Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Sustainability and the Global Biogeochemical Cycles: Integrated modelling of coupled economic and environmental systems

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

In

Ecological Economics

at

Massey University, Manawatu, New Zealand

Nicola Jane Smith

2014

Abstract

The global biogeochemical cycles (GBCs), which include cycles of C, N, P, S, Cl, I, and H_2O , are extremely important biosphere functions, critical to the maintenance of conditions necessary for all life. Importantly, perturbation of these GBCs has the potential to affect the structure and functioning of the Earth system as a whole. While biogeochemistry research to date has largely focused on 'natural' processes, human economic activities are increasingly recognised as integral components of the GBCs. This thesis draws on both static and dynamic-system modelling approaches to describe the coupled economic and GBC systems, and to develop tools to assist in learning about these systems, with the aim of progressing towards sustainability. First, by drawing on the theoretical frameworks of Input-Output Analysis and Material Flow Analysis, an extensive and coherent static system model of the global C, N, P and S cycles is presented. Data within that static model are then used to calculate a set of sustainability indicators, based on a new and novel concept of 'ecotime'. Essentially, these indicators describe the level at which the global economy, through its transformation of useful resources (i.e. raw materials) into residuals (i.e. wastes, pollutants, emission), appropriates biogeochemical processes. Changes in these and other indicators, under possible future scenarios, are also able to be investigated by a new dynamic model known as 'Ecocycle'. Ecocycle constitutes one of very few attempts to develop an integrated model of the Earth system, explicitly capturing relationships between the GBCs and human activities. A notable feature of Ecocycle is that it represents the general equilibrium-seeking behaviour of an economy within a System Dynamics modelling approach, rather than through an optimisation approach as typically employed. A further significant methodological contribution of the thesis is the development of a technique for translating IO-based accounts between alternative process-by-commodity, commodity-by-commodity, and process-by-process frameworks. This method is required for both the static and dynamic components of the thesis.

Acknowledgements

I am very grateful for the receipt of a Bright Futures Scholarship (Contract MAUX06024). Without this privilege, it is unlikely that I would have ever embarked on doctoral studies. I am also grateful to my supervisors Murray Patterson and David Kettle for providing valuable critique. I am very thankful to my sister, Kim Smith, and mother, Pam Rainford, for providing assistance in minding my daughters, Ava and Elise, over the Christmas period prior to the completion of this thesis. I am furthermore appreciative of their understanding and acceptance of my limited availability over such a long time.

The topic of Appendix B, Estimation of Symmetric Input-Output Tables, emerged out of work undertaken in collaboration with Landcare Research, funded via the New Zealand Ministry of Agriculture and Forestry and the Foundation for Research, Science and Technology's Cross Departmental Research Pool (Contract 0908-01). Robbie Andrew (Landcare Research Ltd), in particular, provided valuable input during the conception stages of this work. The Ministry of Business, Innovation and Employment research programme 'The Economics of Resilient Infrastructure' (Contract C05X1205) partly funded the development of the economic model described in Chapter 7, A Dynamic Equilibrium *Seeking* Model of the Global Economy.

More than I am able express in words I am thankful to my partner, Garry McDonald, for his never-failing support and commitment to the completion of this thesis. At the time we met, I had never known any persons who had completed PhD studies and had certainly never contemplated that this would be possible of myself. Even more important than convincing me to start on this thesis, Garry convinced me that it was possible to finish it. Any person who chooses to work towards a PhD must struggle to balance the time involved in study against other demands of life. My situation was certainly no exception. Despite medical advice to the contrary, we have been blessed with not one but two wonderful daughters, Ava and Elise, both of whom arrived during the course of writing this thesis. Sadly, however, my father Denis Smith also passed away during this period, both unexpectedly and at an early age. There were many times when faced with trying to juggle the unexpected role of directing my father's company and managing his other affairs, meeting constant deadlines and commitments with our own personal work and company, and caring for two very young children, that I would have been happy to have given up on my studies. However, Garry consistently persuaded me instead to carry on and that it would be possible to finish. I love you very much.

Table of Contents

Abstrac	t	iii
Acknowledgements		v
List of 7	Fables	xiv
List of I	igures	xvii
List of A	Abbreviations	xxi
Chapte	r 1 Introduction	1
1.1	Sustainability and the Earth's Biogeochemical Cycles	1
1.2	The Need for an Integrated and System-Based Approach	2
1.3	Research Aims and Objectives	4
1.3.1	Overall Aim	4
1.3.2	Specific Objectives	4
1.4	Model Scale	6
1.5	Model Scope	7
1.6	Methodological Approach	7
1.7	Thesis organisation	9
Part I	Literature Review and Conceptual Framework	14
Chapte	r 2 Sustainability and the Global Biogeochemical Cycles	15
2.1	Introduction	15
2.2	The Normative Foundations of Sustainability	16
2.2.1	Justice	17
2.2.2	Efficiency	21
2.2.3	Welfare	21
2.3	The Global Biogeochemical Cycles and their Contribution to Human Welfare	23
2.3.1	Capital-based Perspectives on Sustainability	23
2.3.2	Global Biogeochemical Cycles as Ecosystem Support Services	25
2.4	Biophysical Perspectives on Sustainability	28
2.4.1	The First and Second Laws of Thermodynamics and Mass Conservation	28
2.4.2	Ecological Viewpoints on Sustainability	32
2/2		
2.4.5	Systems Thinking and Sustainability	35

Chapte	er 3 A Framework for Modelling Coupled Economic and Biogeochemical	
	Cycling Systems	44
3.1	Introduction	44
3.2	Conceptual Framework for the Global Environment-Economy System	44
3.2.1	A Note on the Global Socio-Ecological System	44
3.2.2	The Global Environment-Economy System	46
3.2.3	System Stocks and Flows	47
3.2.4	System Boundaries	50
3.3	Static System Framework	51
3.3.1	A Short Introduction to Static Models	51
3.3.2	Input-Output Tables, Supply-Use Tables and Social Accounting Matrices	53
3.3.3	Formal Description of the Environmentally-Extended Social Accounting Matrix	55
3.4	Dynamic System Framework	63
3.4.1	A Brief Overview of Dynamic Modelling Approaches	64
3.4.2	Core Elements of the System Dynamics Approach	67
Part II	Static Analysis	68
Chapte	er 4 Material Flow Accounts for the Global Economy	69
4.1	Introduction	69
4.2	Definitions and Classifications	71
4.3	Derivation of Material Flow Accounts	73
4.3.1	Direct Material Inputs	73
4.3.2	Waste Generation	80
4.3.3	Waste Treatment	87
4.3.4	Residual Generation	95
4.3.5	Non-Processed Material Flows	103
4.4	Summary	108
Chapte	er 5 Extended Material Flow Accounts of the	
	Global Biogeochemical Cycles	117
5.1	Introduction	117
5.2	Production of Within-Environment Accounts	118

- The Atmosphere 5.3

5.3.1	Atmospheric Carbon	120
5.3.2	Atmospheric Nitrogen	123
5.3.3	Atmospheric Sulphur	125
5.4	The Terrestrial Biosphere	126
5.4.1	Net Terrestrial Primary Production (Excluding Agricultural Crops)	126
5.4.2	Zoomass Processes	132
5.4.3	Litter and Soil Processing	133
5.5	The Oceans	135
5.5.1	Ocean Inorganic Flows	135
5.5.2	Surface Ocean Producers and Consumers	135
5.5.3	Organic Matter and Sediment Processing	139
5.5.4	Ocean Carbonate Cycle	143
5.6	The Lithosphere	144
5.7	Exchanges between the Spheres	145
5.7.1	Atmosphere and Terrestrial Biosphere Interface	145
5.7.2	Terrestrial Biosphere and Oceans Interface	148
5.7.3	Ocean and Atmosphere Interface	151
5.7.4	Ocean and Lithosphere Interface	151
5.7.5	Lithosphere and Terrestrial Biosphere Interface	153
5.7.6	Lithosphere and Atmosphere Interface	154
Chapte	r 6 Is there Overshoot of Planetary Limits?	
	New sustainability indicators based on 'Ecotime' analysis	156
6.1	Introduction	156
6.2	Major Antecedents of Ecotime Analysis	157
6.2.1	Ecological Footprint	157
6.2.2	Emergy Analysis	158
6.2.3	Ecotime Analysis	159
6.3	Definitions	161
6.4.	Mathematical Specification	163
6.4.1	Calculation of Ecotimes	164
6.4.2	Tracing the Appropriation of Ecotimes through the Economic System	169
6.5	Data Sources	170
6.6	Results and Discussion	170
6.6.1	Summary Results	170

6.6.2	Detailed Results for Terrestrial NPP
6.6.3	Relative Indicators for Consumer Goods and Services
6.6.4	Accounting for Economic Stock Changes
6.6.5	Sustainability and Ecotime Analysis
6.7	Summary

Part III	Dynamic Analysis	186

174

180

183

183

185

Chapter	r 7 A Dynamic General Equilibrium-Seeking Model for a 'Closed' Economy	187
7.1	Introduction	187
7.2	Representing Supply, Demand and Price in a System Dynamics Model	190
7.3	Description of the Dynamic General Equilibrium-Seeking Model	194
7.3.1	The Dynamic General Equilibrium-Seeking Model with Constant Factors	194
7.3.2	The Dynamic General Equilibrium-Seeking Model with Factor Growth	280
7.4	Behaviour of the Dynamic General Equilibrium-Seeking Model	213
7.5	Concluding Comments	221

Chapte	A Dynamic Biogeochemical Cycling Model of the Global Environment	224
8.1	Introduction	224
8.2	Dynamic Modelling of the Global Biogeochemical Cycles	224
8.2.1	Mackenzie Model	225
8.2.2	Tool to Assess Regional and Global Environmental and Health	
	Targets for Sustainability	226
8.2.3	Global Unified Meta-model of the Biosphere	226
8.2.4	Integrated Modelling of Global Environmental Change	227
8.2.5	Global Biogeochemical Cycling Model	227
8.2.6	A Note on Climate Models	228
8.3	The Dynamic Global Biogeochemical Cycling Model	229
8.3.1	Environmental Commodity Stocks	229
8.3.2	Environmental Commodity Flows	231
8.3.3	Flow Rate Equations	235
8.3.4	Changes in Stocks over Time	243
8.3.5	Parameters	243
8.4	Steady State Analysis	244
8.5	Contributions, Limitations and Areas for Future Research	251

Chapte	r 9 Towards an Integrated Environment-Economy Model	
	of Global Biogeochemical Cycles	255
9.1	Introduction	255
9.2	Extending the Dynamic General Equilibrium-Seeking Model	256
9.2.1	Energy Input Substitution	258
9.2.2	Crop-type Supply Substitution	259
9.2.3	Capital Input Substitution and Land Constraints	260
9.3	Integration of the Dynamic General Equilibrium-Seeking Model	
	and the Dynamic Biogeochemical Cycling Model	261
9.3.1	Reserves	262
9.3.2	Resources and Residuals Module	264
9.3.3	Other Components of the Ecocycle Model	267
9.4	Setting of Model Parameters	269
9.5	Scenario Analysis	270
9.5.1	The Millennium Ecosystem Assessment Scenarios	270
9.5.2	Scenarios Results	274
9.6	Key Points of Discussion	282
9.7	Model Caveats	284
Chapte	r 10 Conclusion	289
10.1	Introduction	289
10.2	Evaluation of the Thesis against the Research Objectives	290
10.2.1	Objective 1 – Theoretical Interpretations of Sustainability	290
10.2.2	Objective 2 – Static System Analysis	291
10.2.3	Objective 3 – Indicator Development	294
10.2.4	Objective 4 – Dynamic System Analysis	296
10.3	Creation of Symmetric Input-Output Tables	299
List of I	PhD Outputs	300
Refere	nces	303
Append	lix A Input-Output Analysis	370

A.1	Brief History of Input-Output Analysis	370
/	brief filstory of input output / indigsis	5/6

A.2	Descri	ption of Input-Output Analysis	371
A.2.1	The In	put-Output Table	371
A.2.2	Input-	Output Mathematics and Limitations	373
A.3	Enviro	nmental Input-Output	375
A.3.1	Indust	ry by Industry Input-Output Approaches	375
A.3.2	Comm	odity by Industry Input Output Approaches	379
A.4	Physic	al Input-Output Modelling	383
Apper	ndix B	Estimation of Symmetric Input-Output Tables	385
B.1	Introd	uction	385
B.2	Estima	tion of Symmetric Input-Output Tables	387
B.2.1	A Mini	misation Approach to the Estimation of	
	Comm	odity-by-Commodity Tables	389
B.2.2	A Mini	misation Approach to the Estimation of Industry-by-Industry Tables	399
B.2.3	A Com	prehensive Framework for the Estimation of Symmetric	
	Input-	Output Tables	402
B.3	Applic	ation	406
B.3.1	Estima	tion of Commodity-by-Commodity Tables Using the	
	Bohlin	and Widell Model	406
B.3.2	Compa	aring Input-Output Tables Produced by the Commodity-by-Commodity,	
	Indust	ry-by-Industry and Comprehensive Models	407
B.4	Discussion		413
B.5	Summ	ary	414
Apper	ndix C	Economic Industry and Commodity Definitions and Concordances	416
Apper	ndix D	Within Environment Flows	425
Apper	ndix E	Environmental Commodity Stocks	445
Apper	ndix F	Additional Equations for the Dynamic General	
		Equilibrium-Seeking Model	453
F.1	Variab	le Definitions	453
F.2	Equati	ons	454

F.2 Equations

Append	lix G Further Specification of the Ecocycle Model	456
G.1	Energy Module	456
G.1.1	Diagrammatic Representation	456
G.1.2	Variable Definitions	457
G.1.3	Equations	458
G.2	Commodities Module	459
G.2.1	Diagrammatic Representation	459
G.2.2	Variable Definitions	459
G.2.3	Equations	462
G.3	Capital Module	464
G.3.1	Diagrammatic Representation	464
G.3.2	Variable Definitions	464
G.3.3	Equations	467
G.4	Factors Module	469
G.4.1	Diagrammatic Representation	469
G.4.2	Variable Definitions	469
G.4.3	Equations	470
G.5	Reserves Module	471
G.5.1	Diagrammatic Representation	471
G.5.2	Variable Definitions	471
G.5.3	Equations	472
G.6	Resources and Residuals Module	473
G.6.1	Variable Definitions	473
G.6.2	Equations	478
G.7	Summary of Model Arrays	483
Append	lix H Contents of Accompanying CD ROM	488
Append	lix I Administration Forms	489

List of Tables

Table 2.1	Key System Concepts and Implications	39
Table 2.2	Key Principles for Sustainability and their Application in this Thesis	41
Table 3.1	Principal Concepts and Techniques of System Dynamics	67
Table 4.1	Biogeochemical Species Required for Crop Production, 2004	76
Table 4.2	Summary of Direct Material Inputs of C, N, P and S to the Economy	
	(Excluding Biomass Extraction and Production), 2004	78
Table 4.3	Composition of Global Solid Wastes and Allocation to Global Trade	
	Analysis Project Sectors Responsible for Generation, 2004	83
Table 4.4	Composition of Global Wastewater by Source and Allocation to	
	Global Trade Analysis Project Sectors, 2004	86
Table 4.5	Crop Residuals Consumed as Industrial Biofuel by Sector, 2004	88
Table 4.6	Livestock Excrement Production and Manure Management	
	Element Flows, 2004	90
Table 4.7	Distribution of Municipal and Industrial Solid Waste Materials	
	among Waste Treatment Options	91
Table 4.8	Inputs to Environmental Stocks Resulting from Wastewater	
	Treatment and Discharge by Global Trade Analysis Project Sector, 2004	94
Table 4.9	Derivation of Adopted Atmospheric Carbon Emission Rates and	
	Disaggregation to Global Trade Analysis Project Sectors	96
Table 4.10	Derivation of Adopted Atmospheric Nitrogen Emission	
	Rates and Disaggregation to Global Trade Analysis Project Sectors	98
Table 4.11	Derivation of Adopted Atmospheric Sulphur Emission	
	Rates and Disaggregation to Global Trade Analysis Project Sectors	100
Table 4.12	Residuals Discharged to Land (Excluding Solid Waste and	
	Wastewater Discharge), 2004	103
Table 4.13	Summary of Non-Processed Material Flows	106
Table 5.1	Estimated Global Rate of Terrestrial Net Primary Production	129
Table 5.2	Reported Estimates for Terrestrial Vegetation Stoichiometry	131
Table 5.3	Estimated Global Rate of Oceanic Net Primary Production	136
Table 5.4	Environmental Organic Matter Remineralisation, Export and	
	Deposition Flows	141
Table 5.5	Biological Flows at the Atmosphere and Terrestrial Biosphere Interface	147
Table 5.6	Biogeochemical Flows at the Atmosphere and Oceans Interface	152

Table 6.1	Key Terms and their Definitions	162
Table 6.2	Aggregate Commodity-by-Commodity Input-Output Matrix of the	
	Global Carbon Cycle (Pg C yr ⁻¹)	167
Table 6.3	Ecological Overshoot Calculated for a Selection of Biogeochemical	
	Processes, 2004	173
Table 6.4	Calculation of Ecological Overshoot of Terrestrial Net Primary	
	Production - Carbon Cycle, 2004	176
Table 6.5	Calculation of Ecological Overshoot of Terrestrial Net Primary	
	Production - Nitrogen Cycle, 2004	177
Table 6.6	Calculation of Ecological Overshoot of Terrestrial Net Primary	
	Production - Phosphorus Cycle, 2004	178
Table 6.7	Calculation of Ecological Overshoot of Terrestrial Net Primary	
	Production - Sulphur Cycle, 2004	179
Table 6.8	Terrestrial Net Primary Production Ecoprices for Consumer	
	Goods and Services, 2004	182
Table 8.1	C, N, P and S Stocks included in the Dynamic Global Biogeochemical	
	Cycling Model	230
Table 8.2	Biogeochemical Processes and Flows included in the	
	Dynamic Global Biogeochemical Cycling Model	232
Table 9.1	Key Inputs for the Global Orchestration and TechnoGarden Scenarios	272
Table 10.1	Current Limitations of the Dynamic Models/ Topics for Further Research 29	
Table B.1	Use of Fertiliser Inputs by Dairy Cattle Farming (Industry 1)	397
Table B.2	Use of Fertiliser Inputs by Horticulture (Industry 2)	397
Table B.3	The Median Percentage Difference in Technical Coefficients for	
	Commodity-by-Commodity Tables Produced Under Different	
	Assumptions	410
Table B.4	The Median Percentage Difference in Technical Coefficients for	
	Industry-by-Industry Tables Produced Under Different Assumptions	411
Table C.1(a)	Concordance Mapping Global Trade Analysis Project Sectors to	
	Central Product Classification	417
Table C.1(b)	Concordance Mapping Global Trade Analysis Project Sectors to	
	International Standard Industry Classification Revision 3	418
Table C.2	Concordance of FAO Crop Commodity to Global Trade Analysis	
	Project Sectors	419

Table C.3 Concordance Mapping Global Trade Analysis Project Sectors to Input-Output Sectors 424 Table D.1 **Carbon Cycle Flows** 426 Table D.2 Nitrogen Cycle Flows 431 Table D.3 **Phosphorus Cycle Flows** 435 Table D.4 Sulphur Cycle Flows 438 Table D.5 Concordance Mapping Within Environment Biogeochemical Flows Definitions between Chapters 5, 6 and 8 442 Table E.1 Carbon Stocks 446 Table E.2 Nitrogen Stocks 447 Table E.3 **Phosphorus Stocks** 448 Table E.4 449 Sulphur Stocks Table E.5 Concordance Mapping Environment Commodity Stocks between 450 Chapters Table E.6 Reporting Environmental Commodity Stock Concordance 452 Table G.1 Arrays within the Ecocycle Model 484

xvi

List of Figures

Figure 1.1	Key Relationships between Research Aim and Research Objectives	5
Figure 1.2	Interrelationships between the Different Parts of the Thesis and	
	Constituent Chapters	10
Figure 2.1	Millennium Ecosystem Assessment Conceptual Framework	26
Figure 2.2	Non-Equilibrium and Equilibrium Points in Ecosystem Dynamics	34
Figure 3.1	Spheres of Causation for Social-Ecological Systems	46
Figure 3.2	The Environment-Economy System	48
Figure 3.3	Simple Matrix Representation of the Environment-Economy System	55
Figure 3.4	Structure of the Environmentally-Extended Social Accounting Matrix	57
Figure 4.1	Anthropogenic Use and Supply of Global Carbon Stocks (Gg), 2004	109
Figure 4.2	Anthropogenic Use and Supply of Global Nitrogen Stocks (Gg), 2004	110
Figure 4.3	Anthropogenic Use and Supply of Global Phosphorus Stocks (Gg), 2004	111
Figure 4.4	Anthropogenic Use and Supply of Global Sulphur Stocks (Gg), 2004	112
Figure 5.1	Environmental Biogeochemical Flows in the Carbon Cycle	122
Figure 5.2	Environmental Biogeochemical Flows in the Nitrogen Cycle	128
Figure 5.3	Environmental Biogeochemical Flows in the Phosphorus Cycle	138
Figure 5.4	Environmental Biogeochemical Flows in the Sulphur Cycle	150
Figure 6.1	Hypothetical Carbon Cycle	160
Figure 6.2	Commodity-by-Process Representation of Biogeochemical Mass	
	Flows (Pg C yr ⁻¹)	165
Figure 6.3	Commodity-by-Commodity Representation of Biogeochemical	
	Mass Flows (Pg C yr ⁻¹)	165
Figure 7.1	Relationships between Commodity Production, Consumption and Price	191
Figure 7.2	Inventory-Price Stock-Flow Diagram for Commodities	192
Figure 7.3	Commodities Module Influence Diagram	196
Figure 7.4	Industries Module Influence Diagram	200
Figure 7.5	Factors Module Influence Diagram	201
Figure 7.6	Government Module Influence Diagram	204
Figure 7.7	Investment and Savings Module Influence Diagram	206
Figure 7.8	Households Module Influence Diagram	207
Figure 7.9	Labour Module Influence Diagram	210
Figure 7.10	Capital Module Influence Diagram	212
Figure 7.11	Total Economic Output without Economic Shock	215

xviii

Figure 7.12	Household Consumption per Worker without Exogenous Shock	215
Figure 7.13	Average Prices for Capital, Labour and Commodities under	
	the Dynamic General Equilibrium-Seeking Model with Factor Growth	
	and 1% yr ⁻¹ Population Growth, Constant Technology and	
	without Exogenous Shock	216
Figure 7.14	Total Economic Output following an Exogenous Shock at the	
	Base Year, Assuming Constant Technology and Population	218
Figure 7.15	Total Economic Output following an Exogenous Shock at the Base	
	Year, Assuming Constant Technology and 1% yr ⁻¹ Population Growth	218
Figure 7.16	Average Household Consumption per Worker following an	
	Exogenous Shock at the Base Year, Assuming Constant Technology	219
Figure 7.17	Factor and Commodity Prices in the Dynamic General	
	Equilibrium-Seeking Model with Constant Factors following	
	an Exogenous Shock at the Base Year, Assuming Constant Technology	219
Figure 7.18	Factor and Commodity Prices in the Dynamic General	
	Equilibrium-Seeking Model with Factor Growth following an Exogenous	
	Shock at the Base Year, Assuming Constant Labour and Technology	220
Figure 7.19	Factor and Commodity Prices in the Dynamic General Equilibrium-	
	Seeking Model with Factor Growth following an Exogenous Shock	
	at the Base Year, Assuming 1% y $^{ m r-1}$ Labour growth and Constant	
	Technology	220
Figure 8.2	The Carbon Cycle in the Dynamic Global Biogeochemical Cycling Model	239
Figure 8.3	The Nitrogen Cycle in the Dynamic Global Biogeochemical	
	Cycling Model	240
Figure 8.4	The Phosphorus Cycle in the Dynamic Global Biogeochemical	
	Cycling Model	241
Figure 8.5	The Sulphur Cycle in the Dynamic Biogeochemical Global	
	Cycling Model	242
Figure 8.6	Steady State Analysis of Carbon Stocks in the Dynamic Global	
	Biogeochemical Cycling Model, 1000 Year Run	247
Figure 8.7	Steady State Analysis of Nitrogen Stocks in the Dynamic	
	Global Biogeochemical Cycling Model, 1000 Year Run	248
Figure 8.8	Steady State Analysis of Phosphorus Stocks in the	
	Dynamic Global Biogeochemical Cycling Model, 1000 Year Run	249
Figure 8.9	Steady State Analysis of Sulphur Stocks in the Dynamic Global	

	Biogeochemical Cycling Model, 1000 Year Run	250
Figure 9.1	System of Production for a given Industry <i>j</i> under the	
	Dynamic General Equilibrium-Seeking Model	256
Figure 9.2	System of Production for a given Industry <i>j</i> under the Ecocycle Model	257
Figure 9.3	Incorporation of Environmental Reserves within Ecocycle: Overview	262
Figure 9.4	Incorporation of Resources and Residuals within Ecocycle: Overview	264
Figure 9.5	Anthrosphere Carbon Influence Diagram	265
Figure 9.6	Total Economic Output and GDP per Capita under the Global	
	Orchestration and TechnoGarden Scenarios, 2004-34	274
Figure 9.7	Production of Energy Commodities under the Global	
	Orchestration and TechnoGarden Scenarios, 2004-34	274
Figure 9.8	Selected Global Carbon Stocks Under the Global	
	Orchestration and TechnoGarden Scenarios, 2004-34	277
Figure 9.9	Selected Global Nitrogen Stocks Under the Global	
	Orchestration and TechnoGarden Scenarios, 2004-34	277
Figure 9.10	Selected Global Phosphorus Stocks Under the Global	
	Orchestration and TechnoGarden Scenarios, 2004-34	278
Figure 9.11	Selected Global Sulphur Stocks Under the Global	
	Orchestration and TechnoGarden Scenarios, 2004-34	279
Figure 9.12	Ecological Overshoot for Selected C Processes, 2004-34	280
Figure 9.13	Ecological Overshoot for Selected N Processes, 2004-34	280
Figure 9.14	Ecological Overshoot for Selected P Processes, 2004-34	281
Figure 9.15	Ecological Overshoot for Selected S Processes, 2004-34	281
Figure A.1	Input-Output Table for Ireland, 1960	372
Figure A.2	Input-Output Table in Symbolic Terms	373
Figure A.3	The Cumberland Model	376
Figure A.4	The Daly Model	377
Figure A.5	The Leontief Model	378
Figure A.6	Commodity by Industry Input-Output Framework	379
Figure A.7	The Isard Model	380
Figure A.8	The Victor Model	382
Figure A.9	A Physical Input-Output Model	383
Figure G.1	Energy Module Influence Diagram	456
Figure G.2	Commodities Module Influence Diagram	461
Figure G.3	Capital Module Influence Diagram	464

Figure G.4	Factors Module Influence Diagram	469
Figure G.5	Reserves Module Influence Diagram	471

List of Abbreviations

Acronyms		
Acronym	Name	
AR4	IPCC Fourth Assessment Report	
BOD	Biological Oxygen Demand	
CES	Constant Elasticity of Substitution	
CET	Constant Elasticity of Transformation	
CGE	Computable General Equilibrium	
COD	Chemical Oxygen Demand	
CTA	Commodity Technology Assumption	
DGBCM	Dynamic Global Biogeochemical Cycling Model	
DGES	Dynamic General Equilibrium Seeking	
DIC	Dissolved Inorganic Carbon	
DOC	Degradable Organic Carbon	
EDGAR	Emission Database for Global Atmospheric Research	
EF	Ecological Footprint	
ESAM	Environmentally-Extended Social Accounting Matrix	
FAO	Food and Agricultural Organisation	
FCS	Fixed Commodity Sales Structure	
FIS	Fixed Industry Sales Structure	
GHG	Greenhouse Gases	
GTAP	Global Trade Analysis Project	
GUMBO	Global Unified Metamodel of the Biosphere	
IMAGE	Integrated Modelling of Global Environmental Change	
10	Input-Output	
IPCC	Intergovernmental Panel on Climate Change	
ISW	Industrial Solid Waste	
ITA	Industry Technology Assumption	
MA	Millenium Ecosystem Assessment	
MFA	Materials Flow Analysis	
PIOT	Physical Input-Output Table	
SAM	Social Accounting Matrix	
SIOT	Symmetric Input-Output Table	
SUT	Supply-Use Table	
TAR	IPCC Third Assessment Report	
VOCs	Volatile Organic Compounds	
SI Units		
Symbols	Prefixes Multiples	
Z	Zetta 1 000 000 000 000 000 000 000 = 10 ²¹	
E	Exa 1 000 000 000 000 000 000 = 10 ¹⁸	
Р	Peta 1 000 000 000 000 000 = 10 ¹⁵	
Т	Tera 1 000 000 000 = 10 ¹²	
G	Giga 1 000 000 = 10 ⁹	
Μ	Mega $1000000 = 10^6$	
k	kilo $1000 = 10^3$	

Chemical Formula		
Formula	Name	
С	Carbon	
CaCO ₃	Calcium carbonate	
CH_4	Methane	
СО	Carbon monoxide	
CO ₂	Carbon dioxide	
CS ₂	Carbon disulphide	
DMS	Dimethyl sulphide (CH ₃)2 _S	
H_2CO_3	Carbonic acid	
H ₂ S	Hydrogen disulphide	
HCO ₃ ⁻	Bicarbonate	
HNO_3	Nitric acid	
Ν	Nitrogen	
N ₂	Dinitrogen	
N ₂ O	Nitrous oxide	
NH_3	Ammonia	
NH_4^+	Ammonium	
NO	Nitric oxide	
NO ₂	Nitrogen dioxide	
NO ₃ ⁻	Nitrate	
OCS	Carbonyl sulphide	
Р	Phosphorus	
PO4 ³⁻	Phosphate	
S	Sulphur	
SO ₂	Sulphur dioxide	
SO4 ²⁻	Sulphate	