Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Characterisation of the maize leaf patterning mutants Wavy auricle in blade1-R and milkweed pod1-R

A thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Plant Biology

at Massey University, Palmerston North, New Zealand.

Robyn Maree Johnston

2007

Abstract

The maize leaf has three main axes of growth, with an asymmetric distribution of tissue types along each axis. This study focuses on three mutants, *Wavy auricle in blade1-R* (*Wab1-R*), *liguleless1-R* (*Ig1-R*) and *milkweed pod1-R* (*mwp1-R*) that disrupt axial patterning of maize leaves. Dominant *Wab1* mutations disrupt both medial-lateral and proximal-distal patterning. *Wab1* leaf blades are narrow and ectopic auricle and sheath-like tissues extend into the leaf blade. Previous analyses have shown that *Lg1* acts cell-autonomously to specify ligule and auricle tissues. The current study reveals additional roles in defining leaf shape. The recessive *Ig1-R* mutation exacerbates the *Wab1-R* phenotype; in the double mutants, most of the proximal blade is deleted and sheath tissue extends along the residual blade.

A mosaic analysis of *Wab1-R* was conducted in *Lg1* and *lg1-R* backgrounds to determine if *Wab1-R* affects leaf development in a cell-autonomous manner. Normal tissue identity was restored in all *wab1/-* sectors in a *lg1-R* mutant background, and in three quarters of sectors in a *Lg1* background. These results suggest that *Lg1* can influence the autonomy of *Wab1-R*. In both genotypes, leaf-halves with *wab1/-* sectors were significantly wider than non-sectored leaf-halves, suggesting that *Wab1-R* acts cell-autonomously to affect lateral growth.

mwp1-R is a recessive mutation that specifically affects patterning of sheath tissue. Characterisation of the *mwp1-R* phenotype revealed that *mwp1-R* husk leaves and the sheaths of vegetative leaves develop pairs of outgrowths on the abaxial surface associated with regions of adaxialised tissue. *In situ* hybridisation confirmed that disruptions to adaxial-abaxial patterning are correlated with misexpression of leaf polarity genes. Leaf margins and fused organs such as the prophyll are most severely affected by *mwp1-R*. The first two husk leaves normally fuse along adjacent margins to form the bi-keeled prophyll. In the most severe cases the *mwp1-R* prophyll is reduced to an unfused, two-pronged structure and keel outgrowth is significantly reduced. We speculate that the adaxial-abaxial patterning system has been co-opted during evolution to promote outgrowth of the keels in normal prophyll development.

Ш

The results of this study place *Mwp1*, *wab1* and *Lg1* in a network of genes that regulate leaf polarity and axial patterning.

Acknowledgements

I would like to thank my parents, Mum and Owl, for their unconditional love and support. Owl – you have taught me so much more than you imagine. Mum – I am so sorry that you are not here to see me finish. I thank you for your understanding and belief in me and for your sheer common sense.

I thank Paula Jameson for encouraging me to come to Massey (although I didn't realise then how long I would stay!) and for supporting me at every step since. Thanks to Barbara Ambrose for always providing useful and enthusiastic feedback.

A big thank you to Doug Hopcroft and Crunch (Raymond) Bennett for assistance with SEM and photography. Thanks to Keith Croft and Ben Parkinson at the Palmerston North Hospital for irradiating seeds, and to Alla Seleznyova for help with data analysis. Thank you to Chris Kirk for all the patient advice and assistance in the lab.

I would like to thank Sarah Hake for sharing this project, for your warmth and generosity, and for opening your home to me while I was in the US. I thank Hector Candela for generously sharing knowledge and maize seed and for answering a multitude of annoying questions. Thanks to Bruce Veit for the advice, encouragement and random *in situ* reagents.

Ben – thank you for your support while I was finding my way and for always being there for me. Thank you for challenging me and for teaching me the value (and pleasure) of a good argument. >:D<

Thanks to Sacha for providing so much encouragement, for the trips to the airport and for convincing me that I could run 21.1km in the midst of it all. Thanks to Denise for the Word long document tuition and for being a good friend.

Richard – thank you for your unflinching support even at my soggiest. Thanks for the pool tutelage, for walking me and for help with the giraffes.

IV

Sarah Dorling – you turned up just when I needed you and have given me so much love. Thank you for feeding me when I was carb-deprived, sending me to bed when I was exhausted and most of all, thank you for being the sloth to my mould.

Toshi, I cannot thank you enough for making my PhD such an amazing and festive experience. Thank you for being a friend first and for being the best supervisor I could ever have hoped for. Thank you for sharing your love of plant development, for showing me my first meristem and for speaking the same language. Who else will understand the hand gestures and twitching of the shoulder blades that denote particular parts of the maize plant? Thank you for the weekend retreats, wine, meals, nights dancing, cake and lunches at the Gallery.

I wish to acknowledge and thank the Tertiary Education Commission who provided my Top Achiever Doctoral Scholarship and the Marsden Foundation who provided funding for this project.

This thesis is dedicated to my parents, Gaile and Vern Johnston.

Table of Contents

Abstract		
1. Introduction	1	
1.1 Background	1	
1.2 Growth of the maize plant	2	
1.3 Leaves have three main axes of growth	3	
1.4Leaf initiation and early development1.4.1Founder cells1.4.2Development of dicot leaves1.4.3Development of maize leaves	4 4 5 6	
1.5 Developmental compartments and axial patterning1.5.1Developmental compartments1.5.2Analysis of leaf patterning mutants1.5.3Proximal-distal patterning1.5.4Adaxial-abaxial patterning1.5.5Medial-lateral patterning21.5.6Summary of axial patterning2	7 7 8 1 0	
1.6 Establishment and maintenance of developmental domains21.6.1MicroRNAs and gene regulation21.6.2Protein trafficking2	2 2 3	
1.7 Homologies between lateral organs21.7.1Plants are comprised of repeated structural units21.7.2Mutant phenotypes provide a tool for detecting organ homologieswithin a species21.7.3Mutations to orthologous genes in diverse species2	5 5 7 7	
1.8 Genome duplication and subfunctionalisation 2	9	
1.9 Maize inbred lines	0	
1.10 Aims and objectives	1	

2.	Ge	neral Materials and Methods	33
2	.1	Maize nomenclature	33
2	.2	Inbred lines	33
2	.3	Growth conditions	.34
2	.4	Stereomicroscope and light microscopy	.34
2	.5	Scanning electron microscopy	.34
	2.5.	1 Preparation of specimens	.34
	2.5.	2 Preparation of replicas	.35
	2.5.	3 Viewing and photography	.35
2	.6	Histology	.36
	2.6	1 Paraffin sections	.36
	2.6.	2 Staining	.37
	2.6	3 Resin sections	.38
	2.6.	4 Distinguishing xylem and phloem in sectioned material	.38
3.	Wa	avy auricle in blade1-R	.39
3	.1	Introduction	.39
3	.2	Specific materials and methods	.40
3	. 2 3.2	Specific materials and methods 1 Phenotypic analysis of <i>Wab1-R</i> and <i>Ig1-R;Wab1-R</i> plants	.40 .40
3	. 2 3.2 3.2	Specific materials and methods.1Phenotypic analysis of Wab1-R and Ig1-R;Wab1-R plants2Mosaic and clonal analyses	.40 .40 .40
3	3.2 3.2 3.2 3.2	 Specific materials and methods Phenotypic analysis of Wab1-R and Ig1-R;Wab1-R plants Mosaic and clonal analyses Ig1-R leaf measurements 	.40 .40 .40 .45
3	3.2 3.2 3.2 3.2 3.2	 Specific materials and methods Phenotypic analysis of <i>Wab1-R</i> and <i>Ig1-R;Wab1-R</i> plants. Mosaic and clonal analyses <i>Ig1-R</i> leaf measurements. Lateral vein count in <i>Wab1-R</i> leaf primordia. 	.40 .40 .40 .45 .45
3	3.2 3.2 3.2 3.2 3.2	 Specific materials and methods Phenotypic analysis of <i>Wab1-R</i> and <i>Ig1-R;Wab1-R</i> plants. Mosaic and clonal analyses <i>Ig1-R</i> leaf measurements. Lateral vein count in <i>Wab1-R</i> leaf primordia. 	.40 .40 .45 .45 .45
3	3.2 3.2 3.2 3.2 3.2	 Specific materials and methods Phenotypic analysis of Wab1-R and Ig1-R;Wab1-R plants Mosaic and clonal analyses Ig1-R leaf measurements Lateral vein count in Wab1-R leaf primordia Results Ig1-R enhances the Wab1-R mutant phenotype 	.40 .40 .45 .45 .45 .46
3	.2 3.2 3.2 3.2 3.2 3.2 3.3 3.3	Specific materials and methods 1 Phenotypic analysis of Wab1-R and Ig1-R;Wab1-R plants 2 Mosaic and clonal analyses 3 Ig1-R leaf measurements 4 Lateral vein count in Wab1-R leaf primordia 7 Results 1 Ig1-R enhances the Wab1-R mutant phenotype	.40 .40 .45 .45 .45 .46 .46 .48
3	3.2 3.2 3.2 3.2 3.2 3.2 3.3 3.3 3.3 3.3	 Specific materials and methods Phenotypic analysis of Wab1-R and Ig1-R;Wab1-R plants Mosaic and clonal analyses Ig1-R leaf measurements Lateral vein count in Wab1-R leaf primordia Results I Ig1-R enhances the Wab1-R mutant phenotype Ig1-R alters leaf shape Mosaic analysis of Wab1-R	.40 .40 .45 .45 .45 .46 .46 .48 .50
3	3.2 3.2 3.2 3.2 3.2 3.3 3.3 3.3 3.3 3.3	 Specific materials and methods Phenotypic analysis of Wab1-R and Ig1-R;Wab1-R plants Mosaic and clonal analyses Ig1-R leaf measurements Lateral vein count in Wab1-R leaf primordia Results 1 Ig1-R enhances the Wab1-R mutant phenotype 2 Ig1-R alters leaf shape 3 Mosaic analysis of Wab1-R	.40 .40 .45 .45 .45 .46 .46 .48 .50 .57
3	3.2 3.2 3.2 3.2 3.2 3.3 3.3 3.3 3.3 3.3	 Specific materials and methods Phenotypic analysis of <i>Wab1-R</i> and <i>Ig1-R;Wab1-R</i> plants Mosaic and clonal analyses <i>Ig1-R</i> leaf measurements Lateral vein count in <i>Wab1-R</i> leaf primordia Results <i>Ig1-R</i> enhances the <i>Wab1-R</i> mutant phenotype <i>Ig1-R</i> alters leaf shape Mosaic analysis of <i>Wab1-R</i> Mosaic analysis of <i>Ig1-R</i> . Clonal analysis of <i>Ig1-R</i> leaves	.40 .40 .45 .45 .45 .46 .46 .46 .50 .57 .61
3	3.2 3.2 3.2 3.2 3.2 3.3 3.3 3.3 3.3 3.3	 Specific materials and methods Phenotypic analysis of <i>Wab1-R</i> and <i>Ig1-R;Wab1-R</i> plants. Mosaic and clonal analyses <i>Ig1-R</i> leaf measurements. Lateral vein count in <i>Wab1-R</i> leaf primordia. Results <i>Ig1-R</i> enhances the <i>Wab1-R</i> mutant phenotype. <i>Ig1-R</i> alters leaf shape. Mosaic analysis of <i>Wab1-R</i> . Mosaic analysis of <i>Ig1-R</i> . Clonal analysis of <i>Wab1-R</i> leaves <i>Wab1-R</i> leaves have fewer lateral veins by plastochron 4.	.40 .40 .45 .45 .46 .46 .48 .50 .57 .61 .63
3 3 3	3.2 3.2 3.2 3.2 3.2 3.3 3.3 3.3 3.3 3.3	Specific materials and methods 1 Phenotypic analysis of Wab1-R and Ig1-R;Wab1-R plants 2 Mosaic and clonal analyses 3 Ig1-R leaf measurements 4 Lateral vein count in Wab1-R leaf primordia 7 Results 1 Ig1-R enhances the Wab1-R mutant phenotype 2 Ig1-R alters leaf shape 3 Mosaic analysis of Wab1-R 4 Mosaic analysis of Ig1-R 5 Clonal analysis of Wab1-R leaves 6 Wab1-R leaves have fewer lateral veins by plastochron 4 5 Discussion	.40 .40 .45 .45 .46 .46 .46 .50 .57 .61 .63
3 3 3	3.2 3.2 3.2 3.2 3.2 3.3 3.3 3.3 3.3 3.3	 Specific materials and methods Phenotypic analysis of Wab1-R and Ig1-R;Wab1-R plants Mosaic and clonal analyses Ig1-R leaf measurements Lateral vein count in Wab1-R leaf primordia Results I Ig1-R enhances the Wab1-R mutant phenotype Ig1-R alters leaf shape Mosaic analysis of Wab1-R Mosaic analysis of Ig1-R Clonal analysis of Ig1-R Evaluation of the Wab1-R leaves Wab1-R leaves have fewer lateral veins by plastochron 4 Discussion I Lg1 influences cell-autonomy of the Wab1-R phenotype	.40 .40 .45 .45 .46 .46 .48 .50 .57 .61 .63 .66 .66
3 3 3	.2 3.2 3.2 3.2 3.2 3.3 3.3 3.3 3.3 3.3 3	 Specific materials and methods Phenotypic analysis of <i>Wab1-R</i> and <i>Ig1-R;Wab1-R</i> plants Mosaic and clonal analyses <i>Ig1-R</i> leaf measurements Lateral vein count in <i>Wab1-R</i> leaf primordia Results <i>Ig1-R</i> enhances the <i>Wab1-R</i> mutant phenotype <i>Ig1-R</i> alters leaf shape Mosaic analysis of <i>Wab1-R</i> Mosaic analysis of <i>Ig1-R</i> . Clonal analysis of <i>Ig1-R</i> leaves <i>Wab1-R</i> leaves have fewer lateral veins by plastochron 4 <i>Loss of Wab1-R</i> is associated with an increase in leaf width.	.40 .40 .45 .45 .46 .46 .48 .50 .57 .61 .63 .66 .66 .68
3 3 3	3.2 3.2 3.2 3.2 3.2 3.3 3.3 3.3 3.3 3.3	Specific materials and methods 1 Phenotypic analysis of Wab1-R and Ig1-R;Wab1-R plants 2 Mosaic and clonal analyses	.40 .40 .45 .45 .46 .46 .48 .50 .57 .61 .63 .66 .68 .69
3 3 3	.2 3.2 3.2 3.2 3.2 3.2 3.3 3.3 3.3 3.3 3	Specific materials and methods 1 Phenotypic analysis of Wab1-R and Ig1-R;Wab1-R plants 2 Mosaic and clonal analyses. 3 Ig1-R leaf measurements	.40 .40 .45 .45 .46 .46 .48 .50 .57 .61 .63 .66 .66 .68 .69 .70
3	.2 3.2 3.2 3.2 3.2 3.2 3.3 3.3 3.3 3.3 3	Specific materials and methods 1 Phenotypic analysis of Wab1-R and Ig1-R;Wab1-R plants 2 Mosaic and clonal analyses	.40 .40 .45 .45 .46 .46 .48 .50 .57 .61 .63 .66 .68 .69 .70 .73
3 3	.2 3.2 3.2 3.2 3.2 3.2 3.3 3.3 3.3 3.3 3	Specific materials and methods 1 Phenotypic analysis of Wab1-R and Ig1-R;Wab1-R plants 2 Mosaic and clonal analyses 3 Ig1-R leaf measurements. 4 Lateral vein count in Wab1-R leaf primordia. 7 Ig1-R enhances the Wab1-R mutant phenotype. 2 Ig1-R enhances the Wab1-R mutant phenotype. 2 Ig1-R alters leaf shape. 3 Mosaic analysis of Wab1-R. 4 Mosaic analysis of Ig1-R. 5 Clonal analysis of Jg1-R. 5 Clonal analysis of Wab1-R leaves 6 Wab1-R leaves have fewer lateral veins by plastochron 4 7 Lg1 influences cell-autonomy of the Wab1-R phenotype 2 Loss of Wab1-R is associated with an increase in leaf width 3 The role of Lg1 in leaf morphogenesis 4 Ectopic auricle tissue in Wab1-R leaves is conditioned by Lg1 5 Effects of Ig1-R/- sectors on Wab1-R ectopic sheath tissue 6 Lg1 promotes lateral growth in a non-cell autonomous manner	.40 .40 .45 .45 .46 .46 .48 .50 .57 .61 .63 .66 .68 .69 .70 .73 .73
3 3 3	.2 3.2 3.2 3.2 3.2 3.2 3.3 3.3 3.3 3.3 3	Specific materials and methods 1 Phenotypic analysis of Wab1-R and Ig1-R;Wab1-R plants 2 Mosaic and clonal analyses 3 Ig1-R leaf measurements. 4 Lateral vein count in Wab1-R leaf primordia. Results Ig1-R enhances the Wab1-R mutant phenotype. 2 Ig1-R alters leaf shape. 3 Mosaic analysis of Wab1-R 4 Mosaic analysis of Ig1-R. 5 Clonal analysis of Ig1-R 6 Wab1-R leaves have fewer lateral veins by plastochron 4 7 Lg1 influences cell-autonomy of the Wab1-R phenotype 2 Loss of Wab1-R is associated with an increase in leaf width 3 The role of Lg1 in leaf morphogenesis 4 Ectopic auricle tissue in Wab1-R leaves is conditioned by Lg1 5 Effects of Ig1-R/- sectors on Wab1-R ectopic sheath tissue 6 Lg1 promotes lateral growth in a non-cell autonomous manner . 7 Lg1 has both cell-autonomous and non-autonomous functions.	.40 .40 .45 .45 .46 .46 .46 .48 .50 .57 .61 .63 .66 .66 .68 .69 .70 .73 .73 .74
3	3.2 3.2 3.2 3.2 3.2 3.2 3.3 3.3 3.3 3.3	 Specific materials and methods Phenotypic analysis of Wab1-R and Ig1-R;Wab1-R plants Mosaic and clonal analyses Ig1-R leaf measurements Lateral vein count in Wab1-R leaf primordia Results Ig1-R enhances the Wab1-R mutant phenotype Ig1-R alters leaf shape Mosaic analysis of Wab1-R Mosaic analysis of Ig1-R Clonal analysis of Ig1-R Clonal analysis of Wab1-R leaves Wab1-R leaves have fewer lateral veins by plastochron 4 Discussion Loss of Wab1-R is associated with an increase in leaf width Ectopic auricle tissue in Wab1-R leaves is conditioned by Lg1. Effects of Ig1-RI- sectors on Wab1-R ectopic sheath tissue Lg1 promotes lateral growth in a non-cell autonomous functions. Wab1-R leaf primordia are narrower and initiate fewer lateral veins	.40 .40 .45 .45 .45 .46 .46 .48 .57 .61 .63 .66 .68 .69 .70 .73 .74 .73

4. milkwe	ed pod1-R	77
4.1 Intr	oduction	77
4.2 Spe 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6	Actific Materials and MethodsMaterial for SEM and histologyMeasurements of mwp1-R and wild-type lateral organsSEM of developing prophyllsMeasurements of developing prophyllsIn situ hybridisationHusk leaf and prophyll material for in situ hybridisation	78 79 80 80 80 85
4.3 Res	sults	85
4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6	Husk leaf phenotype Prophyll phenotypes <i>mwp1-R</i> sheath margin phenotype <i>mwp1-R</i> floral organ phenotypes Measurements of mature wild-type and <i>mwp1-R</i> lateral orga The <i>mwp1-R;Wab1-R</i> leaf blade phenotype	85 91 105 108 108 118
4.4 Dis	cussion	120
4.4.1 4.4.2 4.4.3	<i>mwp1-R</i> disrupts adaxial-abaxial polarity <i>mwp1-R</i> affects lateral and proximal-distal growth <i>Mwp1</i> interacts with networks that establish leaf polarity Expression of the <i>mwp1-R</i> phenotype varies in different inbr	120 129 133
backgro 4.4.5 4.4.6 4.4.7 4.4.8	<i>mwp1-R</i> specifically affects sheath tissue <i>mwp1-R</i> interacts with proximal-distal patterning mutants Comparison of grass and dicot modes of growth Prophyll morphogenesis	136 138 138 139 140
5. Conclu	usions and future work	145
5.1 Coi	nclusions	145
5.2 Fut	ure work	148
Reference	S	150

List of Figures

Figure 1.1 Leaf axes
Figure 1.2 Founder cells4
Figure 1.3 Generation of albino sectors for clonal analysis
Figure 1.4 Maize leaf patterning mutants13
Figure 1.5 Interactions between factors involved in the specification of adaxial- abaxial polarity in <i>Arabidopsis</i> and maize leaves20
Figure 1.6 Lateral organ homologies in maize26
Figure 1.7 Upper and lower leaf zones
Figure 3.1 Scheme for mosaic analysis of <i>Wab1-R</i> 41
Figure 3.2 Scheme for mosaic analysis of <i>lg1-R</i> 42
Figure 3.3 Leaf and whole plant phenotypes47
Figure 3.4 Epidermal and histological features of wild-type, <i>Wab1-R</i> and <i>lg1-</i> <i>R;Wab1-R</i> leaves
Figure 3.5 Phenotypes of <i>wab1I</i> - sectors in <i>Wab1-R</i> leaves
Figure 3.6 Phenotypes of <i>wab1</i> /- sectors in <i>lg1-R;Wab1-R</i> leaves55
Figure 3.7 Phenotypes of <i>Ig1-R/-</i> sectors in <i>Lg1;Wab1-R</i> leaves60
Figure 3.8 Calculation of radial position of clonal sectors in culm
Figure 3.9 Lateral vein number in wild-type and Wab1-R leaf primordia65
Figure 3.10 Lg1 affects cell-autonomy of the Wab1-R phenotype68
Figure 3.11 Model for <i>Lg1</i> function in leaf morphogenesis70
Figure 4.1 Wild-type and <i>mwp1-R</i> ears86
Figure 4.2 Ectopic outgrowths on <i>mwp1-R</i> husk leaves are associated with adaxialised tissue
Figure 4.3 <i>rld1</i> is misexpressed in <i>mwp1-R</i> husk leaf primordia89
Figure 4.4 <i>zyb9</i> is misexpressed in <i>mwp1-R</i> husk leaf primordia90
Figure 4.5 The prophyll91
Figure 4.6 <i>mwp1-R</i> disrupts prophyll development

Figure 4.7 Vascular polarity in wild-type prophyll keel
Figure 4.8 The <i>mwp1-R</i> prophyll defect is apparent by plastochron four96
Figure 4.9 The <i>mwp1-R</i> unfused prophyll phenotype is associated with rld1 misexpression early in development
Figure 4.10 <i>rld1</i> expression in wild-type prophyll primordium
Figure 4.11 Morphometric analysis of <i>mwp1-R</i> and wild-type prophyll development
Figure 4.12 The <i>mwp1-R</i> prophyll "tab"phenotype101
Figure 4.13 <i>rld1</i> expression in <i>mwp1-R</i> prophyll exhibiting the "tab" phenotype
Figure 4.14 <i>mwp1-R</i> subdivided keel phenotype104
Figure 4.15 Outgrowths at mwp1-R sheath margins are associated with ectopic rld1 expression 106
Figure 4.16 Adaxial epidermal characteristics continue onto the abaxial side of <i>mwp1-R</i> sheath margins with ectopic outgrowths
Figure 4.17 <i>mwp1-R</i> silks are twisted and have ectopic outgrowths
Figure 4.18 Adaxial-abaxial polarity is disrupted in regions adjacent to ectopic sheath-like tissue in <i>mwp1-R;Wab1-R</i> leaf blades
Figure 4.19 Model for establishment of polarity in wild-type and <i>mwp1-R</i> prophyll primordia and resulting prophyll phenotypes
Figure 4.20 The adaxial-abaxial boundary promotes both lateral and proximal- distal growth
Figure 4.21 Model for outgrowth of the prophyll keels

List of Tables

Table 3.1 Comparison of Ig1-R and wild-type (Lg1/Ig1-R) leaf shape
Table 3.2 Median width of clonal sectors in Lg1/lg1-R and lg1-R/lg1-R plants.50
Table 3.3 Summary of wab1/- sector phenotypes 52
Table 3.4 Median differences in the width of wab1/- sectored and non-sectoredleaf-halves at the blade-sheath boundary and sheath midpoint
Table 3.5 Median differences in wab1/- sectored and non-sectored leaf-halfwidths, and effect of sector position.57
Table 3.6 Summary of Ig1-R/- sector phenotypes 58
Table 3.7 Median differences in the width of <i>lg1-R/-</i> sectored and non-sectored leaf-halves
Table 3.8 Mean widths of clonal sectors in Wab1-R and wild-type leaves62
Table 4.1 Measurements of mature mwp1-R and wild-type prophylls
Table 4.2 Measurements of mature wild-type and mwp1-R husk leaves112
Table 4.3 Measurements of mature wild-type and mwp1-R vegetative leaves
Table 4.4 Measurements of mature wild-type and mwp1-R glumes
Table 4.5 Measurements of mature wild-type and mwp1-R paleae. 116
Table 4.6 Measurements of wild-type and mwp1-R silks

List of abbreviations

BSA	bovine serum albumin
°C	degrees Celsius
d	day
DEPC	diethylpyrocarbonate
dicot	dicotyledon
DIG	digoxigenin
DNA	deoxyribonucleic acid
DPX	dibutylphthalate polystyrene xylene
DTT	dithiothreitol
EDTA	ethylenediaminetetraacetic acid
FAA	formaldehyde, acetic acid, ethanol
GFP	green fluorescent protein
h	hour
kV	kilovolt
L1, L2, L3	cell layers in the shoot apical meristem and lateral organs
LM	lateral meristem
Μ	molar
mg	milligram
min	minute
miRNA	microRNA
ml	millilitre
mm	millimetre
mМ	millimolar
monocot	monocotyledon
mRNA	messenger ribonucleic acid
NBT/BCIP	5-bromo-4-chloro-3'-indolyphosphate p-toluidine salt/nitro-blue
	tetrazolium chloride
nm	nanometre
NTP	nucleotide triphosphates
P0, P1, P2	plastochron number
PBS	phosphate buffered saline
RNA	ribonucleic acid
S	second
SAM	shoot apical meristem

XIII

SEM	scanning electron microscopy
SSC	sodium chloride, sodium citrate
SSPE	sodium chloride, sodium phosphate, EDTA
TBS	tris buffered saline
TE	tris, EDTA
tRNA	transfer ribonucleic acid
μg	microgram
μΙ	microlitre
μm	micron
w/v	weight by volume ratio
v/v	volume to volume ratio