Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

ANALYSIS OF FARMER COGNITIVE STRUCTURES

WITH RESPECT TO HIGH FECUNDITY SHEEP

MANAGEMENT SYSTEMS

L. S. SAUNDERS

August 1987

A thesis presented in partial fulfilment of the requirements for the degree of Master of Agricultural Science in Agricultural Economics and Farm Management at Massey University

Massey University Library

Thesis Copyright Form

Title of thesis: Analysis of Farmer Cognitive Structures with respect to High Fecundity Sheep Management Systems.

- (1) (a) I give permission for my thesis to be made available to readers in the Massey University Library under conditions determined by the Librarian.
 - I do not wish my thesis to be made available to readers without my written consent for _____ months.
- (2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.
 - (b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for ______ months.
- (3) (a) I agree that my thesis may be copied for Library use.
 - (#) I do not wish my thesis to be copied for Library use for _____ months.

Signed L. Saunders.

15 Dec 1987.

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

DATE

Date

ABSTRACT

The object of the research presented in this thesis is to evaluate three multivariate techniques for representing and analysing farmer cognitive structures. The context involves representation of farmer belief and attitude relationships relative to their overall attitude towards high fecundity sheep production systems. Modelling of behavioural determinants positions this research within the soft component of management and is aimed at moving from the 'art' to the 'science' (as defined by Nix, 1979) of soft systems management research.

Reviews of high fecundity production systems are presented such that the 'act' of high fecundity was defined as: "to maximise the weight of lamb weaned within flocks with a potential of 140% Lambs Born per Ewe Weaned."

The Fishbein and Ajzen (1979) model of reasoned action is extended to incorporate the differentiation of input and outcome concepts. Galileo Methodology (Woelfel et al, 1977), involving a system of interview methods and questionnaires in association with a Metric Multidimensional Scaling program, was used to measure the belief and attitude relationships and then spatially represent the cognitive structures of a sample of Western Hawkes Bay Farmers and a group of Experts.

The extension objective of this research is to identify differing cognitive structures between groups of farmers with and without experience of the act relative to an Expert group. Increasing levels of farmer experience resulted in stronger overall attitudes to the act.

Multiple Discriminant Analysis and Metric Multidimensional Scaling incorporating Procrustes rotations of spatial representations, identified the concepts of Maintaining Ewe Body Condition during Pregnancy, Reduced Stocking Rates and Multiple Lamb Survival as having the least degree of alignment. The cognitive structures of the Experts and Inexperienced farmers are in closest alignment, contrary to the predicted result from the experiential learning theories discussed. It is hypothesised that individuals with similar cognitive structures may have differing overall attitudes. The Management of the extension process is discussed relative to this hypothesis, as the extensionist may need to assist managers to learn the 'right' relationships not just assist managers to learn, if the efficiency of learning processes are to be enhanced.

Extension messages for each group, derived by Linear Aggregation theory (Woelfel and Fink, 1980), relating the act to the concepts of Multiple Lamb Survival, Later Lambing, Multiple Lamb Growth Rates and Summer Pasture Control are predicted to strengthen the overall attitudes towards the act for both farmer groups.

A multiple regression version of the Fishbein and Ajzen model is presented as another means of predicting change in the overall attitude as a result of belief and attitude changes.

The conclusion from this study is that Multiple Discriminant Analysis and Multidimensional Scaling offer significant opportunities to develop soft systems research in a descriptive sense, provided issues regarding measurement adequacy are resolved.

The potential of multivariate analysis for predicting cognitive change appears to exist but requires validation through time series data analysis, and resolution of the behaviour determinants and how these change through time.

TABLE OF CONTENTS

CONTENTS		PAGE
Title Page		
Abstract		i
Table of Conten	ts	iii
List of Tables		ix
List of Figures		xii
Acknowledgement	S	xvi
CHAPTER ONE:	INTRODUCTION	1
1.0.0	Introduction	1
1.1.0	High Fecundity	10
CHAPTER TWO:	SOFT SYSTEMS	11
2.0.0	Introduction	11
2.1.0	Behavioural Models	13
2.1.1	Attitude - Black Box	13
2.1.2	Fishbein and Ajzen Model of	13
	Reasoned Action	
2.1.3	'Galileo' Model of Behaviour	19
2.1.4	Attitude - Behaviour Link	23
2.2.0	Soft Components Dynamics	25
2.2.1	Learning and Knowledge	25
2.2.2	Learning Theories	26
2.2.3	Personal Construct Theory (P.C.T.)	27
2.2.4	Adult Learning	30
2.2.5	Learning - A Farm Management Extension Research Context	32
2.3.0	Summary	36
CHAPTER THREE:	ISSUES OF SOFT SYSTEM MEASUREMENT	39
3.0.0	Introduction	39
3.1.0	Measurement Objectives	39
3.2.0	Measurement of Behavioural Determinants	40
3.2.1	Attitude as a Black Box	40

3.2.2	Fishbein and Ajzen Model	41
3.2.3	Galileo Model of Behaviour	42
3.3.0	Summary	44
3.4.0	Measurement Systems	44
3.4.1	Introduction	44
3.4.2	Reference Concept Elicitation	45
3.4.3	Measurement and Measurement Procedures	49
3.4.4	Presentation and Ordering of the	53
	Measurement Task	
3.5.0	Summary	56
CHAPTER FOUR:	GALILEO METHODOLOGY AND MULTIVARIATE	58
	ANALYSIS	
4.0.0	Introduction	58
4.1.0	Galileo Methodology	58
4.1.1	Procedures	59
4.2.0	Multidimensional Scaling (MDS)	61
4.2.1	Metric - Nonmetric MDS	61
4.2.2.0	Metric MDS	62
4.2.2.1	Distance Models	62
4.2.2.2	Spatial Models	63
4.3.0	Galileo Multidimensional Scaling	64
4.3.1	Spatial Model	64
4.3.2	Distance Model	65
4.3.3	Further Analysis	66
4.4.0	Galileo Methodology: Summary	72
4.5.0	Multiple Discriminant Analysis (M.D.A.)	73
4.5.1	Graphical Representation	75
4.6.0	Multiple Regression	75
4.7.0	Summary	76
CHAPTER FIVE:	STUDY AREA AND RESPONDENTS	78
5.0.0	Introduction	78
5.1.0	Study Area	78
5.2.0	Class Five Properties	80
5.3.0	Performance Survey	81
5.3.1	Survey Results	83
5.4.0	Summary	89

CHAPTER SIX:	HIGH FECUNDITY PRODUCTION SYSTEMS	90
6.0.0	Introduction	90
6.1.0	High Fecundity	90
6.2.0	Multiple Lamb Survival	92
6.2.1	Birthweight	92
6.2.2	Starvation - Exposure Deaths	94
6.2.3	Nutritional Influences on Birthweights	95
6.2.4	Survival Summary	97
6.3.0	Lamb Growth	98
6.3.1	Milk Yield	98
6.3.2	Nutritional Influences on Milk Yield	99
6.3.3	Sex of Lamb	101
6.3.4	Lamb Growth Summary	101
6.4.0	Feed Demand Implications	103
6.5.0	Summary	104
CHAPTER SEVEN:	DATA COLLECTION	106
7.0.0	Introduction	106
7.1.0	Reference Concept Elicitation	106
7.1.1	Elicitation Interviews	106
7.1.2	Trial Interview	107
7.1.3	Study Interviews	108
7.1.4	Interview Results	109
7.1.5	Concept Weightings	110
7.1.6	Reference Concepts	113
7.2.0	Trial Paired Comparison Surveys	115
7.3.0	Paired Comparison Survey	119
7.3.1	Criterion Pair	119
7.3.2	Administration	120
7.3.3	Paired Comparison Results	121
7.3.4	Respondent Comments	122
7.4.0	Data Formatting and Analysis	123
7.5.0	Respondent Characteristics	123
7.6.0	Galileo Analysis	129
7.7.0	Summary	130

.

vi

CHAPTER EIGHT:	RESULTS	132
8.0.0	Introduction	132
8.1.0	Belief and Attitude Measures	132
8.2.0	Overall Attitudes	133
8.3.0	Principal Belief Measures	133
8.4.0	Evaluative Attitude Measures	135
8.5.0	Discussion of Principal Belief;	135
	Evaluative Attitude Measures	
8.5.1	Expert Group	135
8.5.2	Hilamb Experience Group of Farmers	138
8.5.3	Hilamb Inexperience Group of Farmers	139
8.5.4	Intergroup Comparisons	140
8.6.0	Peripheral Beliefs	142
8.6.1	Reduced Stocking Rate	142
8.6.2	Multiple Lamb Survival	145
8.6.3	Maintaining Ewe Body Condition	147
	during Pregnancy	
8.6.4	Higher Birthweights of Multiple Lambs	149
8.6.5	Higher Growth Rates of Multiple Lambs	150
8.6.6	Later Lambing - High Lactation Feeding	151
8.6.7	Controlled Set Stocking	152
8.7.0	Spatial Representation	153
8.7.1	Expert Group	153
8.7.2	Farmer Group	155
8.7.3	Experienced Farmer Group	158
8.7.4	Inexperienced Farmer Group	160
8.8.0	Summary	161
CHAPTER NINE:	COMPARATIVE ANALYSIS	163
9.0.0	Introduction	163
9.1.0	Procrustes Comparative Analysis	163
9.1.1	Comparison of the Experienced and	164
	Inexperienced Group	
9.1.2	Procrustes Rotations of the Expert Group	168
	with the Experienced and Inexperienced	
	Groups	
9.2.0	Multiple Discriminant Analysis	171

-

204

9.2.1	Principal Belief Discriminant Functions	172
9.2.2	Evaluative Attitude Discriminant Functions	177
9.2.3	Overall Attitude Index Discriminant	181
	Functions	
9.3.0	Summary	187
CHAPTER TEN:	EXTENSION MESSAGES	189
10.0.0	Introduction	189
10.1.0	Galileo Extension 'Message' Generation	189
10.1.1	Expert Group	192
10.1.2	Farmer Group	192
10.1.3	Experienced Farmers	194
10.1.4	Inexperienced Farmers	195
10.2.0	Summary - Discussion of Galileo Messages	195
10.3.0	Multiple Regression Model	196
10.4.0	Summary	198
CHAPTER ELEVEN:	CONCLUSIONS	200
11.0.0	Introduction	200
11.1.0	Galileo Model	201
11.1.1	Measurement Task	201

11.2.1	Between Group Comparisons	206
11.3.0	Farm Management Extension	209

11.2.0 Belief - Attitude Relationships

APPENDICES

1.0	Young and Householder Theorems	212
1.1	Eigenvalues (Eigenroots, Characteristic Roots) etc	215
2.0	Schema of High Fecundity Management Concepts	218

3.0	Pilot Pair Comparison Instructions	219
4.0	Study Pair Comparison Instructions and Reference Concept Definitions	220
5.0	Co-ordinate Sets for the Cognitive Structures obtained from the Expert, Farmer, Experienced and Inexperienced Groups	224
6.0	Procrustes Rotation of the Experienced and Inexperienced Groups	226
7.0	Procrustes Rotation of the Experienced and Expert Groups	229
8.0	Procrustes Rotation Co-ordinate Sets Inexperienced and Expert Groups	231

BIBLIOGRAPHY

233

LIST OF TABLES

.

TABLE		PAGE
5:1	Monthly Pasture Growth Rates (kg DM/ha) and Total Production (kgDM/ha)	88
5:2	Performance Survey Results	84
5:3	Comparative Lambing Performance Levels	86
7:1	Trial Reference Concepts	114
7:2	Study Reference Concepts	117
7:3	HiLamb Experienced Versus Inexperienced Demographics	124
7:4	Educational Qualifications	127
7:5	Information and Advice Sources	128
8:1	Mean Principal Belief Measures for the Expert, Farmer and Experienced and Inexperienced Groups	134
8:2	Evaluative Attitude for the Expert, Farmer, Experienced and Inexperienced Groups	135
8:3	Reduced Stocking Rate peripheral beliefs for the Expert; Farmer; Experienced and Inexperienced Groups	143
8:4	Peripheral Belief Measures involving Multiple Lamb Survival	145

ix

8:5	Peripheral Belief Measures involving Maintaining Ewe Body Condition during Pregnancy	147
8:6	Peripheral Belief Measures involving Higher Birthweights of Multiple Lambs	149
8:7	Peripheral Beliefs associated with Higher Growth Rates of Multiple Lambs	150
8:8	Peripheral Beliefs associated with the Concepts of Later Lambing - High Lactation Feeding and Controlled Set Stocking	152
9:1	Distances separating reference concepts in the Cognitive Structures of the Experienced and Inexperienced Groups (All 10 Dimensions)	166
9:2	Analysis of Concept Separations between the Experienced and Inexperienced Farmer Groups (5 Dimensions only)	168
9:3	Concept Separations and the Associated Correlations for the Common Rotated Space involving the Experienced and Expert Groups (5 Dimensions only)	169
9:4	Concept Separations and the Associated Correlations for the Common Rotated Space involving the Inexperienced and Expert Groups (5 Dimensions only)	170
9:5	Discriminating Power Individual Principal Beliefs	172

9:6	Canonical Discriminant Functions based upon Principal Beliefs	173
9:7	Mean Discriminant Scores of the Principal Beliefs for the Expert, Experienced and Inexperienced Groups	175
9:8	Reference Concept Discriminating Power within the Evaluative Attitude Dataset	177
9:9	Canonical Discriminant Functions for Evaluative Attitudes	178
9:10	Mean Discriminant Scores for Attitude Measures for the Expert, Experienced and Inexperienced Groups	179
9:11	Reference Concept Discriminating Power within the Overall Attitude Index	182
9:12	Canonical Discriminant Functions for Overall Attitude Index	183
9:13	Mean Discriminant Scores for Overall Attitude Index measures for the Expert, Experienced and Inexperienced Groups	184
9:14	Pooled within Groups Correlations between Canonical Discriminant Functions and Discriminating Variables	185
10:1	Three Optimal Messages for the Expert, Farmer, Experienced and Inexperienced Groups as derived from Galileo (TM) A.M.G.	191
10:2	Beta Weights of the Concepts with variance Pooled Across Groups	197

LIST OF FIGURES

FIGU	FIGURE			
	2:1	Diagrammatic Representation of the Fishbein and Ajzen Model	14	
	2:2a	Fishbein and Ajzen Model	18	
	2:2b	Management version Fishbein and Ajzen Model	18	
	2:3	Diagrammatic Representation of the Conceptual Behavioural Model utilised by Galileo Theory	23	
	2:4	Kellian Approach to Self Directed Learning	31	
	2:5	Resource Model of Extension	34	
	4:1	Three Points on a Rhiemann Plane	66	
	4:2	Hypothetical Representation of MDS Space	68	
	4:3	Hypothetical Representation of a MDS Space - Compound Messages	69	
	5:1	Study Area	79	
	5:2	Distribution of Lambing Performance and Location of Study Sample throughout the Study Area	85	
	6:1	Impact of Birthweight of Lambs on the number of Lambs Weaned per Lambs Born	93	

6:2	The Effects of Undernutrition during the Second and Third Months of Pregnancy on the Size of Placentae and Foetuses at Day 90 of Gestation	96
6:3	Feed Demand Profiles for 2000 Ewe Flock plus Replacements at Two Levels of Fecundity	102
7:1	Comparison of Initial Survey Respondents and Paired Comparison Respondents, based upon their Average Lambing Percentage	126
8:1	Evaluative Attitude - Principal Belief Measures for the Expert Group	137
8:2	Principal Belief - Evaluative Attitude Measures for the Experienced Group	138
8:3	Principal Belief - Evaluative Attitude Measures for the Inexperienced Group	140
8:4	Intergroup Comparison between the Expert, Experienced and Inexperienced Groups based on the Mean Principal Belief, Evaluative Attitude Measures with respect to Reduced Stocking Rates	141
8:5	Intergroup comparison between the Expert, Experienced and Inexperienced Groups based on the Mean Principal Belief, Evaluative Attitude Measures with respect to Ewe	141

Body Condition in Pregnancy

8:6	Intergroup comparisons between the Expert, Experienced and Inexperienced Groups based on the Mean Principal Belief, Evaluative Attitude Measures with respect to Multiple Lamb Survival	141
8:7	Intergroup comparisons between the Expert, Experienced and Inexperienced Groups based on the Mean Principal Belief, Evaluative Attitude Measures with respect to Multiple Lamb Birthweight	141
8:8	Intergroup comparisons between the Expert, Experienced and Inexperienced Groups based on the Mean Principal Belief, Evaluative Attitude Measures with respect to Multiple Lamb Growth Rates	141a
8:9	Intergroup comparisons between the Expert, Experienced and Inexperienced Groups based on the Mean Principal Belief, Evaluative Attitude Measures with respect to Controlled Set Stocking	141a
8:10	Intergroup comparisons between the Expert, Experienced and Inexperienced Groups based on the Mean Principal Belief, Evaluative Attitude Measures with respect to Later Lambing Dates	141a
8:11	Intergroup comparisons between the Expert, Experienced and Inexperienced Groups based on the Mean Principal Belief, Evaluative Attitude Measures with respect	141a

to Summer Pasture Control

.

8:12	Spatial Representation of Expert Cognitive Structure	154
8:13	Spatial Representation of Farmer Cognitive Structure	157
8:14	Spatial Representation of Experienced Farmers Cognitive Structure	159
8:15	Cognitive Structure of the Inexperienced Farmer Group	161
9:1	Two Dimensional Representation of Concepts located Within Two Co-ordinate Sets based upon Common Dimensions	165
9:2	Multiple Discriminant Analysis based on the Principal Belief Measures for the Expert, Experienced and Inexperienced Groups	176
9:3	Multiple Discriminant Analysis based on the Evaluative Attitude Measures for the Expert, Experienced and Inexperienced Groups	180
9:4	Multiple Discriminant Analysis based upon the Overall Attitude Index for the Expert, Experienced and Inexperienced Groups	186
10:1	Theoretical Representation of the Simple Message - Later Lambing is essential to High Fecundity Sheep Management	190

ACKNOWLEDGEMENTS

The research reported within this thesis grew from the stimulation and support from several people. In particular the input of Professor R. J. Townsley for his academic stimulation and standards that encouraged me to challenge and enhance my knowledge is most willingly acknowledged - surely this is the aim of post graduate study.

To Mr John Cary of Melbourne University who took me through the vagueries of the computer programmes used in this study and for his direction through the difficulties encountered. John my thanks to your wife and family also for their hospitality and humour.

The farmers who took the time and inconvenience to discuss their views with me are recognised in that without their efforts there would be no research.

The many individuals I encountered at Massey were a highlight -Anton on the squash courts, Smithy and his Frog, the many cricketers and all the others.

To my wife - Raewyn considerable frustration and sacrifices that you in particular made can never be repaid, but I'll try.

Finally to my parents who always encouraged academic enhancement, especially my father who was unable to see the end result of my Masterate, I can only hope it approaches the excellent standards of his own workmanship.

All omissions and errors are the sole responsibility of the author.