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Abstract

This thesis is divided into two parts. The first part considers and develops some

of the statistics used in genetic programming (GP) while the second uses those

statistics to study and develop a form of incremental evolution and an early

termination heuristic for GP.

The first part looks in detail at success proportion, Koza’s minimum com-

putational effort, and a measure we rename “success effort”. We describe and

develop methods to produce confidence intervals for these measures as well as

confidence intervals for the difference and ratio of these measures.

The second part studies Jackson’s fitness-based incremental evolution. If the

number of fitness evaluations are considered (rather than the number of genera-

tions) then we find some potential benefit through reduction in the effort required

to find a solution. We then automate the incremental evolution method and show

a statistically significant improvement compared to GP with automatically de-

fined functions (ADFs).

The success effort measure is shown to have the critical advantage over Koza’s

measure as it has the ability to include a decreasing cost of failure. We capitalise

on this advantage by demonstrating an early termination heuristic that again

offers a statistically significant advantage.
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Christian Gagné produced Open BEAGLE, GP software that I have con-



viii Preface

tributed to and have used almost exclusively throughout the thesis. He provided

excellent practical discussions surrounding GP and was very helpful when I re-

quested large datasets of GP experiments.

Steffen Christensen was also of considerable assistance when he provided his

absolutely enormous artificial ant datasets.

I’d also like to say a very big thank you to my little sister and my friends.

You provided excellent conversations and emails, or lovely distracting phone calls

and good vibes, or excellent dinners, or just a break away from this work. You

also applied what was highly necessary pressure to get this work done. Thanks.

Finally, I’d like to thank the anonymous reviewers of papers I submitted,

especially the reviewer who voted as best paper the work that turned into chap-

ter 3.

Publications

Parts of this thesis have already been published. The initial work surrounding

the Wilson-Dependent method in chapter 3 was published at EuroGP 2007 [114].

The discussion of its reliability (section 3.2) was published at GECCO a few

months later [115], as was a summary of the confidence interval method for the

success effort statistic (chapter 4) [117]. The more detailed analysis of success ef-

fort that appears in chapter 4 along with parts of the literature review in chapter 2

and the comparisons that appear in chapter 5 were later published at CEC [116].



Table of Contents

Abstract v

Preface vii

1 Introduction 1

1.1 Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Performance Measurements . . . . . . . . . . . . . . . . . . . . . 2

1.3 Performance Comparisons . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Incremental Evolution and Cost of Failure . . . . . . . . . . . . . 3

1.5 Simple Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Objectives and Motivation . . . . . . . . . . . . . . . . . . . . . . 5

1.7 How to Read this Thesis . . . . . . . . . . . . . . . . . . . . . . . 6

I High Quality Performance Measures 7

2 Review: Performance Comparison Measures 9

2.1 The Importance of Statistics . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Comparison of Two Results . . . . . . . . . . . . . . . . . 10

2.2 Success Proportion . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Confidence Intervals for Differences . . . . . . . . . . . . . 14

2.2.4 Confidence Intervals for Ratios . . . . . . . . . . . . . . . 14

2.2.5 Effective Success Probability . . . . . . . . . . . . . . . . . 14

2.3 Minimum Computational Effort . . . . . . . . . . . . . . . . . . . 17

2.3.1 Koza’s Original Definition . . . . . . . . . . . . . . . . . . 17

2.3.2 Dropping the Ceiling Operator . . . . . . . . . . . . . . . 18

2.3.3 Underestimating the True Computational Effort . . . . . . 18



x Table of Contents

2.3.4 Influence of Probability of Success . . . . . . . . . . . . . . 19

2.3.5 Number of Runs . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.6 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . 20

2.4 Mean Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . 21

2.4.2 Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Mean Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . 22

2.6 Average Evaluations to Success . . . . . . . . . . . . . . . . . . . 23

2.7 The Y-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Success Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.9 Summary and Further Reading . . . . . . . . . . . . . . . . . . . 25

3 Minimum Computational Effort 27

3.1 Defining Confidence Intervals . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Normal Approximation Method . . . . . . . . . . . . . . . 27

3.1.2 Wilson-Dependent Method . . . . . . . . . . . . . . . . . . 28

3.1.3 Resampling Statistics Method . . . . . . . . . . . . . . . . 29

3.1.4 When Minimum Generation is Known . . . . . . . . . . . 29

3.1.5 When Minimum Generation is Unknown . . . . . . . . . . 32

3.1.6 Further Analysis of the Wilson-Dependent Method . . . . 35

3.1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Reliability of Confidence Intervals . . . . . . . . . . . . . . . . . . 37

3.2.1 Dependence Issues . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Varying Alpha Values . . . . . . . . . . . . . . . . . . . . 39

3.2.3 Large Minimum Generations . . . . . . . . . . . . . . . . . 43

3.2.4 More Large Datasets . . . . . . . . . . . . . . . . . . . . . 50

3.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Computational Effort near 100% Success . . . . . . . . . . . . . . 52

3.3.1 Coverage with True Success Rate Near 100% . . . . . . . . 53

3.3.2 Coverage with Observed Success Greater than z . . . . . . 58

3.4 Comparing Two Minimum Computational Efforts . . . . . . . . . 61

3.4.1 Simulating Minimum Computational Effort . . . . . . . . . 61

3.4.2 Minimum Computational Effort Differences . . . . . . . . 62

3.4.3 Minimum Computational Effort Ratios . . . . . . . . . . . 62

3.5 Computational Effort versus Success Proportion . . . . . . . . . . 65

3.5.1 Non-Crossing Success Proportions . . . . . . . . . . . . . . 66



Table of Contents xi

3.5.2 Crossing Success Proportions . . . . . . . . . . . . . . . . 68

3.5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Success Effort 73

4.1 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.1 Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Comparing Two Success Efforts . . . . . . . . . . . . . . . . . . . 78

4.3 Success Effort versus Success Proportion . . . . . . . . . . . . . . 79

4.3.1 Non-Crossing Success Proportions . . . . . . . . . . . . . . 81

4.3.2 Crossing Success Proportions . . . . . . . . . . . . . . . . 82

4.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Comparison of the Statistics 87

5.1 Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 A Better Statistic? . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

II Developing Incremental Evolution 97

6 Review: Incremental Evolution 99

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Detail of Incremental Evolution . . . . . . . . . . . . . . . . . . . 100

6.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.2 Functional versus Environmental . . . . . . . . . . . . . . 101

6.2.3 Transferring the Population Between Stages . . . . . . . . 101

6.2.4 Hierarchies, Directions and Concurrency . . . . . . . . . . 101

6.2.5 Diversity and Overtraining . . . . . . . . . . . . . . . . . . 102

6.2.6 Manual Incremental Evolution . . . . . . . . . . . . . . . . 103

6.2.7 Automatic Incremental Evolution . . . . . . . . . . . . . . 104

6.2.8 Success Rates . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.9 Naysayers . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Related Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.1 Layered Learning . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.2 Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.3 Seeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



xii Table of Contents

6.3.4 Co-evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Incremental versus Direct Evolution . . . . . . . . . . . . . . . . . 108

6.4.1 Success Proportion . . . . . . . . . . . . . . . . . . . . . . 109

6.4.2 Quality of a Solution . . . . . . . . . . . . . . . . . . . . . 109

6.4.3 Cost of Finding a Solution . . . . . . . . . . . . . . . . . . 113

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 Direct Evolution 115

7.1 Even-n-Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3 Results without ADFs . . . . . . . . . . . . . . . . . . . . . . . . 117

7.4 Results with ADFs . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.5 Efficiency Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.6 Results to 50 Generations . . . . . . . . . . . . . . . . . . . . . . 126

8 Manual Fitness-Based Incremental Evolution 129

8.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.1.1 Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.1.2 Parameterless Functions . . . . . . . . . . . . . . . . . . . 133

8.1.3 Incremental Evolution with Simplified Problems . . . . . . 135

8.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.3 Results: Unit-Cost Generations . . . . . . . . . . . . . . . . . . . 139

8.3.1 Addition of ADFs . . . . . . . . . . . . . . . . . . . . . . . 139

8.3.2 Allocation of Generations . . . . . . . . . . . . . . . . . . 142

8.3.3 Fitness Cases in Stage One . . . . . . . . . . . . . . . . . . 147

8.3.4 Problem Difficulty . . . . . . . . . . . . . . . . . . . . . . 150

8.3.5 Comparison to Direct Evolution . . . . . . . . . . . . . . . 153

8.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.4 Defending Adjusted Generations . . . . . . . . . . . . . . . . . . . 154

8.4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.4.2 Calculating Adjusted Generations . . . . . . . . . . . . . . 156

8.5 Results: Adjusted Generations . . . . . . . . . . . . . . . . . . . . 157

8.5.1 Addition of ADFs . . . . . . . . . . . . . . . . . . . . . . . 157

8.5.2 Allocation of Generations . . . . . . . . . . . . . . . . . . 157

8.5.3 Fitness Cases in Stage One . . . . . . . . . . . . . . . . . . 161

8.5.4 Problem Difficulty . . . . . . . . . . . . . . . . . . . . . . 162

8.5.5 Comparison to Direct Evolution . . . . . . . . . . . . . . . 164



Table of Contents xiii

8.5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.6 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9 Automatic Fitness-Based Incremental Evolution 167

9.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

9.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

9.3 The Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

9.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

9.5 Results: Unit-Cost Generations . . . . . . . . . . . . . . . . . . . 176

9.5.1 Aggression . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

9.5.2 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

9.5.3 Generations Before Step . . . . . . . . . . . . . . . . . . . 178

9.5.4 Problem Difficulty . . . . . . . . . . . . . . . . . . . . . . 178

9.5.5 Run Length . . . . . . . . . . . . . . . . . . . . . . . . . . 179

9.5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

9.6 Results: Adjusted Generations . . . . . . . . . . . . . . . . . . . . 179

9.6.1 Aggression . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

9.6.2 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

9.6.3 Generations Before Step . . . . . . . . . . . . . . . . . . . 181

9.6.4 Problem Difficulty . . . . . . . . . . . . . . . . . . . . . . 182

9.6.5 Run Length . . . . . . . . . . . . . . . . . . . . . . . . . . 182

9.6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

9.7 Analysis of the Three Measures . . . . . . . . . . . . . . . . . . . 183

9.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

9.9 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

10 Early Termination 187

10.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

10.2 Defending the Early Termination Heuristic . . . . . . . . . . . . . 188

10.2.1 Four Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 188

10.2.2 Koza’s Books . . . . . . . . . . . . . . . . . . . . . . . . . 190

10.3 The Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

10.3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 191

10.4 Direct Evolution Experiments . . . . . . . . . . . . . . . . . . . . 193

10.5 Automatic Incremental Evolution Experiments . . . . . . . . . . . 194

10.5.1 Results: Unit-Cost Generations with Early Termination . . 195

10.5.2 Results: Adjusted Generations with Early Termination . . 197

10.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199



xiv Table of Contents

10.7 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

III Finale 201

11 Conclusions, Contributions, Limitations, Future Research 203

11.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

11.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

11.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

11.4 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

IV Appendices 207

A Success Proportion versus Fitness 209

A.1 Statistical Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . 209

A.1.1 A Point Statistic . . . . . . . . . . . . . . . . . . . . . . . 209

A.1.2 Statistical Independence . . . . . . . . . . . . . . . . . . . 210

A.1.3 Koza’s Minimum Computational Effort . . . . . . . . . . . 211

A.2 Empirical Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . 211

A.2.1 Re-Using the Incremental Evolution Experiments . . . . . 211

A.2.2 Re-Analysing their Results . . . . . . . . . . . . . . . . . . 215

A.2.3 Re-Considering Symbolic Regression . . . . . . . . . . . . 215

A.2.4 Rationalising Negative Correlations . . . . . . . . . . . . . 220

A.3 Philosophical Motivation . . . . . . . . . . . . . . . . . . . . . . . 220

A.3.1 Pro Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . 221

A.3.2 Anti Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . 221

A.3.3 Future Research: A Compromise . . . . . . . . . . . . . . 222

A.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

B Proof of Equation 4.2 225

C Proof of Equation 4.4 227

D Electronic Appendix 231



List of Tables

2.1 Success proportion effort confidence intervals: simulation method 13

2.2 Success prop. confidence intervals: difference of two . . . . . . . . 15

2.3 Success prop. confidence intervals: ratio of two . . . . . . . . . . . 16

3.1 Comp. effort confidence intervals: resampling method . . . . . . . 29

3.2 Comp. effort coverage: by runs, known min. gen. . . . . . . . . . . 31

3.3 Comp. effort coverage: by problem, known min. gen. . . . . . . . 31

3.4 Comp. effort confidence intervals: Wilson-Dependent method . . . 33

3.5 Comp. effort coverage: by runs, estimated min. gen. . . . . . . . . 34

3.6 Comp. effort coverage: by problem, estimated min. gen. . . . . . . 34

3.7 Comp. effort confidence intervals: Resampling-Independent method 38

3.8 Comp. effort coverage: by target coverage . . . . . . . . . . . . . 41

3.9 Comp. effort width: by target coverage . . . . . . . . . . . . . . . 42

3.10 Comp. effort coverage: log-normal model . . . . . . . . . . . . . . 46

3.11 Comp. effort coverage: normal model . . . . . . . . . . . . . . . . 47

3.12 Comp. effort coverage: rectangle model . . . . . . . . . . . . . . . 49

3.13 Comp. effort coverage: right-triangle model . . . . . . . . . . . . . 49

3.14 Comp. effort coverage: left-triangle model . . . . . . . . . . . . . 50

3.15 Comp. effort coverage: semi-ellipse model . . . . . . . . . . . . . . 50

3.16 Comp. effort coverage: extra ant datasets . . . . . . . . . . . . . . 51

3.17 Comp. effort: random number, likelihood distribution . . . . . . . 62

3.18 Comp. effort confidence intervals: difference of two . . . . . . . . 63

3.19 Comp. effort confidence intervals: ratio of two . . . . . . . . . . . 64

3.20 Comp. effort, success prop. comparison: specifications . . . . . . . 68

3.21 Comp. effort, success prop. comparison: performance . . . . . . . 70

4.1 Success effort confidence intervals: resampling method . . . . . . 74

4.2 Success effort confidence intervals: simulation method . . . . . . . 75

4.3 Success effort coverage: by problem . . . . . . . . . . . . . . . . . 77



xvi List of Tables

4.4 Success effort coverage: by runs . . . . . . . . . . . . . . . . . . . 77

4.5 Success effort: random numbers, likelihood distribution . . . . . . 79

4.6 Success effort confidence intervals: difference of two . . . . . . . . 80

4.7 Success effort confidence intervals: ratio of two . . . . . . . . . . . 80

4.8 Success effort, success prop. comparison: specifications . . . . . . 82

4.9 Success effort, success prop. comparison: performance . . . . . . . 84

5.1 Statistics’ best estimate of true value: by problem . . . . . . . . . 88

5.2 Statistics’ coverage: by problem . . . . . . . . . . . . . . . . . . . 89

5.3 Statistics’ coverage: by runs . . . . . . . . . . . . . . . . . . . . . 89

5.4 Statistics’ widths: by problem . . . . . . . . . . . . . . . . . . . . 92

5.5 Statistics’ widths: by runs . . . . . . . . . . . . . . . . . . . . . . 92

7.1 ADF specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2 Direct evolution statistics: by problem size, without ADFs . . . . 119

7.3 Direct evolution statistics: by problem size, with ADFs . . . . . . 122

7.4 Direct evolution stat’s, 50 gen’s: by problem size, with ADFs . . . 126

7.5 Direct evolution stat’s, 50 gen’s: by problem size, without ADFs . 127

8.1 Confidence intervals: efficiency ratio of two efficiency ratios . . . . 141

8.2 Efficiency ratios: even-5, 8 versus 16 fitness cases . . . . . . . . . 149

8.3 Efficiency ratios: even-6, by fitness cases . . . . . . . . . . . . . . 149

8.4 Efficiency ratios: even-7, by fitness cases . . . . . . . . . . . . . . 150

9.1 Automatic inc. evol.: aggressive strategy . . . . . . . . . . . . . . 171

9.2 Automatic inc. evol: less-aggressive strategy . . . . . . . . . . . . 172

9.3 Efficiency ratios: aggression compared to direct evolution . . . . . 177

9.4 Efficiency ratios: aggression . . . . . . . . . . . . . . . . . . . . . 177

10.1 Successful learning curves compared to a straight line . . . . . . . 190

10.2 Statistics comparing early termination to standard . . . . . . . . . 194

A.1 Success prop. versus fitness: correlation, manual inc. evol. . . . . . 212

A.2 Success prop. versus fitness: correlation, auto inc. evol. . . . . . . 213

A.3 Success prop. versus fitness: correlation, Luke and Panait . . . . . 215



List of Figures

3.1 Comp. effort confidence intervals: widths . . . . . . . . . . . . . . 35

3.2 Comp. effort coverage: three methods . . . . . . . . . . . . . . . . 40

3.3 Comp. effort coverage: target coverage . . . . . . . . . . . . . . . 42

3.4 Log-normal model of Ant dataset . . . . . . . . . . . . . . . . . . 44

3.5 The four arbitrarily-selected distributions . . . . . . . . . . . . . . 48

3.6 Success factor for normal and log-normal experiments . . . . . . . 55

3.7 Coverage by success factor for normal and log-normal . . . . . . . 56

3.8 Coverage by success factor and run size for normal and log-normal 57

3.9 Coverage and likelihood by success factor for normal . . . . . . . 59

3.10 Coverage and likelihood by success factor for log-normal . . . . . 60

3.11 Comp. effort: overlapping confidence intervals . . . . . . . . . . . 65

3.12 Comp. effort given success prop. domination . . . . . . . . . . . . 66

3.13 Comp. effort given crossing success proportions . . . . . . . . . . 69

4.1 Success effort given crossing success proportions . . . . . . . . . . 83

5.1 Mean best fitness zero-width confidence intervals . . . . . . . . . . 90

7.1 Direct evolution performance curves: even-4 without ADFs . . . . 118

7.2 Direct evolution performance curves: even-5 without ADFs . . . . 119

7.3 Direct evolution performance curves: even-6 without ADFs . . . . 120

7.4 Direct evolution performance curves: even-4 with ADFs . . . . . . 121

7.5 Direct evolution performance curves: even-5 with ADFs . . . . . . 122

7.6 Direct evolution performance curves: even-6 with ADFs . . . . . . 123

7.7 Direct evolution performance curves: even-7 with ADFs . . . . . . 124

7.8 Efficiency ratios of ADFs . . . . . . . . . . . . . . . . . . . . . . . 125

8.1 Jackson’s results with confidence intervals . . . . . . . . . . . . . 131

8.2 Comp. effort, success prop. curves for even-4, 8 fitness cases . . . 133

8.3 Comp. effort, success prop. curves for even-4, 4 fitness cases . . . 138



xviii List of Figures

8.4 Typical performance under unit-cost generations . . . . . . . . . . 143

8.5 Potential problematic convergence during stage one . . . . . . . . 145

8.6 Genetic convergence unlikely to close route “through failure” . . . 148

8.7 Efficiency ratios: by problem difficulty . . . . . . . . . . . . . . . 152

8.8 Performance: comp. effort versus success effort . . . . . . . . . . . 158

8.9 Reduced cost of failure using adjusted generations . . . . . . . . . 159

8.10 Efficiency ratios: by problem difficulty . . . . . . . . . . . . . . . 163

9.1 Example run: aggressive . . . . . . . . . . . . . . . . . . . . . . . 173

9.2 Example run: less-aggressive . . . . . . . . . . . . . . . . . . . . . 174

9.3 Efficiency ratios: by gen’s before automatic step . . . . . . . . . . 181

9.4 Efficiency ratios: by problem difficulty . . . . . . . . . . . . . . . 182

10.1 Straight lines used to analyse performance of successful runs . . . 189

10.2 Fitness cases correct: auto inc. evol. versus standard . . . . . . . 196

A.1 Success prop. vs. fitness: correlation, manual inc. evol. . . . . . . 214

A.2 Success prop. vs fitness: correlation, Luke & Panit’s symb. reg. . . 216

A.3 Success prop. vs. fitness: correlation, Luke & Panait’s multiplexor 217

A.4 Success prop. vs. fitness: correlation, Luke & Panait’s ant . . . . . 218

A.5 Success prop. vs. fitness: correlation, symbolic regression . . . . . 219



Chapter 1

Introduction

This thesis is divided into two major parts. Part I studies the statistics used in

genetic programming while Part II utilises those statistics to study incremental

evolution—a variation to the genetic programming algorithm.

Genetic programming is one of a class of techniques that fit under the um-

brella term evolutionary computation, which is also known as evolutionary algo-

rithms. Evolutionary computation is a subfield of machine learning (ML) which

itself is a subfield of artificial intelligence (AI). The focus of machine learning is

the development and use of algorithms and techniques that allow computers to

learn; evolutionary computation attempts to achieve that goal through the use

of artificial evolution.

We will use an incremental learning algorithm to encourage evolution of a

successful individual. Incremental evolution is a process of starting from a simple

evolutionary environment that is related to the problem domain, but is not as

challenging. Once success is attained in the simple domain, the population is

transfered to a harder domain, and evolution is allowed to continue. Ideally, the

evolutionary environments become more and more challenging until finally the

goal environment is reached and a successful individual is evolved.

This chapter offers an introduction to some of the main concepts in this thesis.

1.1 Genetic Programming

Genetic programming (GP) is an automated technique that produces computer

programs. Although it is very expensive computationally, GP has been very

successfully applied in some fields. For example, in more than twenty occasions

it has been so successful that it has achieved levels of performance equivalent to

patentable ideas [74, section 1.1.5].
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GP was motivated by the ideas behind Darwin’s theory of evolution: a pop-

ulation of computer programs is kept; “survival of the fittest” is implemented

by assessing the computer programs and culling those that are least effective at

their allocated task; computer programs are bred using both sexual reproductive

operators (termed crossover) and by asexual operators (termed mutation); the

selection and breeding cycles (generations) are continued until a solution is found

or the allocated processing resources have been spent.

A reader familiar with Genetic Algorithms (GAs) [60] will note the similarity

of the GP algorithm to GAs—indeed, GP was borne out of GAs [71].

A reader interested in an introduction to GP might turn to many of the tu-

torials available on the Internet. For a more thorough treatment I recommend

Genetic Programming: An Introduction by Wolfgang Banzhaf et al. [13] or the

original text by John Koza, Genetic Programming: On the Programming of Com-

puters by Means of Natural Selection [71]. A very recently published technical

report by Riccardo Poli et al. [96] offers a freely-available excellent tutorial and

review of the progress in the field.

1.2 Performance Measurements

It is typical in GP research to offer a modification to the original Koza-style

(canonical) approach. A few examples of previous modifications include the abil-

ity to automatically define functions [7, 72], the use of semi-isolated islands [73],

a reduction in the processing requirement to assess individuals’ fitness [44] and

the subdivision of evolution into a sequence of tasks [106]. The developers of each

of these ideas have desired to compare their new idea to the standard approach.

To do this a number of measures have been used.

In chapter 2 we review many of the statistics that have been used in the

field. Two performance measurements dominate the literature: Koza’s minimum

computational effort (which we discuss in detail in chapter 3) and mean best-

of-run fitness (which we analyse in chapter 5). Other methods include success

proportion and mean generation (also analysed in chapter 5). However a primary

contribution of the first part of this thesis is to re-introduce and study a measure

we term success effort (see chapter 4).

The notable problem with a large portion of GP literature is a lack of con-

sideration of sampling error. Sampling error is often measured by calculating a

confidence interval, which is an indication of how confident you should be in a

given measure. If you are given two measurements, say 500,000 and 600,000, how
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confident are you that the sources of the two measurements are in fact different?

If you are given the two measurements and told that they could both be “out”

by up to 200,000 then you now have reason to suspect that the two sources may,

in fact, not differ. A confidence interval tells you how far “out” a measure may

be. Without them, as Peter Angeline said, comparisons are inconclusive [8].

To be fair, before our studies, no one had a reliable method to generate confi-

dence intervals for Koza’s minimum computational effort. It is another primary

contribution of the first part of this thesis that we offer such a method. We also

offer a confidence interval method for the success effort statistic and we collate

the “best practice” methods for success proportion, mean best-of-run fitness, and

mean generation (in chapter 2).

1.3 Performance Comparisons

Performance comparisons between the canonical form of GP and a researcher’s

modification have typically been made with either what Koza termed an efficiency

ratio [72] or by plots per-generation of success proportion or mean best-of-run

fitness.

Another technique to compare performance of two measures is to assess

whether their confidence intervals overlap. Non-overlapping confidence intervals

indicate that one can have confidence that the sources of the two measures are,

in reasonable likelihood, different.

That technique is not as powerful as the use of differences of two measures

or the use of Koza’s efficiency ratios of two measures. However we still need

confidence intervals for differences and ratios. We develop methods to generate

confidence intervals for differences and ratios for both minimum computational

effort and success effort. We also collate best-practice (but fairly unknown in

GP) methods for success proportion.

Further, in sections 3.5 and 4.3 we show that the use of per-generation plots

for success proportion can produce misleading conclusions.

1.4 Incremental Evolution and Cost of Failure

In the second part of this thesis we apply the knowledge obtained from the first

part to assess the performance improvement offered by the use of a form of

incremental evolution. Incremental evolution is a technique (similar to layered
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learning [106, 107]) that breaks up the evolutionary goal into a series of sub-goals.

Chapter 6 discusses the literature surrounding these ideas.

The specific form of incremental evolution is David Jackson’s fitness-based

incremental evolution [67]. We find that it is very difficult to get his method

to outperform canonical GP—especially when using standard measures of the

computational cost of individuals evaluated. However, fitness-based incremen-

tal evolution reduces the number of fitness evaluations required, and if one is

prepared to measure the cost of evolution in terms of evaluations rather than

individuals (a viewpoint we term adjusted generations), then fitness-based incre-

mental evolution shows some potential.

We then further investigate the idea by automating the stages in fitness-based

incremental evolution, and show (under adjusted generations) a statistically sig-

nificant improvement in performance.

One of the keys that we required in order to demonstrate this improvement

was the use of the success effort statistic. In the second part of the thesis one

advantage of success effort as a measure is that (unlike minimum computational

effort) success effort includes the cost of failure. We further capitalise on this

ability to measure the cost of failure when (in chapter 10) we offer an early

termination heuristic for genetic programming.

Without the statistical techniques developed in the first part, we would have

taken the traditional route and stated the size of measured effects, but we would

have been able to give no indication of the variability we would expect from our

results. Thanks to the statistical methods we develop, we are able to give not

only the expected size of effects, but also the confidence that one can have in the

results.

1.5 Simple Problems

Throughout this thesis we study simple problems. In fact, it is a potential issue

with minimum computational effort, success effort and success proportion that

success in the problem is required. Further, for statistical comparisons, the mea-

sures require a fair proportion of runs to succeed. Appendix A considers this

topic.

The use of simple problems is however very common in science. It is through

the process of many experiments that we can study new ideas. In order to execute

many experiments we require that they are not too expensive—and thus they are

labelled simple.
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The statistics offered and recommended in this thesis assume this experi-

mental paradigm. When “hard problems” are being considered it is possible to

categorise experiments as successes or failures by using a performance threshold

(a technique discussed in section A.3.3). However even if this approach isn’t ac-

ceptable, we hope that, from having used these methods on simpler problems,

the lessons learnt will allow for greater success when GP is applied to the real

world.

1.6 Objectives and Motivation

Incremental evolution, in the fitness-based form that we study, is very widely ap-

plicable to genetic programming, and yet it is challenging to apply it successfully.

The central focus of this thesis is to study and improve incremental evolution un-

der genetic programming. To do this we required statistical methods to compare

empirical results.

Specifically, we use the standard scientific method to answer the following

research questions:

• What methods produce reliable confidence intervals for Koza’s Minimum

Computational Effort?

• What methods produce reliable confidence intervals for Success Effort?

• What are the best-practice methods for the production of confidence inter-

vals for Success Proportion, Mean Fitness, and Mean Generation?

• Does manual incremental evolution have the potential to outperform direct

evolution when the generations are weighted based on the amount of work

done per generation (a measure we term adjusted generations)?

• Does automatic incremental evolution on the even-n-parity problem do-

main, statistically significantly outperform direct evolution using adjusted

generations?

• Does the early termination heuristic benefit direct evolution (over even-n-

parity, symbolic regression, multiplexor and ant problems) using adjusted

generations? And does the early termination heuristic benefit automatic

incremental evolution?
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1.7 How to Read this Thesis

If your primary interest is in how this thesis applies to genetic programming,

then please read Part II first. This will provide a demonstration for the benefits

of success effort versus minimum computational effort.

If you would like to apply the statistics used in Part II to your own experi-

mental work, then the key algorithms are in: tables 4.2 and 4.7 (pages 75 and

80) for success effort; tables 3.4 and 3.19 (pages 33 and 64) for minimum com-

putational effort; and equations 2.3 and 2.4 and table 2.3 (pages 13 and 16) for

success proportion.

If you wish to develop the statistics used in genetic programming, or would

like to consider the evidence that the recommended methods do actually work as

intended, then Part I will be of interest.



Part I

High Quality

Performance Measures

for Evaluating

Genetic Programming





Chapter 2

Review: Performance

Comparison Measures

When researchers make alterations to the genetic programming algorithm they

almost invariably wish to measure the change in performance of the evolutionary

system. No one specific measure is standard, but Koza’s minimum computational

effort statistic has been frequently used [85]. Other measures that have been con-

sidered with varying popularity include: success proportion, mean fitness, mean

best-of-generation fitness, mean best-of-run fitness, mean generations (or evalu-

ations), average evaluations to success, the y-test, effective success probability,

effective mean best fitness, and success effort1 .

This chapter reviews these measures and the literature that has discussed

performance comparisons in genetic programming. We focus primarily on the

measures that are used in this thesis: success proportion, minimum computa-

tional effort, and success effort. First, however, we diverge for a discussion on

the importance of statistics.

2.1 The Importance of Statistics

Statistics may be defined as the study of variability. If there were no

variability there would be no need for the science of statistics.

— Clarke and Cooke [24]

Genetic programming is a non-deterministic algorithm [71]. A consequence

of this is that one run will most likely produce a completely different result to

1 To avoid confusion, throughout this thesis, we refer to Miller and Thomson’s “hit effort” [87]
as “success effort” (see section 2.8).
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the next. To answer questions like “how likely is it that I’ll find a solution?”, we

need to execute a number of runs to estimate the answer.

With two different GP systems one can get two such answers. For exam-

ple, configuration A might produce five successes out of ten runs (50% success),

while configuration B might produce seven successes from ten runs (70% success).

Can we conclude that configuration B is better than configuration A? As Peter

Angeline remarked [8], we cannot make that conclusion if all we have are the

percentages. We need to consider, for example, if we were to do the experiment

again, what are the chances that both configurations produce 60% success? Or—

possibly worse still—what are the chances that configuration B’s performance is

beaten by configuration A’s?

The answer depends on the variability associated with the two measures. The

use of statistics can turn the measure and its variability into a statement that we

either can or cannot be confident that the two configurations are indeed different.

(It turns out that, had ten runs been executed for both configurations, Wil-

son’s method—discussed in section 2.2.2—would have informed us that we could

not be confident that they were indeed different.)

There are other techniques to indicate variability other than the use of con-

fidence intervals. Such techniques include the use of standard deviation and

standard error. However, both of these fail to allow a reader to quickly ascertain

whether two results are statistically significantly different. The use of confidence

intervals allows for more intuitive comprehension of results.

2.1.1 Comparison of Two Results

The comparison of two confidence intervals is however not entirely straight-

forward.

It is a common statistical misconception to suppose that two quantities

whose 95% confidence intervals just fail to overlap are significantly different

at the 5% level.

— Goldstein and Healy [49]

A better approach (than the direct comparison of two confidence intervals)

is a confidence interval for the difference of, or the ratio of, two values. If the

confidence interval for the difference includes zero then we cannot be confident

that a difference exists. Equally, if the confidence interval for the ratio of two

values includes one, then we cannot be confident that a difference truly exists.
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Further, these are more powerful techniques (that is, they are more likely to

detect a difference when a difference truly exists) than direct comparison of two

confidence intervals.

However, it is too common in the literature in genetic programming that a

point statistic will be quoted with absolutely no indication of its variability. The

remainder of this chapter discusses the measures that have been used in the field

and the statistical issues that have been raised.

2.2 Success Proportion

Success proportion is at the heart of Koza’s minimum computational effort and

it is also critical to effective success probability and success effort. However, it

has frequently been used in its own right—commonly in the same way as Koza

used it in his first and second books on GP [71, 72]—plotted per generation in

order to assist comparison of two or more GP variations. An example of its use

can be found in the left graph of figure 3.12 (page 66).

In Koza’s parlance [71], the instantaneous probability of success, Y (i), is the

proportion of runs that found a solution after completing execution of generation

i. Success proportion, P (i), is the sum of all values of instantaneous probability

of success at or before the given generation:

P (i) =
∫ i

0
Y (g) · dg (2.1)

In other words, success proportion is the number of runs that have found a

solution at or before generation i divided by the total number of runs in the

experiment. For GP experiments with discrete generations the discrete version

of success proportion is normally used:

P (i) =
i

∑

g=0

Y (g) (2.2)

2.2.1 Dependence

You should note that when success proportion is plotted per generation, the

results are almost certainly not independent of each other. It is most likely that

only one set of experiments was executed and the success proportion at each

generation was plotted. For the results to be independent one set of experiments

would have to be executed up to generation i for each i from zero to the final
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generation. This topic was discussed by Luke and Panait [85] and we will return

to it in appendix A.

The lack of statistical independence reduces our ability to make generation-

to-generation comparisons. However, it does not limit the statistical validity of

comparisons at a specific generation (for example, the last generation of the run).

2.2.2 Confidence Intervals

Because success proportion is a proportion, there are a number of statistical

methods that can be applied to produce associated confidence intervals—in fact,

Newcombe studied seven different methods [91].

Normal-Approximation

Possibly the most common technique is based on an approximation to the normal

distribution. It is assumed that for cases where np > 5 and n(1 − p) > 5 then

confidence intervals are given by:

p± znorm

√

p(1− p)

n

where p is the success proportion, n is the number of runs, and znorm is the

standard normal variate (1.96 for 95% confidence intervals) [24]. However this

method was considered unacceptable by Newcombe: “it is strongly recommended

that intervals calculated by [this method] should no longer be acceptable for

scientific literature; [its use] should be restricted to . . . introductory teaching

purposes”[91]. He pointed out that the method suffers from overshoot as it can

produce intervals that include values beyond what is possible. It can also produce

intervals with zero-width: a statistical aberration. Finally, he demonstrated

that there were many “totally unacceptable” instances where “95%” confidence

intervals did not include the true value 95% of the time.

Wilson’s “Score” Method

Instead of the normal-approximation method, Newcombe favoured Wilson’s “score”

method [123]. To calculate a 95% confidence interval for the true but unknown

proportion of successes based on the observed sample proportion of successes,

p = r/n, given r successes from n runs, these formulae [91] may be used (where

the standard normal variable znorm = 1.96):
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1. Obtain n independent runs. Count the number of successes ns, the number of
failures nf . p = ns

n
.

2. Produce B random variables that follow a beta distribution with parameters
α = pn + 1 and β = (1− p)n + 1. Label these P .

3. Find the ε
2

and 1−ε
2

quantiles of P . These are the limits of a 1− ε confidence
interval for the true value of the success proportion.

Table 2.1: Simulation algorithm to produce confidence intervals for the success
proportion statistic.

upper(p, n) =
2np + znorm

2 + znorm

√

znorm
2 + 4np(1− p)

2(n + znorm
2)

(2.3)

lower(p, n) =
2np + znorm

2 − znorm

√

znorm
2 + 4np(1− p)

2(n + znorm
2)

(2.4)

Newcombe showed that Wilson’s method suffers from neither overshoot nor

the possibility of producing zero-width intervals, and that it has an estimated

mean coverage of 0.952 (which should be compared to the ideal of 0.95 and to

the estimation of 0.88 for the normal-approximation method).2 A continuity-

corrected form was also studied but Newcombe concluded it was unnecessarily

conservative.

Beta Distribution: Simulation

An alternative method based on the Beta distribution, which we will utilise in

the next two chapters, is to produce random numbers based on the likelihood

function. The 2.5% and 97.5% quantiles of a sufficient quantity of such random

numbers represent confidence limits for a 95% confidence interval. The likelihood

function of the true probability of success is proportional to a Beta distribution

whose α variable is np + 1 and whose β variable is n(1 − p) + 1, where p is

the success proportion and n is the number of runs [79]. Table 2.1 defines this

algorithm.

Kim used another approach, but it was also based on use of the Beta distri-

bution [70]. Kim’s method was also described and used by Yannakakis et al. [43].

2 Newcombe’s study was of 96,000 random pairs of n and p with 5 ≤ n ≤ 100 and 0 ≤ p ≤ 0.5.
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2.2.3 Confidence Intervals for Differences

Newcombe studied eleven methods for calculating confidence intervals for the dif-

ference of two proportions [90]. He noted that that two methods based on Wil-

son’s score method were “remarkable”: “They are computationally very tractable

. . . free from aberrations, and achieve better coverage properties than any except

the most complex methods”. The methods came “strongly recommended” over

those commonly in use.

The two methods were a continuity-corrected version and one that was not

corrected. Just as the continuity-corrected Wilson method for confidence inter-

vals for a single proportion was quite conservative, so too was the continuity-

corrected method for the difference. As Newcombe said, “[this] may be inter-

preted to mean the interval is simply unnecessarily wide.” As a consequence we

shall make use of the non-continuity-corrected version.

Table 2.2 gives an algorithm, based on Wilson’s score method, for calculating

a confidence interval for the difference of two proportions. Newcombe’s study

showed this method to have mean coverage close to the nominal 1 − α level:

96.0% when 95% was specified, 91.6% when 90% was specified, and 99.2% at a

nominal rate of 99%. Minimum coverage for those levels were 86.7%, 82.3%, and

91.7%.

2.2.4 Confidence Intervals for Ratios

Although Newcombe offered a Wilson-based method for the confidence interval of

an odds-ratio of two proportions [90, appendix I], he did not offer a Wilson-based

method for the confidence intervals for a ratio of two proportions (also termed a

rate-ratio). Instead he referred to studies by Miettinen and Nurminen, and by

Rothman. We implemented Miettinen and Nurminen’s method [86] and use it

throughout Part II of this thesis. R/S-PLUS code to implement their method is

given in table 2.3.3

2.2.5 Effective Success Probability

An interested reader might also like to consider Steffen Christensen’s effective

success probability which allows comparison of runs with different population

sizes [21, chapter 3].

3Although I have modified this code, I would like to gratefully acknowledge Brad Biggerstaff
as the primary author [18].
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1. Given a successes from m trials of the first experiment and b successes from
n trials of the second experiment, the two proportions of interest are p1 = a

m

and p2 = b
n
. The observed difference is θ = p1 − p2.

2. The lower limit of a confidence interval at the 1−α level is given by θ− δ and
the upper limit is given by θ + ε, where z is the 1 − α

2
point of the standard

Normal distribution, q1 = 1− p1, q2 = 1− p2, and:

l1 =
2a + z2 −

(

z ·
√

z2 + 4a · q1

)

2(m + z2)

u1 =
2a + z2 +

(

z ·
√

z2 + 4a · q1

)

2(m + z2)

l2 =
2b + z2 −

(

z ·
√

z2 + 4b · q2

)

2(n + z2)

u2 =
2b + z2 +

(

z ·
√

z2 + 4b · q2

)

2(n + z2)

δ =
√

(p1 − l1)2 + (u2 − p2)2

ε =
√

(u1 − p1)2 + (p2 − l2)2

Table 2.2: An algorithm to produce a confidence interval at the 1 − α level for
the true difference between two proportions [82, 90].
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# Required arguments:

# x1, x2: number of ’successes’ for binomal variates

# n1, n2: number of observations for each

# Optional arguments:

# alpha: confidence coefficient

# Author:

# Brad Biggerstaff (2001)

proportion_ratio_ci <- function(x1, n1, x2, n2, alpha = 0.05)

{

chi2RR <- function(rr, x1, n1, x2, n2, alpha) {

n <- n1 + n2

A <- n * rr

B <- - (n1 * rr + x1 + n2 + x2 * rr)

C <- x1 + x2

R2 <- ( - B - sqrt(B^2 - 4 * A * C))/(2 * A)

R1 <- R2 * rr

V <- (((R1 * (1 - R1))/n1 + ((rr^2) *

R2 * (1 - R2))/n2) * n)/(n - 1)

r1 <- x1/n1

r2 <- x2/n2

X2 <- ((r1 - r2 * rr)^2)/V

chisq.crit <- qchisq(1 - alpha, 1)

result <- X2 - chisq.crit

result

}

point.est <- (x1/n1)/(x2/n2)

lower.limit <- uniroot(chi2RR, c(1e-007, point.est),

x1 = x1, n1 = n1,

x2 = x2, n2 = n2, alpha = alpha)$root

upper.limit <- uniroot(chi2RR, c(point.est, 1000),

x1 = x1, n1 = n1,

x2 = x2, n2 = n2, alpha = alpha)$root

answer <- data.frame(point.est = point.est,

lower.limit = lower.limit,

upper.limit = upper.limit,

confidence = 1 - alpha)

answer

}

Table 2.3: R/S-PLUS code to produce a 1 − α confidence intervals for the ratio
of two proportions.
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2.3 Minimum Computational Effort

Koza’s minimum computational effort has been one of the most used statistics in

the field of genetic programming [85]. In was used heavily throughout Koza’s first

two books on GP [71, 72]. It was also utilised in his third book, but to a lesser

extent as Koza has appeared to veer away from performance-oriented discussion

and instead focused on discussions about the best evolved individual [73, 74].

Minimum computational effort’s popularity has decreased over time. This could

be due to a series of papers highlighting significant concerns. This section dis-

cusses those concerns while chapter 3 discusses confidence intervals for minimum

computational effort.

2.3.1 Koza’s Original Definition

In Genetic Programming, Koza described a statistic to assess the computational

burden of using GP to find a solution [71, chapter 8]. It calculates the minimum

number of individuals that must be evaluated in order to yield a solution 99% of

the time and was termed minimum computational effort, E.

Computational effort is calculated from the observed success proportion P (i)

(equation 2.1). Given the probability of success from a number of GP runs, we

can calculate how many runs would be required, R(P (i), z), in order to find a

solution at generation i with probability z:

R(p, z) =

⌈

log(1− z)

log(1− p)

⌉

(2.5)

where d·e indicates the ceiling operator (also known as “rounding up”). As is

typical in the literature, z will be set to 0.99 throughout this work.

Now we may calculate the computational effort (the number of individuals

that need to be evaluated to find a solution 99% of the time) for generation i

with a population of M individuals.

I(i, z) = (i + 1) ·R(P (i), z) ·M (2.6)

Koza’s minimum computational effort, E, is the minimum value of I(i, z) over

the range of generations from 0 to the maximum in the experiment.



18 Review: Performance Comparison Measures

2.3.2 Dropping the Ceiling Operator

Christensen and Oppacher [22] suggested that “the GP community might be

well served by dropping the ceiling operator, although this may be subject to

debate”. They showed that use of the ceiling operator tended to overestimate

the computational effort required.

Up to seven years earlier, Andre and Koza [4, 5] had already dropped the use

of the ceiling operator. Their work was republished in Genetic Programming III

in which Koza et al. said that “the rounding up is not required for computing

R(z)” [73, page 208]. The ceiling operator was not used in at least four chapters

of the book4 but no rationale was given for dropping it.

Removing the ceiling operator makes the formula for calculating R(p, z) a

little more complex. There exists an issue about computational efforts calculated

at generations where the cumulative probability of success is greater than z: if the

only change to the definition of R is to remove the ceiling operator, then at such

points the number of runs required drops below one, and it becomes very difficult

to see the practical meaning of the measure. However an even more significant

issue exists when every run eventually finds a solution. In such situations, the

cumulative probability of success reaches 1.0 and R(1.0) = 0. Thus the number

of runs required is zero. This makes the computational effort equal to zero, and

thus the minimum computational effort also zero. This cannot be acceptable.

Our opinion is that the number of runs required should have a lower bound

of one. This means that if the ceiling operator is to be dropped, then:

R(p, z) =







log(1−z)
log(1−p)

if p < z

1 if p ≥ z
(2.7)

Although they did not make it explicit, Koza et al. must have had a similar

expectation in Genetic Programming III as, although the text declares elimina-

tion of the ceiling operator [73, page 330], the graph [73, figure 21.2] effectively

demonstrates the statement R(1.0) = 1.

2.3.3 Underestimating the True Computational Effort

Although the use of the ceiling operator tends to overestimate the computational

burden, Christensen and Oppacher [22] showed that the use of the minimum

operator tends to produce an underestimate of the true computational effort

4Sections 21.1 and 62.3 and chapters 54 and 55 of Genetic Programming III all drop the
use of the ceiling operator.
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required. For their example (albeit artificial) case they demonstrated that the

use of the minimum operator produced an underestimate almost 90% of the time.

Christensen and Oppacher also demonstrated this underestimation with a real

GP problem, the artificial ant on the Santa Fe Trail [71]. They ran a remarkable

27,755 runs to find a best estimate of the true computational effort. They then

selected 10,000 random subsamples of 50 runs from that data. They found that

almost 70% of the observed values for computational effort were below their best

estimate of the true value. The median computational effort of the subsamples

was just 80% of their estimate of the true computational cost.

In order to reduce the magnitude of this underestimation, Christensen and

Oppacher recommended that GP “practitioners choose relatively large run counts

(on the order of 500 runs)”.

2.3.4 Influence of Probability of Success

Miller and Thomson [87] demonstrated results where the minimum computational

effort (E) was being calculated at generations where very few of the runs had

found a solution. They detailed 24 experiments with the artificial ant on the Santa

Fe trail; each was run 100 times. When calculating the minimum computational

effort statistics they found that half the values were obtained at generations

where fewer than 10 runs had found a solution. They concluded that were their

experiments to be run again, the results were “likely to vary enormously”.

Luke and Panait [85] pointed out the same issue: “changes in the Individuals

to be Processed measure and its derived Computational Effort measure are both

greatly exaggerated when small changes occur in ideal solution counts [number

of hits]”.

Niehaus and Banzhaf [92] showed that as the probability of success decreased,

the range of observed values for computational effort increases. Thus the confi-

dence in the accuracy of the minimum computational effort should be reduced

whenever the probability of success is low.

Unfortunately, some quoted minimum computational effort statistics do not

state the number of runs that were successful (or even the generation at which

they were obtained—which along with the population size would allow the cal-

culation). The elimination of this information means that readers are not able to

form even a feeling for the confidence they should have in the quoted statistic.
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2.3.5 Number of Runs

Niehaus and Banzhaf [92] also demonstrated the impact of the number of runs.

As would be expected, the greater the number of runs, the smaller the range of

observed minimum computational efforts. However, they also showed that if the

probability of finding a solution is low, a small number of runs can result in an

enormous range of observed minimum computational efforts. For 50 runs with

a probability of success of 0.2, they showed a range of observed values of more

than 5-fold the theoretical minimum computational effort. Doubling the number

of runs to 100 resulted in more than halving the observed range. They concluded

that “calculating effort based on only 50 [runs] may lead to values quite off the

theoretical values, and that even 200 [runs] often are not sufficient.”

2.3.6 Confidence Intervals

As Angeline [8] pointed out, a key problem with Koza’s computational effort

statistic is that, as defined, it is a point statistic with no confidence interval.

Without a confidence interval, comparisons are inconclusive.

Keijzer et al. [69] used resampling statistics to calculate confidence intervals

on two problem domains. They used a bootstrap sample of 10,000 where they had

executed 100 and 500 runs. However, they did not find the results very useful, “for

the Santa-Fe problem . . . the width of the confidence interval (i.e. the uncertainty

around the statistic) is nearly as large as the value of the computational effort

itself. The confidence intervals clearly show that a straightforward comparison

of computational effort, even differing in an order of magnitude, is not possible.”

Methods to generate confidence intervals for minimum computational effort

are discussed and studied in chapter 3. The study includes the methods that Kei-

jzer et al. may have used. We also offer methods to produce confidence intervals

for the difference and for the ratio of two minimum computational efforts.

2.4 Mean Fitness

Mean fitness, as a measure of performance, vies with minimum computational

effort as the most popular measure in the genetic programming field [85]. It is

popular perhaps because the statistical issues surrounding the use of a mean are

well understood. The measure and its confidence intervals may well have been

introduced to the GP field by Angeline’s 1996 paper [8].
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Mean best-of-run fitness is the sum of the fitness scores for the best individual

in each run up to a specified generation, divided by the number of runs executed.

The statistic is frequently measured at the final generation of each run, but it is

possibly most common to see it graphed for every generation. Just like success

proportion, when shown per generation, it is important to note that the results

are typically not independent across generations.

There are at least three variations of the theme: mean average-of-generation

fitness (also called mean population fitness [21]), mean best-of-generation fitness,

and mean best-of-run fitness (where all the generations are considered and which

we truncate to mean best fitness). Further, the variance of fitness is also a popular

measure [13, section 8.4.3].

Mean fitness is also termed “mean number of hits”, as Koza defined “hit” as

success in a portion of the given problem [71]. Consequently, mean best fitness

may also be termed “mean best number of hits”.

Mean average-of-generation fitness has been shown to converge much more

quickly. Christensen showed it to be more than three times as precise as mean

best-of-generation fitness [21, page 84]. He also suggested that researchers may

have preferred the measure given that “much of population genetics and GA

theory refers to the behaviour of the mean fitness of the population”. However,

he concludes that “we are usually interested in finding the most successful in-

dividuals” and “the behaviour of an auxiliary set of solutions used during the

searching process is not normally of great interest” [21]. Finally, he showed mean

average-of-generation fitness is not a good predictor of mean best-of-generation

fitness.

2.4.1 Confidence Intervals

Given that all forms of the measure are based on the mean, the same method can

be used for the formation of confidence intervals. We will use mean best fitness

as an example.

Mean best fitness is normally distributed (from the Central Limit Theo-

rem [24]), but for the small sample sizes available from GP runs, it has been

considered more appropriate to use a t-distribution [8, 24]. The parameters of

the distribution can be approximated with those observed from the sample. A

1− α confidence interval can be obtained with the formula:

mean(f)± t(n−1,α)
sd(f)√

n
(2.8)
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where mean(f) is the mean best fitness, t(n−1,α) is the t-statistic for the t-

distribution with n− 1 degrees of freedom and a cumulative probability of 1−α,

sd(f) is the standard deviation of the fitness scores, and n is the number of runs

executed.

2.4.2 Variations

Luke suggested a method “to calculate the expected maximum best-fitness-of run

for N total runs”, however he accepted the measure as a point statistic and thus

did not offer a method to generate confidence intervals [83, 85].

Finally, just as with success proportion, an interested reader might also like

to consider Christensen’s effective mean best fitness which allows comparison of

runs with different population sizes [21, chapter 3].

2.5 Mean Generation

When the vast majority of runs complete successfully, mean best fitness is not a

useful statistic for differentiating between the performance of two GP variations.

When this has occurred mean generation has been the preferred statistic [8, 25].

The mean generation is the sum of the generations at which termination

occurred (irrespective of success or failure) divided by the number of runs that

were executed.

2.5.1 Confidence Intervals

The mean of generation-to-termination follows a normal distribution (from the

Central Limit Theorem [24]), however for sample sizes as small as the typical

number of runs in a GP experiment, a t-distribution has been considered more

appropriate [8, 24]. An approximate 1 − α confidence interval can be obtained

with the formula:

mean(g)± t(n−1,α)
sd(g)√

n
(2.9)

where mean(g) is the mean generation, t(n−1,α) is the t-statistic for the t-distribution

with n− 1 degrees of freedom and a cumulative probability of 1−α, sd(g) is the

standard deviation of the generations-to-termination, and n is the number of

runs.
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An alternative method to generate confidence intervals for generation-to-

termination was used by Clegg et al. [25]. They used a Mann-Whitney U test

(also known as a Wilcoxon rank sum test) [24] that effectively ranked the runs by

generation. They gave no indication as to why they elected not to use the more

traditional normal (or t-distribution) approximation. We do not recommend the

use of the rank-sum or U test for this measure (unless the number of runs is

very small) as it is statistically less powerful than tests based on the normal or

t-distribution [24, page 397].

2.6 Average Evaluations to Success

Average evaluations to success is a measure not often used. It is defined as the

average number of evaluations (or generations) of only the successful runs (i.e. the

runs that failed are not included in this measure) [110, section 6.1.2].

Christensen considered this measure in his thesis and concluded it had a num-

ber of flaws [21]. It was sensitive to the cutoff used, correlated to population size,

potentially unstable over the number of evaluations performed, and compromised

even if used on a local scale.

If a practitioner must use it then one benefit is that, like mean fitness and

mean generation, one can use a normal-approximation (or t-distribution for small

samples) thanks to the Central Limit Theorem and the measure’s use of a mean.

2.7 The Y-Test

In chapter 4 of his PhD thesis, Christensen considered the topic of comparing

fitness values when different amounts of work had been done to obtain those

values [21]:

A common problem is that method A delivers better results than method

B, but takes more fitness evaluations to do so . . . this issue can be di-

rectly answered by comparing the median performance of A to a specific

cumulative proportion of B’s performance that exactly compensates for

the difference in evaluation count.

The y-test is a variation of the Mann-Whitney-Wilcoxon t-test that allows

the user to state that two methods are either statistically significantly different

or indistinguishable. For details, the interested reader is referred to Christensen’s

15-page discussion of the statistic [21, pages 105–119].
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The primary issue with the y-test is that, as it stands, it is inappropriate

for use on experimental data where the computational efforts differ for each run.

Section A.3.3 discusses this topic.

2.8 Success Effort

“Success effort” was a measure introduced by Miller and Thomson [87] under the

name “hit effort”. They defined a hit as a run that found a 100%-correct solution.

Given that Koza had earlier defined the term “hit”—as an individual having

success in a portion of the given problem [71]—we felt “hit effort” was a somewhat

confusing name. Consequently, we have renamed Miller and Thomson’s measure

as “success effort”.

Success effort measures the expected number of generations before a solution

will be found. It may be calculated from a collection of runs by:

mean(g)

p
(2.10)

where g is the vector of generations at which the runs terminated (generations-

to-termination) and p is the proportion of runs that found a solution.

In a similar vein to success effort, Lee [80] suggested “a measure of the average

computing cost needed for the first successful run” [70]. This idea was extended

by Kim and a method to produce confidence intervals was offered [70]. Their

focus was on calculating the expected number of runs that would fail before a

success was observed. They used this coefficient as a multiplier of the expected

cost of failure with the expectation that the cost of failure was a constant. If it

was not constant, then their method did not account for that variability. Further,

they assumed that the computational effort only consisted of the runs that failed.

Although they suggested a way to include the cost of success, their method again

failed to include that variability.

Yannakakis et al. developed Kim’s work and combined both the cost of failure

and the cost of success [43]. However, again only the variability of the probability

of success was accounted for in their method to produce confidence intervals.

Chapter 4 discusses the success effort statistic, and studies two techniques for

the production of confidence intervals. The method of choice includes variability

from the success proportion, the cost of failure, and the cost of success. We also

detail methods to produce confidence intervals for the difference and for the ratio

of two success efforts. Section 4.3 compares the measure to success proportion.

Part II utilises this statistic’s ability to include the cost of failure.
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2.9 Summary and Further Reading

For this thesis we utilised Wilson’s method—Newcombe’s recommendation—for

the production of confidence intervals for success proportion. When this was

not appropriate we used the simulation algorithm in table 2.1. In section 3.5

we compare success proportion to minimum computational effort. We make a

similar comparison to success effort in section 4.3. In chapter 5 we compare

success proportion to a number of other statistics. Finally, in appendix A we

tackle Luke and Panait’s idealogical claims that ideal-solution counts (success

proportions), and measures derived from them, are poor measures.

In chapter 3 we develop and analyse confidence interval methods for minimum

computational effort and show that the chosen method is reliable.

We develop and analyse methods for confidence interval generation for success

effort in chapter 4.

Chapter 5 compares mean best-of-run fitness, mean generation, success pro-

portion, minimum computational effort and success effort.

Readers who are interested in further discussion of the statistics in genetic

programming should consider chapter 8 of Genetic Programming: An Introduc-

tion [13] and chapters 3 and 4 of Christensen’s thesis [21].





Chapter 3

Minimum Computational Effort

In Genetic Programming [71], Koza described minimum computational effort,

a statistic to assess the computational burden of using GP. In section 2.3 we

reviewed the literature that has shown up flaws in Koza’s measure such as: it

typically underestimates the true value, it is sensitive to small changes in success

when success proportion is low and it is better to drop the use of the ceiling

operator. But as Angeline [8] pointed out, a key problem with Koza’s computa-

tional effort statistic is that, as defined, it is a point statistic with no confidence

interval—and without a confidence interval, comparisons are inconclusive.

This chapter offers a number of methods to produce confidence intervals for

Koza’s measure. We compare them and study their performance under both real

and simulated data.

3.1 Defining Confidence Intervals

3.1.1 Normal Approximation Method

This section discusses how an approximate 95% confidence interval can be gener-

ated for a computational effort statistic if the true minimum generation is known.

The minimum generation is the generation at which the minimum computational

effort occurs. The method used in this section is the textbook “normal approxi-

mation” method [24].

The cumulative probability of success statistic is calculated from the propor-

tion of the population that has found a solution at a given generation. We may

assume that this proportion is approximately normally distributed [24] and thus

calculate an approximate 95% confidence interval using p±e where e = 2
√

p(1−p)
n

,

p is the proportion of runs that found a solution by the specified generation and n
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is the number of runs performed. Given that cumulative success cannot be below

zero or above one, the confidence interval should be truncated to that range [91].

The minimum and maximum of this confidence interval can be used to gen-

erate an approximate 95% confidence interval for R, the true number of runs

required to find a solution with probability z:

log(1− z)

log(1− (p + e))
≤ R ≤ log(1− z)

log(1− (p− e))
(3.1)

If the minimum and maximum of this range are used in place of R(p, z) in

the formula for computational effort (equation 2.6), the values can be used as an

approximate 95% confidence interval for the true value of Koza’s computational

effort statistic, I(i), for generation i:

(i + 1) ·M · log(1− z)

log(1− (p + e))
≤ I(i) ≤ (i + 1) ·M · log(1− z)

log(1− (p− e))
(3.2)

These confidence intervals are only valid while np > 5 and n(1− p) > 5 [24]

where p = P (i) and n is the number of runs that were executed.

3.1.2 Wilson-Dependent Method

This section discusses the replacement of the normal approximation method with

Wilson’s “score” method (which we discussed in section 2.2.2) when construct-

ing confidence intervals for the computational effort statistic. We will call this

method the Wilson-Dependent method—for reasons that should become clear in

section 3.1.5. It is still assumed that the minimum generation is known.

Using the formulae in equations 2.3 and 2.4, a confidence interval can be

established for the proportion of successful runs: the upper bound is given by

upper(P (i), n) and the lower bound is given by lower(P (i), n). Just as was done

in the previous section, the minimum and maximum of this range can then be

used to calculate a maximum and minimum for the number of runs required to

obtain a solution with probability z. These numbers can then be used with the

known value for the population size, M , to find a 95% confidence interval for the

true computational effort, I(i), at a given generation i:

(i+1) ·M · log(1− z)

log(1− upper(p, n))
≤ I(i) ≤ (i+1) ·M · log(1− z)

log(1− lower(p, n))
(3.3)
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1. Obtain n independent runs. Label these as the source set.

2. Repeat 10,000 times:

(a) Select, with replacement, n runs from the source set.

(b) Calculate the minimum computational effort statistic for the selection. If
zero runs succeeded, the computational effort is infinite.

3. Find the 2.5% and 97.5% quantiles of the 10,000 computational effort statistics.
These provide an upper and lower range on a 95% confidence interval for the
true minimum computational effort.

Table 3.1: Algorithm for the Resampling method.

When the minimum generation is known, the use of the Wilson-Dependent

method produces a valid confidence interval irrespective of the number of runs

or the probability of success.

3.1.3 Resampling Statistics Method

Keijzer et al. [69] are the only group we have found who attempted to generate

a confidence interval for Koza’s computational effort statistic. We implemented

a modified version of their method (see table 3.1).1 When the true minimum

generation is known, the minimum computational effort is calculated for the

selection as the selection’s computational effort at the true minimum generation.

The resampling method always finds a confidence interval irrespective of the

number of runs and the probability of success.

3.1.4 When Minimum Generation is Known

Testing the Validity of the Three Methods

In order to empirically test the validity of these three methods to generate confi-

dence intervals, we ran experiments based on datasets where very large numbers

of runs had been executed2 . The four datasets were:

1 Although Keijzer et al. did not clearly specify their method, they did state that they split
the executed runs into two groups. We study that variation in section 3.2.1.

2 The datasets and complete results are available for download. Please see Appendix D.
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• Ant : Christensen and Oppacher’s 27,755 runs [22] of the artificial ant on

the Santa-Fe trail; panmictic population of 500; best estimate of the true

computational effort 479,344 at generation 183 ; P (18) = 2421
27755

= 0.0872

• Parity : 3,400 runs of even-4-parity without ADFs [71, 72]; panmictic pop-

ulation of 16,000; best estimate of true computational effort 421,074 at

generation 23; P (23) = 3349
3400

= 0.985

• Symbreg : Gagné’s 1,000 runs4 of a symbolic regression problem (x4 + x3 +

x2 + x) [71]; panmictic population of 500; best estimate of true computa-

tional effort 33,299 at generation 12; P (12) = 593
1000

= 0.593

• Multiplexor : Gagné’s 1,000 runs5 of the 11-multiplexor problem [71]; pan-

mictic population of 4,000; best estimate of true computational effort 163,045

at generation 25; P (25) = 947
1000

= 0.947

The computational effort calculations for each dataset (utilising every run)

were treated as a best estimate of the true minimum generation and true mini-

mum computational effort.

For each dataset and for each confidence interval generating method, the fol-

lowing method was applied. A subset of the whole dataset’s runs were randomly

selected (uniformly with replacement). The subset sizes were 25, 50, 75, 100,

200 and 500 runs. These sizes are typical of published work (often 25 to 100

runs, sometimes fewer [71, 72]) and recommendations by statisticians (200 to 500

runs [22, 92]). 10,000 subsets were selected and for each subset the confidence

interval generating method was applied. This simulated 10,000 genetic program-

ming experiments on each of the four problem domains for each of the six run

sizes.

Results and Discussion

For each of the four problem domains and each of the three confidence interval

generation methods, table 3.2 gives the average coverage and the average num-

ber of valid confidence intervals that were produced from the 10,000 simulated

experiments. Table 3.3 gives the same statistics but by run size and method.

So, for example, table 3.2 shows that for the normal approximation method

on the Ant problem domain, an average of 97.1% of the confidence intervals

3This occurred at generation 18 as, like Koza, we have counted the first generation as
generation 0, whereas Christensen and Oppacher labelled it generation 1.

4Our thanks go to Christian Gagné for this dataset
5Thanks again to Christian Gagné for this dataset
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Method \ Problem Ant Parity Symbreg Multiplexor Average

Normal 97.1% 49.4% 95.3% 79.1% 80.3%
7,049 1,787 9,954 4,752 5,885

Wilson-Dependent 95.2% 95.3% 94.9% 95.1% 95.1%
10,000 10,000 10,000 10,000 10,000

Resampling 93.2% 69.9% 94.1% 88.9% 86.5%
10,000 10,000 10,000 10,000 10,000

Table 3.2: Average coverage percentages and average validity statistics by prob-
lem domain when the minimum generation is known. Averages are over 25–500
runs.

Method \ Runs 25 50 75 100 200 500 Average

Normal 48.1% 70.5% 72.9% 98.0% 96.3% 95.9% 80.3%
2,582 3,704 5,007 6,439 7,907 9,674 5,885

Wilson-Dependent 94.6% 95.7% 95.6% 94.7% 95.5% 94.7% 95.1%
10,000 10,000 10,000 10,000 10,000 10,000 10,000

Resampling 72.0% 82.8% 86.9% 88.8% 94.4% 94.3% 86.5%
10,000 10,000 10,000 10,000 10,000 10,000 10,000

Table 3.3: Average coverage percentages and average validity statistics by run
size when the minimum generation is known. Averages are over the four problem
domains.

included the true value of the minimum computational effort (compare that to

the expected result of approximately 95%). This average was produced over

simulated experiment sizes of 25–500 runs. The table also shows that, for the

same setup, an average of 7,049 of the 10,000 simulated experiments produced

valid confidence intervals.

The resampling method had a very poor minimum average coverage of 69.9%

for the Parity domain (see table 3.2). The Normal method also did poorly for

that domain with a coverage score of 49.4%. In contrast, the Wilson-Dependent

method achieved very good coverage levels across all domains and all run sizes

with a minimum coverage of 93.3% (on the Parity domain with 100 runs).

The advantage of the Wilson-Dependent method over the normal approxi-

mation method is clearly demonstrated by the validity statistics in the Parity

problem. Because the probability of success is so high (0.985 over 3,400 runs),

the samples with a low number of runs (25–200) were often unable to satisfy the

normal method’s validity criteria of n(1 − p) > 5. And even when the validity
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criteria were satisfied, for the small runs sizes (i.e. 50 and 75 runs), none of the

confidence intervals included the best estimate of the true computational effort.

The Wilson-Dependent method, on the other hand, produced valid confidence

intervals for all 10,000 samples for every run size and with a coverage of 95.3%

for the experiments in that domain. Where it was fair to make a comparison, the

widths of the confidence intervals were similar.

The Ant domain exemplifies a low probability of success (P (18) = 0.087).

In this case the Normal method had difficulty satisfying its np > 5 criteria,

producing valid confidence intervals for only 6% of the samples with 25 runs and

43% with 50 runs. However, for the confidence intervals that it did produce, the

proportions that included the true value either exceeded or were very close to

the intended 95%. However, yet again the Wilson-Dependent method was the

method of choice as it produced confidence intervals for every sample and with

an average coverage of 95.2%. Further, for almost every run size the Wilson-

Dependent method produced notably tighter confidence intervals.

Finally, the Symbreg domain, with its non-extreme cumulative probability of

success (P (12) = 0.593), levelled the playing field for the Normal method. The

Normal method produced very good average coverage of 95.3% for an average of

99.5% of the samples. The Wilson-Dependent method did only slightly better in

this instance, although the widths of its confidence intervals were a little tighter.

The Resampling method did very poorly over lower (25–100) run counts for

the parity problem (coverages of 32%–78%). This was due to the low probability

that a sample of the population would contain a run that did not find a solution

before the minimum generation. For data where the cumulative success rate is

very high at the minimum generation, it can now be seen that the resampling

method is inappropriate to use.

3.1.5 When Minimum Generation is Unknown

Changes to the Methods

Unfortunately, is it extremely unlikely that a researcher will know the number

of generations at which the true minimum computational effort occurs. This

section discusses how confidence intervals can be established using an estimate

of the true minimum generation.

For a sample of genetic programming runs, the minimum generation can be

estimated by using the technique Koza described. That is, by calculating the

computational effort, I(i), for every generation, i, from 0 to the maximum in the
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1. Obtain n independent runs using a population of size M . Obtain the observed
success proportion, p, and observed minimum generation, j, using all n runs.

2. Obtain the 1−α confidence limits for the true success proportion using Wilson’s
method (equations 2.3 and 2.4). Label these upper and lower limits pu and pl.

3. Approximate 1−α confidence limits for the true minimum computational effort
are given by

El = (j + 1) ·M ·R(pu, z)

and
Eu = (j + 1) ·M ·R(pl, z)

where El is the approximate lower limit and Eu is the approximate upper limit.

Table 3.4: Algorithm for the Wilson-Dependent method.

experiment. The estimated minimum generation is the generation where I(i) is

minimal.

For the generation of confidence intervals, the estimated minimum generation

is used in place of the true minimum generation, but otherwise the three methods

remain unchanged. Table 3.4 describes the Wilson-Dependent algorithm.

From a statistical perspective this introduces dependence between the mea-

surements of minimum generation and the minimum computational effort. Kei-

jzer et al. suggested that the runs in a GP experiment could be divided into two

halves; the first half used to estimate the minimum generation and the second

half used to estimate the minimum computational effort. However the cost of

a GP run is typically so expensive that using only half the runs to establish

computational effort is not seriously considered. This work follows that prag-

matic approach and accepts the dependence (although we re-consider this in

section 3.2).

Because no effort has been made to account for the increased variability in the

estimated computational effort that is due to estimating the minimum generation,

it should be expected that the confidence intervals produced using these methods

would achieve less than 95% coverage.

Results and Discussion

For each problem domain and confidence interval generation method, table 3.5

gives the average coverage and the average number of valid confidence intervals
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Method \ Problem Ant Parity Symbreg Multiplexor Average

Normal 96.1% 63.8% 94.8% 93.1% 86.9%
7,012 1,892 9,839 3,684 5,606

Wilson-Dependent 92.9% 94.0% 94.9% 95.7% 94.4%
9,950 10,000 10,000 10,000 9,988

Resampling 92.4% 65.3% 91.2% 72.3% 80.3%
10,000 10,000 10,000 10,000 10,000

Table 3.5: Average coverage percentages and average validity statistics by prob-
lem domain when the minimum generation is estimated. Averages are over 25–500
runs.

Method \ Runs 25 50 75 100 200 500 Average

Normal 65.1% 72.3% 94.7% 97.3% 96.7% 95.4% 86.9%
2,497 3,770 4,695 5,595 7,212 9,870 5,606

Wilson-Dependent 93.0% 94.4% 94.7% 93.8% 94.9% 95.3% 94.4%
9,928 9,998 10,000 10,000 10,000 10,000 9,988

Resampling 62.2% 73.9% 80.2% 84.5% 89.0% 91.9% 80.3%
10,000 10,000 10,000 10,000 10,000 10,000 10,000

Table 3.6: Average coverage percentages and average validity statistics by run
size when the minimum generation is estimated. Averages are over the four
problem domains.

that were produced. Table 3.6 gives the same statistics but by run size and

method.

Figure 3.1 depicts box and whisker plots of the width of the confidence in-

tervals produced using each of the three methods for each of the six run sizes

on the Ant domain.6 The grey line across each plot indicates the value of the

best estimate of the true computational effort. This line is added to assist un-

derstanding of the magnitude of the widths. The whiskers (indicated by the

dashed line) in the plots extend to the most extreme data point or 1.5 times the

interquartile range from the box, whichever is smaller. In the latter case, points

past the whiskers are considered outliers and are marked with a small circle. The

box-plot for 25 runs using the Resampling method is incomplete as more than

50% of the simulated experiments produced infinite confidence interval widths.

Surprisingly, the use of an estimated minimum generation had very little

negative impact on the coverage of the three methods. Excluding the Parity

6Chapter 5 contains further discussion on confidence interval widths.
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Figure 3.1: Confidence interval widths for the Ant problem domain when the
minimum generation is estimated. Percentages indicate coverage for the specific
configurations.

domain, the Normal method did well with an average coverage of 94.7% (as

against the intended 95%). The Wilson-Dependent method did even better as,

over all problem domains and run sizes, it dropped only slightly to an average of

94.4% (as compared to 95.2% when the true minimum generation was known).

From these results it appears that, even when an estimated minimum generation

is used, the confidence intervals produced by the Wilson-Dependent method are

a good approximation to a 95% confidence interval.

It is hypothesised that the use of an estimated minimum generation had so

little negative effect because the computational effort performance curves flatten

out around the true minimum generation, and that the use of an estimate provides

a result “good enough” for the production of a confidence interval.

Finally, it is worth noting that the median widths of the confidence intervals

are almost always greater than the best estimate of the true value.

3.1.6 Further Analysis of the Wilson-Dependent Method

It is easy to retrospectively apply the Wilson-Dependent method to previously

published results, however, because it is common for published work to fail to

give the cumulative success proportion or the minimum generation at which the

computational effort was calculated, the Wilson-Dependent method is not always

able to be applied. We can instead consider a “best-case” confidence interval,

one that gives the smallest range of computational effort given the number of
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runs executed. In this way we can say that a 95% confidence interval is at least

this range.

To calculate the “best-case” for the lower bound, take the minimum defined

value for each run size across the range of possible values for cumulative proba-

bility of success. More formally,

min
p

R(upper(p, n))− R(p)

R(p)
(3.4)

where p ranges from 0 to 1; upper is the upper bound of a 95% confidence interval

of a proportion (see equation 2.3); n is the number of runs; and

R(p, z) =







log(1−z)
log(1−p)

if p < z

undefined if p ≥ z
(3.5)

The “best-case” for the upper bound is calculated in a similar way, but with

upper replaced with lower , the lower bound in equation 2.4. The “best-case”

scenario is only valid if upper(P (i), n)) < z.

This approach can be used if a computational effort value, E, has been stated

for a specified number of runs, say 50, but without a value for the cumulative

probability of success. In this case we can use the above formulae to calculate a

“best-case” confidence interval for E , the true minimum computation effort, as

(1− 0.26)E ≤ E ≤ (1 + 0.45)E. The true 95% confidence interval will be at least

this size.

3.1.7 Summary

The Wilson-Dependent method is an appropriate way to produce confidence in-

tervals for Koza’s computational effort statistic. From the empirical results, the

use of an estimated minimum generation has little effect on the coverage and

the intervals can be treated as a very good approximation to 95% confidence

intervals.

The Wilson-Dependent method can often be retrospectively applied to earlier

work as only the number of runs and the success proportion at the generation of

minimum computational effort are required. If the number of runs is known but

the success proportion is not known, then a minimum confidence interval can be

generated using the “best-case” approach.

Finally, computational effort may not be the best measurement for comparison

as this study has shown that results that differ by 50% or 100% may, from a

statistical perspective, not be significantly different.
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3.2 Reliability of Confidence Intervals

We have concluded that the Wilson-Dependent method was the best choice for the

production of confidence intervals for Koza’s minimum computational effort: it

is fairly easy to calculate, practically always produces a valid confidence interval,

and the confidence intervals included the true computational effort an appropriate

proportion of the time.

However we left a few questions unanswered. This section attempts to an-

swer some of those open questions: How does the dependence between success

proportion and minimum generation affect performance? How does the method

perform with different levels of confidence? Is the performance reliable for diffi-

cult problems which run for many generations?

3.2.1 Dependence Issues

In section 3.1.5 we assumed that GP practitioners would elect to use all their run-

data to produce estimates of both the minimum generation (j) and the cumulative

probability of success at the estimated minimum generation (P (j)). This is in

contrast to the method proposed by Keijzer et al. [69] who used half their runs to

estimate the minimum generation and the other half to estimate the cumulative

probability of success. The advantage of using their method is that the estimation

of the two variables is statistically independent. This section analyses these two

variations on both the Wilson-Dependent and Resampling methods.

The Wilson-Dependent method has been defined in table 3.4. If we accept

dependence between the estimation of P (j) and j, then j is the generation at

which the minimum computational effort occurs when calculated using the entire

set of runs. P (j) is estimated by the proportion of runs (as calculated over the

entire dataset) which found a solution at or before generation j. This is the

method that was used throughout section 3.1.

If independence between the estimation of P (j) and j is desired, then the

dataset should be divided in two. For this work we considered a division of 1:1

(as Keijzer et al. proposed), but other ratios could be used. j is estimated as the

generation at which the minimum computational effort occurs when calculated

using the first part of the dataset. P (j) is estimated by the proportion of runs

(as calculated over the second part of the dataset) which found a solution at or

before generation j. We will term this method Wilson-Independent.

The resampling method (see section 3.1.3) where the estimation of j and P (j)

were dependent (Resampling-Dependent) was shown to be an inferior choice to
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1. Obtain n independent runs. Label these as the source set.

2. Divide the source set into two parts (S1 and S2) with n1 runs in S1 and n2

runs in S2.

3. Repeat 10,000 times:

(a) Select, with replacement, n1 runs from the set S1 (s1).

(b) Calculate j, the generation at which the minimum computational effort
occurs, for the selection s1.

(c) Select, with replacement, n2 runs from the set S2 (s2).

(d) Calculate the computational effort at generation j for the selection s2. If
zero runs succeeded, the computational effort is infinite.

4. Find the 2.5% and 97.5% quantiles of the 10,000 minimum computational
effort statistics. These provide an upper and lower range on a 95% confidence
interval for the true minimum computational effort.

Table 3.7: Algorithm for the Resampling-Independent method.

Wilson-Dependent. Resampling-Dependent will not be considered any further in

this chapter.

The Resampling-Independent algorithm is defined in table 3.7.

To compare the three methods, Resampling-Independent, Wilson-Dependent,

and Wilson-Independent, the methods were applied to the same large datasets

that were used previously: Ant, Parity, Symbreg, and Multiplexor (see page 29).

For each dataset six simulated run sizes were used: 25, 50, 75, 100, 200, and

500 runs.

For each of the 72 combinations of confidence interval method, dataset, and

simulated run size, 10,000 samples of the specified number of runs were randomly

selected from the problem domain’s large dataset. For each sample the 95%

confidence interval for the sample’s computational effort was calculated using the

specified method. Whether the confidence interval included the best estimate of

the true computational effort (the coverage) was recorded, as was the width of

the confidence interval relative to the best estimate of the true computational

effort.

This process effectively simulates 10,000 genetic programming experiments

over each of the four problem domains and each of the six run sizes, or a total of
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240,000 experiments, for each of the three confidence interval methods.

The minimum computational effort, as calculated over the entire dataset, was

used as the best estimate of the true computational effort for that dataset.

Figure 3.2 plots the results of these experiments. The upper graph gives the

observed coverage by run size (averaged over the four problem domains). The

lower graph gives the median observed confidence interval width as a ratio of the

best estimate of the true computational effort (averaged over the four problem

domains). Because Resampling-Independent produced an infinite-width median

coverage for all bar one of the Ant experiments, only one data point for that

method is plotted on the lower graph. 95% confidence intervals for the coverage

results (upper graph) are smaller than ±0.4 percentage points.

Of the three methods considered, Wilson-Dependent produces observed av-

erage coverage levels that are closest to the target 95%. This alone would make

it the preferred choice, however it has two other advantages. The first advan-

tage is that the width of the confidence intervals are notably tighter; and this

is most obvious at the lower run sizes—run sizes that are most commonly used.

If the data is averaged over problem domain, then Resampling’s infinite-width

issue is confined to just the Ant data, and in this form the Resampling method

produced widths that were at least 67% larger than those produced with Wilson-

Dependent. Wilson-Independent produced widths that were at least 51% larger

than Wilson-Dependent. The second advantage is that confidence intervals pro-

duced by the Wilson method were significantly less computationally expensive

to obtain than those produced via the Resampling method. We conclude that

Wilson-Dependent is the method of choice, and is the method used throughout

the rest of this chapter.

Finally, it appears that the estimated value of j and the estimated value of

R(P (j)) may be correlated. This correlation may explain the enhanced coverage

accuracy of Wilson-Dependent versus Wilson-Independent, but this remains an

open issue.

3.2.2 Varying Alpha Values

In section 3.1, the target coverage level was set at 95%. This section extends our

earlier work by considering the effect on observed coverage levels when the target

coverage level is varied.

Six commonly used target coverage levels (also known as 1 − α values) were

selected. They were: 80%, 85%, 90%, 95%, 99% and 99.9%. The previous
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Figure 3.2: Average observed coverage (upper) and median confidence interval
width ratios (lower) against run size for the three methods, averaged over the
four problem domains. Missing Resampling-Independent data caused by infinite-
width median coverage.
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Target coverage 80% 85% 90% 95% 99% 99.9%
Ant 77.5% 82.7% 87.6% 92.4% 97.5% 99.1%
Multiplexor 79.2% 84.6% 90.7% 95.7% 97.9% 98.2%
Parity 85.2% 89.7% 91.9% 94.0% 95.1% 95.5%
Symbreg 79.1% 84.7% 90.0% 94.9% 99.0% 99.9%

Table 3.8: Coverage statistics by target coverage and problem domain

experimental setup was repeated for each target level, that is: four problem

domains were used (Ant, Parity, Symbreg, and Multiplexor) and six runs sizes

were used (25, 50, 75, 100, 200, and 500 runs).

For each of the 144 combinations of target coverage level, problem domain,

and run size, 10,000 samples of the specified number of runs were randomly se-

lected from the problem domain’s large dataset. For each sample the confidence

interval for the sample’s computational effort was calculated using the Wilson-

Dependent method (with a 1−α value as specified by the target coverage level).

Whether the confidence interval included the true computational effort (the cov-

erage) was recorded.

The cost of increasing the coverage level is an increase in the width of the

confidence intervals. To assess the impact on the confidence interval width, we

also recorded the width of the interval as a ratio of the true computational effort,

for every sample’s confidence interval.

Figure 3.3 plots the mean observed coverage and the ratio of the confidence

interval width for each target coverage level (averaged over the four problem

domains and six run sizes). Tables 3.8 and 3.9 give coverage and width statistics

by problem domain and target coverage level (averaged over the six run sizes).

Results where the sample did not include any successful runs could not produce

a valid confidence interval; such samples were ignored for the calculation of the

averages.

As can be seen from the upper plot of figure 3.3, the observed coverage lev-

els are very close to the target levels up to about 95%. For the two higher

cases of 99% and 99.9% the observed coverage is slightly smaller than the target.

Although these results are highly statistically significant (with 95% confidence

intervals of less than ±0.2 percentage points), one could ask if the four datasets

that were selected are a fair representation of the problem domains on which

this method may be used. This question will always remain open, even though

the domains selected are common GP problems. However, at the very least
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Figure 3.3: Observed coverage (upper) and confidence interval width ratios
(lower) of the Wilson-Dependent method against target coverage, averaged over
all four problem domains and all six run sizes.

Target coverage 80% 85% 90% 95% 99% 99.9%
Ant 1.12 1.28 1.51 1.89 2.71 3.80
Multiplexor 0.37 0.42 0.49 0.60 0.82 1.12
Parity 0.37 0.43 0.51 0.63 0.90 1.24
Symbreg 0.38 0.42 0.49 0.59 0.79 1.04

Table 3.9: Confidence interval width ratios by target coverage and problem do-
main
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the results from the four problem domains do give a good indication that the

Wilson-Dependent method performs as expected with different target coverage

levels between 80% and 95%.

The lower plot of figure 3.3 shows, as expected, that as the target coverage

is decreased, the width of the confidence interval also decreases. However even

with a choice of 80% coverage, the mean observed width was not small: it was

56% of the true computational effort (with a range of 16% to just over two-fold).

The Ant dataset has larger width ratios than the other datasets (due primarily

to its low P (j) value). But even with the Ant dataset removed, 80% coverage

still gives a width ratio of 37%.

3.2.3 Large Minimum Generations

In section 3.1 the confidence interval generation methods were tested on a range of

minimum generations that was quite tight: 12 to 25 generations. It was an open

question as to whether any of the methods would continue to function acceptably

if the true minimum generation were significantly outside this range.

For “difficult problems”, Luke [83] concluded that a solution was more likely

to be found with longer runs than with multiple shorter runs. This would produce

a minimum generation that was much larger than would be obtained were the

traditional approach, of terminating runs longer than 50 generations, taken.

To ensure that the Wilson-Dependent method does not deteriorate with larger

minimum generations, it is important to empirically check its validity in this area.

Unfortunately it is far too computationally expensive to obtain thousands of runs

on problem domains that find solutions only after many hundreds of generations.

Instead we have elected to simulate GP experiments of that difficulty and to

check the Wilson-Dependent method using this simulated data.

Simulating GP Experiments

The distribution which models the generation at which a GP solution will appear

is not known [21, page 158]. In fact, it is highly likely that the distribution is

problem-domain specific. However from the four large datasets that we have

studied, it can be said that the distribution is a smooth curve that peaks at a

specific generation and that may have a long tail to the right.

Many such distributions have been defined that pass this description. In

order to assess the match between these distributions and the large datasets, we

optimised the distributions’ parameters and then tested their quality as models.
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Figure 3.4: The best model (thick grey line) that was found for the Ant dataset
(black line): a log-normal distribution with µ = 16.2 and σ = 2.2.

Distribution Selection The distributions we considered were: Normal, Log-

Normal, Gamma, Weibull, and Beta. Each distribution takes two parameters

to describe its shape. The optimal values for these parameters were found with

a numerical method7 . Figure 3.4 shows one of the better models. Once the

distributions’ parameters were obtained, the models were then compared to the

real dataset using χ2 tests.

To quantify how well the distribution modelled the real data, χ2 tests were

executed for multiple run sizes (25, 50, 100, 200, 300, 400, and 500 runs). For

each run size, 100 samples of that number of runs were randomly generated using

the distribution (with its optimised parameters). For each of the 100 samples a

χ2 test was executed (on bin sizes of one generation, unless the real dataset

contained fewer than 5 successes in a given bin, in which case adjacent bins were

combined until the enlarged bin contained at least 5 successes).

None of the models performed acceptably. Of the five models, the best were

7An implementation of the Nelder and Mead method was used as defined by the optim

function in the statistical software R [99].
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normal and log-normal, but even for those, almost all the samples with more

than 200 runs were classed by the χ2 test as significantly different to the data

they were modelling.

Although we were unable to find an acceptable model we elected to use the

best two distributions (normal and log-normal) for simulating GP runs with large

minimum generations. We limited the experiments to simulate no more than 100

runs.

Probability of Success When considering the cumulative probability curves

of the large datasets (most notably Symbreg and Ant), it appeared that GP runs

may asymptotically tend to a cumulative probability of success that is less than

one. Although it seems reasonable that if a GP run was left to evolve indefinitely

it would eventually find a solution, it would seem that the tails must become very

long indeed [21, page 82].

To model this asymptotic behaviour, a “second level” was added. This asked

the question, “does a given run have any chance of success?”. If the answer was

“yes”, then the chosen distribution was used to answer the question “does success

occur before the cut-off generation?”.

Testing Performance on Simulated Data

Because neither the normal nor the log-normal distributions were shown to be

sufficiently similar to the data after 200 runs, we elected to limit the use of the

models to 25, 50, and 100 runs.

Because appropriate parameters for each model are unknown a range of pa-

rameters were used. For both models the mean was set to 25, 100, 500, and

1000 generations. For the log-normal distribution the standard deviation was set

to 0.5, 1.0, and 2.0 times the mean. For the normal distribution the standard

deviation was set to 1
16

, 1
8
, and 1

4
times the mean. The probability of success

(at the second level) was set to 0.2, 0.5, and 0.8. The cut-off was set to 1,000

generations. The number 500 was used as a population size, but this was just a

scaling factor that had no bearing on the model nor the coverage results.

It was found that when the standard deviation values used for the log-normal

distribution were applied to the normal distribution, they were sufficiently large

to produce a non-zero probability of success at the initial generation. This non-

zero probability was sufficient to set the minimum generation to generation zero.

Koza studied the probability of finding a solution at generation zero for both

the 11-multiplexor and 6-multiplexor problems [71, page 207]. He tested up to
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Mean 25 100 500 1000
93.6% 91.5% 90.6% 91.1%

Std. dev. 0.5 1.0 2.0
93.6% 91.7% 89.9%

Success prop. 0.2 0.5 0.8
90.1% 92.2% 92.7%

Runs 25 50 100
90.2% 92.0% 93.0%

Table 3.10: Coverage statistics for the log-normal model

10,000,000 individuals, and found that none were successful; that is a probability

of success of less than 0.000001. Because the work in this section was intended

to model problems significantly harder than the two Koza studied, the standard

deviations used for the normal distribution were reduced.

For each of the 216 combinations of distribution, mean, standard deviation,

probability of success, and number of runs, one million simulated runs were gener-

ated using the specified distribution. From these simulated runs, 10,000 samples

of the specified number of runs were randomly selected. For each sample the 95%

confidence interval for the sample’s computational effort was calculated using the

Wilson-Dependent method. Whether the confidence interval included the true

computational effort (the coverage) was recorded.

The true computational effort was obtained by calculating

min
i

(i + 1) ·R(P (i) · p) ·M (3.6)

where: R is the function for calculating the number of runs required (equa-

tion 2.7); P (i) is the cumulative proportion given by the distribution function;

p is the probability of success (at the second level); i is the generation which

ranged from 0 to 1000; and M is the population size (where 500 was used).

Tables 3.10 and 3.11 summarise these results. The log-normal model had an

average coverage of 91.7% and the normal model had an average of 94.6%. These

should be compared with the desired coverage of 95%.

So, for the log-normal model (table 3.10), the average coverage for a mean of

25 generations (as seen in the top left cell) was 93.6%. This coverage is an average

coverage for all parameter combinations where the mean was set to 25. Similarly,
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Mean 25 100 500 1000
94.8% 94.7% 94.8% 94.4%

Std. dev. 1
16

1
8

1
4

94.9% 94.8% 94.3%

Success prop. 0.2 0.5 0.8
94.1% 94.9% 94.9%

Runs 25 50 100
94.4% 94.9% 94.7%

Table 3.11: Coverage statistics for the normal model

for the normal model (table 3.11), for all parameter combinations where run size

was set to 100 runs, an average of 94.8% of the samples produced a confidence

interval that included the true computational effort.

For the log-normal distribution, the minimum generation ranged from 7 to

1000 generations with a mean of 299 and an upper quartile of 523 generations.

For the normal distribution the minimum generation ranged from 28 to 1000

generations with a mean of 447 and an upper quartile of 799 generations. Thus

the minimum generations that were considered in this study were significantly

larger than those observed in the experiments originally executed.

Both models showed reduced coverage as the standard deviation increased.

Both models produced increased coverage levels as the success proportion in-

creased, and mostly increased coverage as the number of runs increased.

From these results, if your GP data follows a normal or log-normal distri-

bution, it appears that the confidence interval generation method based on the

Wilson-Dependent method produces coverage levels that are a good approxima-

tion to a 95% confidence interval.

Arbitrary Distributions

Given the success with the normal and log-normal distributions, we continued

the investigation with some arbitrarily selected distributions. The objective in

this study was to see if the similar success could be obtained with the alternative

distributions.

Figure 3.5 shows the four new distributions that were selected. All four distri-

butions had zero-values between 0–49 generations and 951–1000 generations and
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Figure 3.5: Density versus generation for the four arbitrarily-selected distribu-
tions.

had a cumulative probability (the area under the graph) of one. The four distri-

butions were: a rectangular shape; a triangular shaped distribution that sloped

from 0 at 50 generations to a peak at 950 generations (termed Right-Triangle);

a triangular shape that sloped from a peak at 50 generations down to 0 at 950

generations (termed Left-Triangle); and a semi-ellipse.

To test the coverage of the Wilson-Dependent method on these distributions,

three variables were required: the distribution, the success proportion (at the

second level), and the number of runs. The success proportion was given the

same three values as before: 0.2, 0.5, and 0.8. However, the number of runs in

each sample was extended to include 25, 50, 100, 200, and 500 runs.

For each of the 60 combinations of distribution, success proportion, and runs

size, 100,000 simulated runs were generated using the specified distribution. From

these simulated runs, 1,000 samples of the specified number of runs were randomly

selected. For each sample the 95% confidence interval for the sample’s compu-

tational effort was calculated using the Wilson-Dependent method. Whether

the confidence interval included the true computational effort (the coverage) was

recorded.
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Success prop. 0.2 0.5 0.8
92.7% 95.1% 95.3%

Runs 25 50 100 200 500
93.2% 94.4% 94.5% 94.9% 94.8%

Table 3.12: Coverage statistics for the Rectangle model

Success prop. 0.2 0.5 0.8
94.9% 95.3% 94.6%

Runs 25 50 100 200 500
95.3% 95.3% 94.0% 95.1% 95.0%

Table 3.13: Coverage statistics for the Right-Triangle model

The minimum generation was 951 for Rectangle and Right-Triangle. Left-

Triangle’s minimum generation ranged from 341 to 692 generations and Semi-

Ellipse’s ranged from 817 to 928 generations—with the specific value dependent

on the success proportion.

Tables 3.12, 3.13, 3.14 and 3.15 show the coverage results for the four distri-

butions. The Wilson-Dependent method produced an average coverage of 94.4%

for Rectangle, 94.9% for Right-Triangle, 91.1% for Left-Triangle, and 94.0% for

Semi-Ellipse.

Although the average coverage for Left-Triangle dips to 91.1%, this should

be compared to Robert Newcombe’s analysis of the performance of the normal-

approximation method for confidence intervals for a proportion [91]. He showed

that method to have an estimated mean coverage of 88%. In that light, the

Wilson-Dependent method on the Left-Triangle data performs better than that

generally-accepted and widely used method.

These results are very interesting. They show that the performance of the

Wilson-Dependent method is not affected by the distribution of successes—even

with these four far-from-typical distributions. The results also give further evi-

dence that the method is not sensitive to the magnitude of the minimum gener-

ation.
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Success prop. 0.2 0.5 0.8
89.7% 90.7% 92.8%

Runs 25 50 100 200 500
88.1% 89.9% 91.3% 92.5% 93.7%

Table 3.14: Coverage statistics for the Left-Triangle model

Success prop. 0.2 0.5 0.8
92.5% 94.0% 95.4%

Runs 25 50 100 200 500
93.7% 93.4% 93.4% 94.3% 95.1%

Table 3.15: Coverage statistics for the Semi-Ellipse model

3.2.4 More Large Datasets

Steffen Christensen executed some enormously large number of runs on the Ant

problem domain [21]. This section analyses the performance of the confidence

intervals for these real datasets.

The four datasets were all based on the artificial ant on the Santa-Fe trail,

a problem domain detailed in Genetic Programming [71, section 3.3.2] and com-

monly used as a benchmark for variations of GP. The four datasets that Chris-

tensen produced vary by population size and the generation at which the runs

were cut off. The four datasets are:

• Ant m10000g25 : Panmictic population of 10,000; cutoff of 25 generations;

12,280 runs; best estimate of the true computational effort 478,506 at gen-

eration 15; P (15) = 9,647
12,280

= 0.786

• Ant m1000g150 : Panmictic population of 1,000; cutoff of 150 generations;

40,010 runs; best estimate of the true computational effort 446,801 at gen-

eration 17; P (17) = 6,775
40,010

= 0.169

• Ant m250g60 : Panmictic population of 250; cutoff of 60 generations; 400,625

runs; best estimate of the true computational effort 488,518 at generation

19; P (19) = 18,445
400,625

= 0.0460

• Ant m250g1000 : Panmictic population of 250; cutoff of 1,000 generations;

8,000 runs; best estimate of the true computational effort 503,594 at gen-

eration 20; P (20) = 355
8,000

= 0.0444
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Run size 25 50 75 100 200 500 Average
m10000g25 95.9% 95.4% 95.3% 94.7% 95.0% 94.9% 95.2%
m1000g150 92.4% 94.4% 94.0% 94.8% 95.2% 94.7% 94.2%
m250g60 74.9% 89.4% 90.1% 92.4% 93.5% 93.8% 89.0%
m250g1000 78.4% 88.8% 91.8% 92.1% 93.3% 94.6% 89.8%
Average 85.4% 92.0% 92.8% 93.5% 94.3% 94.5% 92.1%

Table 3.16: Coverage statistics, by run size and dataset, for the four extra Ant
datasets.

These datasets are interesting because, whereas the experiments in section 3.1

covered P (j) values that were biased towards one, these datasets are biased

towards a cumulative success (at the minimum generation) of zero. To enable

direct comparison with the earlier results, run sizes were simulated at 25, 50, 75,

100, 200, and 500 runs.

For each of the 24 combinations of dataset and run size, 10,000 samples of

the specified number of runs were randomly selected from the specified large

dataset. For each sample the 95% confidence interval for the sample’s computa-

tional effort was calculated using the Wilson-Dependent method. Whether the

confidence interval included the best estimate of the true computational effort

(the coverage) was recorded. The best estimate of the true computational effort

was the computational effort calculated over the entire dataset.

Table 3.16 shows the results of these experiments. 95% confidence intervals

for these results are at most ±1 percentage point, and in most cases will be no

more than ±0.5 percentage points.

For the two datasets with the higher values for P (j) (m10000g25 and m1000-

g150), the performance of the Wilson-Dependent method is very good, averaging

95.2% and 94.2% coverage. For the other two datasets (m250g60 and m250g1000),

the performance is good except for the smaller run sizes (specifically 25 runs).

However, for the smaller run sizes, it is worth noting that the granularity of

the estimate of P (j) is of the same order as the best estimate of the true value.

In other words, for the case where 25 runs are being sampled, we should expect

just one of the runs to succeed ( 1
25

= 0.04 and the two values for P (j) were

0.0460 and 0.0444). Thus, a variation in success of just one run is a variation of

approximately ±100% of the true value.

It is also worth noting that, although the only difference between m250g60

and m250g1000 was that the former had a shorter cutoff value (a variable that

would not have affected the true computational effort), there was still a 3.1%
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difference between their estimated computational efforts—and that was with an

enormous number of runs.

So, as might be expected, if the cumulative probability of success at the

minimum generation is very small compared to the granularity produced by the

number of runs, the coverage of the Wilson-Dependent method deteriorates.

However, the general picture provided by these datasets is that the method

to produce confidence intervals for minimum computational effort is reliable.

3.2.5 Summary

This research has extended the work in section 3.1 on the production of confi-

dence intervals. We have shown that the Wilson-Dependent confidence interval

production method is reliable; specifically that:

• It out-performs other methods, in terms of both appropriate coverage levels

and tighter confidence interval widths.

• It performs well at different target coverage levels, especially those between

80% and 95%.

• It performs well across a large range of minimum generations (10 to 1,000

generations) on simulated datasets.

• It appears to be insensitive to the distribution of generations of successful

runs.

• It performs well on a number of datasets collected from real GP runs.

The method should be applicable to all genetic programming runs where the

generations-to-success follows a normal, log-normal, or similar distribution—we

even showed the Wilson-Dependent method was reliable under four very extreme

distributions. We hypothesise that these cases cover all genetic programming

experiments, but with the limitation that success is sufficiently common to make

the confidence intervals useful.

3.3 Computational Effort near 100% Success

There is an interesting effect on minimum computational effort confidence in-

tervals that are calculated with the Wilson-Dependent method from cumulative
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success rates close to 100%. In such situations the confidence interval can be bi-

ased above the calculated value: if the observed probability of success is greater

than or equal to z8 then the lower bound of the confidence interval will be the

same as the calculated value. This section discusses this phenomenon and its

effect on the coverage rates of the confidence intervals.

We have already studied a system where this issue would have had an impact:

the Parity domain in section 3.1.5, where 99.6% of the 3,400 runs found a solu-

tion and the cumulative probability of success at the minimum generation was

0.985. In that case the coverage rate dropped to 94.0% (see table 3.5). Although

that result indicated the reliability of the Wilson-Dependent method to generate

appropriate confidence intervals, we go further here by considering a range of

minimum generations and variations in the cumulative success proportion curve.

For this study we are interested in the case where the lower limit of the

minimum computational effort confidence interval is the same as the calculated

minimum computational effort. This can only occur when the upper limit of the

confidence interval for cumulative probability of success is equal to the observed

cumulative probability of success, and that can only happen when the observed

cumulative probability of success is greater than or equal to z because at that

point the function R is clamped to one (see equation 2.7 on page 18).

Two questions that will be answered in this section. The first, “what is the

coverage like when the true success rate approaches 100%?”, allows comparison

with the earlier studies. The second, “what is the coverage like given an observed

success rate greater than z?”, is perhaps the more practical question and will

give an indication of the reliability of confidence intervals that are affected by

this issue.

3.3.1 Coverage with True Success Rate Near 100%

This section answers the question “what is the coverage like when the true success

rate approaches 100%?”. We will show that the method’s performance is accept-

able when compared with the performance of other confidence interval generating

methods.

Method

For this question it would be preferable to use data from real genetic programming

runs. Obtaining such data is, unfortunately, currently too demanding computa-

8 The variable z is introduced in section 2.3.1 and, as is common, is set to 0.99 throughout
this work.
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tionally. Instead we have chosen to simulate GP data using the assumption that

the success proportion curves are either normally or log-normally distributed—

the two most accurate approximations that we found to real GP data (see sec-

tion 3.2.3).

Normal For the normally-distributed experiments, we simulated the success

probability curves using three different means (25, 100, 500 generations) and

three different standard deviations of 1
16

, 1
8
, and 1

4
times the mean. Each of these

curves were multiplicatively scaled by a “success factor”—making success factor

equivalent to the true cumulative success probability after an infinite number of

generations. Nine success factors were used (90%, 95%, 96%, 97%, 98%, 99%,

99.5%, 99.9%, and 100%). Each of these 81 configurations were repeated for

six different run sizes (25, 50, 75, 100, 200, and 500 runs), giving a total of 486

configurations.

For each configuration of mean, standard deviation, success factor, and run

size, one million simulated runs were generated using a normal distribution. For

success factors of 95%, 99%, 99.5%, 99.9%, and 100%, from these simulated runs,

10,000 samples of the specified number of runs were randomly selected (with

replacement). For the other success factors 1,000 samples were obtained. For

each sample a 95% confidence interval for the sample’s computational effort was

calculated using the Wilson-Dependent method. Whether the confidence interval

included the true minimum computational effort (the coverage) was recorded.

The true computational effort was obtained by calculating

min
i

(i + 1) ·R(P (i) · p) ·M

where: R is the function for calculating the number of runs required (equa-

tion 2.7); P (i) is the cumulative proportion given by the normal distribution

function; p is the specified success factor; i is the generation which ranged from

0 to 1000; and M is the population size (effectively just a scaling factor; 500 was

used).

Log-Normal For the log-normally distributed experiments, a very similar pro-

cedure was followed. The only differences were that:

• The distribution was log-normal.

• Ten success factors were considered (90%, 95%, 96%, 97%, 98%, 99%

99.25%, 99.5%, 99.75% and 100%).
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Figure 3.6: Success factor versus true success proportion at the true minimum
generation for the Normal and Log-normal experiments.

• 1,000 samples were taken for each of the configurations.

• Only one standard deviation scaler was used ( 1
2
).

Results and Discussion

It is of use to note the relationship between success factor and the true cumu-

lative success at the true minimum generation. For the normally distributed

experiments, the specified success factor is an acceptable indicator but for the

log-normal experiments this approximation is less accurate. Figure 3.6 graphs

these relationships. It should be noted that the true success proportion at the

true minimum generation cannot be greater than the value for success factor.

Figure 3.7 plots the observed coverage rates for the different success factors for

the normal and log-normal experiments. Both curves show good coverage rates

near the desired 95% level up to a success effort of about 99% at which point

they both drop markedly. However, when they drop, although they fall quickly,

at worst the drop was to 78% when 95% was specified. Although this is far

from ideal, this range of coverage is not unlike that observed by Newcombe [91]
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Figure 3.7: Observed coverage against success factor for the Normal and Log-
normal experiments. Confidence intervals are less than ±1.5 percentage points
for Normal and ±2.0 percentage points for Log-normal.

regarding Wilson’s method (where the minimum observed coverage was 83%)

and the “Likelihood based” method (where the minimum was 80%), and it is far

superior to the frequently used normal-approximation method with a minimum

observed coverage of 0.02%!

Further, it is not uncommon for confidence interval measures to be unreliable

at extreme values. A commonly known example would be the rule-of-thumb for

normal-approximation confidence intervals for proportions: one should satisfy

the equations np > 5 and n(1− p) > 5 before the intervals are valid [24]. But for

extreme values of p (close to either zero or one) the products can be very small,

thus reducing the quality of the underlying assumptions which has a direct result

on the quality of the confidence intervals.

An analysis by both run size and success factor shows that the drop at high

success factors is greater for higher run sizes, thus for those with a high success

factor, increasing the run size decreases the coverage rates. Figure 3.8 graphs

this effect.
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Figure 3.8: Observed coverage and run size against success factor for the Normal
and Log-normal experiments.
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The minimum generation ranged from 29 to 848 generations but because of

the bias towards very high success proportions, the mean minimum generation

was just 285.

An interesting effect occurs when the observed probability of success is greater

than z and either a very large number of runs was executed or the confidence

(1 − α) level is reduced. In some cases it is possible that the lower limit of the

confidence interval for cumulative probability of success does not drop below z.

When this occurs the function R(p, z) is clamped to one for both the upper and

lower limits, thus producing a zero width confidence interval for the minimum

computational effort. Zero width intervals are an obvious indication of failure

in any method to generate confidence intervals. Fortunately, this is an unlikely

scenario. Of the experiments, only those at 500 runs demonstrated this issue,

and even then only at very low rates: from 0.2% at a success factor of 99.5% up

to 2% when the success factor was 100%.

3.3.2 Coverage with Observed Success Greater than z

This section answers the question “what is the coverage like given an observed

cumulative success at the minimum generation that is greater than z?”. It is

perhaps a more useful question than that of the previous section as it is more

pragmatic: it is highly unlikely that a practitioner will know the true success rate

but instead highly likely that they will have an observation for which they are

interested in the coverage rate they can expect.

Method

Ideally this study would consider a collection of experiments where the observed

cumulative success was greater than or equal to z. Given their true computational

effort, we could then calculate the coverage rates and analyse the experiments’

configurations for trends. Unfortunately, this is not feasible. If we were to at-

tempt to use real GP runs, then the true computational effort is not known and

many many runs would have to be made to estimate it. But one configuration

is not sufficient to assess the general coverage rate, so many different real GP

runs would be required and many of those wouldn’t produce the desired value

of the observed probability of success thus resulting in an utterly unacceptably

large computational requirement. The feasibility increases if we simulate GP

data rather than use real runs, but we would still be left with the question of

what configurations to simulate.

Instead, we will take a slightly different approach and consider a set of ex-

periments that are both likely to produce data where the observed cumulative
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Figure 3.9: Success factor versus coverage percentage (left) and success factor
versus likelihood (right) for the Normal experiments. 95% confidence intervals
are shown for both graphs.

success is greater than or equal to z, and to be generally representative of real-

world experiments where this effect would occur. Analysing the data will give

us some indication for how the Wilson-Dependent method deteriorates in this

extreme case.

For this we can re-use the experimental data from the previous section. From

each of the samples obtained earlier we selected those with an observed success

proportion that was larger than z at the observed minimum generation. The

proportion of such cases was noted and will be discussed as the likelihood that

the sample was affected. The coverage of the selected samples was also observed.

Results and Discussion

Figure 3.9 graphs the results for the normally-distributed experiments while fig-

ure 3.10 graphs the results for those log-normally distributed.

The left-hand graphs indicate the coverage rates that were observed. For both

the Normal and Log-normal experiments, coverage was worst when the success
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Figure 3.10: Success factor versus coverage percentage (left) and success factor
versus likelihood (right) for the Log-normal experiments. 95% confidence inter-
vals are shown for both graphs.
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factor was at 90% and it peaked at a success factor of about 99%. It should be

remembered that a target coverage of 95% was specified.

Thankfully for both experiments, the lowest coverage rates were correlated to

the lowest likelihoods of observation (as shown in the right-hand graphs).

An average coverage can be calculated, weighting the observed values by their

likelihood and by their associated widths. Doing this gives an average expected

coverage of 82% for both Normal and Log-normal, although it ranges by run size

(coverage generally decreased as the number of runs increased).

If the true minimum generation had been known and used then we could have

expected that at a true success rate of 99.5%, 100% coverage would have been

observed. This could be expected because the only variability would come from

the measurement of the success rate, and Wilson’s method on the two extreme

possibilities (99% and 100%), for all simulated run sizes, produces confidence

intervals that include 99.5%. However 100% coverage is not observed, instead

the observed value plummeted to 83%. This difference is entirely explained by

the variability associated with the measurement of the minimum generation.

3.4 Comparing Two Minimum Computational

Efforts

In this section we first discuss a method to produce random numbers distributed

according to the likelihood of the true minimum computational effort. Using that

method we can then offer methods to find confidence intervals for two related

measures: (i) the difference between, and (ii) the ratio of, two observed values of

minimum computational effort.

3.4.1 Simulating Minimum Computational Effort

It is possible to substitute the use of Wilson’s method for a Beta-distribution-

based simulation method as the two methods offer the same effect—a confidence

interval for a proportion. If we make that change in the Wilson-Dependent

algorithm (table 3.4) we have the ability to produce random numbers distributed

according to the likelihood of the true minimum computational effort. Table 3.17

describes this algorithm.

Although this method (like the Wilson-Dependent method) assumes there is

no variability associated with the minimum generation, this approximation has

been shown to produce acceptable coverage for typical and even atypical GP

results (see section 3.2).



62 Minimum Computational Effort

1. Obtain the minimum generation (j), the success proportion at the minimum
generation (P (j)), the number of runs executed (n) and the population size
(M) for a given experiment.

2. Obtain a random number which follows a Beta distribution with an α′ parameter
of (P1(j1) · n1) + 1 and a β ′ parameter of ((1 − P1(j1)) · n1) + 1. Label this
Prand.

3. Transform Prand with the function

Erand = (j + 1) ·R(Prand) ·M

to obtain a random number distributed according to the likelihood of the min-
imum computational effort for the given parameters.

Table 3.17: Algorithm to produce a random number distributed according to the
likelihood of a minimum computational effort with parameters j, P (j), n, and
M .

Confidence Intervals

We could use the algorithm in table 3.17 to produce an approximate confidence

interval for minimum computational effort. Given say 10,000 Erand values, the
α
2

and 1 − α
2

quantiles would represent upper and lower limits of a confidence

interval at the (1− α) level for the true minimum computational effort.

The Wilson-Dependent method is however superior for our purposes, given

that it produces repeatable results (as it is a deterministic algorithm), and that

it is algorithmically and computationally much simpler.

3.4.2 Minimum Computational Effort Differences

We used the simulation algorithm just developed to allow us to form approxi-

mate confidence intervals for the difference of two minimum computational effort

measures. Table 3.18 details the algorithm.

3.4.3 Minimum Computational Effort Ratios

In his second book, Genetic Programming II, Koza introduced a measure he

termed the efficiency ratio (RE) of two minimum computational effort measure-

ments:
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1. Obtain the minimum generation (j1), the success proportion at the minimum
generation (P1(j1)), the number of runs executed (n1), and the population size
(M1) for the first experiment.

2. Obtain the same values (j2, P2(j2), n2, M2) for the second experiment.

3. The computational effort for the first experiment is:

E1 = (j1 + 1) ·R(P1(j1)) ·M1

The computational effort for the second experiment is:

E2 = (j2 + 1) ·R(P2(j2)) ·M2

The minimum computational effort difference is then:

∆E = E1 − E2

4. Obtain X random numbers which follow the expected distribution for the first
experiment’s parameters (as described in table 3.17). Label them ER1.

5. Obtain another X random numbers for the second experiment. Label these
ER2.

6. Find the α
2

and 1 − α
2

quantiles of ER1 − ER2. These provide an upper and
lower limit for a 1−α confidence interval for the minimum computational effort
difference.

Table 3.18: An algorithm to produce a confidence interval at the 1 − α level for
the difference between two minimum computational effort measurements.
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1. Obtain the minimum generation (j1), the success proportion at the minimum
generation (P1(j1)), the number of runs executed (n1) and the population size
(M1) for a first experiment.

2. Obtain the same values (j2, P2(j2), n2, M2) for the second experiment.

3. The efficiency ratio is then:

RE =
E1

E2
=

(j1 + 1) ·R(P1(j1)) ·M1

(j2 + 1) ·R(P2(j2)) ·M2

4. Obtain X random numbers which follow the expected distribution for the first
experiment’s parameters (as described in table 3.17). Label them ER1.

5. Obtain another X random numbers for the second experiment. Label these
ER2.

6. Find the α
2

and 1− α
2

quantiles of ER1

ER2
. These provide an upper and lower limit

for a 1− α confidence interval for the efficiency ratio RE.

Table 3.19: Algorithm to produce a confidence interval at the 1− α level for the
efficiency ratio of two minimum computational effort measurements.

RE =
Computational effort without ADFs

Computational Effort with ADFs
=

Ewithout

Ewith

It was used throughout the book as an aide to demonstrate the benefits of

genetic programming with automatically defined functions (ADFs).

The use of a ratio could however compare any two minimum computational

effort measurements and is not specific to the use of ADFs. If you have two

methods ‘A’ and ‘B’ and expected ‘A’ to outperform ‘’B then, given two minimum

computational effort measurements, EA and EB, EB

EA
will be greater than one if

‘A’ had the better measure.

Table 3.19 introduces a method to obtain an approximate confidence interval

for the ratio of two computational effort statistics. If the confidence interval does

not include one then we can be confident (at the 1−α level) that the two results

are statistically different.

An example of the increased power offered by the use of this method can be

found in the work in chapter 9. We were experimenting with the even-4-parity
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Figure 3.11: Example of two minimum computational effort measures whose
individual confidence intervals overlap but whose ratio is significantly different
from one.

problem and had two results whose confidence intervals overlapped.9 Figure 3.11

graphs those two intervals. When the algorithm in table 3.19 was used, a ratio

of 0.77 had a 95% confidence interval of 0.60–0.97, thus the two measurements

are indeed statistically significantly different.

3.5 Computational Effort versus Success Pro-

portion

Why would you use Koza’s minimum computational effort when its confidence

intervals are so wide?10 You could instead use the cumulative probability of

success—a measure with much tighter confidence intervals. Cumulative proba-

bility of success (also termed success proportion) is indeed a superior measure so

long as the two success proportion curves do not cross.

A common approach under success proportion is to draw a conclusion along

the lines of: the technique represented by the first curve is superior until they

cross, at which point the second technique is a better choice. This section dis-

cusses this issue of “crossing” success proportions and the use of Koza’s measure.

We will also demonstrate why this common approach may produce a misleading

analysis.

9 The results were for even-4-parity with aggressive automatic fitness-based incremental evo-
lution without mutation, with five generations before an automatic step.

10 Thanks to Riccardo Poli for asking me this question.
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Figure 3.12: So long as the first cumulative probability of success curve (thick
line) is non-dominated by the second curve for all generations then the minimum
computational effort (as marked with a cross) of the first will be less than that
of the second.

3.5.1 Non-Crossing Success Proportions

If one success proportion curve lies completely above a second then its minimum

computational effort will be less than that of the second. Figure 3.12 graphs such

a scenario.

To prove this, consider two success proportion curves, P1(i) and P2(i), where

the first dominates the second:

P1(i) ≥ P2(i) ∀i

Transforming both with the function R will produce two new curves, but this

time the second will dominate the first:

−P1(i) ≤ −P2(i) ∀i

1− P1(i) ≤ 1− P2(i) ∀i
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log(1− P1(i)) ≤ log(1− P2(i)) ∀i
log(1− z)

log(1− P1(i))
≤ log(1− z)

log(1− P2(i))
∀i

R(P1(i)) ≤ R(P2(i)) ∀i

(Defending that last statement is not entirely trivial: if we say that when

P1(i) is greater than z we set the left-hand side of the inequality to 1 and when

P2(i) is greater than z we set the right hand side to 1, then the inequality holds:

when P1(i) > z and P2(i) < z then log(1−z)
log(1−P2(i))

< 1; and when P1(i) > z and

P2(i) > z both sides are set to 1. The case where P1(i) < z and P2(i) > z cannot

occur because we know P1(i) ≥ P2(i) ∀i.)
Multiplying both transformed curves by M · (i+1) does not alter the inequal-

ity:11

M · (i + 1) ·R(P1(i)) ≤M · (i + 1) ·R(P2(i + k)) ∀i

As a result, the minimum of the first transformed curve multiplied by M ·(i+1)

must be less than or equal to the minimum of the second multiplied by M ·(i+1):

min
i

M · (i + 1) ·R(P1(i)) ≤ min
i

M · (i + 1) ·R(P2(i))

Thus, the minimum computational effort calculated from the first cumulative

probability curve is less than or equal to that from the second.

The Better Statistic?

In the situation where you suspect that one curve is dominated by another and

you are interested in only a specific generation (for example, the final genera-

tion), it is better to use the more powerful success proportion statistic at that

generation. If your assumption of domination is correct then Koza’s measure will

result in the same conclusion—that the dominated curve is the better choice.

However, if you know that one curve dominates the other (because the vast

majority of cumulative success probabilities give non-overlapping confidence in-

tervals for each generation), then you almost certainly have sufficient data to

produce a statistically significant result for minimum computational effort.

To demonstrate this, consider two curves where one dominates another and

11 Note that by definition M , the population size, is greater than or equal to one, and that i

is also non-negative.
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Graph Curve Mean Std. Dev. Success factor
Left Lower-peaked 150 50 0.2
Left Higher-peaked 600 150 0.7
Right Lower-peaked 75 25 0.25
Right Higher-peaked 600 150 0.8

Table 3.20: Mean and standard deviation of the normal distributions used to
plot the curves in figure 3.13. Each distribution was multiplied by the specified
“success factor”.

the confidence intervals per generation do not overlap. Applying the function R

to the confidence limits of both curves will result in two transformed confidence

intervals that again do not overlap (although the distance between them may

be reduced to zero if the cumulative probability is greater than z). Multiplying

these two transformed confidence limits by M · (i + 1) will have no impact on

whether they overlap, thus we now have two computational effort curves whose

confidence intervals do not overlap—one computational effort band dominates

the other. Consider the confidence interval of the minimum computational effort

of the upper computational effort curve; it cannot overlap the confidence interval

of the minimum of the other computational effort curve. If it were to do so then

either one band does not dominate the other or the two confidence intervals are

not at the minimum computational effort.

3.5.2 Crossing Success Proportions

If two success proportion curves cross then neither curve dominates the other

and the previous argument is not useful. It was for this case that Poli argued

for a “two-part” conclusion: that the first is superior to the second before the

intersection of the curves, but after the intersection the second becomes the

superior.

The graphs in figure 3.13 should now be considered.

All four curves were produced from normal distributions. The left graph’s

lower peaked curve has a mean of 150 generations with a standard deviation of

50; the distribution was multiplied by a “success factor” of 0.2. Table 3.20 gives

the details of the other curves.

If you were to use success proportion to analyse these two graphs then there

would be very little difference in the conclusions. One might say that, when com-

pared to the left graph, the right graph shows a slight but general performance
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Figure 3.13: It is this scenario that demonstrates the greatest benefit of mini-
mum computational effort over success proportion. The thicker line represents
the cumulative success probability curve that generates a lower minimum com-
putational effort.
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Graph Curve Min. Gen. (j) R(j) E/M
Left Lower-peaked 211 23.5 4,988
Left Higher-peaked 858 4.2 3,567
Right Lower-peaked 106 18.2 1,951
Right Higher-peaked 878 3.1 2,718

Table 3.21: Generation at which the minimum computational effort occurs (min-
imum generation, j), number of runs required (R(j)), and minimum computa-
tional effort (E) for each of the curves plotted in figure 3.13.

improvement for both curves. You could also say that despite the slight improve-

ment the cross-over point has stayed relatively static at about 500 generations.

It is most likely that one would draw the same conclusion for both graphs: that

the technique with the higher performance at the final generation was superior.

If, on the other hand, you were to use Koza’s minimum computational effort

you would conclude that the graph on the left was very different to the graph on

the right. For the left graph, Koza’s measure says that superior curve is the one

that has the higher cumulative probability of success peak, while for the right

graph it is the one with the lower peak.

Using Koza’s measure you would conclude that, for the lower-peaked curve

in the left graph, for a 99% chance of finding a solution, you would execute

“23.5” runs of that GP system to approximately 210 generations. Thus, for

a 99% chance of finding a solution, you would have processed approximately

5,000M individuals. (So if M = 500, Koza’s minimum computational effort E ≈
2,500,000.) Table 3.21 gives results for Koza’s measure for the other curves.

What is important about these examples is not the detail but instead the

fact that there exist cases where a comparison based solely on the use of cumu-

lative success proportion may produce a misleading analysis when compared to

an analysis that utilises Koza’s measure.

3.5.3 Summary

The use of cumulative success proportion produces a result consistent with Koza’s

measure whenever one curve dominates another. However to demonstrate that

requires statistically significant results for the vast majority of generations, which

means you almost certainly have sufficient data to produce a statistically signifi-

cant result for minimum computational effort.
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When the cumulative success probability curves cross, we have shown that

Koza’s measure can give a different conclusion to an analysis based only on a

per-generation comparison of cumulative success proportion. Which result you

pay more attention to depends on what you want to measure. Koza’s minimum

computational effort tries to answer the question “how much effort would be

required?”—surely a more useful focus than success proportion’s “which one’s

better at a specific generation?”.

However, Koza’s measure is not perfect:

• Luke and Panait have already registered their concern that both cumulative

probability of success and Koza’s minimum computational effort ignore the

dependence typically present across generations [85].

• From a practitioner’s perspective, it is somewhat dubious to expect to ex-

ecute exactly the optimal number of runs when that number can only be

calculated after the fact.

• Obtaining statistically significant results using the Wilson-Dependent method

requires a large number of runs. To find significance between the two curves

in the left graph of figure 3.13 requires 495 runs at 95% confidence and 212

runs at 80%. Similarly to obtain significance between the two graphs on

the right of figure 3.13 requires at least 365 runs for 95% and 156 for 80%.

• Further, in section 8.5.2 we show minimum computational effort is actually

an upper bound and sometimes unable to measure a reduction of the cost

of failure.

The “Success effort” measure addresses the first two items in that list. It is

considered next.





Chapter 4

Success Effort

Success effort, as we discussed in section 2.8, measures the expected number of

generations before a solution will be found. It may be calculated from a collection

of runs by:

mean(g)

p
(4.1)

where g is the vector of generations at which the runs terminated (generations-

to-termination) and p is the proportion of runs that found a solution.

Success effort can be compared to Koza’s well known computational effort

statistic (see chapter 3). Minimum computational effort answers the question

“what is the smallest total expected number of generations in order for a solution

to be found 99% of the time, if the optimal number of runs are performed to a

pre-specified number of generations?”. Success effort answers the question “if I

execute one run after another, what is the average number of generations that will

be executed before a solution will be found?”. A comparison of the philosophical

values of these two questions can be found in section 5.3.

4.1 Confidence Intervals

Table 4.1 defines a method, based on a standard resampling technique, for pro-

ducing confidence intervals for the success effort statistic. It has, however, been

indicated that such a method may not be reliable [46, 64].

We now introduce another method based on the simulation of the two likeli-

hood functions for the true mean generation and the true probability of success.1

1 Code for the implementation of this algorithm and complete results for all experiments are
available from the website listed in appendix D.
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1. Obtain n independent runs. Label these as the source set.

2. Repeat B = 10, 000 times:

(a) Select, with replacement, n runs from the source set. Label these S.

(b) Calculate the mean of the generations in S.

(c) Divide the mean by the proportion of successes in S.

3. Find the 2.5% and 97.5% quantiles of the B ratios. These provide an upper
and lower range on a 95% confidence interval for the true value of the success
effort statistic.

Table 4.1: Resampling algorithm to produce 95% confidence intervals for the
success effort statistic.

The numerator of the success effort ratio (equation 4.1) is the observed (sam-

ple) mean of the generations-to-termination and estimates the true mean number

of generations-to-termination for a given problem domain and genetic program-

ing configuration. The likelihood function of the true mean is proportional to

a normal distribution with a mean equal to the observed mean and a standard

deviation equal to s√
n
, where s is the observed standard deviation and n is the

number of trials (runs), provided n is not too small (n > 25 say). This follows

from the Central Limit Theorem [24].

The denominator of the success effort ratio is the observed probability of suc-

cess (the proportion of successes) and similarly estimates the true probability

of success. The likelihood function of the true probability of success is propor-

tional to a Beta distribution whose α variable is np + 1 and whose β variable is

n(1− p) + 1, where p is the success proportion and n is the number of runs [79].

Each likelihood function may be used to simulate the corresponding quantity.

This corresponds to a commonly-used Bayesian statistical approach using a non-

informative prior distribution for each true parameter, which results in posterior

distributions (the probability distribution of each true parameter, given the ob-

served data) given by the above normal and Beta distributions respectively [79].

The (true) mean generation and the (true) proportion of successes are de-

pendent variables because, as the proportion of successes decreases, the chance

of observing a cut-off generation increases and this in turn impacts the mean
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1. Obtain n independent runs. Count the number of successes ns, the number of
failures nf . p = ns

n
. Extract the vector of generations for the successful runs

gs, and the vector for the failures gf.

2. Produce B = 10, 000 random variables that are normally distributed with mean
equal to mean(gs) and with a standard deviation of sd()√

ns
. Label these Gs.

3. Produce B random variables that are normally distributed with mean equal to
mean(gf) and with a standard deviation of sd(gf)√

nf
. Label these Gf .

4. G = p ·Gs + (1− p) ·Gf

5. Produce B random variables that follow a beta distribution with parameters
α = pn + 1 and β = (1− p)n + 1. Label these P .

6. Find the 2.5% and 97.5% quantiles of G
P

. These are the limits of a 95%
confidence interval for the true value of the success effort statistic.

Table 4.2: Simulation algorithm to produce 95% confidence intervals for the
success effort statistic.

generation. The relationship between the two variables is given by the formula2 :

mean(g) = p ·mean(gs) + (1− p) ·mean(gf) (4.2)

where g represents the vector of generations-to-termination for each run, gs rep-

resents the generations-to-termination of the successful runs, and gf represents

the generations-to-termination of the failed runs.

The parameters gs and gf have likelihood functions which are normally dis-

tributed too (following the same argument as was used for the mean of generations-

to-termination above).

Each likelihood function may be used to simulate its corresponding quan-

tity. Thus, the simulation algorithm given in table 4.2 can be used to obtain a

confidence interval for success effort ratios.

The simulation algorithm works correctly even if gf is comprised of multiple

instances of a single number, as would be obtained if the traditional GP approach

were used where the maximum generation was set to 50 generations. If only

one success or one failure was observed, then the standard deviation of that

observation should be considered to be zero. If zero failures were observed, then

2 The formula is proved in appendix B.
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the cut-off generation should be used in place of mean(gf) and zero should be

used in place of sd(gf). Finally, if zero successes were observed, the use of this

statistic should not even be considered.

It is worth noting that any proportion will follow a normal distribution pro-

vided sufficient samples are obtained. Thus an alternative to the Beta distribution

would be to model the success proportion with a normal distribution. If this were

a valid approximation we could then apply Fieller’s theorem [38, 111] to find a

confidence interval for the success effort ratio. Very unfortunately, we found the

confidence intervals produced with Fieller’s theorem to be uselessly wide given

the binary success-or-failure data available with GP runs. Swapping the Beta

distribution with a normal distribution in the simulation algorithm (table 4.2)

results in unacceptably poor coverage for typical GP run sizes (25–200 runs).

Neither of these approaches are discussed any further in this thesis.

4.1.1 Coverage

The most important attribute of a statistic’s confidence interval is its coverage.

Coverage is the proportion of confidence intervals that include the true value. A

95% confidence interval should include the true value 95% of the time. Just as

we studied the coverage rates for minimum computational effort in chapter 3,

here we study the coverage for success effort.

To assess the level of coverage attained by the two confidence interval methods

for success effort (section 4.1) we simulated a large number of GP experiments

on different problem domains and at different run sizes.

The problem domains were taken from four large datasets of real GP runs.

They are the same datasets as were used in the earlier chapter on computational

effort (see page 29) but this time we consider the calculation of success effort:

• Ant : Christensen and Oppacher’s 27,755 runs [22] of the artificial ant on

the Santa-Fe trail; panmictic population of 500; cut-off of 50 generations;

mean(g) = 46.7, p = 0.133; best estimate of the true success effort 351.8

generations (95% confidence interval3 334.2–356.8)

• Parity : 3,400 runs of even-4-parity without ADFs [71, 72]; panmictic popu-

lation of 16,000; cut-off of 50 generations; mean(g) = 16.9, p = 0.996; best

estimate of true success effort 16.97 generations (95% confidence interval

16.8–17.1)

3Calculated using the simulation method (see section 4.1) with B set to 1,000,000.
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Problem Domain Ant Multiplexor Parity Symbreg Average
Rsampling 93.3% 87.0% 89.6% 94.3% 91.0%
Simulation 94.9% 94.6% 92.4% 95.2% 94.3%

Table 4.3: Coverage statistics by problem domain, averaged over the six run sizes,
for the two confidence interval techniques for success effort.

Run Size 25 50 75 100 200 500 Average
Resampling 86.7% 90.4% 90.7% 91.3% 92.8% 94.3% 91.0%
Simulation 92.6% 94.3% 94.2% 94.6% 94.9% 95.1% 94.3%

Table 4.4: Coverage statistics by run size, averaged over the four problem do-
mains, for the two confidence interval techniques for success effort.

• Symbreg : Gagné’s 1,000 runs of a symbolic regression problem (x4 + x3 +

x2 + x) [71]; panmictic population of 500; cut-off after 25,000 evaluations

(approximately 50 generations); mean(g) = 24.2, p = 0.726; best estimate

of true success effort 33.3 generations (95% confidence interval 30.3–36.7)

• Multiplexor : Gagné’s 1,000 runs of the 11-multiplexor problem [71]; pan-

mictic population of 4,000; cut-off after 200,000 evaluations (approximately

50 generations); mean(g) = 18.6, p = 0.985; best estimate of true success

effort 18.9 generations (95% confidence interval 18.5–19.5)

Simulated run sizes were chosen to be 25, 50, 75, 100, 200 and 500 runs to

allow direct comparison to the experiments in the previous chapter.

For each of the 48 combinations of confidence interval method, problem do-

main, and run size, 10,000 samples of the specified number of runs were randomly

selected from the specified large dataset. For each sample the 95% confidence

interval for the sample’s success effort was calculated using the specified method.

Whether the confidence interval included the best estimate of the true success

effort (the coverage) was recorded. The best estimate of the true success effort

was the success effort calculated over the entire dataset.

This process effectively simulated 10,000 genetic programming experiments

over each of the four problem domains and each of the six run sizes, or a total of

240,000 simulated experiments, for both of the confidence interval methods.

Tables 4.3 and 4.4 give the averaged results of these experiments.

The resampling method did not perform well on either the Multiplexor or

Parity domains (the two domains where the probability of success was very close
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to one). Both domains had an average coverage of less than 90%, but for the Mul-

tiplexor domain with 25 runs, coverage dropped to an unacceptably low 78.5%.

These results are in line with others’ work where it was concluded that resampling

techniques for ratios did not have good coverage rates [46, 64].

In contrast the simulation method performed well with a coverage of 94.3%,

averaged over the four problem domains and six run sizes. It had a minimum

coverage of 87.8% on the Parity domain with 25 runs, but by 50 runs the coverage

was up at the 91.4% mark (a level the resampling method did not achieve until

500 runs).

4.1.2 Conclusions

Given these results, we conclude the simulation method has appropriate coverage

levels and can be used to provide confidence intervals for the success effort statis-

tic. The resampling method, on the other hand, cannot be considered reliable.

The simulation method relies on the distributions of mean-generations-to-

success and mean-generations-to-failure and success proportion. The assumptions

of these distributions are all underpinned theoretically (thanks to the Central

Limit Theorem, and that proportions can be simulated with a Beta distribu-

tion), so the method relies only on sufficient runs (say, at least 25) and again,

like minimum computational effort, that success is sufficiently frequent that the

confidence intervals are useful.

4.2 Comparing Two Success Efforts

Just as it was important to establish confidence intervals for the difference be-

tween two minimum computational efforts, so it is important for success effort.

We can extend the method for the generation of success effort confidence intervals

to confidence intervals for the difference of two success efforts and for the ratio

of two success efforts.

Table 4.5 offers a method to produce random numbers distributed according

to the likelihood of the true success effort given a set of GP runs.

Table 4.6 describes an algorithm to obtain a confidence interval for the dif-

ference of two observed success efforts, while table 4.7 contains an algorithm for

the ratio of two success efforts.

It is worth noting that one can easily obtain the confidence one should have

in a ratio or difference being above a specified threshold. Rather than finding
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1. Obtain n independent runs. Count the number of successes ns, the number of
failures nf . p = ns

n
. Extract the vector of generations for the successful runs

gs, and the vector for the failures gf .

2. Produce B = 10, 000 random variables that are normally distributed with mean
equal to mean(gs) and with a standard deviation of sd(gs)√

ns
. Label these Gs.

3. Produce B random variables that are normally distributed with mean equal to

mean(gf) and with a standard deviation of
sd(gf )
√

nf
. Label these Gf .

4. G = pGs + (1− p)Gf

5. Produce B random variables that follow a beta distribution with parameters
α = pn + 1 and β = (1− p)n + 1. Label these P .

6. Calculate G
P

. These are B random numbers distributed according to the likeli-
hood of the true success effort given the observed data.

Table 4.5: A simulation algorithm to generate random numbers distributed ac-
cording to the likelihood of the true success effort.

the values at certain quantiles, all that is necessary is to find the quantile of the

certain value. Thus, if you are interested in whether the ratio is above one, find

the quantile of the value one; the quantile is equivalent to the confidence one

should have that the value is above (or, if subtracted from one, below) one.

4.3 Success Effort versus Success Proportion

Riccardo Poli’s question regarding minimum computational effort versus success

proportion (from section 3.5) can be reconsidered with success effort in place of

Koza’s measure: why would one use success effort when success proportion could

do the job?

As before, we will consider the impact of whether the success proportion

curves cross. We will find very similar results to our analysis of minimum com-

putational effort: that analysis based solely on success proportion can produce a

misleading conclusion.
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1. Obtain B random numbers distributed according to the likelihood of the true
success effort given the parameters of the first experiment (as described in the
algorithm in table 4.5). Label the random numbers SE r1.

2. Obtain B random numbers distributed according to the likelihood of the true
success effort given the parameters of the second experiment. Label the random
numbers SE r2.

3. ∆SE = SE r1 − SE r2 are B random numbers distributed according to the like-
lihood of the difference between the true success effort of the first experiment
and the second.

4. The α
2

and 1− α
2

quantiles of ∆SE represent the limits of a 1− α confidence
interval for the true difference.

Table 4.6: An algorithm to produce a confidence interval at the 1 − α level for
the true difference between two success effort measurements.

1. Obtain B random numbers distributed according to the likelihood of the true
success effort given the parameters of the first experiment (as described in the
algorithm in table 4.5). Label the random numbers SE r1.

2. Obtain B random numbers distributed according to the likelihood of the true
success effort given the parameters of the second experiment. Label the random
numbers SE r2.

3. RSE = SE r1

SE r2
are B random numbers distributed according to the likelihood of

the ratio of the true success effort of the first experiment to that of the second.

4. The α
2

and 1 − α
2

quantiles of RSE represent the limits of a 1− α confidence
interval for the true ratio.

Table 4.7: An algorithm to produce a confidence interval at the 1 − α level for
the true ratio of two success effort measurements.
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4.3.1 Non-Crossing Success Proportions

If you have two success proportion curves with one dominating4 the other then,

if the cost of failure is equal to F , the final generation, the dominant curve will

have a smaller success effort.

To prove this, consider two success proportion curves P1(i) and P2(i) where

P1(i) ≥ P2(i) ∀i. The cumulative probability of success P1(i) is the sum from

g = 0 to i generations of YS1(g), the instantaneous probability of successfully

finding a solution in generation g [71, page 193]:

P1(i) =
i

∑

g=0

YS1(g)

A similar statement can be made for P2 and YS2. So:

i
∑

g=0

YS1(g) ≥
i

∑

g=0

YS2(g) ∀i (4.3)

If we now also consider the instantaneous probability of failure, YF1(g) and

YF2(g), then we can say:

F
∑

g=0

(YS1(g) + YF1(g)) =
F

∑

g=0

(YS2(g) + YF2(g)) = 1

This next step will be proved in appendix C; we can say:

F
∑

g=0

(YS1(g) + YF1(g)) · g ≤
F

∑

g=0

(YS2(g) + YF2(g)) · g (4.4)

If we note that
∑F

0 (YS1(g) + YF1(g)) =
∑F

0 (YS2(g) + YF2(g)) = 1 then:

∑F
0 (YS1(g) + YF1(g)) · g
∑F

0 (YS1(g) + YF1(g))
≤

∑F
0 (YS2(g) + YF2(g)) · g
∑F

0 (YS2(g) + YF2(g))

And if we consider g1 to be the vector of generations at which the runs of P1

terminated (with either success or failure), and g2 to be similarly defined for P2,

then the above can be re-written:

mean(g1) ≤ mean(g2)

4 For this discussion we will define dominate such that: for two curves, f(x) and g(x), f(x)
dominates g(x) if and only if f(x) ≥ g(x) ∀x
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Graph Curve Mean Std. Dev. Success factor
Left Lower-peaked 350 1/3 0.5
Left Higher-peaked 850 1/15 0.7
Right Lower-peaked 200 1/4 0.5
Right Higher-peaked 800 1/15 0.7

Table 4.8: Mean and standard deviation (as a proportion of the mean) of the
normal distributions used to plot the curves in figure 4.1. Each distribution was
multiplied by the specified “success factor”.

If we then chose p′ =
∑F

0 YS1(g) = P1(F ) and p′′ =
∑F

0 YS2(g) = P2(F ) and

note that p′ ≥ p′′, then:

mean(g1)

p′
≤ mean(g2)

p′′

Thus, the success effort of a dominant curve is less than or equal to the success

effort of the dominated curve.

4.3.2 Crossing Success Proportions

The previous section allows us to say that if one success proportion curve dom-

inates another then its success effort will be smaller. But what if one does not

dominate the other but instead the two curves cross? We will now show that

for such a case analysis using only success proportion can result in misleading

conclusions when compared to conclusions based on success effort.

Consider the two graphs in figure 4.1. The only difference between the curves

is that those in the right graph are a stretched version of those on the left.

The curves are all formed from a normal distribution scaled by a “success

factor”—just as was done for minimum computational effort in section 3.5. Ta-

ble 4.8 gives the parameters for the curves.

If you were to analyse the curves using success proportion as a measure, you

might note that, although both sets of curves plateau at the same final success

proportion, those in the right graph achieve the performance earlier. You might

also note that the lower of the two curves seems to be most affected, but that

the intersection is fairly consistent at about 800 generations. You would most

probably conclude that there was little to distinguish the curves on the left from

those on the right.
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Figure 4.1: It is this scenario that demonstrates the greatest benefit of success
effort over success proportion. The thicker line represents the cumulative success
probability curve that generates a lower success effort.
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Graph Curve mean(g) p Success Effort
Left Lower-peaked 673 0.5 1,347
Left Higher-peaked 895 0.7 1,282
Right Lower-peaked 601 0.5 1,201
Right Higher-peaked 859 0.7 1,227

Table 4.9: The mean generation, success proportion, and resulting success effort
for each of the curves plotted in figure 4.1.

However, using success effort as a measure would result in quite a different

conclusion: for the left graph the higher-peaked curve is the more efficient choice

while the lower-peaked curve is superior in the right graph.

Using success effort you would conclude that, for the left graph, were you to

execute one run after another until you found a solution, you would execute an

average of 1,347 generations for the technique that generated the lower-peaked

curve and an average of 1,282 generations for the higher peaked curve. Table 4.9

gives the success effort for each curve.

Although the details are unimportant, what we have shown is an example

where the analysis based solely on success proportion was misleading.

4.3.3 Summary

For two success proportion curves, if one dominates the other then the dominant

curve will have a success effort that is less than the success effort of the other. In

this situation analysis with success proportion will produce the same conclusions

as analysis based on success effort. However if the two success proportion curves

cross then analysis based solely on success proportion may result in a different,

and potentially misleading, conclusion to that based on success effort.

Because success effort measures the expected amount of work that would be

required to find a solution, it is almost certainly a more useful measure than

knowing the proportion of successes at an arbitrary generation.

Success effort has other advantages:

• Success effort does not suffer the issue of dependency across generations that

cumulative success probability curves typically suffer and ignore. Although

this may not have a considerable impact on the quality of results, success

effort is a “cleaner” measure from a statistical perspective.
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• Success effort also gives a very natural measure for a practitioner. The

result can be used to predict the number of runs required to be executed

back-to-back. That is a far more useful measure than that offered by min-

imum computational effort.

• Further, success effort is naturally able to assess the benefit of a decreased

cost of failure—a benefit we will utilise in Part II.

However, because it considers both the probability of success and the number

of generations, when compared to the use of success proportion, success effort

will most likely require a larger number of runs for results to be statistically

significant.





Chapter 5

Comparison of the Statistics

This chapter compares minimum computational effort, success effort and three

other commonly-used single-variable statistics: mean best-of-run fitness, mean

generation, and success proportion. We conclude that the five statistics have

fairly reliable coverage rates but, although they have different power, we argue

that the measures that combine both the probability and the cost of finding a

solution (that is, minimum computational effort and success effort) are the most

useful for a GP practitioner.

5.1 Coverage

The most important attribute of a statistic’s confidence interval is its coverage.

Coverage is the proportion of confidence intervals that include the true value. A

95% confidence interval should include the true value 95% of the time.

To assess the level of coverage attained by the five statistics, we simulated a

large number of GP experiments on different problem domains and at different

run sizes. The problem domains were taken from four large datasets of real GP

runs. They are the same datasets as were used in our previous experiments:

Ant, Parity, Symbreg, and Multiplexor. Simulated run sizes were chosen to be

25, 50, 75, 100, 200 and 500 runs to match the earlier experiments in minimum

computational effort and success effort.

The confidence interval methods can be found in: section 2.4.1 (page 21) for

mean best-of-run fitness, section 2.5.1 (page 22) for mean generation, section 2.2.2

(page 12) for success proportion, table 3.4 (page 33) for minimum computational

effort, and table 4.2 (page 75) for success effort.

For each of the 120 combinations of the five statistics (and associated confi-
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Ant Multiplexor Parity Symbreg
Success Effort 351.8 16.97 33.3 18.9

(334.2–356.8) (16.8–17.1) (30.3–36.7) (18.5–19.5)
Comp. Effort 479,344 421,074 33,299 163,045

(460,637–498,847) (395,457–450,109) (30,682–36234) (149,650–178,817)
Mean Best Fitness 36.8 [gen. 0] 0.645 [gen. 0] 0.744 [gen. 0] 0.633 [gen. 0]

(36.65–36.85) to (0.644–0.646) (0.740–0.748) (0.632–0.634)
70.5 [gen. 50] to 0.9998 [gen. 50] 0.996 [gen. 50] 0.999 [gen. 50]
(70.40–70.63) (0.9996–0.9999) (0.995–0.996) (0.999–1.000)

Mean Generation 46.7 16.90 24.2 18.6
(46.54–46.81) (16.78–17.03) (22.7–25.6) (18.2–19.0)

Success Proportion 0 [gen. 0] 0 [gen. 0] 0 [gen. 0] 0 [gen. 0]
(0–0.0001) to (0–0.001) to (0–0.004) to (0–0.004) to
0.133 [final gen.] 0.996 [final gen.] 0.726 [final gen.] 0.985 [final gen.]
(0.129–0.137) (0.993–0.998) (0.698–0.753) (0.975–0.991)

Table 5.1: Best estimate of the true value for each statistic for each problem
domain. 95% confidence intervals are shown in parentheses.

dence interval methods), problem domain, and run size, 10,000 samples of the

specified number of runs were randomly selected from the specified large dataset1 .

For each sample the 95% confidence interval for the sample’s statistic was calcu-

lated using the specified method. Whether the confidence interval included the

best estimate of the true value of the statistic (the coverage) was recorded.

The best estimate of the true value of the statistic was the statistic calculated

over the entire dataset. Table 5.1 gives the best estimate of the true values for

each statistic and problem domain. It also includes 95% confidence intervals as

calculated using the associated method.

Success effort, minimum computational effort, and mean generation, all pro-

duce one value (and one confidence interval) per GP experiment. Because suc-

cess proportion and mean best fitness are typically plotted against generations,

we elected to calculate these statistics (and their confidence intervals) for each

generation.

For some samples it was not possible to produce a value for a statistic. An

example of this was when zero runs succeed in the selection. In this case, al-

though a success proportion and confidence interval can be calculated, Koza’s

minimum computational effort balks. In these situations undefined values were

just ignored.2

1Unfortunately, 1,000 runs of Parity were lost before the fitness data could be collected,
thus only 2,400 runs were used for the experiments with mean best fitness.

2The worst occurrence of this was for 25 runs on the Ant domain where for both minimum
computational effort and success effort we ignored just under 3% of their 10,000 confidence
intervals.
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Problem Domain Ant Multiplexor Parity Symbreg Average
Success Effort 94.9% 94.6% 92.4% 95.2% 94.3%
Comp. Effort 92.4% 95.7% 94.0% 94.9% 94.3%
Mean Best Fitness 94.2% 84.2% 66.5% 92.3% 84.3%
Mean Generation 93.0% 90.3% 92.9% 94.7% 92.7%
Success Prop. 95.3% 96.2% 95.5% 95.1% 95.5%

Table 5.2: Coverage statistics by problem domain, averaged over the six run sizes,
for the five statistics.

Run Size 25 50 75 100 200 500 Average
Success Effort 92.6% 94.3% 94.2% 94.6% 94.9% 95.1% 94.3%
Comp. Effort 92.3% 94.4% 94.7% 93.8% 94.9% 95.3% 94.3%
Mean Best Fitness 74.0% 80.3% 83.2% 85.5% 89.2% 93.6% 84.3%
Mean Generation 90.2% 91.9% 92.9% 93.1% 93.9% 94.4% 92.7%
Success Prop. 95.5% 95.7% 95.4% 95.6% 95.5% 95.4% 95.5%

Table 5.3: Coverage statistics by run size, averaged over the four problem do-
mains, for the five statistics.

Table 5.2 gives the results of these experiments by problem domain, averaged

over the six run sizes. Table 5.3 gives the results by run size, averaged over the

problem domains. For mean best fitness and success proportion the results are

also averaged over the generations.

Success effort, minimum computational effort, and success proportion all have

excellent average coverage statistics. Mean generation’s coverage is a little on the

low side, but its performance is still quite acceptable.

Mean best fitness on the other hand performs poorly for the Multiplexor

domain, and exceptionally poorly on the Parity dataset. Its performance is worst,

a meagre 47% coverage, on the Parity domain with run sizes of 25 runs.

The explanation lies in the number of zero-width confidence intervals. Because

the Parity and Multiplexor domains achieve such high success proportions, the

majority of samples in the later generations contain only fitness scores of one

(i.e. a solution has been found). This complete lack of variance in the observed

data leads to a zero-width confidence interval (see section 2.4.1), which does

not include the true value of very slightly less than one. Figure 5.1 graphs this

phenomenon per generation.

The conclusion that should be made is that although the coverage levels for

mean best fitness are poor, they are perhaps not completely representative of the

truth given that the majority of GP practitioners would intuitively question the
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Figure 5.1: Cumulative success (upper) and mean best fitness coverage levels and
non-zero-width intervals (lower) for the Parity domain with a run size of 25 runs.
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validity of a zero-width confidence interval. Indeed, if zero-width intervals are

ignored, mean best fitness has an average coverage, over all problem domains and

run sizes, of 94.4%.

5.2 Power

A well as coverage, another statistical attribute of interest is power [27]. The

power of a statistic measures its ability to distinguish a difference between two

values. Typically in GP we are offering a variation in the methodology and then

comparing the performance of the variation against Koza’s canonical approach.

The comparison is achieved by measuring a value (for example minimum compu-

tational effort) for each method and asking the question “are the two measure-

ments significantly different?”. A more powerful statistic can detect a difference

more frequently.

One way to assess the relative power of two techniques is to consider the

width of the confidence intervals. Tighter confidence intervals are an indication

of a more powerful statistic (given that the coverage levels are the same). In this

section we look at the width of each of the five statistics as a ratio of the true

value, a measure that allows for easier comparison between problem domains.

The width-ratio is a natural measure, indicating the width of the confidence

interval relative to the value being measured. It has also previously been used

in GP by Keijzer et al. [69]. However, the measure is not ideal. One need

only shift the origin of the values being measured and the width-ratio will be

affected. We will however accept the measure as it is intended only for the

purposes of informing a user of the potential variance associated with each of the

five statistics.

For each of the 120 combinations of the five statistics (and associated confi-

dence interval methods), problem domain, and run size, 10,000 samples of the

specified number of runs were randomly selected from the specified large dataset.

For each sample the 95% confidence interval for the sample’s statistic was calcu-

lated using the specified method. The width of the confidence interval as a ratio

of the best estimate of the true value was recorded.

Table 5.4 gives the width-ratios averaged over the four problem domains.

Table 5.5 shows the results averaged over the six runs sizes.

From these results we can conclude that mean best fitness produced by far

the narrowest width-ratios, with an overall average of 0.02. This should be in-

terpreted as: averaged over the four problem domains and run sizes, mean best
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Problem Domain Ant Multiplexor Parity Symbreg Average
Success Effort 1.50 0.23 0.18 0.68 0.65
Comp. Effort 1.72 0.58 0.59 0.56 0.86
Mean Best Fitness 0.07 0.00 0.00 0.01 0.02
Mean Generation 0.11 0.14 0.09 0.41 0.19
Success Prop. 1.40 0.16 0.14 0.29 0.50

Table 5.4: Median confidence interval widths as a ratio of the best estimate of
the true value, by problem domain, averaged over the six run sizes, for the five
statistics.

Run Size 25 50 75 100 200 500 Average
Success Effort 1.00 0.63 0.49 0.42 0.29 0.18 0.50
Comp. Effort 1.11 0.76 0.63 0.55 0.39 0.26 0.62
Mean Best Fitness 0.02 0.01 0.01 0.01 0.01 0.00 0.01
Mean Generation 0.22 0.16 0.13 0.11 0.08 0.05 0.13
Success Prop. 0.57 0.42 0.35 0.30 0.22 0.14 0.33

Table 5.5: Median confidence interval widths as a ratio of the best estimate of
the true value, by run size, averaged over the four problem domains, for the five
statistics.

fitness produced confidence intervals whose median widths were just 2% of the

value being measured.3

The statistics, in increasing order of width-ratio, were: mean best fitness,

mean generation, success proportion, success effort, and computational effort.

That ordering held for all run sizes (averaged over the four problem domains)

and for three out of the four problem domains (averaged over the six run sizes).

The problem domain where the ordering was not consistent was Symbreg.

In that domain mean generation swaps positions with success proportion and

success effort swaps positions with minimum computational effort. However this

result seemed to be the exception.

Success effort demonstrates its greatest difference in width-ratio, when com-

pared to computational effort, with the Parity and Multiplexor domains. These

are the domains where the success probability is highest. It is conceivable that

this condition may be a requirement for success effort to out-power computational

effort.

From these results one might conclude that, if all else is equal, mean fitness

3There was no notable difference between the width-ratios as stated (2.31%), and the width-
ratios where the zero-width intervals were removed (2.37%).
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is the ideal choice of statistic while minimum computational effort is the least

desirable. However, all else is not equal.

5.3 A Better Statistic?

Although mean generation tells you how long, on average, it takes to terminate

a run, it does not tell you how often a solution was found. And although success

proportion tells you how often a solution was found, if it is stated for only the

final generation, then it gives no idea how long the runs spent evolving.

Mean best fitness is similar to success proportion except that its sensitivity

is greater. Mean best fitness can say how the runs are improving even if none

has found a solution. But like success proportion, if it is only stated for the final

generation, the measure gives no idea how much effort was required to obtain

that level of fitness.

There are partial solutions to these issues. If the vast majority of runs com-

pleted successfully, then that may be sufficient information to give meaning to a

mean generation statistic. But if it’s desirable to quantify “vast majority”, then

both mean generation and success proportion can be quoted together, thus giv-

ing an indication of both the success rate and the amount of evolution required.

Equally, mean generation and mean best fitness could be paired too.

However it can be quite tricky to compare two pairs of values. If both statis-

tics are better or worse than their competitor, then it makes for an obvious

comparison. Indeed, even if one of the statistics is equal, then the other statistic

can be easily compared. However, what if the comparison is against a result that

has a higher mean generation (i.e. it takes longer) and a higher success rate? In

this case a conclusive comparison is not obvious.

Another approach is to quote success proportion or mean best fitness for every

generation. This is commonly achieved through the use of a graph. As well as

being cumbersome, this approach does not achieve its purpose. How should one

compare two graphs that intersect with one another? Such a situation occurs

when one GP variation performs well early on but is out-performed later. In

such a scenario there is no obvious choice for which is the better. Indeed, in

sections 3.5 and 4.3 we demonstrated that analysis based on this approach may

produce a misleading conclusion.

The problem lies in how the level of success and the length of time should

be combined. Both minimum computational effort and success effort attempt to

find an acceptable answer to this.
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It is possible to consider the question that is answered by minimum computa-

tional effort and success effort. Koza’s statistic tells you how much effort would

be required to find a solution 99% of the time were you to execute the optimal

number of runs to a fixed generation (the minimum generation) irrespective of

the success or failure of any run.

Success effort in comparison answers the question: given the specific settings

how many generations will be required (on average) before a solution will be

found. As a consequence, success effort includes the cut-off generation, and

therefore, if the cost of failure is constant, the number of restarts that will be

required. For the statistic to be meaningful, runs would have to be performed

sequentially.

If genetic programming is to be used on hard problems, Luke has shown that

longer run lengths are to be preferred over many shorter runs [83]. As a result

we could expect practitioners to dedicate their resources to a single run, rather

than split them into an “optimal” number of runs. Such practitioners will be

very interested in the cut-off generation which tells them when their effort on

the current run should be aborted. Practitioners will be interested in a statistic

that offers a direct indication of the cost that they will incur if they use GP.

In this light, success effort can be seen to be a more desirable measure than

computational effort.

5.4 Summary

In this part we have:

• Introduced methods to produce confidence intervals for Koza’s minimum

computational effort measure and concluded that the Wilson-Dependent is

reliable.

• Re-introduced the success effort statistic and defined two confidence inter-

val methods for it. We concluded the simulated parametric approach was

reliable.

• Shown that, for Koza’s minimum computational effort, mean best-of-run

fitness, mean generation, and success proportion, the confidence intervals

produced are all reliable (bar the zero-width intervals of mean best fitness).

• Shown that success effort and minimum computational effort are philosoph-

ically more desirable than the other statistics if you are interested in both

the proportion of success and the length of time it took to find solutions.
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• Shown that success effort had generally narrower confidence interval width

ratios and is a somewhat more desirable statistic than computational effort.

Because mean best fitness, mean generation, and success proportion only deal

with one of the two parameters of general interest, their confidence intervals are

notably tighter than those for computational effort and success effort. If you are

in the unlikely position of being interested in only one of the two variables, then

using one of mean best fitness, mean generation, or success proportion is a good

choice.

If you are in the typical situation of being interested in both the proportion

of runs that find a solution and the number of generations that were required to

find the solutions, then the use of minimum computational effort or success effort

is preferable. We have shown that success effort is philosophically more desirable,

and statistically a possibly more powerful measure, than computational effort.

We thus recommend the use of success effort be at least considered.

In the following chapters we further compare the practicality of success effort

and minimum computational effort.





Part II

Developing

Incremental Evolution





Chapter 6

Review: Incremental Evolution

This chapter provides an introduction to incremental evolution. It offers a review

of some of the uses and previous research in the area. This review acts as a

starting point for the following chapters where incremental evolution techniques

are developed.

6.1 Introduction

Incremental evolution is the sequential use of simpler evolutionary environments

that gradually increase in difficulty until the goal environment is reached. De-

pending on the researcher, the motivation for incrementally increasing the diffi-

culty of the evolutionary environment is: to increase the likelihood of finding a

solution, or to decrease the cost of finding a solution, or to increase the quality

of solutions, or—ideally—all of these. Incremental evolution offers the human an

opportunity to coach the evolutionary system’s development. It can be seen as a

way to add domain-specific knowledge.

Throughout this thesis we will refer to each of the evolutionary environments

as a stage. By definition, incremental evolution has a minimum of two stages—

the most common use in the literature—but the number of stages can be much

larger, with automated options sometimes using hundreds of stages to evolve a

solution [53, 122].
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6.2 Detail of Incremental Evolution

6.2.1 Terminology

Harvey and his colleagues were possibly the first to use the term “incremental

evolution” (in a 1992 technical report [26]), although similar ideas do pre-date

their work [19, 30, 121, 122]. Unfortunately, however, many terms have been used

for very similar ideas.

Layered Learning

The most common term in competition with “incremental evolution” is almost

certainly “layered learning”. Layered learning was the subject of Stone’s 1998

PhD thesis [106] and although there were originally specifications that separated

the two ideas (see section 6.3.1), later research blurred those distinctions [57, 61,

63, 120].

Großmann’s use of “incremental learning” [55] was very similar in approach

to Stone’s layered learning.

Shaping

A significant body of research exists on the use of “shaping”—a technique used

to train animals (and indeed humans) that was pioneered from the 1930’s by

experimental psychologist Skinner [59, chapter 7]. The concept is to expose the

“student” to the material to be learnt in graded steps of increased difficulty.

Learning by Easy Missions

Asada et al. used the idea of shaping and termed it “Learning from Easy Missions”

or “LEM” [9, 10]. Again, if the evolutionary process is seen as learning, then

incremental evolution and LEM do not differ.

GP-ISLES

Hsu and his colleagues [57, 63] used the acronym “GP-ISLES”, which stood for

“Genetic Programming—Incrementally Staged Learning from Easier Subtasks”,

in what amounted to experiments in incremental evolution. Fortunately, nobody

else seems to have used this term.
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Seeding

Finally, the concept of “seeding” is very similar to incremental evolution. Typ-

ically a seed-individual will be hand-coded and inserted into the initial genera-

tion. If the seed has come from an evolutionary process then this use of seeding

is equivalent to incremental evolution.

6.2.2 Functional versus Environmental

Barlow [14] divided the use of incremental evolution into two types: functional

and environmental. In functional incremental evolution, the fitness function is

varied across the stages. In environmental incremental evolution the environment,

in which the individuals evolve, is changed across the stages.

Barlow claimed functional incremental evolution to be less popular, but that

both had been used successfully. He used both approaches in his work on evolving

controllers for unmanned aerial vehicles (UAVs) [14].

6.2.3 Transferring the Population Between Stages

One topic that remains only very lightly studied is how the population should

transition from stage to stage. There exist a number of options. The population

of the (n + 1)th stage can be formed by copying the entire final population of

the nth stage [58, 112]. This seems a very popular option. Other techniques

include either the introduction of new genetic material via randomly generated

individuals or the mutation of individuals [113] (both techniques that encourage

diversity), or biasing selection of the individuals that performed better in the

previous stage [61].

Hsu and Gustafson [61] looked at the first two suggestions using a two-stage

“keep-away soccer” domain: LLGP-Best took the best individual of the first stage

and cloned it to make up the entire initial population of the second stage; LLGP-

All transfered the final population of the first stage so that it formed the initial

population of the second stage. Their comparison showed LLGP-All notably

outperformed LLGP-Best (although no statistical significance information was

provided).

6.2.4 Hierarchies, Directions and Concurrency

Incremental evolution is typically a sequential process of moving from one stage to

the next until the goal is reached. This, however is not a requirement. Researchers
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have studied the use of hierarchies, bidirectional connections and concurrency in

incremental evolution stages, each with an amount of success.

Winkeler and Manjunath’s “mixed increments” are interesting because they

combined the use of demes—a technique known to be beneficial for GP [73,

chapter 62]—and different incremental evolution stages [124]. They found this to

be beneficial when compared to “standard” incremental evolution.

Kalganova found benefit in evolution in two directions with results performing

significantly better than direct evolution [68]. Fukunaga also noticed the potential

bidirectionally in incremental evolution [42].

Whiteson et al. [119, 120] developed “concurrent layered learning” by extend-

ing Stone’s work on layered learning. Their hypothesis was that there exists

layered learning scenarios where it is necessary to learn two behaviours (layers)

simultaneously. They applied this to the Keep-Away Soccer domain and found

concurrent layered learning significantly improved average fitness.

6.2.5 Diversity and Overtraining

Diversity can be a concern when incremental evolution is used. Diversity is

the range of genetic material in the population; when a population evolves in an

environment it is possible for the genetic material to converge to a common state.

If the environment were to change (as one expects in incremental evolution) then

the population may not have the ability to adapt. Incremental evolution may

require diversity-enhancing operators such as mutation [113].

Winkeler and Manjunath [124] concluded that the optimum strategy for incre-

mental evolution was for each stage to evolve until it solves that stage’s problem.

Their work, however, considered only one problem domain, so the extrapolation

of their conclusion into a general rule might be inappropriate.

Their problem domain was visual tracking; the objective was to keep an object

in the centre of a camera’s image. In the first stage of evolution, the object was

stationary. This proved to be easily solved within 20 generations. If the first stage

evolved far past the point of finding a solution (50 generations), the resulting

population was overtrained and was demonstrated to be a worse starting point

for the second stage than if the first stage had been terminated when it had first

found a solution.

It was also shown that undertraining on the first stage produced a better

starting population than the overtrained group. However, if measured in gener-

ations, the undertrained population was less undertrained (10 generations) than
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the overtrained population was overtrained (30 generations). To achieve under-

training, the first stage was terminated when the best individual had surpassed

a “partially solved” threshold.

Barlow suggested that the use of a crowding distance in his multi-objective

fitness function encouraged diversity [14, page 144]. In his research, diversity was

not an issue even though evolution in each stage was terminated when it reach

the allocated number of generations (400 or 600)—a strategy not recommended

by Winkeler and Manjunath. His crowding distance measure was like that of

the NSGA-II algorithm [32]: it encouraged selection of (otherwise equivalent)

individuals that were in a less populated area of the search space.

As a counter-example to Barlow, but to reinforce Winkeler and Manjunath’s

results, Fukunaga [42] demonstrated that spending too many generations in the

first of two stages was almost certainly detrimental to the performance of the

evader in his pursuit-evasion domain.

Eriksson [35] studied the possibility that including a learning component with

the evolutionary system may increase the diversity in the population thus improv-

ing the performance of incremental evolution. His work was not conclusive and

although he hoped to continue this research, his later publications did not cover

this subject.

6.2.6 Manual Incremental Evolution

Easily the most common use of incremental evolution in the literature is to fix the

number of stages, the environments, and their fitness functions before evolution

begins. Along with this specification is the implicit requirement for when the

individuals will transition from stage to stage.

Despite Winkeler and Manjunath’s work, the most common approach appears

to be that each stage is allocated a fixed number of generations. The other

approach is the use of a success-based transition criteria—but Andre and Teller

used a unique variation.

Andre and Teller used multiple fitness measurements [6] but unlike the more

common studies on Pareto optimisation, their fitness functions had an ordering

such that any success in a higher order fitness measure would completely swamp

fitnesses in all lower orders. The effect of this was that as the population improved

the fitness function automatically became more challenging. This specification

of fitness functions can be seen as a way to coach the evolutionary system and

in a way that is automatically appropriate for the level of the individuals (even

if they are at different levels in the same generation).
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We study a manual incremental evolution approach using a success-based

transition criteria in chapter 8.

6.2.7 Automatic Incremental Evolution

We are aware of two papers that used an automatic technique to specify a series of

stages for genetic programming [53, 119]. Both papers used an “environmental”

form of incremental evolution that automatically increased the difficulty of the

environment. They used a success-based trigger to scale up the difficulty of the

problem domain—once the population reached a predefined success criteria, the

parameter was changed so that the domain became more difficult. This topic

is developed in chapter 9 of this thesis and others’ work is discussed further in

section 9.2.

Another approach that could be considered “automatic” is that of Cliff et al. [26].

Their system was given the ability, through mutation, to increase the complexity

of the search space (neural network architectures). Using this mutation operator

an individual would enter what might be more complex problem-space terrain

but, if successful, its architecture would propagate through the population and

the population would eventually transition to the new space.

6.2.8 Success Rates

Incremental evolution is certainly not a guaranteed success. Our earlier [112] work

plus the work in chapters 8 and 9 demonstrates this. Others too have either found

difficulty in getting incremental evolution to outperform direct evolution [20, 67]

or have shown that it is very parameter specific [41, 42].

Fukunaga hypothesised that incremental evolution will be successful if the

early stages are “smoothed” versions of the goal problem [41, page 434]. He

suggested that to develop a theory as to when incremental evolution will be

successful, “attention should be focused not on easy/hard ‘problems’ (in the

intuitive sense), but on the analysis of easy/hard cost surfaces for a particular

search algorithm”. Although he stated some interest in developing this theory,

we are ten years on and Fukunaga has not published anything more on the topic.

6.2.9 Naysayers

There is an argument—the No Free Lunch Theorem—that “no single algorithm

outperforms memorising random search or enumeration when amortised over all
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possible functions” [21, page 121]. This argument can be used to show that

incremental evolution will not, in general, be any better than a random search.

Schmidhuber presented a way of searching for a “universal algorithm” that

solved a sequence of tasks [102]. His defence against the No Free Lunch Theorem

is worth considering. His opinion was that we are not typically interested in

general problems, but rather real world problems. His argument applies equally

well to incremental evolution.

Successive real world problems . . . tend to be closely related. In particular,

teachers usually provide sequences of more and more complex tasks with

very similar solutions. Problem sequences that humans consider to be

interesting are atypical . . . For all interesting problems the consideration

of previous work is justified, to the extent that interestingness implies

relatedness to what’s already known. [102, section 3.3.2]

6.3 Related Techniques

There are a number of techniques that are related to incremental evolution, the

most important of which is probably layered learning (as originally specified).

Shaping, seeding and co-evolution also deserve consideration.

6.3.1 Layered Learning

The term “layered learning” was coined by Stone [106, 107]. It is a specification

for learning complex behaviours.

Layered learning defines a multi-stage learning process. Each stage (termed a

layer) is conceived by the human “coach”. Any learning technique may be used

at any layer, but the resulting behaviour should be useful to the next layer in the

learning process.

The effectiveness of layered learning was demonstrated via the performance

of the 1996–8 robotic-soccer teams named CMUnited. In the small-robot compe-

tition of RoboCup-97, CMUnited-97 finished first of four teams. In the simulator

competition of RoboCup-98, CMUnited-98 won all eight of its games with a

combined score of 66–0!

Stone’s thesis [106] described the implementation of a three-layer training

system for robotic soccer. The first layer used a neural-network that learnt to

intercept the ball. The second layer used a decision tree to evaluate whether a

given pass would be successful. The second layer built upon the results of the first
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by using the learnt interception skill for both pass-receivers and the opponents

that were used to make the task more difficult. The third layer used a learning

algorithm that Stone himself developed. It built upon the success of the second

layer by learning pass-selection given a competing team.

Stone described two further layers that were not implemented in his thesis,

strategic positioning and strategic adaption, that would have further built upon

the skills learnt in previous layers.

Layered learning (as originally conceived) and incremental evolution differ in

the following ways:

• Incremental evolution uses an evolutionary learning algorithm at every

stage; layered learning may use any learning algorithm at any layer.

• Layered learning learns a behaviour at each layer. These behaviours are

combined to solve the goal problem. Incremental evolution learns a be-

haviour in an initially simple environment (the first stage), this behaviour

is honed by later stages until a solution is found for the goal problem.

For example, in the case of Stone’s first layer the neural network learnt how

best to intercept the ball. Once this was learnt, the network’s weights were

never reconsidered. It was expected that later layers would learn not only

what to do with this interception skill, but also how to reduce any errors it

may potentially contain [106, page 99].

• Incremental evolution directly uses the results of previous layers: unless

“frozen”1 , it can manipulate their genetic representation with further evo-

lution. In layered learning the results become a block that can be reused

but may not receive further development.

• Layered learning suffers from the potential misalignment of learnt behaviours.

Whiteson wrote, “no matter how carefully the special training environments

for the lower layers are designed, there are bound to be imperfections. Dis-

crepancies will inevitably exist between the behaviours that those [early-

layer] environments encourage and the behaviours that are optimal in the

target [goal] domain” [119, page 20]. Because incremental evolution builds

upon the genetic code of earlier solutions, this potential misalignment may

not be so significant; eventually, individuals will be evaluated and hence

honed in the goal domain. It may be that early stages were not helpful,

1An example of such freezing can be found in the work of Hsu et al. [63]
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but once in the goal stage, evolution has the potential to overcome a poor

starting point.

Thus layered learning in its original form differs from incremental evolution.

However, since the publication of Stone’s thesis, continued research has blurred

these distinctions. Hsu et al. used layered learning in a way that cannot be

distinguished from incremental evolution [61–63] as did Whiteson and Stone when

they developed “concurrent layered learning” [120].

6.3.2 Shaping

An entertaining example of shaping was carried out in 1970 on primary school

classes [59, pages 240–1]. First, “a token economy was instituted” where students

could use tokens to buy rewards. They earned tokens if the whole class was

“paying attention” to the teacher for a set percentage of the lesson. A cue-light

“prominently displayed on the teacher’s desk served to inform the class when the

teacher thought they were all paying attention”. The teacher would switch the

light without comment, but when the light was red the class knew that they were

not accumulating “attention time” and so might not get their tokens. Shaping

occurred by increasing the proportion of “attention time” required before the

class obtained their tokens. Initially the level was set at just 12 minutes of the

half-hour class, but after a number of successes the level was increased. The

experiment was a “spectacular success” with class attention levels reaching 90%.

Without the reinforcement, attention time plummeted to 10–20%.

The use of shaping is sufficiently pervasive that it has also been used for ma-

chine learning [33, 52, 94, 100, 122] (and even the guidance of conversations [29]).

If the evolutionary system can be considered as the entity that learns, then in-

cremental evolution can easily be seen as a form of shaping.

The references in section 2.5 of Gomez’s PhD thesis [53] should be consulted

by a reader interested in further work on shaping as applied to machine learning.

Also, section 5.1.3 of Perkin’s thesis gives a “taxonomy of shaping” [94].

6.3.3 Seeding

Seeding is a concept similar to incremental evolution. It is often implemented

as a single seed-individual added to an otherwise traditionally-initialised popu-

lation. One concern with this method is that the seed is typically so successful
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it quickly propagates throughout the population eliminating all genetic compe-

tition. Consequently, the seed is sometimes used exclusively to populate the

initial generation—although this method suffers from a lack of diversity. If the

source of the seed was an evolutionary run then the use of seeding is equivalent

to incremental evolution.

Andre and Teller used a form of seeding, because “GP is remarkably slow

to learn generalisable routines to reliably run to and kick the [robot-soccer] ball

when given only the most basic of primitives” [6]. They gave every individual

hand-coded “automatically defined functions” (ADFs) that encoded that basic

functionality. They did not discuss the effect of their technique but the mere fact

they entered into a RoboCup competition [36] a team that was almost completely

evolved from scratch was a success in itself.

From the literature, seeding the initial population has been said to: improve

the seed provided [1–3, 108, 109], produce results more quickly [95, 108, 118], pro-

duce higher performance individuals in early generations [54, 103], be beneficial

in difficult problem domains [103], improve the rate of convergence [54, 76, 77, 95],

result in a higher fitness level for the best individual [1–3, 28, 37, 54, 76, 93, 103],

and produce individuals that are more robust [95].

6.3.4 Co-evolution

Incremental evolution can be seen as similar to co-evolution. In co-evolution

two groups of individuals compete against each other and thus ramp up both

groups’ abilities. The fitness function (or environment) in incremental evolution

can be seen as equivalent to the competition available through co-evolution; as

the individuals improve so too does the fitness function (or environment). This

is especially true when the transition between incremental evolution stages is

success-based and even more apparent when the stages are automatically de-

fined. Harvey discussed this topic, considering co-evolution as evolution versus

the human experimenter [58, page 190].

6.4 Incremental versus Direct Evolution

When comparing incremental evolution to direct evolution there are three com-

parisons often considered: (i) the change in the success proportion at the final

generation, (ii) the cost of finding comparable solutions, and (iii) the quality

of solutions found. Incremental evolution has been said to increase the success
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proportion, decrease the cost of finding a solution, and increase the quality of

solutions (although not necessarily all at once). We next discuss research in each

of those areas.

However, when researchers have compared incremental evolution to direct

evolution they fall into two camps: those who include the cost of the non-goal

stages, and those who do not. That anyone falls into the second camp is quite

remarkable given that such comparisons are almost certainly unfair—how can

you justify failing to include the cost of the preparation when it is the effect of

that preparation that you are studying?

6.4.1 Success Proportion

Barlow applied incremental evolution to developing a controller for an unmanned

aerial vehicle (UAV) [14, 16, 17]. His comparisons with direct evolution did not

include the full cost of incremental evolution as the evolutionary computation

associated with any non-goal stages were not counted when comparisons were

made with direct evolution. At worst, direct evolution experiments that ran for

600 generations were compared to incremental evolution runs that ran for 1800

generations [14, 15]. It is not possible to make adjustments to allow more fair

comparisons as the direct evolution runs were allocated an insufficient number of

generations. However, if it is assumed that incremental evolution may freely start

with the population produced from the final non-goal state, then Barlow’s results

showed that, “the use of incremental evolution increased evolution’s chances of

evolving fit controllers” [14, page 127]

Chapters 8 and 9 of this thesis consider the impact of incremental evolution

from a success proportion perspective.

6.4.2 Quality of a Solution

Further to Barlow’s increased probability of success in evolving UAV controllers,

those successful controllers that were evolved through incremental evolution were

tested on all the problem domains of the non-goal states. It was found that the

controllers were still able to successfully solve the non-goal problem domains [14].

This was considered an advantage not shared by direct evolution (although the

direct-evolution controllers were tested only informally [15]).

In his PhD thesis, Harvey [58] compared direct and incremental evolution

using the travelling salesman problem (TSP). Given the same number of evalu-

ations, Harvey’s three variations of incremental evolution all performed as well
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as direct evolution, even though incremental evolution solved up to 123 extra

problems en route.

Winkeler and Manjunath [124] compared incremental and direct evolution.

They said that, on training data, programs evolved through incremental evolu-

tion were often statistically superior to their direct evolution counterparts. On

untrained data, most of the programs evolved were as robust as those evolved

with direct evolution. Although it is not entirely clear, it appears that they have

ensured that, when making comparisons, each technique was allowed the same

number of program evaluations.

Fukunaga and Kahng considered two application domains in their 1995 pa-

per [42]: a pursuit-evasion problem, and a “Tracker” problem that was based on

Koza’s artificial ant and its “Santa Fe” food trail [71]. For both domains they

used a two-stage incremental approach.

For their pursuit-evasion problem they found that the first stage could be

both easier or harder than the goal stage and still incremental evolution could

produce individuals with better fitness that those produced by direct evolution.

Similar results were found with the artificial ant domain. There were three

training environments: easy, intermediate, and the original (hard) Santa Fe trail.

When the goal was the easy trail, direct evolution always outperformed incre-

mental evolution (when considered from a mean best-fitness perspective): it did

not help to spend time on either the intermediate or the Santa Fe trails. When

the goal was either the intermediate or Santa Fe trail, it was most beneficial for

the first stage to train on the easy trail. However, it was also beneficial, when

compared to direct evolution, to start with the intermediate trail and move to

the Santa Fe trail. Notably, incremental evolution would also outperform direct

evolution if a small number of generations was initially spent on the (hard) Santa

Fe trail even when the goal was the intermediate trail.

In his thesis, Gomez [53] compared direct and incremental evolution using

three problem domains: double pole balancing, capturing prey, and guidance of

a finless rocket. The double-pole balancing problem is discussed in section 6.4.3

as it showed the cost of using incremental evolution can be less than that of

direct evolution. Gomez’s other two domains however are excellent examples of

incremental evolution producing higher-performance individuals.

Prey capture was the second problem domain in Gomez’s thesis [53] where

direct evolution was compared to incremental evolution. The objective was to

evolve a controller that chased prey.

Direct evolution was applied to evolving the predator’s controller. The prey
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was randomly placed just within the sensing range of the predator. The prey

was then allowed to make four moves while the predator was stationary. Af-

ter the four moves, the prey moved at the same speed as the predator. With

direct evolution the controllers improved slightly over the first 20 generations.

The population quickly converged, where the best individual moved around in a

mechanical fashion. “Direct evolution failed in every simulation.”

Incremental evolution’s first stage was against a stationary prey. Once a

capable controller had evolved, the problem was increased in difficulty. In the

second stage the prey was allowed to make two moves while the predator was

stationary. The prey then stayed still. The prey’s first two moves potentially

took it out of the predator’s sensing range. This increased the problem’s difficulty

as it sometimes required the controller to remember the general direction of the

prey. The next two stages incremented the number of initial moves so that by

the end of the fourth stage the prey made four initial moves. The fifth stage had

the prey making four initial moves and then moving at about one-third the speed

of the predator. Once a successful controller had evolved, the speed increased

to 0.6, 0.8, and finally to 1.0. Thus, the final stage was the same problem that

direct evolution tried to solve. The fitness-based performance of the controller

evolved through incremental evolution was about nine times that of the controller

evolved using direct evolution [53, figure 7.4].

Very similar results in the same domain are reported by Gomez in a paper

that pre-dates his thesis [51].

Gomez also experimented with evolving the prey (rather than the predator)

in a still-earlier paper [50]. There he considered multiple predators that moved

at up to half the speed of the prey. The first stage started with one predator that

moved at one-third the speed of the prey. Next a second predator was added.

Later stages increased their speeds to 40% and then 50% of the speed of the prey.

Again, incremental evolution drastically outperformed direct evolution.

In Gomez’s thesis [53], the third comparison between incremental and direct

evolution involved the active guidance of a finless rocket. The aim was to evolve

a controller that could guide a simulated, highly-unstable, rocket as high as

possible. This task was too difficult for direct evolution: all members of the

initial population performed so poorly that evolution stalled and converged to

a local maxima. It is, however, unclear that direct evolution was allowed as

much computational time as incremental evolution. Incremental evolution started

with a rocket with small fins; it solved that problem in approximately 600,000

evaluations. A further 50,000 evaluations were required to successfully transition



112 Review: Incremental Evolution

to the finless rocket. Gomez concludes “incremental evolution was critical to the

success . . . Evolving a controller for the finless rocket directly would have required

much greater computational resources and allowed for much less experimentation

in the domain.”

Hsu and Gustafson [61] used “keep-away soccer” [56] to compare the perfor-

mance of direct and incremental evolution (under the terminology of “layered

learning”). In the first stage, three offensive agents (which were clones of the

same GP individual) were taught to pass a ball to each other. The fitness func-

tion was directly proportional to the number of successful passes. The second

stage added a defender that could move at twice the speed of an offensive agent

and the fitness function became directly proportional to the number of turnovers

that occurred. The defender’s strategy was hand-coded and not evolved.

In a preliminary experiment, the first layer was allocated 40 generations and

the second had 61. Direct and incremental evolution produced solutions that

were very similar in quality. The only noteworthy difference was that individuals

produced through direct evolution were one-third larger in size.

An effort was then made to tune the number of generations allocated to the

two stages of incremental evolution. They found the best results were obtained

when ten generations were spent on the first stage and 91 on the second. With

this tuning, the average of the best-of-run controllers was under six turnovers

per simulation. This compared to direct evolution’s average of nine turnovers

when evolved for the same number of generations. They likened their success to

training human soccer teams where “individuals first learnt to play well together

in pairs and small groups, then as a coordinated team”

Two years later, Hsu et al. [63] reimplemented Hsu and Gustafson’s previous

study. Again, incremental evolution outperformed direct evolution. In a footnote

they commented that a three-stage configuration was trialled. The extra stage

was inserted between the original two; it included the three offensive agents as

well as the defensive one, but the fitness function remained directly proportional

to the number of successful passes. They stated that improved results were seen,

but no further information was provided.

Although Stone [106] did not experimentally compare his work in layered

learning with direct evolution, his first principle for applying layered learning

was that “layered learning is designed for domains that are too complex for learn-

ing a mapping directly from an agent’s sensory inputs to its actuator outputs.”

He claimed robotic soccer was such a problem domain and cited two papers as

empirical evidence.
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The first, by Luke et al. [84], used GP to evolve a team. They provided

hand-coded functions and terminals such as “is a team mate closer to the ball

than I am?” and “block the goal from the ball”—a starting point that was at a

significantly higher level than Stone’s. This team won two of its four games at

RoboCup-97, losing in the second round. Stone claimed his competing team to

be “qualitatively clearly a better team”.

The second, by Andre and Teller [6], also used GP to evolve a team. Stone

said, “This time, the agents were indeed allowed to learn directly from their

sensory input representation. While making some impressive progress given the

challenging nature of the approach, this entry was unable to advance past the

first round in the tournament.”

Stone [106, page 100] wrote that this anecdotal evidence allowed him to claim

his layered-learning method generated “more complex and successful learnt be-

haviours than possible if learning straight from the agents’ sensory inputs.”

In contrast to all those examples of increased solution quality, de Garis noticed

a concerning effect [31]. Although incremental evolution produced better results

within fewer generations for his neural network problem, the quality of solutions

was comparably not as high if evolution was allowed to continue. He wondered

if other incremental evolution researchers would also notice this “better sooner,

worst later” effect. Although we have not read any such comment, it is certainly

possible that this effect may have occurred in others’ work had their runs been

extended.

6.4.3 Cost of Finding a Solution

After his studies of the artificial ant and the pursuit-evasion domain, Fukunaga

applied both incremental and direct evolution to the design of a soil probe for

a NASA mission to Mars [41]. Incremental evolution outperformed direct if the

first of the two stages were evolved with softer (easier) soil than the goal stage,

but direct evolution would outperform incremental if the incremental evolution

started with firmer (more challenging) simulated soil. Fukunaga concluded, “in-

cremental evolution was able to find higher-quality solutions in less time than

[direct evolution] on the Mars microprobe design problem.”

For the double pole balancing problem [52] in Gomez’z thesis [53], two poles

were mounted on a cart and the objective was to balance both poles simultane-

ously. Both direct and incremental evolution were allocated 1000 generations per

evolutionary run. Direct evolution had a 20% success rate at evolving a success-
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ful controller when the shorter pole was 40% the length of the longer pole (e0.4).

For e0.45 direct evolution evolved a controller only once in fifty runs. At e0.5, di-

rect evolution failed to evolve a controller within 1000 generations. Incremental

evolution was far more successful. It had a 100% success rate for e0.44, and 96%

at e0.5. One run even found a solution for e0.66. Compared to direct evolution,

incremental evolution required 75% fewer evaluations to solve e0.4.

Chapters 8, 9 and 10 of this thesis look at reductions in cost associated with

the use of incremental evolution.

6.5 Summary

Chapter 8 studies a form of incremental evolution introduced by Jackson. We

utilise the statistics developed in Part I to show that, if generations are weighted

according to the amount of work done, then the technique can sometimes be

beneficial. In chapter 9 an automated version of the technique is developed and

we show it produces a statistically-significant improvement. We then extend the

study and consider, in chapter 10, a very interesting early-termination heuristic.

However we must first study direct evolution’s performance in our chosen problem

domain and it is that topic that we turn to in the next chapter.



Chapter 7

Direct Evolution

This chapter’s primary goal is to provide base-line comparisons for the following

chapters. Even-n-parity problems are executed both with and without ADFs

and the results are given. The chapter concludes with a replication of Koza’s

computational efficiency analysis—but with the addition of multiple measures

and confidence intervals.

7.1 Even-n-Parity

The even-n-parity problem domain was introduced to genetic programming in

Koza’s first book [71] and further studied in his second [72]. The domain has be-

come one of the more studied of problems used in genetic programming research.

The concept is simple: given n boolean inputs, the task is to produce an

electronic circuit that returns true if an even number of the inputs are true, and

returns false otherwise. The available gates are: AND, OR, NAND, and NOR. Note

that NOT and XOR and not included in this list as they enormously simplify the

problem.

Koza demonstrated that as n increases linearly, the problem difficulty in-

creases exponentially and that the use of ADFs drastically improves the tractabil-

ity of the domain [72, chapter 6].

Since Koza’s books, other researchers have shown that mutation is more sig-

nificant than Koza claimed, that there is benefit in evolving the main-tree and

ADF-trees individually, in assessing only the fitness cases that are most difficult,

in the use of population demes, in a sub-machine-code implementation, in smooth

uniform crossover and in smooth point mutation [97]. Although, like others, we

will use even-n-parity to demonstrate potential improvements available via our
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Problem Population (M) ADFs Args
Even-4 500 2 {2,3}
Even-5 1,000 3 {2,3,4}
Even-6 1,000 3 {2,3,4}
Even-7 2,000 3 {2,3,4}

Table 7.1: Population sizes, number of ADFs, and number of ADF arguments
for the different problem sizes used in the experiments.

methods, except for our use of sub-machine-code GP, we will leave it to future

research to identify the best combination of all the improvements that have been

offered.

7.2 Method

Standard—or direct evolution—genetic programming runs were executed for the

even-n-parity problem domain for values of n of 4, 5, 6 and 7. They were exe-

cuted both with and without Koza’s automatically defined functions up to 150

generations.

Given that there is evidence that the difficulty of this problem rises expo-

nentially as n increases [72, page 192], we increased the population size as n

increased. The population sizes specified were an attempt to match the perfor-

mance that Jackson observed [67]. Table 7.1 gives the population sizes used for

each value of n.

Whenever ADFs are used there is the standard problem of how to configure

them [89]. We considered Koza’s rule-of-thumb, that there should be n − 2

automatically defined functions (thus n− 1 trees per individual) with each ADF

taking one more argument than the last, with the first taking two arguments [71,

page 535]. For even-7-parity this would result in individuals with five trees taking

two to six arguments. Executing runs with such a set up is considerably expensive

from a computational perspective, so although Koza’s suggestion was used for

even-4 and even-5, we scaled it back for even-6 and even-7. Table 7.1 details the

ADF configuration used for each value of n.

The following “minor” parameters were used:1

1We say “minor” here because that is what they are traditionally called. It happens that we
are not particularly interested in optimising these parameters, but our experiments indicated
that doing so could possibly have more of a positive influence than any of the novel techniques
offered in this part of the thesis.
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• A pre-release of Open BEAGLE version 3.1.0 was used.

• The initialisation operator was Koza’s ramped half-and-half with a max-

imum depth of five and a minimum depth of two (without the kozagrow

patch).

• The selection operator was tournament selection with a group size of seven.

• No mutation was employed, instead crossover was the sole genetic operator

with resulting trees limited to a maximum depth of 17. Two attempts were

made to satisfy this depth criteria before two new parents were chosen for

crossover.

• Evolution occurred over a single deme.

• Finally, the “fast” version of the parity code was used.

7.3 Results without ADFs

Figures 7.1, 7.2, and 7.3 plot Koza-style graphs of computational effort and cu-

mulative success probability. The numbers in the hexagonal boxes relate to the

calculation of minimum computational effort (see chapter 3) while the label at-

tached to the end of the cumulative success proportion curve gives the level of

success at the final generation. Table 7.2 gives the values of the three measures

from Part I.

The plot of even-4’s performance (figure 7.1) has no conspicuously interest-

ing features. The generation at which the minimum computational effort occurs

is sufficiently before the maximum number of generations that one can be con-

fident that longer runs would not impact this measure. Instantaneous success

proportion has well and truly peaked (at about generation 35) so lengthening

the runs would likely have only an increasingly small impact on the final success

proportion.

Even-5’s performance curves (figure 7.2) indicate that the instantaneous suc-

cess proportion may still be rising, thus it is likely that the observation of min-

imum computational effort has been affected by the choice of maximum gener-

ation. Longer runs would likely show notably different values for this measure.

Success proportion too would be influenced.

Figure 7.3 (Even-6) is an excellent example of computational effort’s sensi-

tivity to low success proportions. Only six of the 500 runs found a 100%-correct
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Figure 7.1: Computational effort and cumulative probability of success for even-
4-parity without ADFs.

solution, and each success is clearly visible as a step on the computational effort

line. The six successes influence the computational effort by between 16% and

50% (when compared to the computational effort for the generation before the

occurrence of the success). The confidence interval (table 7.2) demonstrates this:

it is nearly twice as wide as the observed value—and that’s with 500 runs.

500 runs on Even-7 failed to find even a single 100%-correct solution. As a

result neither computational effort nor success effort are able to be calculated.

The final success proportion of 0% is the only one of our three measures that we

can get from this data.

7.4 Results with ADFs

Figures 7.4 to 7.7 graph computational effort and cumulative success proportion

curves for even-4, 5, 6, and 7 when ADFs were used. Table 7.3 lists the minimum

computational effort, success effort and final success proportion plus confidence

intervals for all four problems.
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Figure 7.2: Computational effort and cumulative probability of success for even-
5-parity without ADFs.

Problem Min. Comp. Effort Success Effort Success Prop.
P (150)

Even-4 190,000 97 78%
(171,000–213,000) (88–107) (74–82)

Even-5 2,450,000 564 25%
(2,050,000–2,930,000) (481–668) (21–29)

Even-6 50,900,000 12,500 1.2%
(21.8–119 million) (5,700–26,000) (0.6–2.6)

Even-7 no successes no successes 0%
(0–0.8)

Table 7.2: Minimum computational effort, success effort, and final success pro-
portion for the different problem sizes used in the experiments without ADFs.
95% confidence intervals are shown in parentheses.
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Figure 7.3: Computational effort and cumulative probability of success for even-
6-parity without ADFs.
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Figure 7.4: Computational effort and cumulative probability of success for even-
4-parity with ADFs.

Even-4, and 5 completed 500 runs within their allocated time. Even-6 termi-

nated just minutes before completion as it had used up its allocated seven days.

Even-7 completed only 75 runs within seven days and, although it was allocated

more time, a total of only 195 runs could be executed.

In comparison to the results without ADFs, all four of these experiments had

a minimum generation well before the maximum of 150 generations. As a result

the computational effort measures will likely be unaffected were the maximum

generation to be lengthened.

7.5 Efficiency Ratios

In Genetic Programming II Koza analysed the efficiency gains when ADFs were

introduced. His analysis offered an observation of the improvement in perfor-

mance by calculating RE: the minimum computational effort without ADFs di-

vided by the minimum computational effort with ADFs (see section 3.4.3 for

further discussion of this measure).
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Figure 7.5: Computational effort and cumulative probability of success for even-
5-parity with ADFs.

Problem Min. Comp. Effort Success Effort Success Prop.
P (150)

Even-4 138,000 142 59%
(119,000–162,000) (125–164) (55–63)

Even-5 480,000 211 47%
(409,000–566,000) (184–244) (43–52)

Even-6 800,000 404 30%
(643,000–999,000) (341–480) (26–34)

Even-7 1,490,000 315 36%
(1,070,000–2,090,000) (247–405) (30–43)

Table 7.3: Minimum computational effort, success effort, and final success pro-
portion for the different problem sizes used in the experiments with ADFs. 95%
confidence intervals are shown in parentheses.
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Figure 7.6: Computational effort and cumulative probability of success for even-
6-parity with ADFs.
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Figure 7.7: Computational effort and cumulative probability of success for even-
7-parity with ADFs.
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Figure 7.8: Efficiency ratio for the addition of ADFs calculated using minimum
computational effort, success effort, and success proportion. 95% confidence in-
tervals are included. The grey line is plotted at the break-even point of 1.0. Note
the log scale.

Figure 7.8 replicates his analysis but with the data from this chapter. Unlike

Koza we have used not only minimum computational effort, but also success effort

and success proportion. Also unlike Koza, we have included confidence intervals

for each of the ratios (calculated using the methods in tables 3.19, 4.7, and 2.3).

Even-7-Parity was excluded given our lack of minimum computational effort and

success effort measurements without ADFs, and that the success proportion ratio

would include infinity.

The major feature of figure 7.8 is that, irrespective of measure, the advantage

of using ADFs increases at least exponentially. This supports Koza’s observa-

tion [72, page 192]. An interesting highlight however, is the unexpectedly poor

“improvement” of even-4 with ADFs when success effort and success proportion

are used in the ratio—an effect principally influenced by the higher final success

proportion of even-4 without ADFs than with ADFs.
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Problem Min. Comp. Effort Success Effort Success Prop.
P (50)

Even-4 138,000 83 43%
(119,000–162,000) (72–96) (39–48)

Even-5 480,000 120 35%
(409,000–566,000) (104–139) (31–39)

Even-6 800,000 223 20%
(643,000–999,000) (184–271) (17–24)

Even-7 1,490,000 185 24%
(1,070,000–2,090,000) (141–245) (19–31)

Table 7.4: Minimum computational effort, success effort, and final success pro-
portion for the different problem sizes used in the experiments with ADFs. The
maximum of 50 generations per run were executed. 95% confidence intervals are
shown in parentheses.

7.6 Results to 50 Generations

Although the run lengths to 150 generations will be used in chapter 9, the tra-

ditional setting has been to run to just 50 generations. To allow for comparison

with previous work, tables 7.4 and 7.5 give the results up to the more traditional

limit. Chapter 8 will also make use of this data.

Note that successes were observed for neither even-6 nor even-7 when ADFs

were not used. Without any successes values could be calculated for neither

minimum computational effort nor success effort.

When ADFs were used, the observations of minimum computational effort

do not differ between 50 generations (table 7.4) and 150 generations (table 7.3).

This was because the minimum generation occurred before generation 50 for all

four versions of even-n. On the other hand, success effort values were reduced

when the experiments were considered at 50 generations primarily thanks to the

reduction (by 100 generations) of the cost of failure.
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Problem Min. Comp. Effort Success Effort Success Prop.
P (50)

Even-4 204,000 96 44%
(179,000–234,000) (85–109) (40–48)

Even-5 7,280,000 3120 1.6%
(3.7–14.4 million) (1590–6040) (0.8–3.1)

Even-6 no successes no successes 0%
(0–0.8%)

Even-7 no successes no successes 0%
(0–0.8%)

Table 7.5: Minimum computational effort, success effort, and final success pro-
portion for the different problem sizes used in the experiments without ADFs.
The maximum of 50 generations per run were executed. 95% confidence intervals
are shown in parentheses.





Chapter 8

Manual Fitness-Based

Incremental Evolution

This chapter considers a form of incremental evolution introduced by Jackson:

fitness-based incremental evolution [67]. Its premise is that performance may

improve if the evolutionary process is initially forced to focus on a small portion

of the specified fitness cases. We consider this technique both with and without

ADFs and compare the performance against direct evolution. A modification to

the weighting of each generation is suggested.

8.1 Related Work

In fitness-based incremental evolution the stages are formed from subsets of the

fitness cases of the goal stage. So, for example, if there are 100 fitness cases to

be solved, in order to find a 100%-compliant solution, then we might consider

evolving the population on the first 50 of these cases. Once a solution has been

found (or an allocated number of generations has been spent) the individuals are

then evolved with evaluation occurring over the full set of fitness cases.

Barlow used a very similar approach when evolving unmanned aerial vehicles

(UAVs) [14]. The first 200 of 600 generations focused solely on only one of the

four fitness functions. Barlow reported that the technique “works well and makes

a great deal of sense” [14, page 58].

The concept is not limited to a two-stage process. It is conceivable that

there could be performance benefits to be gained by dividing the total number of

generations into three (or more) stages. For example, given a goal of 100 cases,

evolution could be focused initially on the first 25 fitness cases, then, once solved,

it could move on to 50 and then finally the full 100 cases.
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Neither is the concept limited to an entirely linear approach: Jackson tried a

three stage approach with the first stage starting with a random initial population

and focused on the first eight of the sixteen cases of even-4-parity. The second

stage also started with an initial random population but was focused on the

second half of the sixteen cases. The third stage combined the final populations

of the first two stages and then evolved the population on all sixteen cases.

Jackson’s work showed a very slight improvement in performance on even-4-

and even-5-parity when compared to genetic programming without ADFs. The

performance of his experiments did not compare well against GP with ADFs.

However, my analysis (see figure 8.1; using the method offered in table 2.3 of this

thesis) showed that most of his results were not statistically significant.

It seems an apparent flaw that Jackson failed to study incremental evolu-

tion with ADFs. It appears he considered the two ideas to be in competition.

Gustafson however discussed the combination of ADFs and incremental evolution

in his thesis [56]. Hsu and Gustafson later studied the two further but decided

the addition of ADFs appeared not to be beneficial [61, page 7]. In this chapter

we study the addition of ADFs to incremental evolution.

However, Jackson’s focus—for his first paper on fitness-based incremental

evolution [67]—was on a technique he termed saturation. He later considered a

technique based on parameterless functions [65], while his third article on the

subject [66] returned to the topic of incremental evolution based on simplified

problems. We will summarise each in the following three sections.

8.1.1 Saturation

Jackson’s initial study focused on the effect of varying saturation levels. Having

noted that “programs that pass all four test cases [of the first stage] were often

found in the initial population”, he concluded that, as a consequence, the second

stage’s starting population was “often very similar to that which would have

been obtained [had incremental evolution not been used]”, and that, as a result,

“performance hardly differed”. His solution was to let the evolutionary process

continue until a specified percentage of the population was made up of 100%-

correct individuals—the saturation level.

Figure 8.1 plots the efficiency ratio of fitness-based incremental evolution from

the final success proportion1 data given in Jackson’s work [67].

1Although minimum computational effort measures were given in the paper, insufficient
information was provided for the production of confidence intervals.
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Figure 8.1: Jackson’s results [67] comparing the efficiency of using fitness-based
incremental evolution to direct evolution on the even-4-parity problem given vary-
ing saturation levels in the initial stages. Neither technique used ADFs. Ratios
are based on quoted final success proportions. 95% confidence intervals are in-
cluded; calculated using the method in table 2.3) from run sizes and observed
success data provided by Jackson. The grey line is plotted at the break-even
point of 1.0.
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Although his initial fitness-based incremental evolution study was only of

even-4, we can draw some conclusions about the usefulness of saturation. Firstly,

there are two general trends.

The first general trend is that the vast majority of experiments produced

results that were below the easier of the two bars worth achieving. Canonical

(standard) GP without ADFs had superior performance in 24 of the 30 exper-

iments. The hope that one might hold for this technique would most likely be

pinned on an increase in relative performance for more difficult problems. Jack-

son however does not consider this in his paper. We address this topic (among

others) in the following sections.

The second general trend is that reducing the saturation level increases perfor-

mance. Although this fact is demonstrated by the trends in figure 8.1, it is more

powerful to consider the raw measures (without comparison to the base-line).

Unfortunately, even then the majority of results are statistically indistinguish-

able: at 95% confidence, the top result is unable to be separated from, at the

very least, saturation rates of 1 to 10%. From this evidence it would seem that

only very small saturation rates should be considered.

A concerning issue with Jackson’s methodology was whether the target sat-

uration rates were ever actually attained. It was not made clear, given a fixed

limit of 15 generations in stage one, how saturation levels of up to 50% could ever

have been achieved. However the concern is actually of no practical significance

given the fact that high levels of saturation were shown to have a negative impact

on performance.

The original motivation for the idea does not hold water when the difficulty

of the initial stage is increased. My experiments showed that, with eight of the

sixteen fitness cases, the initial stage took a number of generations before finding

solutions to all its allocated fitness cases (compare the performance in figure 8.2

with the result in figure 8.3 that 35% of the initial population represented a

solution of the first four fitness cases).

One might claim that the motivation for saturation should really be to drive

the entire population into a genetic space that allows for even more success in the

next stage. This however is the motivation of incremental evolution. So perhaps

just as important would be to consider other, potentially less costly, techniques

such as duplicating the best individuals so that they are over represented in the

initial population of the next stage, or how the intermediate stages are chosen.

The latter of these two ideas are considered in this chapter.

So with both a reduction in performance and a motivation that doesn’t stand
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Figure 8.2: Computational effort and success proportion curves for the first eight
of the 16 fitness cases of even-4-parity. A solution in this instance is a score of
eight out of the eight fitness cases.

up, one might consider the idea of saturation to be dead. However, possibly the

most telling of evidence is Jackson’s lack of use of saturation levels in either of his

second or third studies on the topic [65, 66]—he even labelled his own technique

“disappointing” [65].

8.1.2 Parameterless Functions

Jackson developed his fitness-based incremental evolution ideas in a second paper

where he considered the concept of parameterless functions (PFs) [65].

In this study, a user would specify a number of subsets. The total number

of fitness cases would be divided into the given number of subsets and the evo-

lutionary process would be fed one subset at a time. Evolution would move to

the next subset (and stop work on the current) only after it had found a solution

for all the fitness cases in the current subset; each of the evolved subset solutions

was termed a parameterless function. Once solutions had been found for every

subset, the evolutionary process would then be given the job of producing code
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to classify the inputs and call the appropriate parameterless function.

Using this technique on the even-4-parity problem, Jackson was able to im-

prove on not only canonical GP, but also on GP with ADFs. Again, by analysing

his final success proportion measures, we can obtain the following statistics:

• Dividing the fitness cases into two subsets of eight cases each (thus pro-

ducing two parameterless functions) gave an observed efficiency ratio of 3.9

over canonical GP and 1.3 over GP with ADFs. Using the method in ta-

ble 2.3 we can say, with 95% confidence, that the true efficiency ratios are

at least 2.6 and 1.0 respectively.

• Dividing the fitness cases into four subsets of four cases each (thus produc-

ing four parameterless functions) gave an observed efficiency ratio of 4.2

over canonical GP and 1.4 over GP with ADFs. With 95% confidence we

can say that the true efficiency ratios are at least 2.8 and 1.1 respectively.

However, this trend did not entirely continue with even-5-parity:

• Dividing the 32 fitness cases into four subsets of eight cases each (thus

producing four parameterless functions) gave an observed difference of 58

percentage points over canonical GP’s 0% success rate. With 95% confi-

dence we can say that the true difference is at least 49 percentage points.

Against GP with ADFs, an observed efficiency ratio of 1.8 was measured.

Again, with 95% confidence, this ratio is at least 1.4.

• Dividing the fitness cases into eight subsets of four cases each (thus pro-

ducing eight parameterless functions) gave an observed difference of ten

percentage points (again against the 0% measure). With 95% confidence,

the difference is at least five percentage points. An efficiency ratio of 0.3

was observed against GP with ADFs. With 95% confidence we can say

that, with this setup, GP with ADFs is at least 1.9 times more likely to

find a solution than Jackson’s parameterless-functions technique.

The reason for this poor performance was that, although the code for the

parameterless functions would evolve very quickly—sometimes even within the

initial generation for subsets with just four cases—the final evolutionary task of

classifying the inputs and calling the appropriate parameterless function was very

difficult. Its increased difficulty was said to be due to an increase in the size of

the set of terminal primitives as each parameterless function was represented as

an additional terminal.
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Koza studied the impact of extraneous variables in chapter 24 of his first

book on genetic programming [71]. Although increasing the terminal set with

extraneous variables is not the same as increasing it with valuable terminals (such

as the evolved parameterless functions), we can still note that the detrimental

effect was large. One would expect, if GP were not having to ignore the extras

but instead put them in their correct position, then the performance decrease

could be larger still. Jackson’s results give evidence to this.

Jackson’s technique for avoiding this problem is worth discussion: he hand

coded a “select” function such that his final evolutionary step was no longer

necessary. GP was still used to evolve solutions to the subsets of the fitness

cases, and so still produced parameterless functions, but the “main” program

became a basic “switch” statement that routed a given input to the appropriate

parameterless function.

The technique that Jackson offered is not generally useful because the hand-

coded select function is doing all the interesting work. Most real-world classi-

fication problems are indeed focused on how to produce the “select function”.

Further, Jackson’s technique just would not cope with scenarios it had not seen

in training, another key element of real-world problems.

8.1.3 Incremental Evolution with Simplified Problems

Another technique, first introduced by Naemura et al. [89], was also studied

by Jackson: incremental evolution where the early stages are evaluated on a

simplified version of the goal problem. Both the Japanese group and Jackson

studied the technique on even-n-parity.

Naemura et al. found that they could beat the performance of GP with ADFs

if even-3 was used as an initial stage for an even-4-parity goal. An efficiency ratio

(based on their final success proportions) of approximately 1.2 was observed and

my analysis of their results show that, with 95% confidence, there was at least a

slight improvement in performance. They also used even-3 as an initial stage for

a goal of even-6 and demonstrated an efficiency ratio of three (95% confidence of

at least 1.6). Finally they experimented with a three-stage setup: the first was

evaluated on even-3, the second on even-6 and the final, goal stage was even-9.

40% of their 30 runs found a solution compared to zero when GP with ADFs

were used. It is unclear, but it appears that the cost of the non-goal stages were

not included in their measures. Although that made for an unfair comparison,

Jackson repeated this technique explicitly including the cost of executing the

initial stages.
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On the even-4, -5, and -6 problems, Jackson showed an efficiency ratio at 95%

confidence of at least 1.5 [67]. His experiments used either even-2 or even-3 as the

initial stage. Similar results were obtained on the majority-on problem domains

with five and seven inputs using three inputs as an initial stage [67]. Even greater

improvements were demonstrated on the two- and three-bit half- and full-adders

in Jackson’s third paper on incremental evolution [66].

8.1.4 Summary

Jackson looked at three topics of incremental evolution: fitness-based incremen-

tal evolution, parameterless functions, and incremental evolution with simplified

problems.

Jackson’s hand-coded “select” function and evolved parameterless functions

were not considered a reasonable approach for the development of GP; it would

be more effective to use a lookup table.

On the other hand his use of simplified problems in the intermediate stages

was very successful and holds significant potential benefit for the scaling up of

GP to more difficult problems. However, it relies on the user’s ability to usefully

simplify the problem.

Fitness-based incremental evolution, although unsuccessful in Jackson’s study,

holds the most general potential benefits. There are a vast number of problem

domains that lend themselves to this technique and if we understood how to

ensure the technique was beneficial, it could be even more useful than the use of

simplified problems.

8.2 Method

In this chapter we will use the methods developed in Part I to take a more

thorough look at Jackson’s original form of fitness-based incremental evolution.

Given the evidence, we avoided his saturation suggestion and instead moved from

one stage to the next immediately after a solution was found.

We looked at five decisions that may have an impact on the performance of

fitness-based incremental evolution:

• the allocation of generations to each stage,

• the number of fitness cases in stage one,

• the addition of ADFs,
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• the difficulty of the problem domain,

• and the weighting placed on the cost of a generation.

For this study we experimented with the even-4, -5, -6, and -7 problems up

to 50 generations. The generations were allocated between two stages, always

totalling 50 generations. The first stage evaluated the population on a subset

of the full set of fitness cases. If a solution to the subset of cases was found in

the first stage then the second stage would begin immediately and the unused

generations from the first stage’s allocation would be available to the second

stage. If a solution was not found in the allocated number of generations then

the first stage would terminate and then the second stage would begin. The final

population from the first stage was used unchanged in the second. The second

stage always evaluated the population on the full set of fitness cases for the given

problem. If ADFs were used then they were configured in the same way as the

direct evolution runs (see table 7.1). The minor parameters were specified in the

same way as was done with direct evolution (see section 7.2).

The even-4 problem was considered with a first stage of either the first four

or the first eight of the sixteen fitness cases. When four fitness cases were used

in the first stage, the probability of solving that subset within a few generations

was very high (see figure 8.3), as a result ten experiments were executed with the

first stage allocated one to ten generations. When eight fitness cases were used

in the first stage, ten experiments were executed, with the first stage allocated

from 5 through to 50 generations in steps of 5.

For the even-5, -6, and -7 problems, ten experiments were executed with the

first stage allocated from 5 to 50 generations in steps of 5. For even-5, eight and

16 fitness cases (of the 32) were used in the first stage. For even-6, eight, 16 and

32 fitness cases (of the 64) were used in the first stage. For even-7, 16, 32, and

64 fitness cases (of the 128) were used in the first stage.

The fitness cases in the first stage were selected in the same order that Jackson

specified; they represented the lower-order even-parity problems. Thus, for even-

4-parity, when the first stage consisted of the first four fitness cases, the inputs

were 0000, 0001, 0010, 0011. When the first stage used eight fitness cases, the

inputs were 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111.

Even-4, -5, and -6 experiments were replicated with and without ADFs. Even-

7 was executed only with ADFs (performance of even-5 and -6 without ADFs was

so poor we held no hope for even-7).
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of the 16 fitness cases of even-4-parity. A solution in this instance is a score of
four out of the four fitness cases.
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A total of 17 experimental configurations were considered. For each configu-

ration ten variations were used in the number of generations allocated to stage

one, giving a total of 170 experiments. All experiments were executed to 500

runs.

8.3 Results: Unit-Cost Generations

This section discusses the results of the experiments. We will use an underlying

assumption that a generation in the first stage is of equivalent cost to a generation

in stage two. When others have made similar comparisons they have either used

this technique, or they have failed to consider the cost of the initial stage at all.

Results in this section do not show the technique in a positive light. Sec-

tion 8.5 however will look at another approach where the costs are proportional

to the amount of work done and fitness-based incremental evolution is shown to

have more potential.

Appendix D points the interested reader to an electronic form of the more

than 500 graphs that were analysed for this section; the raw results of all 85,000

runs are also available.

8.3.1 Addition of ADFs

An issue with the parameter settings suggested by Jackson is that his success rates

without ADFs were very low. Using direct evolution on even-4-parity, Jackson

reported 14% success and with even-5 a rock-bottom 0% [67]. On the other

hand, performance with ADFs was very reasonable. Chapter 7 has just demon-

strated similar performance to Jackson’s results when the maximum number of

generations was limited to 50.

Given poor results without ADFs, what happens when incremental evolution

is used with ADFs? Jackson offered his technique as an alternative to Koza’s

Automatically Defined Functions and to Angeline and Pollack’s Module Acquisi-

tion (MA), but there is no reason why they should not be combined. Indeed it is

possible that the ADF (or MA) code encapsulation mechanism may allow for an

improved transition from one stage to the next. If so, performance improvements

should be seen.

Incremental evolution did indeed benefit from the use of ADFs. In fact,

without ADFs the population sizes used would not have been feasible. Direct

evolution did not fare well without ADFs and at even-6 none of the 500 runs
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found a solution. However, as we will discuss now, the use of ADFs may well be

a benefit to incremental evolution.

To study the benefits of the addition of ADFs we could compare incremental

evolution with ADFs against incremental evolution without ADFs. However,

were we to do that the predominant effect that we would measure would be the

benefit of ADFs. It is already known that ADFs improve performance on this

problem domain [72] so we are not interested in that. Instead we are interested

in the influence of incremental evolution given the addition of ADFs. To measure

that we need to subtract the standard impact of adding ADFs and that is done

by: (a) measuring the relative performance of incremental evolution with ADFs

against standard GP with ADFs, then (b) measuring the relative performance of

incremental evolution without ADFs against standard GP without ADFs, and

then (c) measuring the relative performance between (a) and (b). So, to make this

comparison we need an interesting measure: an efficiency ratio of two efficiency

ratios.

Theoretical confidence intervals for such a measure are very unlikely to exist.

Fortunately however, we can make the most of computer simulations. Table 8.1

gives the algorithm used.

Unfortunately we could only execute this analysis for even-4 and -5 given that,

without ADFs, 500 runs of direct evolution failed to find solutions for even-6 or

-7 (see table 7.2). However, even this limited view is interesting.

For both even-4 with four fitness cases in the first stage, and even-4 with eight

fitness cases, there was very little reason to even suggest a difference in perfor-

mance. This indicated that fitness-based incremental evolution has no impact on

the performance improvements offered by ADFs.

However for even-5, for both 8 fitness cases and 16 fitness cases in the first

stage, the results indicated that incremental evolution may benefit from the addi-

tion of ADFs.2 Such a conclusion should be taken with concern for the confidence

intervals, all of which include the possibility that there is no impact at all, even

for low confidence levels. However all the point estimates are well above one and,

further, the confidence levels are heavily impacted by the extremely low levels of

success observed under incremental evolution without ADFs.

What can we take from this? That the addition of ADFs was, at the very least,

not detrimental, and indeed may even have had a positive impact on fitness-based

2The results should really be said to indicate that the addition of incremental evolution to
GP with ADFs may reduce performance less than the addition of incremental evolution to GP
without ADFs.
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1. Obtain experimental results for:

(a) incremental evolution with ADFs

(b) standard GP with ADFs

(c) incremental evolution without ADFs

(d) standard GP without ADFs

2. For each of the four experimental results, produce B random numbers using
either the algorithm in table 3.19 (for minimum computational effort), table 4.7
(for success effort) or table 2.3 (for success proportion).

3. Using two of the four sets of B random numbers, obtain B simulated efficiency
ratios for the performance of incremental evolution with ADFs against standard
GP with ADFs. Label these R1.

4. Using the remaining two of the four sets of B random numbers, obtain B
simulated efficiency ratios for the performance of incremental evolution without
ADFs against standard GP without ADFs. Label these R2.

5. Find the α
2

and 1− α
2

quantiles of R1

R2
. These provide an upper and lower range

for a 1− α confidence interval.

Table 8.1: Algorithm for the efficiency ratio of two efficiency ratios.
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incremental evolution. ADFs produced an improvement in performance that was

beyond what would normally be expected. It is likely that this is due to the

code encapsulation offered by ADFs. Koza demonstrated that the automatically

defined functions could break the problem into parts. Incremental evolution must

re-write its “main” code to solve the second stage, so the introduction of ADFs

may allow it to more easily keep and then manipulate a larger amount of what

it learnt from stage one.

The remainder of this discussion will focus on the results where this beneficial

addition has been used.

8.3.2 Allocation of Generations

The intention of this section was to show how one might select the optimal number

of generations to allocate for stage one. However, the trend that stands out the

most, is that this technique isn’t any good.

When we examine the minimum computational effort, success effort, and final

success proportions for these experiments, the general trend is that performance

decreases as the number of generations allocated to stage one increases. This

trend occurs irrespective of performance measure, irrespective of the use of ADFs,

irrespective of the difficulty of problem, and irrespective of the number of fitness

cases in stage one. Figure 8.4 plots a typical example.

For every configuration (excluding two) the general trend looked to show that

the best choice was to allocate five generations to stage one. This however, should

be considered with the fact that “five” was the lowest allocation we experimented

with. It is more than likely that a lower allocation would show still further

benefit—to the extreme of zero allocated generations where the method does

not differ from direct evolution. Although we have no evidence to defend that

hypothesis, at the very least one can say that allocating many generations to

stage one decreases performance.

The two exclusions to the previous paragraph should be considered in the

realm of statistically insignificant, especially given the contexts of the other re-

sults, however:

• Even-5-parity with ADFs and eight fitness cases in the first stage showed

a very slight upward peak at 20 allocated generations. The general trend

however was still visible.

• Even-4-parity without ADFs and with four fitness cases in the first genera-

tion had an interesting step-wise pattern with a period of three generations;

the average performance remained constant.
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There was no noteworthy difference between the trends shown in the min-

imum computational effort curves when compared to the success effort curves.

In fact the two measures had an average correlation of 0.91 (using Spearman’s

rank method [24]3 ). For two distinct measures that is a very high correlation.

Section 8.5.2 discusses this further.

Convergence Concerns

In attempting to understand the reason why performance was so poor, I sep-

arately considered the two routes to success. Success in the second stage (as

measured by final success proportion) can occur either through success in the

first stage or through failure in the first stage.

Plotting the proportion of stage one successes given success in stage two (as

compared to failures in stage one given success in stage two), showed that the

route “through failure” was only a possible option below about 20 allocated

generations (see the left graph of figure 8.5 for an example). After that point

practically 100% of successful runs followed the route “through success”. (Even-

6 had a higher limit of about 30 allocated generations and it depended on the

number of fitness cases in stage one, but the general trend was the same.)

This trend is intuitive. The intuition is that the route “through failure” closes

down because insufficient generations remain to allow success in stage two. One

assumes that the failure in stage one means genetic programming must start from

scratch and that it has insufficient time to succeed given the time used by stage

one.

However, although it is intuitive that this trend should occur, it is interesting

to consider this trend with the number of generations used in stage two when

success in stage two was observed. Going with the intuition, one would expect

that (at least) the average number of generations used in successes in stage two

would be greater than the number of generations remaining, when the route

“through failure” was no longer an option. This however was mostly not the

case.

The graphs in figure 8.5 give an example of this phenomenon. How could this

be explained?

One concerning possibility is that of genetic convergence—a reduction in di-

versity to the point that the second stage cannot be solved [35]. It is possible that,

3Spearman’s rank method has a range of -1 to 1. Two sets of 100 random numbers uniformly
distributed between 0 and 1 have an expected correlation of 0, but with a 95% confidence
interval of ±0.2.
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Figure 8.5: An example of the two graphs that point to potential problematic
convergence during stage one.
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in attempting to solve the partial problem during stage one, the genetic material

required for solving stage two had been eliminated from the genetic material in

the population. In the case of even-4-parity where 16 fitness cases are used in

the first stage, the final input primitive (IN3) is not required for a 100%-correct

solution in stage one. A consequence is that selective pressure may eliminate all

occurrences from the population.

This issue of convergence is a serious concern for incremental evolution. Were

stage one to be executed either (i) over a large number of generations or (ii) with

a small population, then the problem becomes an increasingly likely explanation

for the closure of the route “through failure”.

Fortunately, we can test whether this is a likely problem. By looping through

each of the individuals and through all the nodes in every individuals’ trees we can

count the number of instances of each primitive in the population. Although, in

general, we will not know if a primitive provided in the function or terminal sets

is required for a solution in stage two, we might pay attention to any primitive

with exceedingly low counts relative to the other counts.

For these experiments however we do know what is required in order to find

a solution in stage two. The critical difference is in the terminal set and whether

all the input primitives (IN0 through to IN(n−1) for even-n-parity) are available.

We re-executed two configurations, counting the number of primitives at the

termination of stage one. The configurations were even-4-parity without ADFs

with eight fitness cases in the first stage, and even-5-parity with ADFs with eight

fitness cases in the first stage. Both configurations used 20 generations in the

first stage and both were executed to 500 runs.

For the even-4 configuration, we compared the proportion of IN3 primitives

in the runs where stage two failed against the same proportion where stage two

succeeded. The proportion was calculated as the number of IN3 primitives divided

by the sum of the counts of IN0 through to IN3 (inclusive). A box-plot graphing

this comparison can be seen at the top of figure 8.6. The plot shows that the two

proportions are very similar. It is unlikely that the number of IN3 nodes caused

the closure of the route “through failure”,

For the even-5-parity configuration, we compared both the proportion of IN3

and IN4 primitives. The proportion was calculated as the number of IN3 prim-

itives (or IN4 primitives) divided by the sum of the counts of IN0 through to

IN4 (inclusive). The lower two plots in figure 8.6 show how these two propor-

tions differed depending on whether stage one succeeded or failed. There is little

difference between the two, so once again it is unlikely that this is the primary
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explanation for the lack of stage two successes given failure in stage one.

For all three plots the lower quartile, median, and upper quartile of the propor-

tion of the required primitives is higher for the route “through success” compared

to the route “through failure”. This does give evidence that convergence may

have a slight impact on this phenomenon, but it is important to note that the

route was almost completely closed down. The size of the differences shown in

figure 8.6 do not point to such an extreme consequence. It is sufficient indication

that convergence is not likely to be the primary cause of concern. If it were the

cause, it could be tackled with the use of mutation. This approach is considered

in the next chapter.

However, if it was not convergence, what then was the cause of the closure

of the route “through failure”? Somehow the evolutionary process of stage one

guided the population into an area such that if it did not solve stage one then it

had a severely reduced chance of solving stage two. How this occurred remains

an open question.

8.3.3 Fitness Cases in Stage One

The objective of this section is to study the best number of fitness cases for

the first stage. Given that all the experimental configurations showed a trend

of increased performance as they neared direct evolution, it isn’t meaningful to

compare the performance within a specific problem and across the number of

fitness cases using the “best” allocation of generations. However, for even-5, -6,

and -7 we can make a comparison that obtains a similar result by fixing the

comparison against the same number of generations allocated to stage one.

If we do this, then we produce 30 efficiency ratios for each comparison (ten

for each of the three measures with one for each number of generations allocated

to stage one). For even-5 we may make only one comparison: between whether it

was better to have 8 or 16 fitness cases in the first stage. For even-6 and even-7

we can make three comparisons each.

Given the lack of success, these comparisons were not worth considering for

the experiments without ADFs. However, for the experiments with ADFs some

comments can be made.

None of the comparisons showed any trend across the number of allocated

generations. That is to say there is no obvious trend that might indicate rel-

ative performance is influenced by the number of allocated generations. As a

consequence it is fair to observe the average of the efficiency ratios. We can also

observe the average of our confidence that the ratio is greater than one.
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Figure 8.6: Evidence that elimination of required genetic material is likely not a
significant factor in the closure of the route “though failure”.
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Measure Avg. ratio Avg. conf.
Min. comp. effort 1.05 60%
Success effort 1.11 72%
Success Proportion 1.09 73%

Table 8.2:
Efficiency ratios comparing 16 fitness to 8 fitness cases for even-5-parity with
ADFs, averaged over the ten values for allocated generations. (Note 16 fitness
cases outperformed 8 cases.) Also stated is the average confidence that the ratio
is greater than one.

Efficiency of x compared to y Avg. ratio Avg. conf.
fitness cases fitness cases
16 8 0.94 40%
32 8 1.22 76%
32 16 1.29 81%

Table 8.3:
Efficiency ratios of even-6-parity with ADFs, averaged over the three measures
and ten allocated generations. Also stated is the average confidence that the
ratio is greater than one.

For even-5 we can compare whether it was more efficient to use 8 or 16 fitness

cases in the first stage. For all three measures the use of 16 fitness cases was, on

average, a more efficient choice. Table 8.2 gives the efficiency ratios for the use

of 16 versus 8 fitness cases.

For even-6 we can compare whether it was more efficient to use 8, 16, or 32

fitness cases in the first stage. All three measures pointed in the same direction:

16 fitness cases required the most effort; 8 fitness cases was not far ahead; but the

most efficient, by up to 30%, was 32 fitness cases. Table 8.3 gives more detail.

For even-7 we can compare which of 16, 32, or 64 fitness cases in the first

stage was the most efficient. There was very little difference between 16 and 32

cases, but 64 showed a notable reduction in the effort required. Table 8.4 gives

the detail.

From these results, it appears there is a general trend towards increased effi-

ciency as the number of fitness cases in the first stage increases. This is a natural

extension of the result in the previous section: if incremental evolution is not a

good idea then the further away from it the better. Larger numbers of fitness

cases in the first stage is one way of getting closer to the more efficient direct

evolution algorithm.
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Efficiency of x compared to y Avg. ratio Avg. conf.
fitness cases fitness cases
32 16 1.01 54%
64 16 1.18 80%
64 32 1.17 76%

Table 8.4: Comparison of the average efficiency ratio of even-7-parity with ADFs,
averaged over the three measures and ten allocated generations. Also stated is
the average confidence that the ratio is greater than one.

It is interesting to observe the range in efficiency ratios when only the raw

measure (minimum computational effort, success effort, and success proportion)

is modified. It is very small. Of all seven comparisons the largest range is just

6%. From this you can draw the conclusion that efficiency ratios might be similar

irrespective of the underlying raw measure. However, further comparisons will

be required before this conclusion will have any weight.

8.3.4 Problem Difficulty

This section considers the question “What impact does problem difficulty have

on fitness-based incremental evolution’s performance?”.

The issue, when attempting to address this question, is how this analysis

should be performed. One concern is that the population size varied across the

problem difficulty. Another is that the number of fitness cases varied for both

stage one and stage two as the problem difficulty varied. Finally, the performance

varied as the number of generations allocated to stage one varied.

The issue of varying population sizes can be addressed by comparing per-

formance to the base-line of direct evolution. In this way we will be analysing

relative performance.

It is an inherent quality of the even-n-parity problem domain that the number

of fitness cases in stage two varies with problem difficulty. Although this is not

true of all problem domains—symbolic regression for example could sample the

same number of points for both easy and hard problems—there is little that can

be done to compensate for this. We will accept it as it stands.

On the other hand, the number of fitness cases in the first stage is a parameter

of the technique we are studying. Two comparison techniques are apparent.

The first is to keep the number constant. The second is to keep constant the

proportion of fitness cases relative to the number in the second stage. Thus for
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even-5 with 8 cases (equivalently a proportion of 8
32

= 1
4
) in the first stage, we

could either (a) keep the number constant and compare to even-6 with 8 fitness

cases or (b) keep the proportion constant and compare to even-6 with 64× 1
4

= 16

fitness cases. It is not apparent which of the two options makes for the most fair

comparison. Option (a) can be viewed as letting incremental evolution do the

same amount of work in the first stage irrespective of problem difficulty, while

option (b) increases the absolute amount of work in stage one, but keeps the work

relative to the goal stage. Option (a) has three settings: 8, 16, and 32 fitness

cases. Option (b) also has three settings 1
2
, 1

4
, and 1

8
of the fitness cases in the

second stage.

Finally, we must consider that performance varied according to the number

of generations allocated to stage one. Three comparison techniques are available

here. The first is to consider if there is any way to select the optimal number

of generations to allocate. Section 8.3.2 discussed this and concluded that zero

generations would most likely be the best allocation (that is, the use of manual

incremental evolution was a bad idea). It is unacceptable for us not to use man-

ual incremental evolution because—despite poor performance—our objective in

this section is to establish how the performance of manual incremental evolution

varied with problem difficulty. The second comparison technique is to fix the

number of generations allocated to the first stage. And the third is to compare

the average performance across all ten different allocations.

This leaves two comparison options for the number of fitness cases in the first

stage and two options for the allocated generations. The results were analysed

for all four combinations using the three measures for each.

When the number of fitness cases in stage one was kept constant and the

performance for all ten allocated generations was considered on one graph, all

three measures for all three settings showed their efficiency ratio deteriorated

as the problem difficulty increased. On the other hand, when the proportion

was kept constant, the three settings had differing results: for one-eighth of the

fitness cases in stage one, all three measures showed a very slight performance

increase as the difficulty increased; one-half showed a mixed, but generally flat,

trend; one-quarter consistently showed a decrease in performance as difficulty

increased. An example of this comparison can be seen in figure 8.7.

Analysis found no interesting trends as the number of generations allocated

to stage one increased.

What can we take from these results? As the problem difficulty increases

it is a bad idea to keep constant the amount of work done in the first stage.

This conclusion is however in line with the fact that this technique is, in general,
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 by problem difficulty given a proportion of fitness cases in the first stage

Figure 8.7: Efficiency ratios by problem difficulty.
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not a good idea. It is better instead to keep the proportion constant, but these

experiments do not give a clear indication as to how one might select a priori

the optimal proportion.

8.3.5 Comparison to Direct Evolution

When manual incremental evolution with unit-cost generations were compared

to direction evolution the results couldn’t have been more clear: this is a bad

technique.

For each of the ten experimental configurations with ADFs, the efficiency

ratio of using this technique was calculated using the direct evolution results

(chapter 7) as a comparison. Efficiency ratios were calculated using minimum

computational effort, success effort, and final success proportion. Further, the

number of generations for successful runs were plotted against the number for

direct evolution.

When ADFs were used, none of the 300 ratios showed a performance im-

provement. And of those 300 measures less than 20% of their 95% confidence

intervals even crossed the break-even line. Averaging over the ten measures in

each configuration, the confidence that there was an advantage in not using this

method, never dropped below 95%.

When ADFs were not used, and in contrast to Jackson’s results, incremental

evolution was outperformed by direct evolution. This occurred for both even-4

and even-5, and was often statistically significant. The difference between this

result and Jackson’s is not hard to explain. Firstly, only a few of his experi-

ments beat direct evolution, and secondly none of his results were statistically

significant.

As well as decreasing the final probability of finding a solution, another prob-

lem was that, especially for even-6 and -7, the technique often increased the

number of generations before a solution was found. This flies in the face of the

technique’s motivation—it was supposed to make finding a solution easier.

8.3.6 Summary

What can we learn from this analysis? The most significant result was that

this technique detrimentally impacted performance: you’re better off without it.

However, the analyses offered more than that:
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• The addition of ADFs offered a performance benefit above the raw benefit

offered by the addition of ADFs. In other words, fitness-based incremental

evolution most likely benefited from the addition of ADF’s code encapsu-

lation mechanism.

• The best choice was to allocate as few generations as possible to the first

stage. Intuition says that this gives the greatest chance of success in stage

two if you fail in stage one, however the results indicated that, for some

reason—not the elimination of genetic material—the route “through fail-

ure” was being eliminated by the evolution in stage one.

• The optimal number of fitness cases was “the more the merrier”, but this

again may have been driven by an effort to move away from incremental

evolution.

• As the problem increased in difficulty, the results showed one should not

keep the number of fitness cases in stage one constant. Instead, it is better

to keep constant the proportion of fitness cases relative to the final stage.

8.4 Defending Adjusted Generations

Although Koza measured minimum computational effort in terms of “individu-

als to be processed”, his expectation was made clear when he wrote “E [mini-

mum computational effort] is the minimum number of fitness evaluations” [72,

page 268]. The transition from considering fitness evaluations to considering

individuals to be processed came from Koza’s expectation that the number of

fitness evaluations was directly proportional to the number of individuals pro-

cessed. This assumption was fair given that throughout all of Koza’s books the

number of fitness evaluations executed per individual (and indeed per generation)

remained constant.

Given that the number of fitness evaluations vary under fitness-based incre-

mental evolution, to maintain Koza’s intention one must measure computational

effort based on the number of fitness evaluations. Fortunately, the number of

fitness evaluations per individual remains constant across a given generation, so

another option is to weight the value of each of the generations based on the num-

ber of fitness-case evaluations executed within it: a generation with 100 fitness

cases should be considered twice as computationally expensive as a generation

where only 50 fitness cases were evaluated.
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8.4.1 Related Work

For his PhD thesis, Chris Gathercole studied standard GP with a modification

he termed dynamic subset selection (DSS) [44, chapter 6]. For each generation,

DSS uses only a subset of the total fitness cases. Selection of the subset is biased

towards fitness cases that have proved difficult over the previous generations.

Gathercole struggled to compare his results to standard GP and left it up to his

readers to decide which assessment was appropriate: “DSS [matched] GP results

using many more generations, but only 20% of the number of tree evaluations”.

He terminated his runs using neither a maximum number of generations nor a

maximum number of evaluations (in fact, his termination criterion is unclear) and

yet still compared their final results. This leaves much to be desired. Because of

his very limited number of runs, he made no other analysis of his results, but had

he executed a number of runs he would have benefited from the use of adjusted

generations.

Users of DSS would however not generally be interested in comparing their

performance to standard GP. For example, Stephenson et al. used Gathercole’s

technique to reduce their computational requirements [105]; they ran their test

and control experiments (both using DSS) to 50 generations and then measured

the speed-up of their approach—their implicit assumption was that the cost of

one generation was equivalent to the next. Given DSS uses a fairly consistent

number of fitness cases per generation this assumption holds true. It is only when

one wishes to compare DSS against a method that used a different number of

evaluations that adjusted generations would show a benefit here.

If however the DSS algorithm were modified such that the number of fitness

cases was also dynamic, then just as incremental evolution benefits from adjusted

generations, so too would modified-DSS. However, Gathercole himself introduces

an idea that would have benefited from adjusted-generations. Limited Error

Fitness (LEF) [44, chapter 7] terminates the evaluation of an individual if the

individual fails to correctly solve a threshold of fitness cases. In this way the

number of evaluations per individual is no longer constant.

In a similar vein to Gathercole’s DSS, Qureshi’s PhD thesis considered the

comparison of standard GP to GP where a fixed number (but random selection) of

fitness cases were evaluated per generation [98, section 4.7]. He too had a difficult

time in that his comparison had neither the same number of generations nor the

same number of evaluations. Fortunately for him, no matter which comparison

he took—even if it disadvantaged his test cases—his technique outperformed his
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control experiment. Thus he avoided having to make a more rigorous comparison.

Nonetheless an interesting point in his discussion was that some of his readers

may feel that the comparison should be done on an individuals-evolved basis.

Please note that adjusting the weightings of the generations does not alter the

number of individuals processed.

Finally, if fitness-based rather than success-based analysis is desired, Steffen

Christiansen’s y-test was designed specifically for comparisons based on different

evaluation counts [21, 23]. Although it appears an excellent method to distin-

guish between two experimental results, it is unclear how one might compare two

differing y-test results. Adjusting the generations does not leave this as an issue.

8.4.2 Calculating Adjusted Generations

To calculate the adjusted generations, for each run we stored the number of fitness

cases evaluated in each generation. This list of evaluations was summed, giving

the total number of evaluations for the run. The total number of evaluations was

then divided by the number of fitness cases in the final stage. This number was

used as the cost of the run as measured in “adjusted generations”.

One might claim that this measure is only a scaled version of measuring

the cost of a run in terms of evaluations rather than generations. This is true.

The advantage in scaling is that direct comparison with standard GP becomes

possible: one can immediately compare success effort and (to a lesser extent)

minimum computational effort measures.

Note that this process meant we could post-analyse a standard run and so

we did not re-run the experiments for adjusted generations, but instead just

re-considered their results given the new generations-to-failure or generations-to-

success. Note also that this process does not change whether a run succeeded or

failed; it only adjusts a run’s cost.

To calculate the three measures on adjusted generations required modifica-

tion only to the minimum computational effort method. The runs were binned

into groups one generation wide, effectively meaning the ceiling of the adjusted-

generations was used. Neither success effort nor final success proportion required

modification to their methods. (Note that the use of adjusted generations has no

impact at all on the final success proportion measure.)

Other than staying true to Koza’s intentions, and giving a much closer approx-

imation to the true cost of using genetic programing, this modification has little

impact on the qualities of his measure. Minimum computational effort with ad-
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justed generations still provides “a hardware-independent, software-independent,

and algorithm-independent way of comparing the performance of adaptive algo-

rithms” [72, page 293]. However, as will be discussed in the following section,

when adjusted generations are used, the measure may become only an upper

bound for Koza’s minimum computational effort.

This modification does have an impact on the results calculated using success

effort, but there is no impact on the final success proportion.

8.5 Results: Adjusted Generations

Section 8.3 discussed the results with the underlying assumption that one gener-

ation was equivalent to the next. For canonical genetic programming this is true.

For incremental evolution there is good reason why it is not true. This section

analyses the results given the assumption that the computational requirements

for a generation are proportional to the number of fitness cases evaluated in that

generation.

8.5.1 Addition of ADFs

Under adjusted generations, the addition of ADFs can again be seen to represent

a benefit to incremental evolution.

As was done in section 8.3.1 the efficiency ratio of two efficiency ratios was

studied and very similar results were obtained. Especially for even-5, incremen-

tal evolution benefited from the addition of ADFs above what benefits ADFs

normally bring. As we discussed, this was most likely caused by the code en-

capsulation offered by the automatically defined functions and just as was done

previously, the following analysis will focus on the results with ADFs.

8.5.2 Allocation of Generations

The objective of this section is to discover the optimal number of generations to

allocate to stage one, given this new “adjusted generations” light. In comparison

to the equivalent discussion using unit-cost generations (see section 8.3) the re-

sults are notably different. The most important difference is that this technique

can sometimes be seen to be beneficial.

When the success effort measure was considered, performance tended to im-

prove with the use of this technique for: even-5 with 16 fitness cases in the first
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Figure 8.8: Performance as measured by minimum computational effort and suc-
cess effort given adjusted generations. Note the differing trends.

stage, even-6 with 32 fitness cases, and for all three experimental configurations

involving even-7. The graphs that demonstrate these trends can be found in the

electronic appendix (see appendix D).

Unfortunately the same cannot be said about the results when viewed with the

minimum computational effort measure. At best, one might claim that there was

a slight benefit for even-5 with 8 fitness cases and even-6 with 32, but in general

the results showed either a downward trend or a flat trend (which indicated

incremental evolution did not have any notable impact on performance.)

This difference in opinion between success effort and minimum computational

effort shows up in the average correlation coefficient between the two measures:

0.51—still a strong association, but considerably lower than section 8.3’s corre-

lation of 0.91. In fact, in one configuration a negative correlation (-0.13) was

observed (see figure 8.8).

If we analyse these adjusted-generations results solely on success effort then, in

terms of the optimal number of generations to allocate to stage one, we see mixed

results across the different configurations. However, “mixed results” should be
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Figure 8.9: The reduced cost of failure using adjusted generations.

considered an improvement—they suggest the optimal number of generations is

not clear. That result is an improvement given the obvious deterioration that pre-

viously occurred when the number of generations allocated to stage one increased

(see section 8.3.2).

How is it that success effort performance can be seen to improve even as the

generations allocated to stage one increase to 50 (the total number of generations

allocate for a run) while at the same time minimum computational effort can show

the opposite trend? This can be explained by considering the cost of failure.

If 50 generations (the maximum for a run) are allocated to stage one and a run

fails to find a solution to the first stage, then it will never spend any time in stage

two. If stage one considers half of the fitness cases in stage two (as is the case in

figure 8.8) then, using adjusted generations, the cost of a generation in stage one

is only half that of a generation in stage two. A run that fails to find a solution to

stage one will therefore cost only 50 × 0.5 = 25 adjusted-generations to execute

to termination. In contrast consider a run that finds, within say 10 generations,

a solution to all of the fitness cases in stage one, and then spends 30 generations

in stage two before finding a solution there. It will cost 10 × 0.5 + 30 = 35

adjusted-generations to find that solution. In other words it is possible that the

cost of failure could be less than the cost of success. Figure 8.9 plots this effect

for even-5 with 16 fitness cases in the first stage.

How is it that this effect can impact the success effort and minimum compu-

tational effort measures? Success effort directly includes the cost of failure in the

numerator of its formula (see equation 4.1). As a result success effort demon-

strates the performance advantage offered by adjusted generations. Minimum

computational effort on the other hand does not incorporate this benefit.
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Koza’s measure finds the minimum adjusted-generation based on the implicit

assumption that the runs would continue were they not stopped at the optimal

minimum generation. Given that the use of adjusted generations upsets this

assumption, what impact does this have? If the minimum cost of failure (in

adjusted-generations) is above the minimum generation (in adjusted-generations)

then there will be no impact on this measure. As an increase occurs in the number

of failures that use fewer adjusted-generations than the minimum generation, so

the observed minimum computational effort will be larger than the true value. In

these situations the observed minimum computational effort should be considered

as an upper bound for the true minimum computational effort. However, as we

will see next, even without this modification, Koza’s measure is already an upper

bound.

Without modification, Koza’s minimum computational effort is not capable

of indicating a reduction in the effort required when the minimum cost-of-failure

drops below the minimum generation. Success effort on the other hand is able

to give this indication.

Koza’s Measure is an Upper Bound

Minimum computational effort, according to Koza’s first book on genetic pro-

gramming, gives the number of individuals that must be processed in order to

yield a solution with 99% probability by generation j [71, chapter 8], where j is

what we term the minimum generation. Koza’s method actually finds the upper

bound to this number.

The key assumption in Koza’s method is that, for a probability of success P (i),

one must execute i generations. This is not true. Instead, one must execute at

most that many generations. On average, to obtain a probability of success of

P (i), one must execute x generations where

x =

∫ i
k=0(Y (k) · k) · dk
∫ i
k=0 Y (k) · dk

To illustrate this visually, imagine a graph that plots any cumulative probabil-

ity of success curve. Mark the probability of success at the minimum generation

with an ‘X’. Koza’s measure will not be able to distinguish between this curve

and any other that both (a) passes through ‘X’ and (b) is below the original

curve. Yet for the original curve, there is a greater chance of finding a solution

within fewer generations, and so it should naturally have a lower computational

effort.
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When is this issue of concern? As the required number of runs R(P (j))

increases, Koza’s measure becomes closer and closer to the real minimum com-

putational effort because the cost of success becomes a less and less important

component of the total minimum computational effort while the cost of failure—

controlled by the specification of minimum generation—becomes the more im-

portant component. However, for runs where R(P (j)) = 1 Koza’s upper bound

is furthest from the real value.

And how much of an impact does this actually have? The difference between

the “real” value and the value obtained when Koza’s method is followed is the

difference between the mean and the maximum of the generations-to-success that

are lower than the minimum generation.

Measuring what Koza Intended to Measure

It is not difficult to re-define Koza’s measure so that it gives the real value, rather

than an upper bound, for the expected number of individuals to be processed.

The definition need only become

I ′(i) = (X(i) + 1) ·M ·R(P (i))

where X(i) is the mean of the generations-to-termination—with each generations-

to-termination observation truncated such that the number of generations in the

observation is at most i.

Making this modification would also solve the issue associated with a variable

cost-of-failure given that X(i) accounts for this.

Unfortunately, the impact of this modification on the coverage rates of the

methods to produced confidence intervals is unknown. Further, it is inadvisable

to compare minimum computational efforts produced using different methods.

These two issues are sufficient disadvantage that we would hesitate to recommend

the use of this modification.

Nonetheless users of Koza’s measure should be aware that, on two counts, it

is only an upper bound: (i) when R(P (j)) is low and (ii) when the cost-of-failure

is below the minimum generation.

8.5.3 Fitness Cases in Stage One

The section looks at the how the number of fitness cases in the first stage im-

pacted performance. Again, just like the unit-cost analysis of section 8.3.3, be-



162 Manual Fitness-Based Incremental Evolution

cause there was no obvious manner with which to choose the “best” number of

generations to allocate to stage one, we considered the average across each of

the ten experiments executed for each configuration. But again because of the

difference in configuration between the two experiments with even-4, we limited

the comparison to even-5, -6, and -7.

The ordering is similar to that seen in section 8.3.3. It is better to use more

fitness cases in the first stage: for even-5, 16 fitness cases in the first stage

outperforms 8; for even-6, 32 fitness cases outperforms 16, which does better

than 8; and for even-7, the best choice was 64, followed by 32, and then 16. This

trend is still fairly clear with an average confidence that a difference truly exists

of some 66% (averaged over each of the seven comparisons)

What is not clear is why such a trend exists. Given that there is an advantage

to be had in terms of cost-of-failure, one might assume that this trend would peak

at some maximum proportion of fitness cases (although the proportion would

most likely be problem-dependent). Further experiments (beyond the maximum

proportion of 0.5 used in this work) would be required to assess if this hypothesis

is true.

On the other hand, it is possible that this trend occurred as an indication that,

despite the adjusted-generations light, performance is still generally inferior to

direct evolution. A comparison of performance can be found in section 8.5.5.

8.5.4 Problem Difficulty

We now attempt to discover how this technique, under adjusted generations,

performed as the problems became more difficult. Analysis similar to that of

section 8.3.4 was performed, but this time the results are encouraging.

The most interesting result can be seen in figure 8.10—incremental evolution

was shown to offer increased benefits as the problem became more difficult. When

considered by the number of allocated generations, 25 of the 30 graphs showed an

increase or flat trend as the difficulty increased. These are very interesting results;

they indicate that, under the adjusted generations light, incremental evolution

may become more beneficial as the problem domains become harder.

This result is only true if success effort was considered. We have seen that

final success proportion decreases with the use of this technique and that neither

success proportion nor minimum computational effort appreciate the reduced cost

of runs that terminate before the minimum generation, so limiting the analysis

to success effort is quite reasonable.
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Figure 8.10: Efficiency ratios by problem difficulty.
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In line with the analysis in section 8.3.4, if the number of fitness cases in the

first stage is kept constant then incremental evolution decreases in performance

as the problem increases in difficulty.

8.5.5 Comparison to Direct Evolution

When a comparison is made to direct evolution two things become clear. The

first is that we are reminded that the probability of finding a solution consistently

decreased as the number of generations allocated to stage one increased (remem-

ber that adjusted generations have no impact on final success proportion). But

despite this raw reduction in performance, in five of the ten configurations with

ADFs, there were occurrences where the required success effort was reduced. So

incremental evolution with adjusted generations can offer a benefit. This is an

interesting result.

How does this happen? The reason is that both the cost-of-failure and the

cost-of-success decrease with this method. The decreases are sufficient to over-

come the reduced success proportion.

However, it is not true that this technique is generally beneficial. None of the

ten configurations had (over the ten settings for allocated generations) an average

success effort ratio that was above one. Given that there was no obvious way to

select the optimal (or even near-optimal) number of generations to allocate to

stage one, we thus have no rule-of-thumb to predict whether use of this technique

would be beneficial.

8.5.6 Summary

What can we take from the result under adjusted generations? The most interest-

ing result was that fitness-based incremental evolution was sometimes beneficial.

The other points were:

• The benefits of adding ADFs were again beyond what is normally seen.

• If the technique was beneficial then it was best to allocate as many genera-

tions as possible to the first stage. This was shown to decrease the cost of

failure, which we then showed that minimum computational effort may not

be able to measure. Koza’s statistic was also demonstrated to be an upper

bound.
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• It was shown that performance improved as the number of fitness cases

increased. This occurred despite the benefits of reduced cost-of-failure as-

sociated with fewer fitness cases in the first stage.

• Incremental evolution was shown to improve in performance as the problem

domain became more difficult.

8.6 Future Research

Although this study of fitness-based incremental evolution on even-n-parity was

fairly thorough, there are still plenty of unanswered questions.

The greatest limitation of this work is that only one problem domain, even-

n-parity, was studied. It is highly likely that the results will vary by problem

domain, so it would be interesting to apply this technique to different areas.

It would be beneficial to study how the selection of fitness cases impacts the

result. In this work we looked only at selecting the first x fitness cases, but there

is the possibility of choosing randomly or possibly pre-ordering the fitness cases

with the idea of “coaching” the system. This is very similar to DSS so there would

be benefit in a comparative study of incremental evolution and Gathercole’s DSS.

When adjusted generations were used it was hypothesised that there was a

peak in terms of the optimal number of fitness cases to choose for the first stage

(see section 8.5.3). Especially given the trend towards a greater benefit for harder

problems, it would be interesting to study this hypothesis under problems even

more difficult than even-7-parity.

Qureshi showed that considering a small number of randomly-selected fitness

cases per generation (rather than the full set) produced more general solutions

for his pursuit game [98, section 4.7]. Our research did not consider this po-

tential advantage and so there is scope for future work to study if fitness-based

incremental evolution produces more general solutions.

The addition of ADFs was not able to be well studied as the performance at

even-6 and -7 was so low for incremental evolution without ADFs. Experiments

with larger population sizes would be required. First it should be confirmed that

ADFs do indeed offer an improvement above what can be normally expected. If

that is confirmed it would also be interesting to analyse how ADFs facilitate the

evolutionary process: is the encapsulation hypothesis correct. From other experi-

ments we ran where incremental evolution was not beneficial [112], encapsulation

was one of the suggested potential “solutions”. It is possible that ADFs were
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more useful for this problem domain than they would be in general. Also, we

have not considered the fact that executing individuals with ADFs typically takes

much longer (from a “CPU time” perspective) than execution without ADFs.

Jackson has offered another form of fitness-based incremental evolution: pa-

rameterless functions where the main function is also evolved. Although his

solution to its problem (of an increasingly-difficult-to-evolve main function) was

dismissed, his solution is not the only option. Study of the balance between a

decreased difficulty of the parameterless functions versus an increased difficulty of

the main function deserves attention. We, however, are going to continue further

down our current road.

Finally, the question that goes begging in this chapter is “how does per-

formance change with more than two stages?” Others have studied such sys-

tems [12, 14, 16, 17, 34, 42, 50–53, 58, 81, 89, 112] but thorough analysis has not

been done. It is likely that the sheer number of permutations limits the fea-

sibility of this, but if it were to be done, others’ results would indicate that

longer run lengths may be beneficial [44, 83]. In the next chapter we will con-

sider an automated process that produces a dynamic number of stages; we also

consider longer run lengths.



Chapter 9

Automatic Fitness-Based

Incremental Evolution

In the previous chapter we learnt that manual incremental evolution could some-

times be beneficial on the even-n-parity problem so long as the results were

considered in terms of adjusted generations. The primary reason was that, under

adjusted generations, the cost of failure could be significantly reduced.

In this chapter we offer two novel methods for automating fitness-based incre-

mental evolution. These methods outperform the results from the last chapter

and, under adjusted generations, even regularly outperform direct evolution.

9.1 Motivation

In the study of manual incremental evolution we showed it was possible to out-

perform direct evolution. However, it was difficult to see how this level of perfor-

mance might be predicted. We learnt:

• ADFs were beneficial to the incremental evolution process. They offered

benefits superior to the benefits they offered to direct evolution.

• To see any advantage, it was clear that one had to accept performance

measured in terms of adjusted generations. The use of manual incremen-

tal evolution decreased the probability of finding a solution but it also

decreased both the cost of failure and the cost of success. If these latter

advantages are not to be considered, then manual incremental evolution

should be discarded.
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• The primary beneficial effect was the decreased cost of failure (a benefit

that success effort excels at measuring). This was achieved when the first

stage used up the allocated generations with relatively little computational

effort. However, the results were confusing as they indicated that increasing

the number of fitness cases in the first stage improved performance.

• Finally, performance increased as the problem difficulty increased.

Although those results gave some amount of hope for fitness-based incre-

mental evolution, it was still unclear how one might configure the stages. The

primary unanswered question was how three (or more) stages would impact per-

formance. Secondary to that was how many fitness cases each stage should be

allocated. Finally, it was unclear whether the use of incremental evolution would

be beneficial.

The ideas in this chapter were motivated by the questions of how many stages

one should use and how many fitness cases should be specified. What if the

number of stages and number of cases were automatically specified depending on

a run’s performance? We could set GP an initial number of fitness cases to solve.

If it succeeded then we could automatically move on to something more difficult.

If it failed then we could reduce the number of fitness cases and try again.

Two methods spawned from this idea and are introduced in section 9.4. Con-

ceptually, they differ only in terms of the strategy on success. If GP solves the

initial number of fitness cases then one could either aggressively try to solve the

goal (or complete set of fitness cases), or one might try a less-aggressive step

somewhere between the last success and the goal. However, it’s important to re-

member that generations must be spent at the goal stage; it is not very useful to

perpetually aim for half the distance between where you are and the goal—such

a technique would guarantee failure.

Finally, we are very pleased to be able to say that, unlike the last chapter,

you will see that these two methods produced a number of positive results.

9.2 Related Work

As introduced in the literature review (see section 6.2.7), the concept of “auto-

matic incremental evolution” is not new. We are aware of two problem-specific

forms that have been offered within genetic programming, both of which manipu-

lated the environment (as opposed to the fitness function) to make it progressively

more difficult.
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The first use was originally published by Faustino Gomez in 1999 [52] and

then later as part of his PhD thesis [53]. It was a technique to evolve solutions to

the two-pole-balancing problem. There were two poles attached to one cart on

rails and the controller’s job was to apply a force at each time-step such that it

balanced the poles for 100,000 time-steps (30 simulated minutes). The problem

is known to become more difficult as the difference between the two pole lengths

decreases.

The system started with the shorter pole just 10% the length of the longer

pole. If the task was solved, the shorter pole was automatically lengthened by

a specified length. If evolution was unsuccessful then the length of the shorter

pole was reduced to a length half-way between the current length and the last

successful length. This process was repeated, producing on average 30 stages to

reach the goal—where the shorter pole was 80% the length of the longer pole.

Direct evolution, in contrast, failed to find a solution even where the shorter pole

had a 50% length.

Although Gomez’s implementation of this automatic approach was very suc-

cessful, he pointed out it was not entirely novel. Others had used a similar

technique, but rather than up to 100% increases in the length of the shorter pole,

they used only 1% increases [100, 122] and used up to 220 stages [122].

The second use of automatic incremental evolution in GP was by White-

son et al. [119]. They studied the keep-away soccer domain by initially fixing the

speed of the opponent to just 10% of the controlled players’ speed. When the

average player achieved a specified performance level, then the opponent’s speed

was automatically incremented five percentage points and evolution continued.

However, Whiteson et al. did not study the impact of their approach.

Mouret et al. used incremental evolution to evolve a wing-flapping robot con-

troller [88]. They evolved two wing-beat controllers and then evolved a tail

controller. They were surprised by the unintuitive combined performance and

concluded that “to raise [the] chances of success, the recourse to some sort of au-

tomatic incremental methodology seems mandatory”. They felt their experience

showed them “one cannot rely on fundamental principles or empirical knowledge”

to break up the goal problem into easier sub-problems.

In contrast to the automatic incremental evolution offered by Gomez and

Whiteson et al., the form of incremental evolution used in this chapter is one

that is potentially generally applicable. Rather than modifying the environment

directly, it modifies the way fitness is calculated and thus focuses evolution on a

specific area of the problem, automatically gradually enlarging the specific area.



170 Automatic Fitness-Based Incremental Evolution

The ideas in this chapter are somewhat similar to the subset-selection schemes1

Chris Gathercole offered in his PhD thesis [44, chapter 6]. Although not a form

of incremental evolution, Gathercole’s schemes involved the selection of only a

portion of the potential fitness cases used for testing. He found that the tech-

niques produced “results as good as those of standard GP and in much shorter

time” (albeit not consistently).

Finally, the use of mutation in this work is similar in motivation to the “burst

mutation” scheme suggested by Gomez [53] and the delta-coding strategy by

Whitley et al. [121]. The similarities are that mutation was used infrequently—

its use triggered only when convergence may have stagnated. Both Gomez and

Whitley et al. mutated only the population’s best individual, while we have

previously discussed benefits of mutating the entire population [113]. In this

chapter we took a similar approach in that any individual in the population was

a potential mutation candidate.

9.3 The Algorithms

Four different approaches were considered for this work: an aggressive strategy

with and without the use of mutation, and a less aggressive strategy, again, with

and without mutation. The aggressive strategy is described in table 9.1 and the

less-aggressive in table 9.2. The two aggression options only change the fitness-

evaluation function—the genetic programming algorithm is otherwise unchanged.

A graphical representation of the two aggression options can be seen in fig-

ures 9.1 and 9.2. Both examples attempted to solve the even-7-parity problem

(which has 128 fitness cases) using a maximum of 5 generations before an auto-

matic step; both examples failed to find a solution.

The aggressive option (figure 9.1) started by attempting to evolve a solution

using the full 128 fitness cases. After five generations a solution had not been

found so the number of fitness cases was reduced to half-way between the current

(128 cases) and the value for flower (1): 128+1
2

= 64.5. This was converted to an

integer, meaning 64 fitness cases were used in the second stage. After a further

five generations a solution had not been found so the number of fitness cases was

halved again to 64+1
2
→ 32. Five further generations were also unsuccessful, so

the number of fitness cases was reduced to 16, and then again to 8. After five

generations with 8 fitness cases a solution was found (meaning flower was set to 8)

1Dynamic subset selection (DSS), historical subset selection (HSS) and random subset se-
lection (RSS).
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1. This method requires:

• a lower bound for the number of fitness cases to use during evaluation of
an individual (flower),

• a number of fitness cases for the goal stage (fgoal),

• the maximum number of generations before a step will automatically be
taken (gmax), and

• the fitness cases to be used for evaluation.

2. To start, initialise the population, set the number of generations-so-far for this
step to zero (g ← 0), and evaluate every individual using all f ← fgoal fitness
cases.

3. Loop through the following instructions until, either an individual succeeded
in all tested cases and f = fgoal, or the number of generations exceeds the
specified maximum.

(a) Increment the number of generations for this step (g ← g + 1).

(b) If g > gmax then this step has failed to find a solution within the spec-
ified number of generations. Set the number of fitness cases to use for
evaluation to f ← f+flower

2
and reset the number of generations for this

(next) step (g ← 0). If a mutation operation is to be used, apply it to
the population.

(c) Evolve the population as usual and evaluate it based on the first f fitness
cases.

(d) If a solution has been found and f 6= fgoal then increase f ’s lower bound
(flower ← f), and reset the number of fitness cases to f ← fgoal. Also
reset the number of generations for this next step (g ← 0). If mutation
is to be used, mutate the population.

Table 9.1: The aggressive strategy for automatic incremental evolution.
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1. This method requires:

• a lower bound for the number of fitness cases to use during evaluation of
an individual (flower),

• a number of fitness cases for the goal stage (fgoal),

• a stack of values that will contain the values of f where failure occurred,

• the maximum number of generations before a step will automatically be
taken (gmax), and

• the fitness cases to be used for evaluation.

2. To start, initialise the population, clear the stack to empty, set the number of
generations-so-far for this step to zero (g ← 0), and evaluate every individual

using f ← fgoal+flower

2
fitness cases.

3. Loop through the following instructions until, either an individual succeeded
in all tested cases and f = fgoal, or the number of generations exceeds the
specified maximum.

(a) Increment the number of generations for this step (g ← g + 1).

(b) If g > gmax then this step has failed to find a solution within the specified
number of generations. If f 6= top of stack then push f on to the stack.
Set the number of fitness cases to use for evaluation to f ← f+flower

2

and reset the number of generations for this (next) step (g ← 0). If a
mutation operation is to be used, apply it to the population.

(c) Evolve the population as usual and evaluate it based on the first f fitness
cases.

(d) If we have found a solution and f 6= fgoal then: if the stack isn’t empty
set the number of fitness cases to f ← top of stack and pop the top off
the stack; if the stack is empty then f ← fgoal. Also reset the number of
generations for this next step (g ← 0). If mutation is to be used, mutate
the population.

Table 9.2: The less-aggressive strategy for automatic incremental evolution.
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Figure 9.1: Example of an (unsuccessful) run of the aggressive strategy on the
even-7-parity problem (which has 128 fitness cases).
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Figure 9.2: Example of an (unsuccessful) run of the less-aggressive strategy on
the even-7-parity problem (which has 128 fitness cases).
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so the next stage attempted all 128 fitness cases. This failed to find a solution

so the number of fitness cases was again reduced, to 128+8
2
→ 68 cases. This

process continued but did not find a solution to all 128 fitness cases within 150

generations.

The less-aggressive option (figure 9.2) started by evolving with half the num-

ber of fitness cases between fgoal and flower: 64 fitness cases. After five generations

a solution had not been found so the number 64 was pushed onto the stack and
64+1

2
→ 32 fitness cases were used in the second stage. A solution was not found,

so 32 was pushed onto the stack and 16 fitness cases were used. Five generations

again elapsed, so 16 was pushed onto the stack and 8 cases were used. 8 cases

also proved too difficult, so 8 was pushed onto the stack and the first 4 fitness

cases were used. A solution to 4 cases was found within one generation, so the

top of the stack was taken (8) and used in the next stage. That was also solved

within one generation, so again the top of the stack (16) was used. A solution

to 16 fitness cases was not found within five generations so 16 was again pushed

onto the stack and the next stage used half the current number (16) and the last

number of successful fitness cases (8): 16+8
2
→ 12. This process continued to 150

generations but failed to find a solution to the full 128 cases.

You may have noticed that it is possible that the final generation (or indeed,

stage) may not evaluate the population on the full set of fitness cases, thus making

success an impossibility. This topic is discussed further in section 9.9 and is the

topic of the next chapter.

Finally, one small note that might save an implementor’s time: it is important

not to mutate after a success at the goal state. Mutating at that point may well

mean you destroy the individual that found a solution.

9.4 Method

For each of the four approaches (two aggression options and two mutation op-

tions) we experimented with the even-4, -5, -6, and -7 problems up to 150 gen-

erations. For each of the four approaches eight different values—5, 10, 15, 20,

25, 30, 40 and 50—were used for the number of generations before an automatic

step (gmax). Thus a total of 128 experiments were executed, each for 500 runs.

If mutation was required then 50% of the population was randomly chosen

to undergo subtree mutation (as originally described by Koza [71, section 6.5.1]

and implemented in Beagle by the class GP::MutationStandardOp). A maximum

depth of five was used for the creation of mutant subtrees.
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Given that ADFs were shown to be of benefit under manual incremental

evolution (chapter 8) we elected to use them exclusively. We did not study the

impact of removing the use of ADFs from the algorithm, but it is highly likely that

only a reduction in performance would have been seen. ADFs were configured in

the same way as the direct evolution runs (see table 7.1 on page 116).

The minor parameters were specified in the same way as was done with di-

rect evolution (see section 7.2). Runs were analysed to 150 generations unless

otherwise specified.

9.5 Results: Unit-Cost Generations

As was done with manual incremental evolution, we will first analyse the results

based on the assumption that every generation has equivalent cost. Section 9.6

considers the results using adjusted generations.

When averaged across all four problem difficulty levels, all eight gmax values,

and all four combinations of aggression and mutation, automatic incremental evo-

lution had a success effort efficiency ratio of 0.86 compared to direct evolution. In

other words, on average, direct evolution was the better choice—with an average

confidence of 70%. Of the 128 experiments, 95 (74%) had a ratio pointing to

direct evolution.

The use of minimum computational effort produced very similar results: an

average efficiency ratio of 0.83 and a confidence, that direct evolution was the

better choice, of 69%. 94 experiments had an efficiency ratio less than one.

Success proportion also produced very similar results with an average effi-

ciency ratio of 0.90 and a confidence—in direct evolution—of 69%. 95 of the

experiments pointed to direct evolution.

However not all configurations of automatic incremental evolution fared as

poorly as the average. The following sections detail the influence that aggression,

mutation, gmax, problem difficulty, and run length had on performance.

9.5.1 Aggression

Which of the two strategies was better, the aggressive one or the less-aggressive

one? Irrespective of the measure used, there was little doubt. The aggressive

strategy was the higher performer.

Under success effort, when compared to direct evolution, automatic incremen-

tal evolution with aggression scored an average efficiency ratio of 1.004—very
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Success Min. comp. Success
effort effort Proportion

Aggressive ratio 1.004 0.97 1.006
conf. 46% 45% 47%

Less-aggressive ratio 0.71 0.70 0.79
conf. 15% 18% 15%

Table 9.3: Average efficiency ratios and confidence levels for the aggressive and
less-aggressive strategies when compared to direct evolution. Ratios greater than
one mean that, on average, direct evolution was inferior. Confidence levels all
indicate direct evolution was superior—if only marginally.

Success Min. comp. Success
effort effort Proportion

ratio 1.48 1.50 1.32
conf. 83% 80% 83%

Table 9.4: Average efficiency ratios and confidence levels comparing the aggres-
sive and less-aggressive strategies. Ratios greater than one mean that, on average,
aggression was the higher performer. Also shown is the confidence one should
have in aggression being a better choice than the less-aggressive strategy.

slightly better than direct evolution. In contrast, the use of the less-aggressive

strategy gave an efficiency ratio of 0.71. Their average confidence levels provide

an interestingly, subtly-different picture. Even though the aggressive option had

an average ratio above 1.0, the average confidence pointed in the other direction:

with just 46% confidence in the aggressive option being better than direct evolu-

tion. The less-aggressive option scored a comparable average confidence of 15%

(or 85% confidence in direct evolution being the better choice).

Table 9.3 gives a summary of the efficiency ratios—where automatic incre-

mental evolution was compared to direct evolution—for success effort, minimum

computational effort, and final success proportion.

This evidence leaves little doubt that the aggressive strategy was the more

efficient choice, but a better approach would be to compare the two options

directly. By eliminating the interference of the direct evolution results we can

more clearly see the expected benefit and our confidence in the results. Table 9.4

gives such a comparison and shows the aggressive strategy is better than the

non-aggressive version.
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9.5.2 Mutation

The use of mutation was most likely a good thing. Experiments with muta-

tion had an average success effort efficiency ratio of 1.18 when compared to ex-

periments without mutation—with an average confidence of 62% that mutation

improved performance.

Minimum computational effort produced a similar result (1.22) with similar

confidence levels (58%). Success proportion at the final generation also produced

similar results (1.12 and 62% respectively).

The results were consistent with and without aggression, thus the highest

performing approach was the aggressive strategy with mutation. In fact, that

approach had an average success effort efficiency ratio of 1.03—although the

confidence level showed that it was no better than 50:50. This result indicates

that fitness-based automatic increment evolution can equal direct evolution.

9.5.3 Generations Before Step

Averaged over all aggression, mutation, and problem difficulty settings, there

was little evidence for a general trend. When we considered only the results

where the aggressive strategy was used, it appeared that performance decreased

as gmax increased—but the variability in the results means that this should be

regarded as insignificant. The trend appeared to strengthen when both mutation

and aggression were used, but again this should be treated as insignificant.

The number of stages2 used during a run depended on the number of genera-

tions before an automatic step (gmax). It was highest for runs with a gmax of 5,

where an average of 25 stages were used over the 150 generations. For runs with

a gmax value of 50, an average of only 3.4 stages were used.

9.5.4 Problem Difficulty

Unlike the previous chapter, this comparison was fairly straight-forward; one

must account only for the changes in population size. A comparison with direct

evolution does this, leaving us to compare efficiency ratios.

Averaged over all other settings, a slight trend can be seen. As the prob-

lem becomes more challenging, automatic incremental evolution decreases per-

formance less. At even-4 the success effort efficiency ratio was 0.73 and by even-7

2A stage is a group of generations where the number of fitness cases remains constant.
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the average ratio increased to 0.92. Minimum computational effort and success

proportion ratios produced very similar results.

9.5.5 Run Length

These experiments were all executed to 150 generations, or three-times the tra-

ditional run length. This additional length favoured incremental evolution, as

direct evolution performed even more strongly when the run lengths were arti-

ficially shortened (by labelling as failures all runs that executed more than 50

generations, and by clamping the number of generations to 50).

Reducing the number of generations did not change automatic incremental

evolution’s relative performance—the aggressive strategy with mutation was still

the top choice of the four approaches.

9.5.6 Summary

From this analysis, the better choice was to use direct evolution. Although incre-

mental evolution using the aggressive strategy with mutation may have offered

a slight performance benefit, the advantage was certainly not sufficient to war-

rant the additional complexity. However as we will now see, the use of adjusted

generations will change that conclusion.

But before we continue, one point that is worth noting is that success effort

and minimum computational effort consistently provided very similar conclusions.

9.6 Results: Adjusted Generations

This section re-analyses the results with a modified assumption about the cost of a

generation. In this section we assume that the cost of a generation is proportional

to the number of individual-evaluations executed. This idea was discussed in

detail in the previous chapter (see section 8.5).

As we discussed previously (section 8.5.2), minimum computational effort be-

comes an upper bound when the cost of failure is below the minimum generation.

That makes it an inappropriate measure to rely on for this section as one im-

pact of the use of adjusted generations and fitness-based incremental evolution is

to reduce the cost of failure. In fact—and we will discuss this next—automatic

incremental evolution does a very good job of reducing that cost.

When averaged over all 128 experiments, automatic incremental evolution

with adjusted generations had a success effort efficiency ratio of 1.53 when com-
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pared to direct evolution. We found an average confidence of 81% that automatic

incremental evolution was a better choice than direct evolution. 108 (84%) of the

128 experiments had an efficiency ratio greater than one.

The use of minimum computational effort on the other hand produced an ef-

ficiency ratio of 1.07—but with only a 51% confidence that incremental evolution

was the better when compared to direct evolution. We will not discuss minimum

computational effort measures any further in this section.

As expected, success proportion produced identical results with and without

adjusted generations—it is, after all, only measuring the probability of success

and does not consider the cost to obtain those successes. Consequently, success

proportion will not be considered any further in this section.

9.6.1 Aggression

The use of the aggressive strategy produced a success effort efficiency ratio of

1.48 when compared to direct evolution. Associated to that was a confidence of

72% that the direct evolution was the inferior performer. The use of the less-

aggressive strategy gave a comparable ratio of 1.58 and confidence of 89%. So,

in contrast to the results with unit-cost generations, the less aggressive strategy

won out; but both beat direct evolution.

A comparison directly comparing the two approaches gave a success effort

efficiency ratio of 1.05 and a confidence of 58% that the less-aggressive strategy

was better than the aggressive one–certainly not a significant difference between

them.

There exists an interesting balance between the aggressive and less-aggressive

strategies. The aggressive strategy was shown to improve the likelihood of finding

a solution (see section 9.5.1), but the less-aggressive strategy will “hold down”

a poor performer more than the aggressive strategy and thus reduce the cost of

failure.

9.6.2 Mutation

The results with mutation were consistent with the results under the unit-cost

assumption: the use of mutation was most likely a good idea. Using mutation

gave a success effort efficiency ratio of 1.16 when compared to not using it. The

confidence of 62% however was not particularly high.
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Figure 9.3: The advantage of automatic incremental evolution when adjusted
generations were used, by values of gmax. The results include all values of aggres-
sion, mutation, and problem difficulty.

The results were consistent with and without aggression, thus making the

highest performer of the four approaches the less-aggressive strategy with muta-

tion. Compared to direct evolution it had a ratio of 1.70 and a confidence, that

automatic incremental evolution was the better choice, of 79%.

9.6.3 Generations Before Step

Performance decreased, in general, as the number of generations before an auto-

matic step (gmax) increased. Figure 9.3 plots this effect.

The optimum appeared not to be 5 generations, but 10. This is another

balance between increasing the probability of success and decreasing the cost of

failure. A higher value of gmax improved the probability of success but a lower

value allowed the algorithm to more quickly “hold down” poor performers and

thus decrease the cost of failure.
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Figure 9.4: The advantage of automatic incremental evolution when adjusted gen-
erations were used, by problem difficulty. The results are for the less-aggressive
strategy.

9.6.4 Problem Difficulty

Unlike the results when unit-cost generations are assumed, in this case there was

an obvious trend as the problem difficulty increases: the improvement over direct

evolution increased. Figure 9.4 demonstrates this for the less-aggressive strategy,

but the results were similar irrespective of aggression and mutation.

9.6.5 Run Length

Under the unit-cost assumption the longer run lengths were beneficial to incre-

mental evolution. Under adjusted generations, the difference was almost crucial.

With 150 generations, automatic incremental evolution had an efficiency ratio

of 1.53 over direct evolution (averaging over all settings of aggression, mutation,

gmax, and problem difficulty). If only 50 generations were used the ratio dropped

to 1.03. Further, the advantage that the less-aggressive strategy had with 150

generations completely evaporated when limited to 50 generations.
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9.6.6 Summary

When compared to automatic incremental evolution with unit-cost generations,

the use of adjusted generations produced an average success effort efficiency ratio

of 1.81. This is a significant difference (with a confidence level of 96%), based

only on whether generations or evaluations were counted.

The best of the configurations with adjusted generations was the less-aggressive

strategy with mutation and about 10 generations before an automatic step. It

offered a success effort efficiency ratio of between 1.10 (for even-4) and 2.17 (for

even-7). We can be 95% confident that, on average, that specification of auto-

matic incremental evolution was better than direct evolution.

9.7 Analysis of the Three Measures

This study has analysed the use of automatic incremental evolution, but in this

section we will shift the focus to our three measures: minimum computational

effort, success effort, and final success proportion.

The most apparent point is that mentioned in section 9.6: success propor-

tion cannot measure changes in the cost to execute runs. Given that automatic

incremental evolution’s benefits are solely to do with that cost, success propor-

tion had very little use. A genetic programming practitioner should consider this

limitation before comparing such measurements in others’ research.

An excellent example of the benefits of confidence levels involved the use of

the minimum computational effort measure. When asked “which was better:

automatic incremental evolution or direct evolution?”, minimum computational

effort gave an average efficiency ratio of 1.07—that’s an almost 10% performance

improvement. But when asked “how confident are you that a difference truly

exists?”, an average confidence of just 51% was given. Confidence levels offer

a useful tool for us to value a measurement; without them we are forced to

accept comparisons at face value—in this case we would have expected an almost

10% improvement and had no expectation that we might well see a reduction in

performance.

9.8 Summary

We have shown that fitness-based automatic incremental evolution can equal

direct evolution. If you are prepared to accept that one generation does not
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necessarily have the same cost as the next, and that the cost is proportional

to the number of evaluations executed, then automatic incremental evolution,

statistically, significantly outperformed direct evolution.

It is an open question whether the technique offers performance improvements

on other domains, but if the cost of failure is a considerable portion, then this

technique may well prove beneficial.

9.9 Future Research

As with the manual incremental experiments, the greatest issue with this work is

that it studied only one problem domain, even-n-parity. These techniques would

have to be trialled on other domains before any general conclusions could be

reliably produced.

Also, as with the manual incremental experiments, we have considered only

one ordering of the fitness cases. It would be interesting to study the impact of

alternative orderings.

The mutation of 50% of the population was a high rate compared to tradi-

tional uses. The frequency of application however was fairly low and dependent

on the number of generations before an automatic step (gmax). However because

mutation at such a high level proved beneficial, we have yet another parameter to

adjust. Researchers applying fitness-based automatic incremental evolution may

well wish to study the associated performance impact of varying the quantity of

mutation.

Equally, mutation might not be the most appropriate diversity-enhancing

operator. Perhaps it is worth considering Winkeler and Manjunath’s approach

(see section 6.2.5) and move to the next stage when, say, 90% success was attained

(rather than the 100% required in this work).

Further, in this study we did not analyse the impact of mutation on direct

evolution. Mutation is known to be beneficial for the even-n-parity problems [97],

so it would be interesting for future research to see if—like ADFs—the use of

mutation offers more to incremental evolution than it does to direct evolution.

When offering a new approach, the desire is that it will be able to extend the

useful scope of the field. Will fitness-based automatic incremental evolution be

useful to allow genetic programming to tackle hard problems? We expect that the

answer is “Yes”. By decreasing the cost of failure and potentially improving the

likelihood of success, it may well decrease the effort required. Appendix A looks

at the issues of success-based problems, but there are plenty of hard problems
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that do have a known definition of success. Many such examples can be found

at the UCI machine learning repository [11]: two-thirds of their problems are

classification problems that may be excellently suited to this technique.

We have already brought up the issue that the final generation (or indeed,

stage) may not assess the population using the full set of fitness cases. There are

three approaches to resolve this. The first is to consider the issue a concern. The

second is to consider it an advantage. The third is to make use of that fact that

success is impossible.

If continued use of the automatic incremental evolution method is guaranteed

to fail then our first approach is to consider it a concern. We could elect to

“panic” and, for example, reserve the final five generations for the goal stage.

This would at least give GP a chance to succeed. However the likelihood of

success has got to be considered remote: what are the chances of successfully

solving the full problem when a subset has remained out of reach?

The second approach is to consider that it is an advantage to not necessarily

arrive at the goal stage. After all, when the full set of fitness cases isn’t used then

it takes fewer evaluations to assess a population and given that we know it’s not

going to succeed then the fewer evaluations the better.

The final approach is to think, if we concluded “the fewer the better”, then

surely it would be better still not to evaluate the population at all. It is that

thinking that motivated the next chapter: if we know there is no hope for the

final generation to succeed, then there is no point evaluating it and we should

terminate early. However, we can do even better than that.





Chapter 10

Early Termination

In this chapter we introduce a heuristic that focuses on reducing the cost of the

runs that fail. It is first applied to canonical (direct evolution) genetic program-

ming and then to automatic incremental evolution. It is the use of the success

effort measure that allows us to see the improvements in performance.

10.1 Motivation

My father used to tell me that, in an exam, the first 50% of the marks were

easier to obtain than the second, and that the last portion of the marks were the

most difficult to obtain. Using such thinking we might suspect that there is a

“minimal learning curve” for GP to succeed: if the system spent too much time

on the easier initial sets of fitness cases then there would not be enough time for

the remaining cases. Such a curve would show the greatest gains early on and,

as the generations increase, the size of the gains would decrease. In other words

the rate of learning would decrease as the generations increased.

Equally, one might argue that the first fitness cases are the hardest as they

are completely foreign. As a result GP may spend the most time working on

those in order to form general solutions that will serve it well for the later fitness

cases. Such a learning curve would have a rate that increased as the generations

increased.

We can probably discard that latter learning style; such thinking might be

appropriate for a design-based approach, but evolution relies on an ability to

incrementally improve. It is unlikely that evolution would take a path that was

slow to perform at the start, but would pay dividends at the end. It is far more

likely to take a path with higher performance at the start. Although not entirely

greedy, evolution can’t look very far ahead.
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10.2 Defending the Early Termination

Heuristic

Although that theoretical argument is very useful, we can also call on empirical

evidence to assist with this discussion. We can ask, which of the two approaches

does GP typically take? We will use two different sources: four large datasets

and two of Koza’s books.

10.2.1 Four Datasets

We can once again recruit the four datasets that were used in chapters 3, 4, and

5: Ant, Parity, Multiplexor, and Symbreg. For these four problems we can look

selectively at the successful runs and analyse their learning curves.

But how do you determine the change of rate of learning? The learning curve

would consist of the best-fitness obtained for each generation, but the task of

determining the rate of learning is made more difficult by the natural bumps and

plateaus that one would expect from experimental data: for example, even if an

exponential learning curve were observed on average, that curve will never be

followed exactly for each experiment. One solution to the problem is to draw

a straight line from each curve’s start point to its end point and measure the

proportion of the curve that is above the straight line: the greater the proportion

the more the curve has a decreasing learning rate. The solution has a minor

problem in that it does not give credit for “learning” that has occurred in the

first generation. To accommodate for that, the start point for the straight line

should be lowered to the average performance of the first generation—that point

represents the fitness one can expect from a random population. The end point

remains the same; it is the fitness obtained by the best individual in the final

generation of the run. The left graph in figure 10.1 provides an example.

Armed with that measure, we studied the Multiplexor domain. On average,

for each of the 985 successful runs, 94% of each curve’s points were above the line

from average fitness. However only 30% of the curves were entirely above that

line. Although 30% is low, one measure that may give perspective is the mini-

mum proportional increase of the line’s end-point generation that was required

to ensure the curve was entirely above the line. The right graph in figure 10.1

demonstrates this pictorially. Extending the line from average fitness 8.5% along

the x-axis (generations) meant that 95% of the Multiplexor curves were above

the extended line. Concretely, that equated to the line’s end-point occurring at
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Figure 10.1: Left graph: Lines used to analyse change in rate of learning. Right
graph: Lines used to assess proportional increase required for learning curve to
be entirely above the straight line.

generation 26; or generation 37 for 99% inclusion. Given that the experiments

were run to 50 generations, this was not a problematic increase. Table 10.1 gives

the results for the other problem domains.

(Unfortunately, Christensen’s dataset did not include average-fitness informa-

tion. In order to study that domain, we executed 6,000 runs of the same artifi-

cial ant problem domain. We refer to this dataset as Ant2. 1,183 (20%) of the

6,000 runs found a 100%-correct solution. The difference in performance between

Ant2’s 20% success rate and Ant’s 13.3% must be explained by implementation

details between ECJ and Open BEAGLE, given that their configurations were

as similar as possible.)

For each of the problem domains we can easily draw straight lines that include

95% of the learning curves. Indeed, for three of the four domains we can even

include 99% of the learning curves. (The Parity domain, at 51 generations, just

escapes the maximum of 50 generations.) From this study we can conclude that

the vast majority of every successful learning curve was above linear.
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Ant2 Parity Symbreg Multiplexor
A 95% 88% 97% 94%
B 70% 0% 75% 30%
C (95%) 29% 17% 6.2% 8.5%
D (95%) 41 23 20 26
D (99%) 51 31 39 37
E 1,183 2,392 726 985

Table 10.1: Successful learning curves’ performance relative to a straight line
plotted from the average of the first generation to the final generation of the
curve. A: Average proportion of each curve above the line. B : Proportion of
learning curves entirely above the line. C : Maximum proportional increase in
generation of line’s end point required for 95% of curves to be entirely above
line. D : Largest generation required for 95% (or 99%) of curves to be above line.
E : Number of successful runs.

10.2.2 Koza’s Books

Koza’s first and second books contain what he called graphs of “standardised

fitness” for the problem, where “standardised fitness restates the raw fitness so

that a lower numerical value is always a better value” [71, page 96]. These

graphs plot best-, average-, and worst-fitness per generation for one run of the

given problem. Adjusting for the fact that smaller fitness scores were better, these

graphs can be used to answer the question “did the learning rate decrease?”.

There are 19 such graphs in Koza’s first book [71], four of which we discarded

given that they had too few generations, were artificially extended, or used a log

scale. That left 15 graphs which included an array of problem domains: cart

centering, the artificial ant on the Santa Fe and Los Altos trails, 11-multiplexor,

broom balancing, the truck backer-upper problem, lizard foraging, wall-following,

recursive sequence induction, intertwined spirals, even-4-parity, and box moving.

All of them demonstrated learning rates that decreased as the number of genera-

tions increased and, just as with the four large datasets, the vast majority of the

curves’ points were above the straight line from average fitness.

There are 14 “standardised fitness” graphs in Koza’s second book [72]. Again,

the range of problem domains was significant: the two boxes problem, even-6-

parity, the 64-square lawnmower problem with and without ADFs, the impulse-

response problem, the artificial ant on the San Mateo trial, letter recognition,

five different versions of the transmembrane problem, and two versions of the

omega-loop problem. Again all of them had decreasing learning rates with the

vast majority of each curve above the straight line from average fitness.



10.3 The Heuristic 191

The single negative example we observed [71, page 580] was on the first half

of Koza’s “biathlon”, The symbolic regression of x4 − 5x2 + 4 was solved within

10 generations and, when measured in terms of hits, had an increasing learning

rate as the generations increased.

Koza’s two books have provided 29 from 30 examples of decreasing learning

rates as the generations increase. The vast majority of all of the curves, bar only

one, were above the straight line from average fitness. Although this result is

very strong, there are a few considerations: (i) it seems the majority, but not all,

the graphs were from successful runs, (ii) a successful run may not have found

the optimum solution, but then for some problems the optimum was not known,

(iii) at least some of the problems had non-linear standardised fitness. Each of

these considerations may impact the curvature of a learning curve, but overall

the result lends weight to the argument that a successful learning curve typically

has a decreasing rate of improvement.

10.3 The Heuristic

Those two empirical studies have shown that there exists a straight line that the

vast majority of successful runs remain above. Unfortunately it is not possible to

predict the definition of that line before the execution of the run. However, we can

construct a more conservative line. A line that starts at the origin is guaranteed

to be no higher a start point than the average performance of generation zero

so long as negative fitness is impossible. A line that terminates at the definition

of success at the maximum generation would also be more conservative so long

as the maximum generation is large enough—a decision made by the user as a

prerequisite of beginning a GP run.

If we construct such a line then we would know two things: (i) from the

empirical evidence, the vast majority of successful runs would remain above it

and (ii) because the line ends at the definition of success, all runs that failed

would at some point cross the line. Thus, we can use such a line as a termination

criterion for an early termination heuristic: if a run “crosses the line” we should

hold little hope for its eventual success and so terminate it immediately.

10.3.1 Related Work

This suggestion is not the only early termination heuristic that has been offered.

We will now discuss the heuristics we have encountered in published work with a

focus on how studies of such heuristics have analysed the impact on performance.
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In Koza’s third book on GP he confesses to manually monitoring runs and

terminating them when a human feels it’s a good idea: “our uniform practice for

problems of circuit synthesis in this book is to set the maximum number of gen-

erations, G, to some arbitrary large number (e.g. 501) and to manually monitor

and manually terminate the run.” [73, page 455]. Koza detailed that “manual

termination” resulted from “manual observation that the values of fitness for the

best-of-generation individual and other individuals in the population appear to

have reached a plateau” [73, page 189]. Koza appears not to have attempted a

comparison of the cost of applying GP with and without manual termination.

It is however noteworthy that Koza found the concept of early termination suf-

ficiently important to have a human spend their time watching the computer’s

progress.

In Genetic Programming: An Introduction [13, section 10.1.1], Banzhaf et al.

mention five ways to improve the speed of GP, the first of which is early termina-

tion of a run. They suggested that the explosion of introns—which “later in the

run . . . tend to grow exponentially and to comprise almost all of the code in an

entire population” [13, page 182]—could be used as a termination criterion. They

cited Francone, Nordin and Banzhaf’s work, which used as a termination heuris-

tic the occurrence of destructive crossover (crossover that decreases the child’s

fitness when compared to its parent’s). Francone et al. noted that the use of

this criterion resulted in 52% of their runs being terminated before reaching even

half of the allocated maximum number of generations, producing a reduction (by

more than half) of the number of generations executed [40]. Unfortunately, it

appears it would have been too expensive for them to analyse the impact their

heuristic had on the quality of their best solutions.

Kramer and Zhang developed a genetic programming system they called

GAPS. In it they specified a termination criterion based on performance of the

best individual in a generation. “During each generation in which no improve-

ment in the top score occurs, a counter is incremented. When this counter reaches

a user-defined threshold, the run is signalled to shut down” [75]. Although GAPS

development continued (under the name GP-Lab [47, 48]), we found no perfor-

mance comparisons that analysed its termination heuristic.

Gianluigi Folino and Giandomenico Spezzano implemented a peer-to-peer dis-

tributed GP system called P-CAGE [39]. They discussed three termination cri-

teria: a maximum number of generations, a maximum amount of time, and a

criteria based on the computational effort carried out by the system. Their stud-

ies, however, did not analyse the performance offered by the different methods.
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Other work has used early termination in an attempt to avoid over-fitting [78]—

a concept often considered in other machine learning techniques such as artificial

neural networks [45]. But again—at least for the work in GP—we have not

encountered studies of performance comparisons.

Finally, it is almost a certainty that a number of other researchers will have

used early termination heuristics without significant consideration. For example,

Shichel et al. evolved a tank-game playing “Robocode” player [104] and they

“simply stopped the run manually when the fitness value stopped improving

for several generations”. They offered no discussion of their decision, and no

comment on its effect on performance.

The following studies look at the impact of our straight-line early termination

policy. The focus is on how it affects performance but the methodology offered

could potentially be applied to analyse the heuristics that others have used.

10.4 Direct Evolution Experiments

The early termination heuristic is intended to decrease the cost of failure but

that benefit comes with the potential cost of also decreasing the probability of

success. To measure performance in such situations, we have shown that the

success effort statistic is the best of our three measures. We will now use that

measure to empirically study the effect on performance of our straight-line early-

termination heuristic.

Our five large datasets were again brought to use. Given the best-fitness score

of each generation for each of the runs, we post-processed the results to calculate

what the success effort would have been had the early-termination heuristic been

used. 50 generations was used as the maximum (although Gagné’s Symbreg

and Multiplexor experiments originally had a termination criterion that only

approximated this, the difference is negligible).

Table 10.2 gives the results. We can compare the two success effort measures

for each of the problem domains and, by the simple variation (described in sec-

tion 4.2) of the algorithm in table 4.7, analyse the confidence that we should

have that the true success efforts are indeed different. The Symbreg results lead

the comparisons: early termination more that halved the required effort—with

a success effort efficiency ratio of 2.20—and produced a 100% confidence that

it was an improvement.1 Ant and Ant2 also produced “100% confidence” with

1 It should be remembered that this is a simulation algorithm—although 100% may be
slightly overstating the level, the result gives very strong indication that there truly is a differ-
ence.
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Problem Termination Success Success Cost of Cost of
effort proportion success failure

Ant Standard 344 13.3% 17.4 50.0
Early 276 13.0% 16.8 38.7

Ant2 Standard 220 19.7% 15.9 50.0
Early 182 19.5% 15.9 40.0

Parity Standard 15.93 99.7% 15.8 50.0
Early 15.92 99.7% 15.8 48.0

Symbreg Standard 31.8 72.6% 9.5 59.2
Early 14.4 72.2% 9.3 13.4

Multiplexor Standard 17.9 98.5% 17.1 54.7
Early 17.8 98.5% 17.1 48.0

Table 10.2: Success efforts for experiments using the early-termination heuristic
and for experiments using only the standard termination criteria. Also included
are the final-generation success proportions, average cost of success (in genera-
tions) and the average cost of failure (in generations).

efficiency ratios of 1.25 and 1.21 respectively. Multiplexor and Parity had much

lower success effort efficiency ratios (only just above one) and thus lower confi-

dence levels (62% and 52% respectively), but it should be noted that the heuristic

had very little room to perform given both problems’ very high success rates.

There are a number of points worth noting: (i) the use of the heuristic de-

creased the success effort for every one of the five problems, (ii) larger decreases

in success effort were associated with a lower probability of success, (iii) the re-

duction in the probability of success was very small in all cases, (iv) as well as

decreasing the cost of failure, the heuristic also slightly decreased the cost of

success.

From these experiments very few disadvantages but potentially highly-significant

advantages were seen. It is reasonable to assume that this approach might be gen-

erally applicable, but further research (see section 10.7) would give practitioners

greater confidence in its generality.

10.5 Automatic Incremental Evolution Experi-

ments

Chapter 9 demonstrated that the primary advantage of automatic incremental

evolution was that it decreased the number of adjusted generations required to

find a solution—a reduction in the number of fitness evaluations for failed runs.
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A consequence was that the potential fitness scores were held down if the run

was not succeeding. Figure 10.2 demonstrates this difference.

This feature of automatic incremental evolution becomes very interesting

when viewed from the perspective of the early-termination heuristic. Given that

the fitness is held down, how does that impact the performance under early-

termination? The remainder of this chapter considers that question.

We compared the performance of automatic fitness-based incremental evolu-

tion with and without early termination. The comparison was made both with

and without adjusted generations. Comparisons to direct evolution with early

termination were also made. ADFs were used in both incremental and direct

evolution experiments.

To do this we post-processed the even-n-parity experiments from chapter 9.

Runs whose performance fell below a straight line were reclassified as failures

and their generations-to-termination was relabelled as the generation at which

the performance first fell below the line. The straight line was defined as starting

at generation zero with zero fitness cases successfully solved, and ending at 150

generations with 100% of the fitness cases successfully solved. Again, as with

the direct evolution experiments in section 10.4, because the benefit of early

termination is primarily in the reduction in cost-of-failure, we have elected to

make comparisons using only the success effort measure.

10.5.1 Results: Unit-Cost Generations with Early Termi-

nation

This section discusses the impact of early termination on automatic fitness-based

incremental evolution under the assumption that generations have equivalent

costs—as in chapters 8 and 9, the performance was much better under adjusted

generations which we will consider in section 10.5.2.

On average, automatic incremental evolution with early termination had a

success effort efficiency ratio of 1.52 compared to automatic incremental evolution

without early termination. On average, we should have a confidence of 91% that

automatic incremental evolution with early termination was the better choice.

None of the 128 different configurations had an efficiency ratio less than one.

When compared to direct evolution (with early termination), on average,

automatic incremental evolution with early termination had a success effort effi-

ciency ratio of 1.14. Automatic incremental evolution was the better choice with

an average confidence level of 62%. 87 (68%) of the 128 configurations had a

ratio above one.



196 Early Termination

0 50 100 150

0
20

40
60

80
10

0

Direct Evolution

Generations

Fi
tn

es
s 

ca
se

s 
su

cc
es

sf
ul

ly
 s

ol
ve

d
by

 b
es

t−
of

−g
en

er
at

io
n

0 50 100 150

0
20

40
60

80
10

0

Automatic Incremental Evolution

Generations

Fi
tn

es
s 

ca
se

s 
su

cc
es

sf
ul

ly
 s

ol
ve

d
by

 b
es

t−
of

−g
en

er
at

io
n

Figure 10.2: Forty runs of the number of fitness cases successfully solved by
the best individual in each generation using direct evolution (upper graph) and
using automatic incremental evolution (lower graph; with a maximum of five
generations before an automatic step) on even-7-parity.
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Aggression

Early termination offered a greater relative improvement for the less-aggressive

strategy (with an efficiency ratio of 1.69 versus 1.35), but when compared to direct

evolution the aggressive strategy was still the better choice (with an efficiency

ratio of 1.20 versus less-aggressive’s 1.08).

Mutation

The use of mutation offered little average relative performance difference (1.55

versus 1.49) meaning that, when compared to direct evolution, mutation was still

the better choice (1.22 versus 1.06). Thus, the most effective technique was to

use the aggressive strategy with mutation to give an efficiency ratio of 1.27 over

direct evolution with early termination.

Generations Before Step

The average relative performance appeared to decrease fairly linearly as gmax

increased. With a step size of 5, the relative efficiency ratio was 1.66 while for

50 generations before an automatic step the ratio was 1.45. It is likely that this

performance gain is from smaller step sizes lowering the number of fitness cases

faster for failing runs.

The mean efficiency ratio was 1.59 for aggressive automatic incremental evo-

lution with mutation and a step size of 5.

Problem Difficulty

The average relative performance gains generally increased as the difficulty in-

creased. For aggressive automatic incremental evolution with mutation and a

step size of 5, the greatest improvement was seen in even-6 (with an efficiency

ratio of 2.11) and even-7 (with a ratio of 1.84). Even-5 saw a ratio of 1.12.

10.5.2 Results: Adjusted Generations with Early

Termination

This section discusses the impact of early termination on automatic fitness-based

incremental evolution under the assumption that generations have costs depen-

dent on the number of individual-evaluations required.

The results were very similar to the comparison without adjusted genera-

tions. On average, automatic incremental evolution with adjusted generations
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and with early termination had a success effort efficiency ratio of 1.54 compared

to automatic incremental evolution without early termination. On average, we

should have a confidence of 93% that automatic incremental evolution with early

termination was the better choice. All of the 128 different configurations had an

efficiency ratio greater than one.

However, when compared to direct evolution (with early termination) there

was a stark difference. Without adjusted generations the two options were fairly

close. With adjusted generations the success effort efficiency ratio averaged

2.16—a more-than-100% performance improvement, with an average confidence,

in automatic incremental evolution being the better choice, of 97%. 126 (98%)

of the 128 configurations pointed to automatic incremental evolution.

Aggression

Relative performance was greater with the less-aggressive option (with an ef-

ficiency ratio of 1.69 versus 1.38 over automatic incremental evolution without

early termination). That helped make the less-aggressive option the better choice

when compared to direct evolution with early termination (efficiency ratios of 2.50

versus 1.83).

Mutation

Like the unit-cost experiments, there was little distinction in relative performance

between the use of mutation (efficiency ratio of 1.56 versus automatic incremental

evolution without early termination) and not using mutation (1.52). But when

compared to direct evolution, the use of mutation was, on average, a better

decision (2.32 versus 2.01).

The use of the less-aggressive strategy along with the use of mutation gave

an efficiency ratio of 2.72 over direct evolution with early termination.

Generations Before Step

Again an almost linear result was seen regarding the number of generations before

an automatic step: a step size of five showed the greatest advantage on average

(1.75) while a step size of 50 showed the least (1.38).

However the less-aggressive option with mutation had the best performance

with a step size of 5 (with an efficiency ratio versus direct evolution of 4.71) while

a step size of 5 produced a ratio of 2.86.
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Problem Difficulty

The relative performance compared to not using early termination appeared to

roughly increase as the problem difficulty increased. The less-aggressive strategy

with mutation and a step size of 10 had an efficiency ratio over direct evolution

(with early termination) of 3.0 for both even-6 and even-7 and 1.6 for even-5.

10.6 Summary

This chapter introduced an early termination heuristic. We considered its impact

on both direct evolution and automatic fitness-based incremental evolution.

For direct evolution the heuristic reduced the cost of using genetic program-

ming (by decreasing the success effort). Further, for automatic incremental evo-

lution we showed use of the heuristic offered an efficiency ratio of 1.5—a 50%

improvement over not using it. Finally, we showed that automatic incremental

evolution with early termination and adjusted generations had a very-significant

efficiency ratio of 2.16 over direct evolution.

From these studies we can have some confidence that the heuristic is a good

idea and that it could well be generally applicable, but further studies would

increase that confidence.

10.7 Future Research

No effort was made to optimise the line that defined the early-termination heuris-

tic. For direct evolution there is significant scope for improvement. An imme-

diately obvious option could be the use of average fitness in the first generation

(rather than zero fitness) for the definition of the start of the line. Initial studies

showed a notable direct-evolution performance improvement, but such a modi-

fication to the line’s definition would have an impact on the heuristic’s applica-

bility to automatic fitness-based incremental evolution. Also unless a theoretical

defence was offered, any optimisation would require empirical evidence from a

significant body of GP runs.

It would be interesting to record the proportion of GP runs that would have

benefited from the use of the early termination heuristic. Although the GP

practitioner may feel it is currently too risky and unproven an approach, low-

cost post-processing of their results would show whether the technique would have

been beneficial. If such results were collected and—just as was shown here—the
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majority pointed to a benefit, it would certainly give practitioners an increased

confidence in the use of the heuristic.

Finally, manual incremental evolution would most likely also benefit from this

heuristic. No attempt was made to study that, but the technique holds potential

that it might improve manual incremental evolution’s performance above direct

evolution’s.
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Finale





Chapter 11

Conclusions, Contributions,

Limitations, Future Research

11.1 Conclusions

The work in this thesis can be viewed from two perspectives. The first is that

of the statistics offered in Part I; in that case the experiments in Part II can

be seen as examples of the statistics’ use. The second perspective is that of the

incremental evolution experiments; taking their viewpoint makes the statistics a

useful tool to assess the experiments. We feel both viewpoints are equally valid.

If we take the second viewpoint, that of the experiments, we can say that with-

out the use of the statistics the analysis of the experiments would have taken the

traditional route: no confidence intervals would have been offered and so little

idea could have been formed as to what variability one might expect. The use of

the statistics allowed us to confidently state when fitness-based automatic incre-

mental evolution reduced the effort required to find a solution when compared

to direct evolution. The statistics allowed us to offer both a best estimate of the

potential size of an effect and a confidence that one might have that there truly

was an effect at all—both very useful quantitative descriptions.

The use of success effort opened up the possibility of benefiting from a re-

duction in the cost of failure. Traditional use of final success proportion cer-

tainly cannot show this benefit, but in many cases neither can Koza’s minimum

computational effort. If one is prepared to assess cost based on evaluations of

individuals, then this measure has shown us potential benefits from manual and

automatic incremental evolution. It has also shown us the benefits offered by the

early termination heuristic.
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If we instead take the viewpoint of the statistics, the chapters on automatic in-

cremental evolution offered concrete evidence that the work on confidence interval

production was very valuable, as were the confidence level algorithms that de-

tected if a difference truly existed. The experiments showed up the upper-bound

flaws of minimum computational effort and comparable excellence of success ef-

fort.

11.2 Contributions

This thesis offers the following contributions:

• A method for producing confidence intervals for Koza’s minimum compu-

tational effort and empirical evidence that it achieves appropriate coverage

and is reliable. We also offered an associated method to produce confidence

intervals for the difference and the ratio of two minimum computational ef-

fort measures, and an algorithm for how one could find the confidence that

one measure truly had a lower minimum computational effort than the

other.

• A method for producing confidence intervals for the success effort statistic

and empirical evidence that it achieves appropriate coverage. For this mea-

sure we also offered an associated method to produce confidence intervals

for the difference and the ratio of two success effort measures, and an algo-

rithm for how one could find the confidence that one measure truly had a

lower success effort than the other.

• Two algorithms for the automation of fitness-based incremental evolution.

We showed that these methods could outperform direct evolution.

• An early-termination algorithm that we showed reduced the cost of failure

for both direct and incremental evolution experiments.

11.3 Limitations

Confidence intervals for success proportions will have appropriate coverage rates

so long as sufficient (at least five) runs were executed.

The confidence interval methods for Koza’s minimum computational effort

should be applicable to all genetic programming runs where the generations-

to-success follows a normal, log-normal, or similar distribution—we even showed
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the Wilson-Dependent method was reliable under four very extreme distributions.

We hypothesise that these cases cover all genetic programming experiments, but

with the limitation that success is sufficiently common to make the confidence

intervals useful.

For the success effort measure, the simulation method relies on the distribu-

tions of mean-generations-to-success and mean-generations-to-failure and success

proportion. The assumptions of these distributions are all underpinned theo-

retically (thanks to the Central Limit Theorem, and that proportions can be

simulated with a Beta distribution), so the method relies only on sufficient runs

(say, at least 25) and again, like minimum computational effort, that success is

sufficiently frequent that the confidence intervals are useful.

For the experiments on manual and automatic incremental evolution, only the

even-n-parity problem domain was studied. The results are almost certainly going

to vary by problem domain, so it will be interesting to see how these ideas perform

elsewhere—especially in “continuous” domains (given even-n-parity is discrete),

and in more difficult real-world problems (such as regression, classification, and

predictions problems). Further, we studied only one ordering of the fitness cases.

Different orderings are highly likely to impact the results. This too would be an

interesting study. Finally, the technique, as described, is only useful for problem

domains with multiple fitness cases.

The early termination algorithm was tested on four different domains un-

der direct evolution, but only on even-n-parity for incremental evolution. We

provided evidence that it is likely that evolutionary learning curves follow a de-

creasing improvement in fitness as the generations increase. We believe this could

be generally true, but further studies would be required. We hypothesise that

the early termination algorithm would be beneficial for the majority of genetic

programming experiments. However, it is quite possible that there exist fitness

evaluation functions that would not produce a “decreasing learning curve” and

would thus not benefit from the algorithm.

11.4 Future Research

Throughout this thesis there are a number of sections titled “future research”.

If you are interested in extending a specific part of the work in this thesis then

those sections are the best place to start.

In general however, we hope that future research in genetic programming

utilises the success effort statistic when studies of success-based problems are
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executed. We have shown that success proportion is not always a good measure

and that minimum computational effort has a number of limits. These issues are

solved by the success effort statistic, so we hope it achieves greater use.

We appreciate that, for “hard problems”, it may not be appropriate to use a

success-based measure. For such work, we hope that the future research options

discussed in appendix A are seriously studied. If the research builds on the work

we did on success effort then, in my eyes, that would be a fantastic development.



Part IV

Appendices





Appendix A

Success Proportion versus

Fitness

Luke and Panait published a paper at GECCO 2002 where they argued that ideal-

solution counts should not be used [85]. Their recommendation was to instead use

fitness as a measure of performance. Given that this thesis is built entirely on the

use of these counts, we will now discuss their paper. This appendix highlights a

number of concerns with their argument and concludes that ideal-solution counts

do have value.

Their argument can be divided into three parts. The first part is their sta-

tistical concerns regarding the use of ideal-solution counts. The second is their

empirical evidence showing that mean best-fitness and ideal solution counts are

not correlated. The third is their issues with the philosophical motivation for the

use of ideal-solution counts. We tackle each in turn.

A.1 Statistical Concerns

Luke and Panait listed three statistical concerns that they had with ideal-solution

counts and their associated measures. In the following sections we consider and

discard each of them.

A.1.1 A Point Statistic

A point statistic (or point estimate) is a single number that is an estimate of

a true value; it is calculated from a sample of observations. The mean of ten

observations is an example of a point statistic. Point statistics are a problem as
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they give no indication of variability: they cannot answer “how accurate is this

number?”.

Luke and Panait claimed that “ideal solution count measures are statistically

suspect. . . . there is no accepted procedure to state that two samples differ in a

statistically significant way.” That is incorrect.

An ideal-solution count is only a part of the story. The full story must include

the number of runs that were executed. This becomes clear when you consider

if two ideal-solution counts can be directly compared; if the counts came from

samples where the numbers of runs differed, then such comparison would not be

acceptable. Instead, one would compare the ideal-solution counts as a proportion

measured as the number of successes (ideal solutions) divided by the number of

runs. This is even a measure that Luke and Panait discussed: cumulative success

proportion.

Comparison of the raw confidence intervals (see section 2.2.2), or whether the

confidence interval for the difference (table 2.2) includes zero or the confidence

interval for the ratio (table 2.3) includes one, are three high-quality techniques

that we have already considered for how one can statistically assess if two propor-

tions differ. A fourth (but they admit, impractical) option is even given in their

paper. Given these options, Luke and Panait’s point-statistic concerns cannot

be justified. The use of success proportions (and therefore ideal-solution counts)

are statistically sound.

A.1.2 Statistical Independence

Luke and Panait next argued that the use of cumulative success proportion plot-

ted per generation is statistically concerning because the measurements are typ-

ically statistically dependent. I have never read of a study where independent

runs were executed to eliminate this issue, however, an option commonly used

is to analyse only the final success proportion—an option that eliminates this

dependence.

Interestingly, mean best-fitness of run—their recommendation—is also com-

monly graphed per generation. They make no mention that this too would suffer

the same issues of dependence.

The solution is to use neither measure on a per-generation basis. Although

Koza’s minimum computational effort does depend on this, our studies (chap-

ter 3) have shown this not to be a problem.
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A.1.3 Koza’s Minimum Computational Effort

Luke and Panait’s final statistical concern was that Koza’s computational effort

is very sensitive to small changes in ideal-solution counts when the counts are low.

This issue was raised by Miller and Thomson [87] and Niehaus and Banzhaf [92]

(see section 2.3.4).

Fortunately the Wilson-Dependent confidence interval method developed in

chapter 3 is sensitive to this issue and allows a user to understand the variability

associated with minimum computational effort measurements that have come

from low success rates. With the use of these confidence intervals we no longer

need to be concerned that we may be mislead by Koza’s measure.

A.2 Empirical Evidence

Luke and Panait looked at three problems: symbolic regression, 11-bit boolean

multiplexor and the artificial ant. They claimed to have presented “evidence that

ideal-solution counts are not necessarily positively related to best-fitness-of-run

statistics: in fact they are often inversely correlated.” They concluded, “this

begs a re-evaluation of much of the GP literature, as published results may be

dubious, and in some cases the opposite of their intended meaning.”

We re-used the results from our experiments on manual and incremental evo-

lution to provide new evidence for this discussion. We also reanalyse their results,

and finally run a set of experiments in an attempt to understand the negative

correlation that Luke and Panait saw. We conclude that although negative cor-

relations are possible they are not as common as Luke and Panait claimed.

A.2.1 Re-Using the Incremental Evolution Experiments

The experiments on manual incremental evolution (chapter 8) and automatic

incremental evolution (chapter 9) provided an excellent opportunity to reproduce

Luke and Panait’s analysis on different data.

For each run in each experimental configuration we obtained the maximum

fitness score produced by an individual. For each experimental configuration we

found the correlation coefficient of the mean of those best-fitness scores and the

final success proportion (using Pearson’s product-moment method [24]).

The results showed quite the opposite of “often inversely correlated”. They

were, in general, strongly positively correlated. Tables A.1 and A.2 give the

results.
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Problem ADFs Observations Correlation 95% C.I.
Even-4 <4> Yes 10 0.93 (0.74–0.98)
Even-4 <8> Yes 10 0.78 (0.29–0.94)

Even-5 <8> Yes 10 0.84 (0.44–0.96)
Even-5 <16> Yes 10 0.69 (0.11–0.92)

Even-6 <8> Yes 10 0.90 (0.63–0.98)
Even-6 <16> Yes 10 0.89 (0.59–0.97)
Even-6 <32> Yes 10 0.64 (0.02–0.91)

Even-7 <16> Yes 10 0.79 (0.32–0.95)
Even-7 <32> Yes 10 0.87 (0.52–0.97)
Even-7 <64> Yes 10 0.75 (0.22–0.94)

Even-4 <4> No 10 -0.12 � (-0.70–0.55)
Even-4 <8> No 10 0.89 (0.59–0.97)

Even-5 <8> No 10 0.21 (-0.48–0.74)
Even-5 <16> No 10 0.41 (-0.29–0.83)

Table A.1: Correlation coefficients for manual incremental evolution datasets.
The number of fitness cases in the first stage are listed in angle brackets. Ap-
proximate 95% confidence intervals, in parentheses, were calculated using the
normal approximation method [24, page 509].
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Problem Aggressive Mutation Observations Correlation 95% C.I.
Even-4 Yes Yes 8 0.80 (0.23–0.96)
Even-4 Yes No 8 0.84 (0.34–0.97)
Even-4 No Yes 8 0.54 (-0.26–0.90)
Even-4 No No 8 0.88 (0.46–0.98)

Even-5 Yes Yes 8 0.88 � (0.45–0.98)
Even-5 Yes No 8 0.69 (-0.02–0.94)
Even-5 No Yes 8 0.60 � (-0.18–0.92)
Even-5 No No 8 0.95 (0.75–0.99)

Even-6 Yes Yes 8 0.86 (0.40–0.97)
Even-6 Yes No 8 0.87 (0.44–0.98)
Even-6 No Yes 8 0.75 (0.10–0.95)
Even-6 No No 8 0.72 (0.04–0.95)

Even-7 Yes Yes 8 0.86 (0.38–0.97)
Even-7 Yes No 8 0.84 (0.34–0.97)
Even-7 No Yes 8 0.87 (0.42–0.98)
Even-7 No No 8 0.65 (-0.10–0.93)

Table A.2: Correlation coefficients for automatic incremental evolution datasets.
Approximate 95% confidence intervals, in parentheses, were calculated using the
normal approximation method [24, page 509].
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Figure A.1: Plot of success proportion at the final generation against the mean
best-fitness. This was the only negatively correlated result with a correlation
coefficient of -0.12. 95% confidence intervals are shown.

Only one of the thirty results was negatively correlated—and it can even be

discounted. The negative result is plotted in figure A.1. From the plot you can see

that the confidence intervals associated with each point are very wide relative to

the other data-points. Indeed, all the data-points form one statistical group even

with just 80% confidence. Because the data-points are fairly indistinguishable, it

would not be unfair to consider them as a single data-point—at which stage no

correlation can be obtained.

For a conclusive correlation result it’s important that at least some data-points

are statistically significantly different. All except three of the results within

tables A.1 and A.2 have at least two groups that are statistically significantly

different (on both axes) at the 80% level. The three exceptions are marked with

diamonds (�).

This short study has shown that the prevalence of negative correlations is

perhaps not as high as Luke and Panait inferred with their article.
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Problem Observations Correlation 95% C.I.
Symbolic regression 10 -0.69 (-0.92– -0.11)
Multiplexor 10 0.46 (-0.24–0.84)
Artificial ant 10 0.84 (0.45–0.96)

Table A.3: Correlation coefficients for Luke and Panait’s datasets. Approxi-
mate 95% confidence intervals, in parentheses, were calculated using the normal
approximation method [24, page 509].

A.2.2 Re-Analysing their Results

We will now reconsider Luke and Panait’s results using the same method as we

used in the previous section. Table A.3 lists the correlation coefficients obtained

from their data.1 Figures A.2, A.3 and A.4 plot ideal-solution counts against

mean best-fitness.

The critical difference between these figures and those that Luke and Panait

would have plotted, is the existence on these figures of confidence intervals for the

ideal-solution counts. With the confidence intervals it is clear that the multiplexor

results (figure A.3) have many potential lines that intersect every confidence

interval: such straight lines would offer a correlation coefficient of (positive) one.

It is even easier to see the possibility for straight lines through the artificial

ant plot (figure A.4)—lines that would intersect each of the confidence intervals

and offer the potential for a true correlation coefficient of positive one.

Thus, of Luke and Panait’s three datasets, only one—symbolic regression—

has a negative correlation. This is quite some distance from their claim of ideal-

solution counts being “often inversely correlated” to fitness.

A.2.3 Re-Considering Symbolic Regression

Why is it that Luke and Panait’s experiments on symbolic regression produced

such peculiar results? In an effort to replicate and then hopefully understand

them, we ran a number of experiments on the same domain. Luke and Panait

did not provide sufficient information to replicate their method (it was not their

intention in the paper), so instead of using their multi-crossover parameter as a

variable I elected to use population size.

We ran 46 experimental configurations with the population size ranging from

100 to 1000 individuals using a step size of 20 individuals. 500 runs were exe-

cuted for each population size for a total of 23,000 runs. The configuration was

1 My thanks to Sean Luke for providing me with a copy of their data.
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Figure A.2: Plot of success proportion at the final generation against the mean
best-fitness for Luke and Panait’s symbolic regression dataset. 95% confidence
intervals are shown.
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Figure A.3: Plot of success proportion at the final generation against the mean
best-fitness for Luke and Panait’s 11-bit multiplexor dataset. 95% confidence
intervals are shown.
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Figure A.4: Plot of success proportion at the final generation against the mean
best-fitness for Luke and Panait’s artificial ant dataset. 95% confidence intervals
are shown.
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Figure A.5: Plot of success proportion at the final generation against the mean
best-fitness for the symbolic regression problem where the population size is var-
ied. 95% confidence intervals are shown.

intended to replicate Koza’s x4 + x3 + x2 + x simple symbolic regression experi-

ments [71, section 7.3] as closely as possible. The primary difference was the use

of tournament selection with a tournament size of two.

Figure A.5 plots the results. They are nothing like Luke and Panait’s.

The fact that my results differ completely from those observed by Luke and

Panait can potentially be explained in a number of ways: (i) the experimental

configuration may have been sufficiently different, (ii) population size may modify

the correlation in a different way to multi-crossover, (iii) one of the results may

have been an experimental fluke.

It is my opinion that the most likely of these explanations is the second:

that the correlation effect is different for different variables. One lesson that can

be learnt then is that the problem domain is not necessarily the sole cause of

a negative correlation. The result also provides yet another example of a very

strong positive correlation (0.94; 95% CI 0.89–0.97).
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A.2.4 Rationalising Negative Correlations

If, as Luke and Panait expected, success is defined as a fitness score above a

specified threshold, then it is intuitive that there should be a positive correlation

between mean fitness and success proportion. There are, however, situations

where the intuition does not prove true.

One such situation is where success proportion is at or near zero. If mean

fitness decreases then, because it is not possible to decrease the success propor-

tion below zero, the correlation will decrease to zero. A similar situation exists

where mean best-fitness is close to its maximum. An example of this can be seen

in figure A.5: although the success proportion increases, mean best-fitness can-

not increase proportionally; a consequence is that the correlation asymptotically

tends to zero.

As Luke and Panait explained, variance is likely to be the key to understand-

ing negative correlations. If changing the variable (multi-crossover in their study,

and population size in my study of symbolic regression) is able to increase the

variability of mean best-fitness while decreasing the mean value only slightly,

then the proportion of successes could still increase thus producing a negative

correlation. It appears this is the effect multi-crossover had on symbolic regres-

sion.

Steffen Christensen also considered the correlation between success proportion

and mean best-fitness in his PhD thesis [21, chapter 3]. His study showed that

the two measures could not be interchanged. Indeed, he concluded that there

were two types of problems: those where success proportion was appropriate and

those where best-fitness was the better choice.

A.3 Philosophical Motivation

Luke and Panait had a number of concerns with the philosophical motivation

around the use of ideal-solution counts. Their issues boil down to this: when

applying GP to challenging problems you want to improve fitness, so fitness is

what you should be working with. Unfortunately working with fitness is not

necessarily easy. We will now discuss their arguments for the use of fitness and

my arguments against it. This section ends with the a potential compromise: an

important area for future research.
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A.3.1 Pro Fitness

Luke and Panait’s first argument was that GP’s selection pressure is based on

fitness and that it is not based on the probability of finding an ideal solution.

They pointed out that “many GP problem domains are highly deceptive, leading

the evolutionary trajectory away from the ideal rather than toward it”—as a

consequence, improvements in fitness might not flow on to improved success

proportions.

Their second argument was that GP practitioners suffer “a philosophical con-

ceit that GP operates over problem domains which demand correct programs . . .

a highly fit but suboptimal solution is not valuable.” This isn’t true. The fal-

lacy is exemplified by Koza’s definition of a hit for his simple symbolic regression

problem domain: a hit was defined as an individual producing a result within

0.01 of the correct answer [71, section 7.3]. Highly fit but sub-optimal individuals

are valuable.

Their next argument was far more persuasive: “We are now out of the proof-

of-concept period for GP . . . we must assume it will typically be used to attack

hard problems for which we do not know the optimum, do not expect it to discover

the optimum, nor even know if there is an optimum.” They list example domains

such as neural networks, soccer softbot programs, and analog electrical circuits.

Finally, it is worth noting that, if electing to use best-fitness, Christensen rec-

ommends the use of median best-fitness rather than mean best-fitness as “fitness

functions used in evolutionary computation are often non-linear, and sometimes

have arbitrarily large penalty values. This pushes up the mean population fitness

and can hurt the mean best fitness as well” [21, page 106].

A.3.2 Anti Fitness

Luke and Panait wrote: “What matters is not if technique A finds more perfect

solutions than technique B does to Easy Problem C. What matters is that tech-

nique A gets a better answer than B does for Hard Problem D.” Although this

may be true they make no mention of the cost of each of techniques A and B.

Surely they would be interested if A took tens times as much effort as B and yet

only offered a 1% improvement. Christensen’s y-test offers a method to compare

two techniques where the amount of work done (as measured in generations, or

evaluations) differs for the two techniques, however the method assumes that the

amount of work done is constant—it does not take into consideration that the

amount of work may instead follow a distribution [21].
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Chapters 8 and 9 on manual and automatic incremental evolution have pro-

vided concrete examples of the number of generations-to-failure and generations-

to-success being distributions rather than fixed values. Given that possibility, the

use of best-fitness gives us two measures by which to evaluate if one evolutionary

technique is better than another. How should we tell them apart? It is easy if

the number of generations is the same, then we can judge based on fitness. If on

the other hand the fitness values are the same then we can judge based on the

number of generations. If both measures are better for one of the techniques then

again the comparison is easy. But the problem comes when the two measures

disagree. This remains an open problem for fitness-based comparison. Minimum

computational effort and success effort provide solutions by answering the ques-

tion based on the number of runs to find a solution. Fitness does not have such

a solution.

Luke and Panait’s argument against the use of success proportion included:

“We submit that if one can ‘discover’ the optimum enough times to validly mea-

sure the performance of a technique against a given problem domain then we

are dealing with a toy problem.” This may be true, but “toy problems” are

very useful. There is some amount of hypocrisy in Luke and Panait’s inference

that toy problems are not useful given they used three “toy problems” to study

multi-crossover—the study that prompted their paper! Others too will use toy

problems as test-beds for their new ideas. The fact that the problems are simple

does not mean that they are a poor training ground before more difficult problem

domains are tackled. The use of success proportion, minimum computational ef-

fort, and success effort offer an excellent platform to analyse such “toy problem”

studies.

A.3.3 Future Research: A Compromise

Perhaps there is an acceptable compromise between difficult-to-compare fitness

and potentially-insensitive success proportion.

One potential solution is the use of binning. This technique involves setting

an arbitrary threshold at which a run is considered successful. Binning is not

recommended by Christensen [21, page 81] but he considered it “common prac-

tice”. One of Christensen’s concerns was that “for improvement-based problems

. . . we are normally interested in achieving the best possible outcome”—binning

removes our ability to detect such excellent performance.

Another potential solution could be to iterate over the range of observed
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fitness scores, executing say 100 steps. For each step the bin threshold would

increase and the confidence that the success effort ratio was greater than one

(see table 4.7) could be plotted for that threshold. This would give a graph that

indicated the confidence one might have that technique A required less effort

than technique B when producing individuals with fitness scores greater than X.

A third potential solution could be based on the probabilities of domina-

tion. A simulation algorithm could be constructed to assess the likelihood that

technique A is superior, inferior, or indistinguishable to technique B based on

domination or non-domination of both fitness and cost.

Yet another potential solution might be formed from a modification of Chris-

tensen’s y-test [21].

Further research would more specifically define these ideas and study their

relative statistical powers. Which, if any, is the best choice is an open question.

A.4 Summary

This appendix has considered the concerns raised by Luke and Panait regarding

the use of ideal-solution counts and its related measures: success proportion,

minimum computational effort, and success effort. Their statistical concerns

were dismissed. Their empirical data was re-analysed and further data based

on the incremental evolution experiments was offered. We concluded that they

needn’t have had such a negative association with ideal-solution counts. Finally

their concerns with the philosophical motivation were considered and, although

many were fair, we raised issues with fitness-based measures that make neither

the perfect choice.

If your problem has a natural definition for success then ideal-solution counts

are an excellent choice. If your experiments are not expected to find the optimal

and the cost-per-run does not differ then best-fitness measures are the better

choice. If the cost-per-run is not constant and ideal-solution counts are not

acceptable then you are in a strong position to study some of the ideas suggested

in “future research” (section A.3.3).
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Proof of Equation 4.2

The following is a proof for equation 4.2 (page 75). We require only a few facts:

• the vector g (generations-to-termination) is comprised only of the two vec-

tors gs (generations-to-success) and gf (generations-to-failure),

• the value p is defined as n(gs)
n(g)

(where n(g) represents the number of elements

in g), and

• (1− p) = n(gf)
n(g)

.
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Appendix C

Proof of Equation 4.4

In this appendix we will prove equation 4.4 (page 81). What the step says is

that multiplying the curve YS1(g) + YF1(g) by the straight line g and summing

the results will produce a smaller (or equal) sum than if you were to do the same

thing with YS2(g) + YF2(g). This is quite reasonable as you are multiplying more

of the first curve’s values by smaller (or equal) values of g since the cumulative

probability of success of curve P1 dominates the cumulative probability of success

of curve P2. We will prove this by induction.

Let’s replace YF1 in equation 4.4 with a new function:

YR1(g, k) =







0 if g 6= k

1−∑k
i=0 YS1(i) if g = k

(C.1)

Replace YF2 in a similar way. This gives us the following statement to prove:

F
∑

g=0

(YS1(g) + YR1(g, F )) · g ≤
F

∑

g=0

(YS2(g) + YR2(g, F )) · g (C.2)

To do this we will use two lemmas:

Lemma C.1 From the definition of YR1(g, k), this statement can be made:

YR1(k, k) =
k

∑

i=0

YR1(i, k)

since
∑k−1

i=0 YR1(i, k) = 0.

Lemma C.2 For P1:

YR1(k, k) = 1−
k

∑

i=0

YS1(i)
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= 1−
k

∑

i=0

YS1(i)− YS1(k + 1) + YS1(k + 1)

= 1−
k

∑

i=0

YS1(i)−
k+1
∑

i=k+1

YS1(i) + YS1(k + 1)

= 1−
k+1
∑

i=0

YS1(i) + YS1(k + 1)

= YS1(k + 1) + YR1(k + 1, k + 1)

A similar statement can be made for P2.

Let’s return our attention back to equation C.2 and consider the case where

F = 0; the summations are then from zero to zero. In such a case both sides will

be zero, and the equation is true:

0
∑

g=0

(YS1(g) + YR1(g, 0)) · g = 0 ≤
0

∑

g=0

(YS2(g) + YR2(g, 0)) · g = 0

Now assume it is true that:

k
∑

g=0

(YS1(g) + YR1(g, k)) · g ≤
k

∑

g=0

(YS2(g) + YR2(g, k)) · g (C.3)

We will now show that:

k+1
∑

g=0

(YS1(g) + YR1(g, k + 1)) · g ≤
k+1
∑

g=0

(YS2(g) + YR2(g, k + 1)) · g (C.4)

From equation 4.3 we can say:

k
∑

g=0

YS1(g) ≥
k

∑

g=0

YS2(g)

1−
k

∑

g=0

YS1(g) ≤ 1−
k

∑

g=0

YS2(g)

YR1(k, k) ≤ YR2(k, k)

YR1(k, k)((k + 1)− k) ≤ YR2(k, k)((k + 1)− k)

YR1(k, k) · (k + 1)− YR1(k, k) · k ≤ YR2(k, k) · (k + 1)− YR2(k, k) · k

We will now consider the left-hand side (although later we will transform the

right-hand side in a similar way). We will consider the operands of the subtraction

separately by applying lemma C.2 to the first operand and lemma C.1 to the
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second to get:

YR1(k, k) · (k + 1)− YR1(k, k) · k

= (YS1(k + 1) + YR1(k + 1, k + 1)) · (k + 1)−
k

∑

g=0

YR1(g, k) · g

=
k+1
∑

g=k+1

(YS1(g) + YR1(g, k + 1)) · g −
k

∑

g=0

YR1(g, k) · g

We next add the left-hand side of the assumption in equation C.3 to get:

k+1
∑

g=k+1

(YS1(g) + YR1(g, k + 1)) · g −
k

∑

g=0

YR1(g, k) · g

+
k

∑

g=0

(YS1(g) + YR1(g, k)) · g

=
k+1
∑

g=k+1

(YS1(g) + YR1(g, k + 1)) · g +
k

∑

g=0

YS1(g) · g

The addition of a term equal to zero allows us to simplify the expression:

k+1
∑

g=k+1

(YS1(g) + YR1(g, k + 1)) · g +
k

∑

g=0

YS1(g) · g +
k

∑

g=0

YR1(g, k + 1) · g

=
k

∑

g=0

(YS1(g) + YR1(g, k + 1)) · g +
k+1
∑

g=k+1

(YS1(g) + YR1(g, k + 1)) · g

=
k+1
∑

g=0

(YS1(g) + YR1(g, k + 1)) · g

Applying a similar process to the right-hand side allows us to say:

k+1
∑

g=0

(YS1(g) + YR1(g, k + 1)) · g ≤
k+1
∑

g=0

(YS2(g) + YR2(g, k + 1)) · g

And so, when k + 1 = F , we have a proof by induction for equation C.2.

When the cost of failure is a fixed value equal to F , the final generation, then
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YR1(g, F ) = YF1(g) ∀g because:

YF1(g, F ) =







0 if g 6= F

1−∑k
i=0 YS1(i) if g = F

Further, YR2(g) = YF2(g) ∀g. Thus:

F
∑

g=0

(YS1(g) + YF1(g)) · g ≤
F

∑

g=0

(YS2(g) + YF2(g)) · g

And so we have equation 4.4.



Appendix D

Electronic Appendix

The data-files analysed in this thesis are available for download from www.massey.

ac.nz/∼mgwalker/phd. These include the 15,193 direct evolution runs, the 85,000

manual incremental evolution runs and the 72,939 automatic evolution runs.

The data-files are in plain text with spaces between columns. The columns

in all the summary.txt files are: run number, generations-to-termination, and

whether the run succeeded (one) or failed (zero). There is one line for each

run. Occasionally a run will have a “success” value of two; these lines should be

removed as they indicate that the run did not complete (due to the experimental

batch exceeding its allocated processing time).

Also available are the complete set of graphs used during the analysis of the

data from the manual fitness-based incremental evolution experiments (chapter 8)

plus sample computations for success proportion, minimum computational effort,

and success effort.
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