Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A Study into the Use of Ion Beam Analysis for the Quantitative and Qualitative Analysis of Conducting Polymers

Giovanna Lucia Moretto July 2004

A Study into the Use of Ion Beam Analysis for the Quantitative and Qualitative Analysis of Conducting Polymers

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy In

Chemistry at Massey University, Palmerston North New Zealand

> Giovanna Lucia Moretto July 2004

Abstract

Since their discovery in the late 1970s conducting polymers have become increasingly used materials in many applications. They are utilised for their conductivity and/or their electroactive properties. These applications include sensor technologies, actuators, and battery materials.

The properties of conducting polymers rely on the extent of the reduction / oxidation or redox state, and hence the dopant levels, of the materials. The aim of this work was to investigate the use of the Ion Beam Analysis (IBA) techniques Rutherford Backscattering Spectroscopy (RBS), and Proton Induced X-ray Emission (PIXE) for the analysis of 'soft' organic materials, in particular, conducting polymers. These IBA techniques are not new, as they have been extensively used for the characterisation of many inorganic, 'hard', materials such as aluminium oxide and silicon oxynitride. While they have been used to alter the molecular structure, and hence the properties of conducting polymers in the past, little to no research has explored the use of ion beams as a tool for the characterisation of these materials.

Conducting polymers can either be prepared chemically or electrochemically. They are predominantly prepared in an oxidised state and this charge is balanced by negatively charged counter ions. In this work, the conducting polymers were formed electrochemically by deposition onto support materials at constant electrode potential. The number of counter ions required to balance the polymer chain depends on the type of conducting polymer formed and extent of oxidation. Issues such as the influence of the support material and extent of polymer oxidation on the extent of counter ions through the polymer films are of importance. Gaining knowledge of the dispersion of counter ions may provide new insights into the redox mechanisms for conductive polymers.

Complex bis terthiophene porphyrin conducting polymers were prepared and investigated for the uptake of zinc into the freebase porphyrin unit after polymerisation by acquiring elemental depth profiles using RBS analysis. Issues such as the influence of the support material and extent of polymer oxidation on the extent of counter ions through the polymer films were found to be of importance. Gaining knowledge of the extent of counter ions provides new insights into the redox mechanisms for conductive polymers. The results were compared to those obtained for a sample where zinc was coordinated to the porphyrin prior to the polymerisation process. Unexpected high concentrations of both nitrogen and oxygen were found, which were interpreted to be due to entrapped cations originating from the electrolyte $((Bu)_4N^+)$, together with trapped water molecules, within the polymer films. The chlorine depth profiling assisted with understanding the extent of the perchlorate counter ion throughout the polymer films. The combination of both RBS and PIXE demonstrated that trace element impurities can be detected using ion beam analysis, which other analytical techniques are unable to do.

A series of polypyrrole films incorporating a range of counter ions were prepared as model compounds for study in the second section of this work. RBS and PIXE techniques were used to evaluate film homogeneity with respect to depth and to infer the counter ion / pyrrole unit ratio for each of the six PPy film formed.

RBS was also used to characterise a series of terthiophene-ferrocene based conducting co-polymers. The ratio of co-polymer monomer to terthiophene-ferrocene monomers and the dopant levels for the polymers were determined using a RBS deconvolution method developed in this study. This new method can be extended for characterization of a wide range of organic polymers.

The limitations of RBS for the analysis of these soft materials were identified. The advantage that RBS offers over other analytical techniques is that it provides a means for low atomic number element depth profiling in these materials.

INSTITUTE OF FUNDAMENTAL SCIENCES Private Bag 11 222 Palmerston North New Zealand T 64 6 356 9099 F 64 6 350 5682 ifs@massey.ac.nz www.massey.ac.nz

CANDIDATES'S DECLARATION

This is to certify that the research carried out for my Doctoral thesis entitled "A study into the use of Ion Beam Analysis for the Quantitative and Qualitative analysis of conducting polymers" in the Institute of Fundamental Sciences, Massey University, Turitea, New Zealand is my own work and that the thesis material has not been used in part or in whole for any other qualification.

Candidate's Name: Giovanna L. Moretto Signature:

Date: 8 Dec 2004

INSTITUTE OF FUNDAMENTAL SCIENCES Private Bag 11 222 **Palmerston North** New Zealand T 64 6 356 9099 F 64 6 350 5682 ifs@massey.ac.nz www.massey.ac.nz

SUPERVISOR'S DECLARATION

This is to certify that the research carried out for the Doctoral thesis entitled "A study into the use of Ion Beam Analysis for the Quantitative and Qualitative analysis of conducting polymers" was done by Giovanna Lucia Moretto in the Institute of Fundamental Sciences, Massey University, Turitea, New Zealand. The thesis material has not been used in part or in whole for any other qualification, and I confirm that the candidate has pursued the course of study in accordance with the requirements of the Massey University regulations.

Supervisor's Name: Simo B. Hall

Signature:

13/11/1

Date: 8 Dec 2004

INSTITUTE OF FUNDAMENTAL SCIENCES Private Bag 11 222 Palmerston North **New Zealand** T 64 6 356 9099 F 64 6 350 5682 ifs@massey.ac.nz www.massey.ac.nz

CERTIFICATE OF REGULATORY COMPLIANCE

This is to certify that the research carried out in the Doctoral thesis entitled "A study into the use of Ion Beam Analysis for the Quantitative and Qualitative analysis of conducting polymers" in the Institute of Fundamental Sciences, Massey University, Turitea, New Zealand:

- (a) is the original work of the candidate, except as indicated by appropriate attribution in the text and/or in the acknowledgements;
- (b) that the text, excluding appendices/annexes, does not exceed 100,000 words;
- (c) all the ethical requirements applicable to this study have been complied with as required by Massey University, other organisations and/or committees which had a particular association with this study, and relevant legislation.

Candidate's Name: Giovanna L. Maeto Supervisor's Name: Simo- B. Hall

AB141

Signature:

Date: 8 Dec. 2004

Signature: /

Date: 8 Dec. 2004

Acknowledgements

The only part of this thesis where I get to write whatever I want and I can't figure out where to start!

To all of my supervisors I would like to give a huge thanks to. David and Tony, without the two of you I would never have been in a financial position to do this, so thank you very much. To Andreas, big thanks, for giving me the opportunity to work with you and your group, and for all the things you have taught and helped me with over the last few years. Simon, where to start? Thank you for everything over the last however many years. All of your guidance, support, time, and much more, has been most appreciated.

I would like to thank the New Zealand Foundation for Research and Technology for providing the grant from which I received my Stipend.

I would also like to thank the Institute of Fundamental Sciences Graduate Research Fund for the support I have received throughout my PhD and to all the staff in IFS - chemistry for the help each of them has given me over the years.

Thanks to Bill, John, Chris, Steven, and all the other people at GNS which have helped me over the time of my PhD and made moving somewhere where I didn't know anyone an easy and fun time.

Thanks to all my friends from Palmerston North, past and present, each of which has helped me in some way over the 10 years I have been at Massey. Of all those friends a special super big thanks must go to a few, Justin, Carol, Karen, Jo, Karen, Amy. You have all made my time here at Massey not just bearable, but memorable and fun filled. A big special thanks to Warwick you made everything ok even when I thought it was time to quit, love you.

All my friends in Wellington can't go unmentioned, so a big thanks to Dave, Claire, Annie, Brain, Susan, Brendan, and Gemma. Thanks for everything! Lastly I would like to thank my family. To Gino, thanks for being the best brother anyone could have, just knowing you are always there for me means more than I can ever tell you. To Mum and Dad, thank you isn't enough. Because of your love and support, and everything thing else, the two of you have made me who I am today. You both mean the world to me and I love you both so much. And Dad, this means I have finally finished being at school *grin*.

Table of Contents

Absti	ract			i
Decla	arations			iii
Ackr	owledge	ements		vi
Table	e of Con	tents		viii
List o	of Figure	s		xii
List o	of Tables	6		xxi
List o	of Schem	nes		xxvi
List o	of Symbo	ols		xxviii
List o	of Abbre	viations		xxix
Chaj	pter 1	In	troduction	1-14
1.1	Introd	uction		1
1.2	Condu	ucting poly	ymers	2
	1.2.1	Polyace	tylene	2
1.3	Polyh	etrocycles	as conducting polymers	4
1.4	Mech	anisms of	conducting	6
1.5	Copol	ymers		10
1.6	Appli	cations		10
	1.6.1	Recharg	eable batteries	12
1.7	Scope	of this stu	Jdy	14
Chaj	pter 2	Ех	perimental Methods	15-65
2.1	Introd	uction		15
2.2	Electr	ochemistr	у	15
	2.2.1	Potentio	static and Galvanostatic Instrumentation	16
	2.2.2	Electrod	les	16
		2.2.2.1	Counter Electrode	18
		2.2.2.2	Reference Electrode	18
	2.2.3	Electroc	hemical Cells	18
		2.2.3.1	Scoping study electrochemical cell	18

		2.2.3.2	Electrochemical cell for polypyrrole preparation	20
		2.2.3.3	Electrochemical cell for terthiophene-ferrocene films	22
2.3	Electro	ochemical T	Sechniques	22
	2.3.1	Cyclic Vol	tammetry	22
	2.3.2	Chronoam	perometry	24
2.4	Ion Be	am Analys	is	25
	2.4.1	Introduction	on – Rutherford's experiment	25
	2.4.2	Incident p	articles used in Ion Beam Analysis	26
2.5	Ion Be	eam Analysi	is at Geological and Nuclear Sciences, NZ	27
	2.5.1	Introduction	on	27
	2.5.2	The Van d	e Graaff Accelerator	28
	2.5.3	Beam Line	25	31
	2.5.4	Detectors		36
		2.5.4.1	RBS detectors	36
		2.5.4.2	PIXE detectors	36
2.6	Ruthe	rford Backs	cattering – RBS	38
	2.6.1	Collection	of spectra	38
	2.6.2	Idealised s	simple spectrum	40
	2.6.3	Scattering	cross sections	46
	2.6.4	Stopping p	powers and depth profiling	49
	2.6.5	Scattering	angle	53
	2.6.6	Multi-elen	nent spectra	53
	2.6.7	Analysis n	nethods for RBS	55
		2.6.7.1	RUMP	55
		2.6.7.2	SIMNRA	58
2.7	Partic	le Induced 2	X-ray Emission (PIXE)	59
	2.7.1	Introducti	on	59
	2.7.2	Calibratic	m and Qualitative Analysis	63
	2.7.3	Quantitati	ive Analysis	65
Chap	ter 3	Sco	ping Study	66-87
3.1	Introd	uction		66
3.2	Electr	ochemistry		66

	3.2.1	Monomers	66
	3.2.2	Electrochemical deposition	68
	3.2.3	Post-polymerisation	68
3.3	Ion Be	am Analysis	71
	3.3.1	Film durability	71
	3.3.2	Rutherford Backscattering – RBS	74
	3.3.3	Proton Induced X-ray Emission – PIXE	85
3.4	Conclu	usions	85

Chapter 4

88-118

4.1	Introd	uction		88
4.2	Experimental Conditions		88	
	4.2.1	Reagents		88
	4.2.2	Electroche	mistry	90
	4.2.3	Ion Beam A	Analysis Techniques	91
		4.2.3.1	PIXE	91
		4.2.3.2	RBS	91
	4.2.4	Combustio	n analysis	91
4.3	Ion be	am analysis		91
	4.3.1	Film durat	vility	91
	4.3.2	PIXE – tra	ce elements	93
	4.3.3	RBS – mon	omer to counter ion ratios	104
	4.3.4	Compariso	n with combustion analysis	115
4.4	Concl	usions		117
Chap	ter 5	Electroch	emical preparation of terthiophene-ferrocene	
		copolyme	rs	119-137
5.1	Introd	uction		119
5.2	Depos	ition of terth	niophene-ferrocene	119
5.3	Electr	ochemistry		123

5.3.1	Stepping potential	125
5.3.2	Post polymerisation analysis	133

5.3.3 Ion beam analysis and scanning electron microscope images of			
		films	133
Chapt	er 6	SIMNRA modelling	138-155
6.1	Introdu	uction	138
6.2	Model	I	139
6.3	Model	II	143
6.4	Model	III	146
6.5	Model	IV	151
Chapt	er 7	Analysis of TTh-Fc copolymers	156-260
7.1	Introd	uction	156
7.2	Low e	nergy tailing of spectra	156
7.3	Rough	ness Factors	158
7.4	Other	parameters used in RBS simulation	159
7.5	Ion Be	am durability	160
7.6	Concl	usions and significant features	160
7.7	TTh-F	c copolymers	165
	7.7.1	Pyrrole copolymers	165
	7.7.2	Bithiophene copolymers	169
	7.7.3	EDOT copolymers	172
	7.7.4	TTh-Por-TTh copolymers	178
	7.7.5	Bridging TTh copolymers	183
7.8	Variat	ion of film thickness	187
Chapt	ter 8	Conclusions	261-267
Refer	ences		268-278
Apper	ndix		279-311

List of Figures

Number Description

Page

1.1	Chemical structure of polyacetylene isomers	3
1.2	The two degenerate (E) -structures of polyacetylene, and a	
	soliton at a phase boundary	7
1.3	Aromatic, quinoid, a polaron and bipolaron defect in polypyrrole	9
1.4	Schematic diagram of four main types of copolymers	11
2.1	Schematic diagram of the circuits of a three electrode cell	17
2.2	Schematic diagram of the electrochemical cell from scoping study	19
2.3	Schematic diagram of the electrochemical cell used for the	
	polypyrrole study	21
2.4	Schematic diagram of the electrochemical cell used for the	
	formation of the terthiophene-ferrocene copolymers	23
2.5	Schematic of the IBA processes which can occur	29
2.6	Schematic diagram of the 3 MV Van de Graaff accelerator	30
2.7	Photograph of the general IBA line at GNS	32
2.8	Photograph of the general IBA chamber at GNS	33
2.9	General sample holder	34
2.10	Sample holder designed for terthiophene-ferrocene copolymers	35
2.11	Silicon surface barrier detector	37
2.12	RBS spectrum of Si/N on Si substrate	39
2.13	Idealised spectrum of three elements of infinite thickness	41
2.14	<i>k</i> -factors at $\theta = 170^{\circ}$ with ⁴ He ⁺ beam for isotopes of elements	
	with Z<90 with natural abundance greater than 0.5 $\%$	44
2.15	Graph showing k-factor independence from E_0	45
2.16	Scattering cross section of isotopes for elements with Z<80	
	with naturally occurring isotopes above 0.5%	48
2.17	Schematic diagram of an incident ion backscattering from	
	surface and depth of sample	50
2.18	Schematic of the relationship of nuclear and electronic stopping	
	power with energy for an element	51

2.19	Schematic RBS spectrum of Na samples with varying thickness	52
2.20	k-factor dependence on detector angle	54
2.21	Schematic RBS of N and Na film with finite thickness	56
2.22	Schematic RBS of sample containing C, O, and Na with a	
	thickness of 6000 al/cm ²	57
2.23	Schematic diagram of X-ray production	60
2.24	Comparison of electron and proton induced X-ray emission	62
2.25	PIXE spectrum of Si/N on Si substrate	64
3.1	Structure of freebase and Zn coordinated TTh-Por-TTh	67
3.2	CV of TTh-Por-TTh on GC	69
3.3	CV of TTh-ZnPor-TTh on GC	69
3.4	Post growth CV of TTh-Por-TTh, first cycle	70
3.5	Post growth CVs of TTh-Por-TTh, cycles 1-5	70
3.6	Post growth CV of TTh-ZnPor-TTh, first cycle	72
3.7	Post growth CVs of TTh-ZnPor-TTh, cycles 1-5	72
3.8	RBS spectrum showing regions of interest for film durability test	73
3.9	Plot of film durability, accumulated charge vs counts	75
3.10	RBS of TTh-Por-TTh	76
3.11	RBS of TTh-Por-TTh cycled in ZnOAc	77
3.12	RBS of TTh-Por-TTh soaked in ZnOAc	78
3.13	RBS of TTh-ZnPor-TTh	79
3.14	Flow diagram of steps to obtain elemental results for	
	TTh-Por-TTh and TTh-ZnPor-TTh samples	80
3.15	PIXE spectrum of TTh-Por-TTh	86
4.1	Accumulated charge for polymer durability of PPy-DBS film	92
4.2	PIXE spectrum for PPy-DBS, solution side	94
4.3	PIXE spectrum for PPy-NBS, solution side	94
4.4	PIXE spectrum for PPy-HBS, solution side	95
4.5	PIXE spectrum for PPy-MS, solution side	95
4.6	PIXE spectrum for PPy-SB, solution side	96
4.7	PIXE spectrum for PPy-PTS, solution side	96
4.8	Overlaid PIXE spectra for PPy-DBS film, solution and	
	electrode sides	98
4.9	Expanded PIXE spectrum pf PPy-DBS	99

4.10	Overlaid high energy region RBS spectra for solution and	
	electrode sides of PPy-DBS film	102
4.11	Simulation of high energy region of PPy-DBS film, electrode side	103
4.12	RBS simulation and data for PPy-DBS film, solution side	105
4.13	RBS simulation and data for PPy-NBS film, solution side	106
4.14	RBS simulation and data for PPy-HBS film, solution side	107
4.15	RBS simulation and data for PPy-MS film, solution side	108
4.16	RBS simulation and data for PPy-SB film, solution side	109
4.17	RBS simulation and data for PPy-PTS film, solution side	110
4.18	Flow diagram of steps undertaken to obtain monomer to	
	counter ion ratios and layer thicknesses of PPy films	112
4.19	Pictorial figure of monomer to counter ion ratios for	
	solution sides of PPy films	114
4.20	Example from spreadsheet of monomer to counter ion	
	ratios for the combustion analysis	116
5.1	Chemical structure of TTh-Fc monomer	120
5.2	Chemical structures of Bridging TTh, bithiophene and EDOT	124
5.3	Overlaid CVs of 1:20 TTh-Fc / Py solution	126
5.4	Overlaid CVs of 1:20 TTh-Fc / Bithiophene solution	126
5.5	Overlaid CVs of 1:20 TTh-Fc / EDOT solution	128
5.6	Overlaid CVs of 1:20 TTh-Fc /TTh-Por-TTh solution	128
5.7	Overlaid CVs of 1:20 TTh-Fc / Bridging TTh solution	130
5.8	Three overlaid CVs of TTh-Fc monomer	130
5.9	Two overlaid CVs of Py monomer	131
5.10	Three overlaid CVs of bithiophene monomer	131
5.11	Three overlaid CVs of EDOT monomer	132
5.12	Post polymerisation CVs for 1:20 TTh-Fc / Py film,	
	fist five cycles	132
5.13	Post polymerisation CVs for 1:20 TTh-Fc / bithiophene film,	
	fist five cycles	135
5.14	Post polymerisation CVs for 1:20 TTh-Fc / EDOT film,	
	fist five cycles	135
5.15	Post polymerisation CVs for 1:20 TTh-Fc / TTh-Por-TTh film,	
	fist five cycles	136

5.16	Post polymerisation CVs for 1:20 TTh-Fc / Bridging TTh film,	
	fist five cycles	136
6.1	Flow diagram of Model I	140
6.2	Four 1:10 TTh-Fc / Py RBS spectra with varying thicknesses	142
6.3	Flow diagram of Model II	144
6.4	Schematic RBS spectra displaying roughness factor effects	145
6.5	SEM images of 1:100 TTh-Fc / Py copolymer	147
6.6	Schematic diagram showing which layer in simulation would	
	have roughness associated with it	148
6.7	Overlaid RBS showing roughness effects	149
6.8	Flow diagram of Model III	150
6.9	Three RBS simulations for a bithiophene copolymer with	
	varying elemental composition	152
6.10	Flow diagram of Model IV	155
7.1	Schematic RBS of a Type 1 spectrum	190
7.2	Schematic RBS of a Type 2 spectrum	191
7.3	Schematic RBS of a Type 3 spectrum	192
7.4	Schematic sample structural diagram and Type 1 spectrum	193
7.5	Schematic sample structural diagram and Type 2 spectrum	194
7.6	Schematic sample structural diagram and Type 3 spectrum	195
7.7	Schematic diagram indicating which layer requires roughness	196
7.8	Accumulated charge for polymer durability of 1:10 TTh-Fc / Py	
	film, solution side	197
7.9	RBS experimental and simulated spectra for the solution	
	side of a TTh-Fc / Py copolymer (1:10) using a 2.5 MeV	
	proton beam, as simulated by Matej Mayer	199
7.10	Experimental and simulated RBS spectra for electrode side	
	of 1:10 TTh-Fc / Py copolymer	200
7.11	Experimental and simulated RBS spectra for solution side	
	of 1:20 TTh-Fc / Py copolymer	201
7.12	Experimental and simulated RBS spectra for electrode side	
	of 1:20 TTh-Fc / Py copolymer	201
7.13	Experimental and simulated RBS spectra for solution side	
	of 1:50 TTh-Fc / Py copolymer	202

7.14	Experimental and simulated RBS spectra for electrode side	
	of 1:50 TTh-Fc / Py copolymer	202
7.15	Experimental and simulated RBS spectra for solution side	
	of 1:100 TTh-Fc / Py copolymer	203
7.16	Experimental and simulated RBS spectra for electrode side	
	of 1:100 TTh-Fc / Py copolymer	203
7.17	SEM images of solution and electrode sides of 1:10	
	TTh-Fc / Py copolymer	204
7.18	SEM images of solution and electrode sides of 1:20	
	TTh-Fc / Py copolymer	205
7.19	SEM images of solution and electrode sides of 1:50	
	TTh-Fc / Py copolymer	206
7.20	SEM images of solution and electrode sides of 1:100	
	TTh-Fc / Py copolymer	207
7.21	Plot of Py / TTh-Fc ratios with depth into the solution side	
	of TTh-Fc / Py copolymers	210
7.22	Plot of counter ion / TTh-Fc ratios with depth into the	
	solution sides of the TTh-Fc / Py copolymers	210
7.23	Plot of Py / TTh-Fc ratios with depth into the electrode side	
	of TTh-Fc / Py copolymers	211
7.24	Plot of counter ion / TTh-Fc ratios with depth into the	
	electrode sides of the TTh-Fc / Py copolymers	211
7.25	Experimental and simulated RBS spectra for solution side	
	of 1:10 TTh-Fc / Bithiophene copolymer	212
7.26	Experimental and simulated RBS spectra for electrode side	
	of 1:10 TTh-Fc / Bithiophene copolymer	212
7.27	SEM images of solution and electrode sides of 1:10	
	TTh-Fc / Bithiophene copolymer	213
7.28	Experimental and simulated RBS spectra for solution side	
	of 1:20 TTh-Fc / Bithiophene copolymer	214
7.29	Experimental and simulated RBS spectra for electrode side	
	of 1:20 TTh-Fc / Bithiophene copolymer	214
7.30	SEM images of solution and electrode sides of 1:20	
	TTh-Fc / Bithiophene copolymer	215

7.31	Experimental and simulated RBS spectra for solution side	
	of 1:50 TTh-Fc / Bithiophene copolymer	216
7.32	Experimental and simulated RBS spectra for electrode side	
	of 1:50 TTh-Fc / Bithiophene copolymer	216
7.33	SEM images of solution and electrode sides of 1:50	
	TTh-Fc / Bithiophene copolymer	217
7.34	Experimental and simulated RBS spectra for solution side	
	of 1:100 TTh-Fc / Bithiophene copolymer	218
7.35	Experimental and simulated RBS spectra for electrode side	
	of 1:100 TTh-Fc / Bithiophene copolymer	218
7.36	SEM images of solution and electrode sides of 1:100	
	TTh-Fc / Bithiophene copolymer	219
7.37	Plot of Bithiophene / TTh-Fc ratios with depth into the solution	
	side of TTh-Fc / Bithiophene copolymers	222
7.38	Plot of counter ion / TTh-Fc ratios with depth into the	
	solution sides of the TTh-Fc / Bithiophene copolymers	222
7.39	Plot of Bithiophene / TTh-Fc ratios with depth into the electrode	
	side of TTh-Fc / Bithiophene copolymers	223
7.40	Plot of counter ion / TTh-Fc ratios with depth into the	
	electrode sides of the TTh-Fc / Bithiophene copolymers	223
7.41	Experimental and simulated RBS spectra for solution side	
	of 1:10 TTh-Fc / EDOT copolymer	224
7.42	Experimental and simulated RBS spectra for electrode side	
	of 1:10 TTh-Fc / EDOT copolymer	224
7.43	SEM images of solution and electrode sides of 1:10	
	TTh-Fc / EDOT copolymer	225
7.44	Experimental and simulated RBS spectra for solution side	
	of 1:20 TTh-Fc / EDOT copolymer	226
7.45	SEM images of solution and electrode sides of 1:20	
	TTh-Fc / EDOT copolymer	227
7.46	Experimental and simulated RBS spectra for solution side	
	of 1:50 TTh-Fc / EDOT copolymer	228
7.47	Experimental and simulated RBS spectra for electrode side	
	of 1:50 TTh-Fc / EDOT copolymer	228

7.48	SEM images of solution and electrode sides of 1:50	
	TTh-Fc / EDOT copolymer	229
7.49	Experimental and simulated RBS spectra for solution side	
	of 1:100 TTh-Fc / EDOT copolymer	230
7.50	SEM images of solution and electrode sides of 1:100	
	TTh-Fc / EDOT copolymer	231
7.51	Plot of EDOT / TTh-Fc ratios with depth into the solution	
	side of TTh-Fc / EDOT copolymers	234
7.52	Plot of counter ion / TTh-Fc ratios with depth into the	
	solution sides of the TTh-Fc / EDOT copolymers	234
7.53	Plot of EDOT / TTh-Fc ratios with depth into the electrode	
	side of TTh-Fc / EDOT copolymers	235
7.54	Plot of counter ion / TTh-Fc ratios with depth into the	
	electrode sides of the TTh-Fc / EDOT copolymers	235
7.55	Experimental and simulated RBS spectra for electrode side	
	of 2:1 TTh-Fc / TTh-Por-TTh copolymer	236
7.56	Experimental and simulated RBS spectra for solution side	
	of 2:1 TTh-Fc / TTh-Por-TTh copolymer	236
7.57	SEM images of solution and electrode sides of 2:1	
	TTh-Fc / TTh-Por-TTh copolymer	237
7.58	Experimental and simulated RBS spectra for electrode side	
	of 1:5 TTh-Fc / TTh-Por-TTh copolymer	238
7.59	Experimental and simulated RBS spectra for solution side	
	of 1:5 TTh-Fc / TTh-Por-TTh copolymer	238
7.60	SEM images of solution and electrode sides of 1:5	
	TTh-Fc / TTh-Por-TTh copolymer	239
7.61	Experimental and simulated RBS spectra for solution side	
	of 2:5 TTh-Fc / TTh-Por-TTh copolymer	240
7.62	Experimental and simulated RBS spectra for electrode side	
	of 2:5 TTh-Fc / TTh-Por-TTh copolymer	240
7.63	SEM images of solution and electrode sides of 2:5	
	TTh-Fc / TTh-Por-TTh copolymer	241
7.64	Experimental and simulated RBS spectra for solution side	
	of 1:1 TTh-Fc / TTh-Por-TTh copolymer	242

7.65	Experimental and simulated RBS spectra for electrode side	
	of 1:1 TTh-Fc / TTh-Por-TTh copolymer	242
7.66	SEM images of solution and electrode sides of 1:1	
	TTh-Fc / TTh-Por-TTh copolymer	243
7.67	Plot of TTh-Por-TTh / TTh-Fc ratios with depth into the solution	
	side of TTh-Fc / TTh-Por-TTh copolymers	246
7.68	Plot of counter ion / TTh-Fc ratios with depth into the	
	solution sides of the TTh-Fc / TTh-Por-TTh copolymers	246
7.69	Plot of TTh-Por-TTh / TTh-Fc ratios with depth into the electrode	
	side of TTh-Fc / TTh-Por-TTh copolymers	247
7.70	Plot of counter ion / TTh-Fc ratios with depth into the	
	electrode sides of the TTh-Fc / TTh-Por-TTh copolymers	247
7.71	Experimental and simulated RBS spectra for electrode side	
	of 1:10 TTh-Fc / Bridging TTh copolymer	248
7.72	Experimental and simulated RBS spectra for solution side	
	of 1:10 TTh-Fc / Bridging TTh copolymer	248
7.73	SEM images of solution and electrode sides of 1:10	
	TTh-Fc / Bridging TTh copolymer	249
7.74	Experimental and simulated RBS spectra for electrode side	
	of 1:1 TTh-Fc / Bridging TTh copolymer	250
7.75	Experimental and simulated RBS spectra for solution side	
	of 1:1 TTh-Fc / Bridging TTh copolymer	250
7.76	SEM images of solution and electrode sides of 1:1	
	TTh-Fc / Bridging TTh copolymer	251
7.77	Experimental and simulated RBS spectra for electrode side	
	of 10:1 TTh-Fc / Bridging TTh copolymer	252
7.78	Experimental and simulated RBS spectra for solution side	
	of 10:1 TTh-Fc / Bridging TTh copolymer	252
7.79	SEM images of solution and electrode sides of 10:1	
	TTh-Fc / Bridging TTh copolymer	253
7.80	Plot of Bridging TTh / TTh-Fc ratios with depth into the solution	
	side of TTh-Fc / Bridging TTh copolymers	256
7.81	Plot of counter ion / TTh-Fc ratios with depth into the	
	solution sides of the TTh-Fc / Bridging TTh copolymers	256

7.82	Plot of Bridging TTh / TTh-Fc ratios with depth into the electronic structure of the second structure	rode
	side of TTh-Fc / Bridging TTh copolymers	257
7.83	Plot of counter ion / TTh-Fc ratios with depth into the	
	electrode sides of the TTh-Fc / Bridging TTh copolymers	257
7.84	Schematic diagrams of cell set up with Pt wire and	
	gauze counter electrodes	258
7.85	Schematic diagram showing film variation experiment	
	beam spot positions	259
7.86	Overlaid experimental RBS 1:10 TTh-Fc / Bridging TTh	
	film with Pt wire counter electrode	260
7.87	Overlaid experimental RBS 1:10 TTH-Fc / Bridging TTh	
	film with Pt gauze counter electrode	260
A.1	RBS experimental spectrum for the solution side of a	
	TTh-Fc / Py copolymer (1:10)	290
A.2	RBS experimental spectrum for the electrode side of a	
	TTh-Fc / EDOT copolymer (1:20)	291
A.3	RBS experimental spectrum for the solution side of a	
	TTh-Fc / EDOT copolymer (1:100)	291

List of Tables

Number	Description	Page
1.1	Names and idealised structures of some widely studied	
	conducting polymers	5
1.2	Conductive and electroactive applications of conducting polymer	s 13
2.1	The five main IBA techniques used at GNS	29
2.2	k-factor and E_1 energies for a selection of elements for	
	a 2.5 MeV ⁴ He ⁺ beam, $\theta = 170^{\circ}$	43
3.1	A list of elements in TTh-Por-TTh sample as expected	
	from chemical stoichiometry	82
3.2	A list of common unexpected elements found from	
	TTh-Por-TTh RBS spectra	82
4.1	Qualitative and quantitative results for solution and	
	electrode sides of PPy-DBS film	101
4.2	Monomer to counter ion ratios with depth into PPy	
	polymer films	113
5.1	Copolymer monomers and their associated deposition	
	potentials and growth times	134
5.2	Copolymer monomers and their associated deposition	
	potentials and the number of cycles required to produce	
	films for post polymerisation CV analysis	137
7.1	A list of some examples of other parameters used in the	
	simulation of 1:10 TTh-Fc / Bridging TTh copolymer	167
7.2	Layer thickness, roughness factors, and total analysis	
	depth of all TTh-Fc / Py copolymers	180
7.3	Py / TTh-Fc monomer ratios and counter ion / TTh-Fc	
	ratios for all TTh-Fc / Py copolymers	181
7.4	Layer thickness, roughness factors, and total analysis	
	depth of all TTh-Fc / Bithiophene copolymers	195
7.5	Bithiophene / TTh-Fc monomer ratios and counter ion / TTh-Fc	
	ratios for all TTh-Fc / Bithiophene copolymers	197

7.6	Layer thickness, roughness factors, and total analysis	
	depth of all TTh-Fc / EDOT copolymers	213
7.7	EDOT / TTh-Fc monomer ratios and counter ion / TTh-Fc	
	ratios for all TTh-Fc / EDOT copolymers	214
7.8	Layer thickness, roughness factors, and total analysis	
	depth of all TTh-Fc / TTh-Por-TTh copolymers	230
7.9	$TTh\mbox{-}Por\mbox{-}TTh\mbox{-}ITh\mbox{-}Fc$ monomer ratios and counter ion / TTh-Fc	
	ratios for all TTh-Fc / TTh-Por-TTh copolymers	232
7.10	Layer thickness, roughness factors, and total analysis	
	depth of all TTh-Fc / Bridging TTh copolymers	245
7.11	Bridging TTh / TTh-Fc monomer ratios and counter ion / TTh-Fc	
	ratios for all TTh-Fc / Bridging TTh copolymers	246
A.1	RBS simulation data for TTh-Por-TTh spectrum in Chapter 3	280
A.2	RBS simulation data for cycled TTh-Por-TTh spectrum in	
	Chapter 3	280
A.3	RBS simulation data for soaked TTh-Por-TTh spectrum in	
	Chapter 3	281
A.4	RBS simulation data for the TTh-ZnPor-TTh sample from	
	Chapter 3	281
A.5	RBS simulation data for the solution side PPy-DBS film from	
	Chapter 4	282
A.6	RBS simulation data for the solution side PPy-NBS film from	
	Chapter 4	282
A.7	RBS simulation data for the solution side PPy-HBS film from	
	Chapter 4	283
A.8	RBS simulation data for the solution side PPy-MS film from	
	Chapter 4	283
A.9	RBS simulation data for the solution side PPy-SB film from	
	Chapter 4	284
A.10	RBS simulation data for the solution side PPy-PTS film from	
	Chapter 4	284
A.10	Parameters other than copolymer monomers and ClO_4^- used	
	in the calculations of copolymer to TTh-Fc ratios and counter	
	ion to TTh-Fc ratios.	285

A.12	Un-simulated copolymer films and their spectrum type	292
A.13	RBS simulation data for the solution side 1:10 TTh-Fc / Py	
	copolymer film from Chapter 7	293
A.14	RBS simulation data for the solution side 1:20 TTh-Fc / Py	
	copolymer film from Chapter 7	293
A.15	RBS simulation data for the electrode side 1:20 TTh-Fc / Py	
	copolymer film from Chapter 7	294
A.16	RBS simulation data for the solution side 1:50 TTh-Fc / Py	
	copolymer film from Chapter 7	294
A.17	RBS simulation data for the solution side 1:100 TTh-Fc / Py	
	copolymer film from Chapter 7	295
A.18	RBS simulation data for the solution side 1:100 TTh-Fc / Py	
	copolymer film from Chapter 7	295
A.19	RBS simulation data for the electrode side 1:100 TTh-Fc / Py	
	copolymer film from Chapter 7	296
A.20	RBS simulation data for the solution side	
	1:10 TTh-Fc / bithiophene copolymer film from Chapter 7	297
A.21	RBS simulation data for the electrode side	
	1:10 TTh-Fc / bithiophene copolymer film from Chapter 7	297
A.22	RBS simulation data for the solution side	
	1:20 TTh-Fc / bithiophene copolymer film from Chapter 7	298
A.23	RBS simulation data for the electrode side	
	1:20 TTh-Fc / bithiophene copolymer film from Chapter 7	298
A.24	RBS simulation data for the solution side	
	1:50 TTh-Fc / bithiophene copolymer film from Chapter 7	299
A.25	RBS simulation data for the electrode side	
	1:50 TTh-Fc / bithiophene copolymer film from Chapter 7	299
A.26	RBS simulation data for the solution side	
	1:100 TTh-Fc / bithiophene copolymer film from Chapter 7	300
A.27	RBS simulation data for the electrode side	
	1:100 TTh-Fc / bithiophene copolymer film from Chapter 7	300
A.28	RBS simulation data for the solution side 1:10 TTh-Fc / EDOT	
	copolymer film from Chapter 7	301

A.29	RBS simulation data for the electrode side 1:10 TTh-Fc / EDOT	
	copolymer film from Chapter 7	301
A.30	RBS simulation data for the solution side 1:20 TTh-Fc / EDOT	
	copolymer film from Chapter 7	302
A.31	RBS simulation data for the solution side 1:50 TTh-Fc / EDOT	
	copolymer film from Chapter 7	303
A.32	RBS simulation data for the electrode side 1:50 TTh-Fc / EDOT	
	copolymer film from Chapter 7	303
A.33	RBS simulation data for the electrode side $1:100$ TTh-Fc / EDOT	
	copolymer film from Chapter 7	304
A.34	RBS simulation data for the solution side	
	2:1 TTh-Fc / TTh-Por-TTh copolymer film from Chapter 7	305
A.35	RBS simulation data for the electrode side	
	2:1 TTh-Fc / TTh-Por-TTh copolymer film from Chapter 7	305
A.36	RBS simulation data for the solution side	
	1:5 TTh-Fc / TTh-Por-TTh copolymer film from Chapter 7	306
A.37	RBS simulation data for the electrode side	
	1:5 TTh-Fc / TTh-Por-TTh copolymer film from Chapter 7	306
A.38	RBS simulation data for the solution side	
	2:5 TTh-Fc / TTh-Por-TTh copolymer film from Chapter 7	307
A.39	RBS simulation data for the electrode side	
	2:5 TTh-Fc / TTh-Por-TTh copolymer film from Chapter 7	307
A.40	RBS simulation data for the solution side	
	1:1 TTh-Fc / TTh-Por-TTh copolymer film from Chapter 7	308
A.41	RBS simulation data for the electrode side	
	1:1 TTh-Fc / TTh-Por-TTh copolymer film from Chapter 7	308
A.42	RBS simulation data for the solution side	
	1:10 TTh-Fc / Bridging TTh copolymer film from Chapter 7	309
A.43	RBS simulation data for the electrode side	
	1:10 TTh-Fc / Bridging TTh copolymer film from Chapter 7	309
A.44	RBS simulation data for the solution side	
	1:1 TTh-Fc / Bridging TTh copolymer film from Chapter 7	310
A.45	RBS simulation data for the electrode side	
	1:1 TTh-Fc / Bridging TTh copolymer film from Chapter 7	310

A.46	RBS simulation data for the solution side	
	10:1 TTh-Fc / Bridging TTh copolymer film from Chapter 7	311
A.47	RBS simulation data for the electrode side	
	10:1 TTh-Fc / Bridging TTh copolymer film from Chapter 7	311

List of Schemes

Number	Description	Page
4.1	Chemical scheme of the production of polypyrrole electrochemically	89
5.1	Chemical scheme of the production of terthiophene-ferrocene copolymer films electrochemically	121, 189

List of symbols

<u>Symbol</u>	Description	<u>Unit</u>
С	calibration off set	keV
dQ	number of particles recorded by the detector	
$dQ/d\Omega)_i$	differential cross section	mb sr ⁻¹
$d\sigma / d\Omega$	differential scattering cross section	
D	diffusion coefficient	$m^{2}s^{-1}$
е	electron charge, charge on a proton	μC
Ε	potential (electrochemistry),	mV
	energy of incident ion (RBS)	MeV
E_0	initial potential (electrochemistry),	mV
	energy of incident particle (RBS)	MeV
E_1	upper potential limit (electrochemistry),	mV
	kinematic energy of incident particle (RBS)	MeV
E_2	finial potential	mV
E _K	kinetic energy of incident alpha particle	keV
$f_{\rm r}$	roughness factor	at cm ⁻²
F	Faraday constant	$C \text{ mol}^{-1}$
i	current density (electrochemistry)	$mA cm^{-2}$
	current density (IBA)	$nA cm^{-2}$
Ι	element	
j	flux	$m^{-2} s^{-1}$
k	Coulomb's constant,	$N m^2 C^{-2}$
	kinematic factor (RBS)	
Kα	X-ray produced from L-K shell	keV
K_{β}	X-ray produced from M-K shell	keV
l	depth	at cm ⁻²
L	thickness of target	cm
т	energy per channel	keV
M_0	mass of projectile ion	amu

M_1	mass of target atom	amu
n	linear response across all channels,	
	number of electrons transferred (Fick's Law),	
	number of atoms per unit volume in target (Scattering)	
N_i	number of incident alpha particles	counts
$(Nt)_i$	areal density	at cm ⁻²
Ν(θ)	number of alpha particles scattered at angle θ	counts.msr
Q	total number of particles striking the target	
r	target to detector distance	cm
t	time	S
X	distance	m
Ζ	atomic number of target	
Z_1	atomic number of incident ion	
Z ₂	atomic number of target atom	
$\delta c_{(x, t)} / \delta x$	concentration gradient	cm^{-4}
Δk	difference in k-factor	
ΔE_1	energy separation between particles scattered by two	
	different target elements	MeV
ΔM_1	mass difference	amu
$\Delta\Omega$	solid angle	sr
3	stopping cross section factor	
$\varepsilon(E_{\mathrm{K},1}), \varepsilon(E_0)$	stopping cross section incident energies	keV / micron
θ	scattering angle	0
$\theta_{\rm out}$	angle detector is set at	0
γ	gamma	keV
%	percent	

List of abbreviations

amu	atomic mass units
Bridging TTh	Bridging terthiophene
Bu_4N^+	tetrabutylammonium ion
CA	chronoamperometry
ClO ⁻ ₄	perchlorate ion
CRI	Crown Research Institute
CV	Cyclic voltammetry
DBS	dodecylbenzenesulfonate
DCM	dichloromethane
DMSO	dimethyl sulfoxide
DSRI	Department of Scientific and Industrial Research
EDOT	3,4-Ethylenedioxythiophene
ERD	Elastic recoil detection
GC	Glassy carbon
GNS	Geological and Nuclear Sciences
HBS	4-hydroxybenzenesulfonate
IBA	Ion beam analysis
ICP	intrinsically conducting polymers
INS	Institute of Nuclear Sciences
ΙΤΟ	Indium tin oxide
LOD	limit of detection
MS	methane sulfonate
NBS	3-nitrobenzenesulfonate
NMR	nuclear magnetic resonance
NRA	Nuclear reaction analysis
PIGE	Proton induced gamma-ray emission
PIXE	Proton induced X-ray emission
PTS	4-toluenesulfonate
Ру	pyrrole
РРу	Polypyrrole

RBS	Rutherford backscattering spectrometry
RHS	right hand side
SB	4-sulfobenzoate
SEM	Scanning electron microscope
SHE	Standard hydrogen electrode
Si(Li)	Lithium drifted silicon
SIM	simulation mode
TaO	Tantalum oxide
TBAHFP	tetrabutylammonium hexafluoro-phosphate
TBAP	tetrabutylammonium perchlorate
TBATFB	tetrabutylammonium tetrafluoroborate
TTh-Fc	terthiophene-ferrocene
TTh-Por-TTh	bis terthiophene porphyrin
TTh-ZnPor-TTh	zinc coordinated bis terthiophene porphyrin