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Abstract

The maize leaf has three main axes of growth, with an asymmetric distribution
of tissue types along each axis. This study focuses on three mutants, Wavy
auricle in blade1-R (Wab1-R), liguleless1-R (Ig1-R) and milkweed pod1-R
(mwp1-R) that disrupt axial patterning of maize leaves. Dominant Wab1
mutations disrupt both medial-lateral and proximal-distal patterning. Wab1 leaf
blades are narrow and ectopic auricle and sheath-like tissues extend into the
leaf blade. Previous analyses have shown that Lg7 acts cell-autonomously to
specify ligule and auricle tissues. The current study reveals additional roles in
defining leaf shape. The recessive /g7-R mutation exacerbates the Wab1-R
phenotype; in the double mutants, most of the proximal blade is deleted and

sheath tissue extends along the residual blade.

A mosaic analysis of Wab7-R was conducted in Lg7 and Ig7-R backgrounds to
determine if Wab1-R affects leaf development in a cell-autonomous manner.
Normal tissue identity was restored in all wab1/- sectors in a Ig7-R mutant
background, and in three quarters of sectors in a Lg7 background. These
results suggest that Lg7 can influence the autonomy of Wab7-R. In both
genotypes, leaf-halves with wab1/- sectors were significantly wider than non-
sectored leaf-halves, suggesting that Wab7-R acts cell-autonomously to affect

lateral growth.

mwp71-R is a recessive mutation that specifically affects patterning of sheath
tissue. Characterisation of the mwp7-R phenotype revealed that mwp7-R husk
leaves and the sheaths of vegetative leaves develop pairs of outgrowths on the
abaxial surface associated with regions of adaxialised tissue. In situ
hybridisation confirmed that disruptions to adaxial-abaxial patterning are
correlated with misexpression of leaf polarity genes. Leaf margins and fused
organs such as the prophyll are most severely affected by mwp7-R. The first
two husk leaves normally fuse along adjacent margins to form the bi-keeled
prophyll. In the most severe cases the mwp7-R prophyll is reduced to an
unfused, two-pronged structure and keel outgrowth is significantly reduced. We
speculate that the adaxial-abaxial patterning system has been co-opted during

evolution to promote outgrowth of the keels in normal prophyll development.



The results of this study place Mwp1, wab1 and Lg7 in a network of genes that

regulate leaf polarity and axial patterning.
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