Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

APPLICATION OF LINEAR PROGRAMMING TO FARM MANAGEMENT ANALYSIS: INTENSIVE BEEF GRAZING SYSTEMS

A thesis presented in partial fulfilment of the requirements for the degree of Master of Agricultural Science in Farm Management at Massey University.

Alan F. McRae * September 1975.

TABLE OF CONTENTS

TABLE	OF CONT	ENTS	Page i i
LIST OF FIGURES			vii
ACKNOWLEDGEMENTS			ix
ABSTRACT			3 5.
CHAFTE	R ONE:	MOTIVATION, OBJECTIVES AND OUTLINE OF STUDY	
1.1	Introd		1
		Intensive Grazing Systems	1
1.2		tion for This Study	3
		The Systems Research Concept	4
		The Usefulness of Mathematical	
٠,		Systems Models	9
1.3	Object	ives of the Study	10
		Outline	10
	21101320	***	
CHAPTE	R TWO:	THE BEEF GRAZING SYSTEM	
2.1	Introd	uction	12
2.2	Compon	ents of the Grazing System	12
	2.2.1	Interaction of the System Components	
		Over Time	14
	2.2.2	Uncertainty Within the System	17
	2.2.3	Summary of System Components	18
2.3	Resear	ch Work on the Components of a Beef	
	Grazin	g System	18
	2.3.1	Pasture Production and Grazing	
		Management	19
	2.3.2	Animal Production and Feed	
		Requirements	22
	2.3.3	The Use of Research Data in This	
		Study	2.4
2.4	System	Modelling Studies on Beef Production	
	in New	Zealand	25
	2.4.1	The Profitability Studies of Lattimore	
		(1970) and Lowe (1971)	25
	2.4.2	The Simulation Study of Wright,	
		Vallance and Nicol (1973)	27
2 5	1 Daim	Parming Cyatema Madalling Chydy	20

	2 (Page
	2.6	The Comparison of Linear Pr		
		Simulation as a Technique:	for Studying	0.0
	0 5	Grazing Systems		30
	2.7	The Model Used		31
	2.8	Summary		32
C				
CI		R THREE: PASTURE GROWTH		2.3
		Introduction	- Al - 6 T) 4	33
	3.2	Factors Affecting the Regro		33
		3.2.1 The Pasture Regrowth		33
		3.2.2 Changes in the Grown	In Curves	2.4
		Throughout the Year		34
		3.2.3 The Effect of Manage	ement on Pasture	2.4
		Growth		34
		3.2.4 The Effect of Grazin	ig Animals on	2.0
		Pasture Production		39
		3.2.4.1 The Number		39
		3.2.4.2 The Treading	ng Effects of	
		Animals		40
		3.2.4.3 The Effect		41
	3.3	Pasture Production Data Use	· ·	42
		3.3.1 Assumptions Involved	l in Defining	
		Pasture Regrowth		4.5
	3.4	The Pasture Production Mode	el	46
		3.4.1 Pasture Production	Possibilities	
		Within the Model		46
		3.4.2 The Structure of the	e Model	51
		3.4.3 The Representation	of the Grazing	
		Process by the Mode	1	53
		3.4.3.1 The Length	of Spell Between	
		Grazings		53
		3.4.3.2 The Height	to Which Pasture is	
		Grazed		54
		3.4.4 Comment on the Leng	th of Spell Options	
		Within the Pasture	Production Model	56
	3.5	DM Production Associated w	ith the Pasture	
		Production Activities		58
	3.6	Limitations in the Pasture	Production Model	51
	3.7	Annual DM Production from	the Pasture	
		Thursday Adams Maylan		()

2 0	C			Page
3.8	Summar	Ý		65
CN L f & NOTE OF				
		ANIMAL PRODUCTION		
	Introd			66
4.2		take-of Grazing Beef Ani		66
	4.2.1	Factors Affecting the I		
		Intake of Grazing Beef		69
	4.2.2	Factors that Affect the	: Shape of the	
		Function Relating Avail	able Pasture	
	*	to Intake		70
4.3	The Re	eresentation of Animal l	ntake Within	
	the Mo	del		75
4.4	The Co	nversion of Feed Intake	into Animal	
	Produc	tion		77
	4.4.1	The Energy Value of Fee	÷d	77
	4.4.2	Systems for Expressing	Feed Require-	
		ments		08
		4.4.2.1 Published Feed	ling Standards	82
4.5	Feedin	g Standards Used in this	Study	86
	4.5.1	Calculation of Feed Rec	quirements	86
		4.5.1.1 The Relationsh	rip Between	
		Animal Livewei	ght and Main-	
		tenance Requi:	ement	86
		4.5.1.2 The Relationsh	rip Between	
		Animal Livewei	ght Level	
		of Performance	(L.W.G.)	
		and Production	Requirement	87
		4.5.1.3 The Effect of	Pasture Quality	
		on Feeding Sta	indards	91
		4.5.1.4 A Consideration	on of	
		Compensatory (Growth	92
		4.5.1.5 The Significan		, –
	*		in) Restrictions	
		in the Feed Re		
		Model	•	93
4.6	Summa r			94
		/		-

	CHAPTE	CR FIVE:	MODEL EXPERIMENTATION AND RESULTS	Page
	5.1	Introd	uction	96
	5.2	Animal	s Considered in the Study	96
	5.3	The St	ocking Rate Decision	97
		5.3.1	BEEF Production Systems	97
		5.3.2	Maximization of Stocking Rates for	
			BEEF Activities	99
		5.3.3	Conditions that Prevent Further	
			Increases in Stocking Rate for BEEF	
			Systems	104
			5.3.3.1 BEEF 1	104
			5.3.3.2 BEEF 2	104
ĭ			5.3.3,3 BEEF 3	105
			5.3.3.4 BEEF 4	105
	5.4	Discus	sion on Maximum Stocking Rates for	
		BEEF S	ystems	105
	5.5	Grazin	g Management Plans	108
		5.5.1	Comparison of Grazing Management Plans	
			for BEEF1 and BEEF2	120
		5.5.2	Comparisons of Grazing Management	
			Plans that Maximize Stocking Rate for	
			BEEF2 with BEEF3 and BEEF4	121
	5.6	Relati	ng Grazing Management Plans to Farmer	
		Practi	ce	
		5.6.1	Uses of the Model for Grazing Manage-	
			ment Studies	12 5
	5.7	Supple	mentary Feeding	126
		5.7.1	Hay and Silage Making Activities	126
		5.7.2	Supplementary Feeding Activities	128
		5.7.3	Experimentation with Supplementary	
			Feeding Possibilities	129
		5.7.4	Discussion on the Increased Stocking	
			Rate Due to Supplementary Feeding	131
		5.7.5	Further Experimentation Possible With	
			the Model Including Supplementary	
			Feeding Possibilities	132
	5.8	Summar	У	133

CHAPTE	R SIX:	EVALUATION OF STUDY	Page
6.1	Introduc	tion	134
6.2	Verifica	tion of the Model	135
	6.2.1 F	asture Production	135
	6.2.2 A	nimal Production as a Function of	
	I	ntake	136
6.3	Analysis	of Farm Management Problems Using	
	L.P. Mod	els	138
6.4	Evaluati.	on of Study	1.41
AFFEND	IX ONE:	THE PASTURE PRODUCTION MODEL	143
APPEND	IX TWO:	BEEF ACTIVITIES	148
AFPEND:	IX THREE:	SHADOW FRICES ASSOCIATED WITH THE	
		MAXIMUM STOCKING RATE FROM BEEFZ	150
APPEND:	IX FOUR:	THE SUPPLEMENTARY FEEDING MODEL	153
BIBLIO	CD DLIV	Disc.	157
	J21114 111		1 1

LIST OF FIGURES

E	ig.		Page
	1.1	Two Aspects of Systems Analysis in Relation	
		to Systems Synthesis	7
	2.1	Components of a Beef Production System	13
	2.2	Interrelationships Between Variables that	
		Affect Production in the t'th Period of the	
		Year	16
	2.3	The Evolutionary Development of Grazing	
		Management Systems	
	3.1	Generalized Pasture Regrowth Curve	35
	3.2	Representation of Hypothetical Management	
		Decisions	37
	3.3	Pasture Regrowth and Daily Increments in	
		DM/ha., After HIGH and LOW Defoliation	44
	3.4	Pasture Production After Grazing HIGH and	
		LOW in Period (t)	62
	3.5	Grazing Pattern for Maximum Annual DM	
		Production from the Model	64
	4.1	Actual Daily Intake/Head as a Function of	
	T. I	Available Feed/Head	68
	4.2	A Relationship Between Pasture Available/	00
	1,2	Animal and Intake/Animal	72
	4.3	A Generalized Representation of the Results	12
	1.5	of Reardon (1975)	74
	4.4	Partitioning of Feed Energy Within the	
		Ruminant	7 8
	4.5	Partitioning of Available Energy	79
	4.6	Comparison of the Feeding Standards of Lowe	
		(1971), Jagusch (1973), and Those Shown in	
		Table 4.1; for Three Levels of Liveweight	
		Gain, and Three Liveweights	85
	4.7	Maintenance Requirement as a Function of	0.5
	- • •	Liveweight	88

4.8	Maintenance Requirement as a Function of	
	(Liveweight) ^{0.75}	88
4.9	Liveweight Gain as a Function of Production	n
	Intake/(Liveweight) ^{0.75}	90
	-	
5.1	Patterns of Liveweight Achieved by Animals	
	in Beef Production Systems at Maximum	
	Stocking Rates	101
5.2	Daily Liveweight Gain Achieved	102-103
5.3-5.6	Period Feed Requirements for BEEF 1, 2,	
	3 and 4, at Maximum Stocking Rates	109-112
5.7-5.10	Grazing Management Plan for BEEF 1, 2,	
	3 and 4	115-118
5.11	The Fate of 27 ha. Grazed LOW in Period	
	(1)	124
1		

ACKNOWLEDGEMENTS

The author would like to formally express his gratitude to Professor Robert J. Townsley, Professor of Agricultural Economics and Farm Management, Massey University, for supervision of the study. The time spent by Professor Townsley assisting the author with interpretation of results and presentation of this thesis is particularly appreciated.

The author benefited from discussions with several other staff members at Massey University, especially Dr. A. Wright and Dr. A.W.F. Davey.

The staff of the Massey University Computer Unit have been particularly helpful.

The Ministry of Agriculture and Fisheries have been tolerant employers throughout the somewhat extended duration of this study. Their financial assistance is gratefully acknowledged.

The author is appreciative of the efficient manner in which Mrs. Hilde Godenho typed the bulk of this thesis. Thanks are also due to Miss Cathey Harris for typing parts of the thesis, and Mr. Rick Godenho for assistance in presentation of many of the text diagrams and tables.

The author would also like to thank many others, friends and flatmates, who helped make the period of this study a more enjoyable time than it may have otherwise been.

Finally, thanks are due to the author's parents for the interest they have shown, and the encouragement they have offered in this and earlier studies.

ABSTRACT

In the absence of quantitative data from the practical farm situation, Linear Programming (L.P.), was used as a framework for collecting research information on an intensive beef grazing system.

Three hundred pasture production activities were defined so that pasture was available for grazing at two grazing severities in each of 30 periods throughout the year, after a range of spelling lengths. Seventeen supplementary feedmaking activities allowed hay or silage to be made over the late spring, early summer period. Supplementary feed could be fed out in any period of the year subject to the constraint that per animal intake of supplementary feed did not exceed maintenance requirement.

Animals considered by the model are Friesian bulls purchased at three months of age, and 100 Kg. liveweight, and grazed within the system for 12 - 18 months, until they reached a liveweight of 380 Kg. Animal requirements were calculated as a function of liveweight and level of liveweight gain. These requirements were expressed in terms of pasture dry matter per animal, and were adjusted for assumed changes in the available energy (M.E.) content of pasture throughout the year.

Although the model could not be verified in relation to the real-life situation, due to lack of quantitative data, the capability of the model for solving farm management problems was investigated. An iterative procedure for solving the stocking-rate decision was developed, and results presented and analysed. The use of the model for investigation of beef farm management problems was discussed.