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Abstract

Language modeling has been widely used in the application of natural language

processing, and therefore gained a significant amount of following in recent years.

The objective of language modeling is to simulate the probability distribution for

different linguistic units, e.g., characters, words, phrases and sentences etc, using

traditional statistical methods or modern machine learning approach. In this the-

sis, we first systematically studied the language model, including traditional discrete

space based language model and latest continuous space based neural network based

language model. Then, we focus on the modern continuous space based language

model, which embed elements of language into a continuous-space, aim at finding

out a proper word presentation for the given dataset. Mapping the vocabulary space

into a continuous space, the deep learning model can predict the possibility of the

future words based on the historical presence of vocabulary efficiently than tradi-

tional models. However, they still suffer from various drawbacks, so we studied a

series of variants of latest architecture of neural networks and proposed a modified

recurrent neural network for language modeling. Experimental results show that

our modified model can achieve competitive performance in comparison with exist-

ing state-of-the-art models with a significant reduction of the training time.

This thesis is organized as follows:

1) Language model has become one central component for various applications about

artificial intelligence, therefore, we briefly introduced the objective and basic knowl-

edge of language modeling in Chapter 1.

2) Secondly, we reviewed some closely related literature with our work in Chapter 2

and 3, also point out potential problems of existing models. Variants of Deep Neural

Networks (DNNs) models for language modeling are analyzed in Chapter 3, merits

and shortcomings are presented, some potential solutions to the shortcomings are

also analyzed.

3) Latest popular framework for language modeling and our proposed model are

described in Chapter 4. More details about convolutional neural networks and re-

current neural network are showed before we describing our proposed extension
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framework based on Recurrent Neural Networks model.

4) Experiments and results are presented in Chapter 4. Overall, results with higher

performance have been reported by our proposed framework. The experiments also

shed some light for comprehending and interpreting the success of our proposed

model for language modelling. We argue that our proposed model perform better

than traditional models, due to the ensemble architecture that make it possible to

discover the underlying statistical patterns and amplify the performance of RNN’s

model.

5) We conclude this work in Chapter 6, and predicted the future work. It shows

that apart from the high training (computational) complexity, the extension of RNN

models are much better than the standardized n-gram and simple neural network

based language model in terms of perplexity.
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