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Abstract 

Since their discovery in the late 1970s conducting polymers have become increasingly 

used materials in many applications. They are uti lised for their conductivity andlor 

their electroactive properties. These applications include sensor technologies, 

actuators, and battery materials. 

The properties of conducting polymers rely on the extent of the reduction / oxidation 

or redox state, and hence the dopant levels, of the materials. The aim of this work was 

to investigate the use of the Ion Beam Analysis (IBA) techniques Rutherford 

Backscattering Spectroscopy (RBS),  and Proton Induced X-ray Emission (PIXE) for 

the analysis of 'soft' organic materials, in particular, conducting polymers. These IB A  

techniques are not new,  a s  they have been extensively used for the characterisation of 

many inorganic, 'hard ' ,  materials such as aluminium oxide and silicon oxynitride. 

While they have been used to alter the molecular structure, and hence the properties of 

conducting polymers in the past, little to no research has explored the use of ion 

beams as a tool for the characterisation of these materials. 

Conducting polymers can either be prepared chemicall y  or electrochemically. They 

are predominantly prepared in an oxidised state and this charge is balanced by 

negatively charged counter ions. In this work, the conducting polymers were formed 

electrochemicall y  by deposition onto support materials at constant electrode potential . 

The number of counter ions required to balance the polymer chain depends on the 

type of conducting polymer formed and extent of oxidation. Issues such as the 

influence of the support material and extent of polymer oxidation on the extent of 

counter ions through the polymer films are of importance. Gaining knowledge of the 

dispersion of counter ions may provide new insights into the redox mechanisms for 

conductive polymers. 

Complex bis terthiophene porphyrin conducting polymers were prepared and 

investigated for the uptake of zinc into the freebase porphyrin unit after polymerisation 

by acquiring elemental depth profiles using RBS analysis. Issues such as the influence 

of the support material and extent of polymer oxidation on the extent of counter ions 

through the polymer fil ms were found to be of importance. Gaining knowledge of the 



extent of counter ions provides new insights into the redox mechanisms for conductive 

polymers. The results were compared to those obtained for a sample where zinc was 

coordinated to the porphyrin prior to the polymerisation process. Unexpected high 

concentrations of both nitrogen and oxygen were found, which were interpreted to be 

due to entrapped cations originating from the electrolyte ((Bu)�) ,  together with 

trapped water molecules, within the polymer films. The chlorine depth profiling 

assisted with understanding the extent of the perchlorate counter ion throughout the 

polymer films. The combination of both RBS and PIXE demonstrated that trace 

element impurities can be detected using ion beam analysis, which other analytical 

techniques are unable to do. 

A series of polypyrrole films incorporating a range of counter ions were prepared as 

model compounds for study in the second section of this work. RBS and PIXE 

techniques were used to evaluate film  homogeneity with respect to depth and to infer 

the counter ion / pyrrole unit ratio for each of the six PPy fil m  formed. 

RBS was also used to characterise a series of terthiophene-ferrocene based conducting 

co-polymers. The ratio of co-polymer monomer to terthiophene-ferrocene monomers 

and the dopant levels for the polymers were determined using a RBS deconvolution 

method developed in this study. This new method can be extended for 

characterization of a wide range of organic polymers. 

The limitations of RBS for the analysis of these soft materials were identified. The 

advantage that RBS offers over other analytical techniques is that it provides a means 

for low atomic number element depth profiling in these materials. 
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