Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

SMART ELECTROCHEMICAL SENSING SYSTEM FOR THE REAL TIME DETECTION OF ENDOCRINE DISRUPTING COMPOUNDS AND HORMONES

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Electronics Engineering

at Massey University, Manawatu, New Zealand

ASIF IQBAL ZIA

30th October,

2014

Dedications

In the name of Allah the most beneficent and the most merciful

To my parents Mr Sher Afzal Zia Mrs Shamim Akhter

To my wife *Mrs Nazia Asif*

&

To my boys Muhammad Shaheryar Asif Muhammad Asfandyar Asif Muhammad Abdur-Rehman Bin Asif

Abstract

Presented research work has not only provided a real-time tool to perform week-long chemical and bio-chemical assays in minutes yet, it had been operating as a source of community awareness about the said chemicals that we keep ingesting knowing or unknowingly. Phthalates are the most ubiquitous chemicals that pose a grave danger to the human race due to their extraordinary use as plasticizer in consumer product industry. All contemporary detection methods require high level of skills, expensive equipment and long analysis time as compared to the technique presented in this research work that introduces a real time non-invasive assay. A novel type of silicon substrate based smart interdigital sensor fabricated by employing thin film microelectromechanical semiconductor device fabrication system technology. Electrochemical Impedance Spectroscopy was used in conjunction with the fabricated sensor to detect hormones and phthalates in deionized water. Various concentrations of phthalates as low as 2 parts per billion to a higher level of 2 parts per million in deionized water were detected distinctively using new planar ID sensor based EIS sensing system. The sensor was functionalized by a self-assembled monolayer of 3aminopropyltrietoxysilane with embedded molecular imprinted polymer to introduce selectivity for the phthalate molecule. Spectrum analysis algorithm interpreted the experimentally obtained impedance spectra by applying complex nonlinear least square curve fitting in order to obtain electrochemical equivalent circuit and corresponding circuit parameters describing the kinetics of the electrochemical cell. Principal component analysis was applied to deduce the effects of surface immobilized molecular imprinted polymer layer on the evaluated circuit parameters and its electrical response. The results obtained by the testing system were validated using commercially available high performance liquid chromatography diode array detector system.

Research Outputs

The research outputs which have been published are listed below. The research outputs are in conjunction with the author's PhD candidacy:

Journals

- <u>A. I. Zia</u>, S. C. Mukhopadhyay, P.-L. Yu, I. Al-Bahadly, C. P. Gooneratne, and J. Kosel, "Rapid and molecular selective electrochemical sensing of phthalates in aqueous solution," *Biosensors and Bioelectronics*, 2014. http://www.sciencedirect.com/science/article/pii/S0956566314006460
- <u>A. Zia</u>, S. Mukhopadhyay, P. Yu, I. Al-Bahadly, C. Gooneratne, and J. Kosel, "Post Annealing Performance Evaluation of Printable Interdigital Capacitive Sensors by Principal Component Analysis," *Sensors Journal, IEEE*, vol. 67, pp. 342-349, **2014**.
- <u>A. I. Zia</u>, M. S. A. Rahman, S. C. Mukhopadhyay, P.-L. Yu, I. Al-Bahadly, C. P. Gooneratne, J. Kosel, and T.-S. Liao, "Technique for rapid detection of phthalates in water and beverages," *Journal of Food Engineering*, vol. 116, pp. 515-523, 2013.
- <u>A. I. Zia</u>, A. M. Syaifudin, S. Mukhopadhyay, P. Yu, I. Al-Bahadly, C. P. Gooneratne, J. Kosel, and T.-S. Liao, "Electrochemical impedance spectroscopy based MEMS sensors for phthalates detection in water and juices," *Journal of Physics*: vol. 439, p. 012026, **2013**.

Proceedings and Conference Papers

 <u>A. I. Zia</u>, S. C. M. P.L.Yu, I. H. Al Bahadly, "Development and evaluation of portable low cost testing system for phthalates," in *eighth International Conference on Sensing Technology (ICST)*, 2014, S2IS, vol. 7, pp. 385 – 391

- <u>A. I. Zia</u>, S. C. Mukhopadhyay, P.-L. Yu, I. Al-Bahadly, C. P. Gooneratne, and J. Kosel, Poster presentation for "Rapid and molecular selective electrochemical sensing of phthalates in aqueous solution," 24th Anniversary World Congress on Biosensors, 27-30 May 2014, Melbourne, Australia.
- <u>A. I. Zia</u>, S. Mukhopadhyay, I. Al-Bahadly, P. Yu, C. P. Gooneratne, and J. Kosel, "Introducing molecular selectivity in rapid impedimetric sensing of phthalates," in *Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2014 IEEE International*, 2014, pp. 838-843
- <u>A. I. Zia</u>, A. R. Mohd Syaifudin, S. C. Mukhopadhyay, I. H. Al-Bahadly, P. L. Yu, C. P. Gooneratne, J. Kosel, and T.-S. Liao, "MEMS based impedimetric sensing of phthalates," in *Instrumentation and Measurement Technology Conference (I2MTC), 2013 IEEE International*, 2013, pp. 855-860.
- <u>A. I. Zia</u>, S. C. M. P.L.Yu, I. H. Al Bahadly, "Ovarian Hormone Estrone Glucuronide (E1G) Quantification- Impedimetric Electrochemical Spectroscopy Approach," in *Seventh International Conference on Sensing Technology (ICST), 2013*, 2013, pp. 22 - 27.
 - A. Syaifudin, <u>A. I. Zia</u>, S. Mukhopadhyay, P. Yu, C. P. Gooneratne, and J. Kosel, "Improved detection limits of bacterial endotoxins using new type of planar interdigital sensors," in *Sensors*, 2012 IEEE, 2012, pp. 1-4.
- <u>A. I. Zia</u>, A. Mohd Syaifudin, S. Mukhopadhyay, P. Yu, I. Al-Bahadly, J. Kosel, and C. Gooneratne, "Sensor and instrumentation for progesterone detection," in *Instrumentation and Measurement Technology Conference (I2MTC), 2012 IEEE International*, 2012, pp. 1220-1225.

 Asif. I. Zia, A.R. Mohd Syaifudin, S.C. Mukhopdhyay, I. H. Al-Bahadly and P.L. Yu, C.P. Gooneratne and Jürgen Kosel. "Development of Electrochemical Impedance Spectroscopy Based Sensing System for DEHP Detection". Proceeding of 5th International Conference on Sensing Technology (ICST 2011), Palmerston North, New Zealand. pp. 703 – 711. 28th Nov – 1st Dec 2011. IEEE Catalog Number: CFP1118E-CDR. ISBN: 978-1-4577-0167-2.

Seminars

- "Real-time low-cost assay for the selective detection of endocrine disrupting compounds and hormones." Programme of Massey University Pakistani Students Association, Postgraduate Student Presentations, 28th 29th October, 2014, Massey University, Palmerston North New Zealand.
- 2 "Development and evaluation of portable low cost testing system for the selective detection of endocrine disrupting compounds and hormones" Programme of IEEE Central Section, New Zealand Chapter IEEE Student Presentations, 18th September, 2014, Victoria University, Wellington, New Zealand.
- ³ "Post anneal performance evaluation of interdigital capacitive sensors for the selective detection of endocrine disrupting compounds and hormones" Electronics, Information and Communication System (EICS) Seminar, 30th July 2014. School of Engineering and Advanced Technology, Massey University, Palmerston North. New Zealand.
- 4 "Electrochemical Impedance Spectroscopy; a rapid detection tool for reproductive hormones and toxins" Electronics, Information and Communication System (EICS) Seminar, 15th September 2013. School of Engineering and Advanced Technology, Massey University, Palmerston North. New Zealand.
- 5 "Electrochemical capacitive sensing of alcohol in human breath " Programme of IEEE Instrumentation and Measurement Society New

Zealand Chapter Workshop on Smart Sensors, 18th -19th February, 2013, University of Waikato, Hamilton, New Zealand.

- 6 "Detection of Phthalates in water and beverages; interdigital sensors based electrochemical impedance spectroscopy approach" Programme of IEEE Central Section, New Zealand Chapter IEEE Student Presentations, 7th September, 2012, Massey University, Palmerston North New Zealand.
- 7 "Phthalates detection in using interdigital sensors based system" Electronics, Information and Communication System (EICS) Seminar, 2nd August 2012. School of Engineering and Advanced Technology, Massey University, Palmerston North. New Zealand.
- 8 "Improvements in detection limits for phthalates in aqua baverages " Programme of IEEE Instrumentation and Measurement Society New Zealand Chapter. Workshop on applications to agriculture and environment monitoring, 11th -12th April, 2012, Lincoln University, Christchurch, New Zealand.
- 9 "Smart sensing system for detection of reproductive hormones and toxins" PhD confirmation seminar. 20th October 2011. School of Engineering and Advanced Technology, Massey University, Palmerston North. New Zealand.
- 10 "A review of Smart materials and sensors for energy harvesting applications" Programme of IEEE Instrumentation and Measurement Society New Zealand Chapter Workshop on Sensors and Instrumentation in Environmental Health and Agriculture Applications, 1st ,2nd September, 2010, Massey University, Wellington.

Awards

- 1. HEC, Govt. of Pakistan Doctoral Scholarship Award, January 2010
- 2. Cash Award US\$750 travel grant for paper presentation, "Introducing molecular selectivity in rapid impedimetric sensing of phthalates," in *Instrumentation and Measurement Technology Conference (I2MTC) held in Montevideo, Uruguay 12-15 May 2014.*

Acknowledgements

All praises and thanks are for Allah the All-Mighty for His blessing and benevolence. I wish to acknowledge the people who have helped and supported me throughout the Ph.D program and also their contributions towards the completion of the thesis.

I would like to express my deepest gratitude to Professor Dr Subhas Chandra Mukhopadhyay, Associate Professor Dr. Pak-Lam Yu and Associate Professor Dr. Ibrahim Al-Bahadly for their support and supervisions. Thank you for the invaluable guidance, constructive criticisms and opinions and constant encouragement throughout this study.

I would like to express my sincere thanks to Dr. Chinthaka Gooneratne, Dr. Jürgen Kosel, Dr. Amri Mohd Yunus, Dr. Muhammad Syaifuddin, Mr. Hemant Ghayvat, Mrs. Li (Shelly) Xie, Miss Apeksha Rao and Mr. Anindya Nag for their active collaborations in the research. Also, to Mrs. Michele Wagner, Ms. Trish O'Grady, Mrs. Ann-Marie Jackson, Mrs. Judy, Ms. Julia Good, Mr. Ken Mercer, Mr. Collin Plaw, Mr. Bruce Collins, Mr. Doug, Mr. John Sykes, Mr. John Edwards, Mr. Ian Thomas, Mrs. Lisa Lightband, Mr. Conal Hodgetts and Mr. Brendon, for your assistance and support during my research were most appreciated.

I want to pay special gratitude to my beloved parents Mr. Sher Afzal Zia and Mrs. Shamim Akhter, siblings Gulnaz, Atif Zia, Iram and Wajahat for their selfless and fruitful prayers, family and friends for their unconditional love and support for my success. Also, I would like to thank Massey University, Higher Education Commission of Pakistan (HEC) and COMSATS University for the financial support and assistance.

Last but not the least; I am indebted to my wife Mrs. Nazia Asif, who has sacrificed her time accompanying me in New Zealand. Thank you for your love, support, patience and encouragement throughout my study. To my lovely and my wonderful boys Sherry, Muhammad and Abdur-Rehman, thank you for your patience and being such wonderful companies through my years of study in New Zealand.

Abstract		iii
Acknowled	lgements	ix
Table of C	ontents	xi
Table of Fi	igures	XV
List of Tak	bles	xix
Abbroviat	ad Tarms	vv
ADDIEviau		
Chapter 1	Introduction	1
1.1 H	Iormones and Endocrine Disrupting Compounds	1
1.2 R	Receptor-ligand binding assays	4
1.2.1	Radio Receptor Assay (RRA)	5
1.2.2	Scintillation Proximity Assay (SPA)	5
1.2.3	Fluorescence Resonance Energy Transfer (FRET)	6
1.2.4	Fluorescence Polarization (FP)	8
1.2.5	Fluorometric Micro volume Assay (FMAT)	8
1.2.6	AlphaScreen TM	9
1.2.7	Flow Cytometry	9
1.2.8	Fluorescence Correlation Spectroscopy (FCS)	10
1.3 II	mmunoassay	10
1.3.1	Surface Plasmon Resonance (SPR)	
1.3.2	Total Internal Reflection Fluorescence (TIRF)	13
1.3.3	Ellipsometry	14
1.3.4	Nuclear Magnetic Resonance Spectroscopy	14
1.3.5	Amperometric Immunosensors	15
1.3.6	Conductimetric Immunosensors	15
1.3.7	Surface Acoustic Wave Immunosensors (SAW)	16
1.3.8	Enzyme-linked Immunosorbent Assay (ELISA)	
1.4 C	Conclusions	
1.5 R	Research Contributions	
1.6 C	Organization of the Thesis	
Chart 3		
Chapter 2	Impedance Spectroscopy and Experimental Setup	23
2.1 li	ntroduction	

Table of Contents

2.2	Electrochemical Impedance Spectroscopy	23
2.2.1	AC bridges	24
2.2.2 Lissajous Curves		24
2.2.3 Fast Fourier Transforms (FFT)		25
2.2.4	2.2.4 Phase Sensitive Detections (PSD)	
2.2.5	2.2.5 Frequency Response Analysis (FRA)	
2.2.0	2.2.6 Electrochemical Impedance Spectroscopy; Theory and Analyses	
2.2.7	7 'Nyquist' and 'Bode' plots for Impedance Data Analysis	
2.2.8	8 Randle's Electrochemical Cell Equivalent Circuit Model	31
2.3	Experimental Setup	
2.3.	Equipment and Instrumentations	
2.3.2	2 Fixture and Test Probe Connections	
2.3.3	RS-232C Interface for 3522-50/3532-50 LCR Hi Tester	
2.4	Conclusions	40
Chapter	3 Novel Interdigital Sensors' Development	41
3.1	Introduction to Interdigital Sensors	41
3.2	Novel Planar Interdigital Sensors	44
3.3	Finite Element Modelling using COMSOL Multiphysics®	45
3.4	Sensors' Fabrication	56
3.5	Sensors' Profiling and Problem Definition	60
3.5.	Connection Pads Soldering	61
3.6	Performance Evaluation	62
3.6.	Experimental Evaluation	62
3.7	Achieving Stability in Sensors' Performance	64
3.7.	Post-fabrication Anneal of ID Sensor	65
3.7.2	2 Results' Validation	67
3.7.2	3 Complex Nonlinear Least Squares Curve Fitting	69
3.7.4	4 Principal Component Analysis (PCA)	72
3.7.5	5 PCA analysis – ECI $(30^{\circ}C - 90^{\circ}C)$ anneal	72
3.7.0	PCA analysis – EC2 (91° C – 150° C) anneal	74
3.7.7	PCA analysis – EC3 $(151^{\circ}C - 210^{\circ}C)$ anneal	76
3.8	Conclusions	79
Chapter	4 Electrochemical Detection of Hormones	81

4.1	Introduction	81
4.2	Detection of Ovarian Hormone Estrone Glucuronide (E1G)	82
4.2	.1 Motivation	82
4.2	.2 Point-of-care Methods	83
4.2	.3 Basal Body Temperature method (BBT)	
4.2	.4 Billings Ovulation Method	83
4.2	.5 Symptothermal Method (STM)	83
4.2	.6 Ovarian Monitor	84
4.2	.7 Materials and Methods to Detect E1G	
4.2	.8 Results and Discussions	86
4.2	9 Electrochemical Impedance Spectroscopy Analyses for E1G	
4.2	.10 E1G Sensitivity Analysis	90
4.3	Electrochemical detection of Progesterone Hormone	92
4.3	1 Motivation	92
4.3	.2 Materials and Methods for Progesterone Detection	94
4.3	.3 Electrochemical Impedance Analyses for Progesterone	95
4.4	Conclusions	99
Chapte	5 Detection of Endocrine Disrupting Compounds	101
Chapter 5.1	5 Detection of Endocrine Disrupting Compounds Introduction	101 101
Chapter 5.1 5.2	5 Detection of Endocrine Disrupting Compounds Introduction Impedimetric Detection of DEHP and DINP	101 101 103
Chapter 5.1 5.2 5.2	5 Detection of Endocrine Disrupting Compounds Introduction Impedimetric Detection of DEHP and DINP	101 101 103 104
Chapter 5.1 5.2 5.2 5.2 5.2	 5 Detection of Endocrine Disrupting Compounds Introduction Impedimetric Detection of DEHP and DINP 1 Motivation 2 Materials and Methods 	101 101 103 104 105
Chapter 5.1 5.2 5.2 5.2 5.2 5.2	 5 Detection of Endocrine Disrupting Compounds Introduction Impedimetric Detection of DEHP and DINP Motivation Materials and Methods 3 DEHP Detection Test in Deionized Water 	101 103 104 105 106
Chapter 5.1 5.2 5.2 5.2 5.2 5.2 5.2 5.2	 5 Detection of Endocrine Disrupting Compounds Introduction Impedimetric Detection of DEHP and DINP Motivation Materials and Methods 3 DEHP Detection Test in Deionized Water 4 Experimental Data Analyses by CNLS Curve Fitting 	101 103104105106108
Chapter 5.1 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	 5 Detection of Endocrine Disrupting Compounds Introduction Impedimetric Detection of DEHP and DINP Motivation Materials and Methods DEHP Detection Test in Deionized Water 4 Experimental Data Analyses by CNLS Curve Fitting 5 Sensitivity Analysis – DEHP 	101 103104105106108110
Chapter 5.1 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	 5 Detection of Endocrine Disrupting Compounds Introduction Impedimetric Detection of DEHP and DINP Motivation Materials and Methods DEHP Detection Test in Deionized Water Experimental Data Analyses by CNLS Curve Fitting Sensitivity Analysis – DEHP DEHP Detection in Commercially Sold Energy Drink 	101103104105106108110111
Chapter 5.1 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	 5 Detection of Endocrine Disrupting Compounds Introduction Impedimetric Detection of DEHP and DINP Motivation Materials and Methods DEHP Detection Test in Deionized Water A Experimental Data Analyses by CNLS Curve Fitting Sensitivity Analysis – DEHP DEHP Detection in Commercially Sold Energy Drink Impedance Measurements of DINP-spiked Ethanol Samples 	101101103104105106108110111113
Chapter 5.1 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	 5 Detection of Endocrine Disrupting Compounds Introduction Impedimetric Detection of DEHP and DINP Motivation Materials and Methods DEHP Detection Test in Deionized Water DEHP Detection Test in Deionized Water Experimental Data Analyses by CNLS Curve Fitting Sensitivity Analysis – DEHP DEHP Detection in Commercially Sold Energy Drink Impedance Measurements of DINP-spiked Ethanol Samples Impedance Measurements of DINP-Spiked Orange Juice 	101101103104105106108110111113115
Chapter 5.1 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	 5 Detection of Endocrine Disrupting Compounds	101 101 103 104 105 106 108 110 110 111 113 115 118
Chapter 5.1 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	 5 Detection of Endocrine Disrupting Compounds	101101103103104105106108110111113115118119
Chapter 5.1 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	 5 Detection of Endocrine Disrupting Compounds	101101103103104105106108110111113115118119119119
Chapter 5.1 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	 5 Detection of Endocrine Disrupting Compounds	101101103103104105106108110111113115118119119119121

6.1.3	EIS for detection of DEHP in MilliQ	
6.1.4	Results and Discussions	
6.1.5	Adsorption studies of DEHP to MIP	127
6.1.6	Static Adsorption of DEHP to MIP	
6.1.7	Uptake Kinetics of MIP Coated Sensor to DEHP	129
6.1.8	Data Analyses Using Non-linear Least Square Curve fitting	130
6.1.9	Results validation by HPLC	
6.1.10	DEHP in Energy Drink – MIP Coated Sensor	134
6.1.11	Conclusions	
Chapter 7	Conclusions and Future Research	
7.1 C	onclusions	139
7.2 F	uture Work	144
7.2.1	Sensitivity and selectivity Improvement	144
7.2.2	Thick Film Electrodes	144
7.2.3	Substrate Type	145
Bibliograp	hy	147

Table of Figures

Figure 1.1 The endocrine system in human body	1
Figure 1.2 Leaching of DEHP and DEP from tetra packaging within expiry date of	
orange packaged orange juice[11]	3
Figure 1.3 Types of phthalates used in industrial sector as plasticizers	4
Figure 1.4 Basic concept of FRET as photophysical process. (A) The plot shows the	
dependence of the FRET efficiency on the proximity of the donor-acceptor	
pair. (B) shows the effect of angle between donor fluorochrome and accept	or
molecule on FRET [25]	7
Figure 1.5 Detection principle of SPR technique[38]	13
Figure 1.6 Schematics of a SAW immunosensor [57]	16
Figure 2.1 Formation of Lissajous Figure	25
Figure 2.2 I-V curve for a non-linear system. Pseudo-linearity of the system is achieved	ed
by considering a small part of the curve	27
Figure 2.3 Phase shift in current I_t as a response to excitation potential E_t in a linear	
system	28
Figure 2.4 Flow chart for the measurement and characterization of a material-electrod	e
system by EIS [77]	31
Figure 2.5 Kinetic processes taking place at electrode-electrolyte interface (Randle's	
cell model)	32
Figure 2.6 Randle's electrochemical cell equivalent circuit model	32
Figure 2.7 Nyquist plot for Randle's electrochemical cell model [79]	34
Figure 2.8 Bode plot for Randle's electrochemical cell model[79]	35
Figure 2.9 Extraction of component parameters from Bode plot[79]	35
Figure 2.10 Laboratory Test bench with Hioki Hi Precision LCR and data acquisition	
system.	36
Figure 2.11 Hioki (Japan) 3522-50 LCR Hi-tester	37
Figure 2.12 Connecting LCR3522-50/3532-50 to the 9262 Test fixture and developed	L
interdigital sensing system	38
Figure 3.1 Planar interdigital sensor geometry	42
Figure 3.2 Concept of transformation (a) parallel plate capacitor (b) transformation to	
planar geometry (c) coplanar structure.	43

Figure 3.3 The penetration depth of electric field lines is proportional to the electrode	
spatial period λ	44
Figure 3.4 Excitation pattern for multi sensing electrode ID sensor geometry	45
Figure 3.5 COMSOL geometric models of ID sensors with 25 μ m pitch length	47
Figure 3.6 COMSOL geometric models of ID sensors with 50 um pitch length	48
Figure 3.7 1-5-50 Sensor structure; Silicon substrate (bottom) MUT (top)	48
Figure 3.8 Potential distribution modelling in COMSOL for (a) 1-5-25, (b) 1-5-50	50
Figure 3.9 Potential distribution modelling in COMSOL for (c) 1-11-25 and (d) 1-11-5	0
ID sensors	51
Figure 3.10 Modelled Capacitance for ID sensors	52
Figure 3.11 Modelled Capacitance of single ID capacitor feature on each sensor	53
Figure 3.12 Electric field and penetration depth simulation using COMSOL (a) 1-5-25,	,
(b) 1-5-50	54
Figure 3.13 Electric field and penetration depth simulation using COMSOL (c) 1-11-25	5
and (d) 1-11-50 ID sensors	55
Figure 3.14 1-5-25 sensor: basic design geometry and dimensions	57
Figure 3.15 Interdigital electrode fabrication configurations	57
Figure 3.16 Fabrication process for all four types of sensors	58
Figure 3.17 Steps involved in coating 1 μ m passivation layer of Parylene C	59
Figure 3.18 (a) 36 Workable sensors fabricated on one wafer (b) Individual sensor	
shown against scale	60
Figure 3.19 Impedance characteristics using same sensor before (a) and after (b)	
soldering	62
Figure 3.20 Cole-Cole plot for 1-1-50B 'as is' fabricated sensor's test in air at 44%	
humidity and 23.3°C temperature at different times	63
Figure 3.21 Cole-Cole plot for 1-1-50A sensor's test in air at 44% humidity and 23.3°C	1
temperature at different times	63
Figure 3.22 SEM image of the fabricated electrode shows roughness of electrodes due	
to DC magnetron sputtering process	65
Figure 3.23 Annealing sensors in vacuum oven in Micro-Suit	67
Figure 3.24 Nyquist plot for EIS during annealing process at 30, 60, 90, 120, 150, 180,	
and 210 ° C	68
Figure 3.25 Nyquist plot for improved performance annealed sensors at initial	
temperature and humidity conditions	68

Figure 3.26 SEM image of electrode before (a) and after (b) anneal	69
Figure 3.27 EC1 CNLS equivalent circuit for 30-90°C	71
Figure 3.28 EC1 fitted curve (30-90°C)	71
Figure 3.29 EC2 CNLS equivalent circuit for 91-150°C	71
Figure 3.30 EC2 fitted curve (91-150°C)	71
Figure 3.31 EC3 CNLS equivalent circuit for 151-210°C	71
Figure 3.32 EC3 fitted curve (151-210°C)	71
Figure 3.33 Component Plot ECI (30°C – 90°C) anneal	73
Figure 3.34 Scree Plot ECI (30°C – 90°C) anneal	74
Figure 3.35 Component Plot EC2 (91°C – 150°C) anneal	75
Figure 3.36 Scree Plot EC2 (91°C – 150°C) anneal	76
Figure 3.37 Component Plot EC3 (151°C – 210°C) anneal	77
Figure 3.38 Scree Plot EC3 (151°C – 210°C) anneal	78
Figure 4.1 Mean hormonal values of estrone glucuronide (EIG) (-•), LH (- \Box -), and	
pregnanediol glucuronide (PG) (- \triangle -) by cycle day throughout 78 ovulatory	
cycles from 25 women [107]	82
Figure 4.2 Dip test method for EIG testing	85
Figure 4.3 Laboratory test bench for EIG testing	86
Figure 4.4 Real and imaginary parts of the measured impedance for E1G	87
Figure 4.5 Nyquist (Cole-Cole) plot for the impedance measurements of E1G	88
Figure 4.6 Electrochemical equivalent circuit extracted by CNLS curve fitting	89
Figure 4.7 CNLS curve fitting of Nyquist plot by spectrum analyser for the highest	
concentration of EIG 33.33nmol/L.	89
Figure 4.8 %age sensitivity of the real part of impedance (Re).	91
Figure 4.9 % age sensitivity of capacitive reactance (X).	91
Figure 4.10 Progesterone concentration level during 21 days reproductive cycle of da	iry
cows [12]	92
Figure 4.11 Real and Imaginary Impedance (reactance) characteristics	95
Figure 4.12 Bode plot for progesterone detection in deionized water	96
Figure 4.13 Nyquist plot for progesterone detection in DI water	97
Figure 4.14 Z _{imag} (X) %Sensitivity	98
Figure 4.15 Z _{real} (R _s)%Sensitivity	98
Figure 5.1 Molecular structure DEHP	104
Figure 5.2 Molecular structure DINP	104

Figure 5.3 Test bench setup	105
Figure 5.4 Dip-test (bulk)	105
Figure 5.5 Imaginary and real parts of impedance measurements for DEHP dip-test	106
Figure 5.6 Nyquist plot for detection of DEHP in DI water	107
Figure 5.7 Equivalent circuit proposed by CNLS curve fitting	108
Figure 5.8 CNLS curve fitting plot for absolute value of Impedance.	109
Figure 5.9 CNLS curve fitting plot for imaginary value of Impedance.	109
Figure 5.10 CNLS curve fitting plot for phase shift (Θ)	109
Figure 5.11 Reactance percentage sensitivity for DEHP in DI water	111
Figure 5.12 Test bench setup for DEHP-spiked energy drinks	112
Figure 5.13 Z_{real} and Z_{imag} for DEHP dip-test of spiked energy drink	112
Figure 5.14 Bode plot showing measured spectra for the spiked drink	113
Figure 5.15 Nyquist plot for DINP concentration test in EtOH	114
Figure 5.16 Real part of impedance for DINP-in-EtOH	115
Figure 5.17 Imaginary Part of Impedance for DINP-in-EtOH	115
Figure 5.18 Real part of measured impedance for DINP in orange juice	116
Figure 5.19 Reactance plot for DINP-in-Orange juice	117
Figure 6.1 Synthesis process of Molecular Imprinted Polymer	120
Figure 6.2 Extraction of template molecule forming molecular recognition site in MI	P 120
Figure 6.3 Polymerisation reaction	122
Figure 6.4 Ploymerized MIP	122
Figure 6.5 Soxhlet Extraction	123
Figure 6.6 Filter caplet 0.22µm	123
Figure 6.7 DEHP extracted MIP	124
Figure 6.8 MIP coated sensor using SAM of APTES	124
Figure 6.9 Confocal micrograph image of MIP coated sensor	124
Figure 6.10 Dip Coating process	125
Figure 6.11 Drying in nitrogen flow	125
Figure 6.12 Laboratory test bench setup for MIP coated sensor	126
Figure 6.13 Isotherm for the static adsorption studies of DEHP to MIP	128
Figure 6.14 Isotherm for adsorption uptake kinetics of DEHP to MIP	129
Figure 6.15 Nyquist plot for EIS testing of MIP coated Sensor	130
Figure 6.16 Equivalent circuit estimated by CNLS analysis	131
Figure 6.17 DIONEX-Ultimate 3000 HPLC apparatus	132

Figure 6.18 Absorption spectrum of DEHP	133
Figure 6.19 MIP eluent tested with HPLC for EIS results validation	133
Figure 6.20 DEHP eluent extracted from MIP immobilized on ID sensor	134
Figure 6.21 Nyquist plot for DEHP spiked drink by MIP coated sensor	135
Figure 6.22 HPLC chromatogram showing the DEHP peaks in the eluent extracted of	ut
of the functionalized MIP	136
Figure 7.1 New sensor design to overcome heat and stray capacitance problems	145

List of Tables

Table 1.1 Endocrine system's glands, hormones and their function	2
Table 1.2 Advantages and disadvantages of contemporary techniques used for	
biochemical analytes	18
Table 2.1 Hioki Hi Precision LCR 3522-50 and 3532-50 Specifications	37
Table 2.2 Hioki Hi Precision LCR test terminals description	38
Table 2.3 LCR testing parameters and calculation equations	39
Table 3.1 Geometric design parameters for all four types of modelled ID sensors	46
Table 3.2 Calculated values of capacitance and total electrical energy stored for all four	ır
sensors using COMSOL Multiphysics®	52
Table 3.3 Component parameters for the best fit circuit	70
Table 3.4 Table of variance ECI $(30^{\circ}C - 90^{\circ}C)$ anneal	73
Table 3.5 Table of variance EC2 (91°C – 150°C) anneal	75
Table 3.6 Table of variance EC3 $(151^{\circ}C - 210^{\circ}C)$ anneal	77
Table 4.1 Equivalent circuit components' parameters deduced by CNLS curve fitting	
technique for electrochemical spectrum analysis	90
Table 4.2 Progesterone in deionized water- Samples' nomenclature and concentration	95
Table 5.1 List of the most ubiquitous EDCs	101
Table 5.2 Risk assessment of phthalates by world agencies [130].	103
Table 5.3 Equivalent circuit parameters evaluated by CNLS algorithm	110
Table 6.1 CNLS curve fitted equivalent circuit parameters	131
Table 6.2 Equivalent circuit parameters evaluated by CNLS fitting for DEHP detection	n
in 'Lift Plus' drink by MIP functionalized sensor	135

Abbreviated Terms

AC	Alternating Current
AFM	Atomic Force Microscope
Alumina-Al ₂ O ₃	Aluminium Oxide
APTES	3-aminopropyltrietoxysilane
Au	Gold
BBP	Butylbenyl phthalate
Bode	Data presentation as a function of frequency
BSA	Bovine serum albumin
С	Capacitance
C_{ad}	Adsoption capacitance
C_{dl}	Double-layer capacitance
CNLS	Complex Non-linear Least Square
CPE	Constant Phase-Element
Cr	Chromium
D	The electric displacement
DBP	Di- <i>n</i> -butyl phthalate
DEHP	Di-(2-ethylhexyl) phthalate
DEP	Di-ethyl phthalate
dH ₂ O	Distilled water
DINP	Di-isononyl phthalate
DMF	dimethyl formamide
DMP	Di-methyl phthalate
DNA	Deoxyribonucleic Acid
DOP	Di- <i>n</i> -octyl phthalate
DUT	Device Under Test
Ε	The electric field intensity
EC	Electrolyte Conductivity
EDCs	Endocrine Disrupting Compounds
EDs	Endocrine Disruptors
EIS	Electrochemical Impedance Spectroscopy
ELISA	Enzyme Linked Immunosorbent Assays
EtOH	Ehanol
EU	Endotoxin Unit
f	Frequency
FDA	United States Food and Drug Administration
FR4	Fiberglass reinforced epoxy laminates for PCB fabrication
FTIR	Fourier Transform Infrared Spectroscopy

GND	Electrical ground
H^+	Hydrogen ions
H _{CUR}	Carries the signal current source.
HPLC	High performance liquid Chromatography
HPLC	High Performance Liquid Chromatography
H _{POT} I	Monitors the excitation potential, V. Current
IDAM	Interdigitated Array Microelectrode
IDES	Interdigitated Electrode Structures
IDTs	Interdigital Transducers
IS	Impedance Spectroscopy
ISE	Ion-Selective Electrodes
ISFET	Ion-Sensitive Field Effect Transistors
LCR3522-50	Measuring instrument for impedance (inductance, capacitance and resistance) (1mHz to 100kHz)
LCR3532-50	Measuring instrument for impedance (inductance, capacitance and resistance) (42Hz to 5MHz)
L _{CUR}	Accepts the signal current return.
LOD	Limit of Detection
LOD	Limit of Detection
L _{POT}	Connected to the sensor's sensing electrodes
MEMS	Micro-electromechanical Systems
MilliQ	Ultra-pure water which undergo the proses filtration and deionisation that has been characterised in terms of resistivity (typically 18.2 M Ω ·cm)
MRL	Minimal Risk Level
MUT	Material Under Test
NaCl	Sodium Chloride
NMR	Nuclear Magnetic Resonance
Nyquist	Data presentation in complex impedance plot
ОН	Hydroxide ions
PC	Principal Component
PCA	Principal Component Analysis
PCB	Printed Circuit Board
PCR	Polymerase Chain Reaction
PDEs	Partial differential equations

PECVD	Plasma enhanced chemical vapour deposition
РЕТЕ	Polyethylene Terephthalate
pH	Potential of Hydrogen
PPB	Parts per billion
PPM	Parts per million
PR	Photo Resist
PVC	Polyvinyl chloride
Q	Charge
θ	Phase Angle, theta
QCM	Quartz Crystal Microbalance
R	Resistance
r ²	Residual mean squares
R_{ct}	Charge/electron transfer resistance
RIE	Reactive ion etching
R_{s}	Solution resistance
RS232	Serial communication port
SAW	Surface Acoustic Wave
SEAT	School of Engineering and Advanced Technology
SEM	Scanning Electron Microscope
Si	Silicon
Si ₃ N ₄	Silicon Nitride
SiO ₂	Silicon Dioxide
SNR	Signal to Noise Ratio
SPR	Surface Plasmon Resonance
SPSS	IBM Statistical Analysis software
σ_{ω}	Warburg coefficient
TDI	Tolerable Daily Intake
TEOS	Tetraethylorthosilicate
ТМАН	Tetra-Methyl Ammonium Hydroxide
UV	Ultra-violet
V	Voltage
W _e	The electrostatic energy density
Z	Impedance
Z_{W}	Warburg impedance
ω	The angular frequency
\mathcal{E}_0	The permittivity of vacuum which sets to be 8.854×10^{-2} F/m
E _r	The relative permittivity
ε	The permittivity
	-