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Abstract

This thesis develops a detailed model for the positive
electrode system of an industrial lead-acid traction cell.
This is referred to as the VIAM model since it relates the
positive electrode voltage (V) and cell current (I) to
internal distributions of current, potential, acid
concentration and active mass (AM). The model can simulate
both discharge and charge for a wide range of practical
currents. The model takes account of microstructure,
macrostructure and non-reactive structure in the positive
active mass (AM). It also takes account of other cell
components that affect the supply of acid to the positive
electrode. The model has direct application to fundamental
cell design (for example AM development) and cell systems

design (for example cell charger design).

The model 1is based on established experimental
studies, theories of electrochemical interface reactions
and theories of ionic transport in electrolyte solution.
From this base, three elemental models and an aggregate
model are developed. The elemental models represent details
of the microstructure of the positive electrode AM. The
aggregate model represents the electrolyte mass (acid) and
charge transport system within the positive electrode and
other cell components. The combination of the elemental and
aggregate models make up the VIAM model. The performance of
the VIAM model (and underlying models) is assessed by
comparing model results with findings from experimental
studies in the literature. 1In addition, experiments
undertaken as part of this work are used to test the model.

The model and experimental results are in close agreement.
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Units and Symbols

a) Units.

Normal SI units (Chiswell and Grigg (1971)) are used
throughout this text with the following additions.

i) Hour(s) (abbreviated to hr(s)) is used as a measure

of time (3600 s).

ii) Ampere hour(s) (abbreviated to Ahr(s)) is used as

a measure of electrical charge (3600 A.s).

1ii) Watt hour(s) (abbreviated to Whr(s)) is used as a

measure of energy (3600 W.s).

iv) The gram (abbreviated to g) is used as a measure
of mass (1x10_3 kg) .

These additions are consistent with common practices

in the battery industry.
b) Symbols for units.

Normal SI unit symbols (Chiswell and Grigg (1971))
are used throughout this text with the following additions.

i) Hr (s) for hour(s).

ii) Ahr(s) for Ampere hour(s).
iii) Whr(s) for watt hour(s).
iv) g for the gram.

v) v for the volt.



c) Symbols for variables.

xvii

Symbols for variables are fully defined in the body of

text where they are first used.

d) Symbols for experiment designations.

An example designation for the experiments

performed

in this work is AD100R20. This should be in interpreted as

follows.

1) The first character (A) i1s the cell label that

defines the cell involved (here cell A).

ii) The following four characters (D100) define the

depth of discharge (here 100 Ahrs).

1ii) The last three characters (R20) define the rate

of discharge (here 20 A).





