Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Towards a Comprehensive Model for the Positive Electrode System of a Lead-Acid Traction Cell

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Production Technology at Massey University

Ross Richard Nilson

1989

Massey University Library

Thesis Copyright Form

Titl	e of thes	is: <u>Towards a Comprehensive Model for the</u>
	(Positive Electrode System of a Lead-Acid Traction Cell.
(1)	(a)	I give permission for my thesis to be made available to readers in the Massey University Library under conditions determined by the Librarian.
	()\$K)	I do not wish my thesis to be made available to readers without my written consent for months.
(2)	(a) V	I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.
	(1902	I do not wish my thesis, or a copy, to be sent to another institution without my written consent for months.
(3)	(a) V	I agree that my thesis may be copied for Library use.
	100	I do not wish my thesis to be copied for Library use for months.
		signed Rhilson
	÷	Date 19/12/89

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

here

Cut

DATE

.....

MASSEY UNIVERSITY LIBRARY Th Nil

Massey University Library

Thesis Copyright Form

Title of thesis: ______ Towards a Comprehensive Model for the

Positive Electrode System of a Lead-Acid Traction Cell.

(1) (a) L

())

(a)

(1)

(a) V

()

(2)

(3)

I give permission for my thesis to be made available to readers in the Massey University Library under conditions determined by the Librarian.

I do not wish my thesis to be made available to readers without my written consent for months.

I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.

I do not wish my thesis, or a copy, to be sent to another institution without my written consent for months.

I agree that my thesis may be copied for Library use.

I do not wish my thesis to be copied for Library use for _____ months.

RNilson Signed 19/12

Date

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

DATE

MASSEY UNIVERSITY LIBRARY

here Cut

Abstract

This thesis develops a detailed model for the positive electrode system of an industrial lead-acid traction cell. This is referred to as the VIAM model since it relates the positive electrode voltage (V) and cell current (I) to distributions of current, internal potential, acid concentration and active mass (AM). The model can simulate both discharge and charge for a wide range of practical The model takes account of microstructure, currents. macrostructure and non-reactive structure in the positive active mass (AM). It also takes account of other cell components that affect the supply of acid to the positive electrode. The model has direct application to fundamental cell design (for example AM development) and cell systems design (for example cell charger design).

The based on established model is experimental theories of electrochemical interface reactions studies, and theories of ionic transport in electrolyte solution. From this base, three elemental models and an aggregate model are developed. The elemental models represent details the microstructure of the positive electrode AM. of The aggregate model represents the electrolyte mass (acid) and charge transport system within the positive electrode and other cell components. The combination of the elemental and aggregate models make up the VIAM model. The performance of the VIAM model (and underlying models) is assessed by comparing model results with findings from experimental studies in the literature. In addition, experiments undertaken as part of this work are used to test the model. The model and experimental results are in close agreement.

Acknowledgements

I would like to thank Dr R. I. Chaplin, Professor W. Monteith and Professor R. M. Hodgson for the encouragement and constructive criticism they have offered throughout the course of this work.

Neville Manson, Technical Manager of Chloride Batteries New Zealand Limited, kindly provided technical details for the cell used in experiments performed in this work.

My thanks also to my wife, Mary, who not only managed two very active children, Jonathan and Elissa, without help for many evenings during the preparation of this thesis, but also had enough energy left to proof-read the text.

Contents

Abstract .			•	•	•	•	•	·	ii
Acknowledgmen	ts	•	•	•			•		iii
Contents .		•	•	•	•		•		iv
List of Figur	es	•		•					xi
List of Table	S	•	•	•		•	•	-	xv
Units and Sym	bols		•		•		•	•	xvi
Chapter 1: In	troduct	ion	•	•	•	•	•	•	1
Chapter 2: Le	ad-acid	Trac	tion	Cells	and	Syste	ms		5
2.1 Lead-acid	Tracti	on Ce	lls	•		•	•		6
2.2 Cell Serv	ice Lif	е		•	•				8
2.2.1 The	Influen	ce of	the	Vehic	le				9
2.2.2 The	Influen	ce of	the	Charg	er Un	it			10
2.2.3 Life	Reduci	ng Pr	ocess	es in	Pers	pecti	ve	•	13
2.3 Cell Cent:	red App	roach	es to	Impr	oving	Serv	ice I	life	14
2.3.1 Fund	amental	Stud	ies		•			•	14
2.3.2 Tech:	nologic	al Im	prove	ments					18
2.3.3 Expe	ctation	s fro	m Cel	l Cen	tred	Work	•	•	19
2.4 A Compleme	entary	Appro	ach t	o Imp	rovin	g Cel	l Lif	e	19
2.5 Developin	g a Cel	l Lif	e Pro	longi	ng Ch	arger			21
2.6 A Model fo	or the	Posit	ive E	lectr	ode S	ystem			23

Chapter 3: Foundations for a Positive Electrode Mode	1 25
3.1 The Charge and Discharge Mechanism	26
3.1.1 A Description of the Charge and Discharge	
Mechanism	26
3.1.2 Conclusions Regarding the Charge and	
Discharge Mechanism	29
3.2 The Mechanical Structure of the AM	30
3.2.1 A Description of the Mechanical Structure	
of the AM	30
3.2.2 Conclusions Regarding the AM Mechanical	
Structure	35
3.3 The Electrochemical Reaction	36
3.3.1 The Equilibrium Potential	37
3.3.2 The Current/Low Overpotential	
Characteristic	38
3.3.3 The Current/High Overpotential	
Characteristic	40
3.3.4 Conclusions Regarding the Electrochemical	
Reaction	45
3.4 Transport in Solution	46
3.4.1 Mass Flux Density	47
3.4.2 Electroneutrality	48
3.4.3 Charge Flux Density	49
3.4.4 An Alternative Form for Mass Flux Equations	50
3.4.5 Concentration Changes with Time	51
3.4.6 Conclusions Regarding Transport in Solution	52
3.5 Gas Evolution in the Electrode and Cell	52
3.5.1 Current and the Gas Evolving Reaction .	53
3.5.2 Electrolyte Mass Transport and Gas Evolution	ı 54
3.5.3 Electrolyte Resistivity and Gas Evolution	54
3.5.4 Surface Masking and Gas Evolution	55
3.5.5 Conclusions Regarding Gas Evolution .	55

v

: . .

3.6 Common Models for Porous Electrodes	56
3.6.1 The Single Pore Model	56
3.6.2 The Macrohomogeneous Model	58
3.6.3 Other Models of Interest	62
3.6.4 Conclusions Regarding Porous Electrode	
Models	62
3.7 Voltage, Current and AM Experimental Data .	63
3.7.1 Electrode Voltage and Current	64
3.7.2 Electrode AM Distribution	68
3.7.3 Conclusions Regarding Experimental Data .	70
3.8 Development Areas for a Positive Electrode Model	71
Chapter 4: Three Elemental Models for the Positive	
Electrode	73
4.1 An Elemental Discharge Capacity Model	75
4.1.1 The Microstructure: A Discharge Limiting	
Factor	75
4.1.2 Local Discharge Capacity Formulations .	76
4.1.3 Charge State Formulations	78
4.2 An Elemental Discharge Surface Area Model .	79
4.2.1 A Qualitative Description of the Discharge	79
4.2.2 Discharge Surface Area Formulations	81
4.3 An Elemental Charge Surface Area Model	82
4.3.1 A Qualitative Description of the Charge .	84
4.3.2 A Simple Geometric Model at Full Discharge	85
4.3.3 PbSO ₄ Surface Area Formulations	87
4.3.4 Actual PbO ₂ Surface Area Formulations .	88
4.3.5 Effective PbO ₂ Surface Area Formulations .	96
4.3.6 The Elemental Charge Surface Area Model: A	
Practical Approach	98

Chapter 5: An Aggregate Model for the Positive		
Electrode	•	106
5.1 The Aggregate Model	•	107
5.1.1 Transport System Parts		108
5.1.2 A Minimum Representation of the Acid		
Transport System	•	110
5.1.3 An Aggregate Model for the Acid Transpor	:t	
System		110
5.2 Physical Dimensions of the Aggregate Model		113
5.2.1 The m-channel Dimensions		113
5.2.2 The μ -channel Dimensions		114
5.2.3 The h-channel Dimensions		118
5.2.4 The s-channel Dimensions		119
5.2.5 The n-channel Dimensions		120
5.2.6 The r-channel Dimensions	•	121
5.3 Aggregate Model Electrical Formulations .	•	123
5.3.1 The h-channel Equivalent Circuit .		125
5.3.2 The m-channel Equivalent Circuit .		127
5.3.3 The μ -channel Equivalent Circuit .	•	128
5.3.4 The Complete Equivalent Circuit .	•	132
5.3.5 Supplementary Formulations for the s-cha	innel	
and n-channel		133
5.4 Aggregate model Acid Transport Formulations		135
5.4.1 The General Transport, Boundary Condition	n	
and Initial Condition Equations		135
5.4.2 Acid Transport in the μ -channels .		137
5.4.3 Acid Transport in the m-channel .		140
5.4.4 Acid Transport in the h-channel .		141
5.4.5 Acid Transport in the r-channel .	•	142
5.4.6 Acid Transport in the n-channel .		144
5.4.7 Acid Transport in the s-channel .	•	145

.

.

5.5 Operating the Aggregate Model: A Practical	
Approach	147
5.5.1 Discrete Representations for Time and Space	148
5.5.2 A Practical Equation Set and Solution	
Procedure	148
5.5.3 Discrete Electrical Equations	150
5.5.4 Computing the Electrical Parameter Values	152
5.5.5 Discrete Acid Transport Equations	155
5.5.6 Computing the Concentration Values	
from the Transport Equations	165
5.5.7 Discrete Equations for Structural Change .	168
5.5.8 Computing the Structural Parameter Values	169
5.5.9 The Over-all Computational Procedure .	170
Chapter 6: Industrial Traction Cell Experiments .	171
6.1 The Experimental Equipment	172
6.1.1 Equipment Overview	172
6.1.2 The Data Acquisition System	174
6.1.3 The Purpose Built Hardware	177
6.2 The Cell Under Test	182
6.2.1 General Specification	182
6.2.2 Physical Construction Details	182
6.2.3 Grid and Paste Composition Details	184
6.3 Experimental Procedure and Schedule	187
6.3.1 Discharge/Charge Cycle Procedures	187
6.3.2 The Experimental Schedule	188
Chapter 7: Results and Discussion	189
7.1 The Elemental Models	190
7.1.1 The Discharge Capacity Model Results .	190
7.1.2 The Discharge Capacity Model: a Discussion	192
7.1.3 The Discharge Surface Area Model Results .	194
7.1.4 The Discharge Surface Model: a Discussion	195
7.1.5 The Charge Surface Area Model Results .	196
7.1.6 The Charge Surface Area Model: a Discussion	206

7.2 The Aggregate Model	•	210
7.2.1 Aggregate Model Dimensions		210
7.2.2 Aggregate Model Dimensions: a Discussion	•	213
7.2.3 Functions for the Aggregate Model .	•	214
7.3 The VIAM Model	•	215
7.3.1 VIAM Model Results for a Standard Case		216
7.3.2 Other VIAM Model Results		225
7.3.3 The VIAM Model μ -channel Component .	•	241
7.3.4 The VIAM Model: a Discussion		241
7.4 Experimental Results		249
7.4.1 Calculations Performed on the Raw Data	•	249
7.4.2 Presentation of the Experimental Results		255
7.4.3 Experimental Results for a Standard Case	•	256
7.4.4 Other Experimental Results	•	259
7.4.5 Experimental Results: a Discussion .	•	266
7.5 Comparing VIAM Model and Experimental Results	•	268
7.5.1 Acid Diffusion and Exchange Currents for		
for the VIAM Model	•	268
7.5.2 The VIAM Model and Experimental Results	•	269
Chapter 8: Conclusion		277
8.1 The Contribution of this Work	•	277
8.1.1 A New Positive Electrode Model	•	277
8.1.2 Model Performance	•	278
8.1.3 Model Application	•	280
8.2 Extensions to the Model	•	281
8.2.1 Exchange Reaction Representation .		281
8.2.2 Cell Gassing	•	281
8.2.3 A Two Dimensional Plate		282

Appendix 1: The Elemental Charge Surface Area Model	
Program Listing	283
Appendix 2: The Aggregate Model Program Listing .	288
Appendix 3: Functions for Various Models	304
A3.1 Effective Charge Surface Area Functions	304
A3.2 The Lead Dioxide Electrode Equilibrium Potentia	al 304
A3.3 The Electrolyte Resistivity	305
A3.4 The Acid Diffusion Coefficient	305
A3.5 The Lead Dioxide Electrode Exchange Current .	306
References	308

:

List of Figures

Figure

1.1 The VIAM Model and Underlying Models	3
2.1 Cell Energy and Replacement Cost per Charge Cycle	8
2.2 Traction Cell Cycle Life and Discharge Depth .	9
2.3 Positive Grid Corrosion and Polarisation Effects	16
2.4 Development of a Life Prolonging Charger	21
3.1 Pore Volume and Surface Area Distribution .	31
3.2 Micrographs of Positive Active Mass	32
3.3 Pore Volume Distribution and Charge State .	33
3.4 Experimental Surface Area and Charge State .	34
3.5 Cathodic Tafel Plots for Two Lead Dioxide	
Electrodes	44
3.6 Dissociation of Sulphuric Acid	46
3.7 The Single Pore Model Equivalent Circuit	56
3.8 Macrohomogeneous Model Discharge Voltage	
Predictions	61
3.9 Experimental Cell Polarisation Components .	65
3.10 Experimental Charge Voltage and Discharge Rate	66
3.11 Experimental Charge Voltage and Discharge Depth	67
3.12 Experimental AM Distribution in Positive Plate	69
4.1 A Representation of the Discharge Process .	81
4.2 The Discharge Surface Area Model	82
4.3 A Representation of the Charge Process	84
4.4 A Geometric Model of the Discharged AM $$. $$.	85
4.5 A Rectangular System for Lead Dioxide Growth .	89
4.6 An Elemental Volume for the ${\rm Pb}^{2+}$ Mass Balance .	90
4.7 The Lead Dioxide Lobe Surface Area	92
4.8 Calculation of Charge Surface Area	105

Figure

5.1 Components of the Acid Transport System .	•	109
5.2 The Aggregate Model Components	•	112
5.3 μ -Channel Arrangement Around the m-Channel	•	116
5.4 The m-Channel Equivalent Circuit	•	127
5.5 The $\mu\text{-}Channel$ Equivalent Circuit		129
5.6 The Aggregate Model Equivalent Circuit .	•	133
5.7 Calculation of Electrical Parameters .		154
5.8 Boundary between Channels on Same Axis .		158
5.9 The m-Channel/ μ -Channel Boundary		161
5.10 Calculation of Transport Parameters .		168
5.11 Over-all Calculation Procedure		169
6.1 Block Diagram of Experimental Equipment .		173
6.2 Discharge/Charge Cycle Algorithm	•	174
6.3 Programmable Voltage Source Schematic .	•	177
6.4 Measurement Interface Circuits		178
6.5 Temperature Controller Schematic	•	180
6.6 The Purpose Built Hardware		181
6.7 Cell Grid and Separator Components	•	183
7.1 Possible Distribution of Discharge AM in Plate	e	191
7.2 The Discharge Surface Area Model Approximation	n	195
7.3 Charge Surface Area Development		198
7.4 Lobe Profiles at Various Charge States .		198
7.5 Charge Surface Area for Various Currents .		201
7.6 Lobe Profiles for Various Currents	•	201
7.7 Charge Surface Area for Various Acid		
Concentrations	•	202
7.8 Lobe Profiles for Various Acid Concentrations		202
7.9 Charge Surface Area for Various Geometric		
Constants		204
7.10 Lobe Profiles for Various Geometric Constants	5	204
7.11 Model and Fitted Effective PbO ₂ Charge		
Surface Area	•	206
7.12 Model and Experimental Charge Surface Area	•	209
7.13 Discharge Voltage for 20 Ampere Full Discharge	ge	218

Figure

7.14	Rest and Charge Voltage for 20 Ampere Full	
	Discharge	218
7.15	Discharged Plate AM for 20 Ampere Full Discharge	219
7.16	Plate Acid for 20 Ampere Full Discharge	219
7.17	Plate Current for 20 Ampere Full Discharge .	220
7.18	Plate Solution Potential for 20 Ampere Full	
	Discharge	220
7.19	Adjacent Acid for 20 Ampere Full Discharge .	221
7.20	Reservoir Acid for 20 Ampere Full Discharge .	221
7.21	Discharge Voltage for 3.5 Ampere Full Discharge	226
7.22	Rest and Charge Voltage for 3.5 Ampere Full	
	Discharge	226
7.23	Discharged Plate AM for 3.5 Ampere Full Discharge	227
7.24	Plate Acid for 3.5 Ampere Full Discharge .	227
7.25	Discharge Voltage for 140 Ampere Full Discharge	230
7.26	Rest and Charge Voltage for 140 Ampere Full	
	Discharge	230
7.27	Discharged Plate AM for 140 Ampere Full Discharge	231
7.28	Plate Acid for 140 Ampere Full Discharge .	231
7.29	Discharge Voltage for More Tortuous AM	233
7.30	Rest and Charge Voltage for More Tortuous AM .	233
7.31	Discharged Plate AM for More Tortuous AM .	234
7.32	Plate Acid for More Tortuous AM	234
7.33	Discharge Voltage with Non-participating AM .	236
7.34	Rest and Charge Voltage with Non-participating ${\tt AM}$	236
7.35	Discharged Plate AM with Non-participating AM	237
7.36	Plate Acid with Non-participating AM	237
7.37	Discharge Voltage for Increased Exchange Current	239
7.38	Rest and Charge Voltage for Increased Exchange	
	Current	239
7.39	Discharged Plate AM for Increased Exchange	
	Current	240
7.40	Plate Acid for Increased Exchange Current .	240
7.41	Experimental and Model Discharge Voltage .	244
7.42	Experimental and Model Charge Voltage	245
7.43	Experimental and Model Discharged Plate AM .	247

Figure

7.44	Experimental and Model Cell Life	248
7.45	Potential Differences in Cell Under Test .	250
7.46	AD100R20 Cell Voltage	257
7.47	AD100R20 Electrode Voltage Estimate	257
7.48	AD100R20 Reservoir Acid Concentration	258
7.49	AD100R10-R20 Cell Discharge Voltage	260
7.50	AD100R10-R20 Electrode Discharge Voltage .	260
7.51	AD050R05-R40 Cell Discharge Voltage	261
7.52	AD050R05-R40 Electrode Discharge Voltage .	261
7.53	AD010R05-R40 Cell Discharge Voltage	262
7.54	AD010R05-R40 Electrode Discharge Voltage .	262
7.55	AD100R10-R20 Cell Rest and Charge Voltage .	263
7.56	AD100R10-R20 Electrode Rest and Charge Voltage	263
7.57	AD050R05-R40 Cell Rest and Charge Voltage .	264
7.58	AD050R05-R40 Electrode Rest and Charge Voltage	264
7.59	AD010R05-R40 Cell Rest and Charge Voltage .	265
7.60	AD010R05-R40 Electrode Rest and Charge Voltage	265
7.61	VIAM model and AD100R20 Electrode Voltage .	270
7.62	VIAM model and AD100R10 Electrode Voltage .	270
7.63	VIAM model and AD050R40 Electrode Voltage .	271
7.64	VIAM model and AD050R20 Electrode Voltage .	271
7.65	VIAM model and AD050R10 Electrode Voltage .	272
7.66	VIAM model and AD050R05 Electrode Voltage .	272
7.67	VIAM model and AD010R40 Electrode Voltage .	273
7.68	VIAM model and AD010R20 Electrode Voltage .	273
7.69	VIAM model and AD010R10 Electrode Voltage .	274
7.70	VIAM model and AD010R05 Electrode Voltage .	274

.

List of Tables

Table

2.1	Some Features of Traction and SLI Cel.	ls .	•	7
2.2	Effect of Charge on SLI Cell Life .		•	20
3.1	Experimental Current/Overpotential Pa:	rameters		43
6.1	Cell Dimensions			184
6.2	Comparison of AM Production Processes	•	•	186
6.3	Experimental Schedule			188
7.1	Some Aggregate model Parameters .	•	•	210
7.2	Remaining Aggregate Model Parameters		•	212
7.3	Aggregate Model Dimensions			212

Units and Symbols

a) Units.

Normal SI units (Chiswell and Grigg (1971)) are used throughout this text with the following additions.

i) Hour(s) (abbreviated to hr(s)) is used as a measure of time (3600 s).

ii) Ampere hour(s) (abbreviated to Ahr(s)) is used as a measure of electrical charge (3600 A.s).

iii) Watt hour(s) (abbreviated to Whr(s)) is used as a measure of energy (3600 W.s).

iv) The gram (abbreviated to g) is used as a measure of mass $(1 \times 10^{-3} \text{ kg})$.

These additions are consistent with common practices in the battery industry.

b) Symbols for units.

Normal SI unit symbols (Chiswell and Grigg (1971)) are used throughout this text with the following additions.

i) Hr(s) for hour(s).
ii) Ahr(s) for Ampere hour(s).
iii) Whr(s) for watt hour(s).
iv) g for the gram.
v) v for the volt.

c) Symbols for variables.

Symbols for variables are fully defined in the body of text where they are first used.

d) Symbols for experiment designations.

An example designation for the experiments performed in this work is AD100R20. This should be in interpreted as follows.

i) The first character (A) is the cell label that defines the cell involved (here cell A).

ii) The following four characters (D100) define the depth of discharge (here 100 Ahrs).

iii) The last three characters (R20) define the rate of discharge (here 20 A).