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Abstract  ii 

ABSTRACT 

Global Navigation Satellite Systems provide accurate and reliable outdoor positioning to support a large 

number of applications across many sectors. Unfortunately, such systems do not operate reliably inside 

buildings due to the signal degradation caused by the absence of a clear line of sight with the satellites. 

The past two decades have therefore seen intensive research into the development of Indoor Positioning 

System (IPS).  While considerable progress has been made in the indoor localisation discipline, there is 

still no widely adopted solution. The proliferation of Internet of Things (IoT) devices within the modern 

built environment provides an opportunity to localise human subjects by utilising such ubiquitous 

networked devices. This thesis presents the development, implementation and evaluation of several 

passive indoor positioning systems using ambient Visible Light Positioning (VLP), capacitive-flooring, 

and thermopile sensors (low-resolution thermal cameras). These systems position the human subject in 

a device-free manner (i.e., the subject is not required to be instrumented). The developed systems 

improve upon the state-of-the-art solutions by offering superior position accuracy whilst also using 

more robust and generalised test setups. The developed passive VLP system is one of the first reported 

solutions making use of ambient light to position a moving human subject. The capacitive-floor based 

system improves upon the accuracy of existing flooring solutions as well as demonstrates the potential 

for automated fall detection. The system also requires very little calibration, i.e., variations of the 

environment or subject have very little impact upon it. The thermopile positioning system is also shown 

to be robust to changes in the environment and subjects. Improvements are made over the current 

literature by testing across multiple environments and subjects whilst using a robust ground truth 

system. Finally, advanced machine learning methods were implemented and benchmarked against a 

thermopile dataset which has been made available for other researchers to use.  
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Introduction  1 

CHAPTER 1 – INTRODUCTION 

Indoor localisation has been an active research topic for more than two decades. While outdoor 

positioning (e.g., GPS) is a mature technology, it does not work reliably inside buildings and there is 

no standardised solution for Indoor Positioning System (IPS) yet. Location-Based Services (LBS) 

within the built environment require robust and affordable positioning. The ongoing adoption of the 

Internet of Things (IoT) [1] provides access to a ubiquitous network of devices and ambient sensors. 

This is opening up new opportunities for deploying IPS while leveraging pre-existing infrastructure. 

Indoor localisation1 can be broadly categorised into active and passive. Active localisation is similar to 

GPS-based positioning where the target carries a special device (or a tag). The positioning of the tag 

results in localising the target. Active localisation is useful for asset tracking, navigation of mobile 

robots, and many other applications. where the end user is carrying a device (e.g., a mobile phone). A 

multitude of options, e.g., computer vision [2], light detection and ranging [3], ultrasound [4], acoustic 

[5], geomagnetic fingerprinting [6], wireless or Radio Frequency (RF) [7], visible light [8], aroma 

fingerprinting [9], etc., have been investigated for active indoor localisation. However, for many 

applications relying on the target to carry a tag may not be feasible. For example, if the goal is to 

unobtrusively track an elderly, forgetful person, one cannot expect them to wear a tag (e.g., a bracelet) 

every day. Wearable devices could also be forgotten, misplaced, or damaged. Besides, they also require 

regular battery charging (or changing). Having to carry a tracking device can be perceived as 

stigmatising thus leading to reluctance to wear one.  

The passive approach, also known as Device Free Localisation (DFL), is the method of locating an 

untagged target. It does not require the target to actively participate in the localisation process by 

carrying a tag. Passive localisation is the key to providing Ambient Assisted Living (AAL) in smart 

buildings. The application of DFL ranges from intrusion detection, fall detection, and remote 

monitoring of the elderly, to occupancy detection for energy-efficient Heating, Ventilation and Air 

Conditioning (HVAC) and lighting as well as occupancy counting for emergencies (e.g., office and 

 
1 In the context of this document, the terms “location, localisation, positioning, tracking” are interchangeable and present the identification 

of the coordinates of a subject or object. 
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building evacuation), business analytics for retail applications, accessibility aids for visually impaired 

individuals, etc. 

Camera or vision-based techniques are widely used for surveillance [10], crowd counting [11] etc. 

Several studies have indicated that low-cost 3D cameras (e.g. Kinect) may be suitable for DFL purposes 

[12, 13]. However, vision-based techniques require favourable lighting conditions. and have coverage 

blind spots due to occlusion. Most importantly, privacy concerns [14] make camera-based IPS in 

residential environments impractical. This is somewhat ironic given the ubiquitous presence of cameras 

embedded in smartphones, computing devices, gaming consoles etc. in modern households. 

Localisation based on RF sensing can potentially utilise the pre-existing wireless network of a building. 

It can also operate in “through walls” scenarios. DFL solutions employing customised hardware and 

the Channel State Information (CSI) metric can be quite accurate with median error reaching below 

half a meter [15, 16]. However, CSI is only available with Wi-Fi and as such, precludes the majority of 

wireless technologies (e.g., Bluetooth, Zigbee, etc.). The utilisation of the universally available 

Received Signal Strength Indicator (RSSI), lowers the localisation accuracy and requires a significant 

number of wireless nodes to function [17]. This takes away the appeal of localisation with pre-existing 

infrastructure. Surveys of the wireless DFL literature show a vast discipline with a crowded research 

landscape [15, 18-21].  

Due to the shortcomings of the camera-based and RF-based passive positioning techniques, several 

other passive sensing modalities have been investigated (Fig. 1) such as the application of visible light, 

infrared and capacitive sensing [22]. 

1.1 Motivation 

The existing body of literature has shown that there is still significant work required before ubiquitous 

indoor positioning or localisation can be achieved. The goal of this thesis is to provide reliable and 

practical indoor positioning methods that can be used across diverse and dynamic environments. 

Applications of visible light, capacitive flooring, and low-resolution thermopiles have been investigated 

as potential solutions along with analysis of their strengths and weaknesses.  
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While active Visible Light Positioning (VLP) has been a popular area of research over recent years [23], 

passive VLP has been largely overlooked. First of all, it is important to formulate the distinction 

between active and passive VLP.  Active VLP requires a tracked object to carry a physical receiving 

device, which is actually tracked. In contrast, in passive VLP, the impact the tracked object has on its 

environment is observed to carry out the localisation. As the object moves, it casts shadows. This can 

be detected as changes in the light level at sensors placed in known locations. Whilst limited research 

has been done with modulated light for passive VLP, there is no prior research reported in the literature 

where the ambient light was used. This presents a significant opportunity for novel investigation. 

There have been studies dealing with the use of floor sensing (pressure [24-27], vibration [28-30], and 

capacitive [31-34] types) for passive localisation. The floor-pressure-type sensing systems are largely 

electro-mechanical, and thus they are quite complex to construct. In addition to that, their mechanical 

components are subject to degradation over time. Vibration-based sensing systems show promise. 

However, they are highly dependent upon flooring materials that are not necessarily heterogenous. The 

flooring medium can vary between buildings or even within rooms. Thus, the systems would normally 

require a significant volume of calibration for every operating environment. The capacitive systems are 

not impacted by the aforementioned issues associated with vibration- and pressure-based sensing 

methods. 

Human bodies are a source of Infrared (IR) radiation. It can be measured by sensors and used to localise 

a person. There are two main sensor types for measuring IR for localisation – Passive IR (PIR) [35] and 

Figure 1: Passive sensing modalities which do not use RF or camera vision. Visible light, infrared and capacitive sensing are 
further investigated in this thesis.  
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thermopile [36] sensors. PIR sensors use pyroelectric sensing elements, which output a voltage when 

there is a change in incident IR. Consequently, they can only detect a moving target and not a stationary 

one. Generally, off-the-shelf PIR sensors for motion detection output a binary signal corresponding to 

the presence of a moving human subject within their field of view. Multiple sensors placed at known 

locations can then be used for localisation [37-40]. This can also be further improved upon by using 

customised hardware outputting an analog signal proportional to the change in the incident IR radiation 

[41-43].  

Instead of using pyroelectric sensing elements, an array of thermocouples can be used to make a 

thermopile – effectively a very low-resolution thermal camera. Thermopiles are able to measure the 

absolute IR value and can therefore detect both mobile and stationary subjects. Both wall- and ceiling- 

mounted thermopiles have been used for subject localisation [44-47]. 

Throughout the PhD research, improvements were made to the data collection methods and ground 

truth measurements. The literature shows significant variation in the methods of collecting ground truth 

data. The simplest approach involves a subject standing at a known point. However, this is only useful 

for evaluating a system’s ability at locating a static target. A subject can follow a pre-determined path 

while walking at a fixed pace. The time taken to walk such a path is measured. Alternatively, a 

metronome can be employed to synchronise the subject walking. However, this can cause the subject 

to walk in an unnatural manner. When computational intelligence models are trained upon the data, the 

regular path can also become a feature. Consequently, the model may struggle to position subjects who 

are not walking along a similar path. Ideally, subjects should be able to move about the test area 

unhindered and in a natural manner while their positions are accurately measured by other systems. 

Several such systems have been used in literature. They are based on various tools such as a hat 

connected to pulleys and rotational encoders with cables [32], Xbox Kinect [48], OptiTrack [49], and 

optical camera [50]. During the course of the work reported here, an HTC Vive Virtual Reality (VR) 

system was repurposed for the ground truth measurements. The HTC Vive provides high-quality ground 

truth recordings with a precision of 0.65 mm and an accuracy of 5 mm [51]. 
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1.2 Contribution 

Several localisation systems have been developed and evaluated in the reported study. The main results 

of it are as follows. 

• A novel passive VLP system that uses only ambient light and employs cheap photodiode-

based light-sensors embedded in a wall. The system does not require modification to the 

existing lighting infrastructure. A mobile target was tracked accurately for several routes. The 

impact of the distance metric on the performance of the Weighted K-Nearest Neighbour 

(WKNN) classifier for localisation was investigated. It is the first reported work that uses only 

ambient light to localise a moving target. An article based on this work was published in IEEE 

Transactions on Instrumentation and Measurement (Q1). 

• A capacitive flooring system (CapLoc) that determines a position of a mobile target in 

real-time. The CapLoc is not data driven. Therefore, it requires minimal calibration for the 

localisation thus making it more invariant to changes in the setting. It is robust and not 

vulnerable to factors (like wireless multipath propagation, changes of illumination conditions, 

different clothes worn by the target, etc.) that adversely affect other DFL systems. The 

experimental results showed the accurate localisation of a mobile target for multiple 

trajectories. CapLoc, achieved the highest reported localisation accuracy while tracking a 

moving subject. It is also illustrated that poses of a person lying on the floor can be captured 

and identified easily, adding further novelty. In future work, this can potentially be further 

developed for non-obtrusive automated fall detection. An article based on this work was 

published in IEEE Access (Q1). 

• A localisation system using wall-mounted thermopile sensors with the application of 

Machine Learning (ML)–based sensor models. The sensor models can be trained once for 

each sensor and then transferred to other sensors. This leads to a robust and reconfigurable 

indoor positioning system that does not need to be retrained when deployed outside the training 

environment. The system can operate with only a single thermopile sensor. Alternatively, extra 

sensors can be added to increase the localisation accuracy. The results show that the proposed 
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approach is largely invariant to the subjects, system configuration, and deployment 

environments. These practical considerations had not been reported in the literature.  An article 

based on this work was published in IEEE Access (Q1). 

• A robust dataset that allows benchmarking of multiple algorithms. It contains data taken 

across multiple environments while employing four different test subjects. The accurate ground 

truth was automatically recorded by using an HTC Vive VR system. Several supervised ML 

techniques were trained and tested using the dataset with a particular emphasis on the 

generalisability of the algorithms between subjects and environments – something not widely 

reported in the literature. It also provides the first available dataset for thermopile-based 

positioning, thereby addressing a critical need. In addition, the impact of wearing insulating 

apparel on localisation accuracy was investigated. An article based on this work was submitted 

to the IEEE Internet of Things Journal (Q1) and is currently under review. 

• An accurate ground truth recording system that employs virtual reality technology. It 

ensures that the localisation error is accurately measured. It also allows data collection for a 

large number of trajectories and path while the subject is walking naturally. This cost-effective 

solution addresses a critical weakness of the localisation discipline.   

• A novel VLP hardware. The hardware developed during this PhD, was utilised in two papers 

[52, 53] that were published in Q1 journals. The literature review that was undertaken to 

perform the study and development work also contributed towards the paper [22] published in 

a high-impact Q1 journal. While these papers are not included in the thesis, the candidate is a 

named second co-author in all three publications. Several other datasets for the thermopile and 

capacitive floor sensors have been collected. They will be used in planned future work and will 

be presented in the associated publications.  

1.3 Methodology 

Over the course of this thesis an experimental methodology was followed. Several prototype systems 

were developed and implemented, each building upon the strengths and weaknesses of the previous 

system, in addition to those found in the literature. The performance of these systems was evaluated in 
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terms of their measured accuracy. The accuracy was determined by comparing the positions of each 

subject as given by the prototype systems against the actual position of the subject. This is then used to 

compute the positional error. As per suggestion of the literature [54, 55], median, mean, percentile 

errors and Empirical Cumulative Distribution Function (ECDF) were used as the accuracy metrics. 

1.4 Thesis Structure 

Chapter 2 details the development, implementation and evaluation of a passive VLP system. The system 

is characterised by a comparatively high localisation accuracy, especially when assessed against 

equivalent RF-based systems. The work was published in a Q1 ranked journal – the IEEE Transactions 

on Instrumentation and Measurement. A smaller-scale prototype of this system was initially reported in 

the peer-reviewed conference article that can be found in Appendix 1. Chapter 2 improves upon this 

initial implementation by investigating the effect of various parameters on the localisation error. The 

effects of the height of the sensors’ placement, sensors’ density, the fingerprint database sizes, and the 

distance metrics were investigated.  

Whilst novel, the approach presented in Chapter 2 faced significant challenges. In order to overcome 

them, a flooring system was developed for passive tracking of subjects. A major advantage of this 

system is that it does not require a training corpus of data. Thus, it can be installed in a new environment 

with minimal calibration. Furthermore, the testing was performed on multiple subjects. It was found 

that the system provided considerably lower localisation errors compared to the passive VLP solution. 

A much-improved data collection method was developed. The paths of the moving subjects were 

tracked using the HTC Vive thus not requiring the subjects to follow some predetermined paths. That 

allowed for more natural movement of the subjects. The system description and the obtained results 

were published in the Q1 ranked journal – the IEEE Access.  

It was found that the system presented in Chapter 2 required a significant training corpus for any new 

environment, and it was very sensitive to changes in the environment. The new system presented in 

Chapter 3 improves upon the environment dependence. It was achieved at the expense of a significantly 

higher infrastructure cost. In a similar fashion as in Chapter 2, the preliminary results associated with 
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the system were initially disseminated through a peer-reviewed conference article that is given in 

Appendix 2. 

Chapter 4 provides further improvement upon developed systems. The proposed solution is 

environment-agnostic and of a low infrastructure cost. This was achieved by employing thermopile 

sensors detecting IR radiation emitted by a subject. The position of the subject within the frame of the 

image can be mapped to XY coordinates within a room. The system employed thermopiles affixed to 

the room walls. A trained model on each thermopile is used. The model is sufficiently generalised so 

that it is able to detect previously unseen subjects across multiple environments. This means that the 

model can be trained once and then be used in different deployments with very small configurational 

changes needed. The system can operate with a single sensor. Alternatively, more sensors can be added 

to decrease the localization error. This work was published in the Q1 ranked journal - the IEEE Access. 

Results presented in Chapter 4 were associated with the use of several ML methods. However, there 

was still scope for a further and more thorough investigation into machine learning methods for 

thermopile positioning. In addition to this, no thermopile dataset was available in the public domain for 

use in positioning tasks. Therefore, in Chapter 5 a variety of machine learning methods were compared, 

with a particular emphasis on advanced neural networks. In addition, a dataset was collected (using the 

same system as in Chapter 4, albeit with the thermopile affixed to the ceiling as opposed to the walls). 

The large dataset will also be made publicly available. The paper that is based on this work is currently 

under review with the Q1 ranked periodical - the IEEE Internet of Things Journal. 

Finally, Chapter 6 concludes this thesis by summarising the main contributions. In addition, some of 

the shortcomings of the systems detailed here within are addressed. These are accompanied by thoughts 

on potential future works to further develop the systems. 
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Abstract— This paper reports a novel visible light positioning 

(VLP) system and associated experimental results. The developed 
VLP system is completely passive as it does not require a tracked 
object to carry any active device or tag. At the same time, it does 
not require any modification to the existing lighting 
infrastructure. The positioning system, termed Watchers on the 
Wall (WoW), localizes a target based on measuring the change it 
creates in the received signal strength (RSS) of the ambient light 
recorded at an array of light-sensors embedded in the wall. A 
prototype system has been implemented and tested to investigate 
the performance of the proposed approach with regard to 
localization and tracking. The experimental results show that 
median and 90-percentile localization errors of 7 cm and 21 cm 
respectively can be achieved for a 2 m x 3.6 m testbed. The effect 
of various parameters like the height of placement and number of 
the light-sensors, as well as the size of the fingerprint database, 
have also been studied. The impact of various distance metrics on 
the localization performance of the Weighted K-Nearest Neighbor 
(WKNN) classifier has been investigated. It has been found that 
two distance metrics outperform the commonly employed 
Euclidean metric. The experimental results also demonstrated 
that the developed system could track a mobile target along 
multiple routes with a median error of 12 cm.   
 

Index Terms— Indoor localization, Device-Free Localization, 
Indoor Positioning System, Visible Light Positioning (VLP), 
Passive VLP, Weighted K-Nearest Neighbor Classifier  
 

I. INTRODUCTION 
ndoor positioning has been a burgeoning area of research 
over the past decades. In terms of outdoor positioning, GPS 

[1] is the de facto solution, due to it being both ubiquitous and 
free to use. However, it has limitations, especially in built-up 
areas or indoors [2]. The GPS signal is adversely impacted by 
multipath reflections and struggles to penetrate walls. 
Furthermore, the offered accuracy of several meters [3] is not 
good enough for indoor applications. For these reasons, other 
methods have been proposed. They have been based on the use 

 
This paragraph of the first footnote will contain the date on which you 

submitted your paper for review. This work was supported in part by the 
Massey University Doctoral Scholarship offered to one of the authors (N.F.). 

N. Faulkner, F. Alam, M. Legg are all with the Department of Mechanical 
& Electrical Engineering (MEE), School of Food & Advanced Technology 
(SF&AT), Massey University, Auckland 0632, New Zealand 
(n.faulkner@massey.ac.nz, f.alam@ massey.ac.nz, m.legg@massey.ac.nz).  

of Radio Frequency Identification [4], Bluetooth [5], Wi-Fi [6], 
ZigBee [7], Ultra-Wideband [8], Magnetic Fingerprinting [9], 
Ultrasonic [10] to mention the most popular. Whilst the 
majority of these represent an improvement over GPS for 
indoor localization, they often do not provide the desired levels 
of accuracy, reliability or simplicity. With Light Emitting 
Diodes (LEDs) steadily replacing traditional lighting sources, a 
new method of positioning has come to the fore – Visible Light 
Positioning (VLP) [11]. Visible light has the benefit of being 
far less susceptible to multi-path interference and flat fading 
due to its vastly higher frequency than radio frequency signals 
[12]. LED lighting can also perform multiple roles – 
illumination, communication, and positioning. Active VLP has 
been well researched. It relies on a mobile object having a 
receiver containing either a photodiode or image sensor [13]. 
There are several active VLP methods that have been 
implemented on indoor testbeds, with the main approaches 
being Received Signal Strength (RSS) Lateration [14, 15], 
Angle of Arrival Angulation [16], and Fingerprint Matching 
[17].   

Passive positioning or Device-Free Localization (DFL) [18] 
allows for the object detection without the need to have any 
receiving device attached to the tracked object. Potential 
applications of such localization systems could include 
location-based services in smart buildings, business analytics 
for retail applications, emergency evacuations, accessibility 
aids for visually impaired persons, as well as fall detection in 
rest homes. DFL systems based on wireless technologies have 
been investigated extensively in the last decade. The current 
wireless-based DFL solutions using Commercial-Off-The-Shelf 
(COTS) equipment require a significant number of wireless 
nodes while offering a median accuracy of approximately 1 m 
[19]. Recent works employing the customized hardware and 
channel state information metric have shown promising results 
with the median localization error as low as 0.35 m in line of 
sight human tracking scenarios [20, 21].  

While DFL systems based on wireless technologies have 
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been widely reported in the literature, there are only a handful 
of existing works dedicated to passive VLP [22-30]. However, 
just like its active counterpart, passive VLP can potentially be 
significantly more accurate than the wireless passive 
positioning techniques. Consequently, there is a need to 
develop advanced passive VLP solutions.  

Collocated LED luminaires and photodiodes have been 
applied to passively detect humans in [22]. The light from the 
LED luminaires was multiplexed using Time-Division 
Multiple-Access to identify the source of incoming light at each 
photodiode. The work primarily focused on investigating the 
ability to detect whether a door was open or closed. The work 
was further extended in [23] to track human movement and 
detect room occupancy. In the research [24], the floor was inlaid 
with 324 photodiodes, with 5 LED luminaires placed on the 
ceiling above. That setup was then used to detect the position 
of a human body and limbs from the shadows cast onto the 
floor. The work was further extended in [25] using only 20 
photodiodes, albeit with a much larger number of LED panels 
on the ceiling. That simplified the infrastructure at the cost of a 
slight decrease of the accuracy. Similarly, the authors in [26] 
also used a grid of photodiodes embedded into the floor. LED 
luminaires on the ceiling cast shadows from test subjects onto 
the said photodiodes. However, the paper reported results that 
were mostly based on simulation. The only experimental result 
reported in the paper was a single point to point LED to 
photodiode link to gather parameters for a larger-scale 
simulation. In simulations, the authors were able to achieve a 
median error of 8 cm in an 8 m × 8 m × 4 m room with 4 LED 
luminaires, and photodiodes uniformly spaced at the distance of 
0.5 m on the floor. In [27], the authors used a passive VLP 
approach for mobile device input using one LED and two 
photodiodes to detect a user’s finger. The application of LED 

improved the reliability in the presence of changing ambient 
light. The CeilingSee approach [28] employed reverse-biased 
LED luminaires as photodiodes for occupancy sensing. 
However, the authors did not use the system for positioning of 
test subjects or objects. Therefore, they did not report any 
results on the localization accuracy. Research [29] proposed to 
use ceiling mounted photodetectors for accurately sensing the 
indoor environment change. While this technique can 
potentially be adopted for occupancy inference and position 
estimation, no localization and tracking algorithms were 
reported in the paper. In addition, theoretical development was 
validated with simulation study only, and no practical 
implementation was done. Another group of researchers 
reported a passive VLP system that utilized a network of VLC 
luminaires and PD-based receivers on the ceiling [30]. The 
system measured the impulse responses (IRs) between each 
transmitter-receiver pair similar to the channel sounding 
approach [31]. The target was localized based on the measured 
changes of the IRs. The reported RMS localization error was 
based on simulation only, and no porotype development or 
physical system implementation was done.  

Table I summarizes the reported research in the area of 
passive VLP. 

This paper focuses on achieving accurate positioning of an 
object in ambient light conditions without the need for any 
modification to the existing lighting infrastructure (unlike the 
majority of VLP solutions). Table I frames the work presented 
in this paper with respect to the state-of-the-art in the field.  

The work presented here extends the preliminary results 
reported in [32] and makes the following original contributions: 

1. Novel passive VLP system based on ambient light only. 
This is the first implemented passive VLP system that the 
authors are aware of that does not require any 

TABLE I: COMPARISON OF WOW WITH OTHER PASSIVE VLP SYSTEMS 

Research Results Obtained Receiver Sensor Modified Lighting 
infrastructure 

Tracking 
moving target Limitations 

Ibrahim et. al 
[22] 

Primarily detected whether a 
door was open or closed. 

PD collocated with 
LED luminaires  Yes No Does not track or localize target. 

EyeLight [23] 
93.7% occupancy count 
accuracy, 94 cm median 
localization error. 

PD collocated with 
LED luminaires Yes No Only works in controlled environment 

as sunlight saturates the receivers. 

LiSense [24] Mean angular accuracy of 100 
for the 5 main body joints Floor inlaid with PD Yes No Does not track or localize target. 

Needs a large number of PDs 

StarLight [25] Mean angular accuracy of 
13.60 for the 5 main body joints Floor inlaid with PD Yes No Does not track or localize target 

Zhang et. 
al.[26] Median error of 8 cm Floor inlaid with PD Yes No Localization results obtained via 

simulation only. 

Okuli[27] 
Position a finger in a 9 cm x 7 
cm grid with 0.7 cm median 
error 

Two PD around a 
tablet No No 

Does not track or localize a human 
target. Only positions a user’s finger 
while using a tablet. 

CeilingSee 
[28] Detected Room occupancy Reverse biased LED 

luminaires as PD. Yes No Does not track or localize target. 

Hu et. al.[29] 
Simulation results show the 
developed algorithm can sense 
change in environment. 

PD embedded in the 
ceiling Not specified No 

Does not track or localize. Suggested 
that environment change can help 
infer occupancy and position. 

Majeed et.al. 
[30] RMS error is 5 cm PD collocated with 

LED luminaires Yes No 
Requires fingerprinting. Localization 
results are obtained by simulation 
only. 

WoW 
(proposed) 

Median error of 7 cm for 
stationary and 13 cm for 
moving target. 

PD embedded 
within walls. No Yes 

Requires fingerprinting. Needs to be 
further developed to work in changing 
ambient light. 
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modification to the lighting infrastructure.  
2. Functional passive VLP system with the associated 

experimental results. The developed system, termed the 
WoW (shorthand for Watchers on the Wall) requires only 
cheap photodiode (PD)-based light-sensors embedded in 
a wall to operate. The developed system was extensively 
tested to study the impact of various factors on the 
localization accuracy.  

3. Moving target tracking. The ability of the developed 
system to track a moving object was investigated for 
several routes. As far as the authors are aware, this is the 
first work that reports the localization accuracy of a 
passive VLP system while tracking a moving target 
traversing multiple routes. 

4. Impact of distance metric on the performance of the 
Weighted K-Nearest Neighbor (WKNN) classifier. The 
impact of various distance metrics on localization 
performance was investigated. It was found that two 
distance metrics outperformed the commonly used 
Euclidean metric. To the best of the authors’ knowledge, 
this is the first publication that explores the impact of the 
distance metric on the performance of the WKNN 
classifier for passive VLP.   

 
The rest of the paper is organized as follows. Section II 

describes the hardware and data acquisition system of the 
developed VLP system, introduces the key concept of using 
RSS as a fingerprint with the aid of a simple proof of concept 
system, and proposes utilizing the WKNN algorithm for 
positioning. Section IV presents the localization performance 
of the developed system. The section also reports the impact of 
various parameters on the localization accuracy. Section V 
concludes the manuscript with suggestions for future work. 

II. SYSTEM DEVELOPMENT 

A. Key Concept 
In a room, there are generally multiple light sources: 

windows, doors, and interior lights. Walls of the room are often 
lightly tinted therefore causing a portion of the light to be 

reflected. A person moving around the room produces several 
shadows of different intensities projected onto the floor and 
walls. The major shadows are results of blocking the direct 
paths from the ambient light sources. However, many other 
shadows are generated due to multiple reflections and artificial 
light sources. The shadows can be detected by light-sensors 
placed around a room as a change in the observed ambient light 
level, i.e., a change in RSS.  

B. Hardware for RSS Data Acquisition  
In order to explore the possibility of using the change in RSS 

 

Fig 1. Custom designed light-sensor. 

ISL29023

 
(a) [32] 

 

 
 

(b) 

Fig. 2. Proof of concept system: actual setup (a), and layout diagram (b). 

 
Fig. 3. Received power at each light-sensor for three scenarios: empty test bed 
(first bar), test subject at the left-hand side close to the wall with the light-
sensors affixed (middle bar), and the right-hand side away from wall with 
light-sensors affixed (end bar) [32]. 
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for positioning purposes, a simple proof of concept system was 
set up using ISL29023 [33] integrated digital light sensors (Fig. 
1). The light-sensors were comprised of a photodiode, trans-
impedance amplifier, and Analog-to-Digital Converter (ADC) 
located in the same package. Each light sensor was connected 
to a low-cost Wi-Fi microchip (ESP8266 [34]). The ambient 
light produces a DC signal at the output of the trans-impedance 
amplifier. The DC level is a measure of the RSS of the ambient 
light. It is sampled by the embedded ADC and retrieved by the 
microcontroller of the ESP8266. The latest 100 samples are 
stored in the internal memory until they are retrieved over Wi-
Fi. The data can then be requested in 100-value packets from a 
computer and saved to a non-volatile memory.  

C. Proof of Concept Setup 
The sensors were placed on a board at a height of 1.05 m 

from the floor level. A 3.4 m x 2.2 m grid with 0.2 m squares 
was marked out using masking tape and a laser straight edge. 
The sensors were positioned along the side of the grid furthest 
from the wall, with the photodiodes pointing back towards the 
wall. The RSS data were collected at each grid intersection for 
a total of 198 locations. Each measurement consisted of 100 
RSS readings over 10 seconds at each sensor. The layout of the 
proof of concept system is shown in Fig. 2. 

D. RSS as Fingerprint 
The RSS can be used as a fingerprint to locate mobile objects. 

This can be observed in Fig. 3 for the proof of concept setup. 
The blue bars are the RSS at the seven light-sensors when the 
test area is free from obstructions (i.e., moving or stationary 
target objects). The red and orange bars present two cases when 
a person is standing in the front left area (that is close to the first 
two sensors on the wall – 1 and 2), and then – in the back right 
position (i.e., opposite the last two sensors – 6 and 7), 
respectively. Naturally, greater drops in the RSS can be 

observed at the sensors that are closer to the test subject. For 
example, when the test subject is in the front left position, the 
RSS drop is more significant for the sensors 1 and 2, while there 
are very little drops for the sensors 6 and 7. When the person is 
at the back right position, the opposite is true – the sensors 6 
and 7 are affected more than the sensors 1 and 2. 

 The measured RSS values at each light sensor are shown in 
Fig. 4. These plots show the change in the RSS with a test 
subject (a person of 1.8 m height) standing at each individual 
point on the grid. A very large dip can be seen on the top-left 
edge of each plot where the test subject stood immediately in 
front of the light-sensor causing a strong shadow. This shows 
the possibility of taking the RSS value from the same location 
on each plot to construct a fingerprint ID for that position. The 
proof of concept along with some preliminary results using that 
simple setup were reported in [32]. 

E. WKNN Classifier for Localization using RSS 
There are many classifiers to choose from when it comes to 

positioning that utilizes a fingerprint database. While classifiers 
like Support Vector Machines [35] and Neural Networks [36] 
have been extensively employed for indoor localization using 
wireless technology, they have not been commonly applied for 
VLP. The use of the Weighted K-Nearest Neighbors (WKNN) 
[37] is another option to classify the online readings while 
employing an offline fingerprint database. The recently 
published research [17] has shown that WKNN is well suited 
for active VLP system utilizing RSS. Therefore, for this work, 
WKNN is applied to classify live RSS readings using the 
fingerprint database. 

Let there be N light sensors in the localization system. During 
the offline measurement, when the target is at a location (xi,yi),  
the corresponding ID for that location based on the RSS at the 
sensors can be defined as an Nx1 vector: 

 
Fig. 4. RSS fingerprint at each light sensor for the proof of concept setup. The XY plane represents the floor (units in m) [32]. 
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𝐑𝑖=[𝑅1,𝑖, 𝑅2,𝑖 ⋯ , 𝑅𝑁,𝑖]𝑇 (1) 

Here  𝑅𝑛,𝑖 refers to the RSS at the nth light-sensor (DC level 
measured at the output of its trans-impedance amplifier) with 
the target being at the location i with the coordinates (xi,yi). 
During the offline stage, RSS measurements are taken at all the 
sensors for M predefined locations, and M x N RSS fingerprint 
database is constructed. Now the target can be localized in the 
live phase using the WKNN classifier. 

During the live stage, the RSS vector at the N light sensors 
for a target at the location (xj,yj) is given by 
 

𝐑𝑗𝑙𝑖𝑣𝑒=[𝑅1,𝑗𝑙𝑖𝑣𝑒, 𝑅2,𝑗𝑙𝑖𝑣𝑒 ⋯ , 𝑅𝑁,𝑗𝑙𝑖𝑣𝑒]
𝑇

 (2) 

Here, 𝑅𝑛,𝑗𝑙𝑖𝑣𝑒  is RSS at the nth light sensor during the live stage. 
The proximity of the live location to an offline location on the 
fingerprint database can be determined by computing the 
distance dj,i between the vectors  𝐑𝑗𝑙𝑖𝑣𝑒  and 𝐑𝑖 . By sorting the 
distances in ascending order, the “nearest neighbours” to the 
current live location in the offline fingerprint database are 
identified. The WKNN algorithm estimates the location of the 
target as the weighted average of the location of the first K 
nearest neighbours as  
 

𝑥𝑗̃ =
∑ 𝑤𝑗,𝑘 × 𝑥𝑘𝐾
𝑘=1

∑ 𝑤𝑗,𝑘𝐾
𝑘=1

 

𝑦𝑗̃ =
∑ 𝑤𝑗,𝑘 × 𝑦𝑘𝐾
𝑘=1

∑ 𝑤𝑗,𝑘𝐾
𝑘=1

 
(3) 

 
Here (𝑥𝑗̃, 𝑦𝑗̃) is the estimated position of the target and (xk,yk) is 
the position of the kth neighbour. The weight wj,k is the 
reciprocal of the distance dj,k, thus giving larger weights to 
nearer neighbours. The value of K = 3 was empirically chosen 
in the WKNN algorithm for the system as it provided a good 
balance for optimizing both the median and maximum 
localization errors. 

III. LOCALIZATION PERFORMANCE 
This section investigates the localization performance of the 
system and reports the impact of various parameters on the 
localization accuracy. 

A. Experimental Setup 
The initial proof of concept setup described in Section II C 

was found to have large positioning errors at the extremities of 

the test space. A slightly modified experimental setup was 
therefore used. The room was set up with 14 light-sensors 
(please see Section II B for the description of the hardware). It 
was decided to place the sensors on two opposing walls (as 
opposed to only one wall described in the proof of concept 
setup). Also, the spacing of the light-sensors was increased 
from 0.3 m (of the proof of concept setup) to an interval of 0.6 
m. This was done to ensure that there were enough light-sensors 
near the ends of the test space. The physical setup can be seen 
in Fig. 5.  Seven sensors were placed along each wall giving in 
total 14 sensing nodes (N = 14 in (1) and (2)). A grid of 3.6 m 
× 2 m dimension with 0.2 m squares was marked out with the 
sensors being 0.4 m back from the grid on each side and in-line 
with the end of the grid at both the ends of the experimental 
space. The width of the space was therefore 2.8 m and the length 
3.6 m (however, with no walls across the ends). Data were 
collected at each grid intersection for a total of 209 locations 
using the acquisition method described in Section II B. The data 
were split into two parts: 1) offline fingerprint database, and 2) 
online RSS measurements.  

All the experiments were conducted at night when the 
ambient light could be controlled. Multiple datasets were 
collected for the entire test space as shown in Fig. 6. In each 
case, the data was collected starting at the first position located 
at the corner of the grid closest to the light sensor 7 (marked as 
LS7 in Fig. 6). A test subject then stood at each point on the 

 
Fig. 5. Experimental setup showing the wall mounted light-sensors and the 
test space. 
 
 

 
(a) Measurement locations - “Database 1” 

 
(b) Measurement locations - “Database 2” 

 
(c) Measurement locations - “Database 3” 

 
Fig. 6. Experimental Layout showing the location of the light sensors and measurement locations for three different fingerprint databases.  
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grid in sequence whilst the reading was taken. Each reading 
consisted of taking measurements from each sensor 
simultaneously over a period of 5 seconds with the data being 
sampled at 10 times per second, giving an array of 50 samples 
per sensor per reading. The readings were taken starting at (0, 
0) and proceeding in the x direction, i.e., (0, 0) to (1, 0) … to 
(19, 0) before starting the readings at the next row. Each reading 
was taken for a 1.8 m tall human subject facing the wall, i.e., 
the line of the subject’s shoulders was parallel to the wall. 
Readings were also taken with no test subjects being present 
(i.e., background reading representing effectively an empty 
room). Background readings were taken before and after each 
dataset to verify that the ambient light level stayed constant. 

B. Impact of the Fingerprint Database Size 
Table II shows the median and the 90-percentile localization 

errors for the three fingerprint databases of different sizes. 
Offline measurement locations can be seen in Fig. 6. The 
Empirical Cumulative Distribution Function (ECDF) of the 
localization error is shown in Fig. 7. It can be observed that 
there is a clear trade-off between the localization accuracy and 
size or resolution of the grid. The localization accuracy 
degrades as the fingerprint database becomes smaller with a 
sparser grid. The degradation of accuracy in going from the 
Database 1 (111 offline measurements, M = 111) to the 
Database 2 (60 offline measurements, M = 60) is relatively 
small. Also for the Database 3, with only 12 offline 
measurements, the 90-percentile localization error (93 cm) is 
still less than 1 m thus making the WoW more accurate than 
many state-of-the-art wireless DFL systems [19]. 

It should be noted that the selection of the database is not 
optimized. The optimum fingerprint locations are dependent on 
many parameters with some being dynamic and also varying 
with the site. The offline measurement locations optimized for 
one test environment may not be ideal for another situation. 

Therefore simple, regular patterns for offline locations were 
utilized. The presented localization results could potentially be 
improved by using more favorable fingerprint databases found 
through trial and error of various offline location sets. However, 
this can lead to an over-trained system. Besides this may not be 
an objective representation of a real-world scenario where it is 

 
 
Fig. 7. ECDF of localization error for three fingerprint database sizes. 
 
TABLE II: MEDIAN AND 90-PERCENTILE ERRORS FOR DIFFERENT 

DATABASE SIZES 
 

Error in cm 
Database 1 Database 2 Database 3 

Median 90-perc. Median 90-perc. Median 90-perc. 
8 26 13 31 53 93 

 
 
 

 
 
Fig. 8. ECDF of localization error for three sensor heights. 
 

TABLE III: DEFINITION OF DISTANCE METRICS 
 

Distance Metric Definition 

Euclidean 𝑑𝑗,𝑖 = √∑(𝑅𝑛,𝑗𝑙𝑖𝑣𝑒 − 𝑅𝑛,𝑖)
2

𝑁

𝑛=1

 

Manhattan 𝑑𝑗,𝑖 = ∑|𝑅𝑛,𝑗𝑙𝑖𝑣𝑒 − 𝑅𝑛,𝑖|
𝑁

𝑛=1

 

Canberra 𝑑𝑗,𝑖 = ∑
|𝑅𝑛,𝑗𝑙𝑖𝑣𝑒 − 𝑅𝑛,𝑖|
|𝑅𝑛,𝑗𝑙𝑖𝑣𝑒 + 𝑅𝑛,𝑖|

𝑁

𝑛

 

 

 
Fig. 9. ECDF of localization error for various distance metrics. 
 

TABLE IV: LOCALIZATION ERRORS FOR VARIOUS DISTANCE 
METRICS 

 
Error in cm (Database 1) 

Euclidean Manhattan Canberra 
Median 90-perc. Median 90-perc. Median 90-perc. 

8 26 7 21 7 21 
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not always feasible to optimize the location of the offline 
measurement or fingerprint locations. 

C. Impact of the Sensor Placement Height 
Figure 8 shows the impact on the localization accuracy of the 

sensors placement height on the wall. Three different heights 
were investigated with the light-sensors set at heights of 0.75 
m, 1.2 m, and 1.45 m from the floor level. It can be observed 
that the height of the sensor placement does not have any 
noticeable impact on the localization accuracy of the WoW. 
Thus the experimental results shown for the rest of the paper 
are for sensors placement height of 1.45 m. 

D. Impact of the Distance Metric 
Euclidean distance is commonly utilized for identifying the 

nearest neighbours and computing the weight of the WKNN 

algorithm [37]. However, several alternative distance metrics 
are known from the literature [38]. Recent work on active VLP 
[17] has shown that the selection of the distance metrics can 
have an impact on the localization accuracy of the WKNN 
algorithm. Consequently, the effect of distance metrics on the 
accuracy of the VLP system was investigated. The distance 
metrics are defined in Table III. The localization results for 
Database 1 are shown in Fig. 9 and Table IV. It can be observed 
that the Euclidean distance is not the most accurate metric. Two 
other distance metrics (Manhattan and Canberra) produce 
lower localization errors. Localization results for Database 2 
and Database 3 show similar trend.  

E. Impact of the Number of Sensors  
The impact of the number of sensors on the localization 

accuracy of the WoW was also investigated. Figure 10 shows 
the locations of the sensor nodes for these experiments. Figure 
11 and Table V show the localization performance for various 
sensor numbers. As expected, the localization accuracy 
degraded when the number of deployed nodes was reduced. 
However, the 90-percentile error was below 50 cm even with 
only four sensors being employed. 

F. Tracking a Mobile Target 
In order to test how the developed system tracks a moving 

target, multiple paths were followed by the test subject. The 
target walked along a marked path at a constant speed of 0.2 
m/s. The steps were synchronized to a metronome to ensure that 
the distance covered by each step and the walking speed 
remained constant. The deliberate walking speed allowed the 
ground truth (the actual location of the target) to be accurately 
estimated. Each path was recorded over 90 second period. 
Three different routes were employed to investigate the 
capability of the WoW at tracking a moving target. The results 
are shown in Fig. 12 and Table VI. It can be observed that the 
positioning error levels are similar for all three paths. In 
addition, the Euclidean distance performed worse among the 
three distances. The performances for the Canberra and 
Manhattan distances were nearly identical, and consequently, 
only the results for the Manhattan distance are shown against 
those of the Euclidean distance. When the subject walked 
around, the orientation of the subject varied leading to changes 
in the size of the shadow. The fingerprinting was performed 
with the subject in a single orientation (facing one of the walls). 
Larger errors were observed when the subject was facing 
significantly different directions compared to that when the 
fingerprints were taken. This is more noticeable in Fig. 12(a). 
The positioning error is smaller on the left and right sides. Here, 
the test subject walked towards or away from the sensors with 
the body orientation being similar to that observed during the 
fingerprinting. Whereas for the top and bottom parts of the 
trajectory, the positioning error is more pronounced. For these 

 
(a) 14 Sensors 

 
(b) 8 Sensors 

 
(c) 6 Sensors 

 
(d) 4 Sensors 

Fig. 10. Experimental layout showing the location of the light-sensors for 
varying sensor numbers. Note that two different layouts for the 4-sensors 
arrangements are shown in (d). 
 

 
Fig. 11. ECDF of localization error for various number of light-sensors. 
 
 
 
 

TABLE V: LOCALIZATION ERRORS FOR DIFFERENT NUMBER OF LIGHT SENSORS 

Error in cm (Sensor height 1.45 m, Database 1), Manhattan Distance 
14 diodes 8 diodes 6 diodes 4 diodes (middle) 4 diodes (end) 

Median 90-perc. Median 90-perc. Median 90-perc. Median 90-perc. Median 90-perc. 
7 21 11 38 14.5 42 19 41 16 47 
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trajectories, the orientation of the test subject is ±900 turned 
compared to that observed during the fingerprinting.  

 The sampling rate of the VLP system is 10 Hz, which is the 
maximum sampling frequency the custom-designed light-
sensors can handle at the 16-bit resolution. The conducted 

  

(a) Actual vs. estimated route – Path 1 
  

(b) ECDF of localization error - Path 1 

 

(c) Actual vs. estimated route - Path 2 
 

(d) ECDF of localization error - Path 2 

 

(e) Actual vs. estimated route - Path 3 
 

(f) ECDF of localization error - Path 3 
Fig. 12. Tracking performance for three different target routes. 
 

TABLE VI: LOCALIZATION ERRORS FOR VARIOUS TARGET TRAJECTORIES 

Error in cm 
Path 1 Path 2 Path 3 

Euclidean Manhattan Euclidean Manhattan Euclidean Manhattan 
Median 90-perc. Median 90-perc. Median 90-perc. Median 90-perc. Median 90-perc. Median 90-perc. 

16 29 13 23 15 27 13 23 13 23 12 21 
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experiments showed that the system could cope with a faster 
walking speed of up to 0.8 m/s. However, it was difficult to 
maintain a constant speed and achieve an accurate recording of 
the ground truth.  Also, if the resolution is reduced, the sample 
rate of the current hardware can be increased allowing to track 
targets that are moving even faster. However, the loss of 
resolution would lead to a coarser estimation of RSS and could 
potentially lower the localization accuracy. In future work, the 
hardware design may need to be improved to increase the 
sampling rate without sacrificing the resolution in order to track 
faster targets. 

IV. CONCLUSION & FUTURE WORKS 
This paper presents the development and implementation of 

a passive visible light-based indoor localization system that 
employs cost-effective components. The system was able to 
position a target with a median error of 7 cm in stationary and 
12 cm in mobile scenarios using 14 wall-mounted light-sensors. 
The VLP system performed effectively using WKNN classifier 
and a fingerprint database consisting of 60 offline 
measurements within a 2 m x 3.6 m testbed. Weights computed 
using either Manhattan or Canberra distance provided better 
positioning accuracy than the traditional Euclidean distance for 
the WKNN classifier. The placement of the light-sensors within 
a range between 0.75 m and 1.45 m of height did not show any 
noticeable impact on the localization accuracy. Therefore a 
sensor placement height of 1.45 m is preferable to reduce the 
possibility of occlusion resulting from furniture or other 
paraphernalia. The localization accuracy degraded once the 
number of light-sensors was reduced. However, even with only 
4 wall-mounted sensors, it was possible to attain a median 
positioning accuracy of 16 cm for a stationary target.       

Further work will expand the test to a full room-scale with 
the light sensors embedded in all the room walls. In a larger 
room, enough shadows may not be cast by the target on the 
walls. In such a scenario, additional light sensors may need to 
be embedded in the ceiling and the floor, in particular, in the 
middle of the room. 

The experiments were undertaken at night. Therefore 
changes in the level of ambient light were not investigated. The 
future work will study quantifying and mitigating the impact of 
changing the ambient light. Ambient light is measured as a DC 
signal at the output of the light-sensors. The proposed VLP 
system infers the location through monitoring the change a 
target causes to the DC levels at various light-sensors. 
Therefore, a change in the ambient light level could affect the 
localization accuracy of the proposed system. This can 
potentially be mitigated by using Visible Light Communication 
(VLC) -enabled luminaires that transmit modulated light. 
Under such circumstances, the sensors will monitor the RSS at 
a specific set of frequencies rather than the DC levels. If the 
ambient light level changes, the RSS at the modulating 
frequencies will not change. The change in RSS will be solely 
due to the occlusion, e.g., the presence of a target. Therefore, as 
long as the ambient light does not saturate the light-sensors, the 
accuracy of such a VLP system would not depend on variations 
in the ambient light. Another potential way to mitigate this 
could be to employ two separate RSS metrics measuring the 
long-term and the short-term levels of the ambient light. A 

similar concept has been applied with RSS histograms for 
wireless DFL to offset the fluctuations of RSS occurring from 
the dynamic nature of the wireless channel [39].  

The developed system was tested for a single target at a time, 
and as such, further investigation is planned to track multiple 
objects. Since generating the fingerprint database is a very time-
consuming process, future research will look at the modelling 
of the RSS data, and their generation from a few strategically 
selected calibration points. Utilizing other types of classifiers 
(e.g., Neural Networks and Support Vector Machines) and 
comparing their performance with WKNN will be another 
direction for future research. Finally, the effect of the colour of 
the target’s clothing on the system performance was also left 
for future investigation. 
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ABSTRACT Passive indoor positioning, also known as Device-Free Localization (DFL), has applications 
such as occupancy sensing, human-computer interaction, fall detection, and many other location-based 
services in smart buildings. Vision-, infrared-, wireless-based DFL solutions have been widely explored in 
recent years. They are characterized by respective strengths and weaknesses in terms of the desired accuracy, 
feasibility in various real-world scenarios, etc. Passive positioning by tracking the footsteps on the floor has 
been put forward as one of the promising options. This article introduces CapLoc, a floor-based DFL solution 
that can localize a subject in real-time using capacitive sensing. Experimental results with three individuals 
walking 39 paths on the CapLoc show that it can detect and localize a single target’s footsteps accurately 
with a median localization error of 0.026 m. The potential for fall detection is also shown with the outlines 
of various poses of the subject lying upon the floor. 

INDEX TERMS Capacitive Sensing, Device-Free Localization, Electric Field Sensing, Fall Detection, 
Footstep Detection, Footstep Tracking, Human Sensing, Indoor localization, Indoor Positioning System 
(IPS), Passive Positioning.  

I. INTRODUCTION 
Passive indoor positioning is the key enabling technology for 
applications like Ambient Assisted Living (AAL) and Human-
Computer Interaction (HCI). Unfortunately, even with the 
attention of researchers for over two decades, passive 
positioning or Device-Free Localization (DFL) remains a 
problem to be solved. Camera-based techniques can 
accurately locate and identify a tag-less target with reasonable 
accuracy [1]. However, they require good lighting conditions 
and are adversely impacted by occlusion. More importantly, 
privacy is a significant concern making such systems less 
acceptable in many applications, especially in a residential 
setting. Many accidents and falls happen in places such as 
bathrooms and bedrooms where cameras would be considered 
to be invasive. While efforts are underway to utilize privacy-
preserving single-pixel cameras [2, 3], it is still early days for 
such a technique. 

Passive localization using Radio Frequency (RF) sensing 
has been extensively researched in recent years [4, 5]. While 
RF-based localization has the advantage of potentially being 
able to repurpose the wireless networks within the built 
environment, there are some inherent disadvantages like 

limited accuracy due to multipath reflections. Application of 
the Channel State Information (CSI) metric utilizing many 
Wi-Fi subcarriers can mitigate the multipath issue [6] to 
achieve much-improved accuracy [7-9] and even perform 
sophisticated tasks like activity recognition [10]. However, 
CSI is not available for the majority of the RF technologies 
(e.g., Bluetooth and ZigBee). In addition to this, most 
consumer-grade Wi-Fi hardware is yet to widely support the 
use of this metric thus limiting its practicality.  

Passive Visible Light Positioning (VLP) [11, 12] is based 
on the principle that the presence of a subject alters optical 
channels. These changes can be detected by nearby light-
sensors as variation in the Received Signal Strength (RSS) of 
the light level and subsequently used to estimate the subject’s 
position. However, the majority of passive VLP techniques are 
vulnerable to change in ambient light levels. Also, they need 
good illumination conditions. Infrared (IR) sensing has been 
proposed as an alternative way for DFL by detecting the heat 
signature of a human target. Passive IR (PIR) sensors, 
commonly available as motion detectors, have been used for 
such localization [13-16]. However, PIR sensors require 
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relative motion between the sensors and a target. Therefore, 
they are unable to deal with a stationary target. IR-sensing 
based positioning using thermopile sensors has been proposed 
[17, 18] to deal with both stationary and mobile targets. 
Unfortunately, such techniques are inherently vulnerable to 
changes in heat signatures resulting from clothing variations.  

Humans spend much of their time in contact with the floor 
when they are inside a building. Therefore, the floor can be 
potentially repurposed as a large sensor for device free 
positioning of individuals. Table 1 summarizes the key works 
in the area of the floor-based DFL.  

Pressure-sensitive floors [19-21] have been used for 
locating and identifying people. There are also systems using 
binary pressure-sensitive switches built into the floor [22]. 
Unfortunately, the pressure-sensitive floors appear to be 
complex to build. Besides, the pressure sensors (e.g., load 
cells) are also subject to wear and tear degradation, especially 
of the mechanical components. 

Floor-based localization can also be accomplished by 
measuring footsteps-induced vibrations with a network of 
seismic sensors [23-25].  The footsteps (and hence the target) 
are located by exploiting the fact that vibration signals take 
different times to reach each sensor depending on the distance 
between the footstep and the sensors. This allows performing 
the localization using Time of Arrival (ToA) or Time 
Difference of Arrival (TDoA) techniques [25]. However, the 
floor is a complex heterogeneous medium. It varies 
significantly from one building to another. This makes the 

calibration challenging thus complicating the transfer of a 
relevant system between different premises. 

Capacitive sensing utilizing the change in capacitive 
coupling between a custom-designed floor and target can be 
an effective localization method. In this scenario, the floor and 
the target form (two plates of) a capacitor. The presence of the 
target alters the electric field, actively generated by a 
transmitter, manifesting as a measurable change in the 
capacitance. Smart Carpet [26] uses fabric into which 
conductive wires are sewn in serpentine patterns to form 0.15 
m × 0.15 m panels. Similarly, SensFloor [27-29] uses 
conductive triangles embedded into a textile. Capacitive floor 
with metal squares was utilized in [30, 31]. CapFloor [32] uses 
two sets of parallel wires orthogonal to each other. A person 
walking above them changes the measured capacitance in 
these wires. Since a person is above at least one wire in each 
direction, an intersection point of these wires presents the 
person’s estimated position.  

In contrast to the aforementioned works that use the loading 
mode of the capacitive sensing [33], TileTrack [34, 35] 
employs  the transmit mode. A square wave signal transmitted 
from the floor tiles is received by an additional electrode 
placed in the room as a receiver. The detected change in the 
signal amplitude caused by a person between the electrode and 
the floor tile helps infer the location. Capacitive sensing is also 
utilized in research [36, 37] where instead of using the floor-
based solution, electrodes are set up on the walls.  

When a person walks on a typical floor, a charge is built up 
due to the Triboelectric Effect [38]. The person can also be 

TABLE 1.  Comparison of CapLoc with other floor-based positioning systems. 
Research Sensing Method Position Accuracy 
Liau et al. [19] Pressure 85-percentile error of 0.283 m 
Andries et al. [20] Pressure Mean error of 0.13 m for a single person, 0.2 m for two people 
Al-Naimi et al. [21] Pressure Mean error 0.0767 m 
Murakita et al. [22] Binary Pressure Sensors Mean error of 0.2 m  
Mirshekari et al. [23] Vibration Median localization error of 0.38 m 
Alajlouni et al. [24] Vibration 80-percentile error of 0.7 m 
Poston et al. [25] Vibration RMSE of 0.6 m and 0.8 m in two separate environments 
Smartcarpet [26] Capacitive MSE 0.0187 m (line) to 0.431 m (C-shape) for various trajectories 
Rimmeinen et al. [30, 31] Capacitive Mean position error of 0.21 m 
Capfloor [32] Capacitive “In the range of 50 cm” 
Tiletrack [34, 35] Capacitive 80-percentile error 0.1 m 
CapLoc (This paper) Capacitive Median error 0.026 m, 90-percentile error 0.066 m 

 
TABLE 2.  Comparison of CapLoc with other passive positioning systems. 

Research Sensing Method Position Accuracy 
Watchers on the Wall [11] Passive VLP Median error 0.12 m 
FieldLight [12] Passive VLP Median error 0.68 m to 1.2 m  
D Yang et al. [14] PIR Mean error 0.21 m  
B Yang et al. [15] PIR Mean error < 0.8 m  
Liu et al. [16] PIR Mean error 0.47 m to 0.71 m  
Tang et al. [42] Passive EFS Mean error 0.104 m to 0.272 m  
P-Loc [43] Passive EFS Mean error 0.48 m  
Zhao et al. [3] Single pixel camera Mean error 0.2 m  
Tariq et al. [37] Capacitive wall sensors Mean error 0.307 m  
Chen et al. [18] Thermophile RMSE of 0.19 m 
Qu et al. [17] Thermophile Mean error 0.07 m 
Zhang et al. [8] Wireless CSI Mean error 0.8 m 
Shi et al. [9] Wireless CSI Mean error 0.63 m 
SpringLoc [5] Wireless RSSI Median error 0.6 m to 1.57 m 
CapLoc (This paper) Capacitive Median error 0.026 m, 90-percentile error 0.066 m 
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considered as being an earthed conductor. Therefore, the 
ambient electric field created by the radiation from the AC 
powerlines (ever-present in buildings) is altered by the 
presence of a human target. This change can be measured with 
Electric Potential Sensors (EPS) and used for both 
identification of subjects [39] as well positioning of them [40-
43]. Unfortunately, such opportunistic, passive electric 
sensing is vulnerable to ambient electrical field noise and 
interference. The relevant systems are mainly implemented 
using EPS units that are placed on the walls or ceiling of a 
room. 

This paper proposes a new capacitive floor system named 
CapLoc for passive positioning. In a preliminary work [44], 
the authors presented how a static foot can be detected when 
a subject stands barefoot on a capacitive sensing panel. This 
paper utilizes that concept to develop CapLoc, a positioning 
system, for real time localization of a moving target 
accurately and potentially detect fall in an automated 
manner. It presents the following original contributions: 

1. CapLoc can determine the position of a mobile target 
in real-time. It is not data-driven and therefore, requires 
minimal calibration for localization making it more 
invariant to changes in the setting. CapLoc is also 
robust and not vulnerable to factors that adversely 
affects other DFL systems like wireless multipath 
propagation (affects wireless DFL), illumination 
condition (impacts camera and passive VLP systems), 
clothing worn by the target (affects IR-based systems) 
etc.; 

2. The experimental results showing the localization of a 
mobile target for multiple trajectories are presented. 
The median and 90 percentile localization errors while 
testing with three different subjects are found to be 
0.026 m and 0.066 m, respectively. This makes 
CapLoc more accurate than most passive localization 
systems reported in the literature (see Tables 1 & 2). 
Also, the majority of the reported DFL systems were 
only tested for a handful of target trajectories. In 
contrast, CapLoc was tested for 39 different paths 
walked by multiple subjects. An accurate ground truth 
recording system was implemented using virtual 
reality technology (HTC Vive [45]) to ensure that the 
localization error is accurately measured. By utilizing 

the procedure outlined in the article, other researchers 
will be able to record accurate ground truth in an 
automated manner, using an affordable consumer 
grade technology;  

3. It is shown that the poses of a person lying on the floor 
can be captured easily. Potentially, this can be used for 
automated fall detection in a non-obtrusive manner. 

The rest of the paper is organized as follows. Section II 
discusses the development of the CapLoc system. Section III 
presents the footstep detection process. Section IV 
demonstrates the localization performance. Pose capture for 
potential fall detection is shown in Section V. Section VI 
concludes the paper and discusses future research directions. 

 
II. SYSTEM DEVELOPMENT 
A. KEY CONCEPT 

CapLoc is based on the formation and the subsequent 
sensing of loading mode capacitance [33, 46]. The concept is 
shown in Fig. 1 where the subject's foot and copper-foil tiles 
underneath the floor form the two plates of the capacitor. This 
capacitor can be modeled as: 

𝐶 = ε 𝐴
𝑑
  , (1) 

where 𝐶 is the total capacitance, 𝜀 is the permittivity of the 
dielectric (assumed to be constant), 𝐴 is the overlapping area 
of the two plates, and 𝑑 is the separation between the two 
plates (details shown in Fig. 1). When the subject stands with 
a foot above the transmitting plate, the capacitance depends on 
two main factors: the proportion of the plate covered by the 
subject’s foot (𝐴), and the distance between the subject’s foot 
and the plate (𝑑). For a rigid floor type, the distance 𝑑 remains 
fairly constant, whereas the area 𝐴 changes as sensors could 
naturally be covered to a different extent. 

B. PROTOTYPE HARDWARE DESIGN 
A 0.6 m × 0.6 m sensing panel, with 25 individual copper-

foil squares, is the basic building block of the CapLoc floor 
(Fig. 2 and 3). Each copper square is soldered to a wire that is 
connected along with 24 other wires to a microcontroller (100-
pin ARM Cortex M3 [47]) where the capacitance is measured. 
The wires are routed within the gaps between the copper 
squares. The total component cost of a 0.6 m × 0.6 m sensing 
panel (excluding the cost of floorboards) is approximately $6. 

 
FIGURE 1.  Loading mode capacitor formed by subject’s foot on CapLoc, 
along with a simplified circuit diagram. A is the overlapping area of the 
two plates, and d is the separation between the two plates. 

 
FIGURE 2.  The structure of the floor. The floor can be topped with any 
non-conductive flooring material such as wood, vinyl or carpet. 
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Therefore, the cost of implementing CapLoc, excluding 
labour, is less than $18/sqm while offering significant 
functionality. Also, the cost of the system is expected to 
decrease significantly with mass manufacture. 

The capacitance is measured by evaluating the RC time 
constant of the equivalent capacitive circuit. The time taken to 
charge a capacitor to a set voltage V0 is given by the well-
known RC charging equation: 

𝑉(𝑡) = 𝑉0(1 − 𝑒−t/τ) (2) 
where 𝜏 = 𝑅𝐶. 

If the selected resistance value R is sufficiently high, it can 
be assumed to be reasonably constant and independent of the 
unknown resistance to the ground. Time taken by the capacitor 
to charge to a set value, therefore, depends solely on the 
capacitance. A microcontroller is used to charge the copper 
plate through a high value resistor by applying a voltage to the 
charging pin (Fig. 1). The time taken to reach a set voltage at 
the sensing pin is measured. When a subject’s foot is near the 
copper plate, the effective capacitance is much greater than 
when there is no subject nearby. This leads to a significantly 
longer rise time of the signal. The raw capacitance 
measurements are sent from the microcontroller to an 
application running on PC over the USB serial communication 

line. The PC app processes and displays the incoming data in 
real-time as well as saves the data for further analysis. The 
footstep detection algorithm takes less than 2 ms to run on a 
standard desktop PC running at 3.2 GHz. Trace drawing on 
the screen takes around 15-20 ms. The floor is sampled at 
around 10 Hz, giving the app plenty of time to process each 
frame whilst waiting for the next data frame from the sensors. 

C. FOOT DETECTION 
Figure 3 illustrates the foot detection process that is 

effectively an image processing algorithm where each 
capacitance value from the floor is represented as a single 
grayscale pixel. When CapLoc is first powered on, a number 
(currently set to 10 after many rounds of empirical testing) of 
capacitance readings are taken from the floor sensors as a 
background estimation. It is then subtracted from each 
subsequent capacitance measurement from the floor. Over 
time the background estimations can drift. To counteract this 
phenomenon, periodic CapLoc recalibration can be 
implemented by taking a new set of baseline capacitance 
readings when the floor is known to be vacant. Over a long 
period, the amount of time when a subject is standing on a 

 
FIGURE 3.  Block diagram of the CapFloor system architecture, with the 
custom designed hardware sampling the capacitance values which are 
sent to the PC app for the foot detection process. The foot detection is 
performed by adopting image processing techniques. 

 
FIGURE 4.  The simultaneous detection of multiple feet from multiple 
subjects (interpolated, before thresholding). 
 

 
FIGURE 5.  Foot after thresholding in socks (left) and in thick soled 
footwear (right). In thick footwear the foot is smaller in area after 
thresholding. 
 
 
 
 

 
FIGURE 6.  A sequence of footprints superimposed in time. Both pre (top) and post (bottom) thresholding. Estimated center of the foot marked with a 
cross. 
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square is small compared to that when the subject is not 
standing on it. Therefore, an alternate method is to take a long-
term average of all capacitance readings taken whilst the 
system is in use and employ this long-term average as the 
baseline.   

In terms of image processing, the measured capacitance 
values form a very low-resolution image. Interpolation is 
applied to improve its quality. Several interpolation 
algorithms were tried.  Cubic interpolation showed the best 
performance while enhancing 2 × 2 images to 7 × 7 
interpolated ones. 

A threshold is then applied to the data such that any 
capacitance values below the threshold are set to become “0” 
while those above the threshold are set to be “1”. Once it is 
done, blob detection through connected component analysis 
[48] is applied whereby all connected squares are considered 
to be a part of the blob or cluster. Each blob corresponding to 
a single footprint can then be represented by a matrix 𝐌 of 2 
× 𝑁 dimension, where 𝑁 is the number of data points in the 
cluster. Each column of the matrix is a vector representing the 
position of a single data point in the cluster.  

The center of the footprint (𝑥̅, 𝑦̅) is estimated by averaging 
the position of each point in the 2 × 𝑁 cluster matrix 𝐌 as: 

𝑥̅ =
∑ 𝑀1,𝑖
𝑁
𝑖=1

𝑁
 

(3) 
𝑦̅ =

∑ 𝑀2,𝑖
𝑁
𝑖=1

𝑁
 

The system was tested with multiple subjects. It detected the 
feet of several subjects concurrently given that they were 
sufficiently spaced apart. Fig. 4 shows two subjects’ feet being 
detected individually. It was observed that feet on adjacent 
squares might be non-detectable as they merged into a larger 
blob. The copper sensing squares are spaced at 120 mm 
intervals thus providing that the feet separation is to be greater 
than around 200 mm to avoid the aliasing. This is because the 
partial occlusion of feet at the very edge of adjacent squares 
does not put them over the threshold. Initial testing, as reported 
in [44], found that the position of the subject’s foot in a static 
situation could be measured accurately. 

When the target is barefoot, the separation between the 
target’s foot and the copper-foil (d of Fig. 1 and Equation 1) is 
the smallest. This results in a larger value of the capacitance 
compared to the case when a subject is wearing a footwear. 
Therefore, CapLoc enjoys the highest SNR when the subject 
is barefoot which is quite common in a home setting. The 
impact of footwear type on foot detection accuracy was thus 
investigated. It was found that the type of footwear had quite 
a minimal effect. Figure 5 demonstrates the cases where a 
subject stands on the floor wearing socks and a pair sneakers 
with thick soles. Whilst one can see the image for the foot in 
the sneaker is slightly smaller (due to it being further from the 
sensing squares), it is still detectable with its position being 
relatively unaffected.  

III. FOOTSTEP LOCALIZATION 
A test floor was set up using eight sensing panels to create 1.2 
m × 2.4 m area. Data from the system were sampled at 10 Hz 
making it possible to track a person moving around the floor. 
Firstly, individual footprints were detected, and the center of 
each footprint was stored. The footprint centers were then 
clustered in time and space to determine if they come from the 
same footstep. The path of the subject was then estimated by 
taking the midpoints of the successive footsteps. Figure 6 
shows the detected footprints from a subject walking on 
CapLoc (in 0.6 m × 4.8 m configuration). 

Implementation of an accurate ground truth system to 
compare the estimated path with the actual one is a challenging 
task. Several approaches were reported in the literature. While 
motion capture can provide an extremely accurate ground 
truth [14], it is not cost-effective. The use of the Xbox Kinect 
was reported in the study [40]. A custom-designed solution 
was reported in [31] whereby a hat on the subject’s head was 
connected via wires to pulleys with attached encoders.  

In this work, the HTC Vive [45] was used as a ground truth 
system due to its low cost, availability, and sufficient 

 
(a) Layout diagram of experimental setup 

 
(b) Photo of experimental setup 

FIGURE 7.  Layout of the floor and Vive calibration points. 
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accuracy. It uses two base stations (called Lighthouses) to 
track a small device called Tracker.   

In pre-experimental testing, the accuracy of the system was 
evaluated using an x-y CNC plotter with max deviation of 
0.025 mm. Vive was found to be accurate within 10 mm. The 
positions reported by the Vive are relative to the primary 
lighthouse. To reconcile this coordinate system to that of the 
floor, a calibration process needs to be undertaken. This also 
means that positions of the lighthouses do not need to be 
carefully measured thus eliminating a potential source of error.  

First, the ground truth system was calibrated using nine 
points around the edge of the floor (Fig. 7). The calibration 
points were used to align the Vive’s reference plane with the 
floor as well as to align point CAL1 with the origin of the 

floor. The calibration points were used to generate a 
transformation matrix (𝐑) that was then applied to all positions 
measured using the Vive.  

𝒙′ = 𝐑𝒙, (4) 
Where [49] 

𝐑 = 𝐓𝐯 ∙ 𝐑𝐳 ∙ 𝐑𝐲 ∙ 𝐑𝐱 (5) 
and 

𝐓𝐯 = [

1 0 0 −𝐶𝐴𝐿1𝑥
0 1 0 −𝐶𝐴𝐿1𝑦
0 0 1 −𝐶𝐴𝐿1𝑧
0 0 0 1

] (6) 

 

𝐑𝐳(𝛾) = [

cos 𝛾 −sin 𝛾 0 0
sin 𝛾 cos 𝛾 0 0
0 0 1 0
0 0 0 1

] (7) 

 

𝐑𝐲(𝛽) = [

cos𝛽 0 sin 𝛽 0
0 1 0 0

− sin 𝛽 0 cos𝛽 0
0 0 0 1

] (8) 

 

𝐑𝐱(𝛼) = [

1 0 0 0
0 cos 𝛼 − sin 𝛼 0
0 sin 𝛼 cos 𝛼 0
0 0 0 1

] (9) 

Here 𝒙 is a position from the Vive to be transformed, and 𝒙′ is 
the transformed position relative to the floor. The values 𝛼, 𝛽, 

 
FIGURE 8.  The process of aligning the Vive’s calibration points with the floor. The orange crosses represent the calibration points in the Vive’s frame 
of reference, the blue circles in the floor’s frame of reference. (a): Translating the points so that the origins are aligned.  (b): Rotating about the Z axis; 
(c): Rotating about the Y axis; (d): rotating about the X axis; (e): the final outcome with the two sets of points aligned. Note that, the angles (especially 
α and β) have been exaggerated for clarity. In reality, the translation and the rotation γ were usually enough for the ICP algorithm to align the points 
correctly. 

 
FIGURE 9.  The Vive tracker affixed atop a subject’s head. 
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and 𝛾 are the pitch, yaw, and roll between the Vive’s reference 
plane and the floor. Figure 8 illustrates the aforementioned 
process.  

It was then further refined by employing the Iterative 
Closest Point (ICP) algorithm [50] to generate a 

transformation matrix aiming to minimize the Euclidean error 
between the measured and actual positions of all nine 
calibration points. The combination of the two transformations 
was then used to transform the position data from the Vive. 

Literature reports [51-53] suggest that tracking could be lost 
when a line of sight is absent between the lighthouses or 
between the tracker and the lighthouses. The tracker was 
therefore attached to the top of the subject’s head (Fig. 9) to 
maintain a constant line of sight with the two lighthouses that 
were mounted at approximately 2 m above the ground, one on 
each side of the testbed. 

Thirty-nine different paths, split between three subjects - 
two males (subjects 1 and 2) and one female (subject 3), were 
walked across CapLoc with the ground truth of the subject’s 
head being recorded by the Vive. Fig. 10 shows the footsteps 
estimated by CapLoc and the position of the subject’s head 
tracked by the Vive for 12 of the total 39 paths. It can be seen 
that the footsteps very closely match the ground truth. 
Localization errors were computed by considering the position 

 
FIGURE 10.  Twelve paths walked by Subject 1 on CapLoc: crosses represent the estimated foot positions and the lines show the ground truth (Vive 
tracker). 

 
FIGURE 11.  ECDF of localization error for 219 footsteps across 39 
different paths. The median error was found to be 0.026 m and the 90 
percentile error 0.066 m. 
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of the subject to be the midpoints between the successive 
footprints and then comparing them to the relevant points of 
the Vive’s reported path. Empirical Cumulative Distribution 
Function (ECDF) for the 219 footsteps corresponding to all 39 
trajectories is shown in Fig. 11.  

Both U-shaped and diagonal trajectories were walked by all 
three subjects, due to those being easily repeatable paths. That 

was done to verify that the floor was able to locate different 
subjects without the need for calibration in between. Figure 12 
shows two paths for each subject. Table 3 shows the median 
and 90 percentile errors for each of the subjects.  

Five of the paths were walked by subject 1 in a pair of 
sneakers having a thick sole. Other than that, the three subjects 
had similar footwear, considerably thinner than the sneaker. 
The results are shown in Fig. 13 and Table 3. For subject 1, 
the median and 90 percentile errors are slightly worse for the 
thick-soled footwear as the measured capacitance was lower 
(due to higher separation from copper-foil plates, please see 
Section II for more details), and therefore it was more affected 
by noise. 

The results support the assertion that the floor can be used 
for human tracking without any foreknowledge of the subject 
or environment. The only requirement being that the floor 
must be vacant for several seconds after the initial powering 
on to measure the background capacitance. 

Potentially, the error could be further reduced by employing 
a more sophisticated path estimation algorithm. Also, accurate 
tracking is complicated by the impossibility to define the 
subject (person) as a single point object. The top of the head is 
approximately in the center of the subject when viewed from 
a top-down perspective. However, when people walk, they 
tend to sway from side to side.  This was noticed to be even 
more prevalent when a subject walked along pre-marked 
paths. Besides, the amount of the head movements is normally 
somewhat higher than that of the center of mass of the body, 
thus causing additional errors. This can be seen in the paths 
and error statistics for Subject 2, which are worse than those 
for the other two subjects. The U-shaped path in particular 
shows this subjects’ propensity to move their heads as they 
walk. The head movements resulting from the subject’s 
walking pattern may have as much or even more effect 

 
FIGURE 13.  Paths walked in thin (1) and thick-soled footwear (2). 

TABLE 3.  Comparison of path tracking error for different subjects. 
 Median (m) 90 Percentile (m) 

Subject 1 0.025 0.056 
Subject 2 0.039 0.097 
Subject 3 0.026 0.069 
Subject 1 - thick shoes 0.031 0.082 

 

 
FIGURE 12.  Paths walked by different subjects without the need for calibration in between. 
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compared to the thickness of the footwear. As can be 
observed, the localization error for subject 2 with thinner 
footwear is higher than that for subject 1 with thick shoes. 

Tables 1 & 2 compare the localization accuracy of CapLoc 
against the state-of-the-art floor-based and other DFL systems. 
As can be seen, the proposed system is more accurate than 
other systems reported in the literature. CapLoc’s accuracy is 
likely to be even higher than that which is being reported if the 
ground truth of the foot could be more reliably established. 
The problem with placing the tracker on the foot is that it can 
lose line of sight with the light houses. In such a scenario, the 
ground truth recording system loses calibration (as discussed 
earlier), reporting incorrect positions. Therefore, a practical 
compromise was made. It should be noted that, if a person is 
not in contact with the floor, they are not visible to CapLoc. 
However, in a real-life setting, people can only enter and exit 
a room at defined points. They can be tracked around the room 
and if they remove themselves from contact with the floor (e.g. 
by sitting on a chair) they can be assumed to be in that location 
until they are seen again (i.e. they stand up from the chair). 

IV. POSES CAPTURED BY CAPLOC FOR FALL 
DETECTION 
Fall is a major health risk for the elderly, negatively affecting 
their health and quality of lives. It poses also significant 
burden on the healthcare and elderly-care institutions. For 
someone living alone, timely and accurate fall detection is 
needed to initiate swift medical assistance.  

Personal Alarm System (PAS) can be worn by an elderly 
person. In case of any problems (e.g., a fall), it enables the 
alarm activation by just pressing a button. Unfortunately, if the 
victim loses consciousness or is in a confused or panicked 
state, the button may not be pressed [54]. 

Wearable sensors, utilizing primarily accelerometers (e.g., 
presented in [55]) have been proposed for automated fall 
detection. However, they rely on the subject to wear a sensor 
at all times. Such a wearable device can be forgotten or 
misplaced or get damaged. It also requires charging or battery 
replacement that again can be missed. There may also be a 
reluctance from a person to wear the sensor. Smartphone-
based fall detectors (e.g., discussed in [56]) are also associated 
with similar issues. Camera- [57] and sound- [58] based fall 
detection approaches are perceived to be invasive to privacy. 
Wireless- [59] and IR- [60] based systems rely on anomalous 
activity detection. They utilize the signatures for a fall that are 
not immediately obvious to the naked eye [61]. Large amounts 
of data are generally required to train a model to detect falls. 
However, the falls are rare events. Besides, it is very difficult 
to simulate them with human participants. All of this makes it 
hard to collect enough data to train a robust classifier for fall 
detection [62]. 

When using CapLoc, a simple and more naive algorithm 
potentially could be used for fall detection. For example, a 
sudden increase in the area of contact with the floor could 
suggest that a person has gone from a standing to a prone 
position. By combining it with pose capture and temporal 

 
FIGURE 14.  A subject in a variety of poses upon the floor. 
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changes in the pose, it could be possible to detect an event such 
as a fall. Rather than trying to detect a rare, anomalous event, 
CapLoc can support a fall detection approach identifying the 
immediate aftermath of the fall, i.e., the subject lying on the 
floor. 

A. LYING SUBJECT POSE CAPTURE  
An investigation was undertaken to determine if different 

poses can be observed by using CapLoc. A subject laid on the 
floor in eight different poses, with the system output being 
recorded. The following poses were tried (Fig. 14): A – the 
subject was lying face up with the arms by the sides and legs 
flat; B – the subject was in the same pose except with the knees 
were in the air and the feet whilst still on the floor wre close to 
the body; C – the subject was lying face down with arms by 
the sides; D – the subject was lying face down with arms 
stretched above the head; E – the subject was sitting upright 
with the legs outstretched in front; F – the subject was 
kneeling; G – the subject was crawling on the hands and knees; 
H – the subject was lying in the fetal position. It can be seen 
that the poses were captured reasonably distinctively by the 
CapLoc.  

This suggests that once sufficient data are available, not 
only fall detection but also fall pose recognition could be 
achieved while employing relevant classification models (e.g. 
applying histogram distances [63]). 

B. POSE AREA ESTIMATION 
Parts of the foot detection algorithm can also be used to 

estimate the contact area of a subject with the floor. Each 
individual capacitance reading (represented as a single pixel) 
is subject to background subtraction, cubic interpolation, and, 
finally, binary thresholding as discussed before. Each pixel 
then represents an area of the floor defined by the size of each 
copper-foil sensor and the interpolation factor. The number of 
pixels above the threshold then approximates the area of the 
contact. 

Each of the poses in Fig. 14 had their areas estimated by the 
system to demonstrate the CapLoc potential for fall detection. 
It can be seen from Table 4 that the poses of the lying on the 
floor have much larger contact areas compared to a footprint, 
thus supporting the suggestion that the floor contact area could 
potentially be used for fall detection.  

Certain poses (e.g., G) could be confused for multiple sets 
of footprints. However, if fall detection is combined with 
occupancy tracking, it could distinguish the fall from the case 
of three people standing near each other. People only enter and 
exit the room at defined points and hence they can be tracked 
around the room with reasonable accuracy. Therefore, if there 
is only one person in a room (or in a certain area of it), and an 
image of a potentially dangerous pose arrives, the system 
would be able to trigger the fall alarm. A body on the floor will 
have a significantly larger estimated contact area than a 
footprint regardless of the size of the body. An abrupt increase 
in area suggests that a fall may have occurred. Therefore, the 

difference in body size should not impact the fall detection 
performance. Also, with large amount of data collected for 
people of varying body size, sophisticated image recognition 
techniques (e.g. a deep neural network classifier [64]) could 
be used in the future to recognize a fall event rather than just 
using the contact area. 

V. CONCLUSIONS AND FUTURE WORK 
The developed capacitive floor, CapLoc, can identify the 
position of a subject’s feet and track a single individual while 
walking upon it. The median and 90 percentile error of 
CapLoc for a wide-range of trajectories were found to be 0.026 
m and 0.066 m. The sample rate used by the prototype 
hardware was at 10 Hz per individual copper square. A new 
version of the hardwar e is currently undergoing development. 
It will offer higher sensitivity and a much-improved sample 
rate whilst still being compatible with the current flooring tiles 
as well as signal and data processing techniques. Further work 
will also help to reduce the stray capacitance by potentially 
using shielded cabling and to improve the background 
capacitance measurement. 

The localization experiments were performed with a single 
person on the floor. However, it was demonstrated that the 
system was capable of detecting multiple targets 
simultaneously. For ambient signal based DFL techniques 
(e.g. wireless or IR), each subject adds interference and lowers 
the SNR leading to poor performance. In contrast, subjects on 
CapLoc that are spatially separated do not interfere with each 
other. Therefore, by dividing the floor into sperate smaller 
areas, it is possible to track targets within those spaces using 
the algorithm outlined in this paper. It can be further improved 
by incorporating a particle filter or some similar techniques. 
However, tracking multiple targets in a crossover scenario, 
where targets come together and then diverge, will require user 
identification. It was found that CapLoc systematically 
overestimates the foot area. However, such overestimation 
occurs uniformly around the foot perimeters. As such, it did 
not affect the position of the center of the foot. Unfortunately, 
the overestimation phenomena means that it would not be 
achievable at this stage to accurately identify individuals based 
on their estimated footprint area. However, it is possible to 
discern the different phases of a subject’s footstep on CapLoc 
from the initial heel strike, through the midstance to the toe-
off. During this sequence of events, the center of contact of the 
foot moves from the heel to the toe. With the improved 
hardware, in combination with other features (e.g., stride 

TABLE 4.  Comparison of the area of different poses. 
Pose Area (m2) 

A – lying on back 0.64 
B – lying on back with knees up 0.54 
C – lying on front, hands by side 0.64 
D – lying on front, hands above head 0.59 
E – Sitting with legs outstretched 0.28 
F – Kneeling 0.16 
G – Crawling on hands and knees 0.19 
H – lying in fetal position 0.58 
Single foot area 0.05 
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length and foot angle) future work will also explore the 
identification of individuals using their gait patterns. In order 
to achieve this, significant data needs to be collected to train a 
machine learning algorithm [65]. 

Only flat footwear was employed during the experimental 
investigations while showing good results. Future 
investigations will also include performance evaluation of the 
proposed technique on a variety of footwear types (e.g., 
footwear with raised heels). 

Finally, poses of a subject lying on the floor subject can be 
clearly captured for a variety of positions. Therefore, the 
proposed technique has the potential to be applied to develop 
an accurate yet noninvasive fall detection system. Future work 
will involve collecting sufficient pose data from multiple 
subjects of varying body size. These data can then be used to 
train a classifier to detect poses and subsequently identify the 
fall occurrence. 
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ABSTRACT The development of an accurate passive localization system utilizing thermopile sensing and 
artificial intelligence is discussed in this paper. Several machine learning techniques are explored to create 
robust angular and radius coordinate models for a localization target with respect to thermopile sensors. These 
models are leveraged to develop a reconfigurable passive localization system that can use a varying number 
of thermopiles without the need for retraining. The proposed robust system achieves high localization 
accuracy (with the median error between 0.13 m and 0.2 m) while being trained using a single human subject 
and tested against multiple other subjects. It is shown that the proposed system does not experience any 
significant performance deterioration when localizing a subject at different ambient temperatures or with 
different configurations of the thermopile sensors placement. 

INDEX TERMS Device-free localization (DFL), human sensing, indoor positioning system (IPS), infrared 
sensing, machine learning, passive localization, thermopile.  

I. INTRODUCTION 
Smart cities [1] and smart homes [2] are radically changing 
how we live by offering, among other things, location based 
services [3] and ambient assisted living [4] requiring reliable 
positioning systems. Two recent decades have seen intensive 
research activities associated with the development of Indoor 
Positioning System (IPS) solutions [5].   

IPS can be of active and passive types. Active or device-
based solutions use a network of static nodes (often termed as 
anchors) to localize a transceiver carried by a human target. 
Given the immense popularity of mobile phones, many 
solutions propose to locate individuals by tracking their 
phones. These techniques leverage the large number of 
onboard sensors (e.g. camera, Inertial Measurement Unit 
(IMU), light-sensors) and communication capabilities 
(cellular, Wi-Fi, Bluetooth) of the phones [6]. The passive or 
Device-Free Localization (DFL) systems [7] do not require the 
tracked entity to carry a transceiver. Passive positioning can 
be achieved by using regular camera vision techniques. 
However, there is a privacy issue that has to be considered 
here: people are normally quite reluctant to have such imaging 

devices, particularly in private areas of their residences. 
Camera-based techniques are also impacted by the 
illumination conditions.  

Various alternative sensing techniques, based on the use of 
the Radio Frequency (RF) Received Signal Strength Indicator 
[8], Wi-Fi Channel State Information [9], visible light [10, 11], 
and electric field [12, 13] were proposed for DFL. 
Localization using pressure-sensitive [14] and capacitive [15] 
floors were also investigated. There were reports on 
techniques that applied single-pixel cameras [16], ultrasonic 
[17], and acoustic [18] sensing. Footstep induced vibrations 
captured by seismic sensors were also proposed for the 
localization [19]. Whilst considerable progress has been 
achieved in the DFL-associated research, the area is still of 
significant and on-going interest amongst researchers aiming 
to improve existing techniques and develop new solutions. 

Human subjects can be detected from their Infrared (IR) 
emission. In most indoor surroundings, a person having a 
higher temperature than the environment can be distinguished 
from the background. Two popular devices used for IR 
localization are Passive IR (PIR) and Thermopile sensors. PIR 
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sensors are commonly used as motion detectors in security 
systems. However, PIR-based techniques require a relatively 
large number of sensors. They may also need significant 
sensor modifications (e.g., [20]), making commercial off-the-
shelf motion sensors unusable. Besides, they are inherently 
incapable of localizing a stationary target as PIR sensors 
require relative motion between them and the target. Rotating 
sensors [21] or shutters [22] could overcome that issue. 
Regrettably, such sensors are more complex, expensive and 
are characterized by increased power consumption. 

A. LOCALIZATION USING THERMOPILE SENSORS 
Low-resolution thermopile sensors (e.g., AMG8833 Grid-
EYE1) are effectively thermal cameras that can detect both 
stationary and moving targets. At the same time, due to their 
lower image resolution, such sensors do not compromise the 
privacy of subjects. Figures 1(a) and 1(b) illustrate the 
difference between an image acquired from a standard camera 
and a typical output of a thermopile sensor, taken at its 
maximum 8×8 pixel resolution. As well as being privacy-
preserving, thermopiles are invariant to changes in 
illumination.  

Shetty et al. proposed tracking a subject using the 
foreground regions from the thermopile images [23]. 
Unfortunately, the authors did not report any accuracy values. 
Using a similar method, Kuki et al. were able to obtain an 
accuracy ranging between 0.15 m and 0.35 m (depending upon 
the activity) in a 2.56 m2 area using a 4×4 pixel sensor [24]. 
The same authors then extended their work to achieve multi-
person detection [25]. Qu et al. performed multi-target 
localization using a ceiling-mounted sensor [26]. They were 
able to distinguish between subjects even for crossover events. 
They also investigated the sensor lens distortion and 
performed distortion correction. Ng et al. were able to locate 
subjects with an accuracy of approximately 0.5 m in a 12.5 m2 
area using five sensors [27]. Kowalski et al. [28] were able to 
localize a subject to a 0.5 m grid square with a 73% probability 
in a 3.75 m2 area. Whilst the accuracy of that setup was lower 
than results in some other reported works, the authors 
extended their sensors to have a 180-degree Field-of-View 
(FOV) by collocating three GridEye sensors directed 60 
degrees from each other whilst also covering a much larger 
area. Tariq et al. used a low-resolution 16-pixel thermopile 
sensor with a variety of neural networks to achieve 0.096 m 
Root Mean Squared Error (RMSE) in a 9 m2 space [29]. 
Narayana et al. [30] were able to locate a subject with a median 
0.22 m accuracy within a 72 m2 area using a higher resolution 
32×24-pixel sensor. It should be noted that their proposed 
system required an additional calibrated PIR sensor for depth 
estimation. 

Singh et al. [31] compared the application of various 
Machine Learning (ML) classifiers for the detection and 

 
1https://na.industrial.panasonic.com/products/sensors/sensors-automotive-
industrial-applications/lineup/grid-eye-infrared-array-sensor  

activity recognition of multiple human subjects using 
thermopile sensors. Similarly, Tateno et al. [32] and Tao et al. 
[33] used deep learning networks for fall detection and activity 
recognition respectively by utilizing ceiling-mounted sensors. 
Gochoo et al. [34]  used a deep learning network to classify 26 
separate yoga poses. 

B. KEY CONCEPT AND CONTRIBUTION 
The model-based localization techniques proposed in the 
literature (e.g., [23], [27]) appear to be unable to accurately 
capture the complex relationship between IR data and the 
relative position of the target with respect to the sensors. The 
reported ML techniques (e.g., [28], [29]) largely adopt the 
fingerprinting approach. They employ a single dataset, 
collected with one test subject, that is split for training, 
validation and testing. Therefore, it is difficult to ascertain 
whether these systems generalize well to different 
environments or subjects.  

This paper proposes a new approach for target (i.e., a human 
subject) localization based on training models of thermopile 
sensors with the application of ML techniques. These models 
provide accurate estimation of an Angular Coordinate (AC) 
and Radius Coordinate (RC) of the target with respect to the 
center of the sensor, which are the direction and range to the 
target. Therefore, in the proposed approach, the subject can be 
localized by using just a single sensor (Fig. 2(a)).  If the subject 
is in FOV of at least two sensors of known positions, two ACs 
can be estimated and used for positioning in a manner that is 
similar to the Angle of Arrival (AoA) [35] method (Fig. 2(b)). 
Similarly, if there are three or more sensors, one can use the 
lateration technique [35] to find the target position, using the 
distances between the subject and the sensors (Fig. 2(c)). 

In the proposed approach, the sensor models for AC and RC 
need to be trained just once for one sensor. They can be then 
transferred to other sensors without measurable compromise 

 
FIGURE 1. The sensor data pre-processing and parametric model 
process used to find the angle of the subject. Photo (a) shows a standard 
smartphone camera image of the subject taken simultaneously from the 
same position as that obtained by the thermopile sensor. Plot (b) shows 
the raw input from the sensor. The remaining plots illustrate (c) the 
Gaussian denoising application, (d) SVD background removal and data 
normalization, (e) interpolation, and (f) thresholding and averaging of 
pixel positions above the threshold to find the center of the largest blob. 
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in terms of localization accuracy. This leads to a robust and 
reconfigurable indoor positioning system that does not need to 
be retrained when deployed outside the training environment. 
The performance of the proposed system was tested with 
several different subjects. Each subject walked arbitrary paths 
for several minutes. The system was able to localize a subject, 
which it was not trained upon, with a median error of less than 
0.2 m. The results show that the proposed approach is largely 
invariant to the subjects, system configuration, and 
deployment environments.  

The remainder of the paper is structured as follows. Section 
II discusses data acquisition, ground truth estimation, and data 
preprocessing methods. Section III discusses the training, 
tuning, and evaluation of the various ML models used for the 

 
2https://www.st.com/content/st_com/en/products/microcontrollers-
microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-mainstream-
mcus/stm32f1-series/stm32f103/stm32f103cb.html 

estimation of the angular and radius coordinates of a subject. 
Section IV demonstrates how these models can be used for 
positioning, and it also investigates the positioning 
performance of the system. Section V concludes the paper and 
discusses the limitations and future work to address these. 

 
II. SYSTEM DEVELOPMENT 
A. DATA ACQUISITION 
The thermopile sensor used in this work is the Grid-EYE 
AMG8833. An interface to connect the AMG8833 to a 
computer was designed and constructed. It uses the 
STM32f1032 microcontroller and a USB to serial adapter (Fig. 
3). An arbitrary number of sensors may then be connected to 
a computer via USB cables whilst using a simple script for 

 
 
FIGURE 2. Three methods of positioning a subject where the sensor positions and orientations are known a priori. Diagram (a) shows the positioning 
using a combination of a single AC and RC/range. Diagram (b) shows the angulation using a minimum of two ACs. Diagram (c) shows the lateration 
using a minimum of three ranges. 
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logging incoming sensor data, a corresponding device ID, and 
the timestamp of the data to a text file.  

Several different datasets were recorded. Firstly, a 1.8 m tall 
male subject walked around a test area for approximately one 
hour. Two sensors were affixed to the walls at a height of 1.4 
m (chosen to be above the height of most furniture) as seen in 
Fig. 4(a). The ambient temperature was measured to be at 24 
°C. This dataset is henceforth referred to as Dataset 1. The 
second dataset (Dataset 2) was taken at a later date in the same 
test area, using five different subjects, henceforth known as 
Subjects 1-5. The subjects were between 1.65 and 1.85 m tall 
(one female and four males). Subject 1 was the subject used to 
collect Dataset 1. Each subject (including Subject 1) walked 
around the test area (having the same layout as the one used 
for the Dataset 1 collection) for approximately 5-7 minutes 
each. The ambient temperature was measured to be at 22 °C. 
The third dataset (Dataset 3) was taken at another date, in a 
different room, with a three-sensor setup as seen in Fig. 4(b). 
It only featured Subject 1 walking around the test area for 
approximately 10 minutes. The ambient temperature was at 
26°C. The final dataset (Dataset 4) was also taken in this 
room, on another date, with Subject 1 moving within the test 
area for approximately 7 minutes. The positions of the three 
sensors (see Fig. 4(c)) were different from those chosen for 
Dataset 3. The ambient temperature was again at 22 °C. 

These multiple datasets were taken for specific purposes. 
Dataset 1 was used to train various sensor models discussed 
later in this paper. Datasets 2-4 were employed to investigate 
the generalizability of the proposed approach with respect to 
different environments or configurations and with different 
subjects from whence the system was trained. 

B. GROUND TRUTH ESTIMATION 
Accurate ground truth is very important when designing and 
evaluating a positioning system. In order to train and test a 
robust model, a large amount of labelled data is required. It is 
possible to mark out predefined paths and have a subject 
walking whilst following them at a set pace. However, such an 
arrangement is not ideal as it requires a high level of 
concentration from the subject. Besides, it can potentially 
force the subject into an unnatural gait. Ideally, a ground truth 
system should accurately track subjects as they naturally walk 
within the testing area. For this reason, the HTC Vive3 was 
used as the ground truth tool. In previous works, it was found 
to be accurate to within several mm for extended time periods 
[15, 36]. The “tracking puck” needs to be kept within the line 
of sight of the “lighthouses”. Therefore, the puck was attached 
to the subject’s head, to approximate the subject’s position in 
two dimensions.  

C. DATA PRE-PROCESSING 
Data received from the thermopile sensors should be 
preprocessed to make them resistant to changes in ambient 

 
3 https://developer.vive.com/eu/vive-tracker-for-developer/  

conditions. After that, the data can be used to train or test 
various ML models. 
1) GAUSSIAN DENOISING 
The temperature data produced by the thermopiles are noisy 
and as such, a single pixel fluctuates between frames 
randomly. This could cause the misdetection of subjects. To 
address it, each pixel is taken as a single time-series element 
and a one-dimensional Gaussian kernel is then applied along 
with the time-series data for each pixel (Fig. 1(c)). Each 8×8 
frame is flattened into a single 64×1 vector: 
 

𝒇 = [

𝑝1
𝑝2
⋮

𝑝64

]. (1) 

Such vectors form columns of a matrix:  
 

𝐀 =  [𝒇𝟏 𝒇𝟐 … 𝒇𝑵], (2) 
 
which is a time-series of length 𝑁 samples with each row 
representing a single pixel (𝑝𝑛) with respect to time. Each row 
of 𝐀 is convolved with a 1-dimensional Gaussian kernel 𝐺. 
A kernel with a sigma value of 3 was empirically chosen with 
the following 5 samples defining the function: 
 
𝐺 = [0.1784 0.2104 0.2223 0.2104 0.1784] (3) 
 
2) BACKGROUND REMOVAL 
The background temperature of a room is prone to change over 
time. However, such temperature changes are highly 
correlated between pixels in an empty scene. Moreover, the 
difference between two given background pixels at the same 
point in time appears to stay constant over time. This is 
illustrated in the first panel of Fig. 5. Each vertical slice 
represents a single frame from the thermopile. The first set of 
approximately 1800 samples in the figure corresponds to the 
room with no subject being present for approximately 3 
minutes. The fluctuations in the background with time as the 
room temperature changes can be seen by the vertical strata in 

 
FIGURE 3. The thermopile sensor unit, housing both the thermopile 
module and the microcontroller used to communicate with a computer. 
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the data, whereas the constant offset between pixels can be 
seen in the horizontal stratification. Singular Value 
Decomposition (SVD) was employed for dimension reduction 
(such an approach has been used in computer vision for 
separating the background and foreground in videos [37]). 
SVD factorizes [38] the M × N matrix A (in this case M is 64 
and N is the number of samples in the dataset): 
 

𝐀 = 𝑈𝐋𝑉𝑇. (4) 
 
Here, the columns of U are the left singular vectors and the 
columns of V are the right singular vectors; L contains the 
singular values of A in a diagonal matrix, arranged in 
descending order; and T represents the transpose operation. 
The matrix 𝐀 can be reassembled by multiplying the matrices 
together as given in Equation (4). However, it is possible to 
modify values of L before reassembling, to various effects. 
The singular values effectively represent how strongly each 
singular vector contributes to the matrix. The background data 
are highly correlated across the dataset, both in time and across 
the frame. Therefore, a good representation of the background 
can be found by reassembling the data using only the first 
singular value (the most dominant dimension) and zeroing out 
the others (see the bottom panel of Fig. 5). The foreground can 
therefore be found by doing the opposite – zeroing the first 
singular value and reassembling the matrix, as shown in the 
middle panel of Fig. 5. 
 
3) DATA NORMALIZATION 
After the background subtraction, there is still some variation 
in mean and standard deviation between different datasets. 
Furthermore, it is often advantageous to have input data for 
machine learning ranging between 0 and 1. Both Min-Max 
scaling and standardization were used in different 
circumstances. In a permanent, real-world deployment of the 
system, this would be done using a predetermined number of 
previous samples (e.g., several minutes’ worth). When the 
system is first powered on, it would require an initial self-
calibration period until a sufficient number of samples is 
captured. 

III. SENSOR MODELS 
The authors propose to create transferable sensor models that 
are trained once and then can be used for any sensor of the 
same make (e.g., the GridEye sensors). Locations of the 
sensors could be set arbitrarily. The same model could be used 
for all sensors regardless of their positions in a room without 
any retraining. In essence, the sensors are calibrated to 
produce the angular and/or radius coordinates of a target in 
two dimensions. 

Multiple sensor models were trained and validated on 
Dataset 1, which was the largest one with 32,000 data points 
(frames). It was randomly split into 80-10-10 training-
validation-test segments. The split was the same for each 
trained model (i.e., the same segments of data were used for 
training, validation, and test for each model). Each model 
(including the outlined below parametric model that did not 
require training data) was then tested against the data from five 
subjects taken at a different time (Dataset 2) as well as the test 
split from Dataset 1. This was done to investigate the 
generalizability of the models between subjects. 

A. ANGULAR COORDINATE MODELS 
These models take the temperature data from the sensor (after 
they were preprocessed as outlined in Section II D) as an input. 
They then output the angular coordinates of the subject with 
respect to the sensor. The ground truth angle and distance are 
computed using the subject’s ground truth position and the 
sensor position (see θ1 and d1 respectively in Fig. 2(a)). A 
parametric method was used, as well as several ML methods 
(such as Multi-Layer Perceptron (MLP), random forest, 
Weighted K-Nearest Neighbor (WKNN)) to develop the AC 
models. The advantage of the parametric model is that it does 
not require any prior training. At the same time, the studied 
ML methods require a one-off training of the model that then 
ideally could be generalized to any subject or room. 
 
1) PARAMETRIC MODEL 
The devised parametric model utilizes an approach similar to 
the thermopile positioning [23] and capacitive floor footprints 

 
FIGURE 4. Room layouts for Dataset 1 and Dataset 2 (a), Dataset 3 (b), and Dataset 4 (c). 
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detection reported in [15]. After the temperature data are pre-
processed (as described above in Section II D), it is reshaped 
to an 8×8 frame. Then it undergoes bicubic interpolation to a 
55×55 matrix (see Fig. 1(e)) with each element of the matrix 
being referred to as a single pixel. Binary thresholding is then 
applied to select only the foreground objects. After that, the 
connected component analysis is employed for blob detection. 
If the number of blobs is more than one, the largest of them is 
assumed to be the subject. The center of the blob is found by 
taking the mean x and y positions of all the pixels in the blob. 
Fig. 1(f) illustrates this process. The position of the blob is then 
converted into an angular form: 
 

𝜃 = ( 𝑥
𝐹𝑊

− 0.5) × 𝐹𝑂𝑉. (5) 
 
Here 𝜃 is the AC of the subject with respect to the sensor, 𝑥 is 
the position of the center of the blob pertaining to the frame 
(in pixels), 𝐹𝑊 is the frame width in pixels (55 pixels after the 
interpolation), and 𝐹𝑂𝑉 is the width of the horizontal field of 
view of the sensor (60 degrees for GridEye). A zero value of 
T  indicates that a subject is on a line perpendicular to the 
sensor (i.e., in the middle of the field of view). Negative values 
of T  correspond to the left-hand side while positive - to the 
right-hand side plane. 

2) MULTI-LAYER PERCEPTRON MODEL 
An MLP model was trained with 64×1 input vectors of 

preprocessed temperature data from the sensor while the 
outputs were ACs of the subject with respect to the sensor. The 
input layer of the MLP had 64 perceptions fully connected to 
the first hidden layer. The output layer was a single perceptron, 
fully connected to the final hidden layer. A grid search within 
a wide range of hyperparameters was used to tune the MLP. 
Each candidate model, defined by a unique combination of 
hyperparameters, was trained for 1000 epochs and tested 
against the validation data after each epoch. Early stopping 
was used to avoid overtraining by observing the validation 
RMSE curve over these 1000 epochs. The final models for 
each candidate model were then sorted by validation RMSE. 

It was found that 2 hidden layers of 500 perceptrons with 
ReLU activation [39] on the hidden layers and sigmoid 
activation on the output layer gave the best performance (see 
Table 1). Several other parameter combinations gave similar 
performance results whilst enabling trading of the 
performance (RMSE) for a simpler model if needed. Larger 
models take significantly longer time and more computing 
resources to both train and run. Whilst training is a one-off 
event and can be generalized to multiple environments or 
subjects, running the network has potential processing 
considerations. This is because the models could be run on the 

 

 
FIGURE 5. Plots demonstrating how the thermopile temperature matrix 𝑨 (see Equation 2) is processed to remove background thermal effects. Each 
column is a single flattened frame, 𝒇 from the sensor, with the horizontal axis representing time. The first approximately 1800 samples show an empty 
room, with the rest showing a subject moving around. The top panel is before background removal, the middle panel is after background removal and 
the bottom panel the removed background. 
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sensors themselves as opposed to on a PC. Such sensor-based 
solutions are resource-constrained. Thus, a simpler model is 
preferred as it would run faster and with lower power 
consumption.  
3) RANDOM FOREST MODEL 
A random forest regressor was trained in a manner that was 
similar to the MLP case by searching through a range of 
parameters to find optimal hyperparameters. It was observed 
that limiting the maximum tree depth or maximum leaf nodes 
had very little impact on the accuracy of the models. The best 
model had 500 estimators, a minimum of 2 samples to split a 
leaf node and a minimum of 1 sample per leaf node (see Table 
1). However, the RMSE difference between 100 and 500 
estimators was less than 1%, thus suggesting an opportunity 
for utilizing a simpler regressor.  
4) WEIGHTED K-NEAREST-NEIGHBOR MODEL 
WKNN regressor was optimized for the number of neighbors 
(K) and the distance metrics. It was found that a K-value of 2 
with either Euclidean or Canberra distance metric provided the 
best performance. 

B. PERFORMANCE OF ANGULAR COORDINATE 
MODELS 
The performance of each model for estimating the AC for 
Dataset 2 can be seen in Fig. 6. The parametric model was 
significantly outperformed by the three ML models. Also, 
there were no significant differences between these three 
machine learning models. At the same time, MLP might be 
somewhat preferable over WKNN in cases where a large 
database is needed. The model was processed on a PC with the 
raw data arriving from the device. However, it might be 
preferred in the future to move the model onto the 
microcontroller where storage concerns could preclude the use 
of a large WKNN database. The results showed that while the 
accuracy of the AC estimation was decreased compared to the 
test set split from Dataset 1, it was reasonably subject-
invariant. Subject 1 was used for training the model. The 
obtained results were on par with those for the other four 
subjects (whilst worse than the training set). It suggested that 
the main difference was in the environments (the training set 
was taken on a different day, with the temperature of the room 
being approximately 2°C lower). 

C. RADIUS COORDINATE OR RANGE MODELS 
The range models estimate the distance between the subject 
and the sensor. In a similar manner as for the AC models, a 
flattened 8×8 frame from the sensor was inputted as a 64×1 
vector. The output of the model was the range. The range can 
be taken as the radius coordinate and then it can be combined 
with the angular coordinate to perform single-sensor based 
positioning (Fig. 2(a)). Also, the distances from multiple 
sensors can potentially be used for the lateration (Fig. 2(c)). 
Three regressors (MLP, random forest and WKNN) were 
trained. The hyperparameters are listed in Table 2. 

D. PERFORMANCE OF RANGE MODELS 
The three different range estimation models were compared 
for Dataset 2, i.e., for five subjects (Fig. 7). The MLP 
outperformed the other two models quite significantly. It was 
more robust to variations of the environment and different 
subjects than the other methods. Interestingly, the WKNN and 
random forest methods struggled most with Subject 1 upon 
whose data the models were trained albeit with data collected 
on a different day. 

TABLE 1. Final hyperparameter values selected for each AC model after 
hyperparameter tuning. 
 

Model Hyperparameter Value 

MLP Number of hidden layers 2 
 Hidden layer size 500 
 Hidden layer activation ReLU 
 Output layer activation Sigmoid 
Random Forest Number of estimators 500 
 Minimum sample per leaf node 1 
 Minimum samples to split leaf  2 
WKNN K-value 2 
 Distance metric Euclidean 

 

 

 
FIGURE 6. Median and 95-percentile angular coordinate error for the four 
angular coordinate models. Each model was tested on all five subjects 
(Dataset 2), plus the 10% test split from the training dataset (Dataset 1). 
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IV. POSITIONING METHODS 
Several methods of positioning a subject can now be 
developed using the sensor models proposed in Section III. 
The use of the AC and range with a single sensor or just the 
AC-based model on multiple sensors allows for the ease of 
configuring the system. Sensors can be set up at suitable 
locations in a room. Additional sensors can be incorporated for 
extended coverage or higher accuracy without the need for 
retraining. This provides a significant advantage over the 
multiple sensor fingerprint-based method that relies on the 

sensor number and the geometry remaining consistent. For 
such fingerprint-based methods, retraining would be required 
if sensors are to be spaced at different distances, or additional 
sensors need to be added. 

A. MODEL-BASED POSITIONING  
1) SINGLE-SENSOR BASED POSITIONING USING THE 
AC AND RANGE 
Positioning can be performed using a single sensor using AC 
and range data. Two MLP models are employed for subject 
positioning, with one of them outputting the AC whilst the 
other, the RC  - the distance between the subject and sensor. 
Simple geometry is then used to calculate the position of the 
subject relative to the sensor, see Fig 2(a). It should be noted 
that once the range is estimated from three or more sensors, it 
is possible to perform the lateration-based localization. 
However, the reported research did not pursue that approach 
as it would require extra sensors while preliminary results did 
not show noticeable performance benefits. 
2) MULTIPLE SENSOR BASED POSITIONING USING AC 
This approach uses the positions of multiple sensors and the 
angular coordinates of the subject with regard to the sensors. 
ACs are estimated using the MLP model (outlined in Section 
III A). The position of the subject is found similarly to a 
standard AoA technique. Fig. 2(b) shows an example where 
two sensors are used. If more than two sensors are employed, 
the system is over defined and linear least squared estimation 
can be used [35]. The problem can be formulated as 
 

𝑨𝒙 + 𝒒 = 𝒃 (6) 
where: 

𝑨 = [

sin(T1) −cos(T1)
sin (T2) −cos(T2)

⋮ ⋮
sin (T𝑛) −cos(T𝑛)

] , (7) 

 

𝒃 = [

sin(T1)𝑥1 − cos(T1)𝑦1
sin(T2)𝑥2 − cos(T2)𝑦2

⋮
sin(T𝑛)𝑥𝑛 − cos(T𝑛)𝑦𝑛

] , (8) 

 
and 𝒒 is a measure of the noise. The estimate of 𝒙, the 2x1 
position vector is: 
 

𝑥̂ = (𝑨𝑇𝑨)−1𝑨𝑇𝒃 (9) 

B. FINGERPRINT-BASED POSITIONING  
The proposed model-based positioning techniques were 
benchmarked against fingerprint-based techniques. 
Fingerprinting is commonly used for ML-based positioning as 
reported in the literature. A single-sensor based fingerprint 
positioning used an MLP with its input being a flattened array 
of the pixels from a single sensor. The output presents the x 
and y coordinates of the subject relative to the sensor.  
Training, validation, and testing were done following the 

TABLE 2. Final hyperparameter values selected for each range model 
after hyperparameter tuning. 
 

Model Hyperparameter Value 

MLP Number of hidden layers 3 
 Hidden layer size 500 
 Hidden layer activation ReLU 
 Output layer activation Sigmoid 
Random Forest Number of estimators 100 
 Minimum sample per leaf node 1 
 Minimum samples to split leaf  2 
WKNN K-value 2 
 Distance metric Canberra 

 

 
FIGURE 7. Median and 95-percentile radius coordinate error for the three 
range models. Each model was tested on all five subjects (Dataset 2), 
plus the 10% test split from the training dataset (Dataset 1). 
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process described in Section III A. A dual-sensor fingerprint-
based positioning was also implemented where an MLP was 
trained to take a flattened array of 128 pixels (64 from each 
sensor) to estimate the position of the subject. 

C. POSITIONING RESULTS EVALUATION  
The four different positioning methods were evaluated using 
each of the five subjects (corresponding to Dataset 2). It can 
be seen from Fig. 8 that two-sensor-based positioning 
provided higher accuracy than the single-sensor ones. The 
proposed dual-sensor AC-based positioning was the most 
accurate. However, the field of view of the dual-sensor models 
(being the intersection of the individual FOVs) was smaller 
than the total area (Fig. 4(a)). The single sensor models offered 
a larger coverage, at the cost of lower accuracy.  

One solution could be to use the dual-sensor configuration 
where there is coverage and utilize the single-sensor-based 
solution only where there is coverage by a single sensor. 
Another solution could be to use a higher density of sensors or 
employ sensors with a wider FOV (e.g., [28]).  

In order to make a fair comparison, the single-sensor based 
positioning algorithms were also run a second time whilst 
using only the data that corresponded to the combined FOVs 
of both the sensors in the dual-sensor configuration. While 
there was a modest improvement for the single-sensor 
systems, the dual sensor configurations were still more 
accurate. 

It was observed that there was not much variation in 
position errors between the subjects. As each subject walked 
about randomly, they entered and exited the FOV of the 
sensors. Time intervals between a subject entering and exiting 
sensor FOVs were saved as for individual paths. For each 
subject, that equated to between 25 to 35 paths of varying 
lengths and trajectories. Some examples of paths can be seen 
in Fig 9.  

D. PERFORMANCE IN DIFFERENT CONFIGURATIONS 
A three-sensor system layout (Fig. 4(b)) was implemented to 
carry out the experiment (corresponding to the case of 
Dataset 3 outlined in Section II B). The AC-based position 
evaluations were performed using all combinations of sensor 
pairs (1-2), (2-3), (3-1) as well as for the three-sensors case. 
The AC MLP model used was trained on Dataset 1 that was 
acquired at an earlier date and in a different room. Fig. 10 
and Table 3 show the localization results. When localization 
was carried out with the pairs of sensors, the obtained 
positioning accuracy was similar for all of them (the median 
varied between 0.13 m and 0.14 m; the 95-percentile varied 
between 0.27 m and 0.34 m for each of the three pairs). This 
was on par with what was observed for Dataset 2 even 
though the relative sensors’ positionings were markedly 
different. It clearly demonstrates the robust nature of the AC-
based localization system. As seen in Fig. 11, the positioning 
accuracy could be improved by using the ACs from all three 
sensors. Such flexibility is not readily available with the 

other positioning techniques.  
The performance of the single-sensor based positioning 

methods (AC plus range and fingerprinting) were not 
impacted by changes in the configuration. The accuracy was 
consistently close between Dataset 2 and Dataset 3 while 
less accurate than when employing the multiple-sensor based 
methods with AC estimation. In contrast, the dual sensor 
fingerprinting method experienced significant accuracy 
degradation. Closer inspection revealed that the accuracy of 
the (1-2) pair was nearer to that achieved with Dataset 2 (see 
Fig. 12). The two sensors of the (1-2) pair were placed in a 
relatively similar configuration to those employed for 
acquiring Dataset 2. However, the accuracy levels achieved 
with (2-3) and, especially, (3-1) sensor pairs were 
considerably poorer due to the sensor positions being 
significantly different from the Dataset 2 acquisition case. 

While the AC-based method is shown to be robust and 
flexible, the selection of sensor locations still needs to be 
done judiciously. This is evident from the AC-based 
positioning performance shown in Fig. 13 for Dataset 4. The 
sensor layout is given in Fig 4(c) whilst the dataset details 
are outlined in Section II B. The accuracy for the sensor pair 
(1-2) appears to be similar to what was observed for Dataset 
2 and Dataset 3. However, the accuracy achieved by the 
sensor pairs (1-3) and (2-3) shows significant degradation. In 
all previous cases, the sensors were out of FOV of each other, 

 
 

 
FIGURE 8. Median and 95-percentile position error for the four different 
positioning methods, plus the two single sensor methods being limited 
to the same FOV as the dual sensor models (the intersection of the two 
FOVs). 
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whereas in the configuration under discussion, Sensor 3 was 
within the fields of view of both Sensor 1 and Sensor 2. Thus, 
if a subject stands directly between Sensor 3 and one of the 
other sensors, the two angular coordinates would produce 
near-parallel lines. Therefore, even a small error in the AC 
estimations can cause a very large error in the position 
estimation. This is only a problem when the subject is in the 
FOV of two sensors, the sensors are within the FOV of each 
other, and the subject is directly between them. This can be 
mitigated through continuous tracking (as long as the target 
does not move along the direct path from one sensor to the 
other). However, the sensors could be positioned to ensure 
that such a scenario is unlikely to happen any often. Also, 
since the single-sensor based positioning is not impacted, the 
system can switch to a single sensor operation mode in such 
a scenario.  

V. CONCLUSIONS AND FUTURE WORK 
ML model-based systems showed great promise in performing 
accurate localization using single and multiple thermopile 
sensors. Multiple-sensor based positioning was shown to be 

more accurate than the single-sensor based one. However, the 
single-sensor based positioning offered an important 
advantage of larger area coverage.  

The ML regressors were trained with one human subject 
and tested with other subjects as well as in different 
environments as opposed to only training and testing on the 
same dataset. The model-based techniques generalized well. 

The fingerprinting-based positioning also appeared to be 
able to cope with a change of subjects and environments when 
only a single sensor was used. However, the fingerprinting-
based positioning with multiple sensors was essentially 
limited by the configuration (e.g., the number of sensors and 
their relative positions) that was used for training.   

The most apparent limitation of the proposed system is that 
it is only capable of localizing a single subject. This could be 
addressed in the future by applying a stacked approach. The 
authors were able to train an accurate classifier (over 95%) to 
detect the presence of a subject in a frame. This can be further 
extended to count the number of subjects. Several different 
models can then be trained for a varying number of subjects. 
With multiple sensors, it should be possible to track the 
subjects without losing their identity. In the case of crossover 
events where one subject is occluded by another, it is unlikely 
that subjects are occluded from both sensors. It may also be 

 
FIGURE 9. The paths walked by Subject 1 in Dataset 2. The HTC Vive 
ground truth is shown in blue, along with the estimated positions using 
the dual camera AC-based method in orange. The black squares in the 
top left panel represent the sensor positions (shown only for the first 
panel)  

 
FIGURE 10. Dual sensor AC model positioning accuracy for pairs of 
sensors for Dataset 3. 

TABLE 3. Median and 95-percentile errors for the various positioning 
models used on Dataset 3.  

Model Sensor id Median 
error (m) 

95-Percentile 
error (m) 

Three-sensor AC model 1, 2 & 3 0.11 0.23 
Dual-sensor AC model 1 & 2 0.13 0.27 
 2 & 3 0.14 0.34 
 3 & 1 0.14 0.31 
Dual-sensor fingerprint 1 & 2 0.22 0.41 
 2 & 3 0.35 0.98 
 3 & 1 0.95 2.24 
Single-sensor  1 0.19 0.45 
fingerprint 2 0.17 0.39 
 3 0.16 0.52 
Single-sensor AC/range 1 0.17 0.40 
 2 0.18 0.51 
 3 0.22 0.56 

 
FIGURE 11. Positioning accuracy for the different positioning models on 
Dataset 3. For the dual sensor models, the errors were combined from 
each of the three pairwise combinations. For the single sensor models 
the errors were combined from the three individual sensors. 
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possible to assign a short-term identity to a person based on 
their thermal profile [26] whilst they are within the FOV. The 
impact of changing the heights of the sensors have also not 
been investigated and can be a topic of further studies. 

Thermopile sensors rely on the subject emitting IR, which 
is influenced by the clothes the subject is wearing. For 
example, while wearing a very heavy coat, a subject may not 
be visible to the sensor except at very close proximity. The 
experiments were undertaken in standard office wear that is 
appropriate for the ambient temperature. An exploratory 
investigation was undertaken where Subject 1 wore a thick 
winter jacket. Positioning nearer the sensors appeared to be 
relatively unaffected. However, the performance was 
degraded at further distances as the jacket reduced the 
effective range of the sensor. It should be noted that the 
subject was much warmer than comfortable and would not 
have worn such apparel in a climate-controlled room. This 
would be an interesting area for a future investigation.  

The performance of additional ML techniques (e.g., 
recurrent neural networks) and the impact of 
hyperparameters on ML techniques have been also identified 
for a future study. 

 

ACKNOWLEDGEMENT 
Nathaniel Faulkner and Fakhrul Alam would like to thank 
Sunway University for granting them the Visiting Research 
Fellow (2020) and Adjunct Professor (2021-2022) 
appointments respectively. 

REFERENCES 
[1] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, 

"Internet of things for smart cities," IEEE Internet of Things journal, 
vol. 1, no. 1, pp. 22-32, 2014. 

[2] B. L. R. Stojkoska and K. V. Trivodaliev, "A review of Internet of 
Things for smart home: Challenges and solutions," Journal of Cleaner 
Production, vol. 140, pp. 1454-1464, 2017. 

[3] I. A. Junglas and R. T. Watson, "Location-based services," 
Communications of the ACM, vol. 51, no. 3, pp. 65-69, 2008. 

[4] P. Rashidi and A. Mihailidis, "A survey on ambient-assisted living 
tools for older adults," IEEE journal of biomedical and health 
informatics, vol. 17, no. 3, pp. 579-590, 2012. 

[5] F. Khelifi, A. Bradai, A. Benslimane, P. Rawat, and M. Atri, "A survey 
of localization systems in internet of things," Mobile Networks and 
Applications, vol. 24, no. 3, pp. 761-785, 2019. 

[6] A. Yassin et al., "Recent advances in indoor localization: A survey on 
theoretical approaches and applications," IEEE Communications 
Surveys & Tutorials, vol. 19, no. 2, pp. 1327-1346, 2016. 

[7] F. Alam, N. Faulkner, and B. Parr, "Device Free Localization: A 
Review of Non-RF Techniques for Unobtrusive Indoor Positioning," 
IEEE Iot Journal 2020. 

[8] D. Konings, F. Alam, F. Noble, and E. M. Lai, "Device-free 
localization systems utilizing wireless RSSI: A comparative practical 
investigation," IEEE Sensors Journal, vol. 19, no. 7, pp. 2747-2757, 
2018. 

[9] S. Shi, S. Sigg, L. Chen, and Y. Ji, "Accurate location tracking from 
CSI-based passive device-free probabilistic fingerprinting," IEEE 
Transactions on Vehicular Technology, vol. 67, no. 6, pp. 5217-5230, 
2018. 

[10] N. Faulkner, F. Alam, M. Legg, and S. Demidenko, "Watchers on the 
Wall: Passive Visible Light-Based Positioning and Tracking with 
Embedded Light-Sensors on the Wall," IEEE Transactions on 
Instrumentation and Measurement, 2019. 

[11] D. Konings, N. Faulkner, F. Alam, E. M.-K. Lai, and S. Demidenko, 
"FieldLight: Device-Free Indoor Human Localization Using Passive 
Visible Light Positioning and Artificial Potential Fields," IEEE 
Sensors Journal, vol. 20, no. 2, pp. 1054-1066, 2019. 

[12] A. Ramezani Akhmareh, M. T. Lazarescu, O. Bin Tariq, and L. 
Lavagno, "A tagless indoor localization system based on capacitive 
sensing technology," Sensors, vol. 16, no. 9, p. 1448, 2016. 

[13] X. Tang and S. Mandal, "Indoor occupancy awareness and localization 
using passive electric field sensing," IEEE Transactions on 
Instrumentation and Measurement, vol. 68, no. 11, pp. 4535-4549, 
2019. 

[14] M. Andries, O. Simonin, and F. Charpillet, "Localization of humans, 
objects, and robots interacting on load-sensing floors," IEEE Sensors 
Journal, vol. 16, no. 4, pp. 1026-1037, 2015. 

[15] N. Faulkner, B. Parr, F. Alam, M. Legg, and S. Demidenko, "CapLoc: 
Capacitive Sensing Floor for Device-Free Localization and Fall 
Detection," IEEE Access, vol. 8, pp. 187353-187364, 2020. 

[16]  J. Zhao, N. Frumkin, P. Ishwar, and J. Konrad, "CNN-Based Indoor 
Occupant Localization via Active Scene Illumination," in 2019 IEEE 
International Conference on Image Processing (ICIP), 2019: IEEE, 
pp. 2636-2640.  

[17]  E. A. Wan and A. S. Paul, "A tag-free solution to unobtrusive indoor 
tracking using wall-mounted ultrasonic transducers," in 2010 
International Conference on Indoor Positioning and Indoor 
Navigation, 2010: IEEE, pp. 1-10.  

[18]  Y. Guo and M. Hazas, "Localising speech, footsteps and other sounds 
using resource-constrained devices," in Proceedings of the 10th 
ACM/IEEE International Conference on Information Processing in 
Sensor Networks, 2011: IEEE, pp. 330-341.  

[19] M. Mirshekari, S. Pan, J. Fagert, E. M. Schooler, P. Zhang, and H. Y. 
Noh, "Occupant localization using footstep-induced structural 

 
FIGURE 12. Dual sensor Fingerprint-based positioning accuracy for pairs 
of sensors for Dataset 3. 
 

 
FIGURE 13. Dual sensor AC model positioning accuracy for pairs of 
sensors for Dataset 4. Note the graph has been truncated at 2 m along 
the x axis for clarity due to the very large worse case errors for 1-3 and 
2-3 (8.5 m and 97.5 m respectively). 
 



 

DFL Using Wall-Mounted Thermopiles 49 

vibration," Mechanical Systems and Signal Processing, vol. 112, pp. 
77-97, 2018. 

[20]  S. Narayana, R. V. Prasad, V. S. Rao, T. V. Prabhakar, S. S. Kowshik, 
and M. S. Iyer, "PIR sensors: Characterization and novel localization 
technique," in Proceedings of the 14th international conference on 
information processing in sensor networks, 2015, pp. 142-153.  

[21]  Y. Li, D. Li, Y. Cheng, G. Liu, J. Niu, and L. Su, "A novel human 
tracking and localization system based on pyroelectric infrared 
sensors: demonstration abstract," in Proceedings of the 15th 
international conference on information processing in sensor 
networks, 2016, pp. 1-2.  

[22] L. Wu, Y. Wang, and H. Liu, "Occupancy detection and localization 
by monitoring nonlinear energy flow of a shuttered passive infrared 
sensor," IEEE Sensors Journal, vol. 18, no. 21, pp. 8656-8666, 2018. 

[23]  A. D. Shetty, B. Shubha, and K. Suryanarayana, "Detection and 
tracking of a human using the infrared thermopile array sensor—
“Grid-EYE”," in 2017 International Conference on Intelligent 
Computing, Instrumentation and Control Technologies (ICICICT), 
2017: IEEE, pp. 1490-1495.  

[24]  M. Kuki, H. Nakajima, N. Tsuchiya, and Y. Hata, "Human movement 
trajectory recording for home alone by thermopile array sensor," in 
2012 IEEE International Conference on Systems, Man, and 
Cybernetics (SMC), 2012: IEEE, pp. 2042-2047.  

[25]  M. Kuki, H. Nakajima, N. Tsuchiya, K. Kuramoto, S. Kobashi, and 
Y. Hata, "Mining multi human locations using thermopile array 
sensors," in 2013 IEEE 43rd International Symposium on Multiple-
Valued Logic, 2013: IEEE, pp. 59-64.  

[26] D. Qu, B. Yang, and N. Gu, "Indoor multiple human targets 
localization and tracking using thermopile sensor," Infrared Physics & 
Technology, vol. 97, pp. 349-359, 2019. 

[27]  H. M. Ng, "Human localization and activity detection using 
thermopile sensors," in 2013 ACM/IEEE International Conference on 
Information Processing in Sensor Networks (IPSN), 2013: IEEE, pp. 
337-338.  

[28]  C. Kowalski, K. Blohm, S. Weiss, M. Pfingsthorn, P. Gliesche, and 
A. Hein, "Multi Low-resolution Infrared Sensor Setup for Privacy-
preserving Unobtrusive Indoor Localization," in Proceedings of the 
5th International Conference on Information and Communication 
Technologies for Ageing Well and e-Health - Volume 1: ICT4AWE, 
Heraklion, Crete, Greece, 2019, pp. 183-188.  

[29] O. B. Tariq, M. T. Lazarescu, and L. Lavagno, "Neural Networks for 
Indoor Person Tracking With Infrared Sensors," IEEE Sensors Letters, 
vol. 5, no. 1, pp. 1-4, 2021. 

[30]  S. Narayana et al., "LOCI: Privacy-aware, Device-free, Low-power 
Localization of Multiple Persons using IR Sensors," in 2020 19th 
ACM/IEEE International Conference on Information Processing in 
Sensor Networks (IPSN), 2020: IEEE, pp. 121-132.  

[31] S. Singh and B. Aksanli, "Non-Intrusive Presence Detection and 
Position Tracking for Multiple People Using Low-Resolution Thermal 
Sensors," Journal of Sensor and Actuator Networks, vol. 8, no. 3, p. 
40, 2019. 

[32] S. Tateno, F. Meng, R. Qian, and Y. Hachiya, "Privacy-preserved fall 
detection method with three-dimensional convolutional neural 
network using low-resolution infrared array sensor," Sensors, vol. 20, 
no. 20, p. 5957, 2020. 

[33]  L. Tao, T. Volonakis, B. Tan, Z. Zhang, and Y. Jing, "3D 
convolutional neural network for home monitoring using low 
resolution thermal-sensor array," in 3rd IET International Conference 
on Technologies for Active and Assisted Living (TechAAL 2019), 
London, 2019: IET, pp. 1-6.  

[34] M. Gochoo et al., "Novel IoT-based privacy-preserving yoga posture 
recognition system using low-resolution infrared sensors and deep 
learning," IEEE Internet of Things Journal, vol. 6, no. 4, pp. 7192-
7200, 2019. 

[35] R. Zekavat and R. M. Buehrer, Handbook of position location: Theory, 
practice and advances. John Wiley & Sons, 2011. 

[36] A. H. A. Bakar, T. Glass, H. Y. Tee, F. Alam, and M. Legg, "Accurate 
visible light positioning using multiple photodiode receiver and 
machine learning," IEEE Transactions on Instrumentation and 
Measurement, 2020. 

[37] D. Chetverikov, S. Fazekas, and M. Haindl, "Dynamic texture as 
foreground and background," Machine vision and Applications, vol. 
22, no. 5, pp. 741-750, 2011. 

[38] S. J. Prince, Computer vision: models, learning, and inference. 
Cambridge University Press, 2012. 

[39] A. F. Agarap, "Deep learning using rectified linear units (relu)," arXiv 
preprint arXiv:1803.08375, 2018. 

 
 

NATHANIEL FAULKNER received his B.E. 
(Hons.) from Massey University, New Zealand 
in Electronics & Computer Engineering in 
2016. He is currently pursuing a Ph.D. at the 
same institution.  In 2020 he was also appointed 
as a Visiting Research Fellow at the School of 
Engineering and Technology, Sunway 
University, Malaysia. His research interests 
include indoor positioning, embedded systems 
design, and the Internet of Things. 

 
FAKHRUL ALAM (M’17-SM’19) is an 
Associate Professor at the Department of 
Mechanical & Electrical Engineering, School of 
Food & Advanced Technology, Massey 
University, New Zealand. He has been 
appointed as Adjunct Professor with the School 
of Engineering and Technology of Sunway 
University, Malaysia for 2021-22. He received 
BSc (Hons) in Electrical & Electronic 
Engineering from BUET, Bangladesh, and MS 

and Ph.D. in Electrical Engineering from Virginia Tech, USA. His research 
interest includes indoor localization, 5G & visible light communication, IoT 
& wireless sensor networks. 

 
MATHEW LEGG (M’19) Received his B.Sc, 
M.Sc, and Ph.D. in Physics from the University 
of Auckland, New Zealand. He is currently a 
senior lecturer with the Department of 
Mechanical and Electrical Engineering, School 
of Food and Advanced Technology, Massey 
University. His research relates to the 
development of acoustic/ultrasonic 
measurement systems and techniques for 
acoustic imaging, non-destructive testing, and 

remote sensing. 
 

SERGE DEMIDENKO (M’91-SM’94-F’04) 
is Professor and Dean of the School of 
Engineering and Technology, Sunway 
University, Malaysia. He is also associated with 
the Department of Mechanical & Electrical 
Engineering, School Food and Advanced 
Technology, Massey University, New Zealand. 
He graduated in Computer Engineering from 
the Belarusian State University of Informatics 
and Radio Electronics and received Ph.D. from 
the Institute of Engineering Cybernetics of the 

Belarusian Academy of Sciences. His research interests include electronic 
design and test, signal processing, instrumentation and measurements. He is 
also Fellow of IET and UK Chartered Engineer. 



DFL Using Ceiling-Mounted Thermopiles  50 

CHAPTER 5 – DFL USING CEILING-MOUNTED THERMOPILES 

This chapter is republished in accordance with IEEE’s copyright policy. This chapter is the accepted 

version of the published work, and as such may have stylistic differences from the final published 

article.  

 

© 2022 IEEE. Reprinted, with permission, from N. Faulkner, D. Konings, F. Alam, M. Legg and S. 
Demidenko, "Machine Learning Techniques for Device-Free Localization Using Low-Resolution 
Thermopiles," in IEEE Internet of Things Journal, 2022, doi: 10.1109/JIOT.2022.3161646. 

 

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does 

not endorse any of Massey University’s products or services. Internal or personal use of this material is 

permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or 

promotional purposes or for creating new collective works for resale or redistribution, please go to 

http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain 

a License from RightsLink. If applicable, University Microfilms and/or ProQuest Library, or the 

Archives of Canada may supply single copies of the dissertation. 

  

http://www.ieee.org/publications_standards/publications/rights/rights_link.html


 

DFL Using Ceiling-Mounted Thermopiles  51 

 

  
Abstract—Indoor Device-Free Localization (DFL) has 

many uses including aged care, location-based services, 
ambient assisted living, and fire safety management. In 
recent publications, thermopile sensors (very low-resolution 
infrared cameras) have been shown as being able to localize 
individuals whilst preserving their privacy. This paper 
reports the performance evaluation of a large number of 
supervised machine learning techniques for the localization 
of a target using a ceiling-mounted thermopile. The 
algorithms were trained and validated using a large dataset 
constructed from an individual walking arbitrary paths 
with the accurate ground truth provided by a virtual reality 
system. For robust performance evaluation, the algorithms 
were tested with datasets collected on a different day with 
several other subjects. A 2D Convolutional Neural Network 
exploiting spatial correlation and several Recurrent Neural 
Network structures exploiting temporal correlation among 
the captured data provided the most accurate localization 
performance. Several datasets, constructed from the 
thermopile’s readings for four individual targets, were 
made available online for other researchers to use.  
 

Index Terms—Device-Free Localization (DFL), human sensing, 
Indoor Positioning System (IPS), passive localization, thermopile, 
infrared sensing, machine learning, neural network, supervised 
learning, LSTM, CNN 
 

I. INTRODUCTION 
ASSIVE indoor localization, otherwise known as Device-
Free Localization (DFL) [1] has uses in security, assisted 

living for older adults, consumer habit tracking in commercial 
venues amongst others. There is currently no de facto solution 
for DFL, with it being an active area of research during recent 
years. This is also driven by the rapid emergence of the Internet 
of Things (IoT) [2]. Standard video cameras, coupled with 
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state-of-the-art computer vision advancements [3], could 
provide a large volume of high-quality information streams. 
However, this comes at the cost of significant processing power 
requirements. It is also associated with potential privacy issues, 
especially when employed in a residential setting. Finally, it 
normally requires adequate lighting. Less invasive DFL 
solutions have been widely investigated using a range of 
technologies split between wireless Radio Frequency (RF) and 
non-wireless approaches (please see review articles [4] and [5] 
respectively). DFL solutions typically rely on detecting the 
changes a subject makes to an environment (e.g., shadowing RF 
links, causing vibrations when walking, etc.). It allows the 
subject to be localized without the need to carry any special 
devices. Whilst there are many examples of the relevant 
solutions reported in the literature, there is still no singular 
universally adopted technology for indoor DFL. A robust 
practical solution for indoor DFL is likely to be multi-modal 
(i.e., utilizing multiple technologies).  This will likely include 
fusing RF sensing with other non-wireless technologies.  
Wireless DFL is a mature, well-investigated technique. Non-
wireless approaches have not yet been adequately explored thus 
leading to the need to study thermopile and other non-RF 
localization techniques. 

Human subjects produce Infrared (IR) radiation, as their 
body is normally at a higher temperature than the ambient 
environment. There are two main ways this IR radiation can be 
detected: by using a Passive Infrared (PIR) sensor [6] or by 
employing thermopiles [7]. An advantage of PIR sensors is 
their affordability. However, they are only able to sense a 
temperature change. Therefore, they can detect only moving 
subjects unless significant enhancements are made (e.g., 
rotating sensors by using motors [8] or adding 
electromechanical shutters [9]).  

In contrast to PIR sensors, thermopiles have the advantage of 
being able to acquire absolute temperature values and thus to 
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inherently detect a stationary target. Thermopile sensors, such 
as the commonly used Panasonic AMG8833[10] can detect a 
human target at a distance of up to 7 m in ideal conditions. This 
led to their use in a variety of human sensing applications 
including fall detection [11], pose recognition [12], occupancy 
prediction [13], and DFL. Research works on human target 
localization using thermopiles utilized both wall-mounted [14, 
15] and ceiling-mounted [16-19] sensors. A large proportion of 
the reported works utilized ceiling-mounted sensors. Such an 
arrangement is not adversely impacted by furniture and other 
obstacles present in the environment. It allows the sensor to 
establish a clear line of sight with a target. Due to these 
advantages, the ceiling-mounted sensor configuration is 
employed in this reported research.  

The basic premise for positioning is as follows: the sensor is 
sampled at regular intervals, with the data then being fed 
through a preprocessing pipeline for noise reduction, 
background removal, and normalization. The data itself 
represents the temperature measurements within the coverage 
area of each pixel. Therefore, a human subject is manifested by 
a higher temperature area in the data. The challenge is then to 
map the position of such hotspots within the data frame to the 
real-world position of the target. This is illustrated in Fig. 1. 

Thermopile based localization is accurate compared to other 
localization techniques [20-24] as can be seen in Table I. 
Thermopile based localization can complement the RF 
employing DFL. The RF solution can provide localization 
estimates that work through walls. At the same time, the 
thermopiles can provide more accurate positioning for line-of-
sight targets. A future fused approach utilizing both these two 
technologies would improve the robustness of localization 
systems compared to a solution built on the use of just a single 
one. Another advantage of the thermopile based solution is its 
modular aspect: just a single thermopile is sufficient to 
localize/track a subject within (albeit small) an area. The 
coverage area can be extended by adding additional thermopiles 
as required. With RF-based and many other localization 
techniques, multiple sensors are required for lateration,  
angulation or for creating enough “links” for the target to affect 
regardless of how small the intended coverage area is. 
Considering the coverage of a single thermopile and the 
possibility of scaling up coverage in a modular fashion, the 
thermopile based localization allows for  a sparser sensor 
density compared to other techniques (as highlighted in Table 
I). 

A. Related Works 
Kuki et al. [16] were able to localize a subject to a mean 

accuracy of 0.215 m with a sensor placed 2.73 m above the 
ground. Connected component blobs detection [25] was used to 
find the position of probable human subject in the frame. The 
positions of the centroids of these blobs within the frame were 
then mapped to the position of the subject within the room. Qu 
et al. [17] were able to achieve 0.07 m mean accuracy, with a 
sensor placed at 3.5 m above the ground. In a fashion similar 
[16], the centroids of the connected components were used, 
with a Kalman filter added for tracking/smoothing. 

Unfortunately, the authors did not specify the number of 
samples collected or the time period over which the samples 
were acquired. Gu et al. [18] used a higher resolution sensor (24 
x 32 pixels) to achieve a Root Mean Square Error (RMSE) level 
of 0.05–0.2 m. They tracked the trajectory of connected 
components. Two subjects were used for multi-person 
positioning. However, it was not specified in the report whether 
both subjects were used for the single person position testing. 
Besides, the number of trials and lengths of the movement were 
not given. Tariq et al. [19] had a subject walking about in a 
natural fashion for 30 minutes to collect 9000 data points. These 
data were split into three parts: 60% - for training, 20% - for 
validation, and the remaining 20% - for testing. Four neural 
networks were employed and compared, achieving an RMSE of 
0.096 m. However, the localization accuracy was only 
evaluated on the test split of the initial dataset, and not tested on 
other subjects or using data taken at a later date. Thus, the real-
world performance of the system, likely to suffer degradation, 
was not presented and objectively confirmed. 

Accurate ground truth is vital in the evaluation of a 
positioning system. To quantify the localization error of the 
system, one first needs to have an accurate knowledge of the 
subject’s position before computing the error of the subject’s 
estimated position. A small error in ground truth measurement 
can cause significant inaccuracy in positioning evaluation [26]. 
Walking along a predetermined path is a common method of 
establishing the ground truth [17, 18]. However, this can lead 
to a less natural walking style. It also restricts the coverage of 
the area where a subject can walk. Kuki et al. [16] used a camera 
to record the video of their experiments. The authors then 
manually extracted the ground truth from the video. However, 
such an approach would appear to be time-consuming and could 
lead to manual processing errors. These limitations in ground 
truth recording restrict the ease with which a large dataset can 
be collected, leading to small dataset sizes. Consequently, such 
systems are trained/calibrated and tested on a small set of paths, 
lowering the robustness of the models and the analysis of such 
models. Tariq et al. [19] used a commercial-off-the-shelf 
(COTS) ultrasonic solution for recording ground truth. It 

 
Fig. 1. Top-down view of test area demonstrating the readings from the sensor 
when the subject is at different positions.  
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allowed for the natural movement of subjects and larger 
datasets. However, the dataset was hindered by the limited 
accuracy of the ground truth system (average - 39 mm, maximal 
- 64 mm). The accuracy of the ground truth system employed 
in the research, being of the same order as the results reported, 
made the reported error statistics less robust. Walking along a 
predetermined path, as reported in many articles, can also 
produce unwanted artifacts, especially where the model uses a 
sequence of readings. This is because the model can 
unintentionally learn the pattern of the predetermined path, and 
as such will match a subject to the path very well. It can have 
poor real-world performance unless many paths are tested. 
Ground truth systems allowing subjects to walk about a test area 
in a natural manner while not following any particular path 
would ensure that the model does not learn any specific path 
geometry. 

B. Contribution 
In light of the discussion presented in the previous section, 

the state of the art of thermopile-based localization have the 
following deficiencies: 

1. Inadequate ground truth: walking along a  
predetermined path forces subjects to walk in an 
unnatural manner. In addition to this, there is potential for 
the positioning models to use the geometry of the path as 
a feature, which would not be representative of a real-
world scenario. 

2. Insufficient description of the data collection process: 
the number of participants, the number of samples are not 
always disclosed, making it impossible to perform fair 
benchmarks against existing works. 

3. Lack of robust performance evaluation: using a single 
participant in a single environment with a single dataset 
split for both training and testing. In reality, we have 
found that small changes to the environment lead to 

 
1 https://developer.vive.com/eu/vive-tracker-for-developer/ 

reduced localization accuracy. Using multiple datasets 
for testing helps to evaluate and justify the real-world 
performance of a system.  

4. Lack of data: there is no robust dataset available for 
researchers to train and benchmark against.  

To address the deficiencies, this paper utilizes experimental 
data taken across multiple environments while employing four 
different test subjects. Accurate ground truth is automatically 
recorded by using an HTC Vive Virtual Reality (VR) system1. 
This also allows the subjects to retain natural walking motion 
whilst roaming the test area in an arbitrary manner (i.e., without 
the requirement to follow a small number of predefined 
trajectories). The investigation carried out and reported is, 
therefore, underpinned by a rigorous data collection and 
structured measurement methodology. A wide range of 
supervised Machine Learning (ML) techniques [27] have been 
trained and tested upon the dataset. The novelty and the 
contributions of the work can be summarized as follows. 

1. Devising and offering the first thermopile dataset thus 
addressing the lack of such datasets in the public 
domain. To the best authors’ knowledge, no dataset is 
currently available for thermopile-based localization. 
Datasets are commonly provided as a novel contribution 
as they allow researchers to train and evaluate 
localization algorithms using experimental data without 
developing bespoke hardware and implementing their 
own testbeds. Such datasets also allow fair, “apple-to-
apple” comparison and benchmarking between different 
solutions. The comprehensive dataset, collected with a 
ceiling-mounted thermopile for multiple subjects, on 
three different occasions has been made available for a 
wide research audience. 

2. Presenting one of the first comprehensive studies of 
the performance of Machine Learning algorithms for 

TABLE I: COMPARISON BETWEEN THE PROPOSED THERMOPILE BASED LOCALIZATION AND APPROACHES PRESENTED IN THE 
LITERATURE. 

 
Method  Median Accuracy Coverage Per Sensor  Remarks 
WoW (Visible Light 
Positioning) [20] 

0.12 m  0.72 sqm/sensor (14 sensors 
for 2.8m x 3.6m) 

Requires higher sensor density than in the proposed solution. 

SpringLoc (Wireless 
RSSI) [21] 

~0.6 m 1.25 sqm/sensor (20 Zigbee 
sensors to cover 5m x 5m) 

Requires higher sensor density than in the proposed solution.  

Accuracy is worse than in the proposed solution.  

Shi et al. (Wireless CSI) 
[22] 

~0.6 m  3.1-11.9 sqm/sensor (4 
transmitting and 3 receiving 
nodes for areas from 1.8m x 
12m to 11.6m x 7.2m) 

Accuracy is worse than in the proposed solution. 

Mirshekari et al. 
(Vibration) [23] 

0.38 m  2.2 sqm/sensor (9 geophones 
for 4m x 5m area) 

Requires higher sensor density than in the proposed solution.  

Accuracy is worse than proposed. 

Yang et al. (PIR) [24] 0.21 m (mean) 8.6 sqm/sensor (10 sensors 
for 10m x 7.2m) 

Comparable sensor density to the proposed solution. 

Accuracy is worse than in the proposed solution. 

Proposed solution 0.027 m for the same dataset 

0.16 m for other datasets 

8.3 sqm with just one sensor Coverage can potentially be extended in a modular manner 
by adding more sensors.  
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thermopile localization. The only published work 
investigating the performance of machine learning for 
thermopiles known to the authors is by Tariq et al. [19]. 
That study used a much smaller dataset compared to the 
one developed and employed in the reported research – it 
was collected using a single subject with the walking of 
approximately 30 minutes. Unfortunately, that dataset 
has not been made publicly available. Besides, the 
investigation was somewhat limited to the performance 
of just four neural networks. In contrast, the presented 
work covers a large number of neural networks and other 
supervised ML techniques. The results demonstrate that 
ML approaches capable of leveraging spatial and 
temporal correlation provide the highest accuracy.  

3. Outlining the first thermopile based localization work 
to utilize multiple subjects for performance 
evaluation. To the best knowledge of the authors, this 
article presents the first thermopile localization work to 
include different subjects that were used for training for 
performance evaluation. Additionally, tests were 
performed using both light and heavy apparel. These 
measurements allowed the generalizability of the 
algorithms to be verified and provided insights into issues 
that can occur in real-world scenarios. The presented 
results show that there is a clear performance degradation 
when testing while employing different subjects and 
doing it with prolonged time breaks between the sessions. 
Such effects have not been investigated in the reported 
literature on thermopile based localization and were 
rather sparingly covered within the localization 
discipline. 

The remainder of this paper is structured as follows: Section 
II discusses the system overview and methodology; Section III 
presents the results of the different machine learning methods 
on the datasets; Section IV provides conclusions and 
recommendations for future research. 

II. SYSTEM OVERVIEW 
The system utilizes the 64-pixel Panasonic AMG8833 

infrared array sensor combined with a custom-designed 
interface to a logging computer. The sensor unit is mounted on 
the ceiling (2.5 m above the floor level), facing directly 
downwards. The sensor has an onboard thermistor with a 
resolution of 0.0625 °C. The sensor provides a viewing angle 
of 60° and a Noise Equivalent Temperature Difference (NETD) 
of 0.16 °C. The sensor is sampled at 10 Hz.  

The ground truth is provided by the HTC Vive tracker unit 
attached to the top of the subject’s head. The 2D X,Y ground 
truth is aligned with the participant’s center of mass. The Vive 
ground truth data is collected at 60 Hz. The data are then 
resampled to 10 Hz to match the infrared sensor rate. Glass et 
al. [28]  showed that the HTC Vive can provide high-quality 
ground truth recordings with a precision of 0.65 mm and an 
accuracy of 5 mm. The accuracy and reliability of the Vive 
system were also highlighted in [29]. 
 

2 https://github.com/natfaulk/open-thermopile-dataset 

A. Data Collection 
The test area is a 5 m by 5 m square, where subjects are able 

to roam freely during the data collection. Of this, a 2.88 m by 
2.88 m square is within the sensor’s Field of View (FOV) with 
the sensor being affixed to the ceiling above the center of the 
area (Fig. 2). It should be noted that the detection area can be 
further extended by increasing the deployment height for the 
sensor (e.g., see Qu et al. [17]). Data is collected from the sensor 
as a subject moves around the test area whilst positions of the 
subject are logged from the HTC Vive. The data, once 
preprocessed, can then be used to train and evaluate ML-based 
regression models. The inputs to the model are the processed 
temperature values from each of the 64 pixels of the sensor. The 
output is the estimated X,Y coordinates of the subject within 
the room. The model can be evaluated by comparing the mean-
squared error of the Euclidean distance between the estimated 
position from the model to the actual position measured from 
the HTC Vive. Models can be compared by using error statistics 
such as the median, 95-percentile and RMSE of the position 
errors as well as by using Empirical Cumulative Density 
Function (ECDF) plots of the position errors. This process is 
illustrated in Fig. 3. Multiple error metrics were chosen for 
benchmarking as per recommendations by ISO/IEC 18305 [30], 
EvAAL framework [31], and the standard practices given in the 
literature. A detailed discussion on performance metrics for 
DFL can be found in [32]. 

Six datasets were collected. The first (Dataset 1) was the 
largest. Its aim was to be used as a training set. To collect it, a 
male subject (henceforth referred to as Subject 1) walked 
around the test area for 50 minutes, equating to approximately 
30,000 data points (of which around 20,000 were within the 
sensor’s FOV). The samples associated with positions outside 
the sensors FOV were removed. Then the dataset was split into 
three smaller sets. The first subset (80% of the data) was used 
for training, the second (10%) - for validation, while the final 
(10%) - for testing. The split was done in contiguous time 
blocks, so that relationship between sequential frames of data 
could be leveraged by memory dependent supervised machine 
learning techniques. That also ensured reasonable temporal 
separation among the three subsets.  

To investigate how the trained models perform on different 
days and with different subjects, four additional datasets 
(named Datasets 2-5) were collected approximately two weeks 
later. They were shorter (each of them corresponded to 5-10 
minutes of a subject’s movement). They featured the same 
Subject 1 (Dataset 2), as well as three new subjects: male 
Subject 2 (Dataset 3), male Subject 3 (Dataset 4), and female 
Subject 4 (Dataset 5). By using them as test sets for the models 
trained on Dataset 1, it became possible to evaluate how well 
each trained model generalizes to changes in the environment 
and previously unseen subjects. The final dataset featured 
Subject 1 in a heavy coat was taken on the same afternoon as 
Dataset 1. It is referred to as Dataset 6. The Datasets 1-6 are 
available online2 along with instructions on how to load and use 
them. 
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For each machine learning approach, a Bayesian optimizer 
was used to tune the hyperparameters to attain the best 
performance. The two-dimensional (X,Y) Euclidean error of 
the validation set was used as the Bayesian objective function’s 
minimization target. This was chosen as it maintains separation 
between the train and test sets, while also minimizing the 
chance of overtraining on the training set. An overview of the 
training approach is presented in Fig. 4. Table II shows the final 
hyperparameter values. 

B. Data Preprocessing 
After collecting the datasets, Dataset 1 was preprocessed 

before being used to train the machine learning approaches. 
Data for each of the 64 individual pixels can be taken as an 
independent time series for that pixel. There is a reasonable 

amount of noise from sample to sample. Hence, denoising 
filters were tested – such as median filters of 3-6 sample lengths 
alongside a linear Gaussian filter with several different kernel 
sizes. Through empirical testing, it was found that a four-
sample median filter displayed the best performance. Since this 
filter uses one sample ahead of the current time at each timestep, 
it is non-causal. However, with a 10 Hz sampling rate, this only 
introduces a 0.1 second delay if used in a real-time system with 
live data. This remains realistic for real-time human location 
reporting [33]. Single Value Decomposition (SVD) [34] is used 
to reduce the influence of background noise by zeroing the first 
component of the diagonal matrix before the data are 
reconstructed and normalized between zero and one. Fig. 5 
shows a block diagram of the data preprocessing pipeline (it is 
utilized before using each dataset). A more detailed explanation 
of this process can be found in the earlier work [15]. 

C. Tested Supervised Learning Techniques 
Machine learning techniques have been used for various 

localization works for over a decade [35] with the success 
across multiple technologies including Wi-Fi RSS [36], Wi-Fi 
CSI [37, 38], Bluetooth RSS [39], and visible light RSS [40]. 
There are many supervised learning techniques, and the ones 
chosen were broadly divided into three main groups: classical 
regression, ensemble learning, and neural networks. The 
classical regression category included: Linear, Ridge (linear 
with L2 penalty), Lasso (linear with L1 penalty), Elastic Net 
(linear with L1 + L2 penalty), Support Vector Regression 
(SVR), and K-Nearest Neighbors (KNN) [41]. In the ensemble 
learning category, the following techniques were investigated: 
Random Forest, Bagged Ensemble, and Boosted Ensemble 
[42]. Finally, the Neural Network category included the 
Multilayer Perceptron (MLP), three implementations of 
Convolutional Neural Network (CNN), and several Recurrent 
Neural Network (RNN) structures, e.g., Long Short Term 
Memory (LSTM), Bidirectional LSTM (BLSTM), and Gated 
Recurrent Unit (GRU) [43]. A cascade structure of a CNN 

 
Fig. 2. Room layout, showing the subject with the HTC Vive tracking puck 
upon their head. Also demonstrated is the thermopile sensor’s field of view 
within the larger test area. 

 
Fig. 3. System overview: Thermopile and ground truth data are captured for 
training the ML models and evaluating the localization error. The models are 
trained to infer the (x,y) location of the target. The Euclidean error between the 
inferred location and ground truth is used as the localization error during 
evaluation. The mean-squared Euclidean error between the inferred location 
and ground truth is used for model hyperparameter tuning. 

 
Fig. 4. Datasets and hyperparameter tuning. 
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followed by an LSTM, CNN-LSTM, was also considered. The 
structures of the neural networks are shown in Fig. 6 -13. 

D. Neural Network Models 
All the neural networks used an output structure consisting 

of two fully connected neurons, followed by a regression layer 
computing the mean-squared-error loss. The 2D-CNN follows 
a standard structure. It convolves across the 8 pixels by 8 pixels 
input image while extracting spatial features. The 1D- and 3D-
CNN convolve across time by taking a 1 second (10 samples) 
consecutive input and predicting the location corresponding to 
the 5th sample. The 3D-CNN can obtain both spatial and 
temporal features (as it convolves over both the 8 pixels by 8 
pixels input frames and consecutive samples in time). In 
contrast to its 2D counterpart, the 1D-CNN only obtains 

temporal features. It treats each pixel separately and is 
convolving over 10 samples. This means that technically the 
1D- and 3D-CNN are non-causal as they use future information. 
However, in practice, it is realized as a 5 sample (0.5 second) 
delay in the output which remains practical for most indoor 
human movement tracking. The CNN and MLP based models 
contain section depth hyperparameters relating to the number 
of ‘blocks’ the network contains. For example, a CNN block is 
made up of a convolutional layer, a batch normalization layer, 
and a ReLU layer [44].  

III. RESULTS 
There is a large disparity in the complexity of the models. 

Some (especially, more classical regression models) require 

TABLE II: HYPERPARAMETER VALUES USED IN THE FINAL TUNED POSITIONING MODELS. 
Algorithm Hyperparameter Range Final Hyperparameter Values 
1D-CNN Section depth: [1, 3] Section depth: 3  

Filter size: [2, 7] Filter size: 3  
Pooling: [1, 5] Pooling: 5 (1x5)  
Number of filters: 2^[3, 8] Number of filters: 128 

2D-CNN Section depth: [1, 3] Section depth: 3  
Filter size: [2, 7] Filter size: 7 (7x7)  
Pooling: [1, 5] Pooling: 1 (No pooling)  
Number of filters: 2^[3, 8] Number of filters: 16 

3D-CNN Section depth: [1, 4] Section depth: 4  
Filter size: [2, 7] Filter size: 4  
Filter depth: [1, 7] Depth: 5 (4 x 4 x 5)  
Pooling: [1, 5] Pooling: 3 (3x3x3)  
Number of filters: 2^[3, 8] Number of filters: 16 

MLP Section depth: [2, 4] Section depth: 3  
Neurons: 2^[6, 10] Neurons: 1024  
Dropout: [0, 0.3] Dropout: 0.025 

CNN-LSTM Section depth: [1, 3] Section depth: 3  
Filtersize: [2, 7] Filtersize: 2  
Dropout: [0, 0.5] Dropout: 0  
Number of filters: 2^[3, 8] Number of filters: 8  
Number of hidden units (1): 2^[4, 9] Number of hidden units (1): 64  
Number of hidden units (2): 2^[4, 8] Number of hidden units (2): 16 

LSTM Number of hidden units (1): 2^[4, 9] Number of hidden units (1): 256  
Number of hidden units (2): 2^[4, 8] Number of hidden units (2): 32  
Dropout: [0, 0.5] Dropout: 0 

BLSTM Number of hidden units (1): 2^[4, 9] Number of hidden units (1): 256  
Number of hidden units (2): 2^[4, 8] Number of hidden units (2): 32  
Dropout: [0, 0.5] Dropout: 0 

GRU Number of hidden units (1): 2^[4, 9] Number of hidden units (1): 256  
Number of hidden units (2): 2^[4, 8] Number of hidden units (2): 64  
Dropout: [0, 0.5] Dropout: 0 

Bagged Ensemble Number of learning cycles: [10, 1000] Number of learning cycles: 939  
Minimum leaf size: [1, (NumberObservations/2)] Minimum leaf size: 1  
Maximum number of splits: [1, (NumberObservations -1)] Maximum number of splits: 7973  
Number of variables to sample: [1, 64] Number of variables to sample: 44 

Boosted Ensemble Learnrate: [0.001, 1] Learnrate: 0.10434  
Minimum leaf size: [1, (NumberObservations/2)] Minimum leaf size: 1   
Maximum number of splits: [1, (NumberObservations -1)] Maximum number of splits: 13567  
Number of Learning cycles: [10, 1000] Number of Learning cycles: 494 

Random Forest Minimum leaf size: [1, (NumberObservations/2)] 13  
Maximum number of splits: [1, (NumberObservations -1)] 1509 

 Number of trees: [10, 100] 40 
Ridge Alpha: [0.001, 10] 5.5 
Lasso Alpha: [0.0001, 1] 0.00013 
ElasticNet Alpha: [0.0001, 1] 0.00026 
 L1 Ratio: [0.1, 0.9] 0.4 
Weighted KNN K: [1, 30] 22 
 Weighting Metric: [None, Euclidean, Manhatten, Chebyshev, Canberra] Chebyshev 
SVR Kernel: [Radial Basis Function, Linear, Sigmoid] Radial Basis Function 
 C: [0.01, 100] 10 
 Epsilon: [0.001, 10] 0.001 
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both a very low training effort and very low complexity for 
inference of new data. The neural networks whilst offering 
better performance, require a significantly more expensive 
training effort. When comparing the models, the test split from 
Dataset 1 has been compared along with Datasets 2-5 that have 
been grouped together for easier comparison. The grouping was 
achieved by applying the model to each dataset and then 
combining the errors from each into one large set of errors. The 
performance metrics (median, 95-percentile) were then 
computed from this large, combined error set. The results for 
each model have been summarized in Table III. 

A. Classical Regression models 
The ECDF curves for the classical regression models can be 

seen in Fig. 14. Aside from the KNN, the classical regression 
models did not perform well, having high position errors. When 
tested against the test split of Dataset 1, the linear regression-
based models (Linear, Ridge, Lasso, and ElasticNet) had almost 
identical performance with a median position error of ~0.60 m 
and a 95-Percentile position error of ~1.26-1.27 m. However, a 
big difference was found when testing against the other datasets 
(the more general data). The accuracy degraded drastically 
resulting in very large errors in position estimates. The linear 
models with regularization performed slightly worse against the 
other datasets than against the test split: a median position error 
of ~0.65-0.67 m and a 95-percentile error of ~1.53-1.54 m. This 
shows that whilst the positioning accuracy attained by the linear 
models was not very good, as long as there was some 
regularization to avoid overfitting, they generalized reasonably 
well. At the same time, since their performance was very poor, 
the generalizability of the models was somewhat immaterial. 
The weighted KNN model performed much better - achieving 
a median position error of 0.09 m and 95-percentile of 0.28 m 
on the test split of Dataset 1. This error increased when tested 
against the other datasets: to 0.26 m median and 1.27 m 95-
percentile. SVR performed better than the linear regression 
models. However, it was worse than the KNN on the test split 
of Dataset 1 and on the remaining test sets. A median 
positioning error of 0.23 m and 95-percentile of 0.84 m was 
achieved for the test split of Dataset 1, and a median of 0.45 m 

 

 
Fig. 5. Block diagram of the data preprocessing pipeline.  

 
Fig. 6. 1D CNN layout.  

 
Fig. 7. 2D CNN layout.  

 
Fig. 8. 3D CNN layout.  

 
Fig. 9. MLP layout. 
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and a 95-percentile of 1.60 m - for the remaining datasets. The 
linear models are very fast to train and run. Similarly, KNN is 
very fast to run. At the same time, KNN requires a larger 
amount of memory due to its large database. However, this is 
unlikely to ever be an issue except in the most extreme memory-
constrained environments.  

B. Ensemble Learning 
Three methods of ensemble learning were used: Random 

Forest, Bagged Trees, and Boosted Trees. The ECDF curves for 
these methods are shown in Fig. 15. Using Random Forest, a 
median position error of 0.14 m and 95-percentile one of 0.69 
m were achieved when testing against the test split of Dataset 
1. When tested against the other datasets, a median position 

error of 0.37 m and a 95-percentile error of 2.41 m were 
observed. Bagged Ensemble performed slightly better, with a 
median positioning error of 0.09 m and 95-percentile of 0.50 m 
against the test split of Dataset 1. Against the other datasets, the 
median position error was 0.35 m and the 95-percentile error 
was 1.85 m. The Boosted Ensemble performed slightly worse 
than the Bagged Ensemble (while being also slightly better than 
the Random Forest) with a median position error of 0.10 m and 
95-percentile error of 0.48 m against the test split of Dataset 1. 
Against the other datasets, a median error of 0.36 m and a 95-
percentile error of 2.15 m were observed.  

Overall, the differences between the ensemble methods were 
quite small. Compared to the regularized linear regression 
models, the ensemble learning models had lower median 

 
Fig. 10. LSTM layout.  

 
Fig. 11. BLSTM layout.  

 
Fig. 12. GRU layout.  

 
Fig. 13. CNN LSTM layout.  
 

 

 
Fig. 14. ECDF plots for the classical regression models, both for (top) the 
Dataset 1 test split and (bottom) for Datasets 2-5 combined together. Note: For 
clarity, linear regression is omitted from the second plot due to the 
extraordinarily large errors. 

 
Fig. 15. ECDF plots for the ensemble models, both for (top) the Dataset 1 test 
split and (bottom) for Datasets 2-5 combined together. 
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position errors but worse 95-percentile errors. Weighted KNN 
significantly outperformed them all. 

C. Neural Networks 
Initially, a standard MLP was tried, achieving median and 

95-percentile positioning errors of 0.082 m and 0.22 m 
respectively for the test split of Dataset 1. When tested on the 
combined results from the other datasets (Subject 1 day 2, 
Subject 2, Subject 3, and Subject 4), the median and 95-
percentile positioning errors were 0.28 m and 2.11 m 
respectively. 

Adjacent pixels in the frame from the sensor have some 
correlation. This spatial correlation could potentially be used to 
improve the positioning. The MLP does not leverage the 
possible spatial correlation between nearby pixels. Therefore, a 
2D-CNN was tried. The 2D-CNN performed very well with 
median and 95-percentile position errors of 0.028 m and 0.068 
m respectively. For the remaining datasets, the median and 95-
percentile errors were found to be 0.19 m and 0.83 m. That was 
a marked improvement upon the performance of the MLP on 
the test split of the training data and on the more generalized 
datasets.  

As a human subject moves about slowly in comparison to the 
sample rate of the sensor, successive readings from the 
thermopile are very likely to have some correlation. A 1D-CNN 
was tested in an attempt to leverage the potential temporal 
correlation of pixels across several consecutive frames. 
Unfortunately, the performance was poor with a median and 95-
percentile positioning errors of 0.28 m and 0.63 m for the test 
split of Dataset 1, and of 0.36 m and 1.03 m for the other 
datasets. In order to achieve an improvement, several Recurrent 
Neural Networks (RNN) were tried. The LSTM, BLSTM, and 
GRU methods all performed well: all achieving very similar 
results with median positioning errors in the range of 0.05 – 
0.061 m and 95-percentile errors in the range of 0.13-0.17 m for 
the test split of Dataset 1. On the remaining datasets, the median 
errors were at 0.18-0.20 m and 95-percentile errors were: 1.80 
m (LSTM), 1.39 m (BLSTM), and 1.64 m (GRU). If one was 

to look solely at the test split data, the 2D-CNN vastly 
outperformed the RNNs. However, when the remaining 
datasets are taken into consideration, the RNNs performed very 
similarly to the 2D-CNN. This emphasizes the importance of 
testing upon multiple subjects on different days for realistic 
performance comparisons. In the above case, by using just the 
test split of Dataset 1, the performance of 2D-CNN would be 
vastly inflated compared to a more realistic scenario. 

Finally, to leverage both the spatial and temporal features of 
the data, a 3D-CNN and CNN-LSTM were evaluated. Whilst 
the performance of the 3D-CNN was better than that of the 1D-
CNN, it was still worse than the performance of the 2D-CNN. 
For the 3D-CNN, the median and 95-percentile errors on the 
test split of Dataset 1 were found to be of 0.086 m and 0.19 m 
respectively. For the remaining sets, the corresponding errors 
were  0.24 m and 0.94 m. The CNN-LSTM had a median and 
95-percentile positioning errors of 0.027 m and 0.068 m 
respectively for the test split of Dataset 1. They then rose to 0.16 
m and 0.76 m for the remaining datasets. The results show a 
slight improvement over the 2D-CNN and the other RNNs on 
the test split of Dataset 1 as well as on the combined Datasets 
2-5. This is more evident when comparing the ECDFs in Fig. 
16 as the median and 95-percentile error statistics do not fully 
encapsulate the performance. A comparison of the best-in-class 
models (i.e., KNN from the classical regression, Bagged 
Ensemble from the ensemble regression, and CNN-LSTM in 
the neural network regression) can be seen in Fig. 17. 

From these results, it is apparent that the models perform far 
better on the test split of Dataset 1. This is important to 
emphasize, as, without the additional datasets, the models’ 
accuracy would be greatly overstated (i.e., the CNN-LSTM 
achieving 0.027 m position error on the test split of Dataset 1 
compared to 0.18 m on the combined Datasets 2-5 – the 
differences can be clearly seen for three of the models in Fig. 
18). The presented results show that the real-world performance 
of a system cannot be determined directly from the results of 
the test split. Models need to be evaluated against more diverse 

TABLE III: FINAL RESULTS 
 Dataset 1 Test Split Datasets 2-5 Dataset 6 (Heavy Clothing) 
 Median 

(m) 
95-Percentile 

(m) 
RMSE 

(m) 
Median 

(m) 
95-Percentile 

(m) 
RMSE 

(m) 
Median 

(m) 
95-Percentile 

(m) 
RMSE 

(m) 
Classical Regressions 

Linear Regression 0.601 1.254 0.732 9x1011 2x1012 5x1012 5x1012 6x1012 5x1012 

Ridge Regression 0.600 1.267 0.732 0.652 1.533 0.847 0.716 1.453 0.850 
Lasso Regression 0.601 1.261 0.732 0.663 1.536 0.851 0.719 1.440 0.837 
Elastic Net 0.600 1.263 0.731 0.656 1.532 0.848 0.714 1.449 0.840 
Weighted KNN 0.094 0.278 0.219 0.257 1.273 0.528 0.185 0.474 0.329 
SVR 0.233 0.842 0.415 0.447 1.599 0.762 0.477 1.221 0.645 

Ensemble 
Random Forest 0.145 0.690 0.373 0.368 2.412 0.998 0.388 2.294 0.950 
Bagged 0.098 0.509 0.250 0.347 1.845 0.793 0.654 1.703 0.908 
Boosted 0.107 0.481 0.300 0.359 2.147 0.901 0.724 2.349 1.165 

Neural Networks 
MLP 0.082 0.220 0.159 0.276 2.105 0.749 0.204 0.631 0.388 
1D-CNN 0.275 0.630 0.350 0.357 1.028 0.524 0.580 1.361 0.765 
2D-CNN 0.029 0.068 0.038 0.188 0.833 0.420 0.209 0.825 0.401 
3D-CNN 0.086 0.186 0.107 0.235 0.943 0.468 0.355 1.302 0.624 
LSTM 0.055 0.148 0.079 0.197 1.798 0.649 0.141 0.357 0.222 
BLSTM 0.050 0.139 0.072 0.188 1.394 0.596 0.148 0.359 0.260 
GRU 0.061 0.169 0.088 0.184 1.639 0.615 0.154 0.384 0.227 
CNN-LSTM 0.027 0.068 0.036 0.162 0.758 0.458 0.248 0.846 0.424 
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test sets for robust performance analysis. Further research 
should be done to improve the generalizability of the models, 
as potentially improved preprocessing could help remove some 
of the differences. A larger, more diverse training dataset could 
also help train more generalized models. However, none of this 
can be achieved without first having multiple test sets to 
benchmark against.  

D. Person to Person Generalizability 
An important criterion is that the models can position 

subjects that they have not seen before. This has not been 
reported upon in the existing literature on thermopile-based 
localization. However, it is a very important factor to consider 
for real-world practical applications where a system is very 

likely to operate primarily on subjects that it has not been 
trained upon.  

In this work, the models were all trained using the large 
dataset obtained with Subject 1. They were all tested both on 
the testing split of this data and on all the other remaining 
datasets. Fig. 19 shows the ECDF curves for three models, four 
subjects, and the test split of Dataset 1. As can be seen here, 
there are no significant variations in accuracy between the 
subjects. At the same time, some differences are apparent 
between the models. The differences between the subjects are 
very small for the two CNN-based models. Therefore, there is 
very good generalizability to subjects the models have not been 
trained upon. However, it should be noted that the results for all 
the subjects are significantly worse than for the case with the 
test split of the training data.  

E. The Impact of Heavy Clothing 
Dataset 6 was collected on the same afternoon as Dataset 1.  

Subject 1 walked around the test space for approximately 12 
minutes while wearing heavy clothing (long pants and a thick 
coat). Heavy clothing traps more heat. Thus, such a subject is 
less visible to the sensor. Across all the models, the positioning 
error of the subject in Dataset 6 was significantly worse than 
with the test split of Dataset 1. When compared to the combined 
results of the subjects in Datasets 2-5, the results of Dataset 6 
were reasonably similar while still dependent upon a model.  

 
Fig. 16. ECDF plots for the neural network models, both for (top) the Dataset 
1 test split and (bottom) for Datasets 2-5 combined together. 

 
2

 
Fig. 17. ECDF plots for the best-in-class models – CNN-LSTM, KNN, and 
bagged ensemble. Both for (top) the Dataset 1 test split and (bottom) for 
Datasets 2-5 combined together. 

 
Fig. 18. ECDFs comparing the performance between Dataset 1 test split, 
Datasets 2-5, and Dataset 6. Shown are the 2D-CNN model (top), GRU model 
(middle), and the CNN-LSTM model (bottom). 
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Fig. 18 shows the ECDFs for a selection of the models (2D-
CNN, GRU, and CNN-LSTM). It can be seen that the 2D-CNN 
somewhat struggled in the heavy clothing case. This was also 
true for the 1D- and 3D-CNN (see also Table III). The RNN-
based methods were better at positioning the subject in heavy 
clothing (Fig. 18, the GRU model). The CNN-LSTM performed 
worse than both the 2D-CNN and the RNN-based methods.  

Whilst heavy clothing increases the positioning error 
compared to the test split, the models still generalize well. It 
suggests that they can handle subjects in a wide range of 
clothing. In addition to this, the subject was uncomfortably 
warm in such clothing and would not realistically have dressed 
in a such a manner. If the air temperature was lower, such 
clothing might be worn, but in such a case there would be a 
larger difference between the temperature of the subject and the 
environment, potentially reducing the impact of the heavy 
clothing. There is still further investigation that could be done 
to further understand the impact of clothing on the location 
accuracy. 

F. Spatial Distribution of Positioning Errors 
When the datasets were collected, the subjects walked around 

in an arbitrary fashion in a 5 m by 5 m space. However, due to 
the sensor’s field of view and the height of the room, the visible 
floor area for the sensor was just 2.88 m by 2.88 m (Fig. 2). 
Furthermore, when subjects were at the very edge of that space, 

only their feet were within the field of view of the sensor. Most 
of the subject bodies were out of the field of view due to the 
FOV’s pyramidal shape. Significantly lower signal-to-noise 
ratios were present at the edges of the field of view (Fig. 1). In 
turn, it made it much harder to locate subjects in those areas. 
This is illustrated by the heatmap in Fig. 20. The diagram 
presents positioning errors (from the 2D CNN model for 
Datasets 2-5) plotted at the relevant positions given by the 
ground truth. The points are sorted by error magnitude: the 
largest errors are overlaid on top, with the colors of the points 
corresponding to the error magnitudes. It can be seen clearly 
that the worst error magnitudes occurred at the edges. This 
suggests further limiting the field of view (and thus the usable 
floor area) in cases where the location accuracy is of importance 
and should be increased. Alternatively, multiple sensors could 
be employed in future research to cover a larger area while 
providing the required positioning capability. The extent of the 
sensor fields of view overlapping could be an important factor 
to study.  

IV. CONCLUSION 
To the best knowledge of the authors, this work offers the 

first open dataset for thermopile-based indoor localization. 
Given the volume and quality of the data, it will enable 
researchers to develop, train and evaluate machine learning and 
other localization algorithms in a robust manner. The dataset 
will also enable researchers to benchmark their algorithms 
against each other upon a common dataset. 

The presented comprehensive study shows that the majority 
of the recurrent and convolutional neural networks greatly 
outperformed the ensemble and classical methods. However, it 
comes at the cost of increased complexity. Therefore, a careful 
trade-off between these two parameters is required especially in 
resource-constrained environments. Of the other methods, the 
weighted KNN was the only one comparable in performance to 
the best performing neural networks and could potentially be 
used where computational power is limited. The 2D-CNN and 
CNN-LSTM networks performed exceptionally well on the test 
split of Dataset 1 (the large training dataset) and were able to 
achieve the median positioning error of less than 0.03 m. 
However, there was a clear degradation in performance when 
models were trained on the data obtained on one day while 
tested on the data obtained on another day. It highlighted the 
importance of the testing performed upon more diverse data.  

 The majority of the convolutional and recurrent neural 
networks were able to maintain a median accuracy of less than 
0.2 m (compared to less than 0.07 m on the testing split of the 
training dataset). This shows that thermopiles can offer reliable 
sub-meter localization accuracy, even in the presence of 
environmental and subject changes. This has not been explored 
in the literature.  

Across the ML algorithms, the degradation in performance 
between subjects was much lower than the degradation in 
performance between the sessions taken at different days/times. 
In real terms, this suggests that across the majority of the tested 
ML algorithms there was generalizability to other subjects 
which were not part of the training corpus.  

 
Fig. 19. ECDFs comparing the for each subject for selected models. Shown are 
the 2D-CNN model (top), GRU model (middle), and the CNN-LSTM model 
(bottom). 
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It was found that the CNN-based methods performed very 
well on Datasets 1-5 (light clothing). However, the performance 
significantly worsened on Dataset 6 (heavy clothing). In 
contrast, the RNN based models had slightly inferior 
performance compared to the CNN methods on Datasets 1-5. 
At the same time, they outperformed the CNN methods on 
Dataset 6. This suggests that the RNN based methods (e.g., 
LSTM) with their inherent tracking abilities, may be better 
suited to deal with subjects wearing a wider range of apparel 
types. 

The disparity in accuracy between the initial network training 
and the testing on data collected at a later date also offers 
several considerations for future work. Namely, when testing 
localization systems, it is important to check system 
degradation over a time to ensure that the proposed method can 
generalize to realistic environmental changes. Data 
augmentation could also be explored to see whether 
temperature fluctuations due to seasonal variation, air 
conditioning, or varying human heat signatures can be modelled 
and included as supplementary training samples. When testing 
the subjects with Datasets 2-5, the trained models were left 
unchanged. If data collection remains possible after the initial 
training period, transfer learning [45] could be explored. This 
could be achieved using a supervised approach using a small 
volume of data. Alternatively, it can be achieved for a 
continuous unsupervised system to maintain localization 
accuracy as the environment changed. 

There may also be scope for reducing the environmental 
differences between the datasets with more advanced 
preprocessing, specifically the background subtraction and 
normalization. Using a ceiling mounted thermopile, Trofimova 
et al. were able to increase the accuracy of human detection 
from 70% to 97% by using more advanced background tracking 
and subtraction [46]. A similar approach applied to positioning 
of subjects could be investigated to potentially reduce the 
difference in performance between datasets. Recent literature 
show that block-sparse coding based ML [47] and 
convolutional autoencoder [48] have led to accurate and robust 

localization for wireless-based DFL at low Signal to Noise 
Ratio (SNR) conditions. Such approaches should be explored 
in the future to further improve the discussed thermopile-based 
localization. 

In this work, the variations between each subject’s speed was 
relatively small. All walked at a standard adult’s pace , not 
exceeding 1.5 m/s. The thermopile sampling rate of 10 Hz was 
adequate to capture the data. Future work can explore what 
minimum sampling rate is required for tracking given subject 
speeds and ascertain how the system’s performance degrades as 
subjects reach or exceed the maximum supported speed. 

The current method is applicable for a single subject 
positioning. Further work is required to allow for the detection 
and tracking of multiple subjects.  

The field of view of the employed sensor was not large 
enough to cover a whole room. Therefore, the use of multiple 
sensors is planned to be studied. In particular, finding an ideal 
number of sensors, their parameters, extent of their field of view 
overlaps, the optimal height of sensor placing over a floor, etc., 
would be of value. This would also lead to the subject tracking 
across multiple sensors and subject handoff between the 
sensors. 
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CHAPTER 6 – CONCLUSION 

This PhD study has resulted in the publication of three top-tier (Q1) journal articles, with a fourth 

pending a review. In addition, two peer-reviewed conference papers were published. Furthermore, the 

research led to the publication of several other papers associated with the use of the developed hardware. 

These results cohesively fit together to provide a range of indoor localisation solutions that can 

potentially be combined through sensor fusion to produce a robust and accurate localisation system.  

The median localisation error for a moving subject for all three systems is under 0.15 m (Passive VLP: 

0.12 m; Capacitive floor: 0.03 m; Wall-mounted thermopiles using three sensors: 0.11 m; Ceiling-

mounted thermopile using CNN-LSTM: 0.182 m). The capacitive floor and thermopile systems appear 

to be generalisable to new environments with very little calibration. The passive VLP system and 

thermopile systems also do not require large amounts of additional infrastructure to be installed. In 

particular, the thermopile system can operate using only a single thermopile sensor with an option for 

extra sensors to be added for increased localisation accuracy.  

The infrastructure complexity of the floor-sensing is its main drawback. However, it can detect a person 

lying on the floor and capture the poses of such a person. The high resolution of the data from the floor 

sensors makes it a much stronger candidate for subject identification and automated fall detection in an 

unobtrusive manner than a number of other solutions. This could offset the relatively higher cost. 

Throughout the PhD research, there was a large improvement in the data collection methodology for 

the localisation of a subject. It progressed from using predetermined paths (Chapter 2) to employing the 

HTC Vive for automated data collection and labelling (Chapters 3, 4, and 5). In addition to the better 

data collection, this much-improved approach also allowed subjects to walk around the testing area in 

a natural fashion. Chapters 3, 4, and 5 also presents the results of investigating the generalisability of 

the various localisation methods across multiple subjects and environments. It was found that changes 

in the environment and the use of different subjects can cause significant performance degradation - an 

aspect that has been widely overlooked in the earlier research presented in the literature. To highlight 

it, the CapLoc system was tested for 39 different paths across multiple subjects while for the thermopile 
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system several hundred paths were walked by the subjects in several different environments (Chapter 

4). Data collection at that scale and accuracy would not have been possible without employing the HTC 

Vive ground truth data collection. 

6.1 Future Works 

Several passive indoor localisation solutions having distinctive strengths and weaknesses were 

developed over the duration of the reported PhD study. It is likely that the next generation of indoor 

localisation systems will be of a multi-modal type combining data from multiple sensors of different 

types to improve the overall location estimation. Each of the investigations reported in this thesis used 

a singular sensing modality. It would therefore be a natural next step to attempt to build a system fusing 

several reported solutions and, perhaps, enhancing it with entirely new ones.  

Localising multiple subjects simultaneously is an important goal for a real-world positioning system.  

Earlier developed systems were only suitable for tracking a single subject at a time. It will be of value 

to extend the study towards simultaneously determining locations of multiple subjects. A classifier 

could be used to count the number of the subjects. A separate model would then be chosen and trained 

for each subject number. For a larger deployment, each system could be spatially partitioned into 

smaller individual sub-systems. There is a maximum number of subjects that can realistically fit into 

any set area at any given moment of time. This, therefore, limits the maximum number of subjects that 

are needed to be positioned simultaneously. For such a system, the research would also need to be 

undertaken to investigate the handoff of subjects at the boundaries of adjacent sub-systems. 

There are privacy considerations when carrying out subject localisation. In the real-world scenario, 

subjects’ location information is sensitive, and it should not be disclosed without their explicit 

permission. Therefore, the security of a positioning system needs to be considered prior to its 

deployment. The security aspects of the localisation systems have not been considered in the reported 

study. There is scope for future investigation in this area. Furthermore, as no authentication of subjects 

was offered in the reported research, there is the possibility of spoofing the system by a malicious entity. 

Thus, enhancements covering subject authentication or identity verification would be of importance.  
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Abstract—This paper reports the experimental results from a

novel visible light positioning (VLP) system. The developed VLP

is completely passive as it does not require the target to carry any

active device or tag and, at the same time, it does not require any

modification to the lighting infrastructure. The developed VLP

localizes a target based on measuring the change it creates in

the received signal strength (RSS) of the ambient light recorded

at an array of photodiodes embedded in the wall. Experimental

results from a prototype system show that a median error of 7.9

cm can be achieved.

Index Terms—Indoor localization, Indoor Positioning System

(IPS), Visible Light Positioning (VLP), Device Free Localization

(DFL), Passive VLP

I. INTRODUCTION

Indoor positioning has been a burgeoning area of research
over the past decade. In terms of outdoor positioning, GPS [1]
is the de facto solution, due to it being both ubiquitous and
free to use. However, it has limitations, especially in built
up areas or indoors [2]. The signal is negatively impacted
by multipath reflections and struggles to penetrate walls.
Furthermore, the offered accuracy of several metres [3] is not
good enough for indoor applications. For these reasons, other
methods have been proposed using infrared signals [4], RFID
[5], Bluetooth [6] and Wi-Fi [7], [8]. Whilst most of these
represent an improvement over GPS for indoor localization,
the majority of them still do not meet the desired levels of
accuracy, reliability or simplicity. With Light Emitting Diodes
(LEDs) steadily replacing traditional lighting sources, a new
method of positioning has come to the fore – Visible Light
Positioning (VLP). Visible light has the benefits of being far
less susceptible to multipath interference and flat fading due
to its vastly higher frequency than RF [9]. LED lighting can
also perform multiple roles – illumination, communication
and positioning. Active VLP has been well researched and
relies on a mobile object having a receiver containing either a
photodiode or image sensor [10]. There are several active VLP
methods that have been implemented on indoor testbeds, with
the main approaches being Received Signal Strength (RSS)
lateration [11]–[13], Angle of Arrival (AOA) angulation [14],
[15], and fingerprint matching [16].

Passive VLP allows for the detection of people and objects
without the need for the tracked object to have an attached

This research was supported by the Massey University Research Fund
(MURF) 2017-18 “Implementation of an Asset Tracking & Monitoring
System Leveraging Existing Wi-Fi & Lighting Infrastructure”

receiving device. It is highly desirable to be able to track
passively rather than relying on a wristband or other smart
device which must be consciously put on. There are several
existing works for passive VLP. In [17] the authors used co-
located LED luminaires and photodiodes to passively detect
humans. The light from the LED luminaires was multiplexed
using Time-Division Multiple Access (TDMA) to identify
the source of incoming light at each photodiode. In the
aforementioned paper, the data was primarily used to detect
whether a door was open or closed. The authors further
extended this work in [18] to also track human movement
and detect room occupancy. The authors were able to achieve
93.7% occupancy count accuracy and 0.89 m median error
positioning accuracy in a 45 m2 room. In [19], the floor is
inlaid with 324 photodiodes, with 5 LED luminaires placed
on the ceiling above. This setup is then used to detect the
position of a human’s body and limbs from the shadows cast
onto the floor. The authors were able to achieve a mean angular
accuracy of 10 degrees for the 5 main body joints. The work
was further extended in [20] using only 20 photodiodes, albeit
with a much larger number of LED panels on the ceiling. This
simplifies the infrastructure at the cost of slightly decreased
accuracy – 13.6 degrees mean angular error instead of 10.
Similarly, the authors in [21] also use a grid of photodiodes
embedded into the floor. LED luminaires on the roof cast
shadows from test subjects onto said photodiodes. However,
this paper reports results based on mostly simulation, with
the only experimental part being a single point to point LED
to photodiode link to gather parameters for the larger scale
simulation. In simulations, the authors were able to achieve
median error of 8cm in an 8m x 8m x 4m room with 4 LED
luminaires, and photodiodes uniformly spaced at 0.5m in the
floor. In [22], the authors use a passive VLP approach for
mobile device input using an LED and two photodiodes to
detect a user’s finger. The LED improves the reliability in the
presence of changing ambient light. The authors were able to
position a user’s finger in a 9x7 cm grid with 0.7 cm median
error. CeilingSee [23] uses reverse biased LED luminaires as
photodiodes for occupancy sensing. However, the authors did
not use the system for positioning of test subjects or objects
and therefore, do not have a position accuracy.

This paper, focuses on achieving accurate positioning of an
object in ambient light conditions without the need of any
modification to the existing lighting, unlike the majority of
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Fig. 1. Received power at each photodiode for three scenarios - empty test
bed, test subject at left hand side close to the wall with the photodiodes
affixed, and right hand side away from wall with photodiodes affixed. Corridor
environment

VLP solutions.

II. SYSTEM OVERVIEW

In a room, there are generally multiple light sources –
several interior lights and in many cases, windows as well.
In addition to this, walls are generally light coloured and,
therefore, cause a portion of the light to be reflected. A person
moving around a room produces several shadows of different
intensities to be projected onto the floor and walls. The main
shadows comes from blocking the direct path from the ambient
light sources. However, many other shadows are generated
because the reflected components from the light sources are
also blocked. These shadows can be detected by photodiodes
placed around a room and then used to locate objects. This
can be observed in Fig. 1. The blue bars are the RSS at seven
different photodiodes placed along a wall when the test area
is free from obstructions. The red and orange bars present a
case when a person is standing at the front left (close to the
wall) and the back right (further from the wall) respectively.
This causes RSS to drop compared to the empty room, with
there being a greater drop at photodiodes closer to the test
subject. For example, when the test subject is in the front left
position, the RSS drop is more significant in photodiodes 1
and 2 and there is very little drop in photodiodes 6 and 7.
When the person is at the back right, the opposite is true -
photodiodes 6 and 7 are affected to a much larger degree than
1 and 2.

The testbed makes use of seven ISL29023 [24] integrated
digital light sensors placed on a board (wall) at a height of
1.05 meters from the floor. The light sensors are comprised of
a photodiode, transimpedance amplifier, and analog-to-digital
converter (ADC) located on the same package. Each light
sensor is connected to a low-cost Wi-Fi microchip (ESP8266
[25]) as shown in Fig. 2. The ambient light manifests as DC
at the output of the transimpedance amplifier. The DC level is

Fig. 2. Photodiode receiver.

Fig. 3. Smart wall with the embedded photodiode receivers, open room
environment.

a measure of the RSS of the ambient light and is sampled by
the embedded ADC and is retrieved by the microcontroller
in the ESP8266. The latest 100 samples are stored in the
memory until they are retrieved over Wi-Fi. The data can then
be requested in 100 value packets from a laptop and saved to
the hard drive.

A 3.4m x 2.2m grid with 20cm squares was marked out
using masking tape and a laser straight edge.

Two experiments were performed, one with the photodiodes
along the wall facing into the room – henceforth known
as the open room environment (see Fig. 3). For the second
experiment, the photodiodes were positioned along the side of
the grid furthest from the wall, with the photodiodes pointing
back towards the wall – henceforth known as the corridor
environment (see Fig. 4). Immediately before and after each
test, the background ambient light measured and recorded.
This was then used to normalise the data at each photodiode
and verify the ambient light levels remained constant - a
factor which this work is reliant on. Changes in ambient light
would introduce extra uncertainty and consequently decreased
positioning accuracy. Each measurement consists of 100 RSS
readings over 10 seconds at each photodiode. This could
potentially be reduced (or the data sample rate increased) in
later works to hasten the data acquisition process.

Data were collected at each grid intersection for a total of
198 locations, with the data being split into two parts with
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Fig. 4. Smart wall with the embedded photodiodes, corridor environment.

Fig. 5. Online vs offline data points.

half forming the offline fingerprint database, and the other
half, the online RSS measurements. The online and the offline
locations are shown in Fig. 5. The measured RSS values at
each photodiode are shown in Fig. 6. These plots show the
change in RSS with a test subject (180 cm in height) standing
at each individual point on the grid - combining both the online
and offline points. A very large dip can be seen on the top left
edge of each plot where the test subject stood immediately
in front of the photodiode causing a strong shadow. Taking
the RSS value from the same location on each plot gives
the fingerprint value for that position. Weighted K Nearest
Neighbours (WKNN) [26] was employed to classify the online
readings using the offline fingerprints. Euclidean distance was
used to measure the distance between the online reading and
each entry on the fingerprint database.

A. WKNN algorithm

Weighted K nearest neighbours is an extension of the K
nearest neighbours algorithm [27]. The algorithm takes a live
reading Rlive which is a vector of M RSS readings - one from

each photodiode. This is compared to the offline fingerprint
database R which stores a vector R for each point that has
been mapped. The Euclidean distance di between Rlive and
an entry in the database Ri,j is taken as follows:

di =

vuut
MX

j=1

(R2
i,j �R2

live) (1)

The K smallest distance entries in the database are taken
and used to estimate the weights for each of the K database
readings as:

Wk =
1

dk
(2)

These are then used to weight each of the locations before
they are combined. This is so that the database readings closest
to the live reading have a greater influence on the final position
estimation. The final position is found as follows:

exj =

PK
k=1 Wj,k ⇥ xkPK

k=1 Wj,k

(3)

eyj =
PK

k=1 Wj,k ⇥ ykPK
k=1 Wj,k

(4)

Where [exj , eyj ] is the estimated position, Wj,k are the
weights calculated in equation (2) and [xk, yk] is the associated
coordinate for that weight. The position error is then calculated
by finding the Euclidean distance between the estimated
location and the actual location where the live RSS values
were taken.

III. EXPERIMENTAL RESULTS

A K value of 3 was experimentally chosen for the WKNN
algorithm, as it provides a good balance between optimising
both the median and maximum error for both environments.
This can be clearly seen in Fig. 7.

TABLE I
POSITION ERROR FOR K = 3 FOR BOTH ENVIRONMENTS

Corridor Open room

Median error (cm) 7.9 12.3
Max error (cm) 97 357

Standard deviation (cm) 14.3 40.8

Table I shows the position errors for both the experiments.
In Fig. 8, the estimated positions for the corridor are plotted
in relation to their actual locations to show the spatial error
distribution. One can see that the errors are concentrated at
the boundaries of the testbed. In part, this is due to the
positions being further from the photodiodes and in part, due
to having less fingerprints around the position. Fig. 9 shows
the localization errors for the open room environment. As
expected from the Cumulative Distribution Function (CDF)
plot in Fig. 10, one can see that the position estimation is
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Fig. 6. RSS fingerprints for each photodiode. Corridor environment.

Fig. 7. The impact of the value of K on both the median and maximum error
for both the environments (corridor and open room).

more accurate for the corridor environment. It is more accurate
due to the light reflecting off the white wall behind causing
more distinct shadows. The worst case errors in the open room
scenario are at the very edges of the testbed. In particular,
the two corners closest to the photodiode wall which are at
a very acute angle to the majority of the photodiodes and,
therefore, do not experience a discernible shadow. This can be
seen in Fig. 11 where the two corner RSS plots are compared
to the background RSS reading and also a position with low
error. The RSS readings at the two corner plots are both very
similar to the background readings. They are most different
at photodiode 1 for the left hand reading and photodiode 7
for the right hand reading as these are the least acute angles.

Fig. 8. Actual vs estimated positions in the corridor environment. Green
asterisks denote the photodiode positions, red crosses the actual positions, the
blue circles the estimated positions and the black lines the magnitude of the
error between the actual and estimated positions.

As the RSS readings are so close to the background readings,
small amounts of noise can cause erroneous identification of
neighbours leading to large errors in the position estimate.
This can be addressed by extending the row of the photodiodes
further along the wall.

IV. CONCLUSION

The authors believe that this is the first reported passive VLP
reported in the literature that uses only the ambient light. The
system is able to position an object with a median error of
7.9cm in a corridor environment. In an open room scenario,
this increases to 11.4 cm median error. Further work should
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Fig. 9. Actual vs estimated positions in the open room environment. Green
asterisks denote the photodiode positions, red crosses the actual positions, the
blue circles the estimated positions and the black lines the magnitude of the
error between the actual and estimated positions.

Fig. 10. Localization precision as CDF of error in both environments.

expand the test to a full room scale. The experiments were
undertaken at night and, therefore changes in the level of
ambient light was not investigated. This is the area for future
investigations to quantify and potentially mitigate the impact
it may have. Modulated light could potentially be used from
LED ceiling luminaires to mitigate the effect of ambient light.
Currently the system has been tested for a single object at
a time and as such, further investigation is needed to detect
multiple objects. With fingerprint based systems, generating
the fingerprint database is a very time consuming process. In
the future, the authors will investigate how to model these data
and generate them from a few strategically selected calibration
points.

Fig. 11. The worst errors are found at (0, 200), (320, 200). This is compared
to a location with a much lower error at (160, 160) and the readings when
no test subject is present. Open room environment
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Abstract— Passive indoor positioning has many applications 
including intrusion detection, fall detection of the elderly, and 
occupancy sensing to name a few. However, current Device Free 
Localization (DFL) solutions fall short of the desired accuracy 
requirements and are difficult to implement in a real-world 
scenario. This research investigates the use of a capacitive floor-
based sensing solution, which can simultaneously detect 
multiple footsteps of a subject. The developed sensing floor 
prototype achieved a median positioning error of 13.5 mm and 
a median angular accuracy of 10.4°. 

Keywords— Indoor localization, Device Free Localization 
(DFL), Capacitive Flooring, Footprint Detection  

I. INTRODUCTION 
In an increasingly technologically connected world, 

passive indoor localization service is still a problem to be 
solved. Image processing or computer vision-based 
techniques can accurately localize and identify an un-tagged 
target with reasonable accuracy [1]. However, privacy is a 
significant concern and thus has limited utility in many 
applications. Whilst people may be accepting of cameras in 
public spaces, most people would find cameras inside their 
house invasive to their privacy. Many accidents, especially 
amongst the elderly, happen in areas where cameras would not 
be welcome such as in bathrooms and bedrooms. Passive 
localization using wireless technology has seen extensive 
research effort in the recent years. Wireless-based localization 
has the advantage of potentially being able to localize using 
existing infrastructure by leveraging the ubiquitous presence 
of wireless networks within the built environment. A survey 
of wireless Device Free Location (DFL) indicates a saturated 
research field [2]. In addition, there are some inherent 
disadvantages with RF wireless technology such as the limited 
accuracy due to multipath reflections. A more recent 
development has been the use of the Channel State 
Information (CSI) metric which uses all of the many Wi-Fi 
subcarriers for much improved accuracy [3]. However, 
commercial hardware has yet to widely support the use of this 
metric limiting it use to experimental setups. Passive VLP  [4] 
works around the principle that as subjects move around a 
room, they cast shadows which can be detected by a light 
sensitive device.  These shadows can then be used to estimate 
the subject’s position. However, the passive VLP techniques 
are often vulnerable to change in ambient light level.  

When inside a building, humans spend much of their time 
in contact with the floor. The major exceptions being when 
one is in bed, sitting with one’s feet off the ground or in the 
bath. This therefore lends the floor a new potential purpose; 
namely, becoming a large sensor for both positioning and 
identifying people indoors. There are several works that have 
attempted to do this with varying degrees of success.  

There have been several works that have investigated the 
use of pressure sensitive floors for locating and identifying 
people [5, 6, 7]. Pressure sensitive floors have the advantage 
that they are able to sense the force at which a subject’s foot 
hits the ground, however this is offset by the generally worse 
spatial resolution they offer. As such pressure sensitive floors 
are very good for identifying people, however they appear to 
be complex and expensive to build and cannot handle multiple 
occupants in close proximity. Capacitive sensing has mainly 
been used for positioning and fall detection as it is much 
harder to utilize it for user identification. However, it has the 
advantage of being easier to extend for use with multiple 
occupants, which is an area most pressure sensitive solutions 
have been unable to solve.  

One of the earliest capacitive systems is Smart Carpet [8], 
which uses fabric into which conductive wires are sewn in 
serpentine patterns to form 150 mm by 150 mm panels. The 
system is used to estimate subject’s paths through a room. 
Similarly SensFloor [9, 10] uses conductive triangles 
embedded into a textile. It was able to identify individuals 
when used in conjunction with a hip mounted accelerometer 
[11]. The authors were also able to track multiple subjects, 
however the details are sparse. SensFloor has since been made 
into a commercial product [12] and more details are not 
available in the published literature. Rimminen et al. [13] were 
similarly able to track occupants in a room using metal squares 
of 0.3 m by 0.3 m embedded in the floor, however the authors 
did not investigate the localization accuracy. The authors also 
demonstrated that the pattern seen from the floor is different 
when a person is lying on it versus standing on it, however, 
the authors did not provide any quantitative figures. This work 
was significantly improved upon in [14] where the authors 
used a room of 4 m by 4.5 m with sensor panels of size 0.25 
m by 0.5 m. The authors tested the capacitive floor on moving 
subjects and found that a mean positioning error of 210 mm 
could be achieved. Multiple target tracking was employed 
using Rao-Blackwellized Monte Carlo Data Association. Two 
subjects could be individually separated with 90% accuracy if 
they were more than 0.8 m apart and with 99% accuracy if 
they were more than 1.1 m apart. The authors also 
implemented fall detection in [15] which used the previous 
works for tracking people and then classified poses based 
upon their area amongst other metrics. However, the 
methodology is very brief and there is very limited discussion 
of the results. Arshad et al. describe a similar system with a 
very basic proof of concept showing that a change in 
capacitance can be detected at a metallic electrode by a 
microcontroller [16]. The authors discuss how this could be 
used for fall detection with some very limited proof of concept 
testing [17]. CapFloor [18] uses two sets of parallel wires 
orthogonal to each other. A person walking above these 
changes the measured capacitance in any wires that they are 
above. As there are two sets of wires in orthogonal directions, 
a person will be above at least one wire in each direction, with 
the intersection point of these wires being the person’s 
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estimated position. The position error is given as “in the range 
of 50cm”.  

All the previously mentioned works have used loading 
mode [19] capacitive sensing. TileTrack [20] instead uses 
transmit mode where an additional electrode is placed in the 
room as a receiver. A square wave is transmitted from the 
floor tiles and received by the said electrode. The change in 
amplitude that is caused in this square wave by a person 
between the electrode and the floor tile can be detected. The 
squares are 0.6 m by 0.6 m and a frequency of 32 KHz used 
for the square wave. The system can position a stationary 
person to within 143 mm worst case and within 100 mm in 
80% of cases.  Several paths were tested, and the maximum 
error was found to be 407 mm. This work was further 
extended in [21]. A whole apartment of 69 m2 had the floor 
fitted with either 0.3 m by 0.3 m squares or 0.6 m by 0.6 m 
squares depending on the room. The position accuracy was 
found to be 70 mm when standing on the on 0.3 m squares and 
110 mm when standing on the 0.6 m tiles. For walking the 
accuracy was found to be 170 mm on the 0.3 m squares and 
330 mm on the 0.6 m tiles. These accuracy values are with 
90% confidence i.e. the accuracy of the 90th percentile of the 
data. 

II. SYSTEM DEVELOPMENT 

A. Key Concept 
There are three main sensing modes for capacitive electric 

field sensing as discovered by Zimmerman et al. [22] and 
Smith et al. [19]: transmit mode, shunt mode and loading 
mode. In transmit mode the signal from the transmitter is 
coupled by the subject’s body, which then becomes an electric 
field emitter. This only occurs when the subject is very close 
to the transmitter and the body effectively becomes an 
extension of the transmitter. In shunt mode, the subject’s body 
conducts a portion of the signal to ground. The remainder of 
the signal which is not blocked by the subject can then be 
measured at the receiver. This happens when the subject is not 
close to either electrode. In loading mode, there is no receiver 
and the environment effectively forms the second plate of the 
capacitor to ground (Fig. 1). 

A parallel plate capacitor can be modelled using the 
following equation: 

𝐶 =
𝜀0𝜀𝑟𝐴

𝑑
 (1) 

Where 𝐶 is the total capacitance, ε0 is the electric constant 
(8.854 × 10 -12 Fm-1), εr  is the relative permittivity of the 
dielectric (which is assumed to be constant), 𝐴  is the 
overlapping area of the two plates, and 𝑑  is the separation 
between the two plates. In the case of a flooring solution, a 
subject stands with their foot above the transmitting plate. The 
capacitance then depends on two main factors – the proportion 

of the plate covered by the subject’s foot (𝐴) and the distance 
between the subject’s foot and the plate (𝑑). The distance will 
remain fairly constant between footsteps and between users 
with the main factor being their footwear. Whereas the area 
will change very often as sensors are usually only partially 
covered. 

B. Hardware Design 
Squares of copper are affixed to the underside of a sheet 

of 6 mm MDF sheet which may be seen in Fig. 2. The copper 
squares are 90 mm by 90 mm in size and are spaced 10 mm 
apart. The current testbed hardware is made up of four 0.6 m 
by 0.6 m panels adjacent to each other, with each panel having 
36 individual copper squares (Fig. 3). Each copper square is 
soldered to a wire which is connected along with 35 other 
wires to a microcontroller where the capacitance is measured. 
The wires are routed along the gaps between the copper 
squares.  

There are several ways to measure the capacitance. One 
can use a low frequency signal into the plate using a 30 – 100 
KHz sine wave, as suggested by Smith et al. [19]. One can 
then measure the current of this signal using either a 
transimpedance amplifier or, more simply, a shunt resistor. 
Another method is to use the RC time constant of a capacitive 
circuit. 

The time taken to charge a capacitor to a set voltage 𝑉0 is 
given by the well-known RC charging equation: 

𝑉(𝑡)  =  𝑉0(1 − 𝑒−𝑡/𝜏)  (2) 

Here τ is the RC time constant given by multiplying the 
circuit resistance by the circuit capacitance. If a high value 
resistance is used, the resistance can be assumed to be 
reasonably constant and independent of the unknown 
resistance to ground. The time taken for the capacitor to 
charge to a set value will therefore depend solely on the 
capacitance.  

This information can be used to measure the capacitance 
with a microcontroller. A microcontroller’s digital logic pins 
are set so that they have a threshold for the voltage that 
constitutes a digital zero and a digital one. Two digital pins are 
connected by a high value resistor (in the range of 1-5 M ohm). 
The pins shall be called the sender (S pin) and receiver (R pin). 
The resistor connects the two and the copper plate is attached 

 
Fig. 1: Loading mode capacitor formed by a user's foot on the sensing 

floor 

 
Fig. 2: Copper floor sensing tiles. Each tile is connected to a 

microcontroller with a wire. 
 

 
Fig. 3: Testbed copper plate layout 
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to the R pin. The S pin is used as an output in push-pull 
configuration whilst the R pin is used as an input. The S pin is 
set to output a logic low (GND) and a certain amount of time 
is waited so that the R pin has time to settle. A timer is started, 
and the S pin is set to output a logic high (3.3 v). The timer is 
stopped as soon as the R pin registers a digital 1 read. This 
process is repeated multiple times to reduce the measurement 
noise through averaging. When a subject is near the copper 
plate the effective capacitance is much greater than when there 
is no subject nearby. This leads to the pin having a much 
longer rise time when there is a subject in close proximity. 

The circuit board is equipped with a 100 pin ARM Cortex 
M3 from ST Microelectronics [23]. The majority of the 
aforementioned pins are used for the capacitance 
measurements. An ESP8266 Wi-Fi module [24] is used for 
communications. The circuit board is shown in Fig. 4 and a 
block diagram of the entire system is shown in Fig. 5. The PC 
app is written primarily in JavaScript (nodeJS) using the 
electron wrapper to package it as a GUI desktop app. It hosts 
an http server which the devices POST data to. The IP of the 
server is currently hardcoded into the firmware of the 
ESP8266, however a small wireless router is used to create a 
subnet onto which all the devices and the PC running the app 
are connected. The IP address of the PC can then be 
configured through the router’s DHCP server. The app has 
several main functions. The first is that it displays a live real 
time feed directly from the floor with the option to display the 
output of the foot detection algorithms overlaid on top. One 
can also use the app to configure parameters for the algorithm 
in real time. It also allows for recording of incoming data to a 
file for replaying and later analysis. 

When the system is first powered on, a number (currently 
set to 10 after limited empirical testing) of capacitance 
readings are taken from the floor. These readings are then used 
as initial baseline readings which are then subtracted from 
each subsequent capacitance measurement from the floor. 
Over time these baseline readings tend to drift, so to 
counteract this several measures can be taken. Firstly, one can 
manually recalibrate the system by taking a new set of 
baseline capacitance readings periodically when the system is 
known to be empty. A more automated method is to take a 
long-term average of all capacitance readings taken whilst the 
system is in use and use this long-term average as the baseline. 
The assumption being that over a long period of time the 
amount of time in which a subject is standing on a square is 
small compared to that in which a subject is not standing on a 
square. However, this does mean that if a person stands still 
for a very long period of time they will eventually be lost by 
the system. 

C. Foot Detection 
Foot detection is done using the following algorithm. 

Firstly, the capacitance values from the floor are interpolated 
to improve the resolution. Several interpolations have been 
tried, with cubic interpolation performing the best. A 
threshold is then applied to the data, such that any capacitance 
values below the threshold value are set to zero and any 
capacitance values above the threshold value set to one. Once 
this has occurred, cluster detection is applied whereby all 
connected squares are considered to be a cluster. In the future, 
a more sophisticated clustering method can be used. Each 
cluster, representing a single footprint, can then be represented 
by a 2 x N matrix, 𝑀 where N is the number of data points in 
the cluster. Each column of the matrix is a vector representing 
the position of a single data point in the cluster. Figure 6 shows 
this process. The centre of the footprint (𝑥̅,  𝑦̅) is currently 
taken by averaging the position of each point in the 2 x N 
cluster matrix 𝑀 as follows: 

𝑥̅ = ∑ 𝑀1,𝑖
𝑁
𝑖=1

𝑁
  

𝑦̅ = ∑ 𝑀2,𝑖
𝑁
𝑖=1

𝑁
  

(3) 

The orientation of the footprint is then found by using 
Principal Component Analysis (PCA) [25]. The covariance of 
two vectors can be calculated as follows: 

𝑐𝑜𝑣(𝑎, 𝑏)  =  ∑ (𝑎𝑖 − 𝑎̅) (𝑏𝑖 − 𝑏̅)𝑁
𝑖 = 1

𝑁
  (4) 

 
Fig. 4: The custom designed electronic hardware used to measure the 

capacitance of the sensing floor tiles. 
 

 
Fig. 5: Block diagram of the sensing floor  

Fig. 6: Foot detection process 
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A covariance matrix 𝑀𝑐𝑜𝑣 can be formed by taking the top 
row of 𝑀 to be the vector, a and the bottom row the vector, 𝑏. 
The vector 𝑎 is a vector containing all the x positions of each 
point in the cluster and the vector 𝑏 is a vector containing all 
the y positions of each point in the cluster. 

𝑀𝑐𝑜𝑣  =  [𝑐𝑜𝑣(𝑎, 𝑎) 𝑐𝑜𝑣(𝑎, 𝑏)
𝑐𝑜𝑣(𝑏, 𝑎) 𝑐𝑜𝑣(𝑏, 𝑏)]  (5) 

The eigenvectors of this matrix can then be used to 
calculate the vectors of the orientation of the foot. The 
bounding box of the foot can be found by taking the maximum 
and minimum x and y positions of the points in the cluster. 

III. SYSTEM PERFORMANCE 

A. Position Accuracy 
To investigate the position accuracy of a subject’s 

footprint on the floor, fifteen locations were chosen. The 
position of the subject’s foot was measured using a ruler and 
measurements were taken from the floor itself. The ruler was 
used as the ground truth to verify the position estimates from 
the sensing floor against. The outline of the subject’s right foot 
was drawn onto a sheet of cardboard and cut out. A square 
corner was left protruding from the top left to measure against. 
The distance was measured from both the top and right edges 
of the sensing floor to this protruding corner of the footprint. 
This is shown in Fig. 7. An attempt was made to keep the 
foot’s orientation constant between measurements but was 
only done by visual estimation and therefore, the orientation 
varied by approximately ±5° between measurements.  

After performing the test at the15 locations on the sensing 
floor, the median position error was found to be 13.5 mm and 
the maximum position error was found to be 25.6 mm. Figure 
8 shows the positions of each location and the error at each 
location.  

It should be noted that the ground truth was measured to 
the top right corner of the foot outline, whereas the floor is 
estimating the position of the centre of the foot. Therefore, a 
variation in the orientation of the foot causes the error to 
increase due to the offset. Hence the measured errors are likely 
to be in part due to the methodology and it is believed that the 
error could potentially be lower, with a more accurate ground 
truth. Also, the ground truth and estimated values are at 
different positions on the foot, the estimated results must be 
translated so that they match up. This translation is applied 
uniformly to all the estimated results. However, the 
calculation of the translation assumes that the errors are evenly 
distributed in all directions and therefore the translation is 
taken to be the median of the error on each axis. 

B. Angular Accuracy 
A test was undertaken to investigate the accuracy of 

estimating the subject’s foot angle. A similar setup was used 
to that in the position accuracy testing. Using a protractor, 
lines were marked out at 10-degree increments from 0° to 90° 
and an extra line at 45°. The same cardboard cut-out was used 
to locate the foot with minor modifications. A slit was added 
down the centre of the foot cut out so that the lines can be seen 
underneath as well as the origin point about which the rotation 
was done. Capacitance samples were taken over a period of 5 
seconds at each angle and from this the foot angle is estimated. 
The setup can be seen in Fig. 9. 

The median angular error was found to be 10.4° and the 
maximum angular error was found to be 18.8°. Figure 10 
shows the error for different angular orientations of the 
subject’s foot. The error shows strong signs of non-linearity 
which means it may be possible to correct for this in the 
detection algorithm. Further investigation is required as this 
may depend on the location of the foot with respect to the 
copper squares underneath the floor. Therefore, this same test 
needs to be performed at different locations on the floor. 
Improving the accuracy is desirable as the foot angle is a 
possible metric to be investigated for gait identification. 

 
Fig. 7: Experimental setup for sensing floor position accuracy testing. 

 

 
Fig. 9: Angular accuracy testing setup 

 
Fig. 10: Estimated foot angle error with respect to actual foot angle. 

 
Fig. 8: Estimated vs actual positions of a test subject’s foot on the 

sensing floor 
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C. Foot Detection 
Currently, whilst detection of multiple feet has been 

implemented, no quantifiable data on the performance has 
been collected. The system has been tested with multiple 
subjects and can detect the feet of several subjects 
concurrently given that they are sufficiently spaced apart. 
Figure 11 shows both of a subject’s feet being detected 
individually. The position of each foot is marked by the 
intersection of the red lines, with the longer line corresponding 
to the orientation. The orientation is only valid in a 180-degree 
hemisphere. This means that assumptions must be made about 
the direction the foot is facing. One can assume that people 
generally walk forwards rather than backwards, so over the 
course of several footsteps, one can deduce the direction of the 
foot. It has been observed that feet on adjacent squares can get 
lost as they merge with each other into a larger blob.  As the 
copper sensing squares are 100 mm wide, providing the feet 
are greater than around 150 mm apart, they do not appear to 
alias. This is because the partial occlusion of feet at the very 
edge of adjacent squares does not put them over the threshold. 

IV. CONCLUSION AND FUTURE WORKS 
The developed capacitive floor can position a subject’s 

foot with a median position error of 13.5 mm and a median 
angular error of 10.4. It has the potential to be an accurate, 
yet noninvasive passive localization system. The current 
solution is still in early stages of development with scope for 
future improvements. Whilst multiple footprints can be 
simultaneously located, estimation of a subject’s body 
position from a set of successive footprints has not been 
implemented. Further work is needed to identify an individual 
from their gait pattern and develop a classification model to 
detect poses of people lying on the floor. This could then be 
used to monitor for falls and if necessary, alert caregivers or 
emergency services to such an event.  
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Fig. 11: Multiple foot detection as seen in the PC app. 
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