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Abstract

Capillary Isoelectric Focusing (CIEF) is a high-resolution technique which can be
applied to the separation and characterisation of complex biological mixtures such as
dairy proteins. Although dairy proteins are commeonly analysed by traditional gel
electrophoresis techniques including 2-Dimensional PAGE, CIEF offers the
advantages of reduced analysis tunes, the ability to handle smaller sample volumes

and increased sensitivity with improved separation eftficiencies.

Several methods for capillary isoclectric focusing of dairy proteins have been
developed herein. For the analysis of soluble whey proteins methods that can be used
with either UV or mass spectrometry {(MS) detection have been set up. For MS
detection a coaxial sheath flow interface in conjunction with electrospray ionisation
has been utilised. For analysts of the inherently insoluble casein proteins with UV
detection denaturing and reducing agents have been infroduced into the system.

Results have shown very close similarities to those obtained by IEF gels.
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Page 1

1 Overview

Capillary Isoclectric Focusing (CIEF) is a technology that has developed in the last
few years and is a technique whereby proteins and peplides are separated according to
their 1soelectnic point (pf); such separations arc generally as good as those obtained by
flat bed isocleciric focusing (IEF) polyacrylamide gel electrophoresis (PAGE).
Advancements in CIEF technology have been led by the requirements of proteomic
research for high throughput analysis couplod with limited sample size. Routine
methods for CIER involve ultraviolet (UV) detection, but mass spectrometry (MS)
detection 1s becoming more popular for many research groups. This is analogous to
the time consuming method of 2-dimensional IEF/ PAGE in which spots on gels arc
excised, digested with enzyme, and the digests analyzed by high performance liquid
chromatography-MS (HPLC-MS). CIEF-MS has the capabilily to reduce analysis
times considerably and 1s used for a number of applications. Detection is of infact
protein rather than hydrolyzed protein, which saves time on database scarches. In
recent years the CTRF-U'V method that has tradiionaily only had applications to water
soluble protein, has been modified for separation of proteins in denaturing svstems. In
this way protcins that are inherently insoluble can be separated by CIEF. Currently
there 15 only one CIEF method witlun the literature that has a dairy application and
this is based on the monitoring of ulycosylation products of glycomacropeptide

{(GMP) {Tran et al. 2001).

Over the last few years dairy industries around the world have embarked on large-

scale proteomic research, with a view to one or more of the tollowing;

a.) The discovery of low abundance proteins and peptides that may have potential

hcajth benefit that could be explored in niche products of the future.
b.) Understanding expression and co-regulation of milk proteins.
¢.} Acqusition of intelicctual property for future strategic use,

The competitive edge of a dairy company is governed partly by the speed in which

fundamental rescarch can be translated into a commercial process or product. [n this
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respect it is mandatory to identify new technological areas and analytical techniques
that may allow large time and cost savings in the commercialization pipeline.
Capillary electrophoresis (CE) is one such analytical tool as it is rapid, has very good
detection limits, can be interfaced to MS detection and requires very small sample

size.

The aim of this research was to develop new methods in CE analysis that would be
applicable to a wide variety of dairy-based samples, and could be used as rapid
screening methods for proteomic applications. The CE mode of CIEF was
investigated, as sample size in this format is generally 20 times larger than other
modes of CE, thus enhancing detection sensitivity, and the method is able to separate
proteins and peptides over a wide range of p/ values. The method has the additional
advantage that p/ values can help in the identification of unknown protein. The
technique is also very rapid and gives very good comparison to the IEF gel format,

making this technology very much cheaper and less labour intensive to use.

Bovine dairy proteins are comprised of two main groups, the casein and the whey
proteins. Caseins make up approximately 80 % of dairy protein and typically occur as
micelles in milk, being inherently insoluble. Whey proteins on the other hand make up
the remaining 20 % of protein and tend to be globular water-soluble proteins, while in
addition there is another group of proteins collectively termed the milk fat globule
membrane (MFGM) protein that makes up a very small amount (<1 %) of protein in
milk. Taking these general properties into consideration the overall aim of this thesis

was to develop methods of CIEF for the different types of dairy protein as follows:

e Develop methods using UV detection that are simple to run with minimum
preparation and optimized for:
o The major whey proteins
o Casein proteins
o Fractionated protein samples
e Compare these methods to IEF flat bed PAGE
e Develop methods of CIEF-MS for soluble proteins and if possible modify the
method for insoluble proteins
e Compare CIEF-MS results to two dimensional PAGE (2D-PAGE) methods
e Compare CIEF methods to already developed CZE methods where applicable
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2 Literature Review

2.1 Composition of Bovine Milk

Bovine milk is a complex mixture of proteins, lipids, carbohydrates, minerals,
vitamins, and salts dissolved in water by way of being colloidly dispersed and
emulsified. Some of the constituents of milk are transferred from the blood to the
mammary gland, while other constituents are synthesized within the mammary gland.
The amount of protein in bovine milk is typically 30-35 g protein/litre of milk, and
can alter in amount and composition of protein due to time of lactation and breed of
cow. There are two main types of milk proteins. Casein comprises the largest portion
of these proteins at around 80 % and is represented by 4 gene products, oy -casein,
asp-casein (a-csn), P-casein (f-csn). and k-casein (x-csn). There are, however some
other constituents of casein within bovine milk, but they are derived from
posttranslational modifications, such as phosphorylation and glycosylation, or
proteolysis. Casein is inherently insoluble in water but can be stabilized by forming
micelle structures in milk in which several caseins bind together and to calcium
phosphate, forming spherical complexes. The other 20 % of milk protein comprises of
whey proteins. These are usually classed as proteins which remain soluble after the
pH of milk has been adjusted to 4.6 at 20°C. At this pH, the caseins precipitate out.
The main components of whey include B-lactoglobulins (B-lac), a-lactalbumins (a-
lac), immunoglobulins (Ig), and bovine serum albumin (BSA). For each of the major
proteins there exist a number of different genetic variants. Table 1 describes the
typical quantities of each of the major protein components and lists the genetic

variants of each protein according to Swaisgood (1986).
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Table 1 Major protein constituents of bovine milk including approximate concentration of each
protein (depending on time of lactation) and genetic variants. From Swaisgood (1986).

Protein Abbreviated Approximate Known Genetic Notes

Name content in Variants
Bovine Milk
a-.; Casein a-¢1-Csn 12-15g/L AB,CD Q-5 is derived from
Q-¢1-CSN
a-¢; Casein Q-¢o-CSN 3-4g/L AB,CD 0-¢3,4&¢ are derived
from a-g-csn
3 Casein B-csn 9-11g/L A’,Az,Aa,B.BZ,C,D,E y1,2&3 caseins of

different genetic
variants (1-2g/L)
are derived from -

csn
K Casein K-csn 3-4g/L AB
B3 Lactoglobulin B-lac 2-4 g/L A,Apr,B,Bpr,C,D
a Lactalbumin a-Lac 1-1.5 g/lL AB
Bovine Serum BSA 0.1-0.4 g/L Many glycosylated
Albumin forms present
Immunoglobulins Ig 0.6-1g/L G,G1,G2,AM
Proteose PP 0.6-1.8 58 Proteolytic
Peptone derivatives of B-
csn

In addition to the major proteins listed above there are a number of minor proteins and
enzymes found in milk that do not contribute more than 1 % of the total protein in
bovine milk. These include MFGM proteins, lactoferrin (Lf), lactoperoxidase (Lp),
angiogenins, transferrin, folate binding protein, and lysozyme to name a few. A
number of these proteins and many others have health enhancing properties, and they
are now becoming increasingly important to dairy industries around the world as new
technologies have enabled isolation of such proteins for commercial products. The
products are marketed as high value products and gain higher prices due to the
perceived health benefit to the consumer. To isolate such products in the laboratory,
and since these proteins are in such low abundance in milk compared to the casein and
major whey proteins, researchers have to remove the high abundance proteins and
effectively concentrate up their target minor component protein. This involves many
techniques, in particular ion exchange chromatography. It is usually desirable to check
the purity of different fractions produced in the laboratory and this is routinely done

by PAGE or HPLC analysis. PAGE analysis takes time (often hindering progress of
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the research) and HPLC, depending on the methodology used not only requires the
use of solvents but may be misleading when 2 species of similar composition are
separated, for example genetic variants. Typically however, HPLC does not resolve
genetic variants very well. For example the reversed phase (RP) method of Elgar et al.
(2000) for the separation of whey proteins shows poor resolution of B-lac-A&B
variants, although the overall separation is good for quantitation of the major whey
proteins. Capillary electrophoresis (CE) offers the researcher an advantage in that it is
a rapid technique, requires very little sample and protein resolution in many of the CE

modes is such that genetic variants can be separated.

Recently, results from rat feeding trials have suggested that certain fractions from
whey protein may have potential benefit to bone health in humans (Kruger et al., 2005
a and b). However, it was not clearly understood which component or components of
the fraction conferred the health benefit. To elucidate such bioactive components
characterisation of protein fractions is required and rapid screening techniques such as

CE would facilitate both component discovery and routine fingerprinting.

2.2 Introduction to Capillary Electrophoresis
Capillary electrophoresis (CE) has been an emerging technology in the last 15 years
due to advances in technology and the manufacture of more reliable instruments. A

typical schematic representation of a CE instrument is shown in Figure 1.

—l Tata acouktion
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Figure 1 General Schematic overview of a CE instrument including cathode, anode, capillary,
high voltage power supply, detector and data acquisition.

Typical modern automated instrumentation consists of a column in which multiple

components in a sample are separated, internal pumping and vacuum generation
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devices which pump eclectrode butfers through the column for equilibration and
rinsing. These must be precise enough to give highly reproducible injection volumes,
A high voltage power supply is incorporated to gencrate extremely high voltages to
enable separation. fn addition an integrated detection system sends output to a
computer that has software that controls all aspects of the instrument to allow 24/7
automnation. Columns and sample storage have temperature control, which ensure
constant fluid viscosity hence allowing higher levels of reproducibility. The analvte
can be detected a number of ways. Optical detection can include the use of UV
detectors, photodiade array detectors, or fluorescence detectors, Other types of
detectors range from amperometric detection to mass spectrometry detection. The data
once obtained can then be processed rapidly through preset integration parameters for
rapid quantification or qualification.

A large array of specics separation can be performed by CE; from small inorganic
ions through to organic acids, phanmaceatical, vitamins, peptides, large
macromolecules such as deoxyribose nucleic actd {DNA), ribose nucleic acid (RNA),
carbohydrates and proteins in muny different sample matrices from biological to food
stutfs. The most common modes of CE scparation include capillary zone
elecrophoresis (CZF), micellar clectrokinetic chromatography (MEKC), capillary
isotachophoresis  (CITP), capillary  gel  clectrophoresis  (CGE),  capillary
electrochromatography (CEC) and CIEF, Most of these iechniques have been
developed as an analogous separation o PAGE or HPLC,

CE scparations have many advantages to their analogous gel or HPLC techniques in
that:

e They have an extremely high resolution of separation

e Detection s usually online so a resull is more rapidly attainable

e Reproducible quantitation is achievable

» Very small amounts of samplec and buffer are required so there are savings in
cost of analysis,

e The chemicals used in CE are usually less toxic than some of thosc used in
HPLC or PAGE, and 1f not, the volume of butfer required is many times
tower, for example, RP-HPLC may require 1 litre of acetonitrile buffer to be
made up in comparison to 4 millilitres of run buffer required for CE.

A survey of the modes of CE in relation to protein separation is discussed below.
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2.3 Capillary Zone Electrophoresis

Protein separation by CZE technigue is based on the hydrodynamic friction to charge
ratio of the proteins in the sample solution. A sample aliquot is injected on to the
column; both ends of the column are then placed in an identical run buffer solution.
On addition of an electrical potential component separation occurs and the proteins
flow ta the detector due to clectroosmotic flow (EOF), The pll of the run huffer is
critical to the resolution of separation and efficient run time. The pH should give
suificient difference in mass to charge ratio for the proteins so that satistactory
resolution is aclieved. Normally the pH of the buffer should be at least 1 pH unit
greater or less than the pf ot the proteins or the sample will be retained on the column
tor too long and resolution lost through peak tailing (Wcehr et al. 1999). There is a vast
array of literature on the use of CZE for protein separation with many techniques
finding utility in tood analysis and proteomics, Soeme recent key reviews includes
Dolnik & Hutterer (20G1), Recio et al. {1997a), Recio et al. (2001), Manabe (1999),
Shen & Smith (2002), and Hu & Dovichi (2002).

2.4 Micellar Electrokinetic Chromatography

MEKC separates samples by differentizl portioning between twe phases and s
considered a chromatographic technique (Wcehr et al. 1999). Separations are usually
conducted in uncoated capillaries with basic conditions that allow a large EOF to
oceur, The run buffer contains a surfactant that is at a concentration above its critical
micelle concentration and 50 surfactint monomers are in equilibrium with micelles. In
the casc of sodium dodecylsulfate (SDS} used as the surfactant, this compound is
amonic so both surfactant monomer and micelle have clectrophoretic mobility counter
to LOF direction. The samplc molecules are thus distributed between the bulk mohile
phasc and surfactant micelles depending on their hvdrophobicity. Hydrophilic neutral
species witl remain in the aqueous phase and reach the detector in the time required
for EOF to travel the length of the capillary. Hydrophobic neutral species will spend
differing amounts of time in the micellar phase depending on their hydrophobicity, so
their migration will be slowed due to the anodically moving micelles. Charged species
have more complex interactions as they can migrate electrophoretically, or interact
with the micelles electrostatically in addition to hydrophobic partitioning (Wehr ot al.

1999). The MEKC technique is used mainly for small molecules such as drugs,
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metabolites and peptides, and is also the basis of chiral separation with the addition of
a chiral selector compound being added to the sample buffer system. Proteins are too
large to partition into a surfactant micelle, and bind surfactant monomers to form
surfactant-protein complexes. The review of Molina & Silva (2002} has outlined a

number of current developments in the area of MEKC.

2.5 Capillary Isotachophoresis

The separation mechanism for CITP 1s that proteins are resolved as a contiguous zone
that migrates in order of mobility. This can be achieved by injecting sample on to the
capillary between a leading buffer of ion mobility greater than all the protein
components, and a tenminating buffer of ion mobility less than all the protein
components. Zones migrate to the detector at equal speeds and are detected as steps
with zone length proportional to concentration. CITP is not usually used as a
separation mcthod for proteins but is often used as a pre-concentration step for other
CE techniques. (Gebauer & Bocck, 2002) give a good overview of recent

developments in CITP.

2.6 Capillary Electrochromatography

CEC is a chromatography technique and uses capillaries that are packed with
materials often used tor RP-HPLC columns. This technique is rapidly developing into
many sub-CEC methods utilising different types of capillaries. Generally the method
requires the use of EOF to mobilise samples but separation is based not only on the
sample’s electrophoretic properties but on its chromatographic properties as well and
thus this type of separation c¢an achieve very high resolution of separations. Mostly
this technique is tnvolved with smaller molecules rather than proteins. Some good
reviews on the different CEC techniques include those by Hilder et. al., (2002}, Liu et.
al., (2002), Rathore, (2002), and Li ¢t al. (2004),

2.7 Capillary Isoelectric Focusing

Capillary isoelectric focusing was first pioneered by (Hjertén, 1985), who developed a
capillary with an internal coating using acrylamide for the elimination of
electroendosmosis and protein adsorption on the walls of the capillary. This method
was further refined for the scparation of human serum transferrin (Kilar & Hjertén,

1989).
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The CIEF technique involves three main steps. Firstly a sample containing
ampholytes is injected onto a capillary. This is followed by an addition of an electrical
potential (where the ends of the capillary are at different pH's) in the second step that
allows the sample and ampholytes to focus into narrow zones according to their
1soelectric point (p{) within the capillary. The final step invelves the detection of the
sample and in most cases this is undertaken by mobilisation of the sample past or into
a detector such as UV, fluorescence, or MS. It must be noted that there are a number
of techniques used where whole column imaging detection is used. This topic 1s
outside the scope of this literature review. However, a review by (Fang et. al., 1998)
gives a good overview of the technique and detection systems used. A number of
techniques for difterent types of sample separation by the CIEF method are outlined

m Appendix | (Table 14).

2.8 Recent Reviews on CE of Large Biomolecules

There have recently been a number of key reviews focused on CFE for the analysis of
farge biomelecules either for routine food analysis or for proteomic applications. The
reviews give an overview of the use of different CF modcs and their applications. (Hu
& Dovichi, 2002) gave an cxtensive overvicw of the separation of biopolymers
including protein, peptide, DNA, lipid und carbohydrate by different modes of CE
with different detection systems. (Frazier. 2001} reviewed CE methods for food
analysts investigating recent litcrature on protein analysis through to amino acid
analysis, vitamins, toxins, and {ood additives for products such as cereals. milk and
other foodstuffs. The author discussed the applicability of some CE modes over athers
for different types of analysis. (Bean & Lookhart, 2001) reviewed CE techniques used
for meat, dairy and cereal protein applications. In the same vear (Recio et al, 2001)
reviewed the analysis of food proteins of animal origin by CE very extensively. The
review was mainly focused on dairy applications due to the anthor’s extensive number
of publications in dairy applications for CE, but also included egg and muscle protein

scparations.
2.9 CE of Dairy Proteins

In their review (Recio et. al, 2001) stated that in the eight years prior to the review
there had been over 70 articles published in the field of milk protein separation using

CE. Topics for papers have varicd but include separation and quantification of the
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different genetic variants of casein and whey proteins in milk, whey protein
separation, analysis of adulteratton of milk of different species, analysis of cheese
proteolysis, and analysis of specific milk fractions such as those containing

lactoferrin.

2.9.1 Analysis of Casein

Since CE has a high resolution of separation, the separation of very similar proteins
that differ by only a few amino acid substitutions (such as genetic variants) 1s
possible. Other techniques such as HPLC do not have the resolving power for such

separations, while PAGE analysis is not particularly accurate for quantitative analysis.

The first application for the separation of milk proteins was developed by (Chen &
Zang, 1992). Using CZE mode they trialled phosphate buffers from pH 6-9, with the
addition of 4M urea to solubilize the proteins. Detection was at 200 nm. Separations
were carmied out on bare fused silica capillaries with no internal coating. The

scparations were not optimal for quantitation of all proteins in milk.

(de Jong et. al., 1993) first separated both whey and casein proteins by CZE using a
hydrophilically coated capiflary with a low pH (pH 2.5-3} citrate run buffer and
samples dissolved in 6M ureca and p-dithiothreito! (DTT). Both whey and casein
protein could be separated 1n this system as casein micelles are disrupted by reducing
with DTT and solubilizing in 6M urea. In this paper the researchers demonstrated the
ability of the method to separate proteins of only 3 amine acids ditference,
specifically p-Casein-Al and B-Casein-A2. They also showed differences between
milk of differcnt species (cow, goat and sheep milk) and investigated heat-damaged
proteins. The method was compared with HPLC and illustrated the benefits of CE for
separation of both whey proteins and casein and their genetic variants. This work was
subsequently extended and the method optimised for determination of denatured whey
proteins (BSA, a-Lac and B-Lac) in the casein fraction of heat treated milk, with the
application of investigating whether mitk powder has been added to pasteurised milk
or investigating the whey protein to casein ratio in milk and milk products for tariffs
regulation {Recio & Olieman, 1996). Further method refinement was undertaken to
analyse genetic variants of the milk proteins from different species (Recio et. al,,

1997} including cow, sheep and goat milk. The identification of a number of major
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bovine proteins such as B-Caseins Al, A2, A3, B and C was determined and it was
concluded this technique could be used for phenotyping individual cows duc to the

reproducibility of the method.

During rennet proteolysis of caseins and cheese making, the main x-casein
degradation product is para-k-casein. In the general method defined by (de Jong et.
al., 1993), para-k-casein co-migrates with -lac proteins so {(Miralles et. al., 2001)
further developed the method to allow quantification of both thesc components by
changing the composition of the run bufter and lowering the voltage. As an addition
to this work the same group cxamined other para-k-casein typc peptides with a view
to using them as indicators of milk proteolysis. By identification of cach peak the
tvpes of proteolysis reactions occurring 1n stored milk could be predicted (Miralles et
al., 2003). Recently Xu (2003) claimed an timprovement to the method of (de Jong et.
al., 1993) in a short articlc outlining the method which used an untreated fused silica
column to give better resolution ot separation, and shorter run times for cheese

proteins and peptides,

Several groups In Italy have furthered the method of (de Jong et. al., 1993), to give a
more in-depth analvsis of milk from ditferent breeds of mares including Norico,
Trotter, Haflinger, and Arabian and Ass (Civardil et. al., 2002). Prier to this the
characternisation of cwe milk and analysis of cow, goat and cwe milk mixtures were
performed {Cattanco et. al., 1996), as this can be an 1ssuc for authenticity ot ditferent
cheeses if goat milk or cwe milk 1s adultcrated with cheaper cow milk. The method of
analysis was based on the migration time differences of wg- cascin for each species

with a gquantiflable amount as low as 8% cow milk in cither goat or cwe milk.

Other applications where the original method of (de Jong ct. al., 1993) has been used
include the evaluation of authenticity of Serpa cheese made 1n Portugal (Roseiro et al.
2003). This cheese 1s made from ewe’s milk and has a Protected Denomination of
Onigin (PDO) designation. The analysis of the proteolysis of authentic Serpa cheese
versus similar cheese made by other means was investigated. The degradation of as1-
and [3- casein was a good marker for the authenticity of traditional Scrpa versus other
similar cheeses. Another application where the de Jong method has been successfully

used for identification of authentic checses is in the analysis of Ibérico cheese (Molina
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ct al. 2002). In this study the authors used J and 2 dimensional PAGE and compared
the results with that of the de Jong CE method which had been altered slightly by
ustng a different column coating and longer column to improve resolution of
separation. Results from CE were comparable to the gel format. Due 1o the rapid
automated nature of the CE method compared to gels, and that quantitation is possible

with CE, the methed is a complementary technique to PAGE.

Another study investigating ntixturcs of milks for authenticity in cheese making was
conducted by Recio ct al. (2004). In this study they investigated the detectability of
goal’s or cow’s milk in Halloumi cheese that is traditionally made from ewe’s milk in
Cyprus. Monitoring of as]- casein and para-x-casein peaks was undertaken for cow’s
milk and goat’s milk respectively, from a series of cheeses made from different Tatios
of milk species and matured for different amounts of time. Results showed that
detection of less than 2 % addition of cither cows’ or goats’ milk was possible.
Studies on lactosylation of milk proteins due to the Maillard reaction during storage of’
skim milk powders was used to preat effect with the de Jong method (Guyomarce’h et
al. 2000). The method was moditied slightly using phosphate in the buffer and a
polyacrylamtde internal column coating. Lactosylated protein appeared as extra peaks
next to cach main protein peak, but of a lesser height than the main protein peak
depending on the degree of lactosylation. The amount of lactosylation could then be
caleulated as a ratio of the area of the lactosylated protein peak to the area of both the
lactosylated and unmodified protcin peaks. From results obtained the authors were
able to show correlations between process conditions and lactosylation of skim milk
powder and consequently investigated the best practice for storage of the powders to

prevent lactosylation reactions oceurring over time.

Recently the de Jong et al. (1993) method was applied to the analysis of B-casein
variants At. A2, and B and the ratios of those genetic variants present in the milk of
feelandic and other Nordic countries at different times of year (Iggman et al., 2003).
The aim of the study was to investigate the composition of Nordic milks at different
times of year, and then relate the composition to public health problems, in particular

the relationship of the B-caseins variants to type-1 diabetes mellitus.
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2.9.2 Whey Protein Separation

In addition to the de Jong et al. (1993) method where whey proteins can be separated
along with the casem proteins, a number of methods have been developed 1o separate
only the whey protein component using CZE. Due to the soluble nature of whey
proteins, the methods generally do not use the intense solubilizing and reducing

reagents that are required to disrupt inherently insoluble casein micelles.

Paterson et al. {1995a)} scparated the three major J-lac proteins in whey using a CZE
method which was then used to identify phenotypes containing the B-lac-C variant
(Paterson et al., 1995b). Comparison of this method with PAGE, HPLC methods and
a newly developed SDS-CGE method (Kingharn et al., 1995) showed that none of the
methods were suitable at quantifying all of the constituents of different whey
products. However, the CZE method did stand out as the best mcthod, so further
refinements to the method were made to quantitate $-lac-A&B, a-lac, BSA, and IgG

{(Kinghom et al., 1996},

The method of Kinghomn et al. (1995) demonstrated the ability of CE to separate the
prlac-AL -B , &- € variants and its supcrior resolution has been applied in a recent

study to determine the composition of Teeland and Nordic milk (Igaman et al., 2003).

2.10 CE-MS

CE-MS was first developed by Smith and co-workers (Olivares et. al., 1987); and
(Smith et. al., 1998) in the late 1980s. CE-MS has now matured into a field of its
own, as the coupling of the two instruments together has necessitated some
differences in running conditions and applications. It has developed rapidly as a result

of technology developments in MS and CE instrumentation.

Since the early work by Smith and co-workers on the development of the coaxial
liquid sheath-flow interface tor an electrospray ionisation (ESI) source, a number of
key reviews outlining CE- MS have been published. These revicws have focused on a
variety of topics, including applications, instrumentation, different modes of CE-MS
analysis and different types of interfaces in use (Niessen et al., 1993; Smith ¢t al.,
1993; Cat & Henion, 1995; Tomer et al., 1995; Banks, 1997; Ding & Vouros, 1999;
von Brocke et al., 2001, Monton & Terabe, 2005).
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A device called an interface is required to connect a CE instrument to an MS detector.
The interface acts to introduce the separated sample from the CE instrument into the
MS detector for mass characterisation. As it acts as the cathode end of the CE and the
anode end of the MS interface, it must be earthed to allow for charge dissipation.
Because CE operates on very low flow rates, often too low for some MS instruments,
a make-up flow has to be added to the flow from the capillary. Also, as coated
capillary columns arc used in some CE applications, the capillary must go all the way
into the ESI source of the MS detector so that separation of the analytes is not

compromised. A good interface will have all these features.

In the literature, there are reports of many types of intertace that have been trialled by
different groups. Most interfaces are made by individual researchers themseives and

are modifications of three main types available.

2.10.1 Coaxial Sheath-flow Interface

The coaxial interface 1s the most widely used interface for CE-ESI-MS. The interface
consists of a sheath that is connected to the cathode end of the CE capillary. A make-
up tlow is added to the sheath and mixing occurs with the use of a sheath gas. The
sample 1s diluted but, at the same time, 1s in an environment more compatible with the
MS instrument because the make-up flow usually consists of additives to increasc

mass sensitivity.

The interface is used mainly where the CE capillary wall 1s covalently coated with
chemicals to form almost zero EQF. The coaxial sheath-flow interfacc was used

throughout this work and a schematic of it is seen in Figure 2.
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Figure 2 Schematic of the Finnigan coaxial sheath-flow CE-MS interface as used in this
research.

2.10.2 Sheathless Interfaee

The sheathless interface was first proposed in 1988 by Olivares et al. Further
development has been to sharpen the tip of the capillary (o gain higher resolution.
Llectrical contact has been utilised by placing a picce of gold wire at the CE capillary
tip to complete the clectrical circuit for the CE and the EST The use of gold gives a
good ES] spray stability from the solution entering the MS instrument. This interface
is best used tor addition to a nanospray ESI source because of the compatible tlow
rates. Samples are not diluted with the sheathless interface and no additional
chemicals are added at the ionisation stage. Capillarics of internal diameter (i.d.) as

low as 5—10 pm have heen used {Wahl ¢t al.. 1994,

2.10.3 Liquid-junction Interface

Henion and co-workers developed the liquid-junction interface in 1989 (Lee et al.,
1989). This type of interface uses a T-scction that allows a piece of fused silica
capillary to be iuserted and electrically connected to the ESI emitter via the
electrolytes introduced through the buffer reservoir. The gap between the emitter and
the CE capillary is typically 10-20 um. The advantage of the liquid-junction interface
1s that the CE capillary is disconnected from the ESI emitier. It any problems related
to the emitter are encountered, then the emitter can easily be replaced without having
to replace the entire capillary. However, this type of interface is not good if a coated

capillary is being used, as the separation may be altered slightly because of EOF when
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the sample goes through the bare fused stlica. This EOF could affect the separation to

give a slight loss of resolution.

2.11 CE-MS Modes
2.11.1 CZE-MS

There are an ever-increasing number of new methods for protein and peptide
identification using CZE-MS. The sclection of the background electrolyte buffer and
make-up liquid 1s important in CZE-MS, to get a good resolution of separation and

MS ionisation.

A survey of the literature indicates that many different groups have used any one of
the three types of interface for CZE-MS. CZE often uses internally uncoated columns
so that a liquid-junction column can be used. Buffers that are compatible with the MS
detector are otten used; since in this case no make-up tlow is required, a sheathless

interface can be used.

Unlike liquid chromatography, the background electrolyte for CE separation must
contain a buffer system to avoid excessive changes in pH caused by ¢lectrolysis
during the electrophoresis separation. It is also obligatory that these buffer
components be volatile so as to improve MS detectability and to avoid problems with
fouling the MS ion source with salt deposits. Furthermore, the conductivity of the

buffer electrolytes should be low to minimise Joule heating.

The limited range of background electrolyte bufters that satisty all these requirements
has led to an ovcrall lower dynamic range of protein measurement by CZE-MS
compared with liquid chromatography-MS, although better sensitivities are

achievable with CZE-MS (Shen & Smith, 2002).

2.11.2 CIEF-MS

This method is similar to the now commonly used proteomic technique of 2D PAGE
coupled to MS. For 2D PAGE-MS, a sample is separated by IEF in the first
dimension and then separated by molecular weight (SDS-PAGE) in the second
dimension. Staining of the gel is then required, followed by excision of protein spots
on the gel, destaining, hydrolysing the protein with trypsin or similar enzyme and then

analysing the extracted peptide by HPLC-MS. Database searches must then be done
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on the acquired peptide masses to find a protein match. The method of CIEF-MS
replicates this procedure by a 1™ dimension separation by p/ followed by molecular
mass identification (second dimension) of intact protein with MS detection. This type
of procedure could potentially reduce analysis time by several days compared with the

currcnt 2D-PAGE-MS methods.

All CIEF-MS analyses reported in the literature have used a coaxial sheath-flow
interface with ESI-MS. The sheath-tlow liquid acts as an electrode to first establish
the pH gradient within the capillary. Once the gradient is established {(when focusing
1s complete), the shcath-flow liquid 1s changed (from a basc to an acid) and this

allows mobilisation of protein and ampholyte to occur.

Over time 1n a CIEF-MS separation the pH ot the solution exiting the capillary into
the MS changes, due to the pH gradient. However the overall pIl of sample and
sheath-tlow is kept constant due to the dilution effect of the sheath-flow fluid. The
constant pH creates an optimal EST ctficiency across the entire pH ampholyte range
for optimal ionisation to occur, usually in the positive ion mode. The typical make-up
hquid 1s a solution of 50 % v/v methanol and 1 % v/v acetic acid tn water (Shen &

Smith, 2002).

CIEF-MS has been successtully used for a number ol applications particularly in
proteomics, as oullined in Appendix 1 (Table 15). A recent review specitically on
CIEF-MS outlined the history of the technigue and moditications made to the method

to optimise separation and sensitivity (Wehr, 2004).

2113 CITP-MS

So far, very few mecthods have been reported in the literature for the CITP-MS
technmique. However, by using the pre-concentration technigue of transient CITP

(tCITP), a number of groups have separated proteins using tCITP—CZE-MS

2002).

2.11.4 MEKC-MS

Coupling of MEKC separations to MS is not favourable as surfactants required for the

separation create nstability of the electrospray ionisation and contaminate the MS
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detector. For this reason very few reports in the literature outline use of MEKC-MS

applications (Molina & Silva, 2002).

2.11.5 CEC-MS

The CEC-MS techmique has become more popular tor small molecules in arcas such
as drug identification, steroid separation and the characterisation of oligosaccharides.
So far, there has been no literature on protein separation; however, there have been
two papers on peptide scparation from one group (Gueek ct al.,, 2000; Gaspari et al.,
2001). Once the technology of CEC-MS matures, new opportunities for protein and

peptide separation for dairy applications may cmerge.

2.11.6 CGE-MS

Garcia & Henion (1992) developed CGE-MS for the analysis of organic anionic
species utilising a liquid-junction intertace. Since then, this method has gencrally
stagnated. Onc of the major problems with this method 1s that the denaturing
compounds required tor the CGE separation are not compatible with the MS detector,

and foul the detector.

'The objective of this thesis was to develop new technigues using CE tor dairy protein
and/or peptide separation, with the aim that these would be utilised primarily for
proteormic applications where samples of very different chemical composition could
be analysed under similar operating conditions. For this reason, the preferred mode ot
detection was MS, although UV detection was also investigated.  From the survey of
literature tor ditferent CE techniques it was apparent that a number of techniques,
although capable of scparating proteins or peptides, could not readily be used with
MS detection (e.g. CGE, MEKC, CITP, and CEC techniques). The two remaining CE
techniques, C7F and CIEF, were, however, suitable tor mvestigation as they could
both be interfaced to MS. CZE separation as discussed earlier is based on mass to
charge and is pH dependent whereas the CIEF method has the advantage that it can
separate proteins and peptides of very different molecular weights and p/ over a broad
pH gradient. Furthermore, the method is able to give an approximate pf of the protein

to aid sample identification.




Page 19

With the above in mind, the intent of this thesis was to investigate methods for CIEF
with potential application to dairy products, and compare results to currently used

techniques as outlined in section 1.0,
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3 Experimental Conditions

The following methods and operating parameters outlined in this section were used
for the CE methods developed during this study. In further sections the discussion

will focus on those parameters and conditions best suited to the ditferent techniques.
3.1 Chemicals

Ammonium persulfate, p-Dithiothreitol (DTT), urea, B-mercaptoethano! {BME),
N,N,N°N’-tetramethylethylencdiamine  (TEMED), CHAPS, tris(hydroxymethyl)-
aminomethane (Tris), anhydrous citric acid. Coomassie brilliant blue R-250, and
acrylamide were all purchased from BioRad (Hercules, CA, USA) and were ail
electrophoresis grade. Ampholytes with different pH ranges were purchased trom
Beckman (pH 3-10} (Fullerton, CA, USA), Pharmacia (Pharmalyte pH 3-10)
(Uppsala, Sweden), Fluka (pH 3-10, 7-9, and 4-6) (Buchs, Switzerland), Sigma (pH 3-
7} (St. Louts, MO, USA), and Bio Rad (pH 3-10, 4-6). The tollowing purified proteins
were obtained from Sigma: B-lactoglobulin A, B-lactoglobulin B, «-lactalbumin,
bovine serum albumin, proteose peptone-3 (PP3S), glycomacropeptide (GMP),
lactofermin, lactoperoxidase, w-casein, P-cascin, k-casein (all from bovine milk),
myoglobin {from horse heart), trypsin inhibitor {type I-S from soybcan), trypsinogen
(from bovine pancreas), carbonic anhydrase 1 (from human erythrocytes),
amyloglucosidase (from Aspergillus niger). Also from Sigma were thiourea, 3-[N-
morphelino]propane-sulfonic acid (MOPS), citric acid trisodium salt, and y-
methacryloxypropyltrimethoxysilane. Phosphoric acid, sodium hydroxide (NaOH),
glacial acetic acid, isopropanol, ammonia, ammonium acetate, acetone, sodium
tetraborate, Tween 20, ethylenediaminetetra-acctic acid {EDTA). glycerol, glycine,
trichloroacetic acid (TCA), sodium dedecylsulfate (SDS), and sodium acctate were
from BDH Laboratory Supplies (Poole, England). Acectonitrile and methanol were
purchased from Merck (Darmstadt, Germany). Methyl 2-hydroxyethyl cellulose
(MHEC) was purchased trom Aldrich (Milwaukee, WI, USA). Fluorescent p/ markers
with values of 3.0, 4.5, 5.1, 6.8, and 9.5 were purchased from Fluka (Buchs,

Switzerland). A broad range (pH 3-10) isoelectric focusing calibration kit was
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purchased from Amersham Biosciences (Buckinghamshire England). eCAP CIEF gel
was purchased from Beckman. Deionized water was obtained from a Gradient Milli-Q
system (Millipore, Billerica, MA, USA). Whey fraction samples and high purity
lactoferrin were gifted from Dr Kate Palmano {Fonterra Research Centre, Palmerston
North, New Zealand)., Bacterial cell lysates were gifted from Dr Steven Flint

(Fonterra Research Centre, Palmerston North, New Zealand).
3.2 Sample and Buffer Preparations for CIEF Experiments
3.2.1 Whey Basic Protein Fraction

Whey basic protein fraction samples were dissolved o an approximate concentration
of 25 mg/ml (10 ml samples) in Milli-Q water and dialysed using 3500 molecular
weight cut oft (MWCO) membrane (Spectra /Por Houston, USA) to remove any salt.
Dialysis was performed overnight at 4°C against several changes of water, The
solutions were shell dried with a Just-A-Tilt shell freezer (FTS Systems. Stone Ridge.
New York USA), and then freeze dred with a Freeze Mobile 128SL (The Virtis
Company, Gardiner, New York USA). Powders were stored at 4°C 1n a desiccator

until ready to be made up tor CLEF or flatbed gel [EF analvsis,
3.2.2 Whey Protein from Skim Milk

Fresh skim milk was diluted | to 1 with 0.2 M sodium acetate (pH 3.9) and then
centrifuged in Eppendorf tubes at 14000 rpm for 6 minutes with a 5417C Eppendort
microfuge (Hamburg, Germany). The supernatant was removed and re-centrifuged at
14000 rpm for a further 6 minutes. 2.5 mL of the resulting supematant was applied to
a PD-10 de-salting column {(Amersham Pharmacia Biotech AB, Uppsala, Sweden).
The fluid passed through the column was let go to waste, 3.5 ml of deionised water
was applied to the column and the eluate collected. The column was re-equilibrated
with addition of 25 mi-deionized water. Aliquots of the skim milk whey samples were

frozen and used as required.
3.2.3 Casein Protein from Skim Milk

Fresh skim milk samples were centrifuged for 60 minutes at 14000 rpm (Eppendorf

microfuge)} and the pellet recovered and diluted with 8 M urea solution as required.
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3.2.4 Standards

Casein protein standards were madc up to between 6-9 mg/ml in Milli-Q water. All
other protein standard sofutions were made up in deionised water at concentrations of

approximately 3-4 mg/ml.
3.2.5 Bauffers

All buffers (ancde. cathode and sample) were made up according to methods outlined
in the following sections and fltered through 0.20 um PVDF membranes (Titan

Filtration Systems, Wilmington, NC, USA) prior to use.
3.3 CIEF-UV Experiments

AN Capillary Electrophoresis cxperiments were performed an a P/ACE MDQ
(Beckman Coulter, Fullerton, CA, USA) with a direct UV absorbance detector or
photo diode array (PDA} deteetor both set at 4 [z for data acquisition on 32 Karat

software version 5.0,

A selection of coated capillary columns as tollows were used in this work; eCAP
Neufral Capillary (Beckman, Fullerton, CA, UUSA), £S20 weakly hydrophilic-coated
fused-sitica capillary column (SGE, Austin, Texas, USA), OV-1701-OH deactivated
fused silica CE column (TSP-050375-P-10, BGB Analtyik AG, Switzerland), CE-
HOOSA bonded phase open tubular CEC Zero tlow and Low flow columns (MicroSoly
Technology Corporation, Eatontown, New Jersey, USA), bare fused silica (Polymicro
Technologics, Phoenix, Anzona, USA) and bare {used silica coated in-house with
acrylamide as outlined by (Kilar & Hjertén, 1989). Briefly, this column was made as
tollows using the CE instrument; A 0.5 % (vv) solution of v-
methacryloxypropyltrimethoxysilane in 50 % acetone was pumped into a 50 cm bare
fused silica column at 25 psi for [0 minutes. After [ hour the capillary was emptied
by the pumping through of air (25 psi for 10 minutes). The capillary was then filled
with a 4 % w/v acrylamide solution containing 0.4 pl TEMED and 0.5 mg ammonium
persulfate per mL solution at 25 psi for 5 minutes and then lelt for 30 minutes, after
which water was pumped through the column for 10 minutes (at 25 psi). The capillary
was then pumped dry with air for 5 minutes at 25 psi. The ends of the capillary were

cut freshly with a working column of 40 ¢m being uscd.
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All capillaries had an internal diameter (1.d.) of S0 yum unless otherwise stated, and
outer diameter (0.d.} of 360 um. The length of the capillaries varied from 30-60 cm
with a UV detector window being bumt into the column 10cm from the cathodic end
to remove the polyimide coating. New columns were usually equilibrated before their
first use by rinsing with deionised water for 10 minutes at 25 psi followed by rinsing
with anode run buffer for 30 minutes at 25 psi. Before the start of each day the

capillary was flushed for 20 minutes at 25 psi with anode run buffer.
3.4 CIEF-UYV in a non-denatured system

Phosphoric acid at a concentration of between 10-91 mM was used as the anode
solution and sodium hydroxide at a concentration of between 10-40 mM was used as
the cathode solution throughout these experiments. In the case of chemical
mobilisation, either a 20 mM phosphoric acid solution or a 1 % acetic acid solution

was used as the cathode after focusing had taken place,
The general procedure for a non-denatured CIEF-UV run was as follows:

The capillary was first rinsed with anode bufter for 3-6 minutes (depending on
capillary length) at 25 psi. This was followed by a solution of the sample plus
ampholyte (at a concentration between 0.5-4 % v/v). These steps were performed such
that at the cathode end a waste vial collected the solutions. To initiate tocusing, the
anode and cathode ends were placed in the phosphoric acid and sodium hydroxide
solutions, respectively, and a voltage was applied at between 300-500 Viecm column
length. The ramp time for this voltage was 0.17 minutes. Focusing took place for 3-1¢

minutes before the mobilisation step.
Mobilisation techniques included the following methods:

Pressure mobilisation was at 0.1-0.2 psi pressure unless a sample was diluted in ¢CAP

CIEF gel, where 0.5 psi was used.

Chemical mobilisation was achieved by replacing the sodium hydroxide catholyte

with either phosphoric acid or acetic acid after focusing was complete.

EOF mobilisation was trialled using the MicroSolv Low flow columns with a voltage

applied to the capillary only.
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Focusing and mobilisation were undertaken using ditferent molarity anolytes and

catholytes.
3.5 CIEF-UYV in a denatured system

Four different urca sample buffers were used for these cxperiments and included the

tollowing:

s 8 Murea made up with 2 % wiv DTT

e 8 M urca made up with 5 % viv BME

e 8 M urea made up in eCAP CIEF gel solution with 5 % v/v BME

e 7 Murca, 2 M thiourea, 1 % wiv DTT, and 2 % wiv CHAPS detergent.
In all cases DTT and BME were added freshly on the day of sample preparation.

Samples were incubated in sample buffer for 1 hour followed by centrifugation at

14000 rpm tor 3 minutes in an Eppendort centrifuge to remove bubbles.

Ampholyte solution with either a pH range of 3-10, or a mixture of pH range 3-10 and
a narrow range ampholyte, was added to the sample solution to a final concentration

ot 2-4 % viv,

In initial studics, TEMED was used at a concentration of 0.5-2 % v/v in the sample

buffer to block the blind side of the UV detector when focusing proteins.

Firstly, a MicroSolv Zero flow capillary was rinsed with anodic buffer for 3-6 minutes
(depending on column length} at 25 pst. Protein sample made up in one of the tour
sample buffers with ampholyte added was injected on to the column at 25 psi for 90
seconds to fill the entire length of column. Proteins were then focused to ther
isoelectric point by application of electric potential (300-500 Viem) using phosphoric
acid (anode) and sodium hydroxide (cathode) to form the pH gradient. Focusing took

place for 3-10 minutes before the mobilisation step.

Mobilisation was undertaken by one of the following:
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Pressure mobilisation was at 0.1-0.2 psi pressure unless a sample was diluted in eCAP

CIEF gel, where 0.5 psi was used.

Mobilisation using a chemical gradient was achicved by using 20 mM phosphoric
acid and 40 mM sodium hydroxide in those experiments where focusing and

mobilisation occurred concurrently.
3.6 CIEF-MS Experiments

Capillary Electrophoresis—Mass Spectrometry experiments were performed on a
Finnigan LCQ lon Trap Mass Spectrometer (San Jose, CA, USA) cquipped with an
clectrospray ionisation (ESI} source. Data acquisition was performed on Xcalibur
software version 1.3. Deconvolution of proteins was performed using Bioworks 3.1.
The previously described CE istrument was used for CE-MS experiments except the
instrument was controlled via the Xcalibur Mass Spectrometer software. The CE and
MS were nterfaced by a co-axial sheath flow interface (Finmigan LCQ electrospray
adaptor kit). The MS instrument was configured throughout to nano-spray mode using

the Xcalibur software.
The procedure for CIEF-MS experiments was as follows:

A MicroSolv Zero flow capillary of approximately 90 cm in fength was equilibrated
with 1 % acctic acid for 6 minutes at 25 psi, then a 0.5-1 % ampholyte solution
containing, protein sample pumped through for 3 minutes at 25 psi. With the ESI
source 1 an open position and the capillary pulled back 2 mm from the ESI tip,
focusing ot the protein ampholyte solution could occur. The end of the capillary in the
CFE instrument was used as the anode and was placed in | % acetic acid. The end of
the capillary in the ESI source was used as the cathode with 1 % ammomnia being
pumped through the make up flow line to make a micro reservoir at the tip of the ESI
source. Sheath gas was also applied to keep tresh ammonia on the tip but at gas
pressures low cnough to allow a droplet to form (tiquid flow of 3 pul/min and gas tlow
setting of 7 in MS software) without being blown away. On addition of an electrical
potential the current rapidly increased tollowed by a slow drop off during the focusing

process. The current was monitored throughout and when a current value of
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approximately 20 % of the initial starting current was attained, the proteins were

sufficiently focused.

Mobilisation of the proteins was achieved by rapidly replacing the sheath liquid
{(make-up) with 50 % methanol, 1 % acetic acid. This was followed by aligning the
capillary tip so that it was approximately 1 mm outside of the ESI source tip to give
optimal spray into the MS detector. The ESI source was then closed up with pressure
and voltage applied from the CE instrument. The MS was set to scan mode and a
makeup flow of 3 ul/min used to ionise the proteins. Pressure and chemical
mobilisation were used with this technique. A voltage of 30 kV was applied to the

capillary for focusing and mobilisation. MS detection parameters are outlined in Table
2.

Table 2 LCQ Mass Spectrometry instrument settings for CIEF-MS experiments.

Parameter Setting

Capiitary spray voltage 5 kV
Sheath gas flow 10
Capillary Temperature 200 °C
Capitlary Voltage 20V
Tube lens offset -25V
Multipole 1 offset Q7s v
Lens Voltage -7V
Multipole 2 offset -4.0
Multipole RF Amplitude 960
Scan range 150-2000 mJz
Number of Microscans 10
Maximum inject time 30 ms

MS detection mode

Positive ion mode

MS parameters were optimised by performing infusion experiments using a standard
of B-Lac-A at a concentration of 90 ul/ml in 50 % methanol/ 1 % acetic acid and

setting the MS instrument to manual tune mode, tuning to a mass of 1531 m/z
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3.7 Infusion MS experiments

Mass spectrometry infusion expceriments were undertaken o measure the molecular
mass of standard proteins. Samples were made up at an approximate concentration of
90 pg/mi in 50 % methanol/ 1 % acetic acid and infused at 3 pl/min, MS running

conditions were identical to those outlined in section 3.6,

3.8 CZE of Whey Proteins

Whey proteins from skim milk were analysed by a CZE method modified from
Kinghom et al. {1996) as follows:

Whey protein was produced by acid precipitation of casein from skim milk at pH 4.6.
The casein was removed by centrifugation at 14000 rpm for 6 minutes in an
Eppendorf centrifuge. This also removed any fat that formed at the surface, with the
resulting clear supernatant being a solution of whey protein. This was diluted 10 fold
with Milli-Q water before being filtered through a 0.2 um PVDF membrane (Titan
Filfration Systems, SUN Sr1, Wilmington, NC, USA) ready for CZF analysis. Sodium
tetraborate (37.5 mM, pH X.2} with (.05 % Tween 20 additive was used as the run
buffer. CZE was performed on the previously mentioned PAACE MDQ CE system on
a 60 cm x 50 pm id. (360 um o.d.) bare fused silica column (Polymicro
Technologies, Phoenix, AZ, UUSA). The column was equilibrated by rinsing with 0.]
M NaOH for 30 minutes followed by 10 minutes of flushing with Milli-Q water and a
further 10 minutes flushing with run bufter. Fach pressure rinse was performed at 25
psi. Samples were loaded at the cathode by pressure (0.5 psi for 5 seconds) and
separated with 250 Viem capillary fength. Between runs the capillary was flushed
with 0.1 M NaOH lor 2 minutes, followed by 2 minutes with Milli-Q water and 3

minutes with run huffer, all at 25 psi pressure.

3.9 (CZE of Casein

Casein was analysed by a method similar to that of Recio et al. (1997) and is outlined

in full in Fong et al. (2003).

3.9,y Buffers

Electrophoresis Run Buffer
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The electrophoresis run buffer consisted of 0.32 M citric acid, 20 mM trisedium
citrate, 6 M urea, and 0.004 % MHEC. The buffer pH was typically 3.0 = 0.1 pH units
with no pH adjustment necessary if made correctly. Before use the electrophoresis

buftfer was filtered through a ¢.2 um filter PVDF membrane (Titan).
Sample Buffer

The sample buffer consisted of 167 mM Tris, 42 mM MOPS, 67 mM EDTA, 6 M
urea and 0.004 % MHEC. Before use, DTT was added to 17 mM. The buffer was

typically pH 8.6 = 0.1 pH with no pH adjustment necessary if made correctly.

3.9.2 Sample Preparation

A liquid mitk sample (300 pl) was diluted with 700 pl of sample bufter, and allowed
to stand for | hour at room temperature. The sample was centrifuged for 6 minutes at
14000 rpm (Eppendort microfuge) to remove fat and was then filtered through a 0.2
um tifter PVDF membrane (Titan) prior to CZE analysis.

3.9.3 CZE Parameters

CZE was carried out on the previously described PACE MDQ CE, with separations
taking place on a 30 em x 50 pm i.d. OV-1701-OH deactivated fused silica CE
column (TSP-050375-P-10, BGB Analytik AG, Anwil Switzerland). The detector
window on the capillary was made by burning a small section of polyimide coating 5
mm long and 10 cm from the capillary end. The separation was conducted at 333
Viem capillary length {10 kV) with a voltage ramp to this potential over 3 minutes.
Samples were injected at 0.5 psi for 5 seconds followed by a water dunk to clean the
column and then a small run buffer injection (0.1 psi for 0.1 minutes). Run time was
45 minutes at 30 °C with detection at 214 nm using a PDA detector. The capiliary was
rinsed between samples with run buffer for 3 minutes (at 25 psi) in a reverse mode.
New capillaries were first rinsed with 50 % methano!l for 30 minutes, followed by a
Milli-Q water rinse for 10 minutes and then a 30 minute rinse with run buffer (all at

25 psi).
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3.10 Flatbed IEF gel preparation

A stock solution of acrylamide/BIS was made up as follows: acrylamide/BIS (37.5:1)
(5 g), urca (48.05 g) and glycerol (15 g) were made up to 100 mL with Milli-Q water,
the solution was filtered through a 0.45 ym membrance (Millipore, MA, USA) and

stored 1 an amber Schott bottle at 4 °C to be used as required.

10 mL of acrylamide/BIS stock solution and 0.625 mL of carrier ampholytes were

degassed for 10 minutcs.

TEMED (9.4 ul.) was added and mixed well, followed by 9.4 nl. of 40 % ammontum
persulfate (freshly prepared). Immediately after mixing the solution was poured onto a
plastic IEF gel mould (258x124 mm) seated on a level glass plate. An electrophoresis
film (Sigma} was placed onto the liguid acrylamide to torm an acrylamide sandwich,
ensuring no air bubbles were trapped. A roller was gently passed over the surface of
the sandwich to extrude any air bubbles. A glass plate was placed on top for added
weight and the gel allowed to set (1 hour). The glass plates were removed and the IEF

gel stored at 4 °C 1in a plastic bag sealed under vacuum unti use.
3.10.1 IEF Sample preparation

[EF sample buffer was made up freshiy each day using urea (7 M), thiourea {2 M),

DTT (65 mM), and CHAPS (2.5 %% wiv),
3.10.2 Skim Milk

Milk {100 pL) was diluted into 900 pl. of IEF sample bufter, mixed and incubated for
60 minutes. After centrifugation for 6 minutes at 14,000 rpm (Eppendorf microtuge),

the fat layer was removed and the supernatant filtered through a 0.45 um filter (Titan).
3.14.3 Standards

Pre-made whey and casein protein standards were made up as outlined in section 3.2.4
and were further diluted in I[EF sample buffer to a concentration ot 1 mg/ml before

being loaded onto the IEF gel.
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3.16.4 Whey Basic Fraction

Whey basic fraction samples were made up according to section 3.2.1. Samples were
then made to a concentration of cither 1.5 or 3 mg/ml in IEF sample buffer betore

being loaded on to the [EF gel.
3.11 Flatbed IEF gel running conditions

Approximately 3 ml of kerosene was placed on the bed of a Bio-Phoresis horizontal
electrophoresis cell unit {(Bio Rad). An IEF gel was then placed on top with the
clectrophorests film side down. Rolling the gel to remove all bubbles from under the
gel, the top mould was lifted to expose the acrylamide gel. The IEF electrode strips
(Pharmacta) were wetted and then placed parallel along the width of the IEF gel with
the cathode strip at the top and the anode strip at the bottom. The cathode strip was

wet with 0.5 M NaOH and the anode strip wet with 0.5 M phosphoric acid.
3.12 Focusing

An electrophoresis power supply (Model 3000X1, Bio Rad) was used to pre-focus the
ampholytes by applying 2000 V. 13 mA, 4 W, for 30 minutes at 12 °C using a LTD6G
waler bath cooling system (Grant Instruments [td, Barrington, England). After pre-
focussing. sample strips (Pharmacia) were placed on the anode side of the gel and 15

ul. of sample added to the entire strip.

Sample pre-focussing was pertormed by application of 2000 V, 15 mA, 4 W, for 60
minutes at 12°C. Final focusing of the sample was then achieved by application of

3000 V, 3 mA, 20 W, tor 90 minutes at 12°C.
3.13 IEF gel staining

3.13.1 Coomassie Blue R-25( Stain

Coomassie brilliant bluc R-250 (2.5 g) was dissolved in isopropanol (1250 ml),
glacial acetic acid (500 ml), and made up to a total volume 5 liters with Milli-Q water.
This solution was stirred overnight and filtered under vacuum through a filter paper

(Whatman No.1, Whatman International limited, Kent, England).
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3.13.2 Coomassie Destain

Coomassie blue destain was made with a composition as follows:

Isopropanol (500 ml) and glacial acetic acid (500 ml} were diluted in Milli-Q water to
a final volume of 5 litres.

3.13.3 Staining Procedure

The gel was fixed in 15 % TCA for 15 minutes followed by rinsing with water and
addition of" Coomassie blue stain for 1 hour. This was followed by overnight
{approximately 20 hours) destaining in Coomassie destain. The resulting gel was
scanned by laser densitometry using a Molecular Dynamics series 300 Personal
Densitometer and analysed with ImageQuant sottware (Amersham Biosciences,

Buckinghamshire England)

3.14 2-Dimensional Gel Electrophoresis Experiments

These were performed using pre-made [PG (immobilized pH gradient) strips and an
Ettan IPGphor (Amersham Biosciences) for [EF in the first dimension with SDS-

PAGE in the second dimension.

3.14.1 Buffers

Rehydration Buffer

This consisted of urea (12 g), CHAPS (0.5 g). IPTG bufter (125 ml), bromophenol
bluec (a few crystals), and Milli-Q water (16 ml). Rehydration butfer was kept in vials

frozen at - 20°C ready tor usc as required.
SDS equilibration Buffer

5 M Tris-HC1 pH 8.8 (6.7 ml) was added to urea (72.07 g), glycerol (69 mi), SDS (4.0
), bromophenol blue (a few crystals), with Milli-Q water to 200 mi.

Electrophoresis run buffer

Tris (15 g), glycine (72 g), and SDS (5 g) were mixed and made up to 1 litre in Milli

(Q water. The resulting buffer was stored at 4 °C and diluted 5 fold before use,
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3.14.2 Sample Preparation

DTT was added to rehydration buffer at a concentration of 0.02 M prior to addition of
freeze-dried sample to 2.5 mg/ml (sample volume 1ml). Sample was dissolved and
allowed to stand for 1 hour before centrifugation (Eppendorf microtuge) at 14000 rpm

for 3 minutes.

Sample solution supernatant {185 p1l) was then dispersed onto an t1 cm TPG strip (Bio
Rad 163-2014) of pH range 3-10. Dry Strip cover {luid (Mineral Qil) (Pharmacia
Biotech, Uppsala, Sweden) was applied over the top of the strip to keep it from drying

out and the strip allowed to passively rehydrate overnight at room temperature.

3.14.3 IEF Focusing

The rehydrated IPG strip was placed in a ceramic IEF casket (11 em) (Amershan,
Uppsala Sweden) with its gel side in contact with the clectrodes. A piece of damp
filter paper was placed over each clectrode prior to strip placement to act as a salt
sink. Another coating of Dry Strip cover fluid was applied and the casket placed
appropriately on an Ettan IPGphorll system (Amersham Biosciences). The sample
was then electrophoresed at a gradient of 1000 Vihr until 2000 V was achieved and
then electrophoresed at this voltage for a further 22 hours (45000 V hours) at 20 °C.

The [PG-strip was removed and prepared for the second dimension.

3.14.4 Second Dimension SDS-PAGE

DTT (10 mg/ml buffer} was added to SDS equilibration buffer and 5 mi of this
solution placed in a test tube, The IPG strip was added to the test tube and equilibrated

by gentle agitation for |3 minutes.

Vertical SDS PAGE was carried out using a midi (11 em) 8-16 % Critcrion™ precast
Tris HCI gel system (BioRad, Hercules, CA, LUSA). This was prepared by rinsing the
application well with water and then clectrophoresis run buffer. The TPG strip was
placed on the gel within the application well, ensuring complete contact with the
surtace of the gel. A layer of warmed agarose gel (0.5 % w/v in electrode buffer) was
gently applied over the strip to seal it in place and then more electrophoresis run
buffer was placed on top of the gel. The gel was placed into a Criterion

electrophoresis tank (Bio Rad) and the reservoir filled with electrophoresis run buffer.
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The gel was run at 210 volts, 70 milliamps and 12 watts for 2 hours using a Bio Rad

model 1000/500 power supply.

The gel was stained overnight in Coomassie blue R-250 stain and destained for a
further day in Coomassie blue destain (solutions are outlined in section 3.13.1 and
3.13.2, respectively). The resulting gel was imaged by densitometry as described in

section 3.13.3.
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4 Results

4.1 CIEF-UV Water Soluble Method

4.1.1 Method development protocol

Inittal work on CIEF was performed with a RBeckman CIEF kit, which included
column, ampholytes. run buffers and sample butfer coupled with a PDA detector.
Using this kit, good results were easily obtained for the standards provided. The work
was further developed to produce optimized systems, which would be applicable to
the analysis of soluble dajry whey proteins with either UV or MS detection. In
addition, when the methods were optimized, the parameters were applicd to a system
designed to examine insoluble cascin proteins, and membrane proteins. Initial
developmental work was undertaken using @ PDA detector, as there was several
months delay in obtaining the UV detector required for CIEF analysis. Detector
choice will be discussed later in the results section with relevant examples (Scetion

4.1.5}.
General work on method development is outlined below.

4.1.2  Protein Concentration

In much of the developmental work, a series of protein p/ markers of known pJ and
concentration were used. Generally the standard mixture consisted of trypsinogen,
myoglobin, carbonic anhydrase I, trypsin inhibitor, and amyloglucosidase. However,
i1 some later experiments ribonuclease-A and CCK flanking peptide were used
instead of trypsinogen and amyloglucosidase, respectively, but where there was a
change this will be noted in the text. The p/ values for these proteins are listed in
Table 3 along with typical working concentrations used. Additionally, a skim milk
whey sample was made as in section 3.2.2 with the main protein constituents B-lac-B,
P-lac-A, and o-lac also being used as individual protein markers. The literature pf
values of the major whey and all the other common dairy proteins are also listed in
Table 3 as are the molccular weights of all the proteins and peptides used in this

studv.
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Table 3 Literature values for isoelectric points and molecular weights of proteins used
throughout this research. Typical CIEF working concentrations are also inciuded.

Protein

Ribonuclease-A

Trypsinogen
Myogiobin Basic
Myoglobin Acidic

Carbonic

Anhydrase |
3-Lactogiobutin-B
B-Lactoglobulin-A
a-t actalbumin
Trypsin Inhibitor
Amyloglucosidase

CCK Flanking
Peptide

tL.actoferrin
Lacioperoxidase

Bovine Serum

Atbumin

Protease Peptone 5
Glycomacropeptide
Immunoglobulin-G
a-Casein
B-Casein-A1
B-Casein-A2

k-Casein

Name

RBA

Tryp
Mb-8
Mb-A

CA

B-LacB
B-Lac-A
a-Lac
Ti

AM

CCK

Lf

Lp

BBA

PP-5
GMP

lgG
a-CSN
B-CSN-A1
B-CSN-A2

K-CSN

Abbreviated

Literature pl

.9.45
8.30
7.35
6.85

£6.55

5.34
5.26
4.80
4.50
3.50

275

513

4.96
5.27
6.19

5.43-5.64

Literature

Molecular
Weight {Da)

13700

23700
16951
16951

20000

18281

18367
141725
20100
70000- 89000

10741

83100
77500

66432

12177- 12483
6754-6780
150000
23600

24020

23980

19005-19037

o A8 b e e 10 e A

Typical CE
Concentration

ngfmd

30

30

60

60

7.5

7.5

7.5
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The general CIEF response under optimized conditions for a 30 cm column with UV
detection can be seen in Figure 3. This is the first example of the major skim milk
whey proteins being successfully separated by CIEF as opposed to one of the B-Lac
genetic variants or a-Lac being used as a p/ marker for the separation of other protein
samples in CIEF. Each of the method development topics that follow investigates the

reasoning for selection of these conditions, before coming to the final overall optimal

Separation.
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Figure 3 A typical electropherogram (Black) with current trace (Red) of whey protein from
skim milk, with internal pl markers added. The sample was run on a 30 cm MicroSolv Zero
flow column at 12 kV. Focusing was performed for 6 minutes followed by pressure
mobilisation at 0.1 psi. Anode comprised 20 mM phosphoric acid and cathode buffer
comprised 20 mM sodium hydroxide. Ampholytes used were Beckman 3-10 at 2 % (v/v)
concentration. Tryp = trypsinogen, Mb-B = myoglobin basic, Mb-A = myoglobin acidic, CA =
carbonic anhydrase |, B-lac-B = B-lactoglobulin-B, B-lac-A = B-lactoglobulin-A, a-Lac = a-
lactalbumin, Tl = trypsin inhibitor, AM = amyloglucosidase. Detection was UV at 280 nm.

The CIEF method of analysis effectively concentrates a protein into a very small
region of the capillary at its isoelectric point. This concentrating effect can sometimes
cause a protein to precipitate out of solution. The working concentrations of the
standards thus varied due to precipitation problems with some standards. Trypsin
inhibitor (TI) and amyloglucosidase (AM) were examples of proteins that readily
precipitated out of solution during the CIEF process, resulting in a large spike

observed in many electropherograms (for example TI in Figure 3) and so for this
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reason concentrations were limited to approximatcely 7.5 pg/m] (Figure 3). The
working concentrations of myoglobin (containing both the basic and acidic protein
form) and carbonic anydrase 11 were 60 pg/mi, while 30 ug/ml was used for
trypsinogen {and later the same for ribonuclease A). Standards were used to assess the
effect of lincarity for p/ versus migration time on such parameters as: column coating.
ampholyte brand, running buffer, sample buffer, mobilisation technique, focusing
time, difference 1n voltage, temperature, method reproducibility and caleulation of the
resolutton of separation. The red trace shown in Figure 3 is the current trace obtained
from the CIEF process. The electrical potential was ramped up initially from 0 valts to
12 kV in 10 seconds, hence the sudden increase in current seen at the start of the trace.
Once the current had peaked it started to drop off, initially at a rapid rate, but then at a
progressively slower rate seen as a decreasing slope of the curve. This phenomenon
can be explained as follows. The protein and ampholyte solution within the capillary
are initially in a homogeneous mix. On addition of an electrical potential a
concentration gradient is set up. Since the bulk of the ampholytes and proteins in
solution are not at their isoclectric points and are charged species, a high current is
formed. As the ampholytes and protcins move towards their respective isoelectric
points aleng the pH gradient and a greater amount reach their pf, the current starts o
decrcase. This is becausc there is increasingly less protein and ampholyte with a nett
charge. When all the ampholyte and proteins have been focused the current plateaus
to a level a litde greater than zero. The current does not drop to zero as protein and
ampholytes constantly move in and out of equilibrium very slightly from their p/
values. Salts in solution also add to this effect. In Figure 3 it can be seen that the
current starts to rise again after 11 minutes. This is due to the mobilising effect of the
CIEF procedure; as phosphoric acid is pushed into the column, healing occurs due to
the voltage still being applied, and this results in a raised current. The current is
thereforc a very good indicator for monitoring whether a CIEF experiment is running
well, and can be used to determine when the separation is complete in the case of

unknown samples.,

4.1.3 Buffer Choice

From prior literature, CTEF buffers gencrally consist of either phosphoric acid or
acetic acid at different concentrations at the anode, and either sodium hydroxide or

ammonia at the cathode. In general. phosphoric acid and sodium hydroxide are used
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with UV detection (Rodriguez-Diaz et al., 1997) as a greater degree of resolution is
achieved with these buffers than with acetic acid and ammonia run buffers that are
compatible with mass spectrometry. This can be seen in the electropherogram in
Figure 4, particularly in the area of the B-Lac-A and a-Lac peaks. With phosphoric
acid and sodium hydroxide, separation of these peaks was observed. However, this
was not the case with the acetic acid and ammonia buffers. A possible reason for the
somewhat poorer separation with acetic acid and ammonia could be the slightly
narrower pH range developed due to the weaker acid and base strength in comparison
with phosphoric acid and sodium hydroxide. pH values for each buffer trialled are
shown in Table 4. The pH value for phosphoric acid was somewhat lower than that of
acetic acid or any of the other buffer combinations. In addition, the pH value for
sodium hydroxide was somewhat higher than that for ammonia. The greater pH range
for the phosphoric acid and sodium hydroxide buffers may allow the focusing process

to give a more linear pH range resulting in a more even spread of ampholytes across

the capillary.
ﬂ.ﬂvl:l 4
5
et - ghosphoric Acid & Sodium Hydroxide
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1 2
0.01 | , , 7 / ':'lll 8 .
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Figure 4 Comparison of buffer types. Electropherograms of skim milk whey protein with
internal standards. Samples were ran in an identical manner to that in Figure 3 except bottom
trace (Red) represents run with 1 % acetic acid at the anode and 1 % ammonia at the
cathode. Peak 1 = trypsinogen, peak 2 = myoglobin, peak 3 = carbonic anhydrase, peak 4 =
B-lactoglobulin-B, peak 5 = B-lactoglobulin-A, peak 6 = a-lactalbumin, peak 7 = trypsin
inhibitor, and peak 8 = amyloglucosidase.
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Tabie 4 pH values for focusing buffers and mobilisation buffers in CIEF experiments.

Buffer Composition pH Buffer use

20 mM Sodium Hydroxide 128 Focusing
1 % Ammonia 12.6  Focusing
20 mM Phosphoric Acid 19  Focusing
1 % Acetic Acid 2.6  Focusing
1 % Acetic Acid & 50 % Methano! 3.0 Mobilisation
1 % Acetic Acid & 50 % Acetonitrile 2.9 Mobitisation

0.2 % Formic Acid & 50 % Methanol 2.8 Mobilisation

0.2 % Formic Acid & 50 % Acetonitrile 2.7 Mobilisation

In other work (not shown} there were many instances, particularly when using a 60
cm column, where peak resolution diminished and broader peaks were seen for acetic
acid and ammonia buffers when compared to phosphoric acid and sedium hydroxide
butters. From Figure 4 it can be seen that the retention times for the proteins increased
shghtly trom one buffer set to the other. With a longer column these retention times
increased even turther due to the increased tocusing distance (Sec¢ Figure 7 for a
comparison of results using difterent length capillaries with phosphoric acid and

sodium hydroxide).

For phosphoric acid and sodium hydroxide buffers there did not appear to be any
advantage in using different buffer concentrations. Although buffer depletion can
become an jssue when large amounts of samples are run from the same bufter vials, it
was decided that a 20 mM concentration of both was the best choice for general UV
detection of water-soluble proteins. Use of sodium hydroxide at higher concentrations
might have affected the column by making the silica of the column more brittle at the

cathode end when constantly inserted in the alkali solution (Wehr et al., 1999, p 140).

Buffers were made up freshly each day from a stock solution of higher known
concentration. This was particularly important for the sodium hydroxide as it can form

carbonate compounds with atmospheric carbon dioxide gas (Wehr et al., 1999, p 140).
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The same 2 ml buffer vials could be used for more than 40 de-salted samples run

consecutively, with no changes in the separation taking place.

The use of a buffer system utilizing either 50 % methanol or 50 % acetonitrile with
either tormic acid (at 0.2 %) or acetic acid (at 1 %)} was used as a means for chemical
mobilisation to replicate conditions required for MS analysis. The results (not shown}
showed that the use of formic acid on the capillary column affected the surface
chemistry of the column causing it to malfunction. The capillary was irreversibly
damaged, this occurring on 2 separate occasions. Further work showed that
mobilisation with 50 % methanol and 1 % acetic acid (pH 3.0) gave similar results to
mobilisation with | % acetic acid (pH 2.6) in Milli-Q water although therec was a

slight difference in pH ot the bufters.

4.1.4 Column Choice, Length & Internal Diameter
4.1.4.1 Choice of Column

A number of different columns with different internal coatings were tried to not only
optimise separation with regards to linearity of p/ versus migration time but also test
the robustness of the capillary. Figure 5 shows electropherograms of an identical
sample of p/ markers and dairy whey proteins isolated from skim milk run on
difterent columns of the same length (30 ¢cm) under the same conditions. All columns
were equilibrated as per the manufacturer’s instructions before use. By visually
observing the electropherograms, elimination of scveral of the capillarics was
possible, as the separations achieved were inferior to some others, This included the
Beckman Neutral, MicroSolv Low Flow, and SGE polycthylene glycol columns. It
must be noted that the Beckman column was purchased as a pair of pre-cut 30 ¢cm
columns which were particularly expensive. Good results were obtained with the first
column aithough none of this work was performed with a UV detector or with the
whey protein and p/ markers used throughout this report. The second column was
stored as per instructions for several months before being used (results in Figure 5).
Unfortunately, it seemed that the column coating had deteriorated in this time period,
as the separation resolution was extremely poor. The current traces obtained with this
column indicated, however, that the IEF process was occurring as normal. In addition,
the Beckman column was not suitable for CIEF-MS as it was only available as a 30

cm column, and a 90 ¢cm column was required for this technique. The Beckman
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column has an internal coating of acrylamide. An in-house acrylamide coated column
was made using the method of (Kilar & Hjertén, 1989) but was found to give very

irregular results and have a very short lifetime (results not shown).

Microsolv- Zero flow

BGB- Polyethylene Glycol

SGE- Polyethylene Glycol

n.}'..J’J L
Microsolv- Low Flow
Beckman- Neutral
™
3 E] -3 T 2 a e 1 i1z |’3.I:lrl‘.v.16 1:.' 1‘0'1'.‘.3.}.2'1?2.2 23

Tdirwuics

Figure 5 Comparison of column coatings. Electropherograms of whey proteins from skim milk
and internal p/ standards run in a manner identical to that in Figure 3 except different columns
(30 cm) were used to generate each electropherogram. From the top trace: Black- MicroSolv
Zero flow, Red- Bare fused silica, Blue- BGB, Purple- SGE, Maroon- MicroSolv Low flow,
Green- Beckman neutral capillary. Peak 1 = trypsinogen, peak 2 = myoglobin, peak 3 =
carbonic anhydrase, peak 4 = B-lactoglobulin-B, peak 5 = B-lactoglobulin-A, peak 6 = a-
lactalbumin, peak 7 = trypsin inhibitor, and peak 8 = amyloglucosidase.
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The MicroSolv columns comce in a range of different coatings with different levels of
EOF control. In addition to the two columns tried here, there are medium and high
flow columns available. Since in this work, the Low Flow column was unable to give
bascline separation of -Lac-A or B-Lac-B, and the first p/ marker (trypsinogen) was
detected just after focusing even when the column was new (having less EOF than an
older column), the use of this column was not pursued; ncither were the other higher
flow columns. It is also interesting to note the peak shapes for myoglobin basic and
carbonic¢ anhydrase proteins werc particularly poor using the Low Flow column, with
ditfuse humps rather than sharp peaks being observed. This may suggest some protein

binding to the column.

The SGFE column was also unable to separate f-Lac-A from B-Lac-B, and it was
thercfore considered that this type of polvethylene coating was not adequate tor the
study. Additonally, the peaks obtained for myoglobin or carbonic anhydrase were
very low in intensity compared to those scen with the MicroSolv Zero Flow or Bare

fused silica columns.

Although the BGB polvethylene glveol coated capillary pave cxcellent separation of
B-Lac-A. fi-Lac-B. and a-l.ac, the use of this column was not pursued, as the peaks for
many of the other protcins were poor mcluding trypsinogen, myoglobin, carbonic

anhvdrase, and amyloglucosidase.

Bare fused silica gave very good results: because the capillary does not have a coating
it is cheap and has an extremely long lifetime and 1n this scnse 1t was a particularly
desirable column to pursue. The use of bare fused silica columns has also been
reported elsewhere with good results (Kilar et al., 1998) The linearity of the pf
standards versus migration time was good for the 30 ¢cm column compared to the
MicroSolv Zere Flow column and BGB columns. However with numerous repeat
runs, a lot of abnormal peak shapes and sizes occurred, particularly in the acidic
region and it became very hard to positively identify some proteins in this region,
Visual comparison of the overlaid electropherograms (Figure 5) clearly showed the
MicroSolv Zero Flow column gave the best results in terms of peak shape and
intensity and separation of proteins of similar p/. With the 30 ¢cm column the linearity
of pl versus migration time was generally not very good (Table 5) and gave low

accuracy pf values for unknowns. However as will be discussed later, & longer column
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gave very good linearity of standards and p/ approximation for unknown proteins with

good reproducibility.

Tabte 5 Comparison of the electropherograms obtained from using different 30 ecm columns
as shown in Figure 5.

Column

pf vs Migration Time

R? of

% Error of

Separation

Peak

Coating Equation BestFit  unknowns of Proteins  Shape
MicroSolv- y=-0.741x + 14.362 0.895 15.62 Very Good Excellent
Zero flow

Bare Fused vy =-0.7308x +14.064 0932 6.27 Very Good Good
Silica

8GB y =-1.0479x + 16.388 0.918 577 Very Good Good
SGE y=-1.1356x + 17.108 0.930 13.03 Poor Average
MicroSolv y =-1.0238x + 14.892 0.802 17.26 Poor Poor
Low Flow

Beckman y =-0.2328x + 10.50 0.806 19.62 Poor Very poor
Neutral

From the electropherograms obtained in Figure 5 a plot of pf versus migration time
was constructed for each column (Figurc 6) with the results for linear fit being given
in Table 5. The Table lists the separation and peak shape obtained with the columns in
Figure 5 as good, average or poor, and includes the average error in calculating the p/
of the whey proteins (from skim milk) from the standard curves outlined in Figure 6,
using literature values as reference points. Table 5 also gives the R* values of the
calibration curves for each of the columns in Figure 5. The results show that aithough
R? is not always related to the percentage error (for exampie the SGE columny), it 15
often a good indication of accuracy of resuits (for example Bare Fused Silica and
BGB columns). From different results obtained at different times, there seemed to be
some variation in column quality, as other 30 cm Zero flow capillaries gave (under the

same conditions and sample concentrations) regressions up to 94.2 % lineanty (Table
7).
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Figure 6 Calibration Curves of p/ versus migration time for each column type compared in
Figure 5. The equation and regression vatues for each column are expressed in Table 5.

4.14.2 Column Length

Column length atfected lincarity of pf versus migration time and hence the accuracy

of determination of unknown proteins. In the comparison of column lengths (Figure

7}, the samples were run at the same concentrations and under identical running

conditions including the voltage applied per centimetre of column length. The results

showed an increase in peak height and area for the 60 c¢m column as would be

expected as the volume of sample injected is doubled with filling the entire length of

the column (Table 6). Retention times were also increased as the focused protein

bands had further distance to travel to the detector. An improvement in the linearity of

standards was observed and is shown in Table 7. This was no doubt due to the longer
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distance over which separation could take place along with the increased time for not
only focusing but also mobilisation. There is often not much time between the
focusing and mobilising step for a 30 cm column as proteins dritt towards the detector
due to EOF. In this case the basic proteins are closer to the detector irrespective of
EOF, and so the pH gradient at this point is often not as stable. If the current traces of
the 30 cm and 60 ¢cm experiments are examined, then it is noticed that for the 30 cm
column (as in Figure 3) the current curve is still moving down at a moderate gradient
at the time the most basic protein is being detected whereas for the 60 cm column the
gradient of the current at this time 18 very much less (data not shown). This would
indicate that a more linear stable pH gradient exists within the capillary at the time of
detection. Often it has been seen that the elimination of the most basic p/ marker (and
most acidic p/ marker) will improve standard curve linearity and accuracy of pf

determination for the 30 ¢m column.
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Figure 7 Comparison of column length. Electropherograms of skim milk whey proteins and
internal p/ standards. Both electropherograms run identically to Figure 3 except that the
bottom electropherogram was run on a 60 cm column with a voltage of 24 kV to be consistent
with the 30 cm column. Peak 1 = trypsinogen, peak 2 = myoglobin, peak 3 = carbonic
anhydrase, peak 4 = B-lactoglobulin-B, peak 5 = B-lactoglobulin-A, peak 6 = a-lactalbumin,
peak 7 = trypsin inhibitor, and peak 8 = amyloglucosidase.

Table 6 Comparison of column volume (nl) when changing parameters such as length or
internal diameter. Calculated from CExpert (Beckman Coulter).

Column Length Column Internal Diameter Column volume
(cm) (um) (nl)
% s 589

30 75 1325

60 50 1178

60 75 2651
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Table 7 Compariscn of results from the electropherograms shown in Figure 7 for differences
in column length on the MicroSolv Zero Flow capillary and between batches of capillary (For
30 cm results).

Column Length Equation of pl vs Regression (Rz) % Error of unknown
Migration Time proteins

30 em y =-0.7425x + 14.057 0.8872 16.05

30cm y = -1.1352x + 15.957 0.942 6.51

B0 cm y = -0.3568x + 14.316 0.9737 2.71

4.1.4.3 Column internal diameter.

A comparison of capillaries with different internal diameters and identical column
coatings was undertaken to identify whether a larger diameter capillary would
mcrease the sensitivity of the method. Figure 8 shows the separations achieved when
the same sample was run using identical conditions on both 50 and 75 pm 1.d.
columns. Although the 75 um 1.d. column gave a faster separation, the resolution of
separation was poorer as there was no separation of the whey proteins with similar
pl’s. There aiso appeared {o be no increase n sensitivity with the 75 pm 1.d. capillary.
This 1s somewhat surprising constdering the tmerease in capillary volume is more than
doubled (Table 6), allowing an increase in injection volume of two fold. Whether
there was a problem with the 75 um 1.d. column i1s unknown: however from the
literature the general trend for capillary internal diameter {Appendix 1 Tablc 14 and
Table 15) was toward use of 50 pm i.d. and so for this study the use of 50 pm 1.d.

columns was continued.
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Figure 8 Electropherograms of whey protein with internat pl standards for capillaries of 75 um
i.d. {top) and 80 pm id. {(bottom). Note standards are identical to those used in Figure 3
except trypsinogen is replaced with ribonuciease A and amyloglucosidase is replaced with
CCK flanking peplide. Peak 1 = ribonuclease A, peak 2 = myoglobin, peak 3 = carbonic
anhydrase. peak 4 = B-lactoglobulin-B, B-lactoglobulin-A, and a-factalbumin peak 5 = trypsin
inhibitor, and peak 6 = CCK flanking peptide.

4.1.5 Detection Choice and Wavelength Selection

The use of a filter UV detector rather than photo diode array (PDA} detector s
preferred for CIEF as the filter detection system climinates a lot of wavelengths of
light tfrom passing through the capillary. The use of a PDA mcans that all wavelengths
of light pass through the detection window in the capillary. The extra wavelengths
create noise and interference from the capillary’s intemal coating and  so
incomprehensible spectra are obtained. Figure 9 shows the effects of using a PDA
detector at two different wavelengths (top two traces) as compared with a filter type
UV detector (bottom two traces). In each run the current was monitored and shown to
behave similarly to the current trace m Figure 3. From this it could be deduced that
nothing was wrong with the separation itsclt but that the response was purely due to

the detector.

Wavelength of detection 1s another problem with CIEF. For most dairy protein
analysis it 1s desirable to detect proteins at 214 nm duc to higher absorption

coefficients at this wavelength. Untfortunately in CIEF it is not possible to use this
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wavelength successfully as there is a lot of interference trom the ampholytes at this
wavelength. The use of 280 nm Is better; although absorbance readings are lower
compared to 214 nm, a rclatively tlat basc line is achicved. Figurc 9 shows these
differcnces in signals obtained at 214 and 280 nm for whey protcins in skim milk. It 1s
interesting to note that the scales of the top 3 electropherograms are identical, whereas
the bottom trace (280 nm with UV filter detector) has a scale of approximately 10 %
of the intensity of the 214 nm UV detector and PDA detector traces. Thus one of the
problems for the CIEF technique compared to other CE methods is that the limits of
detection are reduced 10 fold by using the 280 nm wavelength. On the other hand, in
other CE techniques a sample injection of no more than 5 % of the column volume is
used, whereas in CIEF the entire column is filled. Therefore the limits of detection of
the CIEF method still remain higher duc to higher sampie load, but could be improved

if ampholytes were producced that do notf absorb at the lower wavelengths.

The use of mass spectrometry as a detector will be discussed later in section 4.4, | as it

is a ficld of its own in which special conditions are used to make detection possible.



Page 50

o

L L H Mﬁnf'\}"’ﬁwﬂﬂwj

Figure 9 Comparison of detector type and wavelength. Samples are whey protein from skim
milk run identicaliy to Figure 3. From top to bottom: 214 nm PDA detector, 280 nm PDA
detector, 214 nm UV detector, and 28CG nm UV detector.

4.1.6 Ampholyte Choice

A survey of different ampholyte brands was performed to see which were best suited
to CIEF since most commercially available ampholytes are designed for flat bed gel

IEF. The experiments were all conducted on the same column (60 cm MicroSolv Zero
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flow). using the same sample concentration of skim milk whey protein spiked with B-
Lac-B (33 pg/ml sample) mixed with a 2 % (v/v) solution of different ampholvtes.
The majority of ampholytes used had a separation range of pH 3-10 and included the
following brands: Beckman, Pharmalyte, Fluka and BioRad 3-10; Sigma ampholytes
had a pH range 2.5-7. Figure 10 demonstrates the difterences in ampholyte brands.

In the top clectropherogram in Figure 10 Beckman ampholytes that are specifically
designed for CIEF were used. This type of ampholyte clearly gave better results in
terms of detector response than the other brands of ampholytes. The separation time
was also fairly good but the peaks were not as well resolved as with other ampholyte
types. This may be due to the quicker time for separation with some of the other
ampholytes, particularly Fluka and Sigma, thus the protein peaks obtained trom the
Beckman ampholytes are broader due to the longer time the proteins remain in the

column and the longer time they then require to pass the detector.

BioRad ampholytes gave poor results. Although these have been used for many other
CIEF applications {Appendix 1 Table 14), and good results had been obtained with
these ampholytes on IEF gels, results with the capillary column were not very good.
Peaks were not resolved, and a replacement BioRad ampholyte was not purchased to

test if the one used for this experiment had deteriorated.

Fluka ampholytes gave reasonable results except that sample suppression was an
issue. Peak area and height were reduced compared to the other ampholyte brands.
Peaks were detected very soon after focusing particularly when using a 30 cm cojumn

(data not shown).

Pharmacia ampholytes gave slightly different results to Beckman, Fluka or Sigma
brands. Extra peaks were observed in the UV trace but when using these ampholytes
with MS detection, no extra peaks were observed in the total ion count (TIC) (not
shown). Although many research groups use these ampholytes particularly for MS
detection and good results have been observed with flat bed IEF gels for the
separation of milk proteins (Braun et al., 1990), in this work the Beckman ampholytes

were considered a better alternative.
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Figure 10 Comparison of different ampholyte brands. Each electropherogram represents
whey protein from skim milk run on 2 60 ecm MicroSolv Zero flow column. All samples except
that shown in the bottomn electropherogram were spiked with B-lac-B. All other instrument
settings were the same as those described in Figure 3. From the top: Beckman ampholyte 3-
10, Bio-Rad 3-10, Fluka 3-10, Pharmacia 3-10, Sigma 2.5-7. Peak 1 = -lactoglobulin-8, peak
2 = B-lactoglobulin-A, and peak 3 = a-factaibumin.
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Sigma ampholytes in a slightly narrower range of 2.5-7 pH units were tried, using
whey protein from skim milk with no additional spiking with B-Lac-B (Figure 10). It
was hoped the use of a narrower range ampholyte would give a better separation of
proteins of similar p/ than the 3-10 pH range, but this was not the case. Comparing the
sgparation of whey proteins using the Sigma ampholytes to the others shows a
separation no better than the best of the 3-10 range amphoiytes. Use of a fess basic
cathode run buffer might have improved the separation. However, Sigma ampholytes
were not routinely used as they produced a lot of spikes in the more acidic region of
the electropherogram. This would make detection of fow abundant proteins hard to

achieve.

Optimum ampholyte concentration was investigated, as with MS detection, a lower
concentration of ampholyte is required otherwise too much sample suppression 1s
seen. From the literature (Refer to Appendix 1 Table 14 and Table 15), the usual
concentration for ampholytes with UV detection is 2 % (v/v) and for MS detection 0.5
% (v/v). In developing the method for MS detection, it was desirable to monitor the
separation with UV detection and compare it to that obtained with the usual 2 %
ampholyte concentration. An example is shown in Figure 11. Good separation was
still achieved with 0.5 % ampholytecs, with a shorter run time. However, the 2 %
ampholyte concentration was preferred for UV detection, as a shightly higher
resolution of separation was achieved. It also ensured that the ampholyte to protein
ratio was high enough to establish and maintain a linear pH gradient. This may not be
as important a factor with MS detection for proteomic type analysis as a molecular

mass would be derived for each protein enabling identitication.
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Figure 11 Comparison of ampholyte concentration. Electropherograms of whey protein from
skim milk showing the effects of different concentrations of ampholytes added to the sample.
Top: 2 % (v/v) ampholyte added, Bottom: 0.5 % (v/v) ampholyte added. All other parameters
were the same as in Figure 3 except the separation was performed on a 60 cm column. Peak
1 = B-lactoglobulin-B, peak 2 = B-lactoglobulin-A, and peak 3 = a-lactalbumin.

The addition of narrow range ampholytes has been reported by several groups (Tran et
al., (2000), Tran et al., (2001), and Lupi et al., (2000)) where they have managed to
get a broader separation in a selected pH range for various samples containing
proteins of very similar p/ value. Most groups have reported using narrow range
ampholytes in conjunction with a broad range ampholyte. Figure 12 shows the
electropherograms for a whey basic protein fraction run with broad range 3-10
ampholyte only (Beckman) followed by electropherograms of sample run with the
addition of Fluka and BioRad narrow range ampholytes. Spiking with narrow range
ampholyte as in Figure 12 was done by adding 2 % narrow range ampholytes to 2 %
broad range ampholytes (4% v/v total ampholyte concentration). These results simply
show an increase in sample migration time and decrease in peak intensity with use of
the narrow range ampholytes. The results shown were the best results obtained for this
type of experiment. Other ratios of broad and narrow range ampholytes were also
tried and in some cases the equivalent brand broad range ampholyte was used with its

narrow range ampholyte (data not shown). However as seen in Figure 10, BioRad

broad range ampholytes alone gave poor results and Fluka ampholytes were detected
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early; similar problems were found to exist with the addition of narrow range

ampholytes.

Some other experiments were conducted using narrow range ampholytes (e.g. pH
range 7-9 for examining the whey basic fraction) alone at different concentrations but
no useful results were obtained (data not shown). The addition of TEMED to block
the blind side of the detector was also tried but again no recognizable separations

were achieved (data not shown).

Throughout the experiments using narrow range ampholytes, the current was
monitored and was seen to follow the pattern associated with normal CIEF (Figure 3
current trace), although for experiments with narrow range ampholytes alone, the
maximum current intensity was significantly lower than for broad range ampholytes.
With the addition of narrow range ampholytes to the broad range ampholytes the

maximum current increased only slightly.
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Figure 12 Effects of using narrow range ampholytes. Sample is whey basic protein fraction
number 2 run identically to the sample in Figure 3 except for the addition of either 2 % {v/v)
Bio Lite 7-9 or Fluka 7-9.

4.1.7 Focusing Times

A study on focusing times (Figure 13) was performed to see if this had any bearing on
lincarity of p/ versus migration time. Focusing time was varied from 3 to 9 minutes
and 1ncluded continual tocusing allowing EOF to mobilise proteins towards the UV
detector. A new 30 cm MicroSolv Zero flow column was used for these experiments.
The lineanty of the standards for pf versus migration time was very similar for a 3 and
6 minute focus (Table 8) with similar regression (Rz) results also being obtained with
the increased focusing time. However the percentage error for pf of the unknown
proteins {(fi-lac-A, (-lac-B and a-lac) from whey greatly decreased on increasing
focusing time. For the 3 minute focus an error of almost 10 % was seen, however this
value decreased to 6.5 % for 6 minute focusing. With the 9 minute focus on the 30 cm
column, the first p/ markers were detected before mobilisation had started as a result

of EOF. Even though the linearity and error of these results were extremely good (R*
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= 0.981 and error of the unknowns = 3.25 %) this focusing time could not be used as
the integrity of the results would have been questionable from a linear standard curve
in which a cross over of focusing to mobilisation had occurred during the separation.
For a continuous focus (effectively EOF mobilisation) the results gave greatest error
in the regression curve (Rz) but only by a small amount. The percentage error of the
‘unknown’ proteins relative to their literature p/ values only slightly increased
compared to the values obtained for the 6-minute focus. In conclusion, an optimum
focusing time of 6 minutes was selected for the MicroSolv column, as with a shorter
time, the linearity of the p/ standards and hence calculations of unknown pI’s was
inferior. In some instances when using an ageing 30 cm column, the first p/ marker
protein (trypsinogen) would be detected just before focusing had finished. This was a
good indicator to replace the column as too much EOF was being generated in the

column with the consequence that results started becoming increasingly irregular.
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Continual Focus

Figure 13 Electropherograms obtained using different focusing times on the same sample. All
samples were run on the same 30 cm MicroSolv Zero flow column with operating parameters
and sample identical to those in Figure 3 except for the focusing and mobilisation parameter
changes. Peak 1 = trypsinogen, peak 2 = myoglobin, peak 3 = carbonic anhydrase, peak 4 =
B-lactoglobulin-B, peak 5 = B-lactoglobulin-A, peak 6 = a-lactalbumin, peak 7 = trypsin
inhibitor, and peak 8 = amyloglucosidase.
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Table 8 Comparisons of focusing times and mobilisation techniques. All samples were run on
the same 30 cm MicroSolv Zero Flow column with instrument parameters identical to those in
Figure 3 except for the focusing and mobilization parameter changes.

Focusing Mobilisation  pl vs Migration Regression % Error of

Parameters Parameters Time Equation (Rz} of Best Fit unknown
proteins*
3 Minute Focus 0.1 psi y = -1.2599x + 0.938 9.75
15.503
6 Minute Focus 0.1 psi y=-1.1352x + 0.942 6.51
15.957
9 Minute Focus 0.1 psi =-0.9652x + 0.981 3.25
15.535
Continual Focus - y=-0611x+ 0.923 7.33
12.469
6 Minutes Chemical y=-07352x + 0.947 6§34

Mobilisation 13199

" = Percentage error of 'unknown' proteins from skim milk whey comprising B-lac-A. B-lac-B and a-ac and comparing
the values obtained from the standard curve {o known literature values as outlined in Table 3.

4.1.8 DMobilisation Techniques

For CIEF there are several wavs of mobilising profein and peptides to be detected.
These include hydrodynamic (pressure. gravity and vacuum), chemical {changing the
cathode with anode solution or replacing the cathode solution with cathode solution
with salt added to form a concentration gradient in the capillary after focusing), and
electroosmotic flow (allowing the natural EOF of the column to take effect to

mobilise the analytes).

All three of these technigues were tried. For hydrodynamic mobilisation only pressure
was tried. The instrument could not be set up for gravity mobilisation with UV
detection and from the literature, vacuum is rarely used. Chemical mobilisation
comprised of replacing the basic cathode buffer with the anodic acidic buffer. This
technique was used because it is the only way of performing CIEF with MS detection.
EOF mobilisation was also tried to see how good the results could be from this
technique and to ascertain the time required to elute all the proteins. From Table 8 the

results with a 30 cm column and 6 minutes focusing show that both chemical and
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pressure (0.1 psi) mobilisation gave very similar results for linear fit. Figure 14 shows
the difference in separations seen for the 3 mobilisation techniques performed on the
same 30 cm column. Pressure mobilisation at 0.1 psi gave the quickest run time but
when mobilisation pressure was increased, there tended to be a merging of peaks,
particularly the B-Lac peaks (not shown). Chemical mobilisation gave good results for
pl versus migration time, and hence fairly accurate results in terms of percentage error
for the unknown proteins. One problem with chemical mobilisation was that the peak
shape was not particularly good for the more basic and acidic proteins (as also found
with EOF mobilisation) when compared with pressure mobilisation. As a preference
for CIEF with UV detection it was considered best to do analysis with pressure
mobilisation; however when CIEF was coupled to MS detection, chemical

mobilisation was mandatory.

o,ozi 4 | 5

oo Pressure

Chemical
Al

-0.02

Electroosmotic Flow

Figure 14 Mobilisation Techniques. Electropherograms of whey protein from skim milk with
internal p/ markers. Each sample was run identically to that in Figure 3 except different types
of mobilisation was used. Top trace = pressure mobilisation at 0.1 psi, middle trace =
chemical mobilisation, bottom trace = EOF mobilisation. Peak 1 = trypsinogen, peak 2 =
myoglobin, peak 3 = carbonic anhydrase, peak 4 = B-lactoglobulin-B, peak 5 =
lactoglobulin-A, peak 6 = a-lactalbumin, peak 7 = trypsin inhibitor, and peak 8
amyloglucosidase.
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4.1.9 Changes in Voltage

Voltage choice is important in CIEF (as can be seen in Figure 15), as it can be a
determinant of how fast the separation takes place, and hence the quality of the
separation. Voltage also has an effect on peak shape, particularly at higher voltages
where proteins can precipitate out due to too high a voltage due to them being focused
into a very small region, or where peaks do not form at lower voltages. Voltage 1s
described as an electric field strength or volts applied per centimetre of capillary
length (V/em). Figure 15 shows the effect of increasing the voltage across a 30 em
capillary on the separation of proteins in CIEF. At lower voltages (top traces 33 and
100 Viem) the separation took longer and resolution of separation was poor. The time
mncrease is due to less EOF being generated to mobilise proteins towards the detector
(due to a low voltage). Separation is poor at the lower voltages as these voltages are
not high enough to form a linear pH gradient within and throughout the entire
capillary. As the voltage increases, the migration times of the proteins decreasc as
EOF has an inercasing eftect. The separation resolution increases as sharper peaks
oceur due to higher voltages promoting the generation of 2 more linear pH gradient.
When the voltage becomes too high, resolution is lost on the extremes of the pf range.
in Figure 15, at a voltage of 583 Viem and higher, the more basic and acidic pf
markers did not emerge as sharp peaks. For the basic and slightly acidic pf marker
proteins, loss of resolution may be caused by the large amount of EOF generated that
simply sweeps the proteins past the detector when they are stil} focusing. The B-lac
whey proteins at these voltages formed very discrete bands of high resolution; at this
point the highest level of focusing was observed. At very high voltages, the most
acidic p/ marker, amyloglucosidase was not detected. From 583 V/ecm the peak

broadened and at 833 V/cm was not detected.
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Figure 15 Effect of change in voltages across a capillary. Sample and experiment settings
were identical to those outlined in Figure 3, except voltage was changed throughout. Peak 1 =
trypsinogen, peak 2 = myoglobin, peak 3 = carbonic anhydrase, peak 4 = B-lactoglobulin-B,
peak 5 = B-lactoglobulin-A, peak 6 = a-lactalbumin, peak 7 = trypsin inhibitor, and peak 8 =
amyloglucosidase.

At lower voltages linearity of all the standards was very good, however the voltage

applied was not sufficient to separate proteins of similar p/. At the other extreme,
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when a high voltage was applied, resolution of the separation of proteins of similar p/

improved greatly.

High voltages increase the rate of EOF within the capiilary. Since the CIEF columns
are made of glass or silica, the surface of the capillary has a net negative charge due to
silano! groups at the surface. The capillary is usually coated by firstly appiying a
spacer such as y-methacryloxypropyltrimethoxysilane to the silanol groups of the
capillary, which then allows the addition of a coating {eg acrylamide coating) to be
applied to climinate EOF, thereby facilitating the separation. Eventually through
repeated use of the column, the coating will slowly degrade exposing the silanol
surtace. If the column is not properly coated, this would have an etfect at the start of
the column life with EOF aftecting separation. It has been suggested (Wehr et al.,
1999, p 140) that the columns will erode in the more basic regions first as high pH
buffers such as sodium hydroxide or high pH ampholytes have a greater effect than
phosphoric acid on the column coating {hence no rinsing was performed with sodium
hvdroxide between runs). The effect of EOF on the separation will be that a bulk flow
will oceur from the positive electrode to negative electrode, so basic compounds will
travel faster as they get repelled from the negative silanol groups of the column
coating, and move closer to the dctector. On the other end of the pH gradient, the
more acidic (positive) proteins will be slowed and fine bands dispersed due to the
negative stlanol groups as the positive proteins bind to the exposed silano! groups of

the column.

It is important to note that although the linearity of pf versus migration time was not
generally good over the tested voltages, particularly at the higher voltages (Table 9),
when trypsinogen (p/ 9.3) and amyloglucosidase (pf{ 3.5) were omitted from the
standard curve the average error for the series decreased from 15.6 % to 53 % for
estimation of pl's of the major whey proteins relative to their literature values. In
addition, the average R® value for the regression lines in the series increased from
0.882 to 0.988. The greatest amount of error was then observed with the lower
voltages which gave typical average errors (between literature and observed pf’s) of
approximately 7 %; at voltages between 400 and 833 V/cm, all values were below 4.5
%. From these observations it could be concluded that as long as the pf of the protein

was not too low (< pl 4.5) or too high (> p/ 7.4), then a rcasonable determination of
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pl could be made for a protein on the 30 cm column with the omission of the extreme

pl markers trypsinogen and amyloglucosidase.

Table 9 Comparison of differences in separation for different voltages from data obtained in
experiments in Figure 15.

Voltage per
Centimeter
{(Vicm)

33.3
100
166
250
333
400
500
583
666

833

plvs

Migration
Time

Equation
y = -1.4445x
+39.106

y=-0.7711x
+21.723

y = -0.6195x
+17.386

y = -0.5486x
+14.974

y = -0.4899x
+13.285

y = -0.4576x
+12.398

=-0423x +
11.44

= -0.4005x
+11.035

y = -0.393x +
10.825

= -0.3307x
+ 5.8197

Regression
(R?) of Best
Fit

0.948

0.829

0.915

0.905

0.892

0.877

0.861

0.850

0.847

0.792

% Error of

unknown

proteins*®

12.08

14.58

15.70

15.36

14.00

14.23

15.44

16.71

17.13

21.16

Separation

.Very Poor

Poor

Poor

Average

Good

Very Good

Very Good

Very Good

Good

Good

Peak Shape

Poor

Poor

Poor

Average

Good

Very Good

Very Good

Very Good

Good

Mixed good
and poor

* = Percentage error of "unknown® proteins from skim milk whey comprising B-lac-A, B-lac-B and a-lac and companng the

values obtained from the standard curve to known literature values as outhined in Table 3,

From Table 9, an optimal separation voltage for CIEF with UV detection was found to

be ~400 V/cm. At this voltage the separation gave a good mix of peak shape,

efficiency, resolution and migration time. With higher voltage a decrease in peak
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efficiency for proteins of higher p/ was seen, but at 400 V/cm the voltage was high

enough to get a good resolution of separation for the B-Lac-A and -B proteins.

This series of experiments was performed four times due to the poor linearity of
standard curves for the particular column used, with similar results being obtained
cach time. This, however, may be a rcproducibility problem of the column
manufacturer. As discussed earlier, other experiments (on other columns) gave better

results.

4.1.10 Temperature Effects

The temperature at which the capillary cartridge 1s set can alter the separation
behaviour markediy in CIEF. This may be duc to protein adsorption to the capillary
wall or the pf of a protein changing with temperature. Furthermore, at different

temperatures the change in p/ may be different from one protein to another.

Figure 16 shows a series of injections of the standard protein p/ markers (except
trypsinogen was replaced with ribonuclease) with skim milk whey proteins run on a
30 cm MicroSolv Zero Flow column at 12 kV (400 V/em) with focusing for 6 minutes
and mobilisation at 0.1 psi. The instrument in each ¢xperiment was set to allow the
cartridge to equilibrate to temperature betfore each run. From the results in Figure 16 it
can be seen that at a lower temperature less spiking occurred. This spiking 1s thought
to be due to protein precipitation or salt effects and has only ever been seen at the
acidic end of the p/ range in this study. Another very noticeable change was that the
acidic pl proteins began to disappcear with increasing temperature. A visual example is

the disappearance of ¢-Lac with increase in temperature.
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Figure 16 Change in temperature. Electropherograms of whey protein from skim milk with p/
markers run identically to the sample in Figure 3 except that capillary temperature was altered
and ribonuclease p/ marker was substituted for trypsinogen. From top to bottom: 15, 20, 25,
30, and 35°C. Of particular interest is the disappearance of the a-Lac peak with increasing
temperature and differences in the amount of spiking occurring in each electropherogram.
Peak 1 = ribonuclease, peak 2 = myoglobin, peak 3 = carbonic anhydrase, peak 4 = B-
lactoglobulin-B, peak 5 = B-lactoglobulin-A, peak 6 = a-lactalbumin, peak 7 = trypsin inhibitor,
and peak 8 = amyloglucosidase.

Figure 17 and Figure 18 examine the effect of different temperatures on the peak area
of the major whey proteins and the percentage area of the 3 proteins, respectively.
From Figure 17 it can be seen that the peak areas of a-Lac decreased with increasing
temperature. The peak areas at 15°C was somewhat greater than the peak areas at
35°C with a general downward trend. There was no real difference in total area for the
B-Lac proteins; however at 25°C the f-Lac-A peak increased before decreasing to its
original area or a little lower. The B-Lac-B area remained similar throughout. When
looking at the percentage peak area for the 3 whey proteins, f-Lac-A remained fairly
constant, while B-Lac-B and a-Lac increased and decreased respectively. Examination
of Figure 16 shows that the B-Lac-B peak increased with increased temperature while
the a-Lac peak became smaller. The amyloglucosidase peak also disappeared with
increase in temperature, while peak tailing started to occur for myoglobin and
carbonic anhydrase. Changes in retention time were also noted; as temperature
increased the proteins migrated faster through the column. It could be proposed that at

higher temperature some proteins bind to the column hence peak tailing and peak
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disappearance. At slightly raised temperatures some proteins may bind to one another,
hence the disappearance of the a-Lac peak and the increase in size of the B-Lac-B
peak. From the results obtained the optimal setting for the column temperature was
seen to be 20°C. At this temperature there was baseline separation of the major whey
proteins, the time required to perform the separation was not too long, there was a
minimal amount of spiking and the spikes were not too large. This outcome for
optimal column temperature ties in well with the standard nomenclature requirement

to express the p/ of a protein at 20°C.
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Figure 17 Differences in the peak areas of whey protein peaks from skim milk at different
temperatures for 2 sets of data run identical to Figure 16. Al = a-lactalbumin, BA = B-
lactoglobulin-A, and BB = B-lactoglobulin-B. 1 = sample set 1, 2 = sample set 2.
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Figure 18 Differences in the percentage areas of the whey protein peaks identified in Figure
16. Percentages were calculated relative to the total area of the whey protein peaks. Samples
were analysed identically to those outlined in Figure 16. AL = a-lactalbumin, BA = B-
lactoglobulin-A, and BB = B-lactoglobulin-B. 1 = sample set 1, 2 = sample set 2.

4.1.11 Addition of Surfactants

The use of several surfactants such as Triton-X100, and Tween-20 was tried at
different concentrations to minimise spiking in the acidic region of each separation.
However, results obtained for these experiments were not ideal (results not shown)
particularly when compared to the work of Zhu et al., (1991) on y-globulins, in which
surfactants were used to suppress protein precipitation seen as spiking in their

electropherograms.
4.1.12 Linearity of Standards

When considering a plot of p/ against migration time for CIEF we expect a response
that would be linear throughout the pH range of the ampholyte. However, this is not
always the case. The linearity of p/ against migration time for protein standards can

vary considerably due to the following aspects:
e column internal coating

e column length
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e true ampholyte range and distribution of ampholytes per pH unit
e condition of ampholytes

e focusing time

e column usage

e mobilisation technique

e buffer type and quality

There are many different column internal coatings available and throughout this work
a number of different types of CE column coatings were tried with varying degrees of
success. It was found that the best column in terms of lifetime, separation efficiency

and p/ linearity was the MicroSolv Zero flow column.

Column length is also a major factor for the linearity of p/ markers versus migration
time. This was illustrated in section 4.1.4 using equivalent voltage per centimetre, in
general the longer the column the better the linearity as it takes longer for the proteins
to pass the detector. However, it is usually very difficult to eliminate EOF from a
column and so basic proteins will move at a different rate from more acidic proteins.
The resulting effect is a skewed curve for p/ versus migration time. It has been found
that acidic proteins are retained on the column for a longer period of time with peaks
sometimes being very broad. This is because a greater amount of diffusion occurs
with acidic proteins the longer time they are in the capillary before detection when

EOF is present.

The true pH range of ampholytes and the amount of ampholytes per pH unit are
important factors (Righetti 2004) when wanting to calculate the p/ of an unknown
protein by CIEF. However, if calculation of p/ is not required and a good separation
occurs, then this is not a problem for CIEF. In the case of many commercial
ampholytes often the ampholytes do not properly extend to the indicated full pH
range. At the extremes of pH there often tend to be less ampholytes per pH unit and so
a deviation from linearity is often observed (Righetti 2004). Another important factor

as was discovered in this work was the condition of the ampholyte. In one such case
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the BioRad brand ampholytes were found to be in bad condition resulting in

unintelligible electropherograms (section 4.1.6).

Other important parameters of the CIEF process that have been optimised and
discussed earlier include focusing time, column choice, mobilisation technique,
voltage, capillary temperature and bufters used. Overall, the optimal conditions for
CIEF for the analysis of dairy whey proteins in skim milk with internal p/ markers are

outlined in Table 10.

Table 10 Optimised conditions for CIEF analysis of skim milk whey proteins and p/ markers
for a Beckman P/ACE CE. The optimised conditions were used on a number of other dairy
applications for CIEF discussed in later sections,

.Pa”r.a.m.é.ter- - .()p.tiﬁ'li.zéd Cdndi.ti.oh.s;

Capillary type Micro.Sot.v Zero Flow.

Capiliary internal diameter 50 pm (or 75 pm for more senstivity)

Capillary length 60 cm (Often 30 cm is as good for rapid analysis)

Capillary temperature 20 °C

Voltage applied 400 Viem

Focusing Time 6 minutes

Mobilisation Technigue Pressure mobilisation at 0.1 psi

Buffers 20 mM Phosphoric acid {anode) and 20 mM sodium hydroxide
{cathode)

Ampholytes Beckman 3-10 at a 2 % v/v concentration

Detector UV filter detector set at 280 nm

4.1.13 Method Repeatability

A number of experiments were performed to test the repeatability of the optimized
water-soluble method within day and between days on the same column and on
ditferent columns. The method consisted of injecting the same sample 10 consecutive
times and analyzing the peak migration times as seen in Figure 19. The sample used
for this analysis was again whey proteins from skim milk with added p/ markers. In
gach case the migration time of each protein was monitored and the differences for
each protein calculated as a percentage. Results are expressed in Table 11 and show
that the migration times altered between days and columns considerably. As the
column ages proteins are retained for less time, as a greater amount of EOF is

generated. Sample set 1 and 2 were run on the same column that was near the end of
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1ts useable lifetime with samples being tested on consecutive days with 30 other
samples being run between the two sets. Set 3 was run on a new column with a few
prior injections to check its efficiency. The difterences between columns in protein
migration times can be seen very clearly as can the difference between consecutive
runs pertormed on the same column on consecutive days. The repeatability of the
samples within a set of 10 identical injections (% difference) was between 0.45 % and
2.92 %, for the differences in migration times. The results show that the later cluting
acidic proteins (trypsin inhibitor (0.76-2.28 %) and amyloglucosidase (1.31-2.92 %))
have worse repeatability then basic proteins trypsinogen ((1.45-0.75 %) and myoglobin

{0.46-0.96 %).
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Figure 19 Method reproducibility as shown by 10 electropherograms of whey protein from
skim milk with internal p/ markers run consecutively. Samples were run under identical
conditions to those used in Figure 3. Peak 1 = trypsinogen, peak 2 = myoglobin, peak 3 =
carbonic anhydrase, peak 4 = B-lactoglobulin-B, peak 5 = B-lactoglobulin-A, peak 6 = a-
lactalbumin, peak 7 = trypsin inhibitor, and peak 8 = amyloglucosidase.
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Table 11 Analysis of method reproducibility with the results of the average retention time,
standard deviation and percentage difference for 3 sets of 10 samples run on different days.
See text for details.

Average Retention Time Standard Percentage
of each Data Set {Min) Deviation Difference within

each data set

Protein Set-1 Set-2 Set-3 Set- Set- Set- Set-1  Set-2  Set-3

1 2 3

Trypsinogen 8.02 7.63 916 0064 0.04 007 045 0.53 075
Myoglobin-B 8.83 8.41 1036 008 Q.04 006 09 046 055
Mycglobin-A 9.16 8.73 10.85 0.09 004 007 102 047 062
Carbonic

Anhydrase 9.51 9.02 1125 010 0068 007 102 062 0466
B-Lac-B 11.00 1036 1387 024 006 015 214 085 111
B-Lac-A 1115 1049 1413 024 006 017 215 0.60 1.20
a-Lac 11.56 1086 1463 026 007 018 225 062 1.26

Trypsin Inhibitor 12.61 1183 16067 029 009 027 228 0.76 1.66

Amylogiucosidase 1558 1488 2066 045 019 055 292 1.31 2.64
4.1.14 Applications of the CIEF-UV Method

Analysis of whey protein fractions.

The analysis of fractionated protein components of milk is an ideal application tor
CIEF with UV detection. Although the analysis of some of these components s not
possible with MS detection (as discussed in more detail in section 4.4), they can be
monitored by UV detection. The isolation of minor protein components in bovine
mitk is desirable as it might lead the way to new valuec added consumer and
comunodity products with health benefits. Research in this area has increased as new
technologies have become available to look at new components. Traditionally the
purity of such samples would be assessed by PAGE, either separating by molecular
weight or isoglectric point. Placing isoelectric focusing into a capillary format (CIEF)
scales down the required sample size. This in itself can be essential as often with this

type of research sample yield is minimal. CIEF also has the added benefit in that the
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technique 1s rapid and automated so the results can be obtained relatively quickly.

This is unlike gels which involve a lot of labour intensive steps.

CIEF offers an advantage to other CE techniques in that, in theory, the mechanism for
scparation will allow separation of proteins of a range of 1soclectric points. For CZE
separations, optimal conditions arc obtained by selecting a sample buffer that has a
pH of at least | pH unit either side of the pf of the proteins of interest, otherwise long
analysis times are encountered (Wehr et. al., 1999, p 52). For CIEF, separation of
proteins of pf ranging from 3-10 is achtevable, and recentlly Mohan & Lee 2002 (b)
were able to extend the pH range out to 12. The ability of CIEF to separate proteins
over a wide pH range is a benefit as the same method can be used on tractions
containing proteins of very different p/ (for example in dairy applications, the whey
basic fraction or acidic fraction) and results compared with relative ease. The analysis
of samples of different whey basic protein fractions are shown in Figure 20 and
Figure 21, while Figure 22 and Figure 23 shows different acidic whey protein
fractions. Figure 20 shows the total whey basic protein fraction {fraction 1) (top
electropherogram), followed by subtractions of fraction 1 obtained using ion
exchange chromatography with sodium chlornde salt step elutions; fraction 2 (middle)
and fraction 3 (bottom) clectropherograms. The top electropherogram shows the
separation of the highly basic proteins lactoferrin, angiogenin and lactogenin which
were known to be present 1n the sample. Peak identities were tentatively assigned by
reference to 2D PAGE/MS results {Figures 33-35, section 4.6). The middle trace (1 M
NaCl fraction} indicates the presence of the same proteins, while the bottom trace (0.4
M Na(l fraction) shows the presence of multiple protein peaks assigned as RNase,
lactoperoxidase and Ig polymeric Ig receptor protein again on the basis of 2D

PAGE/MS results.
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Figure 20 Separations achieved for several whey basic protein fraction samples. Top frace is
the total whey basic protein fraction {fraction 1}, middie trace is a subfraction of the top trace
sample {fraction 2) as is the bottom trace {fraction 3). The main components of the sample
are lactoferrin, lactoperoxidase and angiogenins. Each electropherogram was generated
using the same parameters as used in Figure 3.

Other basic protein fractions that have been studied include the solated angiogenin
and Tactogenin proteins (Figure 21). As can be scen by their clectropherograms, thesce
samples were of good punty. Further characterisation with MS infusion expenments
{Appendix 3 Figure 78, Figure 79, Figure 80 and Figure 81) showed there were no
other impurities of signiticance and masses obtained were similar to those expected

for anglogenin or lactogenin.



Page 75

— —— N - -
0.006" .
: i
© Angiogenin i.:
0.004'
|
6.002;
-/.\'-'_.
: - - g . 4w - A
Ak o i s s B . T T T e O " wA e T e - T
0.0001 :
Lactogenin
0.002 i N oo ) A
‘.l””“w’q“. T B P L A t— - ERECENS "«"-d‘”--.‘v_.f"‘ it
!
i Blank
0004
: - . - o - 5 - ~ -
i

0608

15 8.0 85 9.0 9.5 1ﬂ.0 165 10 ‘I‘i.S 12..0 125 13.0 135 144 145 150 155 160

Figure 21 Electropherograms of angicgenin (top}, lactogenin (middle}, and a blank sample
(bottom). The angiogenin and lactogenin samples are sub fraction samples of the total whey
basic protein fraction and were found to have a pf > 9.1. Samples were run identically to those
in Figure 3.

Minor components of whey protein with acidic pf’s were also analysed using CIEF
including a fraction rich i PP-5, a multiply phosphorylated f-casein tragment (Figure

22). and GMP. a heterogeneous k-casein peptide (Figure 23).
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Figure 22 Electropherogram of a whey acidic protein fraction from mineral acid whey. Sample
run identical to the sample in Figure 3.
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Figure 23 Electropherogram of a GMP fraction {cheese whey acidic protein fraction) isofated
from a cheese whey retentate. Sample run identical to that in Figure 3.

In the industrial separation of lactoferrin from milk using ion exchange

chromatography, a waste stream from the process is rich in an enzyme
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lactoperoxidase. When lactoperoxidase is combined with thiocyanate and peroxide it
forms the peroxidase system in milk which has antimicrobial qualities that can help
preserve milk (Seifu et al. 2005). The monitoring of the first industrial scale trial
separations of a fraction rich in lactoperoxidase was achieved using CIEF. Figure 24
shows a lactoperoxidase standard (top electropherogram) followed by the first 4 trials
of the lactoperoxidase isolate. All samples and standard powders were made up to the
same concentration (w/v) and run identically. As can be seen peak shapes were
unusual and there appeared to be no resemblance to the standard. However analysis
with PAGE (data not shown) reveals lactoperoxidase is present in each prototype
sample, but with contaminants such as f-lactoglobulin and angiogenin (trials 1 and 3)
or with B-casein (trials 2 and 4). The samples containing B-casein from PAGE results
would probably be of limited solubility in the sample buffer used, could give some

reason why the CIEF method for soluble proteins shows unusual peak shapes.
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Figure 24 Electropherograms of industrial scale samples of lactoperoxidase protein. Top
trace for reference purposes is a Sigma standard, the following four traces are four different
prototype products.

Analysis of Hydrolysate Samples

The analysis of peptide samples using CIEF has been investigated previously (Shen et
al., 2000a). Samples included the hydrolysis of bovine serum albumin standard and a
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yeast cytosol with trypsin. DTT was used in the sample preparation to reduce any
disulphide bonds and heat was used to denature the proteins before hydrolysis. Dairy
companies, including Fonterra, produce a number of hydrolysate products for
different applications. Fonterra produces hydrolysates trom both whey and casein to
use in products such as infant formula. One such whey based hydrolysate powder was
analysed by CIEF (Figure 25) by simply dissolving the powdered product in water at
a concentration of 3 mg/mi. Analysis of casein based hydrolysate products was
performed using the same method. However, large spike peaks were seen in the
electrophcrograms (data not shown), possibly due to msoluble casein material. These
spikes might be eliminated by heating and reduction of the casein products with DTT
prior to analysis. For future application work in the analysis of peptides. a lower
voltage and longer column would be advisable as there are a large number of
unresolved peaks seen in the electropherograms and these method alterations might
help to improve resolution of peptides. The method shows some promise in profiling

(fingerprinting) of industrial hydrolysates.
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Figure 25 Analysis of a whey based industrial hydrolysate sample. Separation parameters
were identical to those used in Figure 3. The sample was made at a concentration of 3 mg/ml
{wiv) with 2 % Beckman 3-10 ampholytes added.
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Analysis of Bacterial Cell Lysates

There have been several applications where cell lysates have been examined by CIEF.
Shen et al., (1999) separated lysates of 2 different bacteria (E. cofi and D.
radiodurans) and yeast (S. cerevisiae), obtaining electropherograms with hundreds of
peaks over a 50 minute separation. Within the dairy industry a number of different
strains of bacteria are used for starter cultures in checse and yoghurts. It is becoming
more desirable to be able to characterise the ditferent strains as, for example, different
strains will give different flavour compounds in cheese. Several bacterial cell lysates
with dairy application were gifted for investigation using CIEF. In Figure 26, the
same bacterial cell lysate was analysed several times with a similar pattern emerging
for each electropherogram. The electropherograms show numerous peaks throughout
the electropherogram indicating the presence of numerous protemns. The traces
indicate that insoluble proteins were present in solution seen as spiking in the
clectropherogram. Analysis of another bacterial cell Tysate (Figure 27) showed that
there were greater solubility issues with this sample. Figure 27 also shows the same
sample mjected several times in a row. The top clectropherogram was the first
electropherogram generated with an outcome of a great number of spiked peaks
indicating protein insolubility. The following trace {(middle) shows a lower level of
peaks, suggesting a change in sample integnty. while the peaks were smaller still in
the third trace (bottom). On inspection of the sample it was evident a pellet had
formed in the vial and hence insoluble aggregated proteins had precipitated out over
time. Although Shen et al. (1999) did not add any components 1o solubilise the
proteins in the lysate, it appears further investigation of dairy lysate samples would
need to be undertaken using a sample buffer with additives such as urea and BME or

DTT to solubilise and denature proteins.
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Figure 26 Electropherograms of bacterial cell lysate “B12" run 4 times (each

electropherogram off set). Separation conditions were identical to that in Figure 3.
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Figure 27 Electropherograms of bacterial cell lysate “X7” (Top and middle) run one after the
other. After the second sample was run it was noticed that there was a pellet formed at the
bottom of the sample vial. All samples run using conditions identical to that in Figure 3.
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4.2 Insoluble Dairy Proteins with UV detection

The development of a CIEF method using sample buffers that were of a denaturing
and reducing ability was first outlined by (Schwer, 1995). This method used reversed
conditions to the normal procedure in that the separation took place in the shortest
part from column end to detector window. Buffers were reversed and voltage applied
in a negative mode. In the current study (refer to section 3.5 for methodology) a 30
cm capillary was initially used with the separation taking place over a distance of 10
cm under reversed conditions similar to Schwer (1995). To achieve this separation
TEMED was used in the sample buffer to block the blind side of the detector.
TEMED is a highly basic substance so that when a voltage is applied it focuses in an
area beyond the ampholyte range and serves as a plug to block the blind side of the
detector. Further development lead to use of the 30 cm column in the normal CIEF
mode followed by extending the separation out to a 60 cm column. Initially the
sample buffer consisted of 8 M urea and 2 % (w/v) DTT, and although this buffer
gave good results, substitution of the DTT with 5 % (v/v) BME gave higher resolution
of peaks (Figure 28). Several isoforms of k- and B-casein were observed in these

experiments: however there were no isoforms resolved for a-casein.
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Figure 28 Electropherograms of skim milk run under identical conditions except the top trace
utilised B-mercaptoethanol (BME), while the bottom trace utilised DTT in the sample buffer.
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Good results were obtained following the method by Lopez-Soto-Yarritu et al., (2002)
tor the analysis of recombinant erythropoietin, where urea and BME were dissolved in
Beckman eCap gel for the sample buffer. In addition, crystallization of the urea was
greatly slowed using this method. It must be noted that the sodium hydroxide cathode
buffer as used in these experiments should be replaced every 10 samples as the buffer
detertorates quickly over time due to sample with urea flowing in to this vial and a
change in migration times was observed for repeat injections of the same sample.
When re-injected into fresh cathode buffer sample, migration times returned to
normal. Although this method has only been partially established in terms of what
applications are possible with it, the method would be particularly good for analysis
of casein products in that separation of genetic variants of B-casein has been observed
(data not shown). Spiking experiments with whey protein showed that B-Lac-A and —
B. and a-Lac co-elute with the B-casein specigs so there are some limitations to the
method. Further work would have to be undertaken to find out if other f—casein
genetic variants can be separated or if u-casein variants can be separated using this

method.

A sample bufter consisting ot 6 M guanidine in place of the urea was tried to see if
this would work for a denatured CIEF method and perhaps give better results.
However, even when low voltages were applied to the capillary a very high linear

current was produced. No focusing occurred and no protein separation was detected.
4.3 MS Infusion Experiments

Te aid in identification of proteins while developing the CIEF-MS method, infusion
mass spectrometry experiments were carried out on standard proteins of whey and the
pl marker proteins used throughout this work. A summary of results from these
experiments are shown in Appendix 2 {Table 16). Mass values obtained from the
literature are also included. lonisation patterns with deconvolution results are shown

n Appendix 2 (Figure 39 to Figure 70).

Results from the infusion experiments allowed a more rapid method development for

CIEF-MS for two reasons.
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Firstly, it allowed the researcher to determine if the method was running properly.
With knowledge of the expected 1onisation pattern for each protein in the test mix, the
results could be determined online as the separation was taking place. This allowed
the researcher to determine 1f there were problems and generate ideas for {rouble
shooting in the next experiment, or if all was going well, to refine the method in the

next analysis.

Secondly, infusion experiments showed which proteins ionised well. The results in
Appendix 2 show some proteins of fairly high molecular weight (>60 kDa) and
smaller glyco proteins (such as GMP) that did not 1onise well and others in the region
of 14-30 kDa that did ionise very well. Although high MW proteins were made up to
similar molar concentrations as lower MW proteins, the tonisation patterns were not
as good for high MW proteins due to loss of resolution with having so many ionised
species in the spectrum. Since the molecular weight is calculated from a mass to
charge ratio, then more masses in a mass spectrum means less resolution is obtained
compared to a protein of lower MW with less lonised species, where there 1s greater
resolution. Since clectrospray MS instruments do not have that great a resolution
when therc arc many ionised species present, it is difficult to get accurate masses of
proteins above 70 kD (Siuzdak 1996, p 86-93). This aspect has proven to be a ditficult
problem as several of the dairy proteins in the whey basic protein fraction (Jactoferrin
and lactoperoxidase) have MW’s greater than 70 kD, These proteins are also
glycosylated and it there are differences in glycosylation, then the mass spectra can
become very messy and hard to interpret. In the preliminary infusion experiments it
was possible, however, to get reproducible masses for these protein standards.
Although a sample of deglycosylated lactoferrin was infused (Figure 59 of Appendix
2), results showed there was no advantage to clarity of the mass spectra for a

deglycosylated large protein.

Samples of whey basic protein fraction (Figure 20) were also infused into the MS and
it was possible to get some preliminary results on the contents of two of the 3
samples. From several repeat infusions of fractions 1 and 2, the following peaks
outlined in Table 12 were identified. Although from Appendix 3 (Figure 74) there
were several other peaks of greater intensity than that of molecular mass 14588,

angiogenin is known to be present in this sample. According to Acharya et al., (1993)
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the molecular mass of bovine angiogenin is 14595 and results with the MS infusion
suggest a similar MW (Figures 78 and 79 Appendix 3). Many of the other peaks
obtained from deconvolution of whey basic protein fractions 1 or 2, when examined
in depth derive from the ionisation peaks associated with angiogenin and/or other

peaks in the lactoferrin part of the mass spectrum.

Table 12 Results of MS infusion experiments of whey basic protein fraction samples

Sample Deconvoluted Molecular Protein Identification

masses
.Fractiorr 3 | No peaks detected None
Fraction 2 84866 Lactoferrin
83322 Lactoferrin
81475 Lactoferrin
79571 Lactoferrin
14588 Angiogenin
13887 RNAse 4 (Lactogenin)
Fraction 1 87031 Possibly Lactoferrin
85223 Lactoferrin
83084 Lactoferrin
81587 Lactoferrin
14588 Angiogenin

13887 RMNAse 4 {Lactogenin)

4.4 CIEF-MS Detection

4.4.1 Method Development

To test that the buffer conditions required for CIEF with MS detection gave good
separation of skim milk whey proteins and pf markers, samples and standards were
first man with UV detection. The results are outlined in Figure 29 with a description of
each buffer compeosition in Table 13. Each sample was run with different run buffers

on a 30 cm column with all other conditions being kept the same. Voltage was altered
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slightly from that of the usual UV detection method to give approximately the same
voltage per centimetre that would occur with MS detection in a 90 cm column.
Beckman 3-10 ampholytes were used at a concentration of 0.5 %, the same as that
used for MS detection. As chemical mobilisation on its own takes a long time to
complete, 0.1 psi pressure from the anode was aiso applied in these experiments.
Other buffers such as formic acid were trialled in place of acetic acid as formic acid
promotes better ionisation of proteins in the MS. However, crrors occurred mid-run in
these experiments and so results are not shown for these samples. The usc of formic
acid buffers had been trialied carlier in a similar experiment (section 4.1.3) and a
similar problem occurred. It was thought that formic acid and acetonitrile buffers
might 1rreversibly destroy the capillary column coating as the columns were unable to
be regenerated atter use with such buffers. However, acetonitrile used in conjunction
with acetic acid gave satistactory results (Figure 29} so it can be assumed formic acid

was the detrimental agent.
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Figure 29 Comparison of different buffers under MS running conditions. Samples were whey
protein from skim milk with standard p/ markers. Samples were run identically to those in
Figure 3, except that a voltage of 10 kV was applied to the 30 cm column. Buffers used are
outlined in Table 13. Peak 1 = trypsinogen, peak 2 = myoglobin, peak 3 = carbonic
anhydrase, peak 4 = 3-lactoglobulin-B, peak 5 = pB-lactoglobulin-A, peak 6 = a-iactalbumin,
peak 7 = trypsin inhibitor, and peak 8 = amyloglucosidase.
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Table 13 Buffer compositions for the electropherograms shown in Figure 29. All buffer
percentage compositions were in a v/v ratio.

Electropherogram Focusing Buffers Mcbilisation Buffers

Anode Cathode Anode Cathode
A 20mM 20 mM sodium 20 mM 20 mM
phosphoric acid  hydroxide phosphoric acid  phosphoric acid
B 1 % acetic acid 1 % ammonia 1% acetic acid 1 % acetic acid
C 1% aceticacid 1 % ammonia 1% acetic acid 1 % acetic acid
in 50 %
rmethanol
D 1 % acetic acid 1 % ammonia 1% acetic acid 1 9% acetic acid
in 50 %
acetonitrile

The results show that a better separation was obtained with phosphoric acid bufters,
where  B-lLac-A.  [-Lac-B and  o-lLac  werc scparated from cach other
(elcctropherogram A). With acetic acid cither on 1ts own, or with methanol or
acetonitrile, separation ot all 3 of these proteins was not apparent. For MS detection
the most likely buffer system that would be used for focusing would be acetic acid
and ammonia with ammonia being replaced by 50 % methanol! T % acetic acid for
mobilisation {electropherogram C in Figure 29} Phosphoric acid and sodium
hydroxide are not compatible with MS instrumentation whercas acetic acid and
ammonia are. However, for good MS spectra, the addition of an organic butter such
as mcthano!l will result in better protein ionisation than acetic acid on its own.

Essentially this gives better sensitivity for the MS detection.

In the CIEF-MS system, the CE is connected to the MS electrospray 1onisation source
(EST) via a coaxial sheath tlow intertace Figure 2. Because the flow rate of tluid from
the outlet of a capillary is extremely low (approximately 3.5 nl/minute for a typical
mobilisation at 0.1 pst, 20°C, and 50 um 1.d. capillary) a make-up flow (typically 2-3
pl/min) of 1 % ammonia buffer is added. This make-up flow can be utilised in the
CIEF system as the cathode buffer. For focusing it was found that best results were

obtained by having a low mitrogen gas flow rate that cnabled a droplet to form at the
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tip of the ESI source in an open position {(Tao et al., 2002). On mobilisation the make-
up tlow buffer was changed to 50 % methanol, 1 % acetic acid. This buffer not only
allowed chemical mobilisation to occur in the CE, but also allowed the proteins being
eluted into the MS detector, to be ionised, and hence an ionisation pattern of mass to
charge (m/z) for each protein was generated. Ampholytes did suppress the signal
obtained for a protein, and in some cases where a standard mixture had been made up
not all the proteins were detected possibly due to this in part (Figure 30). An
ampholyte concentration of 0.5 % (v/v) is commoniy used (Appendix 1 Table 15) and
as seen in Figure 29 this is good enough to get good separation on a 30 ¢cm column
with MS butfers.
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Figure 30 TIC of CIEF-MS of whey protein from skim milk spiked with minor whey proteins
(BSA, GMP, and PP5) and p/ markers.

Overall, this method unfortunately proved to be fairly ditficult to develop in terms of

reliable reproducible results. Probiems which required trouble shooting were:

Make-up flow rate - This required setting at 3 ul/min for optimal results, otherwise an
uneven baseline was obtained. Early experiments used 2 ul/min, but the data obtained

was compromised compared to 3 pl/min.
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Ampholyte condition - The literature showed that Pharmacia and BioRad ampholytes
were most commonly used (Appendix | Table 14 and Table 15). However, these
ampholytes were found to be routinely degraded; in particular the Pharmacia
ampholytes proved to be troublesome, blocking the tip of the capillary repeatedly.
Replacement with Beckman ampholytes overcame this problem giving good results

with no suppression of signal noticed on the MS detector,

Adduct formation in MS results - Adducts of 50 mass units difference were repeatedly
scen 1n the mass spectra from the carly part of some electropherograms.  This was
reduced by lowering nitrogen gas flow slightly, and scanning at a higher mass range
(900-2000 instcad of 200-2000). Scanning at the higher range did not resuit in loss of

any valuable data as protemns tend to ionise at greater than 900 m/7.

Height adjustment ot CE - The CE system purchased came with a portable trolley that
allowed the CE to be positioned in front of the MS detector. The trolley had height
adjustment to preciscly set the CE so that siphoning back into the anode did not occur
as ocurred it the height was too low, or out of the cathode if too high. The trolley was
found to need readjusting in height each day as it would slowly fall over time. which
meant that on focusing. proteins would someumes siphon back inte the anode or

retention time of analvtes would be greatly increased.

However, when the systern was established, 1t was possible to get reasonably
reproducible results in terms of the repcatability of proteins being detected for the
same sample run consecutively. A summary of optimized method parameters arc

outlined mn section 3.6.

4.4.2 CIEF-MS Applications

Duc to the limitations of the MS detector in that usual protein denaturing and
solubilising reagents such as urea, SDS, and CHAPS cannot be used as they would
damage the detector, CIEF-MS experiments are generally limited to soluble proteins.
For dairy proteins, this poses a serious problem for the analysis of the sparingly
soluble casein or milkfat globule membrane proteins. An alteration to the method was
tried using UV detection where samples were made up in acetonitrile. However, the
ampholytes proved to be insoluble in this medium. Although In some cases only low

concentrations of solubilising/denaturing reagents would be reguired, and the make up
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flow would further dilute the reagent by around 80 fold, this would still not be
acceptable for the MS. A future extension of this method would be the investigation
of a suitable sample bufter that could solubilise dairy proteins without damaging the

MS detector.

CIEF-MS experiments were conducted with different samples of whey protems from
skim mitk, some of which were spiked with miner components of whey in
combination with pf markers. Although the techmique was technically challenging,
good results were obtained reproducibly. Figure 30 shows the TIC obtained from a
CIEF-MS expeniment where the sample compnsed whey proteins from skim milk
spiked with the minor whey proteins BSA, PPS and GMP. Additionally, the standard
proteins basic and acidic myoglobin, carbonic anhydrase-I1, trypsin inhibitor, and
trypsinogen were added. Figure 31 represents molecular weight versus time for the
TIC shown in Figure 30, where every 10 microscans tfrom the MS data were
deconvoluted with Bioworks software. Unfortunately, with this sort of representation
1t 1s not possible to show the intensity of each protein as would be seen to some extent
in a 2-B gel. Proteins were 1dentitied according to mass by comparison to infusion of

standard protein solutions (Scction 4.3).
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Figure 31 Representation of molecular weight versus retention time for the TIC in Figure 30.
Every 10 microscans of the MS data were deconvoluted by Bioworks software. Proteins were
then identified according to molecular mass with comparison to infused standards. Mb-B =
myoglobin basic, Mb-A = myoglobin acidic, CA = carbonic anhydrase |, B-lac-B = B-
lactoglobulin-B, B-lac-A = B-lactoglobulin-A, a-Lac = a-lactalbumin, Tl = trypsin inhibitor, BSA
= bovine serum albumin, PP5 = proteose peptone 5, GMP = glycomacropeptide.

Throughout the CIEF-MS experiments using the p/ markers, the first marker that
would normally be detected, trypsinogen (p/ 9.3), was never detected. This was
unusual as infusion experiments showed that it ionised very well (Appendix 2 Figure
69) compared to various other proteins. In other experiments (data not shown)
focusing time was reduced to 3 minutes to ensure that trypsinogen had not eluted off
the column before the focusing was complete and the mass spectrometer on line. The
results in Figure 30 show that there was a very long lead time before the first proteins
were detected and it is thought that trypsinogen should not have entirely eluted prior
to completion of focusing. In some early method development experiments using
whey protein only, it was noted that sometimes the B-Lac proteins were detected
earlier than expected and that the amount of ionisation slowly increased to a sharp
peak after which it dropped rapidly to zero. This is a typical outcome of a protein
being only partially focused yet being mobilised at the same time, and could possibly
occur due to the height of the CE being set too high and/or effects of EOF on the

column. Since the column is filled with protein and ampholyte solution, protein that is

towards the ends of the column would take longer to reach its p/ value. In the CIEF-
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MS system this would explain why f-Lac proteins were identified early on and how
they reached a peak and rapidly dropped off. However, it does not tell us why the
trypsinogen was not detected. The concentration of trypsinogen may have been the
limiting factor in this system. One possible change to the method would be the use of
a wider diameter capillary. Many other research groups performing CIEF-MS use a 75
pm rather than 50 pm internal diameter column. This would give a greater sample

loading, and hence improve sensitivity as discussed in section 4.1.4.3,

Although both GMP and PP5 were spiked into the sample, they were not easily
detected by MS. Infusion experiments (Appendix 2, Figure 51 and Figure 63
respectively) showed that the 1onisation of these standards was poor as there seemed
to be many products (glycotorms) for cach standard. In analysis of CIEF-MS spectra
an ionisation pattern for both GMP and PP5 was observed (Figure 31). Again, using
this system with a 75 pm column could allow for greater sensitivity of proteins that do

not ionisc well and/ or are at a low concentration,

Many ditterent ionisation species were observed for BSA although from analysis of
mnfusion experiments (Appcudix 2. Figure 47 and Figure 48) this was expected.
lonisation patterns and intensities showed that separation of B-Lac-A and B-Lac-B
was still occurring with 3-Lac-B ecluting ahead ol (-Lac-A. There was also a

lactosylation product detected for both fi-Lac-A and B-Lac-B.

From the litcrature 1t is apparent that the most successtful CIEF-MS has involved the
use of MS such as Fourier transform ion cyclotron MS instruments that have a much
greater resolution and sensitivity than the older generation ion trap MS used in these
studies. Enhanced MS capability could be one area of great improvement for this

method, in particular for the ability to simulate 2-D gels for proteomic applications.
4.5 Flat Bed IEF Gels

Flat bed IEF gels were prepared and several samples including the whey basic protein
fraction numbers 1, 2, and 3 were run. The gels were scanned by laser densitometry
and gave mixed results. The whey basic protein fraction samples were high in salt
concentration which had the effect of burning or smearing the gel (Figure 32). These

samples required de-salting to obtain reasonable results. Samples such as skim milk
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gave good results, Protein bands were easily identified when standards werce run in an
adjacent lane. The staining intensity of each band is detcrmined by the ability of cach
protein to bind the stain. Whey proteins {although less abundant in skim mik) bind
the stain better than caseins and so appear fairly intense in comparison to the casein
proteins. The method of 1EF PAGE has been utilised in dairy applications for
determining protein concentrations (Braun et al. 1990} and this method has

traditionally been the first step 1n creating a 2-D gel.
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Figure 32 |[EF fiatbed gel of skim milk (SM, left lane) and whey basic protein fraction number
1 (right lane).

4.6 PAGE 2D Gels

Two-dimensional gels were generated for whey basic fraction protein samples 1, 2,
and 3 (Figure 33, Figure 34, and Figure 33 respectively) and then analvsed by MS by
multidimensional protein identification technology (MudPIT) 2D HPLC (Fong et al.
2004). Through protein database searches of the MS data, the identities of the spots on
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each gel were determined (Fong et al. 2005a & Fong et al. 2005b). Residual casein
proteins were discovered to be present, as were small amounts of the major whey
proteins B-Lac and a-Lac. Each sample contained other proteins such as lactoferrin,

lactoperoxidase, angiogenins, RNAse, and IgG polymeric Ig receptor protein.
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Figure 33 2D PAGE of whey basic protein fraction sample 1.
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Figure 34 2D PAGE of whey basic protein fraction sample 2.
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Figure 35 2D PAGE of whey basic protein fraction sample 3.
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4.7 CZE of Dairy Proteins and Peptides

Key CZL methods for whey and casein protein separations were reproduced as these
methods could be used as benchmarks for optimal separation of these proteins by CE

with which to compare the CIEF methods developed in this study.

4.7.1 Whey Proteins

Separation of whey proteins from skim milk by a CZE method outlined by Kinghorn
ct al. (1996) was pertormed to compare the separation of whey using this method with
a CIEF scparation. The resulting electropherogram for whey protein is scen in Figure

36.

kau

Figure 36 CZE separations of whey proteins from skim milk utilising the method of Kinghorn
et al. (1996). The top trace represents protein standards of the major constituents of whey
proteins, a-Lac (peak 1}, B-Lac-A (peak 4}, B-Lac-B (peak 3) and minor component B-Lac-C
{peak 2} genetic variant. The bottom trace is the response for skim milk showing a-Lac, B-
Lac-B, and R-Lac-A.

4.7.2 Casein

Figure 37 shows a typical CZE separation of milk proteins by the method of Recio et
al. (1997), The separation of many of the genetic variants of casein was possible using
this method. particularly the -Casein variants Al, A2, B and C (latter not shown in

figure). Separation of the «-S- casein variants was also possible {a-gp, 0-51y & a-g3), but
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this was not the case for the variants of a-s1-B & -C variants, The A and B variants of
k-Casein were also not able fo be separated. This method was also limited for the
separation of the major constituents of whey as B-lactoglubulin-A & -B co eluted.
Overall, the general method of CZE originally developed by de Jong et al. (1993), has
been used widely around the world for many different applications as outlined in
section 2.9.1. It is likely to remain an important technigue for dairy protein

separations.
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Figure 37 CZE separation of milk proteins from skim mitk by the method cutlined in section
3.9. The method was similar to that used by Recio et al., (1997).

4.8 Comparison of Methods
4.8.1 CIEF to CZE Methods

Water soluble proteins;

The main benefit of the CIEF method over the CZE method is 1ts ability to separate
soluble proteins over a large range of p/ values. This is not typical for CZE as
separations are usually designed for the separation of proteins of similar pf values.
The time required to run samples is similar for both methods. However, the
reproducsbility of making identical run buffers while nof a significant problem for

CIEF, can sometimes be a problem for CZE. In the latter case, butfers must be made
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carefully to give reproducible pH as differences in separation can occur between
buffer batches.

In addition, CIEF method gives the added information of an approximate p/ value for

a protein, where this is not possible with CZE.

Insoluble Protein Method:

Overall the CZE method developed by de Jong et al. (1993) for the separation of the
major dairy proteins is a far superior method to the CIEF method developed here for
separation of casein proteins. The disadvantages of the CIEF method are that the
major whey proteins and B-casein co-elute and there is a very small window of
concentration limit such that proteins such as k-casein, that are in low abundance and
have a low absorption co-efficient at 280 nm can be difficult to detect. There is often
separation of 2 a-casein species, but this is not always reproducible. The cathode run
buffer also seems to deteriorate quickly due to sample buffer contamination as
proteins run from anode to cathode, so regular changing of the cathode buffer is
required. Alternatively a large reservoir buffer system could be used to dilute the
effect of the sample buffer. In addition the samples seem to degrade, and/or dry out
and crystallize rapidly. This may be due to using small sample sizes to minimise the
use of expensive ampholytes. The CZE method seems to have a more stable run
buffer system as it does not appear to degrade as quickly, and the sample size is
usually larger hence the sample does not dry out and crystallize. Overall the CZE
method has a greater resolution of separation compared to the CIEF method, with a
large number of different types of genetic variants able to be separated in a single run.
With the CIEF method for insoluble proteins it is also not possible to predict the
sample p/ from internal standards because the proteins do not elute according to their
nominal p/. This is because the urea has an effect on protein p/ value (Righetti, 2004).
This effect is different for each individual protein because the unfolding of the protein
by urea causes different surface amino acid groups to be presented with consequent

changes in apparent p/.
Advantages of CIEF over CZE methods:

Typically in CIEF, sample is injected to completely fill the capillary before the

sample is focused towards its p/. However, in CZE a typical maximum sample
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volume 18 5% of the capillary volume, hence CIEF would be better for investigation

of dilute protein solutions.

CIEF also offers the benetit of being able to separate any protein, regardless of its p/,
whereas CZE is optimised for a group of proteins of similar p/ with a run buffer pH
developed for that particular method. Therefore CIEF can be used as a screening tool
in protecmics or other discovery rescarch, with ne method development required to

optimise separation each time.
Disadvantages of CIEF over CZE:

Detection: Most dairy proteins have an absorbance maximum around 214 nm, and
although another absorbance maximum is seen at 280 nm, this wavelength is usually
10 fold less sensitive then 214 nm. Unfortunately, as mentioned in section 4.1.5 the
CIEF method 1s unable to detect at 214 nm, but also as mentioned in this section the
difference in detection is only about four told difference in sensitivity for an identical

sample run at the two different wavelengths.

Some proteins with extremc pf values are either not detected (it highly basic) or are
detected as broad peaks (acidic proteins). There is also a tendency tor these high/low
pl proteins to have their pf less accurately assigned. Low p/ proteins also seem to
have less reproducible migration times, possibly due to EOF effects and/or bufter

degradation during a sample set.

4.8.2 CIEF to Gel Methods

Comparison of CIEF with UV detection to the IEF-PAGE format with laser
densitometry scan (Figure 38), shows that the techniques are very complementary for
skim milk proteins and allow a reproducible cross over for both methods. The
advantage of CIEF is that it not only requires a much smaller sample size, but it is
also a very rapid technique compared to the gel format with acquisition of results 1n
less than an hour for one sample or overnight for a sct of 20 samples. This compares
to several days work required for an IEF gel. Thus CIEF is time and cost effective
with the added advantage that it requires only small volumes ot reagents. CIEF can be
used for samples where sample size is an issue, or as a qualitative analytical tool

when, for example, fractionating protein samples to rapidly identify the content or
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purity. The method has proved to be very sensitive and therefore samples of fairly

dilute concentration (7.5 pg/ml) can be used for analysis.

e
Ll

Figure 38 Comparison of flat bed IEF-PAGE with laser densitometry to CIEF-UV using the
denaturing CIEF method (Section 3.5).

4.8.3 CIEF-MS to 2D-PAGE-MS

There have been certain limitations to the analysis of intact proteins by MS detection
which means the CIEF-MS method 1s scverely limited in sample types that can be
analyzed for dairy applications, particularly tor proteomics since many of the
uncharacterised low abundant proteins are of high molecular weight. This shows then
that the hydrolysis of proteins i1s a critical step in the analysis of protein fractions.
Although a potential application for the CIEF-MS method could be for analysis of
peptides from hydrolysis of 2D PAGE protein spots, the reality would be that due to
the addition of ampholytes that suppress MS signal this would not be a viable option
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and other techniques such as CZE-MS or nano-HPLC-MS would be preferable

methods.

The p! of the protein has been shown to be a problem for CIEF analysis particularly in
MS application, where the most basic proteins were never identified. Although there
has been some interest in characterizing whey basic protein fractions, in this context

the CIEF-MS method would be too problematic to pursue.

Finally, due to the insolubility of some dairy proteins the use of urea has been
discussed in detail, i.e. with MS detection, it is not possible to use a run buffer
containing urea. This turther limits the uses of CIEF-MS and since for 2D-PAGE-
HPLC-MS any residual buffer contaminants are removed in a desalting step on the
HPLC. This gives the method of 2D-PAGE-MS a significant advantage. Some groups
have solved the problem, in that they are now coupling the CIEF separation with a
nano-HPLC system, which has a step to remove salts before separating intact proteins
by reversed phasc on line to the MS detector (Chen et al., 2002, Zhou & Johnston
2005). The use of powertul high resolution MS detectors then allows the analysis of
large molecular weight proteins. Whether this type of scparation would have
application for the dairy industry would remain to be seen, Also, whether the slower
analysis of removing protein spots from 2D-gels would outweigh the cost of such a

high resolution MS would be a critical factor in purchasing such an instrument.
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5 Conclusions

Proteomic research has been rapidly advancing in recent years due to advances in
technology at the micro and nano level. The need for techniques that can deliver rapid
results is required for research companies to get ahead of their competitors in the
quest for inteliectual property within the commercial sector. Traditional techniques
such as 2D-PAGE, although very much tried and tested and able to deliver results for
many applications. are however, very time consuming and more automated techniques
are required. CIEF is a technique that can be used as an alternative method and has
been used with success for many applications. The objective of this thesis was to take
examples of CJIEF techniques from the literature and modify them to optimise
parameters for dairy proteomic applications. Techniques using CIEF with UV
detection have been developed for both water soluble proteins (such as whey protein
samples) and for insoluble protein samples (such as casein). The water soluble method
with UV detection was optimised for different column lengths and several different
sample types. In addition, the knowledge gained from the water soluble UV detection
method was able to be used to optimise a CIEF separation with MS detection, before

connecting the system to the MS detector.

Results trom cach method were compared to other technigues such as flat bed [EF
PAGE, 2D-PAGE with HPLC-MS characterisation on a high resolution MS detector

and to the currently used CZE separations of casein and whey proteins.

The CIEF-UV method tor water-solubie proteins worked well, with a high accuracy
of reproducibility and p/ determination. Applications for this mecthod included
investigations of milk protein fractions such as the milk whey basic protein fraction,
and acidic protein fraction. In addition peptides have been separated, and bacterial cell
lysates with dairy applications have been investigated. Comparisons of this method
with flat bed IEF PAGE support this technique as being able to replicate the gel

format in a much quicker time frame (minutes’hours for CIEF versus days for PAGE).

Although the CIEF-UV method for insoluble proteins can give a good representation
of what is seen by flat bed IEF PAGE, this technique does have a few limitations.

Firstly, the concentration ot dairy proteins used must be extremely low otherwise poor
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resolution of separation is seen. With the low concentration, however, detection of
some proteins becomes difficult. Secondly, the method was not able to be interfaced
with MS detection; several alternative denaturing buffer systems were tried but failed.
Thirdly, inclusion of the additives to the sample buffer system alters the p/ value of
the proteins. Although a reasonably good separation can be achieved, the
determination of samples of unknown p/ is not possible due to the denaturing buffer
system. More research could be conducted on this technique to achieve better
separation of proteins as there is potential a similar method could be used with MS

detection by introducing another step of HPLC separation between the CIEF and MS.

The CIEF-MS method, although technically difficult, showed good similarities to that
of 2D-PAGE in terms of 2D mapping. However, the use of a MS detector with greater
resolution and sensitivity would dramatically improve results and make it a more
worthwhile technique to pursue for other proteomic applications. It would also be
interesting to see if modern high resolution MS detectors would be able to detect with
great mass accuracy and reproducibility the molecular weight of large glycosylated

dairy proteins such as lactoferrin and lactoperoxidase (as included in this study).

For the comparison of CZE to CIEF methods for separation of whey and casein
proteins, the established CZE methods were the more preferred methods. For casein
protein separation more genetic casein variants were detected with the CZE method.
Additionally, the CZE method separated the whey proteins, whereas in the CIEF
method the whey proteins co-eluted with B-casein. The CZE separation of whey
proteins gives excellent separation of the B-lactoglobulin genetic variants and a-
lactalbumin, although proteins such as BSA do not separate as discreet sharp peaks.
The separation is also not optimised for other proteins such as lactoferrin or
lactoperoxidase, whereas CIEF has been effectively optimised for all of these
components as it was designed as a generic method of separation for proteins of very

different pl.

Overall the CIEF methods developed here to date will not have as great an impact for
the dairy industry as was originally envisaged. This is in comparison to established
techniques that have proven the test of time as far as robustness and quality of results

is concerned.
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6 Future Work

Future work on CE for proteomic applications could include the following:

Develop a peptide CE-MS method for the analysis of 2-D PAGE spots that have been
hydrolyzed and that would typically be analyzed by HPLC-MS. Reasoning; currently
3 1dentical gels must be run to gather cnough protein for cach spot to be analyzed.
Since CE sampies can be very much smaller than HPLC. then there may be an

application whereby CE will outperform HPLC with MS detection.

Recently scveral papers have appeared where the use of CIEF-RP-HPLC-MS has
been used for proteomic applications (Chen et al. 2002, Chen et al. 2003, Zhou &
Johnston 2004 & 2005). The method utilises a standard CE instrument that has the
cathode entering a HPLC switching valve. Once the protcins are focused 1n a capillary
of zero EOF, zones of the focused proteins are then mobilised onto a reversed phase
HPLC column. Buffer additives and ampholytes then pass through the column and are
diverted to waste, before proteins retained on the column are further separated
according to hydrophobicity and are cluted into a high resolution MS, The method
uses a urea and DTT butfer system for the CIEF step, so samples could include
insoluble proteins. This could have application to dairy proteomics and would be one

tuture development tor CIEF.
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Table 14 Summary of literature for CIEF with UV detection. Outlined are applications of
samples separated, buffers used, running conditions and comments about each reference.

Samples )
Erythropoietin
glycoform analysis

Erythropoietin
glycoform analysis

Recombinant
glycoproteins from
human
immunodeficiency
virus

O-glycosylated
caseinomacropeptide
(CGMP)

Buffer
Anode: 91 mM
phosphoric
acid.

Cathode:
20mM sodium
hydroxide with
different
amount of
phosphoric
acid added to
alter pH of
buffer.

Anode: 91 mM
phosphoric
acid.

Cathode: 20
mM sodium
hydroxide.

Anode: 100
mM phosphoric
acid.

Cathode: 20
mM sodium
hydroxide

Anode: 91 mM
phosphoric
acid.

Cathode: 20
mM sodium
hydroxide.

CIEF conditions
Beckman CIEF kit with
several ampholyte
brands including
narrow pl range.
Samples made in 7 M
urea Beckman gel
solution. 925V/cm
ramped over 2 minutes
was used.

Beckman CIEF kit with
several ampholyte
brands including
narrow pl range.
Samples made in
Tween 20 and other
solutions. 925 V/cm
ramped over 2 minutes
was used.

Beckman CIEF kit with
polyvinyl coated
capillary 47 cm x 75 pl
i.d. and 425 V/cm.
TEMED was used to
block the blind side of
the detector. 5 %
ampholytes in a
mixture of narrow and
broad pH range.

Beckman CIEF kit with
narrow range
ampholines added. 2
% total ampholyte
concentration 27 cm x
50 um polyacrylamide
coated column with
500 V/cm applied.

Comments
Uses B-lac-A as
internal
standard. Range
of pH is said to
be 2-10 for the
mixture used.
Follow on work
from Cifuentes,
et al. (1999).

Method
compares well
with |EF gels,
and CZE.

One step CIEF
in reverse
polarity mode.
Sample buffer
also contained
hydroxypropyl-
methylcellulose,
CAPS and
saccharose.
Comparisons of
other sample
buffers is shown
using Triton X-
100 and urea.
One and two
step CIEF with
reverse polarity.
Samples were
made in
Beckman CIEF
gel. Samples
are very acidic
so no need to
use TEMED to
block the blind
side of the
detector.

Reference
Ldpﬁz: _
Soto-
Yarritu et
al. (2002)

Cifuentes
et al.
(1999)

Tran et al.

(2000)

Tran et al.
(2001)
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Samples

Mainly standards
plus some
monoclonal
antibodies of IgG

a;-Antitrypsin
phenotypes to be
used to determine if
people will be
susceptible to
emphysema

Bradykinin,
cytochrome C,
cytochrome C
hydrolysate, and p/
marker standards

Haemoglobins

Drosophilia salivary

gland protein digests

Buffer

Anode: 10-20
mM phosphoric
acid.

Cathode: 20-40
mM sodium
hydroxide.
Anode: 91mM
phosphoric
acid.

Cathode: 20
mM sodium
hydroxide both
in0.75 %
polyethylene-
oxide (PEOQ).
Anode: 20 mM
phosphoric
acid.

Cathode: 40
mM sodium
hydroxide.

Anode: 10 mM
phosphoric
acid.

Cathode: 20
mM sodium
hydroxide

Anode: 0.1M
acetic acid pH
2:8.

Cathode: 0.5 %
ammonium
hydroxide pH
10.5.

CIEF conditions

Alot of different
techniques, column
types, lengths,
voltages, sample
buffers, detectors were
tried in this study.

PEO coated column 27
cm x 50 um 900 V/ cm,
ampholytes p/ range of
3.5-5.

Hydroxypropyl-
cellulose coated
capillaries 37 cm x 50
um i.d. 15 minute
focusing at 500 V/cm,
samples contained
pharmalyte 3-10 and
9-11 from sigma.
Gravity mobilisation.

Polyacrylamide coated
capillaries 14-20 cm x
25 um i.d. 6kV applied
for focusing and 8kV
applied for chemical
mobilisation. 2 %
biolyte.

Hydroxypropylcellulose
coated capillaries 100
pm i. D. 30 cm long.
Pharmalyte 3-10 at 2
% concentration.
Voltage = 333 V/cm.

Comments
Sample buffer
includes the use
of urea and -
mercaptoethanol

Sample contains
DTT.
Comparison with
flat bed gel
methods is very
good for desired
result of
phenotyping.

In some
experiments
TEMED was
used at a higher
ratio to block
blind side of
detector and
allow bradykinin
(pl12.0) to
focus 9 cm
before the
detector.
Mobilisation
velocity ~1
cm/min.

Early work on
CIEF, some of
the techniques
used here have
now changed
slightly
compared to
more recent
literature.
CIEF-RPLC-MS.

Reference
(Schwer,
1995)

Lupi et al.
(2000)

Mohan &
Lee (2002)

Zhu et al.
(1991)

Chen et al.
(2002)
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Samples
Peptides formed
from hydrolysis of
standard proteins

Protein standards
such as -
lactoglobulin and
myoglobin

Peptides formed
from a tryptic digest
of yeast cytosol and
BSA.

Yeast cells
(Saccharomyces
cerevisiae)

Haemoglobin

Protein and peptide
standards
(Pharmalyte broad
band pl kit)

Buffer

Anode: 0.1M
acetic acid.
Cathode at pH
2.9,

Cathode: 0.5 %
ammonium
hydroxide pH
10.5.

Anode: 100
mM phosphoric
acid.

Cathode: 30
mM ammonium
hydroxide.

Anode: 1 %
acetic acid (pH
2.5).

Cathode: 1 %
ammonium
hydroxide (pH
10.7).

Anode: 1 %
acetic acid (pH
2.5).

Cathode: 1 %
ammonium
hydroxide (pH
10.7).

Anode: 10mM
phosphoric
acid.
Cathode:
20mM sodium
hydroxide.

Anode: 91 mM
phosphoric
acid.

Cathode: 20
mM sodium
hydroxide.

CIEF conditions
Hydroxypropyilcellulose
coated capillary, 50
pmi.d. and 33 cm
long, 500 V/icm in
negative mode. 2 %
pharmalyte. Another
capillary is joined via a
mirodialysis junction
for CITP-CZE.
Poly(vinylalcohol)
coated capillary with
100 ymi.d. 30 cm in
length and 500 V/cm
applied. Samples
made in 2 %
ampholine.
Hydroxypropylcellulose
coated capillary 50 um
i.d. and 65cm long.
Pharmalyte 3-10 at 1
% concentration was
used. ~300 V/cm was
applied and gravity
mobilisation was used.
Hydroxypropylcellulose
coated capillary
columns 100 pm i.d.
and 65 cm long.
Pharmalyte 3-10 at 1
% concentration was
used. ~300 V/ecm was
applied and gravity
mobilisation was used.
Bare fused silica
capillaries 60 cm x 50
or 75 pm i.d.
Separations at 333-
500 V/cm. BioRad
ampholytes at 2 %
narrow and broad
range used.

Beckamn eCAP n tral
capillary 27 cm x 50
um i.d. Pharmalyte or
Servalyte at 1 %
concentration. 500
Vicm. Pressure
mobilisation.
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Comments
CIEF-CITP-CZE
with UV
detection at 214
nm.

CIEF as a
micropreparative
fraction
collection
method before
MALDI-TOF MS
detection.
Detection was at
280 nm.
Samples were
reduced with
DTT before use.

Detection was at
280 nm. The
authors
monitored p/
differences at
different stages
of cell growth.

Detection at 280
or 415 nm.
Samples ran 3-5
times.

TEMED and
other reagents
used. Aim was
to determine pl's
by CIEF and
compare to slab
gel IEF.

Reference
Mohan &
Lee (2002)

Minarik et
al. (2000)

Shen et al.
(2000a)

Shen et al.
(2000b)

Kilar et al.
(1998)

Shimura et
al. (2000)
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Samples

L-aspartate oxydase,
thermylase, alcalase
and a glycopeptide

antibiotic of the
teicoplanin family

Proteins from lysates
of microorganisms

Mixed standards

Buffer

Anode = 50
mM acetic acid
(pH 3.5).
Cathode = 50
mM lysine

Anode: 1 %
acetic acid (pH
2.9).

Cathode: 1 %
ammonium
hydroxide (pH
10.7).

Anode: 10 mM
phosphoric
acid.

Cathode: 20
mM sodium
hydroxide.
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CIEF conditions
Poly(AAP) coated
column. 24 cm x 75
um i.d. Ampholine of
different narrow ranges
(2.5% conc). 416
V/em. Chemical
mobilisation used.
Polyacrylamide, HPC
and PVA coated
capillaries of 65 cm x
50 um i.d. Pharmalyte
3-10at1 %
concentration used
with ~300 V/icm
applied. Mobilisation
was by gravity.
Different coated
capillaries from BioRad
34 cm x 50 um i.d.
~220 V/cm applied. 2
% Pharmalyte 3-10.
Continual focusing.

Comments
Reagents such
as CHAPS were
used. Results
compared to flat
bed IEF gels.

Detection at 280
nm. High
resolution of
separation
achieved with
many peaks
being obtained.

Detection at
different
wavelength with
a PDA (214,
235, 254, and
280 nm).

Aim of work was
to look at
reproducibility
and protein
adsorption on
peaks in CIEF

separations.

Reference
Conti et al.
(1997)

Shen et al.
(1999)

Graf &
Watzig et
al. (2004)
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Table 15 Summary of literature for CIEF with MS detection. Outlined are applications of
different types of samples separated, buffers used, running conditions and comments about

each reference.

Samples '

Mixed standards

Haemoglobin
variants

Transferrin
glycoforms

" Buffer

Cathode: 20
mM sodium
hydroxide.
Anode: 20 mM
phosphoric
acid.

Sheath: 50 %
methanol, 1 %
acetic acid, pH
2.6.

Catholyte: 0.5
% ammonium
hydroxide in 50
% methanol.
Anode: 0.5 %
acetic acid.
Sheath: 75 %
methanol, 0.25
% acetic acid.

Cathode: 20
mM sodium
hydroxide.
Anode: 20 mM
phosphoric
acid.

Sheath: 50 %
methanol, 1 %
acetic acid, pH
2.6.

Also used to
immobilise
proteins.

CIEF-MS
conditions
20 cm x 50 ym

i.d. x 192 um o.d.

linear
polyacrylamide,
15 min focus,
500 Vicm with
Pharmalyte
Coaxial liquid
sheath-flow
Make-up 3
pL/min

Finnigan MAT
TSQ 700 MS.
50 cm x 50 pum x
360 um PVA-
coated capillary,
1% Ampholytes,
500 Vicm
Coaxial sheath-
flow interface
Make-up 1.5
uL/min

Finnigan MAT
TSQ 700 MS

20 cm x 50 ym

i.d. x 192 um o.d.

linear
polyacrylamide,
Pharmalyte 5-8
at 0.5 %, 500
Viem.

Coaxial liquid
sheath-flow
interface.
Make-up 5
HL/min
Finnigan MAT

158 700 M5,

Comments Reference
First paper on
CIEF-MS.
Looks at
different
ampholyte
concentrations.

(Tang et. al.,
1995)

Used tapered tip
Three
ampholytes
used in a ratio
of 1:1:1
(Ampholine/
Pharmalyte/
Servalyte all 3-
10)

(Kirby et. al.,
1996)

Able to identify
proteins around
78 kDa.

(Yang et. al.,
1996)
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Samples

Recombinant E.
coli proteins

Model proteins
including
B-lactoglobulin A
myoglobin
carbonic
anhydrase |

Ovalbumin
phosphorylation
using

Protein standard
mix containing -
lactoglobulin A

Buffer

Cathode: 20
mM sodium
hydroxide.
Anode: 20 mM
phosphoric
acid.

Sheath: 50 %
methanol, 1 %
acetic acid.

Cathode: 2 %
acetic acid.
Anode: 2 %
acetic acid.
Sheath liquid:
80 % methanol,
5 % acetic acid.

Cathode: 20
mM sodium
hydroxide.
Anode: 20 mM
phosphoric
acid.

Sheath: 50 %
methanol, 1 %
acetic acid, pH
2.6.

Cathode: 20
mM sodium
hydroxide.
Anode: 20 mM
phosphoric
acid.

Sheath: 50 %
methanol, 1 %
acetic acid.

CIEF-MS
conditions

30 cm x 50 um
i.d. x 192 um o.d.
linear
polyacrylamide,
500 V/cm, 0.5-2
% Pharmalyte.
Coauxial liquid
sheath-flow
interface.
Make-up 5
pL/min

Finnigan MAT
TSQ 700 MS
instrument used.
113 cm x 75 um
i.d. x 190 pm o.d.
coated with PVA
Pharmalyte pH
5-8at1or25%
at 265 Vicm
focusing for 6
min.

Coaxial sheath-
flow interface
Make-up 1
pL/min.

Finnigan MAT
SSQ 710 MS
instrument used.
25 cm x 50 ym
i.d. x 192 umo.d.
linear
polyacrylamide,
600 Vicm.
Coaxial liquid
sheath-flow
Make-up 3
pL/min.

50 cm x 50 um
i.d. x 192 um o.d.
linear
polyacrylamide,
260 Vicm, 15
min focus, 1 % 3-
10 Pharmalyte.
Coaxial liquid
sheath-flow.
Make-up 2
pL/min
FTICR-MS.
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Comments

Results
compared very
well with 2D
PAGE.

Used narrow
range
ampholytes for
UV detection.
Focusing was
monitored and
stopped when
required.

Use of a
microdialysis
junction to
eliminate
ampholytes.
Anode and
cathode both
acetic acid.

Pharmalyte 4-
6.5 used at 0.5
%.

Separation of
dissociated
subunits and
intact protein
complexes by
two different
ionisation
methods.

Reference

(Tang et. al.,
1997)

(Lamoree et.
al., 1997)

(Wei et. al.,
1998)

(Martinovic et.
al., 2000)
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Samples

Recombinant E.
coli proteins

D. radiodurans
cell proteins

Six model
proteins including
p-lactoglobulin -A
and -B,
myoglobin, and
carbonic
anhydrase Il.

Buffer

Cathode: 50
mM ammonium
acetate, pH 9.3.
Anolyte: 0.2 M
acetic acid.
Sheath: 50 %
methanol, 0.2 M
acetic acid.

Cathode: 20
mM sodium
hydroxide.
Anode: 20 mM
phosphoric
acid.

Sheath: 50 %
methanol, 1 %
acetic acid, pH
2.6.

Cathode:
potassium
acetate (pH 3
with formic
acid).

Anode: aspartic
acid of same pH
and
concentration.
Sheath: 50 %
methanol, 20
mM formic acid.

CIEF-MS
conditions

1m x50 ym i.d.
x 180 um bare
fused silica,
0.5%
Pharmalyte, 280
Viem.

Coaxial liquid
sheath-flow
interface.
Make-up flow 2
pL/min.

Either Finnigan
LCQ ion trap or
FTICR-MS used.
30-50 cm x 50
pmi.d. x 192 ym
o.d. linear
polyacrylamide,
0.5%
Pharmalyte, 260
Viem for 10 min.
Coaxial liquid
sheath-flow
interface.
Make-up 2
pL/min
FTICR-MS.

90 cm x 75 um
i.d. x 375 um o.d.
linear
polyacrylamide,
278 Vicm,
Pharmalyte
Make-up at 2
ul/min,
Ampholytes of
different
concentrations
Finnigan LCQ-
DECA XP lon
Trap MS used.

Comments

Stepwise
mobilisation
technique
employed.
Ampholytes also
function to
eliminate EOF
(in addition to
forming a pH
gradient).

Isotope labelling
for mass
accuracy.

Anolyte and
catholyte are
identical pH (pH
3.0).

Separation
depends on
ampholyte
concentration.
Has
characteristic of
CITP
separation.

A plug of
sample/
ampholyte was
added.

Reference

(Zhang et. al.,
2000)

(Jensen et. al.,
2000)

(Chartogne et.
al., 2002)
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Samples

Cerebrospinal
fluid,

whole blood from
diabetic and
control patients,
and

mixed standards

Standard
mixtures looking
at isoforms

Haemoglobin
variants A, C, S
and F

Buffer

Cathode: 50 %
methanol, 1 %
ammonium
hydroxide.
Anolyte: 50 %
methanol, 1 %
acetic acid.
Sheath liquid:
50 % methanol,
1 % acetic acid.

Cathode: 1 %
ammonium
hydroxide.
Anode: 1 %
acetic acid.
Sheath liquid:
75 % methanol,
0.25 % acetic
acid.

Cathode: 20
mM sodium
hydroxide.
Anode: 20 mM
phosphoric
acid.

Sheath liquid:
50 % methanol,
1 % acetic acid,
pH 2.6.

~ TSQ 700 MS

CIEF-MS
conditions
37 cm x 50 um

i.d. x 360 um o.d.

PVA-coated
capillary.

1 % Pharmalyte
540 V/cm
focusing for 7
min.

Coaxial sheath-
flow interface.
Make-up 3
ul/min
Finnigan MAT
900 MS.

80 cm x 50 um

i.d. x 360 um o.d.

linear
polyacrylamide
coated capillary,
1 % Pharmalyte
with 375 V/icm
focusing for 40
min.

Coaxial sheath-
flow interface.
Make-up flow of
2 pl/min.
Finnigan MAT
LCQ lon Trap
MS instrument.
20-30 cm x 50
pmid. x 192 pm
o.d. linear
polyacrylamide
coated capillary
with 500 V/cm
with Pharmalyte
5-8 of varying
concentration
and focusing for
15 min.

Coaxial sheath-
flow interface.
Make-up flow at
5 ul/min.
Finnigan MAT

Comments

Able to use this
technique
successfully for
haemoglobin a
and B chains as
well as
cerebrospinal
fluid.

Separated
isoforms with
long focusing
times

Used active
capillary
positioning
Used standing
drop technique
while focusing.

Separation of
proteins of p/
0.05 difference
Used single ion
monitoring in
some MS
experiments.

Reference

Clarke & Naylor
(2002)

Tao et al.
(2002)

Tang et al.
(1996)
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Appendix 2 Results of Infusion MS experiments

Table 16 Resuits of infusion MS experiments. MS conditions used are outlined in section 3.7.
Deconvolution of mass spectra was performed on Bioworks version 3.1. Literature masses
were obtained from Mascot {(www.matrixscience.com) web site. NIA = data not available due
to lack of ionisation. Mass Spectra and deconvoluted data for each standard are presented in
Figure 39 tc Figure 70.

Protein Standard lonisation lonisation  Deconvoluted titerature

Pattern Charge mass Mass
Number
atac 1773.3 +8 14179 141725
1576.5 +9
1419.0 +10
1280.0 + 11
Amyloglucosidase N/A N/A N/A 78-80000
B-Lac-A 18374 +10 18364 18367
1670.4 +11
1531.3 +12
B-Lac-B 18284 +10 18275 18281
1662.3 +11
1523.9 +12
1406.8 +13
1306.4 +14
1219.4 +15
BSA 1480.3 +45 66434 66432
1417.3 +47 66554
1387.6 + 43 65403
1331.8 + 50
1256.5 +53
1234.4 + 54
Carbonic Anhydrase 14399 +20 28778 29000
. 1371.4 + 21
1309.1 +22
1252.1 +23
1200.0 +24
1152.2 + 25
1107.8 + 286

1066.8 +27



Table 16 continued

Protein Standard

Glycomacropeptide
(A and B variants) +
phosphate content

P)

ImmunoglobulinG

L_actoferrin

Lactoferrin

Degiycosylated

Lactoperoxidase

Myoglobin

Proteose Peptone 5

lonisation
Pattern

1697.6
1362.6
973.1
849.2
N/A
1845.4
1761.7
1695.0
1629.7
15376
1769.0
1661.1
1596.2
1536.1
1480.2
1313.6
12921
12117
1159.2
1094.6
1695.9
1542.0
1413.5
1304.8
1211.6
1130.9
1060.4
998.0
1746.3
1527.6
1358.3

1222.4

lonisation
Charge
Number

+4
+5
+6
+8
N/A
+45
+47
+49
+ 51
+ 54
+46
+49
+ 51
+53
+55
+60
+ 61
+65
+68
+72
+10
+11
+12
+13
+14
+15
+16
+17
+7
+8
+9

+10

Deconvoluted
mass

6754

6786

6801

6867

N/A

83015

84772

81420
79482

81352
83272
79709
77932

78755

16950

12216
12239
12474

12482
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Literature

Mass

6780.3 (A) + 1P
6867.4 (A) + 2P
6754.4 (B) + 1P

N/A
83100

74000

77500

16951

121773
12442.6
124826




Table 16 continued

Protein Standard

Ribonuclease

Trypsin Inhibitor

Trypsinogen

lonisation
Pattern

195563
1711.2
1521.3
1369.3
1665.7
1537 4
1427.5
1332.7
1249.3
11756
1110.5

1845.6
1713.9
15996

1499.6

lonisation
Charge
Number

+7
+8

+9

+10
+12
+13
+14
+15
+16
+17
+18

+13
+14
+15
+16

Deconvoluted
mass

13683
13781

19973
20082

23978
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Literature

Mass

13700

20100

23700
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Figure 62 Results of deconvolution of myoglobin
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Appendix 3 Results of MS infusion of basic protein fraction
samples
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Figure 72 Results of whey basic protein fraction 3 sample infused into MS
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Figure 73 Results of deconvolution of whey basic protein fraction 3
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Figure 75 Results of deconvolution of whey basic protein fraction 2
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& 8 B B

z

]

T1755.0

-
=1

65278.0
58354 0

] 55551.0

535120

5 8 &

41540.0 a0
| 396780
38017.0

37047.0

201760 352880

Relative Abundance
& &

&
t=1

B

270880
257650

21883.0
14588.0 1

13887.0

135380
105560 |

a 2 B
gloriliniiliniils

A M e e M

40000

T2637.0

wET50

15890 570300

B81283.0

TI834 0
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CAPILLARY ISOELECTRIC FOCUSING OF DAIRY
PROTEINS, NEW TOOLS FOR PROTEOMIC
RESEARCH

Gapper, L W' Harding, D R’ Palmang, K P

'Fonterra Research Centre, Palmerston North, New Zealand

’Department of Chemistry, Massey University, Paimerston North, New
Zealand

Abstract

Capillary Iscelectric Focusing (CIEF) is a high-resolution technique, which can
be applied to the separation and characterisation of complex biologicat
mixtures such as dairy proteins. Although dairy proteins are commonly
analysed by traditional gel electrophoresis techniques including 2-Dimensional
PAGE, CIEF offers the advantages of reduced analysis times, the ability to
handle smaller sample volumes and increased sensitivity with improved

separation efficiencies.

We have developed several methods for capillary isoelectric focusing of dairy
proteins, For the analysis of soluble whey proteins we have set up a method
that can be used with either UV or mass spectrometry (MS) detection. For MS
detection we have utilised a coaxial sheath flow interface in conjunction with
electrospray ionisation. For analysis of the inherently insoluble casein proteins
with UV detection we have introduced denaturing and reducing agents into
the system. Our results have shown very close similarities to those obtained
by |IEF geis.

introduction

o Capillary isoelectric focusing (CIEF) is a rapidly emerging tool for
proteomic analysis (Shen & Smith, 2002).
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e When coupled with mass spectrometry (MS) detection the technigue is
analogous to conventional 2D-IEF/SDS polyacrylamide gel
electrophoresis (PAGE)-MS

« Excellent comparisons between CIEF-MS and 2D-PAGE have been
demonstrated {Tang et al., 1997; Shen & Smith, 2002).

« At Fonterra- PN we are investigating the robusiness of CIEF for
proteomic applications within the dairy industry

Method

CIEF with UV Detection

Sample Loading

Ampholyte and protein (~50-100 pg/mi) solution is loaded under pressure (P)
onto a 50 um |.D. MicroSolv zero flow capillary column. The inside of the
capillary is coated with sulfenic acid groups to eliminate electroosmotic flow
(EQF).

Focusing Step

On addition of high voltage the ampholytes form a pH gradient and proteins
migrate within the capillary to their respective pl's.

As the focusing cccurs the current drops (Refer to red trace figure 1.) and
when complete fine bands of concentrated proteins form inside the capillary.

Mobilisation
Pressure is applied from the anode to mobilise the protein bands towards the

detector.

CIEF with MS Detection

CIEF with MS detection is achieved through the use of a coaxial sheath flow
interface between CE and MS. With the ESI flange open the protein and
ampholyte solution can be loaded onto the capillary. Focusing is achieved by
using a basic {1% ammonia} makeup flow. Once focusing is finished the ESI
flange is closed and the makeup flow is replaced with a methanol/acetic acid

solution. MS detection is achieved in the positive ion mode.

Results
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CIEF with UV Detection

The major whey proteins p-lactoglobulin genetic variants A and B, and -
lactalbumin were identified in the electropherogram of skim mitk whey (figure
1). The pl's of these proteins were calculated from the standard curve, and

were shown o be within 1.5- 4.5% of the literature values.

CIEF with MS Detection

Figure 2 shows a TIC trace of a CIEF-MS experiment where several major
whey proteins have been included in a standard mixture of pl markers.
Protein masses were assigned by deconvolution of the ionisation product data

and plotted against pl to produce the 2D profile shown figure 2 (insert).

CIEF with UV Detection of Insoluble Proteins

The milk micellar casein proteins are inherently insoluble. However, with the
utilisation of 8M urea and B-mercaptoethanol as a sample buffer, good
resolution of the principal caseins was achieved (figure 3). It can be seen that

the results from CIEF compare favourabiy with those from flat bed ge! IEF.

Discussion

The resolution of separation is very good particularly for using UV detection
with phosphoric acid and sodium hydroxide. The technique has so far been
applied to a number of different samples including bacteriai cell lysates (dairy
starter cultures), peptide samples, and different dairy powders and fracticns.
For example analysis of genetic variant proteins.

Addition of narrow range ampholytes gives better separation where a number

of prateins have similar pf's.

Conclusions

This technique shows potential for the analysis of dairy proteins as it is:
- Fast high throughput analysis compared to PAGE techniques
- Very smail amounts of expensive chemicals reguired
- Very little sample needed compared with PAGE analysis

- Highiy reproducible results from run to run and day to day
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- Can calculate the pl of dairy proteins with reasonable accuracy
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Figures Text
Figure 1
Electropherogram of skim milk whey proteins with non-dairy pl markers at

280nm

Figure 2

Total lon Count (TIC) of a CIEF-MS experiment with a mixture of dairy protein
standards with pl markers

Figure 3

Comparison of flat bed gel IEF (top) with densitometry (middie) and CIEF
{bottom} for skim milk proteins.
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CIEF with UV Detection
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CIEF with MS Detection

Coaxial Sheathflow
Interface
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Figure 1

n
f-Lac-A 3
il pl vs Time b,
f-lac-B
10 3
p M .
b '
T 3
Ll 6 ¥ = 40,3551k + 14,285
5 R =08725 "
. 4
M 1
z F
003 1 3
o v 3
AU s HA
ooy 3
.
7 e-lac
= AM &
] I Eo
A
o0
i
L] 2 4 L} 1] " 12 “ 1 L] M n £l k. ] k] 30



Figure 2

BIUEL LAY BAlLElEY

a0

a0 B vs pl

woot

] ; "
: _at
- i i
40 3 ki @ 45 = S
Bl

Page 158

ME-B I
5348
- AL

s : in 5,
|




Page 159

Figure 3






