m,n] for m,n ∈ R

+

is made. The uniform distribution function for such unequal domains is:

DUmn(x) =

⎧⎨
⎩

1
m+n

∀x ∈ [−m,n]

0 otherwise
(3.37)

Equation (3.25) gives the integral representation of the product of two identical
distributions of non negative numbers, but the argument as to the total distribution
with the non-negative restriction removed requires modification. It is observed that
the areas enclosed by the limits in quadrants 1, 2, 3 and 4 respectively are n2,mn,m2

and mn. Hence calculation and modification of quarter p.d.f’s cannot be performed;
instead integral components must be calculated separately for all four quadrants and
the p.d.f components combined, in a piecewise fashion where the function domains
are disjoint but with the use of convolution otherwise.

• First quadrant: Let x, y ∈ [0, n] ⊂ R, n > 0 and w = xy, then 0 ≤ w ≤ n2

while 0 ≤ x = w
y
≤ n, 0 ≤ y ≤ n. Hence the integration limits for y can be

determined as:

0 ≤ x = w
y
≤ n ⇒ 0 ≤ w ≤ yn ⇒ w

n
≤ y ≤ n

and the first quadrant p.d.f is given by:

hQ1(w) =

∫ n

w
n

1
y
f
(

w
y

)
f(y)dy 0 ≤ w ≤ n2 (3.38)

Here, for uniform product distributions:

h1(w) =
1

(m+n)2
log n2

w
0 ≤ w ≤ n2 (3.39)
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and for uniform product distributions over [0, 1]:

h(w) = − log(w) 0 ≤ w ≤ 1 (3.40)

which latter is a function which integrates to a value of 1 over the interval 0, 1]
and is a p.d.f, and is shown in Figure (3.6).

0.2 0.4 0.6 0.8 1.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5

Figure 3.6: Distribution of products of entries uniformly distributed over the interval
[0, 1]

• Second quadrant: Let x ∈ [−m, 0], y ∈ [0, n] ⊂ R, m, n > 0 and w = xy, then
−mn ≤ w ≤ 0 while −m ≤ x = w

y
≤ 0, 0 ≤ y ≤ n. Hence the integration

limits for y can be determined as:

−m ≤ x = w
y
≤ 0 ⇒ −my ≤ w ≤ 0 ⇒ −w

m
≤ y ≤ n

and the second quadrant p.d.f is given by:

hQ2(w) =

∫ n

−w
m

1
y
f
(

w
y

)
f(y)dy −mn ≤ w ≤ 0 (3.41)

For uniform product distributions:

h2(w) =
1

(m+n)2
log −mn

w
−mn ≤ w ≤ 0 (3.42)

• Third quadrant: Let x, y ∈ [−m, 0] ⊂ R, m > 0 and w = xy, then 0 ≤ w ≤ m2

while −m ≤ x = w
y
≤ 0, −m ≤ y ≤ 0. Hence the integration limits for y can

be determined as:

−m ≤ x = w
y
≤ 0 ⇒ −ym ≥ w ≥ 0 ⇒ −m ≤ y ≤ −w

m

and the third quadrant p.d.f is given by:
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hQ3(w) =

∫ −w
m

−m

1
y
f
(

w
y

)
f(y)dy 0 ≤ w ≤ m2 (3.43)

For uniform product distributions:

h3(w) =
−1

(m+n)2
log m2

w
0 ≤ w ≤ m2 (3.44)

• Fourth quadrant: Let x ∈ [0, n], y ∈ [−m, 0] ⊂ R, m, n > 0 and w = xy, then
−mn ≤ w ≤ 0 while 0 ≤ x = w

y
≤ n, −m ≤ y ≤ 0. Hence the integration

limits for y can be determined as:

0 ≤ x = w
y
≤ n⇒ 0 ≥ w ≥ yn⇒ −m ≤ y ≤ w

n

and the fourth quadrant p.d.f is given by:

hQ4(w) =

∫ w
n

−m

1
y
f
(

w
y

)
f(y)dy −mn ≤ w ≤ 0 (3.45)

For uniform product distributions:

h4(w) =
−1

(m+n)2
log −mn

w
−mn ≤ w ≤ 0 (3.46)

Suppose n < m, then:

−m2 < −mn < −n2 ≤ 0 ≤ n2 < mn < m2 (3.47)

Since h2(w) and h4(w)are both distributed over [−mn, 0] and are identical but
opposite signed functions, the sum of these partial p.d.f’s can be obtained by Fourier
convolution of the difference between identical distributions. Working from (3.12):

−mn ≤ x = w + y ≤ 0 ⇒ −mn− w ≤ y ≤ 0

where x = h2(z), y = h4(z), and then

h2,4(w) =
1

(m+ n)4

∫ 0

−mn−w

log(−mn
w+y

)log(−mn
y

)dy −mn ≤ w ≤ mn (3.48)

Over the domain [0, n2] the functions h1(w) and h3(w) are identical but opposite
signed, the sum of these partial p.d.f’s can be obtained by Fourier convolution of the
difference between identical distributions. Again working from (3.12):
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0 ≤ x = w + y ≤ n2 ⇒ 0 ≤ y ≤ n2 − w

where x = h1(z), y = {h3(z) | 0 ≤ z ≤ n2}, and then

h1,3(w) =
1

(m+ n)4

∫ n2−w

0

log( n2

w+y
)log(n

2

y
)dy − n2 ≤ w ≤ n2 (3.49)

Noting that the domains of h2,4(w) and h1,3(w) are not disjoint, and that the
remainder of h3(w), namely {h3(w) | n2 ≤ w ≤ m2} has domain not disjoint from
either of these, there is in fact a considerable amount of work required to complete
this determination.

3.10 The Square Root of a Distribution

The distributions developed so far are based on independent random variables, but
suppose now that x and y are such that x = y. We apply the expression for the
quarter product of two distributions each over [−k, k] (3.28) with w = xy = y2:

q(w) =

∫ k

w
k

1

y
f 2(y) dy (3.50)

which is the quarter product of the square of the single distributionf(y). Instead
of carrying through the integration, we substitute y2 for w and differentiate:

1

y
f 2(y) =

d(q(y2)

dy
(3.51)

hence

f(y) = ±
√
y
d(q(y2)

dy
(3.52)

where f(y) is the p.d.f of
√
q(y) with q(y) =

√
1
2
h(|y|) being a quarter product

corresponding to a distribution h(y).
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Chapter 4

ISOMETRIC CIRCLE ANALYSIS

4.1 Disjoint Isometric Circles in GL(2,C) and SL(2,C)

For the pair of isometric circles corresponding to a matrix A in GL(2,C) to be disjoint
or at the most tangential would require the separation to be greater than twice the
radius, or: ∣∣∣∣ac +

d

c

∣∣∣∣ ≥ 2

∣∣√ad− bc
∣∣

|c| (4.1)

which condition reduces to

|trace(A)|2 ≥ 4 |det(A)| (4.2)

Of the four complex coordinates of the GL(2,C) matrix space, the two complex
coordinates of the centres of the isometric circles are determined by entries d, a and
c; but the real radii are determined by the modulus of a composition of all entries.
Hence again for each pair of isometric circles there exist an infinite number of corre-
sponding matrices in GL(2,C).

For the pair of isometric circles corresponding to a matrix in SL(2,C) the condition
further reduces to

|trace(A)|2 ≥ 4 (4.3)

and whenever the square of the trace is real the disjoint isometric circles of matrices
in SL(2,C) are precisely those that correspond to parabolic or hyperbolic transfor-
mations.

It is easy to extend the disjointness criteria to pairs of isometric circles corre-
sponding to the matrices A,B in SL(2,C).

4.2 Equations and Centres of Isometric Circles in SL(2,C)

We derive an expression for the equation of an isometric circle for a complex matrix
in the form
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A =

(
a+ iα b+ iβ

c+ iγ d+ iδ

)
a, b, c, d, α, β, γ, δ ∈ C (4.4)

as: (
x+

cd+ γδ

c2 + γ2

)2

+

(
y +

cδ − dγ

c2 + γ2

)2

=
1

c2 + γ2
(4.5)

which is clearly the equation of a circle in C, of centre −cd+ γδ

c2 + γ2
− i

cδ − dγ

c2 + γ2
and

radius

√
1

(c2 + γ2)
. All terms in the complex expression are real, hence the radius

of the isometric circle is real and positive whenever c + iγ �= 0, and isometric circles
exist for all matrices in SL(2,C) provided c+ iγ �= 0. As c+ iγ → 0, both radii and
centres tend to ∞ and in the limit both isometric circles have as centre the point at
infinity on the Riemann sphere and as circumference the point (0, 0) and correspond
to matrices representing transformations of the form f = a

d
z + b

d
.

For A ∈ SL(2,R) (4.5) reduces to:

(
x+

d

c

)2

+ y2 =
1

c2
(4.6)

In SL(2,C), if the radius is denoted by rA the centre of the isometric circle of
A in C , xA + iyA (and similarly for B), then from (4.5), for the isometric circles of
matrices A and B:

rA =

√
1

c2 + γ2
, rB =

√
1

g2 + ϕ2
(4.7)

xA = −cd+ γδ

c2 + γ2
= −r2A(cd+ γδ), xB = −gh+ ϕη

g2 + ϕ2
= −r2B(gh+ ϕη) (4.8)

yA = −cδ − dγ

c2 + γ2
= −r2A(cδ − dγ), yB = −gη − hϕ

g2 + ϕ2
= −r2B(gη − hϕ) (4.9)

and the equations for the isometric circles of A and B can be written:

(x− xA)
2 + (y − yA)

2 = r2A, (x− xB)
2 + (y − yB)

2 = r2B (4.10)

From these results the equations for lines of symmetry and conditions for inter-
section are derived for use in isometric circle analysis of the discrete group criterion.
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Chapter 5

CONCLUSIONS

The following are considered to be significant results related to the methodology
of this thesis, namely computations based on random matrices in (P )SL(2,C) and
(P )SL(2,R) derived from matrices in GL(2,C) and GL(2,R) respectively with uni-
formly distributed entries divided by the (appropriate) square root of the determinant
as described in this thesis, the use of Euclidean norms on the embedding spaces, and
further development of Springer’s methods for analytical determination of composi-
tion of distributions.

The distributions of matrices in SL(2,C), SL(2,R), PSL(2,C) and PSL(2,R)
exhibit invariance with respect to the size of the domain of definition for entries in
GL(2,C).

The likelihood of occurrence of two-generator discrete groups with respect to the
criteria has been quantified, and though over 99% of matrices in PSL(2,C) and
PSL(2,R) meet Jørgensen’s criterion, only 0.4% in PSL(2,C) and 0.8% in PSL(2,R)
meet the isometric circle criterion.

The entries of SL(2,C) and SL(2,R) appear to be distributed about 0 but those
of PSL(2,C) and PSL(2,R) appear to be distributed about the identity.

Derivations have been made of some algebraic expressions for distributions of
random variables over domains not restricted to non negative numbers.
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Chapter 6

FURTHER WORK

The following are some areas in which preliminary results have been determined but
for which there is insufficient scope for further work in this thesis.

The evolution of single generator and two-generator subgroups, results fall into
two categories. Firstly, work on isometric circles shows that after the initial product
has been formed in a two-generator free group, then in most cases the convergence
of the isometric circles is determined from just the iteration of a single generator.
Secondly, by following through iterations of single and two-generator subgroups, it is
noted that whereas the qualitative nature of distributions can be maintained through
the evolution of a subgroup of GL(2,R) or GL(2,C), in the evolution of subgroups
of SL(2,R), SL(2,C), PSL(2,R) and PCL(2,R) the width of the distributions is
progressively narrowed about quantiles containing the identity.

It is also noted that the centres of isometric circles necessarily discrete by the
isometric circle criterion are distributed about the unit circle, while those possibly
discrete by Jørgensen’s criterion are distributed about the origin in C.

The application of the mathematics of convolution to the algebra of random dis-
tributions needs to be taken further along the lines suggested in Chapter 3, with an
ultimate objective of proof of the computationally determined distributions.

Further analysis is required to determine how realistic the constrained entry dis-
tributions are in the subgroups of SL(2,C).

Further computational analysis of inequalities may prove fruitful in investigating
sharpness and distribution near bounds.

51



REFERENCES

[1] William P. Thurston, The Geometry and Topology of Three-Manifolds, Princeton
University, 1980

[2] Bernard Maskit, Kleinian Groups, Springer-Verlag, 1988

[3] Troels Jørgensen, On discrete groups of Mobius Transformations, American Jour-
nal of Mathematics, Vol 98 No. 3, 739-749, 1973

[4] Troels Jørgensen and Peter Klein, Algebraic convergence of finitely generated
Kleinian groups, Quart. J. Math. Oxford (2), 33 325-332, 1982

[5] F W Gehring and G J Martin, Inequalities for Möbius transformations and dis-
crete groups, J. reine angew. Math. 418, 31 - 76, 1991

[6] J Gilman, A Discreteness condition for subgroups of PSL(2,C), Proceedings of
the Bers Colloquium, Contemporary Math Series, 211, AMS 261-267, 1997

[7] Alan F. Beardon, The Geometry of Discrete Groups, Springer-Verlag, 1983

[8] Gilbert Strang and Alan Edelman, Random triangle theory with geometry and
applications, in preparation 2010

[9] Emmanuel Breuillard, An exposition of Jordan’s original proof of his theorem on
finite subgroups of GLn(C), Laboratoire de Mathematiques, University Paris Sud

[10] G E P Box and Mervin E Muller, A note on the generation of random normal
deviates, The Annals of Mathematical Statistics, Vol 29, No. 2, 610-611, 1958

[11] Z W Birnbaum and R A Hall, Small Sample Distributions for Multi-sample
Statisticsof the Smirnov type, Springer-Verlag, 1960

[12] Oliver Thas, Comparing Distributions, Springer-Verlag, 2010

[13] R. C. Williamson and T. Downs, The Inverse and Determinant of a 2× 2 Uni-
formly Distributed Random Matrix, Statistics and Probability Letters 7, 167-170,
1989.

[14] R. Fortet, Random Determinants, Journal of Research of the National Bureau
of Standards 47, 465-470, 1951.

52



[15] H. Nyquist, S. O. Rice and J. Riordan, The Distribution of Random Determi-
nants, Quarterly of Applied Mathematics 12, 97-104, 1954.

[16] J Komlos, On the determination of random matrices, Studia Scientiarium Math-
ematicarum Hungarica 3, 387-399, 1968

[17] V. S. Alagar, The Distributions of Random Determinants, The Canadian Journal
of Statistics, 6, 1-9, 1978.

[18] Gary L. Wise and Eric B. Hall, A note on the Distribution of the Determinant
of a Random Matrix, Statistics and Probability Letters 11, 147-148, 1991.

[19] R Delannay and G Le Caer Distribution of the determinant of a random real-
symmetric matrix from the Gaussian orthogonal ensemble, Physical Review E,
62 no. 2, 2000

[20] M D Springer, The Algebra of Random Variables, John Wiley Sons, 1979

[21] Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley Sons, 7 ed
1993

[22] W. L. Nicholson, On the Distribution of 2 × 2 Random Normal Determi-
nants,Annals of Mathematical Statistics 29, 575-580, 1958.

[23] Athanasios Papoulis and S. Unnikrishna Pillai, Probability, Random Variables
and Stochastic Processes, McGraw Hill, 4ed 2002

[24] Weisstein,Eric W, Normal Sum Distribution,From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/NormalSumDistribution.html, 2011

[25] Don Zagier, The Dilogarithm Function, Max-Plank-Institut fur Mathematic, Pa-
per still in preparation

[26] DI Management Services, Sydney, Australia Cryptosys API, di-mgt.com.au

[27] NIST, Recommendation for Random Number Generation using Deterministic
Random Bit Generators, National Institute of Standards and Technology, SP
800-90, 2010

[28] FIPS PUB, Security Requirements for Cryptographic Modules, Federal Informa-
tion Processing Standards Publication 140-2, 2001

[29] E T Copson, Metric Spaces, Cambridge University Press, 1968

53



[30] Lester R. Ford, On the foundations of the theory of discontinuous groups of linear
equations, Proc. National Academy of Sciences, March 1927

[31] Rowland Todd, Operator Norm, Wolfram Mathworld 2010

54


