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Abstract

Nowadays, big data has become a hot topic around the world. Thus, how to store,

process and analysis this big volume of data has become a challenge to different companies.

The advent of distributive computing frameworks provides one efficient solution for the

problem. Among the frameworks, Hadoop and Spark are the two that widely used and

accepted by the big data community. Based on that, we conduct a research to compare

the performance between Hadoop and Spark and how parameters tuning can affect the

results.

The main objective of our research is to understand the difference between Spark

and MapReduce as well as find the ideal parameters that can improve the efficiency.

In this paper, we extend a novel package called HiBench suite which provides multiple

workloads to test the performance of the clusters from many aspects. Hence, we select

three workloads from the package that can represent the most common application in our

daily life: Wordcount (aggregation job),TeraSort (shuffle/sort job) and K-means (iterative

job). Through a large number of experiments, we find that Spark is superior to Hadoop

for aggreation and iterative jobs while Hadoop shows its advantages when processing the

shuffle/sort jobs. Besides, we also provide many suggestions for the three workloads to

improve the efficiency by parameter tuning. In the future, we are going to further our

research to find out whether there are some other factors that may affect the efficiency of

the jobs.

Keywords: Big Data, Spark, Hadoop, HiBench suite, parameters tuning
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Chapter 1

Introduction

Nowadays, large scale of data is generated by different users around the world. These

data is under different formats and most of them are unstructured. In addition, the ad-

vent of many new technologies bring much larger volumes of complex data which includes

social media data, machine data and system data [1]. Thus, how to process and analyse

the growing data becomes a challenge to many companies. To handle the problem, dis-

tributed computing is proposed and becomes the most efficient and fault-tolerant method

for companies to save and process the massive data. Among this new group, Hadoop and

Spark are the most commonly used cluster computing tools that provide the users various

functions with simple API.

Hadoop is an open source cluster computing framework based on Java [2]. It is a

programming model that provides users with analysis and storage infrastructure [1]. Its

cluster includes one master node to assign and monitor tasks and multiple data nodes

to save and conduct parallel computing. Hadoop adopts master/slave architecture which

means the master node will manage all the data nodes when processing large scale of

data. The cores parts for Hadoop are: MapReduce and HDFS1 [3]. HDFS is distributed

file system while MapReduce is a framework used for distributed computing. Hadoop is

a combination of these two.

Spark is designed based on the Hadoop cluster and its purpose is building a program

model that “ fits wider class of applications than MapReduce while maintaining the au-

tomatic fault-tolerance” [3]. It is not only an alternative to the Hadoop framework but

also provides various functions to process the real streaming data. Apart from map and

reduce functions, Spark also support MLib2,GraphX and Spark streaming for big data

analysis. Spark chooses Scala as its default language and provides the interfaces in Java

and Python to enhance its scalability. There are two important terms proposed by Spark:

directed acyclic graph (DAG) and Resilient Distributed Datasets(RDD).

1The system to store big volume of data.
2Machine learning library.
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The research included in this thesis conduct experiments that are modified from the

HiBench3, to test the performance of our cluster, facilitate the users to monitor the jobs

as well as give the users enough freedom to modify the parameters they want. These

new experiments make up the drawbacks of different cluster performance application,

by implementing the jobs on our own cluster and simplifying the complex process of

processing large volume of data.

These new experiments are applied to test the efficiency of different jobs under Hadoop

and Spark, where the datasets are repeatedly changing and the different parameters needs

to be set to ensure the job efficiency. The parameters problem is one case that multiple

aspects are required to enhance the job efficiency. To make sure the experiment results

are convincing,each experiment is tested for 5 times to get the average execution time.

Also, we select several parameters from different aspects suggested by MapReduce and

Spark online documents to enhance the correlation to the jobs. All the details of the

experiments can be seen from Ambari UI4.

1.1 Research Objectives

The primary objective of this research is to understand how Spark and MapReduce process

different kinds of jobs, providing them the guide to improve the job efficiency by tuning

parameters from several sides. These new experiments should allow the users to check

any execution results they want and view all the job settings, they will give them a

clear vision of the situation of the jobs and help them make improvements easily. To

test the capabilities of our cluster, different types and sizes of the datasets need to be

created and executed. Through our experiments, we need to present the difference between

MapReduce and Spark as well as clearly show how parameters affect the efficiency. The

objectives of this research are shown below:

1. Propose a method to extend the HiBench workloads to our own cluster.

2. Select three workloads from the HiBench and define them as different types of jobs.

3. Find the related parameters for each type of job and configure the jobs with different

settings.

4. Compare Hadoop and Spark for the performance difference and how the parameters

tuning affect the results.

5. Find the ideal parameters that have positive effects on Hadoop and Spark jobs.

6. Give the suggestions to different types of jobs based on our findings.

3An open-source package from github to test the performance of clusters.
4The web UI that provides the intuitive and user-friendly function to manage the Hadoop cluster.
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1.2 Significance of our research

This research investigates three types of jobs from the HiBench which are defined as

workloads and shows a modified implementation of the workloads on Spark and Hadoop.

Also, these experiments put parameters tuning and results monitoring into consideration

and thus include all the process of big data processing. Besides, the different sizes of

datasets can simulate the situation of the real-world requirement and therefore provides

us an idea about how to solve our daily problems with Hadoop and Spark.

This research is based on the recent research undertaken by Yassir Samadi [4],he ran

all the HiBench workloads with the default settings. Since HiBench only provides several

parameters under its configuration files and there are only four values to visualize the

performance, we decide to extend it to control several workloads that includes configure

our own settings and monitor the results from different aspects. Our research extends

Yassir Samadi’s research by transferring the workloads to our own cluster and building a

complete process of the jobs for users to test the individual cluster performance. Based

on the research,we can see the difference between Hadoop and Spark jobs clearly and how

parameters can affect the results.

1.3 Scope and limitations

This research is based on the HiBench and thus is applicable to any clusters. However,

since there are some modifications from the source code and configuration files, the users

need to re-compress the jar package and use the command provided on the chapter 4 to

execute the workloads.

The limitations of our research are shown below:

1. The input data is created randomly and may cause some deviation compared to the

real-world situation.

2. The size of our cluster is small containing 10 nodes with 420GB memory and 250

vcores, compared to other’s research.

3. There is strong randomness for our jobs caused by some unavoidable factors like

internet problems or hardware restriction which means the execution time of the

same job fluctuates strongly.

4. Some other factors like CPU consumption or I/O ratio that express the usage of the

cluster resources can be added to evaluate the jobs comprehensively.

5. Only resource utilization, input splits and map/reduce side parameters are consid-

ered into our research.
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1.4 Structure of the Thesis

This thesis begins with an introduction of two relevant distributive computation frame-

works: Hadoop and Spark, both of them are widely used for processing big data. Next,

there is a detailed review on the HiBench package and three types of workloads used in

this thesis. Then, the workflow and the settings of our experiments are discussed that

include the software and hardware settings. On the following chapter is the methodology

which explains the ideas of setting our experiments. Chapter 5 presents the experiment

results and analysis while Chapter 6 summarise our findings and provide the suggestions

based on our experience. Finally, Chapter 7 concludes our research and ends our thesis

with the future work.
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Chapter 2

Literature Review

This chapter covers a brief explanation of Hadoop and Spark; how these frameworks work;

Hibench suite; several workloads inside and the strategies for optimization Spark and

Hadoop jobs. Firstly, we are going to introduce the core parts of Hadoop and Spark and

how these two frameworks work. Then, we explain a new term: Hibench which is a package

designed by Intel to test the performance of the Cluster. After a brief explanation of the

HiBench, we are going to have a discuss about this drawbacks and pick several workloads

to study further. Finally, we are going to explain something related to parameters tuning

to improve the efficiency of the workloads and make the conclusion for the chapter.

2.1 Hadoop

For Hadoop, the core parts are MapReduce and HDFS. The former is a computing prin-

ciple and the latter is a storage platform for big data processing.

HDFS:

It is impossible to save or process large volumes of data on one single node, therefore

Hadoop proposes a distributed file management system called HDFS [5] which splits the

files into small pieces(blocks) and saves them on different nodes. There are two kinds

of nodes on HDFS: data node (worker) and master (name) node [6]. All the operations

including delete, read and write are based on these two. The workflow of HDFS is like

that: Firstly, the name node ask for access permission. If accepted, the master node will

turn the file name into a HDFS block ID list which includes the file and the data notes

that save the blocks related to the file. Then the ID list will be sent back to client and

the users can do the further operation based on that.
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MapReduce:

MapReduce is a computing framework which includes two operation: Mapper and Re-

ducer.

Mapper:

After reading the files from HDFS, Hadoop will parse each line as a key-value pair and

call the map function for each key-value pair [7]. The mapper will process them based

on the map function and transfer them into the new key-value pairs [8]. Next, the new

key-values pairs will be assigned to different partitions and will be sorted based on their

keys. Combiner is optional and can be recognized as a local reduce operation which

allows counting the values with same key in advance to reduce the I/O pressure. Finally,

partitions will divide the intermediate key-value pairs into different pieces and transfer

them to reducer.

Reducer:

Before conducting reduce process, MapReduce needs to implement one operation: shuffle

which means transferring the mapper output data to the proper reducer. After shuffle

process finished, the reducer will start some copy threads (Fetcher) and obtain the output

file of the map task through HTTP [9]. Next step is about merging the outputs into

different final files that will be recognized as the input data of reducer. After that, the

reducer processes the data based on the reduce function and write the outputs back to

the HDFS.

2.1.1 How Hadoop MapReduce works

Figure 2.1: MapReduce Workflow from [10]
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Figure 2.1 illustrates the workflow of MapReduce. From the figure, we can find that

MapReduce job contains two side tasks which are map side tasks and reduce side tasks

and each of them includes several stages. Next, we are going to explain each stage to

present how the framework works.

For Map side tasks, it experiences five stages: input splits, Map function, buffer, spill

and merge [11] [12]. Before conducting map tasks, the input files will be split into many

pieces and each of them will be matched to one map task. The input splits are not used

to store the data. On the contrary, it is an array which records the length of the slice and

the position of the data. The input split is often closely related to the block of the HDFS

and the default value is 128MB [13].

After receiving the input files, MapReduce will process the data based on the map

function and the output will be saved on a memory buffer temporarily. Once the buffer

meets the threshold, the buffer will spill to a new file and the data in the buffer will be

written to this file. In addition, before writing the file into disk, MapReduce will split

the data into different partitions based on the number of reduce tasks to make sure each

reduce tasks correspond to one partition.

When the map function finishes, there are many spill files saved on the local file

systems. Thus, MapReduce will merge these files together. Also, the sort and combiner

operation will be conducted during the merging process aiming at minimizing the amount

of data written back to HDFS for each time as well as reducing the amount of data

transmitted to the next phase through the internet.

The last step of map task is copying the data from different partitions to the corre-

sponding reduce tasks. This stage represents the process to transferring the output of map

tasks to the reduce tasks. Also, it can be recognized as the key factor of our optimization.

For the reduce tasks, there are three stages during the process which are merging,

reduce function and output. Since reduce tasks will receive different output files from

map tasks and all the files are in order, it will save these files based on their sizes. If the

sizes are small, reduce tasks will cache them into memory for further processing while it

will merge them together and spill to the local file system if the sizes are huge.

With the number of spill files increases, MapReduce will merge them and use them as

input data for reduce function. Then, after reduce function finished, the output files will

be saved back to HDFS.

Although MapReduce is attractive for users because of its simplicity and user-friendly,

the framework still has some limitations [14]. In MapReduce, every job needs to read the

input data, process and write the results back to the HDFS [15]. It has to repeat the

cycle many times when the new job requires the results from the previous job. Thus, the

efficiency of MapReduce jobs is low and much resources is wasted during the process when

processing the iterative tasks. To overcome the limitations of MapReduce, Spark is being



Chapter 2. Literature Review 8

proposed.

2.2 Spark

There are two important terms proposed by Spark: RDD and DAG. These two work

together perfectly and accelerate Spark 10 times as fast as Hadoop under some certain

circumstances.

RDD:

Resilient Distributed Datasets (RDDs) is “an abstraction for a collection of data that can

be stored and processed in memory” [16]. It is a special collection which supports multiple

sources, has a fault tolerance mechanism, can be cached and supports parallel operations.

Also, it can represent one dataset with multiple partitions. When running on the Hadoop

cluster, RDDs will be created on the HDFS in many formats supported by Hadoop like

text, sequence files. There are two kinds of operations supported by RDD: transformation

and action.

Transformation:

Transformation operation adopts delay calculation which means creating a new dataset

based on an existing dataset [17]. When an RDD is converted to another, there is no

immediate conversion. On the contrary, it just records the logical operation of the data

set for further processing. All the transformation operations are lazy which means they

will not compute the result right away. The transformations will be computed only when

an action operation requires a result from the driver program. The normal transformation

operation includes map, flatMap, filter, groupbykey and reduceByKey [18].

Action:

Action operation will launch Spark jobs and return the results back to the driver program

after computing process finishes. It will be triggered when the user needs to return the

computing results back to the driver program or write the result to the external system.

When the action operation happenes, the DAG scheduler will be trigged to divide the

DAG into different stages. Then, after the process is completed, TaskScheduler is called

to distribute the task to different executors. The action operation includes count, collect

and reduce [18].

DAG:

Spark provides advanced DAG scheduler [19] system to express the dependencies of RDDs.

Each Spark job will create a DAG and the scheduler will dive the graph into different stages
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of tasks. Then the tasks will be launched to the cluster. DAG will be created in both map

and reduce stages to fully express the dependencies. Also, this setting helps the simple

job finishes within one stage while the complex job finishes into several stages other than

splitting into different jobs. That is one reason why Spark is faster than Hadoop.

2.2.1 How Spark works

Figure 2.2: Spark Workflow from [20]

Figure 2.2 illustrates the workflow of Spark. The figure shows that Spark job will launch

a corresponding driver program when the user submit a spark job through spark-submit

command. Depends on the deploy-mode, the driver program may launch locally or on

one working node of the cluster. Also, the driver process will take some resources based

on the settings to control all the jobs. The first task the driver program needs to do

is applying the resource which is represented by the executor process from the resource

manager. There are several resource manager for users to choose from: standalone, Yarn

and Mesos [21]. Then, the resource manager will launch several executors on the working

nodes based on the user settings and each of them owns a number of CPU cores and

memory.

After applying enough resource from the resource manager, driver program will start

scheduling and executing our codes. Firstly, Spark will split the code into several stages.

Each stage will execute a piece of code and creating a batch of tasks for the stage. Then,

the tasks will be assinged to different executors to execute. Tasks are the smallest unit

of Spark jobs and are responsible for the same calculation logic or code while processing

different datasets. The job will move to the next stage when all the tasks of one stage

finished and the results will be written to the local file system on different nodes. The

next stage will utilize the result of the last stage as the input data and repeat the cycle

until all the stage finishes.
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Spark jobs divide different stages based on the shuffle or action operation. Once the

codes includes any action operation like reduceByKey or join, Spark will divide a stage

boundary there and split it as two stages. In other words, the codes before action operation

and the codes after the action operation will be recognized as two stages. Thus, each task

of stage may pull the data it needs from the previous stage through the Internet and

execute the operation based on the codes. This process is called shuffle in Spark.

Besides, Spark provides the function to save the data into memory if the users set the

persist/cache operation [22]. This is the main difference between Spark and MapReduce

frameworks. There are three persist levels provided by Spark: MEMORY ONLY,DISK

ONLY and MEMORY AND DISK. By setting different levels of persist strategies, the

results from different tasks can be saved on the memory of the executor or the local file

system.

The executor memory contains three parts [23]: one is utilized for tasks to execute

codes which takes 20% of the total memory by default. The second part is utilized for the

tasks to pull the output of the previous stage through the shuffle process and use it for

aggregation and other operations. The default settings for the second part also takes 20%

of the total memory. The third part is used for caching the RDDs into memory which

takes 60% of the total memory based on the default settings.

2.3 HiBench Suite

The emergence of Hadoop and Spark makes it possible to save and process large volumes

of data. Then how to quantitatively evaluate the performance of the clusters becomes a

serious problem. There are some existing benchmarks which provide some examples to

evaluate the performance like YSCB and CloudSuite [24]. Among them, HiBench suite [25]

is the most famous one which is designed for testing the performance difference between

Hadoop and Spark. In this section, we first present the ideas of HiBench suite, and then

discuss its limitations and explain some workloads includes in its package.

Benchmarking is a set of experimental approaches that measure the effectiveness of

different computer systems. HiBench suite is a set of shell scripts developed by Intel and

published under Apache Licence 2 [25]. Currently HiBench suite contains 13 workloads,

under four categories: Micro Benchmarks, Web Search, SQL and Machine Learning [26].

The details of all workloads can be seen from the Table 2.1.
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Category Worklodas

Micro Benchmarks

Sort

Sleep

TeraSort

WordCount

Enhanced DFSIO

Web Search
Nutch Indexing

Page Rank

SQL

Scan

Join

Aggregation

Machine Learning

Bayesian

Classification

K-Means

Table 2.1: Benchmark workloads modified from [27]

2.3.1 Micro Benchmarks

As the most popular examples, Micro Benchmarks are applied widely in the Hadoop

community and some of them even being included in the Hadoop example package, and

therefore becomes the part of HiBench suite. Micro Benchmarks workloads represent the

perfect examples of the real-world MapReduce application [28]. One programme trans-

forming the data from one format to another, and another withdrawing the interesting

data from big volume of data.

2.3.2 Web search

The Nutch Indexing workload [29] is an indexing subsystem from Nutch, one popular

open-source searching engine. As one of the most significant use of MapReudce, Nutch

indexing uses the web data whose words and hyperlinks follows the normal distribution

with related parameters. The program to produce the texts of web page is the default

Linux dictionary files.

The Page Rank workload is a test case from SmartForg, an open-source systems man-

agement framework. It is an algorithm implemented based on Spark-Mllib1 which is widely

used to rank the web pages based on the numbers of the reference links [7]. Also, the

hyperlinks and words follow the normal distribution.

1A package to implement machine learning algorithm for Spark
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2.3.3 SQL

This workload is implemented under hive and is for testing the effectiveness of SQL queries.

Scan query: the purpose of the Scan query is to select and project the relational tables.

Aggregation Query: The purpose of the aggregation query is to firstly group the rela-

tional tables, parse each tuple and finally perform a high-cardinal aggregation operation.

Join Query: The purpose of Join query is to join the dimension table and then sort

the results.

2.3.4 Machine learning

The implementation of the MLib algorithm is in Mahout2, an open-source MLib library

implemented on the Hadoop cluster. As another important use of Hadoop, these algo-

rithms are included in HiBench suite.

Näıve Bayes is a classification algorithm with multiple class which can provides each

pair of features independent assumption. This workload is implemented based on Spark.Mill

ib and use the text file generated automatically. Also, the words of the text files follow

the Gussian distribution.

K-mean is a famous algorithm for data mining and knowledge discovery. The input

data are samples which represented by a vector with a numerical dimension [25]. This

algorithm is implemented based on Spark.Millib and its input data follows uniform and

Guassian distribution3.

2.3.5 Benchmarking Methodology

Figure 2.3 briefly explains the different steps in HiBench Suite Methodology. In the

initial stage, all the software components need to be installed and configured properly

(Java, Mahout, CDH, HiBench, DSE [30]). Then in stage 2, which is called workload

preparation, parameters related to workloads need to be defined and the test data need to

be created. The parameters as well as generated data will be utilized as the input of the

stage 3(workload execution). Each workload will be executed three times to make sure

the representativeness of the results, which means the data generated in stage 2 and the

Workload Execution in stage 3 will be repeated three times. Before conducting another

new experiment in workload preparation stage, the existing data will be removed and the

new one will be created. After stage 3 finished, HiBench will provide a report to the user

which includes two important information: Duration and Throughput. The Duration is

calculated by the end time to reduce the start time while the Throughput is calculated by

dividing the sizes of the input data during the Duration time. Based on the report, the

user can analysis the results and present them in different ways.

2The machine learning algorithm library for Haddop MapReduce.
3Another name of normal distribution.
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Figure 2.3: Benchmarking methodology process diagram from [30]

Lisiting 2.1 illustrates the configuration of Hadoop from the first stage. From the

listing, hibench.hadoop.home and hibench.hdfs.master needs to be set that represent the

directory of Hadoop and the address of HDFS respectively. Also, the Hadoop version

needs to be set by hibench.hadoop.release.

1 # Hadoop home

2 hibench . hadoop . home / usr /hdp /2.6 .0 .3−8/ hadooop

3

4 # The path o f hadoop executab le

5 hibench . hadoop . executab le ${hibench . hadoop . home}/ bin /hadoop

6

7 # Hadoop c o n f i g r a u t i o n d i r e c t o r y

8 hibench . hadoop . c on f i gu r e . d i r ${hibench . hadoop . home}/ etc /hadoop

9

10 # The root HDFS path to s t o r e HiBench data

11 hibench . hdfs . master hdfs : // i t 066431 : 8020 : // user / y j l i u /

12

13

14 # Hadoop r e l e a s e prov ider . Supported value : apache , cdh5 , hdp

15 hibench . hadoop . r e l e a s e hdp

Listing 2.1: Hadoop configuration in stage1 modified from [27]

Listing 2.2 presents the configuration of Spark from the first stage. Among all the

settings, hibench.spark.home is the most important setting which points to the position

of Spark. Also, there are several options for the users to set to fit the sizes of their jobs that

are: “hibench.yarn.executor.num , hibench.yarn.executor.cores ,spark.executor.memory and

spark.driver.memory” [27].

1 # Spark home

2 hibench . spark . home / usr /hdp/ cur rent / spark2−c l i e n t

3

4 # Spark master

5 # s tandalone mode : spark : // xxx :7077

6 # YARN mode : yarn−c l i e n t

7 hibench . spark . master yarn−c l i e n t

8
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9 # executor number and co r e s when running on Yarn

10 hibench . yarn . executor .num 2

11 hibench . yarn . executor . co r e s 4

12

13 # executor and d r i v e r memory in standalone & YARN mode

14 spark . executor . memory 4g

15 spark . d r i v e r . memory 4g

16

17 # s e t spark p a r a l l e l i s m property accord ing to hibench p a r a l l e l i s m value

18 spark . default . p a r a l l e l i s m ${hibench . default .map . p a r a l l e l i s m }
19

20 # s e t spark s q l default s h u f f l e p a r t i t i o n s accord ing to hibench p a r a l l e l i s m value

21 spark . s q l . s h u f f l e . p a r t i t i o n s ${hibench . default . s h u f f l e . p a r a l l e l i s m }

Listing 2.2: HiBench configuration in stage2 modified from [27]

Listing 2.3 presents some other configuration for HiBench in the second stage. Among

them, hibench.scale.profile is the most important which controls the sizes of the workloads.

Also, hibench.default.map.parallelism and hibench.default.shuffle.parallelism are two im-

portant parameters which represent the number of map tasks and reduce tasks for the

workloads. Besides, the report files section provides some information that the users need

after the jobs finishes.

1

2 # Data s c a l e p r o f i l e . Ava i l ab l e value i s t iny , small , l a rge , huge , g i g a n t i c and bigdata .

3 # The d e f i n i t i o n o f these p r o f i l e s can be found in the workload conf f i l e i . e . conf /

workloads /micro/wordcount . conf

4 hibench . s c a l e . p r o f i l e t iny

5 # Mapper number in hadoop , p a r t i t i o n number in Spark

6 hibench . default .map . p a r a l l e l i s m 8

7

8 # Reducer nubmer in hadoop , s h u f f l e p a r t i t i o n number in Spark

9 hibench . default . s h u f f l e . p a r a l l e l i s m 8

10

11

12 #======================================================

13 # Report f i l e s

14 #======================================================

15 # default r epor t formats

16 hibench . r epor t . formats %−12s %−10s %−8s %−20s %−20s %−20s %−20s\n
17

18 # default r epor t d i r path

19 hibench . r epor t . d i r ${hibench . home}/ repor t

20

21 # default r epor t f i l e name

22 hibench . r epor t . name hibench . r epor t

23

24 # input /output format s e t t i n g s . Ava i l ab l e formats : Text , Sequence .

25 sparkbench . inputformat Sequence

26 sparkbench . outputformat Sequence

27

28 # hibench con f i g f o l d e r

29 hibench . c on f i gu r e . d i r ${hibench . home}/ conf

30

31 # default hibench HDFS root

32 hibench . hdfs . data . d i r ${hibench . hdfs . master}/HiBench

33

34 # path o f hibench j a r s

35 hibench . hibench . data too l . d i r ${hibench . home}/ autogen / ta rg e t /autogen−7.1−SNAPSHOT−
jar−with−dependenc ies . j a r

36 hibench . common . j a r ${hibench . home}/common/ ta rg e t /hibench−common−7.1−
SNAPSHOT−jar−with−dependenc ies . j a r

37 hibench . sparkbench . j a r ${hibench . home}/ sparkbench / assembly / ta rg e t /

sparkbench−assembly−7.1−SNAPSHOT−d i s t . j a r

38 hibench . streambench . stormbench . j a r ${hibench . home}/ stormbench/ streaming / ta rg e t /

stormbench−streaming−7.1−SNAPSHOT. j a r
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39 hibench . streambench . gearpump . j a r ${hibench . home}/gearpumpbench/ streaming / ta rg e t /

gearpumpbench−streaming−7.1−SNAPSHOT−jar−with−dependenc ies . j a r

40 hibench . streambench . f l i nkbench . j a r ${hibench . home}/ f l i nkbench / streaming / ta rg e t /

f l inkbench−streaming−7.1−SNAPSHOT−jar−with−dependenc ies . j a r

Listing 2.3: Spark configuration in stage1 modified from [27]

Listing 2.4 presents the Wordcount configuration in stage 2. From the listing, we can

control or create any sizes of datasets we want. Also, we can provides the input and

output directories to extend the experiments.

1 #datagen

2 hibench . wordcount . t iny . da t a s i z e 32000

3 hibench . wordcount . smal l . d a t a s i z e 320000000

4 hibench . wordcount . l a r g e . da t a s i z e 3200000000

5 hibench . wordcount . huge . da t a s i z e 32000000000

6 hibench . wordcount . g i g a n t i c . da t a s i z e 320000000000

7 hibench . wordcount . b igdata . da t a s i z e 1600000000000

8

9 hibench . workload . da ta s i z e ${hibench . wordcount . ${hibench . s c a l e . p r o f i l e } .

d a t a s i z e }
10

11 # export for s h e l l s c r i p t

12 hibench . workload . input ${hibench . hdfs . data . d i r }/Wordcount/ Input

13 hibench . workload . output ${hibench . hdfs . data . d i r }/Wordcount/Output

Listing 2.4: WordCount configuration in stage2 modified from [27]

Listing 2.5 and 2.6 presents the process of data generation and data processing. From

the figure, we can find the MapReduce command as well as the operations on the HDFS.

In addition, listing 2.7 illustrates the format of the report after finished several workloads.

1 patching args=

2 Pars ing conf : /home/ y j l i u /Hibench/HiBench−master / conf /hadoop . conf

3 Pars ing conf : /home/ y j l i u /Hibench/HiBench−master / conf / hibench . conf

4 Pars ing conf : /home/ y j l i u /Hibench/HiBench−master / conf / spark . conf

5 Pars ing conf : /home/ y j l i u /Hibench/HiBench−master / conf / workloads /micro/wordcount . conf

6 probe s l e e p j a r : / usr /hdp/ current /hadoop−c l i e n t / . . / hadoop−mapreduce/hadoop−mapreduce−c l i e n t−
j o b c l i e n t−t e s t s . j a r

7 s t a r t HadoopPrepareWordcount bench

8 hdfs rm −r : / usr /hdp/ current /hadoop−c l i e n t / bin /hadoop −−c on f i g / usr /hdp/ current /hadoop−
c l i e n t / e tc /hadoop f s −rm −r −skipTrash hdfs : // i t 066427 :8020// user / y j l i u //HiBench/

Wordcount/ Inpu t

9 Deleted hdfs : // i t 066427 :8020/ user / y j l i u /HiBench/Wordcount/ Inpu t

10 Submit MapReduce Job : / usr /hdp/ current /hadoop−c l i e n t / bin /hadoop −−c on f i g / usr /hdp/ current /

hadoop−c l i e n t / e tc /hadoop j a r / usr /hdp/ cur rent /hadoop−c l i e n t / . . / hadoop−mapreduce/hadoop−
mapreduce−examples . j a r randomtextwriter −D mapreduce . randomtextwriter . t o t a l b y t e s =32000 −
D mapreduce . randomtextwriter . bytespermap=3200 −D mapreduce . job . maps=10 −D mapreduce . job .

reduces=20 hdfs : // i t 066427 :8020// user / y j l i u //HiBench/Wordcount/ Inpu t

11 The job took 12 seconds .

12 f i n i s h HadoopPrepareWordcount bench

Listing 2.5: Data preparation in stage2 modified from [27]

1 y j l i u@i t066427 :˜/ Hibench/HiBench−master / bin / workloads /micro/wordcount/hadoop$ . / run . sh

2 patching args=

3 Pars ing conf : /home/ y j l i u /Hibench/HiBench−master / conf /hadoop . conf

4 Pars ing conf : /home/ y j l i u /Hibench/HiBench−master / conf / hibench . conf

5 Pars ing conf : /home/ y j l i u /Hibench/HiBench−master / conf / spark . conf

6 Pars ing conf : /home/ y j l i u /Hibench/HiBench−master / conf / workloads /micro/wordcount . conf

7 probe s l e e p j a r : / usr /hdp/ current /hadoop−c l i e n t / . . / hadoop−mapreduce/hadoop−mapreduce−c l i e n t−
j o b c l i e n t−t e s t s . j a r
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8 s t a r t HadoopWordcount bench

9 hdfs rm −r : / usr /hdp/ current /hadoop−c l i e n t / bin /hadoop −−c on f i g / usr /hdp/ current /hadoop−
c l i e n t / e tc /hadoop f s −rm −r −skipTrash hdfs : // i t 066427 :8020// user / y j l i u //HiBench/

Wordcount/Output

10 Deleted hdfs : // i t 066427 :8020/ user / y j l i u /HiBench/Wordcount/Output

11 hdfs du −s : / usr /hdp/ current /hadoop−c l i e n t / bin /hadoop −−c on f i g / usr /hdp/ current /hadoop−
c l i e n t / e tc /hadoop f s −du −s hdfs : // i t 066427 :8020// user / y j l i u //HiBench/Wordcount/ Inpu t

12 Submit MapReduce Job : / usr /hdp/ current /hadoop−c l i e n t / bin /hadoop −−c on f i g / usr /hdp/ current /

hadoop−c l i e n t / e tc /hadoop j a r / usr /hdp/ cur rent /hadoop−c l i e n t / . . / hadoop−mapreduce/hadoop−
mapreduce−examples . j a r wordcount −D mapreduce . job . maps=10 −D mapreduce . job . reduces=20 −D

mapreduce . inputformat . class=org . apache . hadoop . mapreduce . l i b . input .

SequenceFileInputFormat −D mapreduce . outputformat . class=org . apache . hadoop . mapreduce . l i b .

output . SequenceFileOutputFormat −D mapreduce . job . inputformat . class=org . apache . hadoop .

mapreduce . l i b . input . SequenceFileInputFormat −D mapreduce . job . outputformat . class=org .

apache . hadoop . mapreduce . l i b . output . SequenceFileOutputFormat hdfs : // i t 066427 :8020// user /

y j l i u //HiBench/Wordcount/ Inpu t h d f s : // i t 066427 :8020// user / y j l i u //HiBench/Wordcount/

Output

13 ECDSA key f i n g e r p r i n t i s SHA256:4+Fjz1zLl8kUMiJfdCnpL3CUqHY+OOBj7fQmQ3akvUQ.

14 Bytes Written=23016

15 f i n i s h HadoopWordcount bench

Listing 2.6: Wordcount in Hadoop in stage 3 modified from [27]

1 Type Date Time I n p u t d a t a s i z e Duration ( s ) Throughput ( bytes / s ) Throughput/node

2 ScalaSparkKmeans 2018−10−16 18 : 31 : 29 1396221 20.048 69643 6964

3 Sca laSparkTerasort 2018−10−16 19 : 00 : 10 3200000 20.985 152489 15248

4 ScalaSparkKmeans 2018−10−16 19 : 04 : 47 1396221 19.894 70183 7018

5 ScalaSparkKmeans 2018−10−16 20 : 47 : 08 1396221 19.206 72697 7269

6 ScalaSparkKmeans 2018−10−17 12 : 11 : 36 1396221 16.959 82329 8232

7 ScalaSparkWordcount 2018−11−02 16 : 36 : 22 37270 17.751 2099 209

8 HadoopTerasort 2018−11−02 17 : 36 : 07 3200000 30.919 103496 10349

9 Sca laSparkTerasort 2018−11−02 17 : 40 : 11 3200000 21.515 148733 14873

10 Sca laSparkTerasort 2018−11−02 20 : 43 : 59 3200000 21.027 152185 15218

11 Sca laSparkTerasort 2018−11−05 13 : 08 : 13 3200000 20.359 157178 15717

12 ScalaSparkWordcount 2018−11−05 15 : 35 : 55 36232 15.329 2363 236

13 Sca laSparkTerasort 2018−11−05 17 : 07 : 44 3200000 21.339 149960 14996

14 Sca laSparkTerasort 2018−11−05 18 : 15 : 05 3200000 19.830 161371 16137

15 ScalaSparkWordcount 2018−11−06 16 : 04 : 35 36232 37.314 971 97

Listing 2.7: Restuls in stage 3 modified from [27]

2.3.6 Performance metrics

HiBench results forms are under these essential metrics [31] which are:

• Input data size: It is the size of the data generated in stage 2 [32]. HiBench provides

several datasets for the users to test the clusters which are tiny, small, large, huge,

gigantic and bigdata. Each of the dataset represent one kind of data volume and the

users can choose the proper one based on the scale of the cluster.

• Duration: it describes a period of time that the workload is operating. It is just

the difference between start time and endtime of the workloads. It is calculated by

seconds.

• Throughput: there are two kinds of Throughput provided by HiBench, one is Through-

put for the whole cluster and one is the Throughput for different nodes. These pa-
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rameters present how much information the cluster can process in a given period of

time [31]. They are measured by bytes/second.

2.4 Discussion

Since Bechmarking tests can be seen as the foundation of the quantitative computer

system research, these workloads should be distinctive to represent the characteristics of

the target system as well as be various enough to present the behaviour scope of the target

application [25]. Although, HiBench suite program as described above shows its diversity

and representativeness through its examples, there are still some limitations that leads it

to fail to present the cluster performance from many the aspects like control the sizes of

workloads or monitor the resource utilization of the cluster.

In particular, though HiBench suite attempts to include all sizes of the cluster in its

experiment, they do not provide enough datasets for different users to test. Until now,

there are only six dataset options provided by HiBench: tiny, small, large, huge,gigantic

and bigdata and the sizes of the datasets ranges from 30 kb to 1.5 Tb. Compared to other

tests, the scalability can be poor because all of these values are fixed in the experiments.

Also, the generated data is under sequencefile4 format which is invisible to the users. The

users need to convert them to text files or use some specific software to check the content

of the generated data. This setting brings much inconvenience to the users in their daily

operation. Figure 2.4 shows the K-means data under sequencefile format and listing 2.8

shows that opened by Mahout.

Figure 2.4: Generated K-means data under sequencefile format

1 y j l i u@i t066427 :˜/ mahout−d i s t r i b u t i o n −0.8$ bin /mahout seqdumper − i / user / y j l i u /HiBench/

Kmeans2/ Input / c l u s t e r /part−00000

2 Running on hadoop , using / usr / bin /hadoop and HADOOP CONF DIR=

3 MAHOUT−JOB: /home/ y j l i u /mahout−d i s t r i b u t i o n −0.8/mahout−examples−0.8− job . j a r

4A kind of flat file under key-value pair format.
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4 19/02/21 15 : 21 : 11 INFO common . AbstractJob : Command l i n e arguments : {−−endPhase =[2147483647] ,

−−input =[/ user / y j l i u /HiBench/Kmeans2/ Input / c l u s t e r /part −00000] , −−s tar tPhase =[0 ] , −−
tempDir=[temp ]}

5 Input Path : / user / y j l i u /HiBench/Kmeans2/ Input / c l u s t e r /part−00000

6 Key class : class org . apache . hadoop . i o . Text Value Class : class org . apache . mahout . c l u s t e r i n g .

kmeans . Kluster

7 Key : CL−0: Value : CL−0{n=0 c =[991.089 , 311 .404 , 479 . 975 ] r =[]}
8 Key : CL−1: Value : CL−1{n=0 c =[323.392 , 230 .470 , 948 . 572 ] r =[]}
9 Key : CL−2: Value : CL−2{n=0 c =[93.758 , 947 .342 , 828 . 972 ] r =[]}

10 Key : CL−3: Value : CL−3{n=0 c =[182.601 , 717 .132 , 629 . 741 ] r =[]}
11 Key : CL−4: Value : CL−4{n=0 c =[737.270 , 576 .215 , 476 . 047 ] r =[]}
12 Count : 5

13 19/02/21 15 : 21 : 12 INFO dr i v e r . MahoutDriver : Program took 1385 ms ( Minutes :

0 .023083333333333334)

Listing 2.8: Generated K-means data opened by Mahout

In addition, the workloads contained in both Spark and MapReduce benchmark can

only provide several parameters for users to test: 2 for MapReduce and 6 for Spark. In

fact, the parameters for Spark and MapReduce can improve the efficiency of the jobs

dramatically in most of the circumstances. Thus, the accuracy of the experiments needs

to be discussed further.

On the other hand, the HiBench result form only includes 8 items while only four of

them present the performance of the cluster. Also, for MapReudce benchmarks, HiBench

does not allows Hadoop to run the jobs on Yarn which means we are unable to pick any

result parameters from other platform. Although the throughput and duration are the

most important aspects for the cluster, many other aspects should take into consideration

to present an overall view of the jobs.

Thus, we decided to extend several workloads from the HiBench to our own cluster.

Based on our research, we select Wordcount, Terasort and K-means workloads as our

targets because they are the representatives of specific workloads. Wordcount stands for

the aggregation job, Terasort stands for the shuffle job and K-means stands for the iterative

jobs. Also, another reason is all of the workloads are already implemented under Hadoop

and Spark example package. It can make sure that our experiments are not affected by

the coding ability. Next, we are going to talk about the ideas of each workload and explain

why there is a difference between MapReduce and Spark when apply the same workloads.

2.5 Wordcount

Wordcount is a program which counts the occurrence of each word from a text or se-

quencefile [30]. As one of the most classic examples, it is widely used to evaluate the

aggregation performance for both MapReduce and Spark. The input data is produced

by RandomTextWriter [33] which is a program generating large context files for users to

test. It is a powerful and easy to use example not only because it is included in Hadoop

example package, but also it is able to create large input files in HDFS. Also, there are
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several parameters to improve the efficiency which will be mentioned later.

2.5.1 Data generation

Firstly, several parameters needs to be set before executing the examples. There are five

parameters provided by RandomTextWriter to control the format of the input files. The

first two are minwordskey and maxwordskey. These two parameters are used for setting

the length of key. The next parameters are minwordsvalue and maxwordsvalue that are

used to control the length of the value (The output of the mapper is sequencefile which

includes key and value). The last parameter is totalbytes which represents the sizes of the

data the user wants to generate. After setting the parameters properly, we are going to

produce the input data. Listing 2.9 presents the examples of the input data.

1 y j l i u@i t066427 :˜/ mahout−d i s t r i b u t i o n −0.8$ bin /mahout seqdumper − i / user / y j l i u /HiBench/

Wordcount/ Input /part−m−00000

2 Running on hadoop , using / usr / bin /hadoop and HADOOP CONF DIR=

3 MAHOUT−JOB: /home/ y j l i u /mahout−d i s t r i b u t i o n −0.8/mahout−examples−0.8− job . j a r

4 19/02/21 15 : 33 : 40 INFO common . AbstractJob : Command l i n e arguments : {−−endPhase =[2147483647] ,

−−input =[/ user / y j l i u /HiBench/Wordcount/ Input /part−m−00000] , −−s tar tPhase =[0 ] , −−tempDir

=[temp ]}
5 Input Path : / user / y j l i u /HiBench/Wordcount/ Input /part−m−00000

6 Key class : class org . apache . hadoop . i o . Text Value Class : class org . apache . hadoop . i o . Text

7 Key : a co co t l overcrown mericarp uncompromisingly drome bromate stachyuraceous Hysterocarpus

a l l o t r o p i c : Value : s equac i ty r e c i p r o c a t i o n unchatte l ed spermaphyte s e d e n t a r i n e s s anta

homotransplant uncompromisingly ethnocracy tomorrowness l y r e b i r d bladderwort f latman

t r i p d e c a r d i n a l i z e s y m b i o g e n e t i c a l l y absvo l t a t l a n t i t e s u b f o l i a r r i b a l d r o u s unscourged

o r a t o r i z e bromic d e v i l w i s e f r i a rhood abthainry coracomandibular epidymides subangulated

migra ino id r e app r e c i a t e ununiformly groundneedle pentosur ia supermarket s u b i r r i g a t e

f r e n a l b l i g h t b i r d phytonic

8 Key : commandingness t imes barkometer l i q u i d i t y coracomandibular abs t rac t i on i sm se e i ngne s s

author l i ng t r i p : Value : pha l l a ceous ambitus f i gu r eheadsh ip unrepea lab ly lebensraum

r e h a b i l i t a t i v e var i ous p o s t e r i s h n e s s kenno metaphras t i ca l a s tuc i ou s omniscr ibent

approbation tonsure mustaf ina s u b o f f i c e r Triconodonta cubby culm seraphism Shiah s l a i t

p e r c u l s i v e barkometer un inhabi tedness putat ive a r c h e s p o r i a l i n s a t i a t e l y Animalivora

qu in t e t t e rizzomed as tuc i ou s s v i a t o n o s i t e o r g i a s t i c Joachimite p r e s c r i b e r e r i s t i c a l l y

Macraucheniidae war l i ke r a i np roo f plerome d ia l ogue r equiconvex oinomancy redescend quad

9 Key : c i r c u l a r unchatte l ed a s c i t i c stormy danseuse tonsure Dunlop : Value : mast i cat ion

overcrown l i t h o t r e s i s swoony almud hemimelus l i t h o t r e s i s a r c h e s p o r i a l d eha i r e r

v e n i a l n e s s paranephros c a l y c u l a r t ra i lmak ing impressor s e s q u i q u i n t i l e unswanl ike

i n i q u i t o u s l y a t l a n t i t e zen i ck mangonism dip lomat i ze E f f i e va lvu la raph i s t r i p f latman

s e e i ngne s s parme l io id i s o p e l l e t i e r i n r i b a l d r o u s quadrennia l l i c i t n e s s bugre brutism

t rabe cu l a r octogynous s apph i r i c l au r inoxy lon bugre enhedge mendacity mammonish He lv id ian

she l lwo rke r meloplasty a co co t l s t e p r e l a t i o n s h i p groundneedle four square Jerusalem

Pishquow e r l k i n g embryotic s loped e t e r n a l h y s t e r o l y s i s dunkadoo i s o p e l l e t i e r i n chooser

t a u r o c o l l a ob long ly noreas t pentosur ia ten abs t rac t i on i sm mammonish Bermudian

l o p h o t r i c h i c pope P a s s i f l o r a l e s soorkee r i b a l d r o u s f l o a t a b i l i t y mechanist

un inhab i tedness s l a i t c o un t e r a c t i v e l y

10 Key : Hydrangea c h o r a l c e l o psychofuga l s i a l a d e n i t i s tum : Value : o f l e t e p o s t e r i s h n e s s

c o b e l i e v e r pseudohalogen unschematized Mormyrus Munychian d iop s ide boor ove r cont r ibute

g u i t a r i s t s e e i ngne s s widdle Orb i to l i na e l e c t r o t e c h n i c s c r a g l i k e i n i q u i t o u s l y equiconvex

outwealth arrowworm Lent i bu l a r i a c ea e d a s t a r d l i n e s s e l em i c in t i c k t i c k k a r y o l o g i c a l naught

b ivente r Bushongo l ineamenta l groundneedle a rva l commotion oinomancy r e d e s e r t i o n

Bulanda entame pope oversand pamphlet v e spe ra l f l u t i s t pomiferous t o p l i n e sequestrum

sportswomanship unpeople Ophiosaurus s langy r e t u r n a b i l i t y ord inant c r i t i c a l l y

psychofuga l monogoneutic basto subt ransve r s e comism anta l go l bot r e b i l l i n g Pishquow

penult Glecoma squ i t scyphostoma s i l i c i z e c r a g l i k e dec idab l e appe t ib l e r e c i p r o c a t i o n

bromic predeb i t comparab i l i ty s t i f f i s h comism inventurous peptonate e l em i c in

o r c h i o c a t a b a s i s u n e f f i c i e n t i d i o t i z e pamphlet Alethea naught Akt i s t e tae bromic

homotransplant paradisean sheepsk in p e r c u l s i v e s u p e r i n d i f f e r e n c e Confe rva l e s

unreprimanded Isokontae dishpan raph i s non lus t rous f l u t i s t culm

11 Key : bespin macropterous b i smuth i f e rous p r o l i f i c y f r i c t i o n l e s s l y c o l d f i n c h adscendent

i n f e r e n t tautnes s : Value : d i g i t u l e Alethea c h a l c i t e s skysh ine wingable mani l la

a l v e o l i t e a r s en ide s e e l f u l o f l e t e tonsure emir unimmortal subt ransve r s e u n e x p l i c i t

yawler b i o p s i c u n e x p l i c i t s tereotypography overcrown p r e c o s t a l

12 Count : 5
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13 19/02/21 15 : 33 : 41 INFO dr i v e r . MahoutDriver : Program took 1267 ms ( Minutes :

0 .021116666666666666)

14 y j l i u@i t066427 :˜/ mahout−d i s t r i b u t i o n −0.8$

Listing 2.9: The input data for Wordcount

2.5.2 Algorithm

Next, we are going to talk about the parallel algorithm used on the Wordcount example.

When concerning the parallel algorithm, divide and rule strategy will come to our mind

which means assign the operation on the large-scale datasets to each work node under

the control of a master node, and then integrates the intermediate results of each node to

obtain the final result. In other words, it is about breaking the tasks and aggregate the

results. Wordcount adopts this strategy and works like that: the input files in HDFS will

be divided into different splits and transfer to different map tasks based on their Hash

value. Then the map tasks will sort them and write the data into different partitions. The

reducers will receive the data from different partitions and sort them as the final results.

Finally, the results will be output to the HDFS. Figure 2.5 [34] illustrates how the parallel

algorithm works.

Figure 2.5: Parallel algorithm for Wordcount from [34]

2.5.3 Wordcount in MapReduce

Then we are going to explain the examples implemented by Hadoop MapReduce. The

source code is from MapReduce examples package. After we generated the input data and

store it on the HDFS, we are going to implement the example.

Inputsplit stage: before mapper tasks begin, MapReduce calculates the inputsplits

according to the sizes of input files. The inputsplits is not for storing the data, but an
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array of slice lengths and the location where the data is recorded. Each inputsplit match

one mapper tasks. Thus, the number of Mapper tasks and when Mapper tasks begin

and end decided in this process. Also, the input files are divided into different splits and

transfer to different Mappers.

Map stage: MapReduce reads the splits line by line and turn each line as a key-value

pair. The key is offset which represents the position of the line while the value is the

content of the line. Next, Mappers will assign the key value pairs to different map tasks

which means the map function begins. Each map tasks divide the values by space and

count the new key value pairs of each elements as one. Finally, Mapper will sort these key

value pairs based on their keys. Figure 2.6 [1] presents the whole process.

Figure 2.6: Splits and Map stage modify from [1]

Combiner stage: combiner stage is optional and is similar to reduce stage. Actually,

it is a local reduce operation which accumulate the same value of the key to get the final

output of the Mapper. Figure 2.7 [1] shows the combine process.

Figure 2.7: Combiner stage modify from [1]

Reduce stage: reducer accepts the data through shuffle and sort the data. It is called

reducer-side sort which means aggregate the key-value pairs with the same key and gener-
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ate new key-value pairs. The new key value pairs use the words as its key while building

a list which contains the occurrence of the element from different map tasks. Then the

reducer assigns the data to different reduce tasks. Each of the reduce task will calculate

the occurrence of each words by accumulating each element from its value and generate

final key value pairs to save the result. Finally, the result will be written back to HDFS.

Figure 2.8 [1] illustrates the reduce stage.

Figure 2.8: Reduce stage modify from [1]

2.5.4 Wordcount in Spark

Compared to MapReduce framwork, Spark adopts a new form of dataset called Resilient

Distributed Datasets (RDDs) [16] which allows the users to save the data into memory.

Thus, all the Spark operation is based on memory or RDDs and we are going to discuss

the WordCount program provided by Spark examples in details. Figure 2.9 [35] presents

how Spark works on WordCount.
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Figure 2.9: How Spark works from [35]

From the figure, we can get that there are two stages exists when we implement the

WordCount example. As we explain before, there are two kinds of operations in Spark:

transformation and action. The stages will be divided once the action operation happens.

For stage 1, the first step is loading the data into Spark and turn it into RDDs. From

the figure, the example uses textFile operator to read the files from HDFS. The input files

will be read by line and each of the line will become one element of the RDD. Finally,

RDD is converted from HDFS files to MappedRDD and its data type is string.

The next step applies flatmap operator aimed at processing each element in Mappe-

dRDD. The flatmap belongs to transformation operation which allows turning the map

datasets to flatmap datasets. In this example, each line of the MappedRDD is split by a

space to get an array of words, and then the array is flattened to form a string. Finally,

all of the strings are saved in the FlatMappedRDD.

Then, we use map operator to mark all the elements in FlatMappedRDD which

means reformat each element from string to key value pair.There,RDD is converted from

FlatMappedRDD to MapparatitionRDD.

The following step uses reducebykey operator to merge the value of each pair elements

with the same key from different RDDs. This operation will drag the pairs with same key

together and accumulate the value to get the occurrence of each element. RDD there is

converted from MapparatitionRDD to shuffleRDD and then turn to MappedRDD.

The last step uses foreach operator which can through all the elements in MappedRDD

and print the data on the screen. Since foreach operator belongs to action operation, all

the jobs will be triggered after running this kind of operation. Also, we can implement

other operation like count, saveastextfile to meet our requirements.
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2.6 TeraSort

1TB sorting [36] is used to measure the data processing capabilities of distributed com-

puting frameworks. As one of the Hadoop sorting jobs, TeraSort helped Hadoop win first

place in 1TB sorting benchmark evaluation in 2008 and it only costs 209 s. Thus, Hadoop

includes the source code of TeraSort in its example package in order to facilitate the users

to evaluate the performance of their clusters. The input data is generated by TeraGen5,

a data generating function implemented in Java. In addition, Hadoop also provides the

function to validate the sorting result called TeraValidate. Although Terasort is a small

gadget, it can still provide many hints to improve the cluster performance.

2.6.1 Data generation

Before explaining how TeraSort works, we will briefly introduce something related to the

input data. Firstly, the input file is composed by different rows of 100-byte records. Since

each record counts 100 bytes, the users can calculate the length of their input file easily.

Also, each record consists of three parts: the first ten bytes are ten binary code random

characters and it will be used as key for sorting. Then, the next ten bytes are the id of the

row followed by 8 segments of 10-byte identical random uppercase letters record. Besides,

there are two parameters we need to set before running the program which are the length

of the input file and the output address folder. Figure 2.10 presents the format of the

input data.

Figure 2.10: Input data for Terasort

2.6.2 Algorithm explaination

As we mentioned above, the standard parallel algorithm can guarantee a high degree of

parallelism in the map stage, but no parallelism in the reduce stage. In order to improve

the parallelism in the reduce stage, TeraSort utilizes the way to improves algorithm :

during the map stage, each map task will split the input data into R partitions which

is same to the number of reduce tasks. Then it needs to make sure that all the data in

5The function provided by Hadoop to create the input data.
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partition I is larger than that in paratition I+1. After that, during the reduce stage, the

reduce tasks I get the data from partition I and sort the data in partition I. Thus, the

results in reduce task I is larger than that in reduce task I+1. Finally, it outputs the

reduce results and we can get the final outcome. Figure 2.11 shows how the TeraSort

algorithm works.

Figure 2.11: Algorithm for Terasort from [34]

Although this algorithm shows high parallelism in reduce stage, it increases the shuffle

pressure for the cluster because of too many partitions created in map stage. Also, there

are two technical difficulties to implement the algorithm: one is how to determine the

range of R partition for each map task. The other is how to quickly determine which

partition it belongs to for one specific record.

2.6.3 TeraSort in MapReduce

As we all know, the main feature of MapReduce is sorting. It happens in both map and

reduce stages. In other words, all the data in different partitions are in order. Thus,

TeraSort only needs to do one thing: ensure the partitions are in order. To implement the

algorithm above, Hadoop improves its partition strategy and adopts totalorderpartition6.

TeraSort modifies the totalorderpartition and implements its own one in three steps: the

first step is sampling, the second step is marking the records during the map stage and

finally conduct sorting during the reduce stage [37].

For the first stage, data sampling is performed on the JobClient. At first, a part

of the data is extracted from the input file and the frequency is determined by tera-

6The partition strategy implemented by Hadoop
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sort.partitions.sample for which the default value is 100,000. After sampling enough

records, MapReduce will sort these data and divide it into R partitions to find the upper

and lower lines of each partition (called the “split point”). Then these split points will be

saved on the distributed cache named as partition.lst.

During the map stage, each map task reads the split points from the distributed cache,

and establishes a trie tree [38]7 (two layers of trie trees, the leaf node of the tree stores the

corresponding reduce task number). After that, MapReduce starts processing the data.

For each record in different partitions, find the number of the reduce task it belongs to in

the trie tree and save it in this partition.

Next, in the reduce stage, each reduce task reads its corresponding data from the

partitions and conduct local sorting. Finally, the result of the reduce task is sequentially

output according to the reduce task number.

Here is an example to explain how to use trie trees to assign records to different reduce

tasks.

Imagine the number of sample data is 100,000 and the numbers of splits is 4. Thus,

we need to pick 25,000 samples from each split. Then if the sample data is like this: “b,

abc, abd, bcd, abcd, efg, hii, afd, rrr, mnk” [34]. After sorting the data, we get: “abc,

abcd, abd, afd, b, bcd, efg, hii, mnk, rrr” [34]. If the reduce tasks is four, we can get the

split points: abd,bcd, mnk. These splits points will be saved on distributed memory and

now we are building the trie tree. The trie tree is shown in Figure 2.12.

From the trie tree, we can get that all the sample data is sorted and each partition is

in order. In other words, all the data in split 1 is larger than that in 2, 3 and 4. Then we

just need to build the trie tree on the different map tasks to assign each record to different

partitions. Finally, the reduce tasks just need to sort the data in the partition and output

the partitions in order to get the final result.

According to the source code provided by Hadoop, there are no any specific mapper

and reducer functions in TeraSort job which means Hadoop will use default mapper and

reducer function: IdentityMapper and IdentityReducer. These two functions utilize the

sorting process during the map and reduce stages while not setting any operation for map

and reduce tasks. Thus, the modified totalorderpartition will control the job and help

Hadoop sort all the data quickly.

7A kind of method to find the words.
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Figure 2.12: Trie tree from [34]

2.6.4 TeraSort in Spark

Compared to Mapreduce, Spark adopts two kinds of partition tools which are called

HashPartition and RangePartition respectively. For HashPartition, the principle is like

this: for a given key, Spark will calculate its hashcode and divide it by the number of

partitions. The remainder is the partition ID. If the remainder is less than 0, use the

remainder add the number of partitions to get the partition ID. Based on that strategy,

we can find that HashPartition may causes uneven data volume in each partition, and

in extreme cases, one partitions may own all the data in RDD. To handle the situation,

RangePartition is proposed by Spark.

RangePartition is mainly used for sorting the data in different RDDs and the principle

is like this: the first step is extracting the sample data from the entire RDD. After sort

the data, calculate the maximum key of each partition and form a variable rangeBounds

under the Array[key] format. The second step is determining the range of the key in

rangeBounds and give the subscript id of the key in the next RDD.

RangePartition adopts Reservoir Sampling [39]8 which is aimed at solving the problem:

select k samples from the set S containing n items where n is an infinite or unknown

number. This algorithm is efficient for the case that all n items cannot be stored in main

memory. The principle of the algorithm is like that: according to Dictionary of Algorithms

and Data Structures, the first step is extracting the first k items from set S and putting

them into the “water pond”. For each S[j] term (j ≥ k) , randomly generate an integer r

ranging from 0 to j. If r < k, replace the item in the pond with the S[j] item.

Here is an example to explain how it works:

8A classic sampling method.
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Imagine there are 10,000 numbers and we need to extract ten random numbers from

them. We can record the sample set as S which includes 10,000 numbers. Also, we call

the array to save the ten random number as R. At first, take the first ten numbers from S

and fill them into the R. Then go to the first iteration. The first iteration starts from the

eleventh number (subscript 10) and generate a random integer j from 0 to 10. If j < 10

(j=4), we will use the 11th item in the S (S[10]) to replace the fifth item in the R (R[4]).

All the iterations works like that until the end of the S.

Next, we are going to explain how to get the borders of each partition based on the

Figure 2.13.

Figure 2.13: How to determine the border

From the Figure 2.13, we can see that there are three partitions and each of them

owns 5 numbers. Thus, based on Reservoir Sampling, we pick two sample points for each

partition. Then we sort them based on their key and calculate their weights which equals

to the numbers of sample data divide the numbers in partition. After that, we are going

to count the sum of the total weights (2.4) and use the value to divide partition number

(3) to get the step (0.8). Finally, we are going to accumulate the weight for each sample

data and once the value is larger than multiples of the steps we will save the key as the

border. Here we get the 6 and 10 as the border which can help the each record find this

partition.

Spark implements RangePartition in the following way:

1. Calculate the number of partitions if it is larger than one. Otherwise, return an

empty array.

2. Calculate the data sample size. The rule is: at least 20 records per partition or at

most 1Mb per partition.

3. Calculate sampleSizePrePartition based on sampleSize and number of partitions.

4. Call the RangePartitioner ’s sketch function to sample the data and calculate the

sample for each partition.
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5. Calculate the overall proportion of the sample and the partition with too much data

to avoid data skew.

6. Call the RDD sample function to re-extract the data for the partition with too much

data.

7. The final sample data is sorted and distributed by determineBounds function to

calculate rangeBounds.

2.7 K-means

K-means belongs to hard cluster algorithm and is aimed at “ partitioning N objects into

K clusters where each object belongs to the cluster with the nearest mean” [40]. This

algorithm first randomly selects k objects and each of them stands for the centre or

mean of the cluster. Then it will classify the other objects to different clusters based on

calculating the distance between the centre and the objects [40]. Finally, it will recalculate

the mean of each clusters. This process will repeat again and again until criterion function

becomes convergent.

In addition, K-means is a typical distance-based clustering algorithm. The distance

is used to evaluate the similarity [41]. The closer the distance between two objects, the

greater the similarity will be. Besides, the algorithm reassigns each object to the nearest

cluster in each iteration based on its distance from each cluster centre. When one iteration

finishes, it means all the objects have been classified and the new cluster centre has been

calculated. If the value of the evaluation index J does not change after the iteration, the

algorithm becomes convergent.

2.7.1 Data generation

Hibench provides the function for the users to produce the k-means data to run their own

jobs and it is called GenKmeansDataset. The function provides many parameters which

relates many aspects of the K-means data. The parameters are lists below:

numSamples: it stands for the amount of the input data and the default value is 20.

numClusters: it represents how many clusters the users want to classifiy and the

default value is 2.

meanMin: it shows the min value of the centre ID and the default value is 0.

meanMax: it shows the max value of the centre ID and the default value is 1000.

stdMin: it presents min standard deviation of the clusters and the default value is

-100.

stdMax: it presents max standard deviation of the clusters and the default value is

100.
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After setting the proper parameters, one can produce the input data. There are two

important files need to be produced: sample data and cluster centre. For sample files,

the generated data needs to follow the Gaussian Distribution. For centre files, the data

needs to follow the Uniform Distribution9. Listing 2.10 and 2.11 shows the sample data

and centre data respectively.

1 y j l i u@i t066427 :˜/ mahout−d i s t r i b u t i o n −0.8$ bin /mahout seqdumper − i / user / y j l i u /HiBench/

Kmeans2/ Input / c l u s t e r /part−00000

2 Running on hadoop , using / usr / bin /hadoop and HADOOP CONF DIR=

3 MAHOUT−JOB: /home/ y j l i u /mahout−d i s t r i b u t i o n −0.8/mahout−examples−0.8− job . j a r

4 19/02/21 15 : 21 : 11 INFO common . AbstractJob : Command l i n e arguments : {−−endPhase =[2147483647] ,

−−input =[/ user / y j l i u /HiBench/Kmeans2/ Input / c l u s t e r /part −00000] , −−s tar tPhase =[0 ] , −−
tempDir=[temp ]}

5 Input Path : / user / y j l i u /HiBench/Kmeans2/ Input / c l u s t e r /part−00000

6 Key class : class org . apache . hadoop . i o . Text Value Class : class org . apache . mahout . c l u s t e r i n g .

kmeans . Kluster

7 Key : CL−0: Value : CL−0{n=0 c =[991.089 , 311 .404 , 479 . 975 ] r =[]}
8 Key : CL−1: Value : CL−1{n=0 c =[323.392 , 230 .470 , 948 . 572 ] r =[]}
9 Key : CL−2: Value : CL−2{n=0 c =[93.758 , 947 .342 , 828 . 972 ] r =[]}

10 Key : CL−3: Value : CL−3{n=0 c =[182.601 , 717 .132 , 629 . 741 ] r =[]}
11 Key : CL−4: Value : CL−4{n=0 c =[737.270 , 576 .215 , 476 . 047 ] r =[]}
12 Count : 5

13 19/02/21 15 : 21 : 12 INFO dr i v e r . MahoutDriver : Program took 1385 ms ( Minutes :

0 .023083333333333334)

Listing 2.10: Cluster center

1 Key : 5940 : Value : {0 :248 .1922426083087 ,1 :615 .8217933684431 ,2 :242 .31481991717317}
2 Key : 5941 : Value : {0 :252 .86279962453887 ,1 :636 .6988427112975 ,2 :325 .85848413896775}
3 Key : 5942 : Value : {0 :281 .2925681567665 ,1 :650 .2565965933796 ,2 :261 .12539678482216}
4 Key : 5943 : Value : {0 :293 .4406039488976 ,1 :639 .2207704638387 ,2 :230 .5379226579626}
5 Key : 5944 : Value : {0 :278 .6631414196989 ,1 :646 .7933209171147 ,2 :253 .48443687107198}
6 Key : 5945 : Value : {0 :335 .5188483203682 ,1 :607 .2100396828683 ,2 :391 .95039254788986}
7 Key : 5946 : Value : {0 :251 .6259457244803 ,1 :640 .0831933869397 ,2 :378 .04124725224}
8 Key : 5947 : Value : {0 :197 .9698231486379 ,1 :583 .9066387893334 ,2 :344 .93375432980946}
9 Key : 5948 : Value : {0 :307 .549695068334 ,1 :613 .3642987144576 ,2 :396 .10896707109805}

10 Key : 5949 : Value : {0 :283 .5729689416751 ,1 :671 .5237069686058 ,2 :388 .1575519127281}
11 Key : 5950 : Value : {0 :269 .25119999416575 ,1 :599 .53061357693 ,2 :217 .2809952160484}
12 Key : 5951 : Value : {0 :323 .5568499592137 ,1 :651 .4818861498582 ,2 :295 .718773387541}
13 Key : 5952 : Value : {0 :254 .40937702957706 ,1 :618 .9342329663795 ,2 :210 .38298368445012}
14 Key : 5953 : Value : {0 :214 .70868416753376 ,1 :638 .9056014157164 ,2 :248 .00265795206633}
15 Key : 5954 : Value : {0 :213 .3484564659689 ,1 :636 .7858086235894 ,2 :240 .85553259823314}
16 Key : 5955 : Value : {0 :340 .6268314446697 ,1 :632 .8695608143396 ,2 :214 .5867309076366}
17 Key : 5956 : Value : {0 :178 .92283591617422 ,1 :626 .6015313258697 ,2 :268 .08134931697407}
18 Key : 5957 : Value : {0 :253 .1845845279675 ,1 :612 .3703939264973 ,2 :323 .25573799595225}
19 Key : 5958 : Value : {0 :286 .5223123874617 ,1 :591 .0367435252917 ,2 :224 .4974411201224}
20 Key : 5959 : Value : {0 :205 .95927358966588 ,1 :549 .2507270487531 ,2 :227 .46023805989003}
21 Key : 5960 : Value : {0 :204 .6780739447981 ,1 :627 .8053573165191 ,2 :335 .10501805125574}
22 Key : 5961 : Value : {0 :276 .6531239489219 ,1 :674 .2753486379368 ,2 :347 .84293551398474}
23 Key : 5962 : Value : {0 :189 .2760523170216 ,1 :641 .4104863230958 ,2 :374 .88732204343825}
24 Key : 5963 : Value : {0 :296 .96727412080463 ,1 :618 .0205373080661 ,2 :403 .51705280535975}
25 Key : 5964 : Value : {0 :259 .3588370212758 ,1 :618 .8978183303641 ,2 :280 .9729888465}
26 Key : 5965 : Value : {0 :215 .3465459324441 ,1 :582 .2264066695303 ,2 :303 .75075172094864}
27 Key : 5966 : Value : {0 :374 .3269303547928 ,1 :615 .984176069731 ,2 :385 .17288838608977}
28 Key : 5967 : Value : {0 :289 .19639353812397 ,1 :646 .9296020064971 ,2 :238 .5140768661576}
29 Key : 5968 : Value : {0 :264 .9783793404725 ,1 :614 .2511229761428 ,2 :348 .357398082668}
30 Key : 5969 : Value : {0 :275 .2356508338942 ,1 :619 .3423303737349 ,2 :218 .23778858912664}
31 Key : 5970 : Value : {0 :256 .1867714015175 ,1 :580 .2176654467804 ,2 :335 .38920106696577}
32 Key : 5971 : Value : {0 :314 .1784756173183 ,1 :650 .6208210041889 ,2 :225 .29679223611447}
33 Key : 5972 : Value : {0 :314 .4491574092808 ,1 :629 .8961667745092 ,2 :347 .85410317139826}
34 Key : 5973 : Value : {0 :286 .4745621619131 ,1 :620 .022397279952 ,2 :385 .3554510462057}
35 Key : 5974 : Value : {0 :294 .8780255558405 ,1 :638 .7721883722536 ,2 :270 .5765971265742}
36 Key : 5975 : Value : {0 :180 .55762223204903 ,1 :618 .6712686526174 ,2 :260 .24614405691113}
37 Key : 5976 : Value : {0 :306 .349691445321 ,1 :594 .1896034534727 ,2 :353 .9238467604261}
38 Key : 5977 : Value : {0 :269 .23505604732486 ,1 :618 .5808188161047 ,2 :304 .1027055821388}
39 Key : 5978 : Value : {0 :245 .6371895307878 ,1 :668 .454043899714 ,2 :332 .73126371190887}

9Another form of normal distribution.
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40 Key : 5979 : Value : {0 :269 .49518074971627 ,1 :628 .3886385011664 ,2 :439 .23234290191533}
41 Key : 5980 : Value : {0 :277 .24822744330703 ,1 :629 .0758099826897 ,2 :311 .09850030366346}
42 Key : 5981 : Value : {0 :335 .11411545229316 ,1 :642 .1727253180827 ,2 :212 .37587821024445}
43 Key : 5982 : Value : {0 :225 .88870686847144 ,1 :653 .4045487080817 ,2 :301 .1580371877249}
44 Key : 5983 : Value : {0 :290 .29913754002706 ,1 :644 .2626645224626 ,2 :215 .82184676579413}
45 Key : 5984 : Value : {0 :325 .23209393030953 ,1 :637 .3078474588388 ,2 :209 .38125180730466}
46 Key : 5985 : Value : {0 :315 .3899837786172 ,1 :634 .5974432362508 ,2 :242 .11845837486405}
47 Key : 5986 : Value : {0 :281 .5353545114224 ,1 :644 .9632205069469 ,2 :325 .06882682683704}
48 Key : 5987 : Value : {0 :383 .8392911622615 ,1 :613 .3829076622408 ,2 :262 .15336610729423}
49 Key : 5988 : Value : {0 :288 .1821924353483 ,1 :620 .7446307926359 ,2 :386 .68666478028285}
50 Key : 5989 : Value : {0 :205 .43291353107287 ,1 :631 .9604793003757 ,2 :256 .68620370381745}
51 Key : 5990 : Value : {0 :276 .9658511612721 ,1 :646 .026781540706 ,2 :280 .99288618550554}
52 Key : 5991 : Value : {0 :234 .11753816918804 ,1 :666 .7659250101646 ,2 :379 .605837528803}
53 Key : 5992 : Value : {0 :324 .3154814499773 ,1 :673 .8340099890765 ,2 :360 .4039815482136}
54 Key : 5993 : Value : {0 :237 .64136176468216 ,1 :617 .7773528655733 ,2 :397 .563456393053}
55 Key : 5994 : Value : {0 :277 .53690926335076 ,1 :618 .500961337162 ,2 :406 .83658711577164}
56 Key : 5995 : Value : {0 :302 .2163149452197 ,1 :694 .7452469586228 ,2 :335 .8382690167798}
57 Key : 5996 : Value : {0 :351 .031927119715 ,1 :583 .5618142373596 ,2 :357 .3704645136096}
58 Key : 5997 : Value : {0 :307 .81843027210675 ,1 :631 .6678205210159 ,2 :393 .07607100445364}
59 Key : 5998 : Value : {0 :307 .1831210025599 ,1 :571 .4964221593333 ,2 :268 .9166116308314}
60 Key : 5999 : Value : {0 :316 .29502004131564 ,1 :613 .6815915705238 ,2 :359 .02052829047443}
61 Count : 6000

62 19/02/21 15 : 38 : 02 INFO dr i v e r . MahoutDriver : Program took 1597 ms ( Minutes :

0 .026616666666666667)

63 y j l i u@i t066427 :˜/ mahout−d i s t r i b u t i o n −0.8$

Listing 2.11: Sample points

2.7.2 Algorithm explanation

The principle of k-mean [42] is as follows: this algorithm is for dataset D with n objects

and K as the initial cluster numbers.

1. Randomly extract k objects from dataset D as cluster centres.

2. According to the centre of the cluster, assign N objects into the most similar cluster.

The similarity depends on the distance between centre and the objects.

3. Update the centre of the clusters which means re-calculate the mean of each cluster.

4. Calculate the criterion function.

5. If the result of criterion function meets the threshold, close the process, else repeat

the step two.

The criterion function adopts the following two methods: the first one is global error

function, the formula is like this: [41]

E =
k∑
i=1

∑
XjεSi

(Xj − Ui)2 (2.1)

Where E represents the error, K represents the amount of clusters, Si represents one

of the K clusters, Ui represent centre point of Si, Xj represents the elements of Si.

The other method is called central error function,the formula is like this: [41]
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E =

k∑
i=1

(U b
i − Ua

i )2 (2.2)

Where E represent the error, K represents the amount of clusters, i represents the

cluster number, U b
i represents the centre point of the previous cluster, Ua

i represents the

centre point of the next cluster.

The process of the K-means can be seen from Figure 2.14.

Figure 2.14: Process of K-means modified from [41]

2.7.3 K-means in MapReduce

MapReduce implements K-means algorithm by calling the functions provided by Mahout.

Thus, we are going to talk about K-means in Mahout [43]. For Mahout, the K-means

algorithm consists of two parts: one is an external loop which will be executed once the

criterion function is not meet, the other is an inner loop which is the calculation process of
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the algorithm. Mahout adopts KmeansDriver to set the loop and utilize KmeansMapper

and KmeansReducer as the main body. The input of the algorithm includes two paths

which are the sample data and initial cluster centre vector path. Since Mahout requires

the data to be sequencefile format, all the input data should be key-value pairs which key

should be configured as Text while the value should be vectorWritable.

Mahout implements K-means clustering through two steps: Initial division and calcu-

lation process [44].

Initial division

Generate k initial partitions in the specified clusters directory and store them in the form

of Sequence File. The selection method hopes to avoid isolated points as the centre of

Cluster. This step is implemented by RandomSeedGenerator class. The process is below:

Figure 2.15: Initial division modified from [45]

Calculation step

Calculation step includes two map operations, one combiner operation and one reduce

operation. It is trigged by two different jobs and organized by KmeansDriver. The

execution sequence is as follows:
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Figure 2.16: Calculate steps modified from [45]

KMeansMapper : firstly, read the cluster centre from last iteration or the initial step.

Then each slave utilizes the emitPointToNearestCluster method to add each point to the

nearest cluster. The output are key-value pairs where the key represents cluster ID while

the value represents the instance of KmeansInfo which includes the number of points and

the points belongs to the cluster.

KMeansCombiner : it is a local reduce operation aimed at merging different component

from same cluster ID from KMeanMapper output.

KMeansReducer : Accumulating the number of points with same cluster ID and com-

press all of the points with same ID into the proper key-value pairs. Based on that,

calculating the cluster centre for this iteration. If the distance between old cluster centre

and the new cluster centre meets the accuracy standard, record the convergence status.

KMeansDriver : Controls the iterative process until the maximum number of iterations

is exceeded or all clusters have been convergent. After each iteration, KMeansDriver reads

all clusters in its clusters-N directory. If all clusters have been convergent, the entire

kmeans clustering process becomes convergent.

In addition, the results of each iteration will be saved on the HDFS for further use.

When the next iteration needs the previous data, MapReduce will read the previous data

from HDFS and then calculate new iteration results.

2.7.4 K-means in Spark

Spark provides the function to implement K-means algorithm and the function is under

MLib package. The implementation of Spark.mlib includes a parallelized variant method

to initialize cluster centre which is called kmeans‖ [46]10. There are some parameters

Spark.mlib provides for K-Means:

• K: it stands for the amount of the clusters.

• MaxIterations: it represents the maximum iterations to run.

• InitializationMode: it presents how to initialize the centre points of the cluster.

Spark provides two methods: Random initialization and k-means‖.
10An modified method of k-means.
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• Runes: it presents parallelism which means how many K-means algorithm run to-

gether under the same settings.

• Epsilon: it presents the distances threshold where we can recognize K-means as

converged.

Similar to K-means in Mahout, Spark also implements K-means in two steps: centre

initialization and calculation process [47].

For centre initialization, the default method is K-means‖ because random cluster cen-

tre may lead to wrong classification results. The principle of K-means‖ [46] are as follow:

1. Select a point randomly from the initial points as the centre of the cluster.

2. For every point from the dataset, calculate the distance D(x) from the cluster centre.

3. Choose a new point as the new cluster centre. The rule of the selection is that: the

larger D(x) is the higher probability it will be chose.

4. Repeat step2 and step3 until get K cluster centres.

5. Return all the cluster centres.

For calculation step, Spark receive the cluster centre points from one of the initializa-

tion methods. Then it will repeat the next two steps to get the proper K cluster:

• Calculate each distance between the points from the dataset and the centre points

of each cluster and then put each point into different clusters depends on the nearest

centre points.

• Recalculate the centre points.

After finished initializing the centre points, Spark will broadcast them to each RDD.

Then, each RDD will run mapPartition operator to calculate the distance between each

point and the cluster centres and classify points to different clusters based on the near-

est centre point. After that, Spark utilize reduceByKey operator to merge the clusters

information and collectAsMap operator to output the result.

After getting the results, Spark will recalculate the centre points by calculating the

arithmetic mean of each component from the getting clusters. If the distance between the

previous centre points and the current centre points is bigger than the given Epsilon, the

next iteration will begin. Otherwise, the K-means iteration ends and get the results.

The results of each iteration will be saved by different persist level. The users can

utilize the cache operation to save each iteration results on the memory or on the disks.
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2.8 MapReduce optimization strategies

In this section, we describe the optimization strategies for MapReduce jobs. According

to Holmes [48], the factors that have a negative effect on job performance can be divided

into the following categories:

1. Hadoop Configuration. The default settings under most clusters show low efficiency

while the same situation happens if the personalized configuration not set properly.

The common performance problems caused by configuration are frequent memory

swapping, CPU overload and so on.

2. Map task. Extremely large and small files can affect the performance of Map tasks.

Also, poorly managed code can have an impact.

3. Reduce tasks. Data skew and the number of reduce tasks can affect the performance

of reduce tasks.

4. Hardware. The performance can be affected by some bad nodes and poor network

especially for the small cluster.

Since one and four are unable to be solved by parameter tuning, we are going to talk

about what kinds of problems the job will meet during the map and reduce stages and

list some parameters that can improve the situation.

Figure 2.17 illustrates the whole process of map tasks and the factors that may affect

the job efficiency during the process. There are four stages exists in the map tasks. The

first one is the scheduling process and it happens between the job started and the map

tasks started. During the process, the queue resource and the number of jobs in the queue

are the most serious problems. Based on MapReduce online documents [49], there are

several parameters can affect the situation which are: mapreduce.map.memory.mb and

mapreduce.map.cpu.vcores. These two parameters are used for configuring the resource

utilization for each map tasks. By tuning these two, the job can be more flexible to apply

resource for different sizes of jobs.

The second stage is Read inputs. It happens at the beginning of map tasks. During

the process, the most serious problem is the size of the input files. Based on the online

documents [49], mapred.min.split.size and mapred.max.split.size are utilized to control the

sizes of input files for each map tasks. Since the default block size for HDFS is 128MB,

once the mapred.min.split.size bigger than block size, one block will be splits to different

pieces and assign to different map tasks. On the contrary, if the mapred.min.split.size

is smaller than the block size, several blocks of data will be assigned to one map tasks.

Thus, by configuring these parameters, the users can easily control the size of input data

to improve the efficiency.
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The third and fourth stage can be combined together because they are about the map

function and the result output. For the map function, no parameters are available to im-

prove the quality of codes. Thus, the fourth stage is more important. From the table, the

most serious problem for Spill is local hardware issue. Based on the online document, the

result of map function will be saved on the buffer and the buffer will spills as new files once

it meets the threshold. MapReduce provides the parameter called mapreduce.io.sort.mb

to control the sizes of the buffer. Also, after finished spills new files, MapReduce will

merge the files together and the parameter called mapreduce.io.sort.factor is utilized to

control that. In addition, there are many other parameters that may affect the efficiency

of map tasks [49]: mapreduce.map.sort.spill.percent, mapreduce.map.output.compress and

mapreduce.map.output.compress.codec. Table 2.2 concludes all the parameters for map

tasks.

Figure 2.17: The timeline of Map tasks and the impacts on the job efficiency from [48]

Parameters Type Default value Description

mapreduce.map.memory.mb Int 2048 Memory for each map task

mapreduce.map.cpu.vcores Int 1 Vcores for each map task

mapred.min.split.size Int 1 The min value of Input splits

mapred.max.split.size Int 128 The max value of Input splits

mapreduce.io.sort.mb Int 100 The buffer for map tasks

mapreduce.io.sort.factor Int 10 The number of spill files merge together

mapreduce.map.sort.spill.percent Float 0.7 The threshold of map buffer

mapreduce.map.output.compress boolean False Whether compress the intermediate data for map tasks

mapreduce.map.output.compress.codec String Null Compression algorithm

Table 2.2: The parameters for Map tasks modified from [49]

Figure 2.18 illustrates the timeline of reduce tasks and the factors that may affect
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the job efficiency. There are five stages during the whole process. The first stage hap-

penes between job started and the reduce tasks started and the main problem are same to

the Map tasks. Based on the online documents, mapreduce.reduce.cpu.vcores and mapre-

duce.reduce.memory.mb can be utilized to solve the problem. By configuring the param-

eters for Reduce tasks, the users can control the resource they need and thus to improve

the efficiency.

The next stage is the shuffle process and it happens between reduce tasks started and

all inputs read. Since it represents the process to transfer the data from map side to reduce

side, the most serious problems are hardware and network issues. MapReduce provides one

parameters to improve the job efficiency which is mapreduce.reduce.shuffle.parallelcopies.

During the shuffle process, the number of map results are more than one and this pa-

rameter can be utilized to pull more results for one time to improve the efficiency. Also,

since the files downloaded from map tasks need to be merged, mapreduce.io.sort.mb can

be utilized to control the merging process.

Since there are not any parameters prepared for sort and reduce process, we com-

bine the last three stages together. There are many parameters prepared for these three

stages which are mapred.job.shuffle.input.buffer.percent, mapred.job.shuffle.merge.percent

and mapred.job.reduce.input.buffer.percent [49]. Table 2.3 presents all the parameters for

Reduce tasks.

Figure 2.18: The timeline of Reduce tasks and the impacts on the job efficiency from [48]
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Parameters Type
Default

value
Description

mapreduce.reduce.memory.mb Int 8192 Memory for each reduce task

mapreduce.reduce.cpu.vcores Int 1 Vcores for each reduce task

mapred.reduce.parallel.copies Int 5
The

number threads used to download the map resultss

mapreduce.io.sort.factor Int 10
The

number of spill files merge together

mapred.job.shuffle.input.buffer.percent float 0.7
The

ratio of buffer size takes for the reduce tasks

mapred.job.shuffle.merge.percent float 0.66
The

threshold when the spill happens

mapred.job.reduce.input.buffer.percent float 0.0
How

much memory is used to store data in the buffer

Table 2.3: The parameters for Reduce tasks modified from [49]

2.9 Spark optimization strategies

Regarding to the optimization for Spark, there are many suggestions from the Internet.

According to Karau [50], the basic tuning strategy for Spark is configuring the parameters

related to Spark core. Also, Spark online documents propose other aspects for tuning

Spark jobs that includes the shuffle process, internet problem and memory management.

Thus, we are going to talk about the two sides and propose the parameters that may

related to the process.

As we explained how Spark works from the last chapter, we are going directly to the

parameters provided by Spark core to control the jobs. There are 7 parameters provided

by Spark to set the jobs that are num-executors, executor-memory, executor-cores, driver-

memory, spark.default.parallelism,spark.storage.memory.Fraction and spark.shuffle.memo

ry Fraction. Next, we are going to introduce all of them briefly and give the suggestions

about how to decide these parameters.

num-executors

This parameter is used to configure how many executors launch for Spark jobs. When the

driver program applies the resource from the resource manager, the resource manager will

launch the corresponding number of executors on each working node as many as possible

to meet the requirement [51]. This parameter is the most important parameter that must

be set properly. Since the default settings will only launch small number of executors

leading the job run slowly.

The suggested number of executors are between 50 and 100. Since the large number

of executors may take too much queue resource leading other jobs has little resource to



Chapter 2. Literature Review 40

apply while the small number of executors may not fully utilize the queue resource, thus

the values in this range is strongly suggested.

executor-memory

This parameter is utilized to configure the memory for each executor. Since memory

is the most important resource for Spark jobs and may affect the efficiency directly, this

parameter must be configured properly. Also, the problem related to JVM OOM is always

caused by this setting.

The proper setting should around 4GB to 8GB for each executor. However, the specific

values should depend on the size of the cluster. Also, if there are more than one jobs

running on the queue, the total memory should not exceed 1/3 or 1/2 of the cluster

resource to ensure other jobs can run smoothly.

executor-cores

This parameter is utilized for configuring the number of CPU cores for each executor. This

parameter determines the parallel computing ability for each executor. Since one CPU

core can execute many tasks at a time, the more CPU cores assigned to the executors,

the faster the Spark jobs can be.

The proper settings should around 2 to 4 for each executor. Also, the specific values

should depend on the requirement of the jobs. Besides, the total CPU cores should not

exceed 1/3 or 1/2 of the cluster resource to ensure other jobs can run smoothly.

driver-memory

This parameter is used to set the memory for driver program.

This parameter is optional and not configured under some circumstances. The only

thing needs to be care is that the value needs to be high enough if the jobs include the

collect operation to gather all the data to the driver process.

spark.default.parallelism

This parameter is used to configure the default amount of tasks for each stage [52]. This

parameter can affect the efficiency of the Spark jobs significantly once it is configured

properly. Since one partition correspond to one task, this parameter is actually to set the

parallelism of tasks.

The proper setting should around 500 to1000. If this parameter is not configured, the

default amount of tasks will be decided by the blocks of HDFS and one block correspond

to one task. Normally, this default setting is smaller than expected which means the few

tasks takes large resource. Thus, the efficiency will be low and the resource assigned to
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executors will be wasted. The suggestion is that setting this parameter twice or three

times as many as num-executors * executor-cores to fully utilize the resource.

spark.storage.memory.Fraction

This parameter is utilized for setting the percentage of executor memory which can be

utilized for cache operation and the default value is 0.6. In other words, 60% of the

executor memory can be utilized to save the RDDs. Based on the different RDD persist

level, this parameter can help the user save the data on local disks or memory.

If there are many cache operations in Spark jobs, the value should be configured larger

to ensure all the data the user needs can be saved on the memory. On the contrary, if

there are many shuffle operations in Spark jobs, the value will be configured smaller to

ensure the efficiency.

spark.shuffle.memoryFraction

This parameter is used to set the percentage of executor memory that can be used for

aggregation operations after a task pulled the output from the previous stage during the

shuffle process. The default value is 0.2 [51]. In other words, 20% of the memory can be

utilized for this operation. If the memory is above the value during the shuffle process,

Spark will write the other data into the local files and thus reduce the efficiency.

If there are many cache operations and few shuffle operations in the Spark jobs, the

value should be configured smaller to avoid the efficiency lose because of too much data

during the shuffle process.

Apart from the optimization for Spark core, Spark provides many other parameters

that related to other aspects of the jobs. Table 2.4 and Table 2.5 illustrates some important

parameters related to the internet problems as well as the shuffle process respectively.

Parameters Type
Default

value
Description

spark.rpc.message.maxSize Int 128

The largest message size allowed in “control plane” communication. It

only applies to describe the size of information sent between executors and

the driver

spark.network.timeout Int 120 The default timeout for all the network application

spark.port.maxRetries Int 16
Maximum

number of times when bind to a port

spark.rpc.lookupTimeout Int 120
The

duration for an RPC remote endpoint operation waiting before time out

Table 2.4: The parameters for internet problems modified from [20]
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Parameters Type
Default

value
Description

spark.shuffle.file.buffer Int 32 Buffer of Bufferoutputstream during the shufflewriter process

spark.reducer.maxSizeInFlight Int 48
Buffer size of shuffle read tasks which controls how much data can be

pulled for once

spark.shuffle.manager String Sort
The

type of shuffle manager. There are three options: hash, sort and tungsten-sort

spark.shuffle.sort.bypassMergeThreshold Int 200

When

the shuffle manager is sort, if the number of shuffle read tasks is smaller

than the threshold, shuffle writer will not perform sort operation while

write the data based on Hash values.

spark.shuffle.consolidateFiles Boolean false

This

parameter will be valid if the user choose HashShuffleManager. If the value

is true, the consolidate mechanism will be enabled and the output of the

shuffle writer will be merged.

Table 2.5: The parameters for shuffle performance modified from [20]

2.10 Summary

In this chapter many interesting literatures have been discussed to evaluate the perfor-

mance of the cluster. Based on them, Hadoop and Spark are the most powerful and

popular frameworks that can put the ideas of process large volume of data into practice.

Also, Hibench suite provides us many interesting workloads to evaluate the performance

of the cluster from many aspects. Thus, we decide to conduct our own experiments to

test the performance of our cluster with the three existing jobs in HiBench suite.

Since the limitation of HiBench suite is obvious, we decided to withdraw three work-

loads from HiBench suite and run the jobs on our own cluster. We are going to implement

all the workloads by Spark and MapReduce. This can help us evaluate the performance

of the jobs through more aspects. In addition, apart from implementing the jobs, we de-

cide to put parameters tuning into consideration. By configuring the jobs through many

aspects, we hope to see the difference between Spark and MapReduce and how much the

parameters can affect the job efficiency. Thus, we choose Yarn as our Resource Manager

because it provides a set of complete system to monitor the cluster performance while

giving us freedom to tune different parameters related to MapReduce and Spark.
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Chapter 3

Experiment settings

3.1 Hardware configuration

Our Hadoop and Spark clusters are built under the same hardware configuration with 10

nodes. Each node has 8 CPU cores at 2.9 GHz, 1 Tb disk, and 32 GB physical memory.

Overall, our 10 nodes cluster owns 104 CPU cores, 420 GB RAM and 51 TB local storage.

Regarding to its reading ability, our cluster provides an aggregate bandwidth of about 10

GB/second. Also, the writing speed is about 5 GB/sec through dd test. Our nodes are

connected by 1,000 MB internet and run Ubuntu 16.04.2 (GNU/Linux 4.13.0-37-generic

x86 64).

As a comparison, the hardware of our cluster is roughly equivalent to a cluster with 40

virtual machines. Our hardware is suitable for handling various difficult situation in Spark

and Hadoop. For example, there are many concurrent tasks running on our cluster and

sometimes more than one type of jobs exists on the cluster which prove that our cluster

has enough CPU cores and RAM to solve any kinds of problems. However, experiments

related to large number of nodes (e.g., evaluating the scalability of different nodes) are

out of the scope of our thesis.

3.2 Software configuration

Both Spark and Hadoop are configured on Java 1.7.0.

Hadoop: we choose Hadoop version 2.4.0 to run MapReduce job and selected Yarn

as the resource manager. All of the 10 nodes can be used to sort the data and the

intermediate data will be saved on HDFS. We keep the default settings of HDFS which

utilize 128MB as block size and 3 as replication factor. In order to control the parallelism

degree of the job better, we enable the CPU-scheduling function on YARN. Also, we give

each map tasks 7 GB memory for map tasks and 14GB memory for reduce tasks.

Spark: we use Spark 2.1.0 to run the jobs on YARN. The intermediate data is also
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saved on HDFS. We set the default number of executors as two and each of the executor

own 1 vocre and 1GB memory.

3.3 Profiling tools

In this section, we present a novel and powerful cluster management tool which we have

used to monitor and profile the selective workloads running on Spark and Hadoop. It is

called Apache Ambari.

3.3.1 Ambari

Apache Ambari is a web-based project aimed at simplifying Hadoop management. Until

now, it already supports most of the Hadoop components, “including HDFS, MapReduce,

Hive, Pig, Hbase, Zookeeper, Sqoop, and Hcatalog” [53]. In addition, Ambari supports

the users to control the Hadoop cluster on the following three aspects [53]:

Provision

• Ambari provides detailed instruction for configuring Hadoop cluster to many nodes.

• Ambari integrates all the important configuration settings related to Hadoop cluster

on the website.

Management

• Ambari provides powerful management system which includes start, stop and re-

configure the Hadoop service across the all the nodes.

Monitoring

• Ambari provides a dashboard to monitor the condition of the whole cluster.

• “Ambari adopts Ambari Metrics System to collect the metric information” [54].

• “Ambari adopts Ambari Alert Framework for system alerting and will remind you

when needed (e.g., data node goes down, low disk space, etc)” [54].

Ambari has achieved the following:

1. Simplified cluster provisioning with “a step-by-step installation wizard” [53].

2. Pre-configure key metrics to check whether Hadoop Core (HDFS and MapReduce)

and related components (such as HBase, Hive, and HCatalog) are healthy [53].
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3. Check the job dependencies and performance by supporting visualize and analysis

job execution.

4. The information is exposed through a complete RESTful1 API that integrates ex-

isting operations tools.

5. The user interface is intuitive and allows users to view information and control the

cluster easily.

Our experiments include the following components in Ambari: HDFS, MapReduce

2.0, Spark 2.0, Yarn and Mahout.

3.3.2 HDFS:

For our experiment, we use HDFS to upload and downloads important files which in-

cludes the input data, Jar package or configuration files. Since the sizes of our data are

huge and some of them can reach to 500 GB, HDFS presents its strong storage ability by

splitting the data into different blocks and save them on the different data nodes. Also,

HDFS not only allows users to save the big files on HDFS, but also it gives us the free-

dom to visit the HDFS from different locations which enhance its availability. Besides,

HDFS supports us conduct reading and writing operation which means when we run our

MapReduce or Spark jobs on the cluster, we can select the files on HDFS as the input

data or select somewhere as the output directory. In addition, the log files from different

nodes will be saved on the HDFS automatically which can help us diagnosis the problem

happened during the job running. Finally, Ambari provides multiple metrics to visual-

ize the resource utilization on HDFS. We can monitor the situation of each data nodes

by checking the Heatmaps function. There are eight indexes integrated under Heatmaps

function which are: HDFS Bytes Written, DataNode Garbage Collection Time, DataNode

JVM Heap Memory Used, DataNode JVM Heap Memory Committed, DataNode Process

Disk I/O Utilization, DataNode Process Network I/O Utilization, HDFS Space Utilization

and HDFS Bytes Read. These functions are powerful enough to help us understand the

situation of each datanode under working and idle situation.

3.3.3 MapReduce 2.0:

MapReduce 2.0 separates “what to do” and “how to do” through abstract model and

computing framework, providing the programmers a high-level programming interface and

framework. Compared to MapReduce framework, more powerful tools are proposed that

include ResourceManger,NodeManger and ApplicationMaster. By splitting the data to

be processed by our job and assigning the blocks to different tasks, it achieves distributive

1A kind of design strategy which provides a set of design principles and constrain conditions.
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computing through different nodes. Thus, the framework can improve the efficiency of

our experiment dramatically. Also, once the job finishes, MapReduce can provides the

details of the map and reduce stage to help us understand what happened under different

nodes. Besides, by tuning the parameters provided by MapReduce, we can improve our

job efficiency while reducing the pressure of the cluster.

3.3.4 Spark 2.0:

Similar to MapReduce, Spark 2.0 proposes another distributed computing framework

which implements parallel computing by processing different RDDs. Compared to Spark

1.0, the performance improves sharply and the API are more easy to use. For our ex-

periment, the DAG scheduler will split our jobs into different stages and assign different

tasks to each stage. Also, by applying different storage strategy, Spark allows us to move

the intermediate data from disk to memory and thus improve the job efficiency obviously.

Finally, Spark 2.0 provides a set of well-established monitor system which can help us

track the situation of different stages or tasks easily.

3.3.5 Yarn:

Essentially, Yarn plays a role of resource manager which applying resources for MapReduce

and Spark jobs. This entity controls the entire cluster and manages the allocation of

applications to the underlying fundamental resources. Yarn carefully arranges the various

resources (calculation, memory, bandwidth, etc.) to the NodeManager and monitor their

applications with it. For our experiment, Yarn is mainly charged for monitoring different

jobs. All the information related to the jobs can be found from Yarn which includes the

parameter settings and job status. Also, Yarn provides the different metrics for resource

utilization for the entire cluster. By monitoring the resource utilization of the whole

cluster and different nodes, we can evaluate our cluster performance and optimize our

jobs from each node.

3.3.6 Mahout:

Mahout is a unique member of the Hadoop ecosystem, it is a distributed computing frame-

work based on machine learning and data mining. It not only provides the implementation

of many professional machine-learning algorithms, but also extends them into the Hadoop

clusters. For our project, we use Mahout to pre-process the input data and implement K-

means algorithm based on that. Also, since the result are also under sequencefile format,

Mahout can help us transfer the files into text format for further analysis.



Chapter 3. Experiment settings 47

3.4 Experiment workflow

In this section, we are going to present the experiment workflow and how to use the tools

we mentioned above to conduct the experiment. Also, this part includes two steps: data

preparation and workloads execution.

3.4.1 Data preparation

Before putting the workloads into practice, we need to produce the input data. We utilize

the function provided by HiBench suite to create the input data. Based on the package,

the first step is finding the directory of the specific workloads and set the size of the jobs

we want. Listing 3.1 presents how we set different sizes of datasets for Wordcount.

1 #datagen

2 hibench . wordcount . t iny . da t a s i z e 32000

3 hibench . wordcount . smal l . d a t a s i z e 320000000

4 hibench . wordcount . l a r g e . da t a s i z e 3200000000

5 hibench . wordcount . huge . da t a s i z e 32000000000

6 hibench . wordcount . g i g a n t i c . da t a s i z e 320000000000

7 hibench . wordcount . b igdata . da t a s i z e 1600000000000

8 hibench . wordcount .10 g . da t a s i z e 10459610972

9 hibench . wordcount .50 g . da t a s i z e 52298054860

10 hibench . wordcount .100 g . da t a s i z e 104596109720

11 hibench . wordcount .150 g . da t a s i z e 156894164580

12 hibench . wordcount .200 g . da t a s i z e 209192219440

13 hibench . wordcount .250 g . da t a s i z e 261490274300

14 hibench . wordcount .300 g . da t a s i z e 313788329160

15 hibench . wordcount .350 g . da t a s i z e 366086384020

16 hibench . wordcount .400 g . da t a s i z e 418384438880

17 hibench . wordcount .450 g . da t a s i z e 470682493740

18 hibench . wordcount .500 g . da t a s i z e 522980548600

19

20

21 hibench . workload . da ta s i z e ${hibench . wordcount . ${hibench . s c a l e . p r o f i l e } .

d a t a s i z e }
22

23 # export for s h e l l s c r i p t

24 hibench . workload . input ${hibench . hdfs . data . d i r }/Wordcount/ Input

25 hibench . workload . output ${hibench . hdfs . data . d i r }/Wordcount/Output

Listing 3.1: The configuration of Wordcount modified from [27]

Next, we need to change the settings of HiBench configuration files to let the workloads

accept and produce the datasets. Here, we need to go the directory of conf files under

HiBench suite and change the settings of hibench.scale.profile based on the size of datasets

we want. Listing 3.2 presents the situation that we want to produce the 50GB data for

wordcount.

1 Data s c a l e p r o f i l e . Ava i l ab l e value i s t iny , small , l a rge , huge , g i g a n t i c and bigdata .

2 # The d e f i n i t i o n o f these p r o f i l e s can be found in the workload conf f i l e i . e . conf /

workloads /micro/wordcount . conf

3

4 hibench . s c a l e . p r o f i l e 50g

5 # Mapper number in hadoop , p a r t i t i o n number in Spark

6 hibench . default .map . p a r a l l e l i s m 10

7

8 # Reducer nubmer in hadoop , s h u f f l e p a r t i t i o n number in Spark

9 hibench . default . s h u f f l e . p a r a l l e l i s m 25

10

11
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12 #======================================================

Listing 3.2: The configuration of Wordcount modified from [27]

After setting all the configurations properly, we are going to produce the input data.

The preparation function is under the bin directories and we can select any workloads

we want and create the input data with the prepare function. Listing 3.3 and Figure 3.4

show how we create the input data for Wordcount and the files on HDFS respectively.

1 y j l i u@i t066427 :˜/ Hibench/HiBench−master / bin / workloads /micro/wordcount/ prepare$ . / prepare . sh

2 patching args=

3 Pars ing conf : /home/ y j l i u /Hibench/HiBench−master / conf /hadoop . conf

4 Pars ing conf : /home/ y j l i u /Hibench/HiBench−master / conf / hibench . conf

5 Pars ing conf : /home/ y j l i u /Hibench/HiBench−master / conf / spark . conf

6 Pars ing conf : /home/ y j l i u /Hibench/HiBench−master / conf / workloads /micro/wordcount . conf

7 probe s l e e p j a r : / usr /hdp/ current /hadoop−c l i e n t / . . / hadoop−mapreduce/hadoop−mapreduce−c l i e n t−
j o b c l i e n t−t e s t s . j a r

8 s t a r t HadoopPrepareWordcount bench

9 hdfs rm −r : / usr /hdp/ current /hadoop−c l i e n t / bin /hadoop −−c on f i g / usr /hdp/ current /hadoop−
c l i e n t / e tc /hadoop f s −rm −r −skipTrash hdfs : // i t 066427 :8020// user / y j l i u //HiBench/

Wordcount/ Inpu t

10 Deleted hdfs : // i t 066427 :8020/ user / y j l i u /HiBench/Wordcount/ Inpu t

11 Submit MapReduce Job : / usr /hdp/ current /hadoop−c l i e n t / bin /hadoop −−c on f i g / usr /hdp/ current /

hadoop−c l i e n t / e tc /hadoop j a r / usr /hdp/ cur rent /hadoop−c l i e n t / . . / hadoop−mapreduce/hadoop−
mapreduce−examples . j a r randomtextwriter −D mapreduce . randomtextwriter . t o t a l b y t e s =32000 −
D mapreduce . randomtextwriter . bytespermap=3200 −D mapreduce . job . maps=10 −D mapreduce . job .

reduces=20 hdfs : // i t 066427 :8020// user / y j l i u //HiBench/Wordcount/ Inpu t

12 ECDSA key f i n g e r p r i n t i s SHA256 : jzLxe64jvR403rWO6I2AoSnKZsi+pip1IWE+cC2OZtc .

13 The job took 24 seconds .

14 f i n i s h HadoopPrepareWordcount bench

15 y j l i u@i t066427 :˜/ Hibench/HiBench−master / bin / workloads /micro/wordcount/ prepare$

Listing 3.3: The process of creating the input data for Wordcount

Figure 3.1: wordcount files on HDFS

The last step is to check whether the input data is under correct formats for our

experiment. Since the input data is under sequencefile format, we are unable to open it
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directly to check the content. Thus, Mahout is used to help us transform the dataset to

make it visible. Listing 3.4 shows the datasets we create for Wordcount.

1 y j l i u@i t066427 :˜/ mahout−d i s t r i b u t i o n −0.8$ bin /mahout seqdumper − i / user / y j l i u /HiBench/

Wordcount/ Input /part−m−00000

2 Running on hadoop , using / usr / bin /hadoop and HADOOP CONF DIR=

3 MAHOUT−JOB: /home/ y j l i u /mahout−d i s t r i b u t i o n −0.8/mahout−examples−0.8− job . j a r

4 19/02/21 15 : 33 : 40 INFO common . AbstractJob : Command l i n e arguments : {−−endPhase =[2147483647] ,

−−input =[/ user / y j l i u /HiBench/Wordcount/ Input /part−m−00000] , −−s tar tPhase =[0 ] , −−tempDir

=[temp ]}
5 Input Path : / user / y j l i u /HiBench/Wordcount/ Input /part−m−00000

6 Key class : class org . apache . hadoop . i o . Text Value Class : class org . apache . hadoop . i o . Text

7 Key : a co co t l overcrown mericarp uncompromisingly drome bromate stachyuraceous Hysterocarpus

a l l o t r o p i c : Value : s equac i ty r e c i p r o c a t i o n unchatte l ed spermaphyte s e d e n t a r i n e s s anta

homotransplant uncompromisingly ethnocracy tomorrowness l y r e b i r d bladderwort f latman

t r i p d e c a r d i n a l i z e s y m b i o g e n e t i c a l l y absvo l t a t l a n t i t e s u b f o l i a r r i b a l d r o u s unscourged

o r a t o r i z e bromic d e v i l w i s e f r i a rhood abthainry coracomandibular epidymides subangulated

migra ino id r e app r e c i a t e ununiformly groundneedle pentosur ia supermarket s u b i r r i g a t e

f r e n a l b l i g h t b i r d phytonic

8 Key : commandingness t imes barkometer l i q u i d i t y coracomandibular abs t rac t i on i sm se e i ngne s s

author l i ng t r i p : Value : pha l l a ceous ambitus f i gu r eheadsh ip unrepea lab ly lebensraum

r e h a b i l i t a t i v e var i ous p o s t e r i s h n e s s kenno metaphras t i ca l a s tuc i ou s omniscr ibent

approbation tonsure mustaf ina s u b o f f i c e r Triconodonta cubby culm seraphism Shiah s l a i t

p e r c u l s i v e barkometer un inhabi tedness putat ive a r c h e s p o r i a l i n s a t i a t e l y Animalivora

qu in t e t t e rizzomed as tuc i ou s s v i a t o n o s i t e o r g i a s t i c Joachimite p r e s c r i b e r e r i s t i c a l l y

Macraucheniidae war l i ke r a i np roo f plerome d ia l ogue r equiconvex oinomancy redescend quad

9 Key : c i r c u l a r unchatte l ed a s c i t i c stormy danseuse tonsure Dunlop : Value : mast i cat ion

overcrown l i t h o t r e s i s swoony almud hemimelus l i t h o t r e s i s a r c h e s p o r i a l d eha i r e r

v e n i a l n e s s paranephros c a l y c u l a r t ra i lmak ing impressor s e s q u i q u i n t i l e unswanl ike

i n i q u i t o u s l y a t l a n t i t e zen i ck mangonism dip lomat i ze E f f i e va lvu la raph i s t r i p f latman

s e e i ngne s s parme l io id i s o p e l l e t i e r i n r i b a l d r o u s quadrennia l l i c i t n e s s bugre brutism

t rabe cu l a r octogynous s apph i r i c l au r inoxy lon bugre enhedge mendacity mammonish He lv id ian

she l lwo rke r meloplasty a co co t l s t e p r e l a t i o n s h i p groundneedle four square Jerusalem

Pishquow e r l k i n g embryotic s loped e t e r n a l h y s t e r o l y s i s dunkadoo i s o p e l l e t i e r i n chooser

t a u r o c o l l a ob long ly noreas t pentosur ia ten abs t rac t i on i sm mammonish Bermudian

l o p h o t r i c h i c pope P a s s i f l o r a l e s soorkee r i b a l d r o u s f l o a t a b i l i t y mechanist

un inhab i tedness s l a i t c o un t e r a c t i v e l y

10 Key : Hydrangea c h o r a l c e l o psychofuga l s i a l a d e n i t i s tum : Value : o f l e t e p o s t e r i s h n e s s

c o b e l i e v e r pseudohalogen unschematized Mormyrus Munychian d iop s ide boor ove r cont r ibute

g u i t a r i s t s e e i ngne s s widdle Orb i to l i na e l e c t r o t e c h n i c s c r a g l i k e i n i q u i t o u s l y equiconvex

outwealth arrowworm Lent i bu l a r i a c ea e d a s t a r d l i n e s s e l em i c in t i c k t i c k k a r y o l o g i c a l naught

b ivente r Bushongo l ineamenta l groundneedle a rva l commotion oinomancy r e d e s e r t i o n

Bulanda entame pope oversand pamphlet v e spe ra l f l u t i s t pomiferous t o p l i n e sequestrum

sportswomanship unpeople Ophiosaurus s langy r e t u r n a b i l i t y ord inant c r i t i c a l l y

psychofuga l monogoneutic basto subt ransve r s e comism anta l go l bot r e b i l l i n g Pishquow

penult Glecoma squ i t scyphostoma s i l i c i z e c r a g l i k e dec idab l e appe t ib l e r e c i p r o c a t i o n

bromic predeb i t comparab i l i ty s t i f f i s h comism inventurous peptonate e l em i c in

o r c h i o c a t a b a s i s u n e f f i c i e n t i d i o t i z e pamphlet Alethea naught Akt i s t e tae bromic

homotransplant paradisean sheepsk in p e r c u l s i v e s u p e r i n d i f f e r e n c e Confe rva l e s

unreprimanded Isokontae dishpan raph i s non lus t rous f l u t i s t culm

11 Key : bespin macropterous b i smuth i f e rous p r o l i f i c y f r i c t i o n l e s s l y c o l d f i n c h adscendent

i n f e r e n t tautnes s : Value : d i g i t u l e Alethea c h a l c i t e s skysh ine wingable mani l la

a l v e o l i t e a r s en ide s e e l f u l o f l e t e tonsure emir unimmortal subt ransve r s e u n e x p l i c i t

yawler b i o p s i c u n e x p l i c i t s tereotypography overcrown p r e c o s t a l

12 Count : 5

13 19/02/21 15 : 33 : 41 INFO dr i v e r . MahoutDriver : Program took 1267 ms ( Minutes :

0 .021116666666666666)

14 y j l i u@i t066427 :˜/ mahout−d i s t r i b u t i o n −0.8$

Listing 3.4: The input data under Mahout

3.4.2 Workloads execution

The first step is ssh the command line of the master node. There are many software that

provides the function. Among them, we select putty and access our cluster with its IP

address. The settings of our putty and the command line of our master node can be seen
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from Figure 3.2 and Figure 3.3.

Figure 3.2: The settings of PuTTY

Figure 3.3: The command line of Master node

The second step is settings the environment parameters for MapReduce and Spark.

Since our experiments utilize the jar package provided by HiBench, some jobs need to read

the configuration files from HiBench directory. Thus, we configure two environment pa-
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rameters which are SPARKBENCH PROPERTIES FILES and HADOOP CONF DIR.

The ways we export these two settings are shown from Listing 3.5 and 3.6.

1 export SPARKBENCH PROPERTIES FILES=/home/ y j l i u /Hibench/HiBench−master / repor t / t e r a s o r t / spark /

conf / sparkbench / sparkbench . conf

Listing 3.5: Export SPARKBENCH PROPERTIES FILES

1 export HADOOP CONF DIR=/usr /hdp/ current /hadoop−c l i e n t / e tc /hadoop

Listing 3.6: Export HADOOP CONF DIR

The third step is about executing our experiments with the default settings. We need

to provide the parameters we want to use and execute the experiment with the correct

script. Listing 3.7 presents the example of MapReduce WordCount.

1 / usr /hdp/ cur rent /hadoop−c l i e n t / bin /hadoop j a r / usr /hdp/ cur rent /hadoop−c l i e n t / . . / hadoop−
mapreduce/hadoop−mapreduce−examples . j a r wordcount hdfs : // i t 066427 :8020// user / y j l i u //

HiBench/wordcount50g / Inpu t h d f s : // i t 066427 :8020// user / y j l i u //HiBench/Wordcount/Output

Listing 3.7: Execute WordCount job in MapReduce

Next, we need to monitor the status of our jobs through Ambari YARN web UI. It

provides many useful information including the execution time, resource utilization and

tasks status. We can find as much as information as we want from the web UI. Besides, this

UI also provide configuration function which allows us to check the parameters setting

for the jobs. This function is powerful to help us understand whether the customized

parameters settings works or not. The Figure 3.4, 3.5 and 3.6 show the Ambari UI, Yarn

UI and Configuration function respectively.
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Figure 3.4: Ambari UI

Figure 3.5: YARN UI
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Figure 3.6: Configuration function

The last step is changing the configuration of the chosen parameters. We can change

any parameters we want from the command line and use Yarn UI to monitor the situation

of the jobs. The Listing 3.8 shows the MapReduce WordCount jobs with customized

parameter settings realed to the resource utilization.

1 / usr /hdp/ cur rent /hadoop−c l i e n t / bin /hadoop j a r / usr /hdp/ current /hadoop−c l i e n t / . . / hadoop−
mapreduce/hadoop−mapreduce−examples . j a r wordcount −D mapreduce . reduce . memory .mb=16384 −
D mapreduce . reduce . cpu . vcore s=1 −D mapred . reduce . ta sks=25 hdfs : // i t 066427 :8020// user /

y j l i u //HiBench/wordcount50g hd f s : // i t 066427 :8020// user / y j l i u //HiBench/Wordcount/Output

Listing 3.8: Wordcount with resource utilization settings

3.5 Data collection

In this section, how to collect the input data are going to be discussed. Since the execution

time can present the efficiency of the workloads directly, we decide to use it to present

our results. Also, we are going to test each experiment for 5 times to ensure the result

accuracy. Then, we can get the average execution time through the five experiments and

calculate the average standard deviation based on the results. In addition, we set the

threshold for the standard deviation as 20% which means the execution times that shows

higher deviate trend will be defined as the outliers. If there is one outlier exists in one

experiment, we will drop it and re-calculate the average execution time based on the other

four. We hope this data collection method can help us get the results that shows the real

performance of our cluster.
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Chapter 4

Methodology

For our experiments, we apply three kinds of jobs: aggregation job, shuffle job and iterative

job. All our jobs have two implement ways which are Spark and MapReduce. Also, we

ran all the jobs on our research cluster which owns one master node and 9 slave nodes.

Since each slave node provides 42GB RAM and 8 CPU cores, we are able to assign 420

GB RAM and 104 CPU cores to each of the job. Besides, we selected Yarn as our resource

manager which can help us monitor the situation of each working nodes as well as track

the details of each job with its history serve. In addition, we select three workloads already

provided by Hibench to represent the three types of jobs: Wordcount (aggregation job),

TeraSort (shuffle job) and K-means (iterative job). Next, we are going to introduce our

first experiment: Wordcount.

4.1 Wordcount

4.1.1 Input Datasets

The input data is produced by RandomTextWriter and is divided into 10 pieces from

500GB to 50GB with 50GB as the interval. We choose the one with default settings as

the benchmark and use it as comparison group to visualize the result of the 10 different

datasets. Also, we divide our datasets as three categories: small, intermediate and large.

Each of the category represents one possible scale of the dataset and contains three or

four datasets. We hope this subdivision can simulate the real-world situation and help us

visualize the results difference in detail.

4.1.2 MapReduce experiment

For our first experiment in MapReduce, we modified the wordcount examples provided by

Hadoopexamples package. Since all our input data is under sequencefile format, we need

to modify the source code to let it accept the sequencefile. Besides, our first experiments
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list three aspects that may affect the cluster performance which are resource utilization,

input splits and map-side parameters. Next is about introducing all of them in details.

Resource utilization

First is about something related to resource utilization. Since MapReduce framework

only provides map and reduce function to handle the problem, most of the resource is

spent on the map tasks and reduce tasks. Thus, we are going to compare the performance

difference by tuning the map and reduce resource.

For MapReduce jobs, there are two kinds of resource that we can assign to different jobs

which are memory and CPU cores. Thus, we need to set the resource for both map tasks

and reduce tasks. For our cluster, the default resource settings for the map tasks are 7GB

memory and 1 vcore while the Reduce tasks are 14GB RAM and 1 vcore which means

when one Mapper or Reducer launches, it will be given these resources for processing

different tasks. Based on that, we decide to change the memory and CPU cores for each

map tasks and reduce tasks to see whether there are some difference. For our experiments,

we set up three groups of parameters with seven different settings: the default group is

7GB memory with 1 vcore for map tasks, 14GB memory and 1 vcore for reduce tasks.

The reducing group includes three settings which are 4GB memory and 1 vcore for map

tasks and 8 GB memory and 1 vcore for reduce tasks, 5GB memory and 1 vcore for map

tasks and 10 GB memory and 1 vcore for reduce tasks and 6GB memory and 1 vcore

for map tasks and 12 GB memory and 1 vcore for reduce tasks. Similarly, the increasing

group also includes three settings that are 8GB memory with 2 vcores for map tasks and

16GB memory with 2 vcores for reduce tasks, 9GB memory with 2 vcores for map tasks

and 18GB memory with 2 vcores for reduce tasks and 10GB memory and 2 vcores for

map tasks and 20GB memory and 2 vcores for reduce tasks. By comparing increasing and

reducing the resource for map and reduce tasks, we can get whether resource can affect

the job performance.

Input splits

Inputsplits controls the number of map tasks. As we mentioned above, the default block

size of MapReduce is 128MB which means all the data in HDFS will be splits into different

blocks and save on the different data nodes. Then MapReduce will use input splits to

record the starting and end position of the job and match them to different map tasks.

Since each map tasks correspond to one input split, tuning input splits can affect the

number of map tasks. For our cluster, the default input split is 128MB which means each

map tasks will process 128MB data. Thus, we decide to increase that settings forcing

MapReduce to process large amount of data for each map tasks. We also set up three

groups of parameters: 256MB, 512MB and 1024MB. By setting these parameters on the
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command line when we run the MapReduce job, we can control the numbers of map tasks

and thus improve the efficiency by reducing the I/O pressure. Through these settings,

we want to know whether the number of map tasks or the input splits can affect the job

efficiency.

Map-side parameters

Map-side parameters represent some parameters related to I/O process when map tasks

merging the data at the end of the map stage. Among all of them, the most important two

should be io.sort.mb and io.sort.factor. io.sort.mb refers to the size of the buffer when the

map tasks spills while io.sort.factor refers to how many spill files can be process together.

For our experiments, the default value of io.sort.mb is 2GB which means the map tasks

will spill as an intermediate files when the output reach to 2GB. Also, the default value of

io.sort.factor equals 100 which means MapReduce will merge 100 spill files at one time.

From our understanding, although the larger buffer size and higher parallelism can reduce

I/O pressure, large intermediate files may lead map tasks merge slowly and thus reduce

the efficiency. Thus, we choose four groups of parameters which are default settings and

the other three settings (1.5GB and 75, 1GB and 50, 0.5GB and 25). By comparing the

different settings of the merge process, we can understand whether the I/O parameters

can affect the job results.

Execution details

In general, our first experiment needs to utilize each dataset for 13 times. 6 for increasing

and reducing map and reduce resource, 3 for input splits and 4 for I/O factors. Next,

we are going to explain how to execute the experiments on our own cluster and tune the

parameters.

Listing 4.1 illustrates the way we submit our jobs on the cluster related to resource

utilization. For MapReduce jobs, we need to locate the jar package and point out the

class file the job needs. Then, we need to set some environment parameters for our

job. All the parameter settings are implemented by –D command. For our experi-

ments, we set the memory and vcores for each map and reduce tasks and change the

input format as sequencefile. Finally, we give the HDFS directories as the location

of input and output file to make sure the job run properly. Thus, we just need to

change the mapreudce.map.memory.mb and mapreudce.map.cpu.vcores for map tasks and

mapreudce.reduce.memory.mb and mapreudce.map.cpu.vcores for reduce tasks and change

the HDFS directory to test the experiments related to resource utilization.

1 / usr /hdp/ cur rent /hadoop−c l i e n t / bin /hadoop j a r / usr /hdp/ cur rent /hadoop−c l i e n t / . . / hadoop−
mapreduce/hadoop−mapreduce−examples . j a r wordcount −D mapreduce .map . memory .mb=7168 −D

mapreduce .map . cpu . vcore s=1 −D mapreduce . reduce . cpu . vcore s=1 −D mapreduce . reduce . memory .

mb=14436 −D mapreduce . inputformat . class=org . apache . hadoop . mapreduce . l i b . input .

SequenceFileInputFormat −D mapreduce . outputformat . class=org . apache . hadoop . mapreduce . l i b .
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output . SequenceFileOutputFormat −D mapreduce . job . inputformat . class=org . apache . hadoop .

mapreduce . l i b . input . SequenceFileInputFormat −D mapreduce . job . outputformat . class=org .

apache . hadoop . mapreduce . l i b . output . SequenceFileOutputFormat hdfs : // i t 066427 :8020// user /

y j l i u //HiBench/wordcount50g / Inpu t h d f s : // i t 066427 :8020// user / y j l i u //HiBench/Wordcount/

Output

Listing 4.1: The MapReduce experiment about the resource utilization for WordCount

Listing 4.2 presents the way we implement the experiments about the input splits.

We add two parameters to configure the input splits which are: mapred.min.split.size and

mapred.max.split.size. By forcing both to a specific value, we can control the input splits

as a given value.

1 / usr /hdp/ cur rent /hadoop−c l i e n t / bin /hadoop j a r / usr /hdp/ cur rent /hadoop−c l i e n t / . . / hadoop−
mapreduce/hadoop−mapreduce−examples . j a r wordcount −D mapred . min . s p l i t . s i z e =268435456 −D

mapred . max . s p l i t . s i z e =268435456 −D mapreduce . inputformat . class=org . apache . hadoop .

mapreduce . l i b . input . SequenceFileInputFormat −D mapreduce . outputformat . class=org . apache .

hadoop . mapreduce . l i b . output . SequenceFileOutputFormat −D mapreduce . job . inputformat . class=

org . apache . hadoop . mapreduce . l i b . input . SequenceFileInputFormat −D mapreduce . job .

outputformat . class=org . apache . hadoop . mapreduce . l i b . output . SequenceFileOutputFormat hdfs :

// i t 066427 :8020// user / y j l i u //HiBench/wordcount50g / Inpu t h d f s : // i t 066427 :8020// user /

y j l i u //HiBench/Wordcount/Output

Listing 4.2: The MapReduce experiment about the input splits for WordCount

Listing 4.3 reveals the way we submit the jobs related to Map-side parameters. From

the figure, we can see that we add two parameters: mapreduce.task.io.sort.mb and mapre-

duce.task.io.sort.factor. By tuning these two, we can find the relationship between jobs

and I/O pressure.

1 / usr /hdp/ cur rent /hadoop−c l i e n t / bin /hadoop j a r / usr /hdp/ cur rent /hadoop−c l i e n t / . . / hadoop−
mapreduce/hadoop−mapreduce−examples . j a r wordcount −D mapreduce . task . i o . s o r t .mb=1024 −D

mapreduce . task . i o . s o r t . f a c t o r =50 −D mapreduce . inputformat . class=org . apache . hadoop .

mapreduce . l i b . input . SequenceFileInputFormat −D mapreduce . outputformat . class=org . apache .

hadoop . mapreduce . l i b . output . SequenceFileOutputFormat −D mapreduce . job . inputformat . class=

org . apache . hadoop . mapreduce . l i b . input . SequenceFileInputFormat −D mapreduce . job .

outputformat . class=org . apache . hadoop . mapreduce . l i b . output . SequenceFileOutputFormat hdfs :

// i t 066427 :8020// user / y j l i u //HiBench/wordcount50g / Inpu t h d f s : // i t 066427 :8020// user /

y j l i u //HiBench/Wordcount/Output

Listing 4.3: The MapReduce experiment about the Map-side parameters for WordCount

4.1.3 Spark experiment

For our first experiments in Spark, we also modify the source code from Sparkexample

package and make them possible to accept the sequencefile as the input data. In addition,

there are many aspects from our research that may affect the efficiency of the Spark jobs:

resource utilization, input splits and parallelism. Next, we are going to introduce each of

them in details.
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Resource utilization

Different from MapReduce framework, Spark proposes its own strategy to assign resource

to different executors. The executors will be launched under different work nodes and each

of them will charge many tasks to implement parallel computing. Also, Spark allows the

users to set the number of executors as well as memory and vcores for each executor. For

our cluster, the default setting is 2 executors with 2GB memory and 1 vcore. Apparently,

this setting can’t fully utilize the resource of our cluster and thus we decide to use our

own settings.

Based on Spark user manual, the proper setting of number of executors ranges from 50

to 100. Thus, we decide to set 6 groups of parameters to test the efficiency of Wordcount

which are 50 executors with 8GB memory and 4 vcores, 60 executors with 7GB memory

and 4vcores, 70 executors with 6GB memory and 3 vcores, 80 executors with 5GB memory

and 3 vcores, 90 executors with 4GB memory and 2 vcores and 100 executors with 4GB

memory and 2 vcores. By conducting this experiment, we hope to see whether the different

resource strategy affect the result.

Input Splits

Similar to MapReduce, Spark also reads the input data from HDFS and thus the input

splits can affect the amount of map tasks as well. As the comparison of the MapReduce

input splits experiment, we also set the input splits as 256MB, 512MB and 1024MB. By

forcing each map tasks to process larger scale of data, we want to find out whether I/O

pressure is the key factor for both MapReduce and Spark. Also, we want to see how much

I/O pressure can affect the efficiency of both jobs.

Parallelism

Parallelism in Spark is utilized to describe how many tasks are going to run together for

each Spark stage. After finished resource allocation, we need to set parallelism to ensure

all the executors are fully occupied. According to the Spark manual, parallelism should

be large enough to make sure that all the resources are fully used. For our cluster, the

default parallelism is not set which means some resource will be wasted when several tasks

end early. To improve the efficiency, we set five groups of parallelism to see whether these

can improve the efficiency.

Since the largest dataset of our experiment is 500GB which equals to 4000 map tasks

and our default number of executors is 50, the parallelism should be 4000 divide 50 and

the result is 80. Thus, we need to set the parallelism bigger than 80 to make sure once one

tasks finishes early, the resource will be assigned to other tasks. Based on Spark manual,

we choose five parameters from 100 to 500 as the parallelism to see whether enlarge the

parallelism multiple times can affect Spark efficiency.
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Execution details

Thus, our experiment in Spark needs to utilize each dataset for 15 times, 6 times for

resource utilization, 4 times for input splits and 5 times for parallelism. Then, the details

of how we implement our jobs are shown below.

Listing 4.4 illustrates how we submit our jobs on the cluster through spark-submit

command. For Spark jobs, we need to set the class file through –class command and set

the master model through –master command. Then, we need to assign different resource

for each executor. For our experiments, we assign different memory and vcores for each

executor to see the difference. Finally, we need to provide the HDFS location as input

and output directories.

1 / usr /hdp/ cur rent / spark2−c l i e n t / bin / spark−submit −−class com . i n t e l . hibench . sparkbench . micro .

ScalaWordCount −−master yarn−c l i e n t −−num−executor s 50 −−executor−co r e s 4 −−executor−
memory 8g /home/ y j l i u /Hibench/HiBench−master / sparkbench / assembly / ta rg e t / sparkbench−
assembly−7.1−SNAPSHOT−d i s t . j a r hdfs : // i t 066427 :8020// user / y j l i u //HiBench/wordcount50g /

Inpu t h d f s : // i t 066427 :8020// user / y j l i u //HiBench/Wordcount/Output

Listing 4.4: The Spark experiment about the resource utilization for WordCount

Listing 4.5 presents how we submit Spark jobs related to input splits. Since Spark

shares the parameters with MapReduce, we need to tune this parameter by adding the two

variables: spark.hadoop.mapreduce.input.fileinputformat.split.minsize and spark.hadoop.

mapreduce.input.fileinputformat.split.maxsize. Then, we need to configure these two pa-

rameters by –conf command and they allow us to change any values we want.

1 / usr /hdp/ cur rent / spark2−c l i e n t / bin / spark−submit −−class com . i n t e l . hibench . sparkbench . micro .

ScalaWordCount −−master yarn−c l i e n t −−num−executor s 50 −−executor−co r e s 4 −−executor−
memory 8g −−conf spark . hadoop . mapreduce . input . f i l e i n p u t f o r m a t . s p l i t . maxsize =268435456

−−conf spark . hadoop . mapreduce . input . f i l e i n p u t f o r m a t . s p l i t . mins ize =268435456 /home/

y j l i u /Hibench/HiBench−master / sparkbench / assembly / ta rg e t / sparkbench−assembly−7.1−SNAPSHOT

−d i s t . j a r hdfs : // i t 066427 :8020// user / y j l i u //HiBench/wordcount50g / Inpu t h d f s : // i t 066427

:8020// user / y j l i u //HiBench/Wordcount/Output

Listing 4.5: The Spark experiment about the input splits for WordCount

Listing 4.6 shows how we execute the Spark jobs related to parallelism. For our

experiments, we add the parameter spark.default.parallelism and implement it by –conf

command. Then, we just need to change the value to see the difference.

1 / usr /hdp/ cur rent / spark2−c l i e n t / bin / spark−submit −−class com . i n t e l . hibench . sparkbench . micro .

ScalaWordCount −−master yarn−c l i e n t −−num−executor s 50 −−executor−co r e s 4 −−executor−
memory 8g −−conf spark . default . p a r a l l e l i s m =100 /home/ y j l i u /Hibench/HiBench−master /

sparkbench / assembly / ta rg e t / sparkbench−assembly−7.1−SNAPSHOT−d i s t . j a r hdfs : // i t 066427

:8020// user / y j l i u //HiBench/wordcount50g / Inpu t h d f s : // i t 066427 :8020// user / y j l i u //HiBench/

Wordcount/Output

Listing 4.6: The Spark experiment about the parallelism for WordCount
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4.2 K-means

Next, we describe our second experiment: K-means. As an iterative task, it needs to save

the previous results on somewhere for further processing. MapReduce and Spark provide

different strategies to handle the problems. MapReduce framework provides the function

to save the intermediate data on HDFS while Spark allows the users to save the data on

memory or disk. For our experiments, we decide to test both strategies to see what is the

difference between the two. Our plan is as follows.

4.2.1 Input Datasets

The input data are created by GenKMeansDataset1 function provided by HiBench suite.

The datasets include 6 parts ranging from 50GB to 150GB with 25GB as the interval.

Since our cluster only owns 420GB memory and 250 vcores, we decide to use 300 GB

memory and 210 vcores for cache operation. Besides, since 20% of the memory for each

executor will be used for shuffle process and each executor needs to give some space for

memoryOverHead which stands for the space for JVM as well as store some important files.

Thus, the upper line of the size of our dataset is set as 150GB to avoid data overflow. Also,

the datasets are divided into two groups: small and intermediate. These groups can help

us visualize the difference as well as presents the improvement in detail. We hope these

datasets can simulate the real situation when processing iterative tasks for MapReduce

and Spark.

4.2.2 MapReduce experiment

We implement our MapReduce job with Mahout K-means function. Since the input data

is under sequencefile format, we can use the data directly to get the result. Although

MapReduce job is not good at processing the iterative jobs because of the repeated I/O

operation, we keep it there to see the difference between hard drive reading and memory

storage. Thus, we use MapReduce job results as the benchmark to compare with the

Spark jobs with different persist strategy. For our experiments, we are going to run all

the experiments with the default settings and hope to get the obvious result with the help

of our datasets.

Execution details

As we explained above, our MapReduce experiment is simple. It just needs to execute all

the datasets for once with the default settings. The details are as follows.

Listing 4.7 illustrates the implementation of K-means in MapReduce. From the list-

ing, we can see that there are several parameters need to be set to make sure the jobs

1The function to create k-means data.
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can be executed properly. The first two are input and output directories and they are

implemented by –i and –o command. The other parameters are all related to K-means

algorithm: the number of K (-K ), the number of iteration (-x ), the convergence Delta

(-cd), the distance measurement (-dm) and the execution model (-xm). We can test the

performance by tuning the parameters provided above.

1 mahout kmeans − i hdfs : // i t 066427 :8020// user / y j l i u /HiBench/Kmeans2/ Inpu t / samples −c hd f s : //

i t 066427 :8020// user / y j l i u /HiBench/Kmeans2/ Inpu t / c l u s t e r −o hd f s : // i t 066427 :8020// user /

y j l i u / ou tpu t yyy −x 10 −cd 0 .5 −dm org . apache . mahout . common . d i s t a n c e .

Euc l ideanDis tanceMeasure −xm mapreduce

Listing 4.7: The MapReduce experiment about K-means

4.2.3 Spark experiment

For K-means in Spark, the main effort of our second experiment is gathering there. There

are three persistence levels provided by Spark which offers three ways to save the inter-

mediate results: MEMORY ONLY, MEMORY AND DISK and DISK ONLY. Next, we

are going to introduce each of them in details.

MEMORY ONLY

As the most common persist strategy for Spark cache operation, MEMORY ONLY pro-

vides the function to saves all the intermediate data on the RAM and thus improve the

efficiency of the jobs dramatically. Also, it is the best strategy for Spark jobs without con-

sidering the resource utilization. For our experiments, we set 30 as executor numbers, 8GB

as executor memory and 3 as executor vcrores to fully utilize our cluster resource. Also,

we set the memoryOverHead as 2GB for each executor. Then, we run all the datasets with

MEMORY ONLY strategy and set them as the Spark benchmark. These benchmarks can

help us comparing the difference between different Spark persist strategy and MapReduce

jobs later.

MEMORY AND DISK

As a compromised persist strategy, MEMORY AND DISK provides the function to save

the data on the disk and memory together. The strategy is like that: Spark utilizes the

unserialized Java objects as the storage format and give priority to save data in memory.

If there is not enough memory to store all the data, Spark will write the others on the

disks. This strategy is suitable for the situation that the RDDs are too huge to save on the

memory. Although it may reduce the efficiency, it can guarantee the jobs run smoothly

and thus accepted by many users.

For our experiment, we set 30 executors with 8GB memory, 2GB memoryOverHead

and 7 vcores to fully utilize the resource. Thus, we have 300GB memory and 210 vcores
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totally. Then, we set the threshold of memory utilization as 50% which means our exper-

iments will save 90% to 50% of the data on memory with 10% as the interval. The reason

is because memory should be the main resource for Spark to allocate and if there are more

data saved on disks than memory, the efficiency may be lower than save all of them on

disks. Also, since we have 5 datasets from 50GB to 150GB, we need to calculate how much

data needs to save on memory and disks for each. Since spark.storage.memoryFraction

can control the percent of each executor for caching operation, we needs to assign each

of them with a value from 90% to 50%. Take 150GB as an example: since the threshold

is 50%, our experiments need to save 75GB (50%), 90GB (60%), 105GB (70%), 120GB

(80%) and 135GB (90%) data into memory. Based on that we can get that the memo-

ryFraction values are 0.36, 0.43, 0.5, 0.57, 0.64. We hope this experiment can helps us

understand how much the disks storage strategy can affect the results.

DISK ONLY

As the most rarely used persist strategy, DISK ONLY provides the function to save all

the intermediate data on the disks and thus reduce the efficiency of Spark jobs. Similar to

MapReduce framework, Spark also provides the storage strategy and can save the memory

resource to the greatest extent. For our experiments, we also set 30 as executor numbers,

8GB as executor memory, 2GB as memoryOverHead and 7 as executor vcrores to fully

utilize our cluster resource. Then, all the datasets will be run under this storage strategy

to see the similarities and differences of the MapReduce jobs.

Execution details

In total, our Spark experiments requires to run all the datasets for 7 times, 1 time for

MEMORY ONLY, 5 times for MEMORY AND DISK and 1 time for DISK ONLY. Since

each spark job can utilize one cache strategy, we need to modify the source codes and

compress them as three different jar packages to execute on our cluster. The details of

our experiment are shown below.

Listing 4.8 illustrates how Spark jobs work on the cluster with DISK ONLY strategy.

From the listing, we can find that the class file, master model and resource parameter

need to be set which are similar to that on the last Spark experiment. In addition, we

also set one parameter called spark.yarn.executor.memoryOverhead which represent the

space to run the JVM as well as store some important files. Also, we need to configure

the directory of jar files and give the k value and number of iterations to make the jobs

work.

1 spark−submit −−class com . i n t e l . hibench . sparkbench . ml . DenseKMeans −−master yarn−c l i e n t −−num−
executor s 30 −−executor−co r e s 8 −−executor−memory 8g −−dr iver−memory 2g −−conf spark .

yarn . executpr . memoryOverhead=2048 /home/ y j l i u /Hibench/HiBench−master / sparkbench /

assembly / ta rg e t / sparkbench−assembly−7.1−SNAPSHOT−distDiskOnly . j a r −k 5 −−numIterat ions 5

hdfs : // i t 066427 :8020// user / y j l i u //HiBench/Kmeans2/ Inpu t / samples
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Listing 4.8: The Spark experiment about K-means DISK ONLY

Listing 4.9 presents how Spark jobs work with MEMORY ONLY strategy. For our

experiments, we enable one function called useLegacyMode to allow the users to assign the

memory for cache operation. Then we set the parameter called spark.storage.memoryFraction

to change the percentage of executor memory used for cache operation. Finally, we change

the jar package and set the k value and number of iterations to make the job works.

1 spark−submit −−class com . i n t e l . hibench . sparkbench . ml . DenseKMeans −−master yarn−c l i e n t −−num−
executor s 30 −−executor−co r e s 8 −−executor−memory 8g −−dr iver−memory 2g −−conf spark .

yarn . executpr . memoryOverhead=2048 −−conf spark . memory . useLegacyMode=true −−conf spark .

s to rage . memoryFraction=1 /home/ y j l i u /Hibench/HiBench−master / sparkbench / assembly / ta rg e t

/ sparkbench−assembly−7.1−SNAPSHOT−distmemoryonly . j a r −k 5 −−numIterat ions 5 hdfs : //

i t 066427 :8020// user / y j l i u //HiBench/Kmeans2/ Inpu t / samples

Listing 4.9: The Spark experiment about K-means MEMORY ONLY

Listing 4.10 shows how Spark executes the experiment of MEMORY AND DISK. All

the setting are similar to the MEMORY ONLY experiment, we just need to change the

jar package as well as the value of spark.storage.memoryFraction to see the difference.

1 spark−submit −−class com . i n t e l . hibench . sparkbench . ml . DenseKMeans −−master yarn−c l i e n t −−num−
executor s 30 −−executor−co r e s 8 −−executor−memory 8g −−dr iver−memory 2g −−conf spark .

yarn . executpr . memoryOverhead=2048 −−conf spark . memory . useLegacyMode=true −−conf spark .

s to rage . memoryFraction =0.5 /home/ y j l i u /Hibench/HiBench−master / sparkbench / assembly /

ta rg e t / sparkbench−assembly−7.1−SNAPSHOT−distMemoryandDIsk . j a r −k 5 −−numIterat ions 5

hdfs : // i t 066427 :8020// user / y j l i u //HiBench/Kmeans2/ Inpu t / samples

Listing 4.10: The Spark experiment about K-means MEMORY AND DISK

4.3 TeraSort

The third experiment is Terasort. As a kind of shuffle job, Terasort spends the most

resources and execution time on transferring data from map side to reduce side. Since

shuffle performance can be recognized as the key point of the MapReduce and Spark jobs,

Terasort can help us understand how much the parameters settings can affect the results.

For our experiments, we take three kinds of parameters into consideration: resource uti-

lization, input splits and reduce-side parameters. The plan of our experiments is shown

below.

4.3.1 Input Datasets

The input data is created by TeraGen function provided by Hadoop-example package. Our

datasets are divided into 10 pieces ranging from 50GB to 500GB with 50GB as interval

and are classified as three categories based on its sizes. The small category includes 50GB,
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100GB and 150GB, the intermediate one includes 200GB, 250GB and 300GB while the

big one includes 350GB, 400GB, 450GB and 500GB. Since our datasets are various enough

to cover different scale of jobs, we hope these can help us simulate the real-world situation

of shuffle jobs and propose the insights to improve the job efficiency.

4.3.2 MapReduce experiment

For our third experiment, we utilize the function directly from Hadoop-example package

to implement our design. Also, we modify the source code a little bit to let it accept

the sequencefile as the input data. During the experiment, the most important part is

changing the parameters from three aspects and compare the performance of them. Thus,

we are going to talk about these three aspects and visualize the results later. The plan is

below.

Resource utilization

The first aspect is about assigning different resource for our jobs. There are two kinds

of resources that we can assign to different map and reduce tasks: memory and vcores.

Thus, we are going to design our experiments by giving different memory and vcores to

map and reduce tasks.

For our experiments, the default resource settings for map tasks is 7GB memory with 1

vcore and the reduce tasks is 14GB memory with 1 vcore. Since Terasort belongs to shuffle

jobs and our cluster owns 420GB memory and 250 vcores, we decide to set the map tasks

as the default value while changing the parameters related to reduce tasks. We also put

number of reduce tasks into consideration because the default settings for reduce tasks is

only one which may strongly affect our job efficiency. To fully utilize our resource, we set

the reduce memory from 10GB to 18GB with 2GB as interval. Then, we assign different

reduce numbers to different settings: 40 reduce tasks are launched and each of them are

given 10GB memory, 35 reduce tasks are given 12GB memory for each, 30 reduce tasks

are given 14GB memory for each, 25 reduce tasks are given 16GB memory and 20 reduce

tasks are given 20GB memory for each. Besides, we provide different vcores for different

memory settings: we give 1 vcore for reduce tasks for the memory between 10GB and

14GB while giving 2 vcores for memory larger than 14GB. From tuning these parameters,

we want to know whether more reduce tasks with small resource or less reduce tasks with

more resource can improve the efficiency.

Input Splits

The second aspect is input splits which stands for how many map tasks our jobs need to

process. The default setting of our MapReduce is 128MB which means each map tasks

contains 128MB data. Since the shuffle efficiency depends on both the size of shuffle jobs
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as well as the number of shuffle jobs, we decide to take the input splits into consideration

to see which strategy can improve the efficiency. Similar to the first experiment, we set

the input splits as 256MB, 512MB and 1024MB. From the experiments, we not only want

to see whether the shuffle performance can be affected by the number or the size of map

tasks, but also curious about if the result of the aggregation job is similar to the shuffle

jobs.

Reduce-side parameters

The third aspect is about the parameters related to reduce tasks. Although the shuf-

fle process is not equal to the reduce process, MapReduce integrates both of them un-

der reduce parameters. Thus, these parameters can not only affect shuffle performance,

but also control the efficiency of reduce tasks. Among all of them, we select two that

may strongly affect the shuffle performance: MapReduce.reduce.shuffle.parallelcopies and

MapReudce.task.io.sort.factor. The first one represents the number of threads that copy

map output data and the second on represents the number of files that combine together.

These two parameters control the parallelism and the size of each shuffle tasks and thus

need to be considered. For our experiments, the default value of parallelcopies is 100

while the io.sort.factor is 30. To ensure considering both aspects, we decide to set four

groups of the values that contains both of the increasing and decreasing situation and

compare them to the default setting. For our experiments, we set 200, 150, 75 and 50 as

parallelcopies while 60, 45, 20 and 15 as the io.sort.factor. Through the experiments, we

hope to understand how much these reduce-side parameters can affect the MapReduce

job efficiency.

Execution details

Totally, we need to execute all the datasets for 12 times, 5 times for resource utilization,

3 times for input splits and 4 times for reduce-related parameters. The details of how we

implement the Spark jobs are shown below.

Listing 4.11 illustrates how resource utilization experiments work for Terasort. For

the MapReduce jobs, we need to set the directory of jar package and the class file we

used. Then, we need to set the resource utilization parameters with –D function. Thus,

we add two parameters to control the shuffle process: mapreduce.reduce.memory.mb and

mapred.reduce.tasks. By tuning these two parameters, we can find out whether more

resource for reduce tasks can affect the efficiency of shuffle jobs.

1 / usr /hdp/ cur rent /hadoop−c l i e n t / bin /hadoop j a r / usr /hdp/ cur rent /hadoop−c l i e n t / . . / hadoop−
mapreduce/hadoop−mapreduce−examples . j a r t e r a s o r t −D mapreduce . reduce . memory=16384 −D

mapreduce . reduce . cpu . vcores=1 −D mapred . reduce . task=25 hdfs : // i t 066427 :8020// user / y j l i u

//HiBench/ Terasor t / Terasor t10g hd f s : // i t 066427 :8020// user / y j l i u //HiBench/ Terasor t /Output
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Listing 4.11: The MapReduce experiment about resource utilization for Terasort

Listing 4.12 presents how MapReduce jobs works with different input splits. For the

experiments, we also add mapred.min.split.size and mapred.max.split.size and force them

to the same value to see the difference.

1 / usr /hdp/ cur rent /hadoop−c l i e n t / bin /hadoop j a r / usr /hdp/ cur rent /hadoop−c l i e n t / . . / hadoop−
mapreduce/hadoop−mapreduce−examples . j a r t e r a s o r t −D mapreduce . reduce . memory=16384 −D

mapreduce . reduce . cpu . vcores=1 −D mapred . reduce . task=25 −D mapred . min . s p l i t . s i z e

=268435456 −D mapred . max . s p l i t . s i z e =268435456 hdfs : // i t 066427 :8020// user / y j l i u //

HiBench/ Terasor t / Terasor t10g hd f s : // i t 066427 :8020// user / y j l i u //HiBench/ Terasor t /Output

Listing 4.12: The MapReduce experiment about input splits for Terasort

Listing 4.13 shows how the experiments related to reduce-side parameters work. From

the figure, we can find that two new parameters are available which are mapreduce.reduce

.shuffle.parallelcopies as well as mapreduce.task.io.sort.factor. These two parameters can

help us find the difference by tuning the reduce-related parameters.

1 / usr /hdp/ cur rent /hadoop−c l i e n t / bin /hadoop j a r / usr /hdp/ cur rent /hadoop−c l i e n t / . . / hadoop−
mapreduce/hadoop−mapreduce−examples . j a r t e r a s o r t −D mapreduce . reduce . memory=16384 −D

mapreduce . reduce . cpu . vcores=1 −D mapred . reduce . task=25 −D mapreduce . reduce . s h u f f l e .

p a r a l l e l c o p i e s =15 −D mapreduce . task . i o . s o r t . f a c t o r =50 hdfs : // i t 066427 :8020// user / y j l i u

//HiBench/ Terasor t / Terasor t10g hd f s : // i t 066427 :8020// user / y j l i u //HiBench/ Terasor t /

Output

Listing 4.13: The MapReduce experiment about reduce-related parameters for Terasort

4.3.3 Spark experiment

Regarding to the experiments in Spark, we utilize the function provided by Hibench and

compress them into the jar package to execute it on our own cluster. Besides, we also

set some related parameters that may improve the efficiency of Spark jobs. Similar to

MapReduce experiments, there are three kinds of parameters which are the number of

reduce tasks, input splits and shuffle-related parameters. The details of our experiment

are discussed below.

Resource utilization

The first aspect is the number of reduce tasks. Since Spark adopts different ways to assign

resources compared to MapReduce, we need to give different executors memory and vcores

before running our jobs. Next is about setting the number of partitions for Terasort.

Because the number represents how much data in each partition and is correspond to the

number of reduce tasks, we take it into consideration and put it at the first place.
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For our experiments, we set 70 executors and give each of them 6GB memory as well

as 3 vcores. These settings reach the limit of our cluster and thus can help us fully utilize

our resource. Then, the amount of reduce tasks is set from 20 to 40 with 5 as the interval.

We keep this setting same to the MapReduce jobs to make sure both of MapReduce and

Spark meet the same situation. Also, we change the replication factor as 1 which already

implemented by MapReduce to improve the job efficiency. Through the experiments, we

want to see the difference for the shuffle jobs between MapReduce and Spark based on

the same settings.

Input splits

The second aspect is input splits. Similar to MapReduce experiments above, they are

about changing the sizes of each map tasks and thus reducing the shuffle pressure. For

our experiments, the input splits are set as 256MB, 512MB and 1024MB. By enlarging

the values multiple times, we hope to see whether the different sizes of map tasks can

strongly affect the efficiency of shuffle jobs. Besides, we can compare the performance

between MapReduce and Spark by implementing both with same settings.

shuffle-related parameters

The last aspect is about parameters related to the shuffle process. Based on our study,

there are two parameters that may affect the shuffle process which are spark.shuffle.file.buff

er and spark.reducer.maxSizeInFlight. The first one stands for the size of in-memory buffer

for each shuffle output stream. This buffer can improve the shuffle efficiency by reducing

the number of system calls as well as disk seeks when creates the intermediate shuffle files.

The second one represents the buffer size of the shuffle read tasks which decides how much

data can be fetched for once. Also, enlarging this value can reduce the fetch times which

may affect the times of network transformation times to improve the efficiency.

For our experiments, these two parameters are not included in our Spark jobs. Thus,

we select four groups of values to test whether they can affect the efficiency. These values

are 16K and 32MB, 32K and 48MB, 64K and 96MB and 128K and 192MB. By enlarging

both values multiple times, we want to see whether these two parameters can dramatically

improve the shuffle efficiency. Also, these parameters provide us a clue that how much

the shuffle-related parameters can improve the job efficiency compared to MapReduce

reduce-related parameters.

Execution details

Totally, our experiment needs to run all our datasets from 50GB to 500GB for 12 times, 5

times for the number of reduce tasks, 3 times for input splits and 4 times for shuffle-related

parameters. The results of the experiments can be seen below.
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Listing 4.14 and 4.15 illustrate how the experiment related to the number of reduce

tasks works. Listing 4.14 shows us the basic configuration for Spark jobs and the only thing

we need to care is about the replication number. Since MapReduce Terasort set the repli-

cation number as 1 to improve the efficiency, we also set it as 1 for Spark to reduce the exe-

cution time for copy the results to HDFS. Besides, Listing 4.15 presents how we change the

number of the reduce tasks for Spark. By changing the hibench.default.shuffle.parallelism

from the HiBench conf folder, we can set the number of reduce tasks to compare with

MapReduce jobs.

1 / usr /hdp/ cur rent / spark2−c l i e n t / bin / spark−submit −−class com . i n t e l . hibench . sparkbench . micro .

Sca laTeraSort −−master yarn−c l i e n t −−num−executor s 60 −−executor−co r e s 4 −−executor−
memory 5g −−conf spark . hadoop . d f s . r e p l i c a t i o n=1 /home/ y j l i u /Hibench/HiBench−master /

sparkbench / assembly / ta rg e t / sparkbench−assembly−7.1−SNAPSHOT−d i s t . j a r hdfs : // i t 066427

:8020// user / y j l i u //HiBench/ Terasor t / Terasor t10g hd f s : // i t 066427 :8020// user / y j l i u //

HiBench/ Terasor t /Output

Listing 4.14: The Spark experiment about number of reduce tasks for Terasort

1 Data s c a l e p r o f i l e . Ava i l ab l e value i s t iny , small , l a rge , huge , g i g a n t i c and bigdata .

2 # The d e f i n i t i o n o f these p r o f i l e s can be found in the workload conf f i l e i . e . conf /

workloads /micro/wordcount . conf

3

4 hibench . s c a l e . p r o f i l e t iny

5 # Mapper number in hadoop , p a r t i t i o n number in Spark

6 hibench . default .map . p a r a l l e l i s m 10

7

8 # Reducer nubmer in hadoop , s h u f f l e p a r t i t i o n number in Spark

9 hibench . default . s h u f f l e . p a r a l l e l i s m 20

Listing 4.15: Changing the reduce number for Spark Terasort

Listing 4.16 shows us how to implement the Spark jobs related to input splits. Same

to the previous settings above, we add mapred.min.split.size and mapred.max.split.size to

change the settings of input splits.

1 / usr /hdp/ cur rent / spark2−c l i e n t / bin / spark−submit −−class com . i n t e l . hibench . sparkbench . micro .

Sca laTeraSort −−master yarn−c l i e n t −−num−executor s 60 −−executor−co r e s 4 −−executor−
memory 5g −−conf spark . hadoop . d f s . r e p l i c a t i o n=1 −−conf spark . hadoop . mapreduce . input .

f i l e i n p u t f o r m a t . s p l i t . maxsize =268435456 −−conf spark . hadoop . mapreduce . input .

f i l e i n p u t f o r m a t . s p l i t . mins ize =268435456 /home/ y j l i u /Hibench/HiBench−master / sparkbench /

assembly / ta rg e t / sparkbench−assembly−7.1−SNAPSHOT−d i s t . j a r hdfs : // i t 066427 :8020// user /

y j l i u //HiBench/ Terasor t / Terasor t10g hd f s : // i t 066427 :8020// user / y j l i u //HiBench/ Terasor t /

Output

Listing 4.16: The Spark experiment about input splits for Terasort

Listing 4.17 reveals the Spark experiments related to shuffle-side parameters. From the

listing, we set two new parameters to optimize the shuffle process which are spark.shuffle.file

.buffer and spark.reducer,maxSizeInFlight. By tuning these two, we hope to see whether

the shuffle parameters can strongly affect the Spark jobs performance.

1 / usr /hdp/ cur rent / spark2−c l i e n t / bin / spark−submit −−class com . i n t e l . hibench . sparkbench . micro .

Sca laTeraSort −−master yarn−c l i e n t −−num−executor s 60 −−executor−co r e s 4 −−executor−
memory 5g −−conf spark . hadoop . d f s . r e p l i c a t i o n=1 −−conf spark . s h u f f l e . f i l e . b u f f e r =16k −−
conf spark . reducer . maxSizeInFl ight=48m /home/ y j l i u /Hibench/HiBench−master / sparkbench /
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assembly / ta rg e t / sparkbench−assembly−7.1−SNAPSHOT−d i s t . j a r hdfs : // i t 066427 :8020// user /

y j l i u //HiBench/ Terasor t / Terasor t10g hd f s : // i t 066427 :8020// user / y j l i u //HiBench/ Terasor t /

Output

Listing 4.17: The Spark experiment about shuffle-related parameters for Terasort
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Chapter 5

Experiment Results and Analysis

In this section, the methods to analysis our findings and the results of our experiments

are going to be discussed.

5.1 Performance evaluation

This section will explain how to evaluate the performance of the MapReduce and Spark

jobs with the three existing experiments. For both MapReduce and Spark jobs, we utilize

the execution time to present the efficiency because it can show the difference and efficiency

directly. Also, we apply three kinds of graphs to visualize the results of our findings which

are execution time graph, gap/relationship graph and increment graph. The first one is the

basic application of our experiment results. By showing the execution time of different jobs

directly, we can get the basic information of our experiments and compare the difference

roughly. To ensure the accuracy of our experiments, we put standard deviation into this

graph to present the dispersion of our experiments results. This graph is widely used

for all our experiments. The second one is gap/relationship graph which represents the

comparison between the benchmark and jobs with different settings. The relationship

graph is using the benchmark execution time to divide the others, if it is above 1, the

relationship is positive, else it is negative. The gap graph is based on the relationship

table and used to express the specific improvement or decline percentage for the tasks

compared to the benchmark. These two tables are widely used for experiment one and

three. For increment graph, it is about the increment rates when the settings change and

it is calculated by using execution time of the new settings to divide the last execution

time with previous settings. This graph is mainly used for experiment two. By plotting

these graphs, we hope to visualize the experiment results more clearly to others.
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5.2 WordCount results

The average execution time of Wordcount for MapReduce and Spark can be shown from

Table 5.1 and 5.2. Based on that, we plot the results as different graphs for further

analysis. Also, we highlight the best and worst execution time with red and green colours

based on different experiment settings. The raw data that includes all the experiments

records can be found in the appendix.

Hadoop 50G 100G 150G 200G 250G 300G 350G 400G 450G 500G

Resource utilization

7G 1vcore:map

14G 1vcore:reduce

(default)

212 407 600 790 979 1170 1364 1549 1769 1934

4G 1vcore: map

8G 1vcore:reduce
192 369 538 716 887 1054 1226 1400 1587 1769

5G 1vcore:map

10G 1vcore:reduce
197 378 559 717 898 1065 1242 1445 1625 1805

6G 1vcore: map

12G 1vcore:reduce
201 392 581 755 936 1114 1307 1505 1665 1865

8G 2vcores: map

16G 2vcores:reduce
235 444 653 867 1078 1464 1507 1707 1907 2115

9G 2vcores: map

18G 2vcores:reduce
256 506 737 981 1231 1460 1701 1940 2192 2417

10G 2vcores: map

20G 2vcores:reduce
259 507 744 983 1225 1470 1700 1933 2186 2418

Input Splits:

128M(default) 212 407 600 790 979 1170 1364 1549 1769 1934

256M 205 364 541 712 896 1047 1223 1380 1537 1720

512M 168 360 531 690 824 1006 1140 1312 1448 1631

1024M 221 370 525 688 841 1022 1132 1279 1429 1572

Map-Side parameters

default(2047,100) 212 407 600 790 979 1170 1364 1549 1769 1934

i/o.sort.mb=1024

i/o.sort.factor=50
202 394 574 753 946 1130 1314 1486 1674 1853

(1536,75) 206 400 592 771 963 1155 1326 1531 1713 1891

(512,25) 200 372 560 735 922 1091 1266 1461 1608 1769

Table 5.1: The average execution time for MapReduce WordCount
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Spark 50G 100G 150G 200G 250G 300G 350G 400G 450G 500G

Resource utilization

50 executors 8G memory 4 vcores 56 83 120 145 189 201 243 266 285 333

60 7 4 56 94 120 166 200 220 276 297 316 371

70 6 3(default) 58 93 114 169 213 254 286 327 355 410

80 5 3 61 97 127 170 209 249 272 318 328 379

90 4 2 63 95 127 162 184 218 251 290 300 353

100 4 2 60 97 132 161 193 216 247 287 317 341

Input splits

128M(default) 58 93 114 169 213 254 286 327 355 410

256M 70 119 146 202 260 310 341 365 404 454

512M 78 115 187 216 291 305 340 353 383 464

1024M 90 160 203 249 277 327 355 363 399 480

Parallelism

100 54 79 113 134 176 199 230 277 287 309

200 60 84 108 151 183 201 234 265 286 328

300 60 93 108 140 189 195 239 275 295 347

400 62 88 114 146 169 207 248 284 292 326

500 60 86 119 144 173 205 240 278 286 342

Table 5.2: The average execution time for Spark Wordcount

5.2.1 Resource utilization

Firstly, we are talking about the resource utilization for MapReduce and Spark. Figure 5.1

shows the execution time of different datasets for MapReduce and Spark. These results

are based on the default settings and we recognize them as the benchmark for Spark and

MapReduce. From the figure we can see that Spark curve is more sharp which means

Spark shows higher efficiency compared to MapReduce. Also, the difference becomes

larger with the data size grows that gives us an idea that Spark is better option to process

large datasets. Besides, the standard deviation bar for MapReduce is much longer than

that on Spark which shows stronger fluctuation when conducting the experiments.
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Figure 5.1: The original difference between MapReduce and Spark

Next, Figure 5.2 and Figure 5.3 present the relationship and improvements rates when

adopts different resource settings for MapReduce jobs. From the first figure, we can

find that: compared to the benchmark, the smaller resource assigned to map and reduce

tasks, the higher efficiency MapReduce jobs can be. Also, we can find that the trends

for MapReduce jobs which adopts fewer resource than the default settings are stable.

It presents the strategy with few resources is suitable for all the datasets we used and

can improve the efficiency obviously. On the contrary, the trends for the jobs with more

resource than default settings are in chaos. The biggest two lines on the bottom are even

overlap and the efficiency is low compared to the benchmark. Then, from the Figure 5.3,

we can find how much the different settings affect the efficiency. This figure visualizes the

trends in detail and help us understand the positive and negative relation clearly.

Figure 5.2: The relationship graph for MapReduce after applying different resource strate-

gies
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Figure 5.3: The gap graph for MapReduce after applying different resource strategies

Then, Figure 5.4 shows us the situations when applying different resources for Spark.

From the figure we can find that the blue line which stands for 50 executors with 8GB

memory and 4 vcores is always the best compared to other settings. Since 50 is the

smallest executor number in our experiment while 8GB memory is the biggest memory

for each executor. Thus, we can find that the small number executors with large resource

settings can be an optimal idea when running Spark jobs. Also, we can find that the trends

of yellow and navy fluctuate strongly from 150GB to 500GB. The yellow line shows the

worst performance at the beginning and keeps increasing to the end while the navy shows

its worst performance at 150GB but climbs obviously during the rest of the experiments

and finally reach to the second with a small gap to the blue line. Since both yellow and

navy belongs to the large executor numbers with few resources and both of them increase

sharply when the data sizes grow, we can find that the large executor numbers with small

resource strategy is also usable especially for processing the large datasets.
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Figure 5.4: The relationship graph of different datasets for Spark

Figure 5.5 presents the optimal improvement rates from resource utilization for dif-

ferent datasets. It divides the datasets as three categories and visualize the improvement

under bar chart format. From the figure, we can find that the efficiency of MapReduce

jobs improve strongly when processing small datasets while Spark shows higher improve-

ment rates for intermediate and large datasets. Besides, we can find that: for all the

datasets, the improvement rates for MapReduce jobs are stable and they are about 10%.

For Spark, the rates are small for small datasets and they climb when the datasets grow

and finally reach to the top when processing the large datasets. The improvement rates

are about twice as much as MapReduce jobs when processing large datasets. Thus, we can

find that resource utilization can affect both MapReduce and Spark jobs. However, for

MapReduce jobs, tuning resource parameters properly can improve the efficiency slightly

for all the datasets while Spark shows high potentiality especially for large datasets.

Figure 5.5: The optimal improvement rates for Spark and MapReduce



Chapter 5. Experiment Results and Analysis 76

Finally, Figure 5.6 presents the best execution time after tuning resource parameters

for Spark and MapReduce. From the figure, we can find that Spark curve is still sharper

than MapReduce curve which means Spark jobs are still more efficient than MapReduce

jobs. Also, compared to the Figure 5.1, we can find that the angle between the two

lines becomes larger which represents the difference between the two frameworks becomes

larger. In other words, Spark is not only more efficient than MapReduce, but also shows

higher potentiality for resource parameters tuning.

Figure 5.6: The optimal performance for MapReduce and Spark with different resource

strategies

5.2.2 Input splits

Next, we take input splits into consideration and try to find out whether the related

parameters can affect the results obviously. Figure 5.7 shows us the improvement rates

of MapReduce jobs for different input splits compared to the default settings. From the

figure, we can find that all the data on the figure is positive which means adding the size

of input splits has positive effects on the job efficiency. Also, we can see that the trend of

the orange line is always increasing after experienced a drop from the beginning while the

trend of the grey line keeps climbing from the bottom and finally reach to the top when

the size of datasets reaches to 350GB. Besides, regarding to the improvement rates, they

are various when the datasets smaller than 150GB. However, the rates of orange and grey

lines gathered at the range between 15% and 20% after the datasets becomes larger. Thus,

we can conclude that adding the input splits values properly can affect the efficiency of

the MapReduce jobs and may bring a increment about 15% to 20% when processing large

datasets.
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Figure 5.7: The performance of MapReduce jobs with different input splits

Figure 5.8 presents the performance improvement rates compared to the benchmark

when applying different input splits. From the figure, we can see that all the data from the

figure are negative which means that adding the value of input splits may bring negative

effects on Spark jobs. Also, the increase rates are various at the beginning and the smaller

input splits shows its advantages before the size of datasets reach to 300GB. After that,

all the lines overlap together which means the effects of different settings becomes similar.

Thus, we can conclude that adding input splits for Spark is not a wisdom strategy and

we need to keep it as the default value (128MB). Adding the value can not only decrease

the efficiency and may bring about 25% to 30% side effects to Spark jobs.

Figure 5.8: The performance of Spark jobs with different input splits

Figure 5.9 and Figure 5.10 illustrate the improvement rates for MapReduce and Spark
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in details. From Figure 5.9, we can see that: apart from the first dataset, the trend of the

MapReduce jobs increases when the sizes of the datasets grow. For small datasets, the

improvement rates are around 15% while the rates increase to 19% for the intermediate

datasets. The rates finally reach to 23% for the big datasets. Thus, we can conclude

that the input splits can affect the efficiency of the MapReduce job and the improvements

becomes more obvious when the datasets increase. Also, from Figure 5.10, we can find

that input splits have negative effects on Spark jobs. For small datasets, the decrease rates

are around 20% and they reach to 30% when the sizes of datasets become larger. Finally,

the rates go back to 25% for large datasets. Thus, we strongly recommend not to change

the input splits value when running Spark jobs especially for processing intermediate data.

Figure 5.9: The optimal improvement rates for MapReduce with different input splits

Figure 5.10: The optimal improvement rates for Spark with different input splits

Figure 5.11 illustrates the best performance for MapReduce and Spark after applying
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different input splits. From the figure, we can see that Spark jobs shows higher efficiency

for all the datasets and its trend is stable with the datasets increases. However, the angle

between the two lines becomes smaller which represents that the difference between Spark

and MapReduce narrows when applying different input splits. Thus, we can conclude that

input splits is a parameter worth to test for MapReduce jobs.

Figure 5.11: The optimal performance for MapReduce and Spark with different input

splits

5.2.3 Map-side parameters

Finally, we are going to talk about some other parameters that may affect the MapReduce

and Spark jobs efficiency. They are I/O factors and memory for MapReduce jobs and

parallelism for Spark. Figure 5.12 shows the MapReduce efficiency with different Map-

side I/O settings. From the figure, we can find that grey line which represents the smallest

I/O memory and factors presents the best performance and the range of the improvement

rates are from 6% to 10%. The blue line and the orange line also present increasing

trend and the rates are around 5% and 2%. Thus, we can find out that the Map-side

I/O factors can improve the MapReduce efficiency and the smaller I/O settings can be a

useful strategy.
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Figure 5.12: The performance of MapReduce jobs with different I/O parameters

Figure 5.13 illustrates the performance changes for Spark jobs with different parallelism

degree. Although the situation seems in chaos, the trends are clear and can be divided

into three categories: one contains 100,200, another contains 400 and 500 while the others

contains 300. For the first category, after experiment a short increase, both lines drop

sharply and then keeps climbing to the top with some fluctuation. For the second category,

they also increase at the beginning and drops sharply. After that, they climb dramatically

to the top and experiment an obvious decrease and finally increase to the end. For the

third category, it begins with a moderate increase and then fluctuate to the top. Finally,

it experiments a drop until the end. Also, we notice that most of the lines starts with 0

or a negative value which means the parallelism has a small or even negative impacts on

the small datasets. However, things change when the datasets become larger since all of

the lines increase sharply and keep positive until the end. From the figure, we can find

that applying a proper parallelism can improve the efficiency of Spark jobs dramatically.

However, the best settings may not be the largest one or the smallest one. Based the

trends, we can conclude that we need to set different parallelism degree for different sizes

of jobs.
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Figure 5.13: The performance of Spark jobs with different parallelism

Figure 5.14 illustrates the best improvement rates for Spark and MapReduce jobs

compared to their benchmarks. From the figure, we can find that the improvement rates

for MapReduce are stable ranging from 6% to 10% for all the datasets. For Spark, the

improvement rates are small for the small datasets while they increase sharply for interme-

diate datasets around 26%. Then, they keep steady for big datasets around 24%. Based

on that, we can conclude that parallelism degree is an important parameter for Spark jobs

which can bring an obvious improvement especially for big datasets.

Figure 5.14: The optimal improvement rates for Spark and Mapreduce jobs

Figure 5.15 presents the efficiency difference between MapReduce and Spark jobs after
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tuning their own parameters. From the figure, we can find that Spark shows obvious

advantages for all the datasets compared to MapReduce and the gap becomes larger when

the datasets grows. Also, based on Figure 5.1, we can find that the angle between the two

lines becomes smaller which means the difference becomes larger when applying different

parameters. Thus, we can conclude that Spark parallelism have stronger effect than Map-

side I/O parameters for MapReduce jobs.

Figure 5.15: The difference for MapReduce and Spark after tuning parameter

5.3 K-means results

The average execution time of K-means can be shown from Table 5.3. The green values

represent the worst execution times while the red values stand for the best execution

times. Also, the raw data can be found in the appendix. Next, we are going to analysis

the results based on the graphs we build.



Chapter 5. Experiment Results and Analysis 83

50G 75G 100G 125G 150G

MapReduce 591 835 1119 1337 1630

Spark

Disk only 194 267 646 944 1554

Memory only 73 117 140 198 561

(Memory and Disk)

50% 166 262 725 1528 1888

60% 138 240 600 1140 1660

70% 125 221 572 1020 1607

80% 117 202 454 836 1229

90% 111 186 387 693 901

30 executors with 8G memory and 2G memory overhead

Table 5.3: The result of K-means

5.3.1 MapReduce and DISK ONLY

Figure 5.16 illustrates the execution time for MapReduce jobs and Spark jobs. From the

figure, we can find that there is a huge difference between MapReduce jobs and Spark jobs

at the beginning and this difference becomes smaller with the datasets grow. Finally, the

gap narrows to the minimum when the datasets increases to 150GB: 76s. Through the

result, we can conclude that Spark is better than Mapreduce when processing lightweight

iterative tasks with DISK ONLY strategy. But when the datasets grow larger, both are

good options to handle the tasks.

Figure 5.16: The execution time for MapReduce and Spark DISK ONLY strategy

5.3.2 MapReduce, DISK ONLY and MEMORY ONLY

Figure 5.17 presents the situation of MapReduce job, MEMORY ONLY and DISK ONLY

when processing different sizes of iterative tasks. From the figure, we can see clearly that
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MEMORY ONLY curve appears to a sharp trend which mitigates a little when the size

increases from 125GB to 150GB.On the contrary, the curve of DISK ONLY starts with

a sharp trend and experience two mitigation and ends with similar rates as MapReduce

curve. For the MapReduce curve, it keeps stable from the beginning to the end. Thus,

we can conclude that MEMORY ONLY strategy shows little advantages for small tasks

compared to the other two lines while the advantages becomes more and more obvious

with the datasets grow.

Figure 5.17: The execution time for MapReudce, DISK ONLY and MEMORY ONLY

5.3.3 MEMORY AND DISK

For MEMORY AND DISK strategy, we divide our datasets into two categories: one is

small datasets which contains 50GB, 75GB and 100 GB while the intermediate contains

125GB and 150GB. Figure 5.18 shows the execution time for small datasets with different

settings. From the figure, we can see that there is a decrease trend when the percentage of

memory increases for all the datasets which means the efficiency becomes higher with the

datasets increases. For 100GB dataset, the best performance is the strategy with 90% of

memory and it can save nearly half of the execution time compared to the strategy with

50% of memory which stands for the worst performance from the figure. Also, there are

obvious improvements exit for others when the percentage increases. For 75GB datasets,

we can see that the execution time decline sharply compared to 100GB datasets and

this improvement trend keeps stable with the percentage increases. For 50GB datasets,

the gap is not obvious compared to 75GB datasets and this trend also keep stable until

the percentage decrease to 50%. There is a huge decrease happened when the memory

rate decreases from 60% to 50%. Thus, we can find that the efficiency of iterative jobs

keeps stable when applying DISK AND MEMORY strategy for small datasets. However,

when the datasets increase to a large number, the efficiency will drop sharply with huge

difference between different percentages of DISK AND MEMORY value.
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Figure 5.18: The execution time for different settings of MEMORY AND DISK

Figure 5.19 belongs to increment graph that mentioned above and illustrates the de-

crease rates compared to the last execution time when the percentage increases. Thus,

the high values present a sharp decrease. Since we select 90% as the benchmark, it is not

presented in the picture. From the figure, we can see that all the values are positive which

means reduce the memory percentage can have negative effects on the efficiency contin-

uously. Also, we notice that there is an obvious decline during the percentage decrease

for the three datasets. For 50GB dataset, it happens when the percentage drop from 60%

to 50%. For 75GB dataset, it is from 70% to 60%. For 100GB datasets, it is from 80%

to 70%. Since the root causes of the decline are insufficient memory and excessive I/O

operation, we can conclude that the memory becomes insufficient during the periods we

mentioned above. Also, we find that the situation happens earlier when the datasets grow

and the decrease rates of 100GB datasets are much larger than the other two. Thus, we

can conclude keeping memory percentage to a higher value is crucial for big datasets to

avoid obvious efficiency lose.
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Figure 5.19: The decreasing rates for different settings of MEMORY AND DISK

Figure 5.20 presents the results of intermediate datasets. From the figure, we can

see that the difference between the best and the worst performance is obvious. For both

datasets, the difference reach to 2 times and the gap becomes larger compared to the

difference in small datasets.

Figure 5.20: The execution time for different settings of MEMORY AND DISK

Figure 5.21 belongs to the increment graph and illustrates the decrease rates for in-

termediate datasets which contains 125GB and 150GB. The benchmark is still set as

90% and thus unable to see it from the picture. From the figure, we can find that the

most obvious decline happens from 60% to 50% for 125GB datasets and from 90% to

80% for 150GB datasets. Although this situation happens late for 125GB, the decreasing

rates from 90% to 80% and 80% to 70% are still obvious which are 20.63% and 22.00%

respectively. Besides, 150GB datasets experience two sharp decrease when the memory

percentage decrease from 90% to 70% and the rates are 36.43% and 30.75%. Thus, based
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on the findings from the small datasets and intermediate datasets, we can conclude that

the memory percentage should be set as a high value for big datasets while it can be set

as a low value for some small datasets.

Figure 5.21: The decreasing rates for different settings of MEMORY AND DISK

5.3.4 DISK ONLY, MEMORY ONLY and MEMORY AND DISK

Figure 5.22 presents the situation for DISK ONLY, MEMORY ONLY and best and worst

performance of MEMORY AND DISK. It is used to help us understand the difference

between the three persist strategies provided by Spark. From the figure, we can find that

all the curves share the similar execution time around 200s at the beginning. Then, the

trend of MEMORY ONLY increases smoothly all the time until meets a transition when

the datasets increase to 150GB. For MEMORY AND DISK, the best and worst curves

increase with same rates at first and appear different situation when the datasets reach to

75GB. The worst one experience threes obvious mitigation while the best one experience

two slight mitigation when processing the following datasets. For DISK ONLY curve,

it overlaps the worst one at first and then experience a slight mitigation followed by an

obvious one until the end. Thus, we can conclude that MEMORY ONLY is the best option

for all the iterative tasks. Also, MEMORY AND DISK with high memory percentage

can bring high efficiency than DISK ONLY and thus can be the second choice. Finally,

DISK ONLY can be the third choice and much faster than the MEMORY AND DISK

with low memory percentage.



Chapter 5. Experiment Results and Analysis 88

Figure 5.22: The comparison between DISK ONLY, MEMORY ONLY and MEM-

ORY AND DISK

5.4 TeraSort results

The average execution time of TeraSort for Spark and MapReduce can be seen from the

Table 5.4 and Table 5.5. The green values stand for the worst execution time while the

red values represent the best based on different settings. Also, the raw data can be seen

in the appendix. Next, we are going to analysis our results based on the graphs we build.
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Hadoop 50G 100G 150G 200G 250G 300G 350G 400G 450G 500G

Resource utilization

14G 1vcore:reducer

30 :reduce number

(default)

190 346 619 987 1076 1779 1919 2011 2482 2779

10G 1vcores: reduce

40:reduce number
230 422 847 1268 1471 1786 2186 2678 2886 2914

12G 1vcores: reduce

35:reduce number
221 405 745 1229 1315 1741 2075 2265 2503 2795

16G 2vcores: reduce

25:reduce number
214 374 582 825 1079 1350 1611 2024 2461 2723

18G 2cvore: reduce

20:reduce number
205 327 556 813 1023 1223 1457 1734 2058 2412

Input Splits:

128M(default) 190 346 619 987 1076 1779 1919 2011 2482 2779

256M 143 316 486 705 930 1217 1680 1946 2393 2705

512M 187 269 466 660 903 1255 1514 2170 2561 2837

1024M 182 319 540 705 1042 1304 1560 1969 2780 2993

Reduce-Side parameters

default(100,30) 190 346 619 987 1076 1779 1919 2011 2482 2779

mapreduce.reduce.shuffle.parallelcopies=200

mapreduce.task.io.sort.factor =60
184 415 612 894 1169 1719 1911 2394 3032 3429

(150,45) 176 372 562 813 1175 1501 1998 2267 2880 3594

(75,20) 185 350 608 963 1133 1482 1996 2273 2785 3109

(50,15) 189 358 644 871 1242 1619 1901 2495 2718 2884

Table 5.4: The result of MapReduce TeraSort
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Spark 50G 100G 150G 200G 250G 300G 350g 400G 450G 500G

Resource utilization

(70 executors

6G memory

3 vcores)

Reducer number:20 287 584 961 1261 1712 2211 2584 3113 3258 3656

25 253 505 899 1183 1588 2043 2467 2651 2869 3096

30(default) 239 496 857 1093 1444 1826 2067 2445 2794 3042

35 231 435 677 1051 1239 1764 1947 2019 2529 2839

40 232 425 619 984 1222 1531 1698 1967 2475 2750

Input splits

(reducer number:30)

128M(default) 239 496 857 1093 1444 1826 2067 2445 2794 3042

256M 266 457 682 919 1371 1612 2052 2147 2507 2928

512M 252 491 792 1101 1451 1845 2072 2188 2806 3228

1024M 297 532 848 1215 1465 1895 2309 2695 2989 3151

Shuffle parameters

spark.shuffle.file.buffer=16k

spark.reducer.maxSizeInFlight=24M
233 501 849 1135 1509 1610 2131 2486 3007 3080

(32k,48M) 212 492 750 1084 1496 1565 2006 2446 2621 2796

(64k,96M) 238 471 744 920 1289 1439 1909 2138 2434 2731

(128k,192M) 193 444 673 947 1191 1400 1675 1990 2410 2634

Replication of Spark jobs =1

Table 5.5: The results of Spark Terasort

5.4.1 Number of reduce tasks

Firstly, we are talking about the number of reduce tasks for MapReduce and Spark. For

both frameworks, the default number of reduce tasks will be one which is unable to fully

utilize our cluster resource and thus reduce the job efficiency. For MapReduce jobs, we

keep the default resource settings of the reduce tasks as 14GB memory and 1 vcore and

set the number of reduce tasks as 30. For Spark, we launch 70 executors and give each of

them 6GB memory and 3 vcores and set the number of reduce tasks as 30. Then, we set

both as the benchmark to help us present our finding easily. The figures below present

our results.

Figure 5.23 illustrates the comparison between the two benchmarks. From the figure,

we can find that MapReduce job is always superior to Spark jobs. Besides, The Spark

curve shows a stable trend during the whole process and the execution time grows steadily

with the datasets becomes larger. However, MapReduce curve experience two mitigations

when the datasets reach to 200GB and 300GB while it stills shows higher efficiency at the

end of our experiment. Based on the figure, we can conclude that MapReduce is better

than Spark when processing the shuffle jobs before tuning any parameters.
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Figure 5.23: The comparison between the benchmarks for Spark and MapReduce

Figures 5.24 and 5.25 present the relationship and gaps after changing the number

of reduce tasks for MapReduce jobs. From Figure 5.24, we can find that there are two

curves that are always above 1.0 which means that these two are always superior to the

benchmark. On the contrary, the orange and blue curves experienced some fluctuations

and finally failed to beyond 1.0. Besides, the yellow and grey curves can represent the

strategy with few reduce tasks and more resource while the other two represent large

reduce tasks with few resource. Thus, we can conclude that the less reduce tasks with

more resource can be a wisdom strategy and can bring positive effects to the MapReduce

jobs compared to the benchmark. From figure 5.25, we can find the specific improvement

rates for MapReduce tasks after configuring different reduce tasks. At the beginning, all

the values are negative until the datasets reach to 100GB. Then, the grey and yellow pillar

keeps positive while the blue and orange pillar keeps negative. Based on the fact, we can

find that the difference between the two is obvious at first and reach to the top when the

datasets reach to 300GB and then the difference narrows until the end. Finally, we can

conclude that the number of reduce tasks can strongly affect the efficiency of MapReduce

jobs especially for small and intermediate datasets.
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Figure 5.24: The relationship graph for MapReudce after changing the number of reduce

tasks

Figure 5.25: The gap graph for MapReudce after changing the number of reduce tasks

Figures 5.26 and 5.27 illustrate the relationship and gap graphs for Spark after applying

different numbers of reduce tasks. From the first figure, we can find that the blue and

orange curves are above 1.0 while the orange and grey curves are below. Also, since

Spark provides the fixed resource before executing the experiments, the orange and blue

line can be recognized as the higher efficiency compared to the benchmark while the grey

and yellow represent the lower efficiency. Thus, we can conclude that the few reduce tasks

under fixed resource is a good option for Spark jobs which can bring obvious improvement.

From the second figure, we can find that blue and orange pillars keep positive while the

grey and yellow pillars keep negative. Also, the biggest difference between the two happens

when the datasets reach to 150GB. Then, the difference keeps steady and becomes a little

bit smaller at the end of our experiment. In fact, when the datasets reach to 400GB,
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the blue and orange curves show an obvious decrease and the other two present a slightly

increase. Thus, we can conclude that the number of reduce tasks can strongly affect the

efficiency of Spark jobs and the effects becomes obvious from intermediate datasets and

becomes less obvious when the datasets becomes larger.

Figure 5.26: The relationship graph for Spark after changing the number of reduce tasks

Figure 5.27: The gap graph for Spark after changing the number of reduce tasks

Figure 5.28 shows the best performance for MapReduce and Spark after configuring

the number of reduce tasks. From the figure we can find that MapRede jobs are still

superior to Spark jobs when processing the shuffle tasks. Compared to the benchmark

comparison graph, we can find that the difference for small datasets is nearly disappear

while the difference becomes more and more obvious when the datasets reach to 200GB.

Thus, we can conclude that MapReduce jobs is better than Spark jobs when applying

different number of reduce tasks and its parameters brings higher efficiency than Spark

parameters do.
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Figure 5.28: The optimal performance for MapReduce and Spark after tuning number of

reduce tasks

5.4.2 Input splits

Next, we take input splits into consideration. Since the default input splits for Spark and

MapReduce is 128MB, we set these experiment results as the benchmark and compare

them with other settings. Figure 5.29 presents the gap graph after tuning the parameters

related to the input splits. From the figure, we can find that the curves are always positive

which means the input splits can bring positive effects to the MapReduce jobs. Also, we

notice that the orange and blue curves show the similar trend from 100GB and they can

bring similar improvement rates to the jobs. On the contrary, the trend of grey curve is

not as sharp as the other two and ends at the negative rates which will bring negative

effects compared to the benchmark. Besides, since the orange and blue represent the small

and intermediate value for the input Spark jobs while the grey one represents the large

value, we can conclude that increase the value of input splits can be a good suggestion for

shuffle jobs and the value should be not too large.

Figure 5.29: The gap graph after tuning input splits for MapReduce jobs
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Figure 5.30 illustrates the gap graphs for Spark jobs with different input splits. From

the figure, we can find that the blue and orange curves always stay positive while the

grey curve keeps negative compared to the benchmark. For the blue curve, the trend is

sharp at the beginning and fluctuate to around 5% in the end. The orange curve starts

with a negative value experience two fluctuations and a stable period and finally drop to

-5%. The grey line starts with an extreme negative value and climb slightly to a similar

value as the orange curve. Also, since the three curves represent the small, intermediate

and large value of input splits for Spark, we can conclude that changing the input splits

may not a compulsory to improve the Spark efficiency and increase this value slightly can

bring positive effects.

Figure 5.30: The gap graph after tuning input splits for Spark jobs

Figure 5.31 express the optimal improvement rates after configuring the best value of

input splits. From the figure, we can find that the improvement rates for MapReduce are

high until the datasets increase to 400GB and the Spark jobs shows small improvement

at first while increase sharply when processing the big datasets. For MapReduce jobs, we

can see that the improvement rates are high and the best performance happens at 200GB

which can bring nearly 50% improvement. However, this situation ends when the datasets

reach to 400GB and the parameters can bring about 3% improvement for the following

experiments. For Spark jobs, the improvement rates are stable compared to MapReduce

jobs at first and the difference is obvious from the graph. However, when the datasets

increase to 400GB, the improvement rates for Spark beyond MapReduce jobs and about

several times as much as the MapReduce jobs. Thus, we can conclude that input splits

should be considered as an important factor to improve the efficiency of MapReduce shuffle

jobs when processing the small and intermediate datasets while it is more important for

Spark when processing large datasets.
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Figure 5.31: The optimal improvement rates for MapReduce and Spark

The Figure 5.32 presents the difference after configuring the best input splits for

MapRedue and Spark. From the figure, we can find that MapReduce jobs are still superior

to the Spark jobs. However, compared to the benchmark graph, the gap narrows at the

beginning and the end while the difference becomes larger from 200GB to 350GB. Thus,

we can make a conclusion that MapReduce jobs are more efficient than Spark jobs for

shuffle tasks after configuring the input splits and the parameters bring different effects

for different sizes of data.

Figure 5.32: The Comparison after configuring the best input splits for Spark and MapRe-

duce

5.4.3 Shuffle-related parameters

Then, we take some shuffle-related parameters into consideration. For MapReduce jobs,

the default mapreduce.reduce.shuffle.parallelcopies is 100 and mapreduce.task.io.sort.factor

is 60. For Spark, spark.shuffle.file.buffer and spark.reduce.maxSizeInFlight are not in-

cluded in the default settings. Thus, we set the MapReduce jobs with the default settings

and the Spark jobs without any settings as the benchmark for further comparison. Figure
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5.33 illustrates the gap graph after configuring different reduce-side parameters. From the

figure, we can find that the trends for all the settings are similar and half of the experi-

ment results keeps positive while the others are negative. Also, we find that there are two

periods that the positive effects are obvious which are 100GB to 250GB and 250GB to

350GB. Besides, the period between 400GB to 500GB are always negative. As a result,

we can conclude that the reduce-side parameters are suitable for small and intermediate

datasets when processing the shuffle jobs under the MapReduce framework.

Figure 5.33: The gap graph after changing the reduce-side parameters

Figure 5.34 present the gap graph after adding the shuffle-related parameters for Spark

jobs. From the figure, we can find that yellow, orange and grey curves keep positive while

the blue curve after a slight decrease and a sharp increase keeps negative at the end.

Also, the trends for yellow is the most sharp followed by the grey and orange. Since the

yellow and grey curve can be recognized as big value group and the blue and orange can

be reckoned as the small value group, we can conclude that adding the shuffle-related

parameters can improve the job efficiency for Spark under most circumstances and the

large value should be a better option.

Figure 5.34: The gap graph after changing the shuffle-related parameters
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Figure 5.35 presents the improvement rates after configuring the best shuffle-related

parameters for Spark and MapReduce. From the figure, we can find that Spark parameters

show higher efficiency for almost all the datasets and the improvement rates are obvious.

On the contrary, MapReduce parameters fluctuates strongly and the best period should

be intermediate datasets. Thus, we can conclude that shuffle parameters related to Spark

are strongly suggested to improve efficiency while the parameters related to MapReduce

shuffle process need to be considered seriously.

Figure 5.35: The optimal improvement rates after changing the shuffle-related parameters

Figure 5.36 illustrates the performance difference after changing the parameters related

to the shuffle process. From the figure, we can find that two curves intersect together which

represents the difference between MapReduc and Spark is not obvious. Also, we find that

MapReduce shows higher efficiency until 250GB and then Spark overtakes it and finally

win the match. Compared to the benchmark graph, we can notice that Spark is superior

to MapReduce after tuning the parameters related to the shuffle process. Finally, we can

conclude that parameters related to Spark can bring obvious improvement to the jobs and

thus strongly suggested to be configured.
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Figure 5.36: The difference after configuring the best shuffle-related parameters
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Chapter 6

Insights and suggestions

In this section, we conclude the insights from our experiment results and discuss the lessons

we learned from our research. Overall, the result shows that Spark is more efficient when

processing aggregation and iterative jobs while MapReduce presents its advantages when

facing the shuffle jobs. Although it is a well-known fact that Spark is faster than MapRe-

duce under most circumstances, our thesis presents a novel analysis of the performance

difference between different kinds of jobs and take various parameters into consideration.

Particularly, we compare the original difference between Spark and MapReduce jobs with

default settings as well as the difference after tuning the parameters. By plotting different

graphs, we visualize the difference and present it vividly to the users. Also, through the

experiments, we gained lots of experience about running different kinds of jobs which can

help us provide the suggestions for the users when implementing these kinds of jobs. In

the next section, the details of the findings are going to be discussed.

6.1 Wordcount

For WordCount or similar workloads, Spark presents a comprehensive advantage from all

the aspects. For the jobs with default settings, Spark jobs are slightly faster than MapRe-

duce jobs when processing the small datasets while the difference becomes huge when

the datasets grow to intermediate or large group. Also, when considering the resource

parameters for both jobs, MapReduce are more sensitive when the datasets are small and

the improvement rates keep around 10% for all the datasets. Spark shows a little improve-

ment for the small datasets and keep increasing until the datasets reach to large group.

The improvement rates for small, intermediate and large groups are about 5%, 17% and

23% respectively. Thus, the difference after tuning resource parameters become larger for

MapReduce jobs.

Considering the input splits, Spark and MapReduce show the opposite results when

processing the different datasets. For MapReduce jobs, it presents the positive effects and
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the larger value can bring the significant improvement when the datasets grow. However,

Spark shows a decrease trend when enlarging the input splits. These parameters weaken

the efficiency in varying degrees when process the small datasets while the side effects

become same when the datasets grow to large degree.

The last aspect is map-side parameters for MapReduce and parallelism for Spark.

For MapReduce jobs, keep the settings small can bring positive effects and the optimal

improvement rates is about 7%. For Spark jobs, the parallelism brings negative effects

when the datasets are small while the trend reverses and reach to the top when the datasets

grow from intermediate to large group. The optimal improvement rates are about 25% for

intermediate and large group. Thus, the difference after tuning these parameters become

larger for MapReduce jobs.

In conclusion, all the aspects can bring positive effects for MapReduce jobs through

our experiments. The average optimal improvement rates are 10.65% for resource uti-

lization,19.18% for input splits and 7.65% for map-side parameters. Based on that, we

can provide the following suggestions that: for the users who are running the MapReduce

WordCount or related workloads:

(1) Reducing the memory and vcores to a small value for both map and reduce tasks

can dramatically improve the MapReduce efficiency.

(2) The I/O related parameters for MapReduce can slightly improve the efficiency and

smaller value shows better performance.

(3) Enlarging the input splits is a good strategy when running the WordCount and the

larger value can strongly affect the efficiency especially for big datasets.

For Spark jobs, through our experiments we can find that: resource utilization, paral-

lelism can improve the efficiency while the input splits can reduce the efficiency. Also, the

average optimal rates for different aspects are: 16.68% for resource utilization, -25.45%

for input splits and 21.75% for parallelism. Thus, we can give the suggestion that for the

users who run Spark WordCount or related workloads:

(1) The small executors with large memory and vcores can be the best strategy compared

to other settings.

(2) Input Splits should not be considered when processing the aggregation jobs.

(3) The parallelism can improve the Spark job efficiency obviously. But the value of the

parallelism should be decided based on the job itself.
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6.2 K-means

For k-means or iterative workloads, Spark shows its strength with all the persistence

strategies compared to MapReduce jobs. Take DISK ONLY strategy into consideration,

the original difference between Spark and MapReduce is huge when processing small

datasets, but the gap narrows when the datasets grow larger. Finally, they share similar

performance when the datasets reach to 150GB. Thus, we can conclude that MapReduce

is good at handling larger iterative jobs while Spark are competent for all the sizes of jobs.

Regarding Spark MEMORY ONLY strategy, the results show that the difference be-

tween DISK ONLY strategy and MEMORY ONLY strategy is not obvious when the

dataset is small. However, it becomes more and more clear with the datasets increase. Be-

sides, the difference between MapReduce and MEMORY ONLY strategies is stable which

means the gap is not narrow when the datasets grow. Thus, we can conclude that Spark

MEMORY ONLY strategy is better than MapReduce and Spark DISK ONLY strategies

from all the aspects.

Considering the MEMORY AND DISK strategy for Spark, the results show that the

efficiency becomes higher with the percentage of memory increases and the gap becomes

more and more obvious when the sizes of the datasets grow. This situation happens for

both small and intermediate datasets. Also, we can find that the time when the biggest

drop happens which represent insufficient memory appears earlier when the datasets grow.

For intermediate and small datasets, the biggest drop happens when the low percentage

of memory are used. Then, the drop appears at the higher percentage and finally happens

at the biggest percentage. It shows that the situation of insufficient memory becomes

more and more significant when the datasets grow. Thus, we can conclude that memory

should be recognized as an important resource to allocate to ensure the efficiency of the

Spark jobs.

The last part is all about the Spark persist strategies. The results illustrate that the

utilization of memory can strongly affect the job efficiency since the difference between

the worst and the best performance of MEMORY AND DISK strategy is clear. Also,

DISK ONLY strategy is among the best and worst performance which means that the

bad memory utilization may slower than saving all the data on disks. Besides, there

is an obvious gap between MEMORY ONLY strategy and best performance of MEM-

ORY AND DISK which can give us a clear idea that how strong the MEMORY ONLY

strategy can be.

In conclusion, memory is the most important resource for Spark jobs to allocate. It can

not only reduce the execution time dramatically but also ensure the job efficiency. Also,

Spark is a better option compare to MapReduce from all the aspects when processing the

iterative tasks. Thus, we propose our suggestions that:
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(1) Without considering the resource utilization, MEMORY ONLY strategy is the best

option to process the iterative tasks.

(2) When the memory is not enough to save all the intermediate data, MEMORY AND DISK

strategy can be utilized to enhance the scalability. But the percentage of memory

must be high to ensure the efficiency.

(3) Spark is better than MapReduce even with the DISK ONLY strategy. When the

memory resource is too limited, DISK ONLY strategy can be the second choice to

make the job more efficient.

6.3 TeraSort

For TeraSort or similar workloads, MapReduce presents its advantages considering the

number of reduce tasks and input splits while Spark shows higher efficiency after config-

uring the shuffle-related parameters. For the jobs with the default settings, MapReduce

is slightly faster at the beginning and the gap becomes larger when the datasets grows.

Besides, when we take the number of reduce tasks into consideration, it can strongly affect

the efficiency of the MapReduce jobs and the improvement rates even reach to 45%. Also,

the most obvious improvement happens when processing the intermediate datasets. For

Spark jobs, although the improvements rates are not as obvious as MapReduce jobs, the

parameters related to the amount of reduce tasks can bring steady improvement for all the

datasets especially for small datasets. In addition, the best performance for MapReduce

happens when the jobs with less reduce tasks while it happens when the jobs with more

reduce tasks for Spark.

Regarding to the input splits, MapReduce and Spark show different ranges and degree

when tuning these parameters. For MapReduce, the best period is between 100GB and

350GB and the improvement rates are around 25%. For Spark, the period is between

100GB and 300GB which can bring 10% improvement. Also, the biggest difference hap-

pens when processing large datasets: the parameters related to MapReduce can hardly

bring any improvement to the jobs while Spark parameters can provide around 10% im-

provement for large datasets. Besides, the optimal value of input splits for MapReduce

may between small and intermediate while it should be a small value for Spark jobs.

Considering the parameter related to the shuffle process, MapReduce jobs present a

compromise situation: the parameters can improve and decrease the efficiency for the

jobs compared to the benchmark. Based on the situation, we can still find that setting

the value slightly bigger can improve the efficiency which is about 10% for intermediate

datasets. On the contrary, Spark parameters shows a steady increase for all the datasets

and the improve rates are around 20%. Also, the larger values are the more efficient the

job will be.
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In conclusion, MapReduce is suitable for processing all the sizes of the shuffle jobs

which can provide great efficiency compared to Spark. Also, the number of reduce tasks

and the input splits can bring positive effects to the jobs while the reduce-side parameters

can help under some certain circumstances. Besides, the best improvement rates from the

amount of reduce tasks and the input splits are 45.64% and 49.54%. These values can be

defined as huge improvement and strongly affect the efficiency of the jobs. Thus, based

on the findings, we propose some suggestions that:

(1) Without considering any parameters settings, MapReduce should be the first choice

when processing the shuffle jobs.

(2) The number of reduce tasks can strongly affect the efficiency of the shuffle jobs and

thus should be considered. Also, allocating more resource to the reduce tasks with

few numbers is the best strategy for MapReduce jobs.

(3) The default input splits should be set larger to improve efficiency. The value should

not be too large.

(4) Reduce-side parameters should be used with caution when processing the shuffle

jobs.

For Spark, although the efficiency is not as good as MapReduce, it is still a good

option when processing the shuffle jobs and the difference is not obvious. Besides, all

the aspects can improve the efficiency and the best improvement rates are 38.4%, 25.65%

and 30.42% for the number of reduce tasks, input splits and shuffle-related jobs. Thus,

the parameters can bring much improvement for the jobs either. Based on the facts, we

propose our suggestions that:

(1) Spark jobs have strong flexibility when applying different parameters for shuffle jobs.

(2) The number of reduce tasks can bring positive effects for the shuffle jobs and the

suggested value should be larger.

(3) Setting the input splits a little bit larger can obviously improve the job efficiency.

But the value should not be too large.

(4) Shuffle-related parameters can improve the efficiency a lot and thus should be taken

into consideration.
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Chapter 7

Conclusion

7.1 Conclusion

In our research, we have talked about how to process the large scale of data with the exist-

ing technique. A modified approach was proposed to put different workloads into practice

and deploy them on the cluster model. The new approach offers a complete process which

includes data preparation, job execution and status monitoring and provides two ways

to implement each workload. Furthermore, the same method can help us implement any

workloads and monitor their life cycle from web UI. The major components of our ex-

periments were comparing the performance difference between Hadoop MapReduce and

Spark with three existing workloads. The results show that Spark is superior to Hadoop

when processing aggregation and iterative jobs and it is more sensitive and efficient when

configuring the parameters related to the workloads. On the contrary, Hadoop MapRe-

duce shows higher efficiency when processing the shuffle jobs while the improvement rates

keeps stable when facing different parameters.

A new parameter tuning method was proposed and was able to help the users optimize

their job efficiency through any aspects they want. By utilizing the web UI from Ambari,

we were able to set and monitor any parameters clearly.

The instruction mentioned in Chapter 3 should be followed to conduct our experiments.

The users must download the Hibench Suite package and install it on their own linux

system properly. Then, following the steps, they can easily implement any jobs they want

and monitor them through the Ambari UI.

7.2 Future work

In this section, we are talking about the future work of our research. There are four

aspects that may be consider or improved in the future: the size of the cluster, the types

of our jobs, evaluation aspects and related parameters.
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7.2.1 Size of the cluster

The first aspect is about the size of our cluster. Since our cluster is small which only

contains 10 nodes, the ranges for aggregation and shuffle jobs are between 50GB and

500GB while the iterative jobs are between 50GB to 150GB. Although the size may big

enough to simulate the situation of our daily life, we still hope to transfer our experiments

to a larger cluster to see whether there are some difference. Also, we hope to enlarge the

sizes our datasets to find out more interesting phenomenon.

7.2.2 Types of our jobs

The second aspect is the types of workloads. There are three types of workloads included

in our research and all of them are from HiBench. Also, HiBench provides more than 15

kinds of jobs for the users to test the performance of the cluster. Thus, we hope to put

more workloads into our experiments to present more aspects of our cluster.

7.2.3 Evaluation aspects

For our experiments, we utilize the execution time as the main character to present the

job efficiency. Also, the execution time is from the average value after running the jobs

for 5 times. Since Ambari UI provides many aspects of the jobs which includes resource

utilization and the internet connection, we hope to take more aspects into consideration

to find out the details of our jobs. Also, we hope to improve the accuracy of our jobs by

running them for more times.

7.2.4 Parameter

Based on the documents online, we select several parameters for different jobs that most

likely to affect the job efficiency. However, MapReduce and Spark provide many parame-

ters from all the aspects of the process to enhance the job efficiency. Thus, we are going to

put more parameters into our experiments to see whether they can affect the job efficiency

for MapReduce and Spark.
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Appendix A

Tables

The tables in the appendix are the results of our experiments in details. Table 8.1 and 8.2

represent the results of WordCount in MapReduce and Spark. Table 8.3 represents the

results of k−means in both while Table 8.4 and 8.5 illustrates the results of TeraSort. Since

we did each experiment for five times, the red numbers represent the average execution

time followed by the five specific execution time which colors are black. Also, we calculate

the standard deviation with STDEVA function from excel and put it behind the average

execution time. Besides, the outlier which means excess 20% of the average execution

time was canceled by the cross sign.

Hadoop 50G 100G 150G 200G 250G 300G 350G 400G 450G 500G

Resource

utilization

7G 1vcore:map

14G1cvore:reduce

(default)

212

±32

407

±41

600

±63

790

±67

979

±76

1170

±81

1364

±59

1549

±69

1769

±205

1934

±125

248 479 705 902 925 1195 1325 1646 2065 2065

245 401 600 766 932 1027 1322 1552 1670 1970

185 384 547 801 936 1203 1318 1454 1870 2007

194 382 591 741 1104 1222 1415 1527 1529 1745

188 389 557 740 998 1203 1440 1566 1711 1883

4G 1cvore: map

8G1vcore:reduce

192

±11

369

±18

538

±14

716

±11

887

±21

1054

±13

1226

±36

1400

±99

1587

±27

1769

±75

189 370 537 710 889 1061 1230 1407 1562 1749

194 369 539 715 887 1060 1229 1411 1560 1748

177 368 542 725 901 1052 1170 1502 1595 1828

208 394 555 702 906 1033 1230 1237 1626 1855

192 344 517 728 852 1064 1271 1443 1592 1665

5G 1cvore: map

10G 1vcore:reduce

197

±8

378

±15

559

±24

717

±40

898

±54

1065

±66

1242

±84

1445

±83

1625

±84

1805

±90

199 395 573 691 954 1130 1335 1497 1665 1861

200 385 ��715 760 947 1140 1217 1318 1700 1876

207 386 580 756 841 1037 1117 1413 1688 1693

191 358 526 709 846 995 1244 1531 1557 1874

188 366 557 669 902 1023 1297 1466 1515 1721

6G 1vcore: map

12G 1vcore:reduce

201

±29

392

±43

581

±48

755

±62

936

±67

1114

±93

1307

±109

1505

±87

1665

±131

1865

±138

218 452 619 831 1045 1234 1446 1636 1848 2050

219 421 625 737 940 1138 1247 1439 1543 1953

156 362 532 731 931 975 1352 1441 1631 1837

188 348 602 675 888 1117 1159 1457 1748 1701

224 377 527 801 876 1106 1331 1552 1555 1784

8G 2vcores: map

16G 2vcores:reduce

235

±45

444

±84

653

±91

867

±60

1078

±84

1464

±147

1507

±120

1707

±147

1907

±123

2115

±115
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300 575 778 958 1149 1434 1523 1706 1983 2086

202 478 678 862 1048 1535 1632 1905 2080 2176

263 394 661 870 945 1223 1601 ��2308 1826 2283

209 406 526 789 1137 1595 1337 1552 1777 2029

201 367 622 856 1111 1533 1442 1665 1869 2001

9G 2vcores: map

18G 2vcores:reduce

256

±40

506

±65

737

±87

981

±112

1231

±51

1460

±56

1701

±32

1940

±113

2192

±94

2417

±170

304 572 871 1157 1250 1529 1716 2000 2291 2687

279 574 774 959 1258 1418 1728 1901 2183 2482

207 493 685 864 1148 1444 1729 2102 2087 2281

224 436 656 914 1279 1402 1665 1809 2285 2334

266 455 699 1011 1220 1507 1667 1888 2114 2301

10G 2vcores: map

20G 2vcores:reduce

259

±47

507

±56

744

±89

983

±86

1225

±30

1470

±54

1700

±59

1933

±127

2186

±123

2418

±48

225 603 881 881 1212 1503 1788 2118 2118 2385

307 492 695 1015 1210 1499 1691 1888 2088 2381

312 502 718 918 1192 1525 1697 1885 2085 2405

235 471 649 1100 1245 1410 1623 1782 2332 2419

216 467 777 1001 1266 1413 1701 1992 2307 2500

Input Splits:

256M
205

±36

364

±49

541

±66

712

±83

896

±64

1047

±43

1223

±58

1380

±116

1537

±90

1720

±32

233 402 601 630 852 1054 1252 1402 1660 1701

228 323 557 730 965 1052 1261 1442 1593 1693

167 411 599 621 850 1032 1258 1227 1473 1706

233 ��466 498 777 845 989 1123 1305 1438 1772

164 320 450 802 968 1108 1221 1524 1521 1728

512M
168

±22

360

±49

531

±63

690

±54

824

±43

1006

±22

1140

±50

1312

±77

1448

±94

1631

±47

198 345 567 698 802 996 1172 1364 1574 1656

183 426 601 702 806 991 1173 1368 1474 1655

160 387 489 598 797 1000 1178 1371 1477 1666

155 344 552 741 814 999 1065 1213 1333 1627

144 298 446 711 901 1044 1112 1244 1382 1551

1024M
221

±47

370

±46

525

±47

688

±55

841

±45

1022

±27

1132

±51

1279

±123

1429

±56

1572

±48

267 418 569 603 840 998 1157 1383 1444 1533

274 317 582 692 831 1018 1195 1385 1448 1539

168 326 477 672 839 994 1148 ��1650 1473 1550

197 385 501 744 784 1045 1072 1147 1331 1648

199 404 496 729 911 1055 1088 1201 1449 1590

Map-Side

parameters

default(2047,100)

i/o.sort.mb=1024

i/o.sort.factor=50

202

±55

394

±49

574

±47

753

±69

946

±30

1130

±35

1314

±62

1486

±56

1674

±89

1853

±24

238 471 612 694 959 1159 1304 1451 1604 1845

141 362 501 695 925 1155 1412 1415 1612 1832

144 367 600 732 915 1153 1313 1482 1613 1831

255 415 552 857 990 1096 1240 1554 1759 1880

232 355 605 787 941 1087 1301 1528 1782 1877

(1536,75)
206

±35

400

±46

592

±23

771

±65

963

±47

1155

±33

1326

±91

1531

±34

1713

±92

1891

±47

240 468 598 798 924 1165 1393 1558 1610 1843

248 426 605 705 930 1164 1234 1563 1719 1846

187 375 599 699 933 1097 1392 1501 1632 1933

182 358 551 841 1011 1167 1391 1488 1826 1890

173 373 607 812 1017 1182 1220 1545 1778 1943

(512,25)
200

±34

372

±43

560

±36

735

±57

922

±29

1091

±51

1266

±73

1461

±64

1608

±55

1769

±52

230 345 602 770 921 1128 1343 1458 1603 1780

194 447 569 676 901 1033 1348 1563 1701 1821

162 360 533 679 973 1059 1202 1396 1588 1782

240 344 582 806 907 1077 1216 1466 1556 1682

174 364 514 744 908 1158 1221 1422 1592 1780

Table A.1: The results of Wordcount in MapReduce
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Spark 50G 100G 150G 200G 250G 300G 350G 400G 450G 500G

Resource utilization

50 executors 8G memory 4 vcores
56

±8

83

±13

120

±16

145

±24

189

±14

201

±29

243

±30

266

±21

285

±27

333

±17

66 ��105 124 170 203 222 290 281 304 347

59 95 135 166 176 224 248 283 266 345

�75 93 102 124 197 167 218 230 308 342

52 70 134 148 171 171 244 265 247 308

47 74 105 117 198 221 215 271 300 323

60 7 4
56

±11

94

±5

120

±18

166

±12

200

±8

220

±9

276

±23

297

±14

316

±16

371

±35

66 102 120 167 198 225 250 293 306 352

69 93 137 155 192 223 253 288 298 415

45 95 103 153 202 220 292 282 329 338

48 87 138 177 212 204 301 318 312 349

52 93 102 178 196 228 284 304 335 401

70 6 3
58

±10

93

±11

114

±17

169

±10

213

±20

254

±18

286

±5

327

±38

355

±41

410

±66

�74 94 137 162 205 267 286 341 305 347

68 102 113 163 202 228 283 312 367 481

52 104 122 172 197 246 287 387 321 345

48 78 94 185 214 274 294 299 405 401

64 87 104 163 247 255 280 296 377 476

80 5 3
61

±8

97

±15

127

±17

170

±7

209

±11

249

±21

272

±16

318

±33

328

±37

379

±25

71 99 134 167 212 236 263 306 308 366

50 100 148 165 205 225 266 312 295 405

61 84 130 180 203 248 263 291 344 356

57 120 101 174 198 281 267 305 307 360

66 82 122 164 227 255 301 376 386 408

90 4 2
63

±8

95

±14

127

±14

162

±7

184

±22

218

±11

251

±15

290

±23

300

±23

353

±14

56 112 128 171 198 233 254 289 325 364

71 79 118 165 201 226 253 326 308 351

72 96 137 157 156 210 273 268 315 344

57 83 108 164 200 214 232 296 274 336

59 105 144 153 165 207 243 271 278 370

100 4 2
60

±11

97

±14

132

±5

161

±14

193

±12

216

±14

247

±15

287

±8

317

±14

341

±33

74 104 130 174 200 233 268 289 303 355

53 116 134 151 177 205 243 294 312 380

45 87 139 178 204 230 237 287 307 302

67 81 126 149 200 203 256 292 338 310

61 97 131 153 184 209 231 273 325 358

Input splits

256M
70

±8

119

±12

146

±18

202

±34

260

±36

310

±20

341

±33

365

±35

404

±26

454

±39

78 138 165 230 268 ��416 324 330 396 467

68 120 141 246 299 331 369 408 438 ��606

62 119 157 190 225 301 304 329 424 435

79 107 117 166 287 322 383 386 385 502

63 111 150 178 221 286 325 372 377 412

512M
78

±9

115

±8

187

±21

216

±22

291

±33

305

±27

340

±41

353

±31

383

±33

464

±37

80 ��153 158 236 336 276 344 314 401 456

86 107 200 244 247 304 407 327 353 513

87 125 210 200 277 281 316 367 341 490

66 109 175 197 293 328 298 389 411 428

71 119 192 203 302 336 335 368 409 433

1024M
90

±16

160

±16

203

±24

249

±20

277

±37

327

±27

355

±30

363

±18

399

±28

480

±31

94 188 192 251 311 296 336 337 429 480

77 156 222 242 238 316 357 361 360 440

117 151 234 260 251 360 321 360 417 490

83 158 190 219 321 312 399 386 407 465

79 147 177 273 264 351 362 371 382 525

Parallelism

100
54

±9

79

±12

113

±13

134

±15

176

±9

199

±17

230

±15

277

±14

287

±20

309

±25
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59 95 116 151 163 212 233 269 290 337

66 69 132 137 183 215 240 274 280 336

45 74 105 126 186 192 236 273 318 286

52 89 99 112 177 174 238 301 263 297

48 68 113 144 171 202 203 268 284 289

200
60

±8

84

±9

108

±9

151

±10

183

±23

201

±21

234

±16

265

±25

286

±9

328

±14

70 90 103 153 213 230 243 272 289 343

55 84 111 156 189 213 243 302 292 335

67 72 121 139 151 174 207 237 296 319

52 96 98 163 188 195 246 263 274 335

56 78 107 144 174 193 231 251 279 308

300
60

±7

93

±5

108

±13

140

±10

189

±2

195

±26

239

±11

275

±9

295

±19

347

±12

71 95 130 145 189 220 257 269 286 349

52 94 108 135 189 195 229 282 318 345

58 99 97 152 187 222 242 285 286 351

63 90 101 127 192 167 230 263 311 329

56 87 104 141 188 171 237 276 274 361

400
62

±6

88

±13

114

±9

146

±16

169

±13

207

±19

248

±13

284

±14

292

±13

326

±18

65 99 126 159 187 236 244 274 295 352

59 100 110 127 160 215 245 285 296 324

71 73 107 148 171 192 242 272 297 335

57 92 122 132 154 203 271 308 269 306

58 76 105 164 173 189 238 281 303 313

500
60

±9

86

±12

119

±7

144

±17

173

±22

205

±12

240

±14

278

±5

286

±13

342

±13

70 90 130 124 179 218 244 281 288 350

69 77 112 155 209 212 250 277 300 343

52 104 120 167 160 208 239 283 296 330

55 85 119 143 152 189 250 269 279 359

54 74 114 131 165 198 217 280 267 328

Table A.2: The results of Wordcount in Spark

50G 75G 100G 125G 150G

MapReduce
591

±16

835

±23

1119

±36

1337

±32

1630

±22

607 860 1180 1382 1662

587 847 1098 1326 1637

593 822 1121 1357 1607

602 844 1102 1311 1611

566 802 1094 1309 1633

DISK ONLY
194

±19

267

±28

646

±25

944

±62

1554

±22

222 ��338 666 836 1579

177 298 621 974 1545

179 235 678 992 1566

188 255 639 966 1521

204 280 626 952 1559

MEMORY ONLY
73

±13

117

±14

140

±11

198

±18

561

±44

74 136 155 215 523

67 104 124 187 615

95 126 144 199 580

69 117 137 174 510

60 102 140 215 577

(MEMORY AND DISK)

50%
166

±17

262

±29

725

±28

1528

±177

1888

±187

186 232 717 1248 1672

143 250 766 1496 ��2465

177 244 ��977 1544 ��3462

168 299 711 1650 1995

156 285 706 1702 1997

60%
138

±14

240

±22

600

±16

1140

±58

1660

±46
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121 243 597 1057 1710

128 266 625 1142 1619

155 251 606 1113 1659

145 208 588 1199 1702

141 232 584 1189 1610

70%
125

±13

221

±15

572

±20

1020

±135

1607

±261

118 227 581 975 1323

137 214 550 ��1239 ��2183

142 198 603 1220 1885

115 234 553 923 1762

113 232 573 962 1458

80%
117

±8

202

±16

454

±46

836

±64

1229

±48

127 226 458 834 1299

122 207 522 926 ��1772

105 181 468 868 1189

114 199 412 778 1207

117 197 410 774 1221

90%
111

±9

186

±6

387

±58

693

±25

901

±122

116 189 ��481 702 764

101 188 369 688 ��660

124 193 ��531 723 996

110 177 452 697 833

104 183 340 655 1011

30 executors with 8G memory and 2G memory overhead

Table A.3: The results of k−means

Hadoop 50G 100G 150G 200G 250G 300G 350G 400G 450G 500G

Resource utilization

14G 1vcore:reduce

30 :reduce number

(default)

190

±26

346

±20

619

±34

987

±88

1076

±100

1779

±165

1919

±57

2011

±127

2482

±195

2779

±168

210 364 630 1062 986 1800 1946 1902 2249 2600

223 350 655 1100 953 2020 1969 1860 2310 2704

166 362 642 904 1130 1795 1907 2069 2692 2820

186 315 572 943 1183 1564 1948 2167 2631 2992

165 339 596 926 1128 1716 1825 2057 2528 ��3496

10G 1vcores: reduce

40:reduce number

230

±30

422

±78

847

±37

1268

±55

1471

±30

1786

±114

2186

±91

2678

±140

2886

±231

2914

±364

261 509 870 1241 1468 1617 2270 2809 2611 2711

246 501 861 1223 1421 1765 2053 2652 2715 2505

193 370 887 1292 1482 1821 2197 2478 2892 3392

220 338 799 1353 1501 1794 2143 2815 3027 2777

174 392 818 1231 1483 1933 2267 2636 3185 3185

12G 1vcores: reduce

35:reduce number

221

±36

405

±22

745

±39

1229

±123

1315

±53

1741

±55

2075

±36

2265

±233

2503

±71

2795

±223

255 377 729 1339 1339 1784 2101 2414 2466 2924

174 424 719 1168 1361 1777 2121 2530 2444 3075

259 430 813 1381 1299 1744 2073 2337 2622 2834

211 394 722 1104 1230 1752 2043 2040 2510 2540

206 400 742 1153 1346 1648 2037 2004 2473 2602

16G 2vcores: reduce

25:reduce number

214

±9

374

±55

582

±20

825

±21

1079

±77

1350

±130

1611

±148

2024

±56

2461

±70

2723

±299

218 408 583 807 1030 1272 1515 2067 2339 3043

223 419 595 823 1017 1253 1530 2029 2494 2876

218 414 580 805 1023 1248 1474 2079 2468 2399

210 315 602 835 1145 1445 1811 2008 2500 2408

201 314 550 855 1180 1532 1725 1937 2504 2889

18G 2cvore: reduce

20:reduce number

205

±15

327

±24

556

±49

813

±44

1023

±56

1223

±170

1457

±222

1734

±58

2058

±72

2412

±75

221 328 602 858 1096 1320 1636 1634 2062 2520

218 343 575 846 1045 1343 1650 1756 2067 2439

201 357 594 790 946 1037 1227 1737 2171 2350

185 304 489 749 998 1040 1207 1779 1990 2335
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200 303 520 822 1030 1375 1565 1764 2000 2416

Input Splits:

256M
143

±6

316

±16

486

±44

705

±46

930

±101

1217

±70

1680

±82

1946

±241

2393

±95

2705

±162

147 295 457 679 1074 1328 1607 2139 2420 2938

134 303 454 663 ��1194 1233 1777 ��2463 2530 2779

141 332 461 713 878 1178 1587 1762 2411 2700

150 328 558 690 922 1202 1740 2168 2298 2560

143 322 500 780 846 1144 1689 1715 2306 2548

512M
187

±35

269

±42

466

±24

660

±90

903

±87

1255

±52

1514

±118

2170

±85

2561

±224

2837

±175

191 316 458 637 ��1140 1281 1674 2188 2297 3081

142 251 435 545 994 1165 1343 2168 2746 2896

168 310 463 620 961 1284 1532 2302 2830 2847

234 220 474 771 824 1290 1521 2100 2520 2751

200 248 500 727 833 1255 1500 2092 2412 2610

1024M
182

±19

319

±33

540

±61

705

±64

1042

±66

1304

±45

1560

±139

1969

±86

2780

±143

2993

±217

��245 340 640 744 1004 1320 1430 1867 2977 2977

192 338 486 713 965 1367 1463 2087 2802 2802

204 349 549 616 1020 1287 1690 2011 2622 2839

169 276 520 671 1120 1301 1487 1972 2660 2996

163 292 505 781 1101 1245 1730 1908 2839 3351

Reduce-Side parameters

default(100,30)

mapreduce.reduce.

shuffle.parallelcopies =60

mapreduce.task.io.

sort.factor =200

184

±24

415

±58

612

±41

894

±122

1169

±67

1719

±64

1911

±206

2394

±169

3032

±260

3429

±88

219 342 568 817 1087 1653 1772 2585 2847 3439

159 462 650 780 1238 1817 2208 2328 3327 3302

171 ��522 660 1050 1110 1681 2039 2556 2809 3414

195 395 582 999 1190 1743 1716 2302 3303 3440

176 461 600 824 1220 1701 1820 2199 2874 3550

(150,45)
176

±6

372

±24

562

±62

813

±115

1175

±64

1501

±126

1998

±45

2267

±103

2880

±85

3594

±237

186 332 644 965 1160 1460 2070 2216 2807 3204

171 380 612 820 1108 1375 1947 2161 2862 3567

175 379 522 877 1252 1408 1994 2334 2890 3695

171 374 529 721 1230 1592 2000 2211 3020 3673

177 395 503 682 1125 1670 1979 2413 2821 3831

(75,20)
185

±19

350

±15

608

±59

963

±137

1133

±52

1482

±106

1996

±114

2273

±221

2785

±136

3109

±148

168 370 577 844 1168 1465 1934 2555 2711 3119

163 358 529 905 1131 1641 2071 2365 2762 3349

187 349 662 1103 1194 1396 2145 1967 3016 3092

206 334 601 845 1112 1525 1855 2312 2770 3027

201 339 671 1118 1060 1383 1975 2166 2666 2958

(50,15)
189

±12

358

±26

644

±97

871

±61

1242

±134

1619

±89

1901

±144

2495

±72

2718

±160

2884

±379

187 345 572 842 1067 1712 1987 2439 2564 3305

170 344 572 804 1253 1479 1972 2449 2871 2714

192 337 770 931 1177 1606 2037 2595 2857 3279

200 362 577 838 1430 1676 1820 2547 2763 2511

196 402 729 940 1283 1622 1689 2445 2535 2611

Table A.4: The results of Terasort in MapReduce

Spark 50G 100G 150G 200G 250G 300G 350G 400G 450G 500G

Resource utilization

(70 executors

6G memory

3 vcores)

Reducer number:20
287

±15

584

±54

961

±118

1261

±139

1712

±51

2211

±191

2584

±84

3113

±136

3258

±185

3656

±165

303 527 1011 1450 1736 2267 2510 2987 2969 3603
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282 564 815 1116 1657 2497 2655 2949 3179 3874

290 619 881 ��1610 ��2167 2011 2483 3243 3384 3465

265 550 1120 1256 1684 2213 2667 3220 3348 3772

295 660 978 1222 1771 2067 2605 3166 3410 3566

25
253

±38

505

±36

899

±68

1183

±84

1588

±177

2043

±148

2467

±92

2651

±82

2869

±131

3096

±115

283 549 871 1261 1366 1938 2318 2573 3097 3284

210 532 802 1112 1565 2102 2506 2724 2821 3077

212 460 918 1082 1477 1839 2558 2552 2843 2983

277 481 918 1195 1757 2180 2448 2696 2819 3031

283 503 986 1265 1775 2156 2505 2710 2765 3105

30
239

±11

496

±43

857

±66

1093

±111

1444

±126

1826

±79

2067

±73

2445

±184

2794

±71

3042

±192

234 475 764 1180 1269 1811 2158 2343 2717 3138

246 473 931 1222 1355 1859 2049 2771 2768 3097

225 466 869 1089 1537 1859 2127 2349 2856 3226

236 570 820 950 1502 1697 2004 2411 2749 2724

254 496 901 1024 1557 1904 1997 2351 2880 3025

35
231

±16

435

±58

677

±68

1051

±89

1239

±87

1764

±77

1947

±215

2019

±115

2529

±83

2839

±81

240 500 743 1046 1099 1633 2236 2054 2563 2912

212 436 603 912 1283 1787 1812 2165 2656 2938

��292 367 697 1086 1216 1802 2117 2040 2501 2810

247 484 734 1155 1322 1766 1750 1987 2449 2764

225 388 608 1056 1275 1832 1820 1849 2476 2771

40
232

±26

425

±69

619

±71

984

±104

1222

±156

1531

±107

1698

±193

1967

±155

2475

±82

2750

±118

236 458 699 930 1387 1543 1887 2159 2480 2599

195 481 555 1093 1359 1520 1643 2090 2546 2790

232 351 658 901 1024 1703 1521 1799 2417 2892

269 485 649 896 1229 1468 1917 1945 2371 2807

228 350 534 1100 1111 1421 1522 1842 2561 2662

Input splits

(reducer number:30)

256M
266

±24

457

±32

682

±81

919

±61

1371

±44

1612

±191

2052

±136

2147

±158

2507

±221

2928

±127

��201 507 717 ��1130 1366 1891 2210 2060 2663 3112

278 421 766 913 1398 1708 2117 2352 2780 3002

234 456 606 988 1296 1558 2105 2280 2456 2848

264 443 735 935 1392 1407 1872 2003 2422 2798

288 458 586 840 1403 1496 1956 2040 2214 2880

512M
252

±20

491

±33

792

±75

1101

±61

1451

±162

1845

±133

2072

±152

2188

±93

2806

±220

3228

±127

255 518 723 1114 1403 1954 2285 2332 2713 3178

233 444 742 1011 1233 1967 2105 2113 2475 3122

284 503 ��1050 1075 1409 1639 1863 2194 2904 3140

242 470 816 1172 1553 1810 2076 2100 2888 3432

246 520 887 1133 1657 1855 2031 2201 3050 3268

1024M
297

±14

532

±35

848

±88

1215

±135

1465

±117

1895

±136

2309

±122

2695

±248

2989

±297

3151

±283

279 482 978 1083 1392 1831 2278 2912 3193 3371

289 542 789 1238 1525 1729 2225 2740 3374 3389

296 569 753 1332 1323 1853 2210 2949 2966 3310

307 555 834 1067 1624 2070 2320 2436 2735 2846

314 512 886 1355 1461 1992 2512 2438 2677 2839

Shuffle parameters

spark.shuffle.

file.buffer=16k

spark.reducer.

maxSizeInFlight=24M

233

±13

501

±33

849

±115

1135

±120

1509

±84

1610

±161

2131

±47

2486

±203

3007

±119

3080

±147

247 478 729 1036 1517 1819 2102 2795 2878 3297

243 470 ��1070 1002 1446 1668 2112 2452 2957 3017

235 503 798 1287 1618 1649 2158 2258 3004 3004

219 500 998 1216 1555 1392 2083 2548 2995 3155

221 554 871 1134 1409 1522 2200 2377 3201 2927

(32k,48M)
212

±37

492

±41

750

±87

1084

±120

1496

±102

1565

±112

2006

±284

2446

±245

2621

±140

2796

±217

232 508 698 1213 1467 1694 1963 2161 2749 3159

248 522 730 968 1410 1413 2285 2299 2610 2839



119

171 420 885 1214 1411 1655 2307 2796 2772 2662

236 507 661 1003 1650 1531 1673 2564 2523 2675

173 503 776 1022 1542 1532 1802 2410 2451 2645

(64k,96M)
238

±31

471

±58

744

±32

920

±89

1289

±82

1439

±190

1909

±100

2138

±180

2434

±92

2731

±144

198 536 730 907 1323 1604 1986 2360 2443 2742

214 474 785 1000 1179 1682 1762 2184 2547 2881

270 380 718 1018 1366 1275 1882 2238 2348 2840

244 462 772 808 1352 1289 2019 1935 2497 2518

264 503 715 867 1225 1345 1896 1973 2335 2674

(128k,192M)
193

±35

444

±29

673

±79

947

±123

1191

±101

1400

±65

1675

±135

1990

±210

2410

±173

2634

±260

232 422 727 1087 1271 1491 1672 2062 2219 2335

229 481 617 1007 1283 1371 1901 2240 2355 2702

156 465 786 992 1035 1390 1635 2098 2302 2511

179 441 613 775 1155 1318 1623 1818 2530 2588

169 411 622 874 1211 1430 1544 1732 2644 3034

Replication of Spark jobs =1

Table A.5: The results of Terasort for Spark


