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Abstract

Nowadays, big data has become a hot topic around the world. Thus, how to store,
process and analysis this big volume of data has become a challenge to different companies.
The advent of distributive computing frameworks provides one efficient solution for the
problem. Among the frameworks, Hadoop and Spark are the two that widely used and
accepted by the big data community. Based on that, we conduct a research to compare
the performance between Hadoop and Spark and how parameters tuning can affect the
results.

The main objective of our research is to understand the difference between Spark
and MapReduce as well as find the ideal parameters that can improve the efficiency.
In this paper, we extend a novel package called HiBench suite which provides multiple
workloads to test the performance of the clusters from many aspects. Hence, we select
three workloads from the package that can represent the most common application in our
daily life: Wordcount (aggregation job),TeraSort (shuffle/sort job) and K-means (iterative
job). Through a large number of experiments, we find that Spark is superior to Hadoop
for aggreation and iterative jobs while Hadoop shows its advantages when processing the
shuffle/sort jobs. Besides, we also provide many suggestions for the three workloads to
improve the efficiency by parameter tuning. In the future, we are going to further our
research to find out whether there are some other factors that may affect the efficiency of
the jobs.

Keywords: Big Data, Spark, Hadoop, HiBench suite, parameters tuning
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Chapter 1

Introduction

Nowadays, large scale of data is generated by different users around the world. These
data is under different formats and most of them are unstructured. In addition, the ad-
vent, of many new technologies bring much larger volumes of complex data which includes
social media data, machine data and system data [1]. Thus, how to process and analyse
the growing data becomes a challenge to many companies. To handle the problem, dis-
tributed computing is proposed and becomes the most efficient and fault-tolerant method
for companies to save and process the massive data. Among this new group, Hadoop and
Spark are the most commonly used cluster computing tools that provide the users various
functions with simple APIL.

Hadoop is an open source cluster computing framework based on Java [2]. It is a
programming model that provides users with analysis and storage infrastructure [1]. Its
cluster includes one master node to assign and monitor tasks and multiple data nodes
to save and conduct parallel computing. Hadoop adopts master/slave architecture which
means the master node will manage all the data nodes when processing large scale of
data. The cores parts for Hadoop are: MapReduce and HDFS! [3]. HDFS is distributed
file system while MapReduce is a framework used for distributed computing. Hadoop is
a combination of these two.

Spark is designed based on the Hadoop cluster and its purpose is building a program
model that “ fits wider class of applications than MapReduce while maintaining the au-
tomatic fault-tolerance” [3]. It is not only an alternative to the Hadoop framework but
also provides various functions to process the real streaming data. Apart from map and
reduce functions, Spark also support MLib? GraphX and Spark streaming for big data
analysis. Spark chooses Scala as its default language and provides the interfaces in Java
and Python to enhance its scalability. There are two important terms proposed by Spark:
directed acyclic graph (DAG) and Resilient Distributed Datasets(RDD).

!The system to store big volume of data.
2Machine learning library.
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The research included in this thesis conduct experiments that are modified from the
HiBench?, to test the performance of our cluster, facilitate the users to monitor the jobs
as well as give the users enough freedom to modify the parameters they want. These
new experiments make up the drawbacks of different cluster performance application,
by implementing the jobs on our own cluster and simplifying the complex process of
processing large volume of data.

These new experiments are applied to test the efficiency of different jobs under Hadoop
and Spark, where the datasets are repeatedly changing and the different parameters needs
to be set to ensure the job efficiency. The parameters problem is one case that multiple
aspects are required to enhance the job efficiency. To make sure the experiment results
are convincing,each experiment is tested for 5 times to get the average execution time.
Also, we select several parameters from different aspects suggested by MapReduce and
Spark online documents to enhance the correlation to the jobs. All the details of the

experiments can be seen from Ambari UT%.

1.1 Research Objectives

The primary objective of this research is to understand how Spark and MapReduce process
different kinds of jobs, providing them the guide to improve the job efficiency by tuning
parameters from several sides. These new experiments should allow the users to check
any execution results they want and view all the job settings, they will give them a
clear vision of the situation of the jobs and help them make improvements easily. To
test the capabilities of our cluster, different types and sizes of the datasets need to be
created and executed. Through our experiments, we need to present the difference between
MapReduce and Spark as well as clearly show how parameters affect the efficiency. The

objectives of this research are shown below:

1. Propose a method to extend the HiBench workloads to our own cluster.
2. Select three workloads from the HiBench and define them as different types of jobs.

3. Find the related parameters for each type of job and configure the jobs with different

settings.

4. Compare Hadoop and Spark for the performance difference and how the parameters

tuning affect the results.
5. Find the ideal parameters that have positive effects on Hadoop and Spark jobs.

6. Give the suggestions to different types of jobs based on our findings.

3 An open-source package from github to test the performance of clusters.
4The web UT that provides the intuitive and user-friendly function to manage the Hadoop cluster.
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1.2 Significance of our research

This research investigates three types of jobs from the HiBench which are defined as
workloads and shows a modified implementation of the workloads on Spark and Hadoop.
Also, these experiments put parameters tuning and results monitoring into consideration
and thus include all the process of big data processing. Besides, the different sizes of
datasets can simulate the situation of the real-world requirement and therefore provides
us an idea about how to solve our daily problems with Hadoop and Spark.

This research is based on the recent research undertaken by Yassir Samadi [4],he ran
all the HiBench workloads with the default settings. Since HiBench only provides several
parameters under its configuration files and there are only four values to visualize the
performance, we decide to extend it to control several workloads that includes configure
our own settings and monitor the results from different aspects. Our research extends
Yassir Samadi’s research by transferring the workloads to our own cluster and building a
complete process of the jobs for users to test the individual cluster performance. Based
on the research,we can see the difference between Hadoop and Spark jobs clearly and how

parameters can affect the results.

1.3 Scope and limitations

This research is based on the HiBench and thus is applicable to any clusters. However,
since there are some modifications from the source code and configuration files, the users
need to re-compress the jar package and use the command provided on the chapter 4 to
execute the workloads.

The limitations of our research are shown below:

1. The input data is created randomly and may cause some deviation compared to the

real-world situation.

2. The size of our cluster is small containing 10 nodes with 420GB memory and 250

vecores, compared to other’s research.

3. There is strong randomness for our jobs caused by some unavoidable factors like
internet problems or hardware restriction which means the execution time of the

same job fluctuates strongly.

4. Some other factors like CPU consumption or I/O ratio that express the usage of the

cluster resources can be added to evaluate the jobs comprehensively.

5. Only resource utilization, input splits and map/reduce side parameters are consid-

ered into our research.
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1.4 Structure of the Thesis

This thesis begins with an introduction of two relevant distributive computation frame-
works: Hadoop and Spark, both of them are widely used for processing big data. Next,
there is a detailed review on the HiBench package and three types of workloads used in
this thesis. Then, the workflow and the settings of our experiments are discussed that
include the software and hardware settings. On the following chapter is the methodology
which explains the ideas of setting our experiments. Chapter 5 presents the experiment
results and analysis while Chapter 6 summarise our findings and provide the suggestions
based on our experience. Finally, Chapter 7 concludes our research and ends our thesis

with the future work.



Chapter 2

Literature Review

This chapter covers a brief explanation of Hadoop and Spark; how these frameworks work;
Hibench suite; several workloads inside and the strategies for optimization Spark and
Hadoop jobs. Firstly, we are going to introduce the core parts of Hadoop and Spark and
how these two frameworks work. Then, we explain a new term: Hibench which is a package
designed by Intel to test the performance of the Cluster. After a brief explanation of the
HiBench, we are going to have a discuss about this drawbacks and pick several workloads
to study further. Finally, we are going to explain something related to parameters tuning

to improve the efficiency of the workloads and make the conclusion for the chapter.

2.1 Hadoop

For Hadoop, the core parts are MapReduce and HDFS. The former is a computing prin-

ciple and the latter is a storage platform for big data processing.

HDFS:

It is impossible to save or process large volumes of data on one single node, therefore
Hadoop proposes a distributed file management system called HDF'S [5] which splits the
files into small pieces(blocks) and saves them on different nodes. There are two kinds
of nodes on HDFS: data node (worker) and master (name) node [6]. All the operations
including delete, read and write are based on these two. The workflow of HDFS is like
that: Firstly, the name node ask for access permission. If accepted, the master node will
turn the file name into a HDFS block ID list which includes the file and the data notes
that save the blocks related to the file. Then the ID list will be sent back to client and

the users can do the further operation based on that.
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MapReduce:

MapReduce is a computing framework which includes two operation: Mapper and Re-

ducer.

Mapper:

After reading the files from HDFS, Hadoop will parse each line as a key-value pair and
call the map function for each key-value pair [7]. The mapper will process them based
on the map function and transfer them into the new key-value pairs [8]. Next, the new
key-values pairs will be assigned to different partitions and will be sorted based on their
keys. Combiner is optional and can be recognized as a local reduce operation which
allows counting the values with same key in advance to reduce the I/O pressure. Finally,
partitions will divide the intermediate key-value pairs into different pieces and transfer

them to reducer.

Reducer:

Before conducting reduce process, MapReduce needs to implement one operation: shuffle
which means transferring the mapper output data to the proper reducer. After shuffle
process finished, the reducer will start some copy threads (Fetcher) and obtain the output
file of the map task through HTTP [9]. Next step is about merging the outputs into
different final files that will be recognized as the input data of reducer. After that, the
reducer processes the data based on the reduce function and write the outputs back to
the HDFS.

2.1.1 How Hadoop MapReduce works

Othermaps ..., Otherreduces

Figure 2.1: MapReduce Workflow from [10]
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Figure 2.1 illustrates the workflow of MapReduce. From the figure, we can find that
MapReduce job contains two side tasks which are map side tasks and reduce side tasks
and each of them includes several stages. Next, we are going to explain each stage to
present how the framework works.

For Map side tasks, it experiences five stages: input splits, Map function, buffer, spill
and merge [11] [12]. Before conducting map tasks, the input files will be split into many
pieces and each of them will be matched to one map task. The input splits are not used
to store the data. On the contrary, it is an array which records the length of the slice and
the position of the data. The input split is often closely related to the block of the HDFS
and the default value is 128MB [13].

After receiving the input files, MapReduce will process the data based on the map
function and the output will be saved on a memory buffer temporarily. Once the buffer
meets the threshold, the buffer will spill to a new file and the data in the buffer will be
written to this file. In addition, before writing the file into disk, MapReduce will split
the data into different partitions based on the number of reduce tasks to make sure each
reduce tasks correspond to one partition.

When the map function finishes, there are many spill files saved on the local file
systems. Thus, MapReduce will merge these files together. Also, the sort and combiner
operation will be conducted during the merging process aiming at minimizing the amount
of data written back to HDFS for each time as well as reducing the amount of data
transmitted to the next phase through the internet.

The last step of map task is copying the data from different partitions to the corre-
sponding reduce tasks. This stage represents the process to transferring the output of map
tasks to the reduce tasks. Also, it can be recognized as the key factor of our optimization.

For the reduce tasks, there are three stages during the process which are merging,
reduce function and output. Since reduce tasks will receive different output files from
map tasks and all the files are in order, it will save these files based on their sizes. If the
sizes are small, reduce tasks will cache them into memory for further processing while it
will merge them together and spill to the local file system if the sizes are huge.

With the number of spill files increases, MapReduce will merge them and use them as
input data for reduce function. Then, after reduce function finished, the output files will
be saved back to HDFS.

Although MapReduce is attractive for users because of its simplicity and user-friendly,
the framework still has some limitations [14]. In MapReduce, every job needs to read the
input data, process and write the results back to the HDFS [15]. It has to repeat the
cycle many times when the new job requires the results from the previous job. Thus, the
efficiency of MapReduce jobs is low and much resources is wasted during the process when

processing the iterative tasks. To overcome the limitations of MapReduce, Spark is being



CHAPTER 2. LITERATURE REVIEW 8

proposed.

2.2 Spark

There are two important terms proposed by Spark: RDD and DAG. These two work
together perfectly and accelerate Spark 10 times as fast as Hadoop under some certain

circumstances.

RDD:

Resilient Distributed Datasets (RDDs) is “an abstraction for a collection of data that can
be stored and processed in memory” [16]. It is a special collection which supports multiple
sources, has a fault tolerance mechanism, can be cached and supports parallel operations.
Also, it can represent one dataset with multiple partitions. When running on the Hadoop
cluster, RDDs will be created on the HDFS in many formats supported by Hadoop like
text, sequence files. There are two kinds of operations supported by RDD: transformation

and action.

Transformation:

Transformation operation adopts delay calculation which means creating a new dataset
based on an existing dataset [17]. When an RDD is converted to another, there is no
immediate conversion. On the contrary, it just records the logical operation of the data
set for further processing. All the transformation operations are lazy which means they
will not compute the result right away. The transformations will be computed only when
an action operation requires a result from the driver program. The normal transformation

operation includes map, flatMap, filter, groupbykey and reduce ByKey [18].

Action:

Action operation will launch Spark jobs and return the results back to the driver program
after computing process finishes. It will be triggered when the user needs to return the
computing results back to the driver program or write the result to the external system.
When the action operation happenes, the DAG scheduler will be trigged to divide the
DAG into different stages. Then, after the process is completed, TaskScheduler is called
to distribute the task to different executors. The action operation includes count, collect
and reduce [18].

DAG:

Spark provides advanced DAG scheduler [19] system to express the dependencies of RDDs.
Each Spark job will create a DAG and the scheduler will dive the graph into different stages
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of tasks. Then the tasks will be launched to the cluster. DAG will be created in both map
and reduce stages to fully express the dependencies. Also, this setting helps the simple
job finishes within one stage while the complex job finishes into several stages other than

splitting into different jobs. That is one reason why Spark is faster than Hadoop.

2.2.1 How Spark works

Worker Node

Executor | Cache

-
Driver ngram /-/_\' — —
l/“ /

SparkContext » Cluster Manager
\ Worker Node
¥ Executor | Cache
"| | Task || Task

Figure 2.2: Spark Workflow from [20]

Figure 2.2 illustrates the workflow of Spark. The figure shows that Spark job will launch
a corresponding driver program when the user submit a spark job through spark-submat
command. Depends on the deploy-mode, the driver program may launch locally or on
one working node of the cluster. Also, the driver process will take some resources based
on the settings to control all the jobs. The first task the driver program needs to do
is applying the resource which is represented by the executor process from the resource
manager. There are several resource manager for users to choose from: standalone, Yarn
and Mesos [21]. Then, the resource manager will launch several executors on the working
nodes based on the user settings and each of them owns a number of CPU cores and
memory.

After applying enough resource from the resource manager, driver program will start
scheduling and executing our codes. Firstly, Spark will split the code into several stages.
Each stage will execute a piece of code and creating a batch of tasks for the stage. Then,
the tasks will be assinged to different executors to execute. Tasks are the smallest unit
of Spark jobs and are responsible for the same calculation logic or code while processing
different datasets. The job will move to the next stage when all the tasks of one stage
finished and the results will be written to the local file system on different nodes. The
next stage will utilize the result of the last stage as the input data and repeat the cycle

until all the stage finishes.
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Spark jobs divide different stages based on the shuffle or action operation. Once the
codes includes any action operation like reduceByKey or join, Spark will divide a stage
boundary there and split it as two stages. In other words, the codes before action operation
and the codes after the action operation will be recognized as two stages. Thus, each task
of stage may pull the data it needs from the previous stage through the Internet and
execute the operation based on the codes. This process is called shuffle in Spark.

Besides, Spark provides the function to save the data into memory if the users set the
persist/cache operation [22]. This is the main difference between Spark and MapReduce
frameworks. There are three persist levels provided by Spark: MEMORY _ONLY,DISK_
ONLY and MEMORY_AND_DISK. By setting different levels of persist strategies, the
results from different tasks can be saved on the memory of the executor or the local file
system.

The executor memory contains three parts [23]: one is utilized for tasks to execute
codes which takes 20% of the total memory by default. The second part is utilized for the
tasks to pull the output of the previous stage through the shuffle process and use it for
aggregation and other operations. The default settings for the second part also takes 20%
of the total memory. The third part is used for caching the RDDs into memory which
takes 60% of the total memory based on the default settings.

2.3 HiBench Suite

The emergence of Hadoop and Spark makes it possible to save and process large volumes
of data. Then how to quantitatively evaluate the performance of the clusters becomes a
serious problem. There are some existing benchmarks which provide some examples to
evaluate the performance like YSCB and CloudSuite [24]. Among them, HiBench suite [25]
is the most famous one which is designed for testing the performance difference between
Hadoop and Spark. In this section, we first present the ideas of HiBench suite, and then
discuss its limitations and explain some workloads includes in its package.

Benchmarking is a set of experimental approaches that measure the effectiveness of
different computer systems. HiBench suite is a set of shell scripts developed by Intel and
published under Apache Licence 2 [25]. Currently HiBench suite contains 13 workloads,
under four categories: Micro Benchmarks, Web Search, SQL and Machine Learning [26].
The details of all workloads can be seen from the Table 2.1.
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Category Worklodas
Sort
Sleep
Micro Benchmarks TeraSort
WordCount

Enhanced DFSIO
Nutch Indexing
Page Rank
Scan

SQL Join
Aggregation

Web Search

Bayesian
Machine Learning Classification

K-Means

Table 2.1: Benchmark workloads modified from [27]

2.3.1 Micro Benchmarks

As the most popular examples, Micro Benchmarks are applied widely in the Hadoop
community and some of them even being included in the Hadoop example package, and
therefore becomes the part of HiBench suite. Micro Benchmarks workloads represent the
perfect examples of the real-world MapReduce application [28]. One programme trans-
forming the data from one format to another, and another withdrawing the interesting

data from big volume of data.

2.3.2 Web search

The Nutch Indexing workload [29] is an indexing subsystem from Nutch, one popular
open-source searching engine. As one of the most significant use of MapReudce, Nutch
indexing uses the web data whose words and hyperlinks follows the normal distribution
with related parameters. The program to produce the texts of web page is the default
Linux dictionary files.

The Page Rank workload is a test case from SmartForg, an open-source systems man-
agement framework. It is an algorithm implemented based on Spark-Milib* which is widely
used to rank the web pages based on the numbers of the reference links [7]. Also, the

hyperlinks and words follow the normal distribution.

LA package to implement machine learning algorithm for Spark
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2.3.3 SQL

This workload is implemented under hive and is for testing the effectiveness of SQL queries.
Scan query: the purpose of the Scan query is to select and project the relational tables.
Aggregation Query: The purpose of the aggregation query is to firstly group the rela-

tional tables, parse each tuple and finally perform a high-cardinal aggregation operation.
Join Query: The purpose of Join query is to join the dimension table and then sort

the results.

2.3.4 Machine learning

The implementation of the MLib algorithm is in Mahout?, an open-source MLib library
implemented on the Hadoop cluster. As another important use of Hadoop, these algo-
rithms are included in HiBench suite.

Naive Bayes is a classification algorithm with multiple class which can provides each
pair of features independent assumption. This workload is implemented based on Spark. Mill
ib and use the text file generated automatically. Also, the words of the text files follow
the Gussian distribution.

K-mean is a famous algorithm for data mining and knowledge discovery. The input
data are samples which represented by a vector with a numerical dimension [25]. This
algorithm is implemented based on Spark.Millib and its input data follows uniform and

Guassian distribution®.

2.3.5 Benchmarking Methodology

Figure 2.3 briefly explains the different steps in HiBench Suite Methodology. In the
initial stage, all the software components need to be installed and configured properly
(Java, Mahout, CDH, HiBench, DSE [30]). Then in stage 2, which is called workload
preparation, parameters related to workloads need to be defined and the test data need to
be created. The parameters as well as generated data will be utilized as the input of the
stage 3(workload execution). Each workload will be executed three times to make sure
the representativeness of the results, which means the data generated in stage 2 and the
Workload Execution in stage 3 will be repeated three times. Before conducting another
new experiment in workload preparation stage, the existing data will be removed and the
new one will be created. After stage 3 finished, HiBench will provide a report to the user
which includes two important information: Duration and Throughput. The Duration is
calculated by the end time to reduce the start time while the Throughput is calculated by
dividing the sizes of the input data during the Duration time. Based on the report, the

user can analysis the results and present them in different ways.

2The machine learning algorithm library for Haddop MapReduce.
3 Another name of normal distribution.
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Figure 2.3: Benchmarking methodology process diagram from [30]

Lisiting 2.1 illustrates the configuration of Hadoop from the first stage. From the
listing, hibench.hadoop.home and hibench.hdfs.master needs to be set that represent the
directory of Hadoop and the address of HDFS respectively. Also, the Hadoop version
needs to be set by hibench.hadoop.release.

1 # Hadoop home

2 hibench.hadoop.home /usr/hdp/2.6.0.3 —8/hadooop

3

4 # The path of hadoop executable

5 hibench.hadoop.executable ${hibench .hadoop.home}/bin/hadoop
6

7 # Hadoop configraution directory

8 hibench.hadoop.configure.dir ${hibench.hadoop.home}/etc/hadoop
9

10 # The root HDFS path to store HiBench data

11  hibench.hdfs.master hdfs: //it066431:8020://user/yjliu/

12

13

14 # Hadoop release provider. Supported value: apache, cdh5, hdp
15 hibench .hadoop.release hdp

Listing 2.1: Hadoop configuration in stagel modified from [27]

Listing 2.2 presents the configuration of Spark from the first stage. Among all the
settings, hibench.spark.home is the most important setting which points to the position
of Spark. Also, there are several options for the users to set to fit the sizes of their jobs that
are: “hibench.yarn.executor.num , hibench.yarn.executor.cores ,spark.executor.memory and

spark.driver.memory” [27].

# Spark home
hibench .spark .home /usr/hdp/current /spark2—client

# Spark master
# standalone mode: spark://zzz:7077
# YARN mode: yarn—client

hibench.spark.master yarn—client

[C S B A
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10
11
12
13
14
15
16
17
18
19
20
21

# executor number and cores when running on Yarn
hibench.yarn.executor .num 2

hibench.yarn.executor.cores 4
# executor and driver memory in standalone & YARN mode
spark .executor .memory 4g

spark.driver . memory 4g

# set spark parallelism property according to hibench parallelism value

spark .default. parallelism ${hibench.default .map. parallelism }

# set spark sql default shuffle partitions according to hibench parallelism value
spark.sql.shuffle.partitions ${hibench.default.shuffle.parallelism}

Listing 2.2: HiBench configuration in stage2 modified from [27]

14

Listing 2.3 presents some other configuration for HiBench in the second stage. Among

them, hibench.scale.profile is the most important which controls the sizes of the workloads.

Also, hibench.default.map.parallelism and hibench.default.shuffle.parallelism are two im-

portant parameters which represent the number of map tasks and reduce tasks for the

workloads. Besides, the report files section provides some information that the users need

after the jobs finishes.

1
2
3
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14
15
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20
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23
24
25
26
27
28
29
30
31
32
33
34
35

36

37

38

# Data scale profile. Available value is tiny, small, large, huge, gigantic and bigdata.

# The definition of these profiles can be found in the workload conf file i.e. conf/
workloads/micro/wordcount.conf

hibench.scale.profile tiny

# Mapper number in hadoop, partition number in Spark

hibench.default .map. parallelism 8

# Reducer nubmer in hadoop, shuffle partition number in Spark
hibench.default.shuffle.parallelism 8

Report files

k33

# default report formats
hibench.report.formats %—12s %—10s %—8s %—20s %—20s %—20s %—20s\n

# default report dir path
hibench.report . dir ${hibench .home}/report

# default report file name
hibench.report.name hibench.report

# input/output format settings. Available formats: Text, Sequence.
sparkbench.inputformat Sequence

sparkbench .outputformat Sequence

# hibench config folder
hibench.configure . dir ${hibench .home}/conf

# default hibench HDFS root
hibench. hdfs.data.dir ${hibench . hdfs.master}/HiBench

# path of hibench jars

hibench . hibench.datatool.dir ${hibench .home}/autogen/target /autogen —7.1 —SNAPSHOT—
jar—with—dependencies. jar

hibench .common. jar ${hibench .home}/common/target /hibench—common—7.1—
SNAPSHOT-jar —with—dependencies . jar

hibench .sparkbench. jar ${hibench .home}/sparkbench/assembly/target/
sparkbench—assembly —7.1 —-SNAPSHOT—-dist . jar

hibench .streambench .stormbench. jar ${hibench .home}/stormbench/streaming/target/

stormbench—streaming —7.1—SNAPSHOT. jar
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39

40

hibench .streambench .gearpump. jar ${hibench .home}/gearpumpbench/streaming/target/
gearpumpbench—streaming —7.1 —-SNAPSHOT—jar —with—dependencies. jar

hibench .streambench . flinkbench . jar ${hibench .home}/flinkbench /streaming/target/
flinkbench —streaming —7.1 —SNAPSHOT—jar —with—dependencies. jar

Listing 2.3: Spark configuration in stagel modified from [27]

Listing 2.4 presents the Wordcount configuration in stage 2. From the listing, we can

control or create any sizes of datasets we want. Also, we can provides the input and

output directories to extend the experiments.

© 0 N DO W N
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11
12
13

#datagen

hibench.wordcount. tiny . datasize 32000
hibench.wordcount.small.datasize 320000000
hibench.wordcount.large.datasize 3200000000

hibench.wordcount.huge. datasize 32000000000

hibench.wordcount. gigantic.datasize 320000000000

hibench.wordcount. bigdata.datasize 1600000000000

hibench .workload . datasize ${hibench.wordcount.${hibench.scale.profile }.

datasize}

# export for shell script
hibench .workload .input ${hibench.hdfs.data.dir}/Wordcount/Input
hibench .workload .output ${hibench . hdfs.data.dir}/Wordcount/Output

Listing 2.4: WordCount configuration in stage2 modified from [27]

Listing 2.5 and 2.6 presents the process of data generation and data processing. From

the figure, we can find the MapReduce command as well as the operations on the HDFS.

In addition, listing 2.7 illustrates the format of the report after finished several workloads.
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patching args=

Parsing conf: /home/yjliu/Hibench/HiBench—master/conf/hadoop.conf

Parsing conf: /home/yjliu/Hibench/HiBench—master/conf/hibench.conf

Parsing conf: /home/yjliu/Hibench/HiBench—master/conf/spark.conf

Parsing conf: /home/yjliu/Hibench/HiBench—master/conf/workloads/micro/wordcount.conf

probe sleep jar: /usr/hdp/current/hadoop—client /../hadoop—mapreduce/hadoop—mapreduce—client —
jobclient —tests . jar

start HadoopPrepareWordcount bench

hdfs rm —r: /usr/hdp/current/hadoop—client/bin/hadoop ——config /usr/hdp/current/hadoop—
client /etc/hadoop fs —rm —r —skipTrash hdfs://it066427:8020//user/yjliu//HiBench/
Wordcount/Input

Deleted hdfs://it066427:8020/ user/yjliu/HiBench/Wordcount/Input

Submit MapReduce Job: /usr/hdp/current/hadoop—client/bin/hadoop ——config /usr/hdp/current/
hadoop—client /etc/hadoop jar /usr/hdp/current/hadoop—client /../hadoop—mapreduce/hadoop—
mapreduce—examples. jar randomtextwriter —D mapreduce.randomtextwriter.totalbytes=32000 —
D mapreduce.randomtextwriter.bytespermap=3200 —D mapreduce. job .maps=10 —D mapreduce. job.
reduces=20 hdfs://it066427:8020//user/yjliu//HiBench/Wordcount/Input

The job took 12 seconds.

finish HadoopPrepareWordcount bench

Listing 2.5: Data preparation in stage2 modified from [27]

yjliu@it066427:~ /Hibench/HiBench—master/bin/workloads/micro/wordcount/hadoop$ ./run.sh
patching args=

Parsing conf: /home/yjliu/Hibench/HiBench—master/conf/hadoop.conf

Parsing conf: /home/yjliu/Hibench/HiBench—master/conf/hibench.conf

Parsing conf: /home/yjliu/Hibench/HiBench—master/conf/spark.conf

Parsing conf: /home/yjliu/Hibench/HiBench—master/conf/workloads/micro/wordcount.conf

probe sleep jar: /usr/hdp/current/hadoop—client /../hadoop—mapreduce/hadoop—mapreduce—client —

jobclient —tests . jar
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start HadoopWordcount bench

hdfs rm —r: /usr/hdp/current/hadoop—client/bin/hadoop ——config /usr/hdp/current/hadoop—
client /etc/hadoop fs —rm —r —skipTrash hdfs://it066427:8020//user/yjliu//HiBench/
Wordcount/Output

Deleted hdfs://it066427:8020/user/yjliu/HiBench/Wordcount/Output

hdfs du —s: /usr/hdp/current/hadoop—client/bin/hadoop ——config /usr/hdp/current/hadoop—
client /etc/hadoop fs —du —s hdfs://it066427:8020//user/yjliu//HiBench/Wordcount/Input

Submit MapReduce Job: /usr/hdp/current/hadoop—client/bin/hadoop ——config /usr/hdp/current/
hadoop—client /etc/hadoop jar /usr/hdp/current/hadoop—client /../hadoop—mapreduce/hadoop—
mapreduce—examples. jar wordcount —D mapreduce. job.maps=10 —D mapreduce. job.reduces=20 —D
mapreduce. inputformat.class=org.apache.hadoop.mapreduce.lib.input.
SequenceFileInputFormat —D mapreduce.outputformat.class=org.apache.hadoop.mapreduce.lib .
output.SequenceFileOutputFormat —D mapreduce. job.inputformat.class=org.apache.hadoop.
mapreduce. lib .input.SequenceFileInputFormat —D mapreduce. job.outputformat.class=org.
apache.hadoop.mapreduce.lib .output.SequenceFileOutputFormat hdfs://it066427:8020//user/
yjliu//HiBench/Wordcount/Input hdfs://it066427:8020//user/yjliu//HiBench/Wordcount/
Output

ECDSA key fingerprint is SHA256:44Fjz1zLI8kUMiJfdCnpL3CUqHY+OOB;7fQmQ3akvUQ .

Bytes Written=23016
finish HadoopWordcount bench

Listing 2.6: Wordcount in Hadoop in stage 3 modified from [27]

Type Date Time Input-data_size Duration(s) Throughput(bytes/s) Throughput/node

ScalaSparkKmeans 2018—-10—16 18:31:29 1396221 20.048 69643 6964
ScalaSparkTerasort 2018—10—16 19:00:10 3200000 20.985 152489 15248
ScalaSparkKmeans 2018—10—16 19:04:47 1396221 19.894 70183 7018
ScalaSparkKmeans 2018—-10—16 20:47:08 1396221 19.206 72697 7269
ScalaSparkKmeans 2018—10—17 12:11:36 1396221 16.959 82329 8232
ScalaSparkWordcount 2018—-11-02 16:36:22 37270 17.751 2099 209

HadoopTerasort 2018—-11—-02 17:36:07 3200000 30.919 103496 10349
ScalaSparkTerasort 2018—11—-02 17:40:11 3200000 21.515 148733 14873
ScalaSparkTerasort 2018—11—-02 20:43:59 3200000 21.027 152185 15218
ScalaSparkTerasort 2018—11—-05 13:08:13 3200000 20.359 157178 15717
ScalaSparkWordcount 2018—-11-05 15:35:55 36232 15.329 2363 236

ScalaSparkTerasort 2018—11—05 17:07:44 3200000 21.339 149960 14996
ScalaSparkTerasort 2018—11—-05 18:15:05 3200000 19.830 161371 16137
ScalaSparkWordcount 2018—11—-06 16:04:35 36232 37.314 971 97

Listing 2.7: Restuls in stage 3 modified from [27]

2.3.6 Performance metrics

HiBench results forms are under these essential metrics [31] which are:

e Input_data_size: It is the size of the data generated in stage 2 [32]. HiBench provides
several datasets for the users to test the clusters which are tiny, small, large, huge,
gigantic and bigdata. Each of the dataset represent one kind of data volume and the

users can choose the proper one based on the scale of the cluster.

e Duration: it describes a period of time that the workload is operating. It is just
the difference between start time and endtime of the workloads. It is calculated by

seconds.

e Throughput: there are two kinds of Throughput provided by HiBench, one is Through-
put for the whole cluster and one is the Throughput for different nodes. These pa-
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rameters present how much information the cluster can process in a given period of

time [31]. They are measured by bytes/second.

2.4 Discussion

Since Bechmarking tests can be seen as the foundation of the quantitative computer
system research, these workloads should be distinctive to represent the characteristics of
the target system as well as be various enough to present the behaviour scope of the target
application [25]. Although, HiBench suite program as described above shows its diversity
and representativeness through its examples, there are still some limitations that leads it
to fail to present the cluster performance from many the aspects like control the sizes of
workloads or monitor the resource utilization of the cluster.

In particular, though HiBench suite attempts to include all sizes of the cluster in its
experiment, they do not provide enough datasets for different users to test. Until now,
there are only six dataset options provided by HiBench: tiny, small, large, huge,gigantic
and bigdata and the sizes of the datasets ranges from 30 kb to 1.5 Th. Compared to other
tests, the scalability can be poor because all of these values are fixed in the experiments.
Also, the generated data is under sequencefile* format which is invisible to the users. The
users need to convert them to text files or use some specific software to check the content
of the generated data. This setting brings much inconvenience to the users in their daily
operation. Figure 2.4 shows the K-means data under sequencefile format and listing 2.8

shows that opened by Mahout.
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PuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTY PuTTYPuTTYPuTTY PuTTYPuTTYPuTTYPuTTY PuTTYPuTTYPUTTYPUTTYPuTTYPuTTYPu
TTYPuTTYPuTTYPuTTYPuTTYPuT TY PuT TYPuTTYPuTTY PuT TY PuTTYPuTTYPuTTY PuTTY PuTTYPuTTYPuTTYPuTTYPuT TYPuTTYPuTTY PuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTT
YPUTTYPUITYPUTTYPUT TYPUT TYPUTTYPUT TYPUT TYPUT TYPUT TYPUT TYPUT TYPUT TYPUT TYPUT TYPUT TYPUT TYPUT TYPUT TYPUT TYPUT TYPUT TYPUTTYPUTTYPUT TYPUTIYPUTTYPUTTYPUuTTYPUTTYP
WTTYPUTTYPuTTY6cPuTTYPuT TYPuTTYPuT TYPul TYPuT TYPuT TYBuT TYPuT TYPuT TYBuT TYPuT TY PuT TYPuT TYPuT TY PuT TYPuT TYPuT TYPuT TYPuTTYPuTTYPuT TYPuT TYPuTTYPuT TYPuTTYEuTTYP
WTTYPUTTYPuTTYPuTTYPUTTYPuTTYPuT TYPuTTYPuT TY Pl TYPuT TY PuT TYPUT TYPuT TYPUT TY PuT TYPuT TYPUT TYPuT TYPuT TYEUT TYPuT TYPuT TY PuT TYPUT TYPuT TYPuT TYPuT TYPuTTYPuTTYPuT
TYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTY PuTTYPuTTY PuTTY PuTTY PuTTY PuTTY PuTTY PuTTY PuTTY PuTTY PuTTY PuT TY PuT TY PuT TY PuT TY PuT TYPUuT TYPUTTYPUT TYPUTTYPUuTTYPUTTYPUTTYPuTTY
PuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTY PuT TYPuTTYPuTTY PuTTY PR T TYPuTTY PuTTY PuTTY PuTTYPuTTY PuTTY PuTTYPUTTYPuTTYPuTTYPuTTYPuTTYPu
ITYPulTYPulTYPUTTY PUl TY PUul TY Pul TY PUT TY PUl TY PUul TY PUT TY PUT TY PUl TY PUT T Y PuT TY PuT TYPUT TY PUT T Y PUT TYPuT IYPUuT TYPUT IYPUT IYPUuT IYPUTIYPUT TYPUT TYPUuTTYPUTIYPUuTTYPUulT
YPuTTYPUITYPuTTYPuUTTYPuTTYPuTTYPul TYPuT TYPuT TYPUT TYPuTTYPuTTYEUTTY]

Figure 2.4: Generated K-means data under sequencefile format

1  yjliu@it066427:” /mahout—distribution —0.8% bin/mahout seqdumper —i /user/yjliu/HiBench/
Kmeans2/Input/cluster /part —00000

2 Running on hadoop, using /usr/bin/hadoop and HADOOP_CONF_DIR=

3 MAHOUT-JOB: /home/yjliu/mahout—distribution —0.8/mahout—examples—0.8—job.jar

4A kind of flat file under key-value pair format.
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4 19/02/21 15:21:11 INFO common. AbstractJob: Command line arguments: {——endPhase=[2147483647],
——input=[/user/yjliu/HiBench/Kmeans2/Input/cluster /part —00000], —startPhase=[0], —
tempDir=[temp]}

5 Input Path: /user/yjliu/HiBench/Kmeans2/Input/cluster/part—00000

6 Key class: class org.apache.hadoop.io.Text Value Class: class org.apache.mahout.clustering .
kmeans. Kluster

7 Key: CL—0: Value: CL—0{n=0 c=[991.089, 311.404, 479.975]

8 Key: CL—1: Value: CL—1{n=0 c=[323.392, 230.470, 948.572]

9 Key: CL—2: Value: CL—2{n=0 c¢=[93.758, 947.342, 828.972] r

10 Key: CL—3: Value: CL—3{n=0 ¢=[182.601, 717.132, 629.741]

11 Key: CL—4: Value: CL—4{n=0 c¢=[737.270, 576.215, 476.047]

12 Count: 5

13 19/02/21 15:21:12 INFO driver.MahoutDriver: Program took 1385 ms (Minutes:
0.023083333333333334)

(1}
1}

o
I

Il
-

(1}
(1}

= =

Listing 2.8: Generated K-means data opened by Mahout

In addition, the workloads contained in both Spark and MapReduce benchmark can
only provide several parameters for users to test: 2 for MapReduce and 6 for Spark. In
fact, the parameters for Spark and MapReduce can improve the efficiency of the jobs
dramatically in most of the circumstances. Thus, the accuracy of the experiments needs
to be discussed further.

On the other hand, the HiBench result form only includes 8 items while only four of
them present the performance of the cluster. Also, for MapReudce benchmarks, HiBench
does not allows Hadoop to run the jobs on Yarn which means we are unable to pick any
result parameters from other platform. Although the throughput and duration are the
most important aspects for the cluster, many other aspects should take into consideration
to present an overall view of the jobs.

Thus, we decided to extend several workloads from the HiBench to our own cluster.
Based on our research, we select Wordcount, Terasort and K-means workloads as our
targets because they are the representatives of specific workloads. Wordcount stands for
the aggregation job, Terasort stands for the shuffle job and K-means stands for the iterative
jobs. Also, another reason is all of the workloads are already implemented under Hadoop
and Spark example package. It can make sure that our experiments are not affected by
the coding ability. Next, we are going to talk about the ideas of each workload and explain

why there is a difference between MapReduce and Spark when apply the same workloads.

2.5 Wordcount

Wordcount is a program which counts the occurrence of each word from a text or se-
quencefile [30]. As one of the most classic examples, it is widely used to evaluate the
aggregation performance for both MapReduce and Spark. The input data is produced
by RandomTextWriter [33] which is a program generating large context files for users to
test. It is a powerful and easy to use example not only because it is included in Hadoop

example package, but also it is able to create large input files in HDFS. Also, there are
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several parameters to improve the efficiency which will be mentioned later.

2.5.1 Data generation

Firstly, several parameters needs to be set before executing the examples. There are five
parameters provided by RandomTextWriter to control the format of the input files. The
first two are minwordskey and mazwordskey. These two parameters are used for setting
the length of key. The next parameters are minwordsvalue and mazwordsvalue that are
used to control the length of the value (The output of the mapper is sequencefile which
includes key and value). The last parameter is totalbytes which represents the sizes of the
data the user wants to generate. After setting the parameters properly, we are going to

produce the input data. Listing 2.9 presents the examples of the input data.

1 yjliu@it066427:” /mahout—distribution —0.8$% bin/mahout seqdumper —i /user/yjliu/HiBench/
Wordcount/Input/part—m—00000

2 Running on hadoop, using /usr/bin/hadoop and HADOOP_CONF_DIR=

3 MAHOUT-JOB: /home/yjliu/mahout—distribution —0.8/mahout—examples—0.8—job.jar

4 19/02/21 15:33:40 INFO common. AbstractJob: Command line arguments: {——endPhase=[2147483647],
——input=[/user/yjliu/HiBench/Wordcount/Input/part—-m—00000], —startPhase=[0], —tempDir
=[temp]}

5 Input Path: /user/yjliu/HiBench/Wordcount/Input/part—m—00000

6 Key class: class org.apache.hadoop.io.Text Value Class: class org.apache.hadoop.io.Text

7 Key: acocotl overcrown mericarp uncompromisingly drome bromate stachyuraceous Hysterocarpus
allotropic : Value: sequacity reciprocation unchatteled spermaphyte sedentariness anta
homotransplant uncompromisingly ethnocracy tomorrowness lyrebird bladderwort flatman
trip decardinalizesymbiogenetically absvolt atlantite subfoliar ribaldrous unscourged
oratorize bromic devilwise friarhood abthainry coracomandibular epidymides subangulated
migrainoid reappreciate ununiformly groundneedle pentosuria supermarket subirrigate
frenal blightbird phytonic

8 Key: commandingness times barkometer liquidity coracomandibular abstractionism seeingness
authorling trip : Value: phallaceous ambitus figureheadship unrepealably lebensraum
rehabilitative various posterishness kenno metaphrastical astucious omniscribent
approbation tonsure mustafina subofficer Triconodonta cubby culm seraphism Shiah slait
perculsive barkometer uninhabitedness putative archesporial insatiately Animalivora
quintette rizzomed astucious sviatonosite orgiastic Joachimite prescriber eristically
Macraucheniidae warlike rainproof plerome dialoguer equiconvex oinomancy redescend quad

9 Key: circular unchatteled ascitic stormy danseuse tonsure Dunlop : Value: mastication
overcrown lithotresis swoony almud hemimelus lithotresis archesporial dehairer
venialness paranephros calycular trailmaking impressor sesquiquintile unswanlike
iniquitously atlantite zenick mangonism diplomatize Effie wvalvula raphis trip flatman
seeingness parmelioid isopelletierin ribaldrous quadrennial licitness bugre brutism
trabecular octogynous sapphiric laurinoxylon bugre enhedge mendacity mammonish Helvidian
shellworker meloplasty acocotl steprelationship groundneedle foursquare Jerusalem
Pishquow erlking embryotic sloped eternal hysterolysis dunkadoo isopelletierin chooser
taurocolla oblongly noreast pentosuria ten abstractionism mammonish Bermudian
lophotrichic pope Passiflorales soorkee ribaldrous floatability mechanist
uninhabitedness slait counteractively

10 Key: Hydrangea choralcelo psychofugal sialadenitis tum : Value: oflete posterishness
cobeliever pseudohalogen unschematized Mormyrus Munychian diopside boor overcontribute
guitarist seeingness widdle Orbitolina electrotechnics craglike iniquitously equiconvex
outwealth arrowworm Lentibulariaceae dastardliness elemicin ticktick karyological naught
biventer Bushongo lineamental groundneedle arval commotion oinomancy redesertion
Bulanda entame pope oversand pamphlet vesperal flutist pomiferous topline sequestrum
sportswomanship unpeople Ophiosaurus slangy returnability ordinant critically
psychofugal monogoneutic basto subtransverse comism antalgol bot rebilling Pishquow
penult Glecoma squit scyphostoma silicize craglike decidable appetible reciprocation
bromic predebit comparability stiffish comism inventurous peptonate elemicin
orchiocatabasis unefficient idiotize pamphlet Alethea naught Aktistetae bromic
homotransplant paradisean sheepskin perculsive superindifference Confervales
unreprimanded Isokontae dishpan raphis nonlustrous flutist culm

11 Key: bespin macropterous bismuthiferous prolificy frictionlessly coldfinch adscendent
inferent tautness : Value: digitule Alethea chalcites skyshine wingable manilla
alveolite arsenide seelful oflete tonsure emir unimmortal subtransverse unexplicit
yawler biopsic unexplicit stereotypography overcrown precostal

12 Count: 5
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13 19/02/21 15:33:41 INFO driver.MahoutDriver: Program took 1267 ms (Minutes:
0.021116666666666666)
14 yjliu@it066427:~ /mahout—distribution —0.88

Listing 2.9: The input data for Wordcount

2.5.2 Algorithm

Next, we are going to talk about the parallel algorithm used on the Wordcount example.
When concerning the parallel algorithm, divide and rule strategy will come to our mind
which means assign the operation on the large-scale datasets to each work node under
the control of a master node, and then integrates the intermediate results of each node to
obtain the final result. In other words, it is about breaking the tasks and aggregate the
results. Wordcount adopts this strategy and works like that: the input files in HDFS will
be divided into different splits and transfer to different map tasks based on their Hash
value. Then the map tasks will sort them and write the data into different partitions. The
reducers will receive the data from different partitions and sort them as the final results.
Finally, the results will be output to the HDFS. Figure 2.5 [34] illustrates how the parallel

algorithm works.
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! I 1 I
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I | Split K I:—-b( sort )\_4,, PartitionR-1 P : J
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Input files Map phrase Intermediate files Reduce phrase Output files
(on HDFS) (on local disks) (on HDFS)

Figure 2.5: Parallel algorithm for Wordcount from [34]

2.5.3 Wordcount in MapReduce

Then we are going to explain the examples implemented by Hadoop MapReduce. The
source code is from MapReduce examples package. After we generated the input data and
store it on the HDFS, we are going to implement the example.

Inputsplit stage: before mapper tasks begin, MapReduce calculates the inputsplits

according to the sizes of input files. The inputsplits is not for storing the data, but an
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array of slice lengths and the location where the data is recorded. Each inputsplit match
one mapper tasks. Thus, the number of Mapper tasks and when Mapper tasks begin
and end decided in this process. Also, the input files are divided into different splits and

transfer to different Mappers.

Map stage: MapReduce reads the splits line by line and turn each line as a key-value
pair. The key is offset which represents the position of the line while the value is the
content of the line. Next, Mappers will assign the key value pairs to different map tasks
which means the map function begins. Each map tasks divide the values by space and

count the new key value pairs of each elements as one. Finally, Mapper will sort these key

value pairs based on their keys. Figure 2.6 [1] presents the whole process.

Hello World
Bye World

—

Hello Hadoop

Bye Hadoop

"

Combiner stage: combiner stage is optional and is similar to reduce stage. Actually,

it is a local reduce operation which accumulate the same value of the key to get the final
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Figure 2.6: Splits and Map stage modify from [1]

output of the Mapper. Figure 2.7 [1] shows the combine process.
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World, 1

|

Hello, 1
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Reduce stage: reducer accepts the data through shuffle and sort the data. It is called

reducer-side sort which means aggregate the key-value pairs with the same key and gener-

Figure 2.7: Combiner stage modify from [1]
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ate new key-value pairs. The new key value pairs use the words as its key while building
a list which contains the occurrence of the element from different map tasks. Then the
reducer assigns the data to different reduce tasks. Each of the reduce task will calculate
the occurrence of each words by accumulating each element from its value and generate
final key value pairs to save the result. Finally, the result will be written back to HDFS.
Figure 2.8 [1] illustrates the reduce stage.

Bf-'c‘. 1
Hello, 1
World, 2 L.
Bye, list(1, 1) Bye, 2
- Hadoop, 1ist (2) Hadoop, 2
N Red
Reducerside *or) | <Hello, list (1, 1) qﬁ — Hello, 2
Bye, 1 Word, list(2) Word, 2
Hadoop, 2
Hello, 1

Figure 2.8: Reduce stage modify from [1]

2.5.4 Wordcount in Spark

Compared to MapReduce framwork, Spark adopts a new form of dataset called Resilient
Distributed Datasets (RDDs) [16] which allows the users to save the data into memory.
Thus, all the Spark operation is based on memory or RDDs and we are going to discuss
the WordCount program provided by Spark examples in details. Figure 2.9 [35] presents
how Spark works on WordCount.
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Figure 2.9: How Spark works from [35]

From the figure, we can get that there are two stages exists when we implement the
WordCount example. As we explain before, there are two kinds of operations in Spark:
transformation and action. The stages will be divided once the action operation happens.

For stage 1, the first step is loading the data into Spark and turn it into RDDs. From
the figure, the example uses textFile operator to read the files from HDFS. The input files
will be read by line and each of the line will become one element of the RDD. Finally,
RDD is converted from HDFS files to MappedRDD and its data type is string.

The next step applies flatmap operator aimed at processing each element in Mappe-
dRDD. The flatmap belongs to transformation operation which allows turning the map
datasets to flatmap datasets. In this example, each line of the MappedRDD is split by a
space to get an array of words, and then the array is flattened to form a string. Finally,
all of the strings are saved in the FlatMappedRDD.

Then, we use map operator to mark all the elements in FlatMappedRDD which
means reformat each element from string to key value pair.There,RDD is converted from
FlatMappedRDD to MapparatitionRDD.

The following step uses reducebykey operator to merge the value of each pair elements
with the same key from different RDDs. This operation will drag the pairs with same key
together and accumulate the value to get the occurrence of each element. RDD there is
converted from MapparatitionRDD to shufleRDD and then turn to MappedRDD.

The last step uses foreach operator which can through all the elements in MappedRDD
and print the data on the screen. Since foreach operator belongs to action operation, all
the jobs will be triggered after running this kind of operation. Also, we can implement

other operation like count, saveastextfile to meet our requirements.
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2.6 TeraSort

1TB sorting [36] is used to measure the data processing capabilities of distributed com-
puting frameworks. As one of the Hadoop sorting jobs, TeraSort helped Hadoop win first
place in 1TB sorting benchmark evaluation in 2008 and it only costs 209 s. Thus, Hadoop
includes the source code of TeraSort in its example package in order to facilitate the users
to evaluate the performance of their clusters. The input data is generated by TeraGen?,
a data generating function implemented in Java. In addition, Hadoop also provides the
function to validate the sorting result called TeraValidate. Although Terasort is a small

gadget, it can still provide many hints to improve the cluster performance.

2.6.1 Data generation

Before explaining how TeraSort works, we will briefly introduce something related to the
input data. Firstly, the input file is composed by different rows of 100-byte records. Since
each record counts 100 bytes, the users can calculate the length of their input file easily.
Also, each record consists of three parts: the first ten bytes are ten binary code random
characters and it will be used as key for sorting. Then, the next ten bytes are the id of the
row followed by 8 segments of 10-byte identical random uppercase letters record. Besides,
there are two parameters we need to set before running the program which are the length
of the input file and the output address folder. Figure 2.10 presents the format of the
input data.

Ix" -n[Pp+1108490851780Q000000Q0QRRRRRRRRRRSSSSSSSSSSTTTTTTTTT TUUUUUUUUULNMAAAAANWDOCOO000
reJZ8-|o\)1049085171YYYYYYYYYYZZZZ77 7777 AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEEFFFFFFFF
@JIp9XC#d/110490885172G6GGGEGEEEGHHHHHHHHHHIIIITIIITITIIIII13]3 17 JKKKKKKKKKKLLL LLLL LL LMMMMMMMMMMNNNNINNEN
MyeM' *3<pri18498851730000000000PPPPPPPPPPQQQQQQOQQQRRRRRRRRRRSSSSSSSSSSTTTTTTTTT TUUUUUUUUULMAAAY
ryfUSHGLE&y 10498851 7 AWWWWWIWWWDOOOOOO0OCOYYYYYYYYYZ 2777 7777 ZAAAAAAAAANBBBEBBBBBBCCCCCCCCCCDDDDODDD
=i*nyMb15g1849885175EEEEEEEEEEFFFFFFFFFFGGGAGGAGGGGHHHHHHHHHHIITIITIITITIINII]3]333] IKKKKKKKKKKLLLLLLLL
716>/, | ~@@1849835176MMMMMMMMMMNNNNNNNNNNOOO0000000PPPPPPPPPPOQQQQOQQQORRRRRRRRRRSSSSSSSSSSTTTTTTIT
#g1{6{67;%118450685177UUUUUUUUUUMNNANNANAN WD OOO000C00YYYYYYYYYY 2227777 27 7 AMMAAAAANABBBBBEBB
7</ioXVIt1849885178CCCCCCCCCCDDDDDDDDDDEEEEEEEEEEFFFFFFFFFFGGGGGGEGGGGHHHHHHHHHHIIIIIIIIITIIIIII1I]]
8in+{B{w'R184908517IKKKKKKKKKKLLLLLLLLLLMMMMMMMMMMNNNNNNNNNNOOGOO00000PPPPPPPPPPQOQQCQQQCQRRRRRRRR
1Xq/CdFy%E18490851885555555SSSTTTTTTTTT TUUUUULLLUUINYWAAA NN WWILDOOCOO0000YYYYYYYYYYZZ 221722
1, /$4U]DI110849085181AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEEFFFFFFFFFFGGGGGGEGGEGGHHHHHHHH

Figure 2.10: Input data for Terasort

2.6.2 Algorithm explaination

As we mentioned above, the standard parallel algorithm can guarantee a high degree of
parallelism in the map stage, but no parallelism in the reduce stage. In order to improve
the parallelism in the reduce stage, TeraSort utilizes the way to improves algorithm :
during the map stage, each map task will split the input data into R partitions which

is same to the number of reduce tasks. Then it needs to make sure that all the data in

5The function provided by Hadoop to create the input data.



CHAPTER 2. LITERATURE REVIEW 25

partition I is larger than that in paratition I4+1. After that, during the reduce stage, the
reduce tasks I get the data from partition I and sort the data in partition I. Thus, the
results in reduce task I is larger than that in reduce task I4+1. Finally, it outputs the
reduce results and we can get the final outcome. Figure 2.11 shows how the TeraSort

algorithm works.
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Figure 2.11: Algorithm for Terasort from [34]

Although this algorithm shows high parallelism in reduce stage, it increases the shuffie
pressure for the cluster because of too many partitions created in map stage. Also, there
are two technical difficulties to implement the algorithm: one is how to determine the
range of R partition for each map task. The other is how to quickly determine which

partition it belongs to for one specific record.

2.6.3 TeraSort in MapReduce

As we all know, the main feature of MapReduce is sorting. It happens in both map and
reduce stages. In other words, all the data in different partitions are in order. Thus,
TeraSort only needs to do one thing: ensure the partitions are in order. To implement the
algorithm above, Hadoop improves its partition strategy and adopts totalorderpartitionS.
TeraSort modifies the totalorderpartition and implements its own one in three steps: the
first step is sampling, the second step is marking the records during the map stage and
finally conduct sorting during the reduce stage [37].

For the first stage, data sampling is performed on the JobClient. At first, a part

of the data is extracted from the input file and the frequency is determined by tera-

5The partition strategy implemented by Hadoop
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sort.partitions.sample for which the default value is 100,000. After sampling enough
records, MapReduce will sort these data and divide it into R partitions to find the upper
and lower lines of each partition (called the “split point”). Then these split points will be
saved on the distributed cache named as _partition.lst.

During the map stage, each map task reads the split points from the distributed cache,
and establishes a trie tree [38]" (two layers of trie trees, the leaf node of the tree stores the
corresponding reduce task number). After that, MapReduce starts processing the data.
For each record in different partitions, find the number of the reduce task it belongs to in
the trie tree and save it in this partition.

Next, in the reduce stage, each reduce task reads its corresponding data from the
partitions and conduct local sorting. Finally, the result of the reduce task is sequentially
output according to the reduce task number.

Here is an example to explain how to use trie trees to assign records to different reduce
tasks.

Imagine the number of sample data is 100,000 and the numbers of splits is 4. Thus,
we need to pick 25,000 samples from each split. Then if the sample data is like this: “b,
abc, abd, bed, abed, efg, hii, afd, rrr, mnk” [34]. After sorting the data, we get: “abc,
abed, abd, afd, b, bed, efg, hii, mnk, rrr” [34]. If the reduce tasks is four, we can get the
split points: abd,bcd, mnk. These splits points will be saved on distributed memory and
now we are building the trie tree. The trie tree is shown in Figure 2.12.

From the trie tree, we can get that all the sample data is sorted and each partition is
in order. In other words, all the data in split 1 is larger than that in 2, 3 and 4. Then we
just need to build the trie tree on the different map tasks to assign each record to different
partitions. Finally, the reduce tasks just need to sort the data in the partition and output
the partitions in order to get the final result.

According to the source code provided by Hadoop, there are no any specific mapper
and reducer functions in TeraSort job which means Hadoop will use default mapper and
reducer function: IdentityMapper and IdentityReducer. These two functions utilize the
sorting process during the map and reduce stages while not setting any operation for map
and reduce tasks. Thus, the modified totalorderpartition will control the job and help
Hadoop sort all the data quickly.

7A kind of method to find the words.
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Figure 2.12: Trie tree from [34]

2.6.4 TeraSort in Spark

Compared to Mapreduce, Spark adopts two kinds of partition tools which are called
HashPartition and RangePartition respectively. For HashPartition, the principle is like
this: for a given key, Spark will calculate its hashcode and divide it by the number of
partitions. The remainder is the partition ID. If the remainder is less than 0, use the
remainder add the number of partitions to get the partition ID. Based on that strategy,
we can find that HashPartition may causes uneven data volume in each partition, and
in extreme cases, one partitions may own all the data in RDD. To handle the situation,
RangePartition is proposed by Spark.

RangePartition is mainly used for sorting the data in different RDDs and the principle
is like this: the first step is extracting the sample data from the entire RDD. After sort
the data, calculate the maximum key of each partition and form a variable rangeBounds
under the Arraylkey| format. The second step is determining the range of the key in
rangeBounds and give the subscript id of the key in the next RDD.

RangePartition adopts Reservoir Sampling [39]% which is aimed at solving the problem:
select k samples from the set S containing n items where n is an infinite or unknown
number. This algorithm is efficient for the case that all n items cannot be stored in main
memory. The principle of the algorithm is like that: according to Dictionary of Algorithms
and Data Structures, the first step is extracting the first k items from set S and putting
them into the “water pond”. For each S[j] term (j > k) , randomly generate an integer r
ranging from 0 to j. If r < k, replace the item in the pond with the S[j] item.

Here is an example to explain how it works:

8A classic sampling method.
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Imagine there are 10,000 numbers and we need to extract ten random numbers from
them. We can record the sample set as S which includes 10,000 numbers. Also, we call
the array to save the ten random number as R. At first, take the first ten numbers from S
and fill them into the R. Then go to the first iteration. The first iteration starts from the
eleventh number (subscript 10) and generate a random integer j from 0 to 10. If j < 10
(j=4), we will use the 11th item in the S (S[10]) to replace the fifth item in the R (R[4]).
All the iterations works like that until the end of the S.

Next, we are going to explain how to get the borders of each partition based on the
Figure 2.13.

1,4,7,10,13

artition’1
(2,0.4)
(4,0.4)
(6,0.4) (6.10)

sy
4,10
)
e,
(9,0.4) (10,~)
2581114 214 sort based on ke (10,0.4) Border
partition2 (14,0.4)
N——
p—
6,9
S—

(~:6)

3,6,9,12,15

artition3

Figure 2.13: How to determine the border

From the Figure 2.13, we can see that there are three partitions and each of them
owns 5 numbers. Thus, based on Reservoir Sampling, we pick two sample points for each
partition. Then we sort them based on their key and calculate their weights which equals
to the numbers of sample data divide the numbers in partition. After that, we are going
to count the sum of the total weights (2.4) and use the value to divide partition number
(3) to get the step (0.8). Finally, we are going to accumulate the weight for each sample
data and once the value is larger than multiples of the steps we will save the key as the
border. Here we get the 6 and 10 as the border which can help the each record find this
partition.

Spark implements RangePartition in the following way:

1. Calculate the number of partitions if it is larger than one. Otherwise, return an

empty array.

2. Calculate the data sample size. The rule is: at least 20 records per partition or at

most 1Mb per partition.
3. Calculate sampleSizePrePartition based on sampleSize and number of partitions.

4. Call the RangePartitioner’s sketch function to sample the data and calculate the

sample for each partition.
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5. Calculate the overall proportion of the sample and the partition with too much data

to avoid data skew.

6. Call the RDD sample function to re-extract the data for the partition with too much
data.

7. The final sample data is sorted and distributed by determineBounds function to

calculate rangeBounds.

2.7 K-means

K-means belongs to hard cluster algorithm and is aimed at “ partitioning N objects into
K clusters where each object belongs to the cluster with the nearest mean” [40]. This
algorithm first randomly selects k objects and each of them stands for the centre or
mean of the cluster. Then it will classify the other objects to different clusters based on
calculating the distance between the centre and the objects [40]. Finally, it will recalculate
the mean of each clusters. This process will repeat again and again until criterion function
becomes convergent.

In addition, K-means is a typical distance-based clustering algorithm. The distance
is used to evaluate the similarity [41]. The closer the distance between two objects, the
greater the similarity will be. Besides, the algorithm reassigns each object to the nearest
cluster in each iteration based on its distance from each cluster centre. When one iteration
finishes, it means all the objects have been classified and the new cluster centre has been
calculated. If the value of the evaluation index J does not change after the iteration, the

algorithm becomes convergent.

2.7.1 Data generation

Hibench provides the function for the users to produce the k-means data to run their own
jobs and it is called GenKmeansDataset. The function provides many parameters which
relates many aspects of the K-means data. The parameters are lists below:

numSamples: it stands for the amount of the input data and the default value is 20.

numClusters: it represents how many clusters the users want to classifiy and the
default value is 2.

meanMin: it shows the min value of the centre ID and the default value is 0.

meanMax: it shows the max value of the centre ID and the default value is 1000.

stdMin: it presents min standard deviation of the clusters and the default value is
-100.

stdMax: it presents max standard deviation of the clusters and the default value is
100.
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After setting the proper parameters, one can produce the input data. There are two

important files need to be produced: sample data and cluster centre. For sample files,

the generated data needs to follow the Gaussian Distribution. For centre files, the data

needs to follow the Uniform Distribution®. Listing 2.10 and 2.11 shows the sample data

and centre data respectively.

1
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yjliu@it066427:~ /mahout—distribution —0.8$% bin/mahout seqdumper —i /user/yjliu/HiBench/
Kmeans2/Input/cluster /part —00000

Running on hadoop, using /usr/bin/hadoop and HADOOP_-CONF_DIR=

MAHOUT-JOB: /home/yjliu/mahout—distribution —0.8/mahout—examples —0.8—job. jar

19/02/21 15:21:11 INFO common. AbstractJob: Command line arguments: {——endPhase=[2147483647],
——input=[/user/yjliu/HiBench/Kmeans2/Input/cluster /part —00000], —startPhase=[0], ——
tempDir=[temp]}

Input Path: /user/yjliu/HiBench/Kmeans2/Input/cluster /part—00000

Key class: class org.apache.hadoop.io.Text Value Class: class org.apache.mahout.clustering.

kmeans. Kluster

Key: CL—0: Value: CL—0{n=0 c=[991.089, 311.404, 479.975] r=[]}
Key: CL—1: Value: CL—1{n=0 c=[323.392, 230.470, 948.572] r=[]}
Key: CL—2: Value: CL—2{n=0 c¢=[93.758, 947.342, 828.972] r=[]}
Key: CL—3: Value: CL—3{n=0 c¢=[182.601, 717.132, 629.741] r=][]}

Key: CL—4: Value: CL—4{n=0 ¢=[737.270, 576.215, 476.047] r=[]}

Count: 5

19/02/21 15:21:12 INFO driver.MahoutDriver: Program took 1385 ms (Minutes:
0.023083333333333334)

Listing 2.10: Cluster center

Key: 5940: Value: {0:248.1922426083087,1:615.8217933684431,2:242.31481991717317}
Key: 5941: Value: {0:252.86279962453887,1:636.6988427112975,2:325.85848413896775}
Key: 5942: Value: {0:281.2925681567665,1:650.2565965933796,2:261.12539678482216}
Key: 5943: Value: {0:293.4406039488976,1:639.2207704638387,2:230.5379226579626}
Key: 5944: Value: {0:278.6631414196989,1:646.7933209171147,2:253.48443687107198}
Key: 5945: Value: {0:335.5188483203682,1:607.2100396828683,2:391.95039254788986}
Key: 5946: Value: {0:251.6259457244803,1:640.0831933869397,2:378.04124725224}
Key: 5947: Value: {0:197.9698231486379,1:583.9066387893334,2:344.933754329809467}
Key: 5948: Value: {0:307.549695068334,1:613.3642987144576,2:396.10896707109805}
Key: 5949: Value: {0:283.5729689416751,1:671.5237069686058,2:388.1575519127281}
Key: 5950: Value: {0:269.25119999416575,1:599.53061357693,2:217.2809952160484}
Key: 5951: Value: {0:323.5568499592137,1:651.4818861498582,2:295.718773387541}
Key: 5952: Value: {0:254.40937702957706,1:618.9342329663795,2:210.38298368445012}
Key: 5953: Value: {0:214.70868416753376,1:638.9056014157164,2:248.00265795206633}
Key: 5954: Value: {0:213.3484564659689,1:636.7858086235894,2:240.85553259823314}
Key: 5955: Value: {0:340.6268314446697,1:632.8695608143396,2:214.5867309076366}
Key: 5956: Value: {0:178.92283591617422,1:626.6015313258697,2:268.08134931697407}
Key: 5957: Value: {0:253.1845845279675,1:612.3703939264973,2:323.25573799595225}
Key: 5958: Value: {0:286.5223123874617,1:591.0367435252917,2:224.4974411201224}
Key: 5959: Value: {0:205.95927358966588,1:549.2507270487531,2:227.46023805989003}
Key: 5960: Value: {0:204.6780739447981,1:627.8053573165191,2:335.10501805125574}
Key: 5961: Value: {0:276.6531239489219,1:674.2753486379368,2:347.84293551398474}
Key: 5962: Value: {0:189.2760523170216,1:641.4104863230958,2:374.88732204343825}
Key: 5963: Value: {0:296.96727412080463,1:618.0205373080661,2:403.51705280535975}
Key: 5964: Value: {0:259.3588370212758,1:618.8978183303641,2:280.9729888465}

Key: 5965: Value: {0:215.3465459324441,1:582.2264066695303,2:303.75075172094864}
Key: 5966: Value: {0:374.3269303547928,1:615.984176069731,2:385.17288838608977}
Key: 5967: Value: {0:289.19639353812397,1:646.9296020064971,2:238.5140768661576}
Key: 5968: Value: {0:264.9783793404725,1:614.2511229761428,2:348.357398082668}
Key: 5969: Value: {0:275.2356508338942,1:619.3423303737349,2:218.23778858912664}
Key: 5970: Value: {0:256.1867714015175,1:580.2176654467804,2:335.38920106696577}
Key: 5971: Value: {0:314.1784756173183,1:650.6208210041889,2:225.29679223611447}
Key: 5972: Value: {0:314.4491574092808,1:629.8961667745092,2:347.85410317139826}
Key: 5973: Value: {0:286.4745621619131,1:620.022397279952,2:385.3554510462057}
Key: 5974: Value: {0:294.8780255558405,1:638.7721883722536,2:270.5765971265742}
Key: 5975: Value: {0:180.55762223204903,1:618.6712686526174,2:260.24614405691113}
Key: 5976: Value: {0:306.349691445321,1:594.1896034534727,2:353.9238467604261}
Key: 5977: Value: {0:269.23505604732486,1:618.5808188161047,2:304.1027055821388}
Key: 5978: Value: {0:245.6371895307878,1:668.454043899714,2:332.73126371190887}

9 Another form of normal distribution.
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40 Key: 5979: Value: {0:269.49518074971627,1:628.3886385011664,2:439.23234290191533}
41 Key: 5980: Value: {0:277.24822744330703,1:629.0758099826897,2:311.09850030366346}
42 Key: 5981: Value: {0:335.11411545229316,1:642.1727253180827,2:212.37587821024445}
43 Key: 5982: Value: {0:225.88870686847144,1:653.4045487080817,2:301.1580371877249}
44 Key: 5983: Value: {0:290.29913754002706,1:644.2626645224626,2:215.82184676579413}
45 Key: 5984: Value: {0:325.23209393030953,1:637.3078474588388,2:209.38125180730466}
46 Key: 5985: Value: {0:315.3899837786172,1:634.5974432362508,2:242.11845837486405}
47 Key: 5986: Value: {0:281.5353545114224,1:644.9632205069469,2:325.06882682683704}
48 Key: 5987: Value: {0:383.8392911622615,1:613.3829076622408,2:262.15336610729423}
49 Key: 5988: Value: {0:288.1821924353483,1:620.7446307926359,2:386.68666478028285}
50 Key: 5989: Value: {0:205.43291353107287,1:631.9604793003757,2:256.68620370381745}
51 Key: 5990: Value: {0:276.9658511612721,1:646.026781540706,2:280.99288618550554}
52 Key: 5991: Value: {0:234.11753816918804,1:666.7659250101646,2:379.605837528803}
53 Key: 5992: Value: {0:324.3154814499773,1:673.8340099890765,2:360.4039815482136}
54 Key: 5993: Value: {0:237.64136176468216,1:617.7773528655733,2:397.563456393053}
55 Key: 5994: Value: {0:277.53690926335076,1:618.500961337162,2:406.83658711577164}
56 Key: 5995: Value: {0:302.2163149452197,1:694.7452469586228,2:335.8382690167798}
57 Key: 5996: Value: {0:351.031927119715,1:583.5618142373596,2:357.3704645136096 }
58 Key: 5997: Value: {0:307.81843027210675,1:631.6678205210159,2:393.07607100445364}
59 Key: 5998: Value: {0:307.1831210025599,1:571.4964221593333,2:268.9166116308314}
60 Key: 5999: Value: {0:316.29502004131564,1:613.6815915705238,2:359.02052829047443}
61 Count: 6000
62 19/02/21 15:38:02 INFO driver.MahoutDriver: Program took 1597 ms (Minutes:
0.026616666666666667)
63 yjliu@it066427:~ /mahout—distribution —0.88

Listing 2.11: Sample points

2.7.2 Algorithm explanation

The principle of k-mean [42] is as follows: this algorithm is for dataset D with n objects

and K as the initial cluster numbers.

1. Randomly extract k objects from dataset D as cluster centres.

2. According to the centre of the cluster, assign N objects into the most similar cluster.

The similarity depends on the distance between centre and the objects.
3. Update the centre of the clusters which means re-calculate the mean of each cluster.
4. Calculate the criterion function.

5. If the result of criterion function meets the threshold, close the process, else repeat

the step two.

The criterion function adopts the following two methods: the first one is global error

function, the formula is like this: [41]

k

E=) Y (Xj-Ui? (2.1)

i=1 XjeSi
Where E represents the error, K represents the amount of clusters, S; represents one
of the K clusters, U; represent centre point of \S;, X; represents the elements of .S;.

The other method is called central error function,the formula is like this: [41]
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k

E=Y (U - Up) (2.2)

i=1
Where E represent the error, K represents the amount of clusters, i represents the
cluster number, Uib represents the centre point of the previous cluster, U/ represents the
centre point of the next cluster.

The process of the K-means can be seen from Figure 2.14.

| Start I

Input: Cluster number K

Sample dataset D

}

Extract k objects randomly

from D as cluster centre
- |

v

Assign the points in D to
different cluster centre

!

Calculate the criterion

function for each points

Meet the threshold

Figure 2.14: Process of K-means modified from [41]

2.7.3 K-means in MapReduce

MapReduce implements K-means algorithm by calling the functions provided by Mahout.
Thus, we are going to talk about K-means in Mahout [43]. For Mahout, the K-means
algorithm consists of two parts: one is an external loop which will be executed once the

criterion function is not meet, the other is an inner loop which is the calculation process of
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the algorithm. Mahout adopts KmeansDriver to set the loop and utilize KmeansMapper
and KmeansReducer as the main body. The input of the algorithm includes two paths
which are the sample data and initial cluster centre vector path. Since Mahout requires
the data to be sequencefile format, all the input data should be key-value pairs which key
should be configured as Text while the value should be vector Writable.

Mahout implements K-means clustering through two steps: Initial division and calcu-

lation process [44].

Initial division
Generate k initial partitions in the specified clusters directory and store them in the form

of Sequence File. The selection method hopes to avoid isolated points as the centre of

Cluster. This step is implemented by RandomSeedGenerator class. The process is below:

Start
'

» Through the
input data

Create the cluster

with the record

and add it into the
N set

N

Replace the element
with probability of
1/(currentSize +1)

]

Write <Text, Cluster>
pair into sequencefile

!

End

Figure 2.15: Initial division modified from [45]

Calculation step

Calculation step includes two map operations, one combiner operation and one reduce
operation. It is trigged by two different jobs and organized by KmeansDriver. The

execution sequence is as follows:
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Iteration ends

KMeansMapper % KMeansCombiner H KMeansReducer% KMeansClusterMapper

Iteration

Figure 2.16: Calculate steps modified from [45]

KMeansMapper: firstly, read the cluster centre from last iteration or the initial step.
Then each slave utilizes the emitPointToNearestCluster method to add each point to the
nearest cluster. The output are key-value pairs where the key represents cluster ID while
the value represents the instance of KmeansInfo which includes the number of points and
the points belongs to the cluster.

KMeansCombiner: it is a local reduce operation aimed at merging different component
from same cluster ID from KMeanMapper output.

KMeansReducer: Accumulating the number of points with same cluster ID and com-
press all of the points with same ID into the proper key-value pairs. Based on that,
calculating the cluster centre for this iteration. If the distance between old cluster centre
and the new cluster centre meets the accuracy standard, record the convergence status.

KMeansDriver: Controls the iterative process until the maximum number of iterations
is exceeded or all clusters have been convergent. After each iteration, KMeansDriver reads
all clusters in its clusters-N directory. If all clusters have been convergent, the entire
kmeans clustering process becomes convergent.

In addition, the results of each iteration will be saved on the HDFS for further use.
When the next iteration needs the previous data, MapReduce will read the previous data

from HDFS and then calculate new iteration results.

2.7.4 K-means in Spark

Spark provides the function to implement K-means algorithm and the function is under
MLib package. The implementation of Spark.mlib includes a parallelized variant method
to initialize cluster centre which is called kmeans|| [46]!°. There are some parameters

Spark.mlib provides for K-Means:
e K: it stands for the amount of the clusters.
o MaxIterations: it represents the maximum iterations to run.

e InitializationMode: it presents how to initialize the centre points of the cluster.

Spark provides two methods: Random initialization and k-means||.

10 An modified method of k-means.
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e Runes: it presents parallelism which means how many K-means algorithm run to-

gether under the same settings.

e Epsilon: it presents the distances threshold where we can recognize K-means as

converged.

Similar to K-means in Mahout, Spark also implements K-means in two steps: centre
initialization and calculation process [47].
For centre initialization, the default method is K-means|| because random cluster cen-

tre may lead to wrong classification results. The principle of K-means|| [46] are as follow:
1. Select a point randomly from the initial points as the centre of the cluster.
2. For every point from the dataset, calculate the distance D(x) from the cluster centre.

3. Choose a new point as the new cluster centre. The rule of the selection is that: the

larger D(x) is the higher probability it will be chose.
4. Repeat step2 and step3 until get K cluster centres.
5. Return all the cluster centres.

For calculation step, Spark receive the cluster centre points from one of the initializa-

tion methods. Then it will repeat the next two steps to get the proper K cluster:

e Calculate each distance between the points from the dataset and the centre points
of each cluster and then put each point into different clusters depends on the nearest

centre points.
e Recalculate the centre points.

After finished initializing the centre points, Spark will broadcast them to each RDD.
Then, each RDD will run mapPartition operator to calculate the distance between each
point and the cluster centres and classify points to different clusters based on the near-
est centre point. After that, Spark utilize reduceByKey operator to merge the clusters
information and collectAsMap operator to output the result.

After getting the results, Spark will recalculate the centre points by calculating the
arithmetic mean of each component from the getting clusters. If the distance between the
previous centre points and the current centre points is bigger than the given Epsilon, the
next iteration will begin. Otherwise, the K-means iteration ends and get the results.

The results of each iteration will be saved by different persist level. The users can

utilize the cache operation to save each iteration results on the memory or on the disks.
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2.8 MapReduce optimization strategies

In this section, we describe the optimization strategies for MapReduce jobs. According
to Holmes [48], the factors that have a negative effect on job performance can be divided

into the following categories:

1. Hadoop Configuration. The default settings under most clusters show low efficiency
while the same situation happens if the personalized configuration not set properly.
The common performance problems caused by configuration are frequent memory

swapping, CPU overload and so on.

2. Map task. Extremely large and small files can affect the performance of Map tasks.

Also, poorly managed code can have an impact.

3. Reduce tasks. Data skew and the number of reduce tasks can affect the performance

of reduce tasks.

4. Hardware. The performance can be affected by some bad nodes and poor network

especially for the small cluster.

Since one and four are unable to be solved by parameter tuning, we are going to talk
about what kinds of problems the job will meet during the map and reduce stages and
list some parameters that can improve the situation.

Figure 2.17 illustrates the whole process of map tasks and the factors that may affect
the job efficiency during the process. There are four stages exists in the map tasks. The
first one is the scheduling process and it happens between the job started and the map
tasks started. During the process, the queue resource and the number of jobs in the queue
are the most serious problems. Based on MapReduce online documents [49], there are
several parameters can affect the situation which are: mapreduce.map.memory.mb and
mapreduce.map.cpu.vcores. These two parameters are used for configuring the resource
utilization for each map tasks. By tuning these two, the job can be more flexible to apply
resource for different sizes of jobs.

The second stage is Read inputs. It happens at the beginning of map tasks. During
the process, the most serious problem is the size of the input files. Based on the online
documents [49], mapred.min.split.size and mapred.maz.split.size are utilized to control the
sizes of input files for each map tasks. Since the default block size for HDFS is 128MB,
once the mapred.min.split.size bigger than block size, one block will be splits to different
pieces and assign to different map tasks. On the contrary, if the mapred.min.split.size
is smaller than the block size, several blocks of data will be assigned to one map tasks.
Thus, by configuring these parameters, the users can easily control the size of input data

to improve the efficiency.
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The third and fourth stage can be combined together because they are about the map
function and the result output. For the map function, no parameters are available to im-
prove the quality of codes. Thus, the fourth stage is more important. From the table, the
most serious problem for Spill is local hardware issue. Based on the online document, the
result of map function will be saved on the buffer and the buffer will spills as new files once
it meets the threshold. MapReduce provides the parameter called mapreduce.io.sort.mb
to control the sizes of the buffer. Also, after finished spills new files, MapReduce will
merge the files together and the parameter called mapreduce.io.sort.factor is utilized to
control that. In addition, there are many other parameters that may affect the efficiency
of map tasks [49]: mapreduce.map.sort.spill.percent, mapreduce.map.output.compress and
mapreduce.map.output.compress.codec. Table 2.2 concludes all the parameters for map

tasks.

Job Task Task
started started y .1 L ) completed
_ Reading mputs and calling the -
T oy ) |
T | user's map funttion are Spillie 8 runs in |
1 | Per l;-:.w w n'd n The sdme own Thirgad I
| Wait for | thread |
I scheduler to | I
Conceptual | schedule task | Read inputs User map function Spill |
timeline "" 9
— Resourte - Havdware and - Pertovrmante - Lotal
tontention with network issues ssues Ik usev fode havdware
othev jobs ISsues
o - |nPut SIZe too smal
- Stheduler - Nernsplit table input
LonsTrdining Pavalle Ty L
& in o - L/ata skew
task erecution
tems that can

mPalt Pertormante

Figure 2.17: The timeline of Map tasks and the impacts on the job efficiency from [48]

Parameters Type Default value | Description

mapreduce.map.memory.mb Int 2048 Memory for each map task

mapreduce.map.cpu.veores Int 1 Vcores for each map task

mapred.min.split.size Int 1 The min value of Input splits

mapred.max.split.size Int 128 The max value of Input splits

mapreduce.io.sort.mb Int 100 The buffer for map tasks

mapreduce.io.sort.factor Int 10 The number of spill files merge together
mapreduce.map.sort.spill.percent Float 0.7 The threshold of map buffer
mapreduce.map.output.compress boolean | False Whether compress the intermediate data for map tasks
mapreduce.map.output.compress.codec | String Null Compression algorithm

Table 2.2: The parameters for Map tasks modified from [49]

Figure 2.18 illustrates the timeline of reduce tasks and the factors that may affect
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the job efficiency. There are five stages during the whole process. The first stage hap-
penes between job started and the reduce tasks started and the main problem are same to
the Map tasks. Based on the online documents, mapreduce.reduce.cpu.vcores and mapre-
duce.reduce.memory.mb can be utilized to solve the problem. By configuring the param-
eters for Reduce tasks, the users can control the resource they need and thus to improve
the efficiency.

The next stage is the shuffle process and it happens between reduce tasks started and
all inputs read. Since it represents the process to transfer the data from map side to reduce
side, the most serious problems are hardware and network issues. MapReduce provides one
parameters to improve the job efficiency which is mapreduce.reduce.shuffle.parallelcopies.
During the shuffle process, the number of map results are more than one and this pa-
rameter can be utilized to pull more results for one time to improve the efficiency. Also,
since the files downloaded from map tasks need to be merged, mapreduce.io.sort.mb can
be utilized to control the merging process.

Since there are not any parameters prepared for sort and reduce process, we com-
bine the last three stages together. There are many parameters prepared for these three
stages which are mapred.job.shuffle.input.buffer.percent, mapred.job.shuffle. merge.percent
and mapred.job.reduce.input.buffer.percent [49]. Table 2.3 presents all the parameters for
Reduce tasks.
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Figure 2.18: The timeline of Reduce tasks and the impacts on the job efficiency from [48]
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Default e
Parameters Type Description
value
mapreduce.reduce.memory.mb Int 8192 Memory for each reduce task
mapreduce.reduce.cpu.vecores Int 1 Vcores for each reduce task
. The
mapred.reduce.parallel.copies Int 5
number threads used to download the map resultss
. The
mapreduce.io.sort.factor Int 10
number of spill files merge together
. . The
mapred.job.shuffle.input.buffer.percent | float | 0.7
ratio of buffer size takes for the reduce tasks
. The
mapred.job.shuffle.merge.percent float | 0.66
threshold when the spill happens
. . How
mapred.job.reduce.input.buffer.percent | float | 0.0
much memory is used to store data in the buffer

Table 2.3: The parameters for Reduce tasks modified from [49]

2.9 Spark optimization strategies

Regarding to the optimization for Spark, there are many suggestions from the Internet.
According to Karau [50], the basic tuning strategy for Spark is configuring the parameters
related to Spark core. Also, Spark online documents propose other aspects for tuning
Spark jobs that includes the shuffle process, internet problem and memory management.
Thus, we are going to talk about the two sides and propose the parameters that may
related to the process.

As we explained how Spark works from the last chapter, we are going directly to the
parameters provided by Spark core to control the jobs. There are 7 parameters provided
by Spark to set the jobs that are num-executors, executor-memory, executor-cores, driver-
memory, spark.default.parallelism,spark.storage.memory. Fraction and spark.shuffle.memo
ry Fraction. Next, we are going to introduce all of them briefly and give the suggestions

about how to decide these parameters.

num-executors

This parameter is used to configure how many executors launch for Spark jobs. When the
driver program applies the resource from the resource manager, the resource manager will
launch the corresponding number of executors on each working node as many as possible
to meet the requirement [51]. This parameter is the most important parameter that must
be set properly. Since the default settings will only launch small number of executors
leading the job run slowly.

The suggested number of executors are between 50 and 100. Since the large number

of executors may take too much queue resource leading other jobs has little resource to
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apply while the small number of executors may not fully utilize the queue resource, thus

the values in this range is strongly suggested.

executor-memory

This parameter is utilized to configure the memory for each executor. Since memory
is the most important resource for Spark jobs and may affect the efficiency directly, this
parameter must be configured properly. Also, the problem related to JVM OOM is always
caused by this setting.

The proper setting should around 4GB to 8 GB for each executor. However, the specific
values should depend on the size of the cluster. Also, if there are more than one jobs
running on the queue, the total memory should not exceed 1/3 or 1/2 of the cluster

resource to ensure other jobs can run smoothly.

executor-cores

This parameter is utilized for configuring the number of CPU cores for each executor. This
parameter determines the parallel computing ability for each executor. Since one CPU
core can execute many tasks at a time, the more CPU cores assigned to the executors,
the faster the Spark jobs can be.

The proper settings should around 2 to 4 for each executor. Also, the specific values
should depend on the requirement of the jobs. Besides, the total CPU cores should not

exceed 1/3 or 1/2 of the cluster resource to ensure other jobs can run smoothly.

driver-memory

This parameter is used to set the memory for driver program.
This parameter is optional and not configured under some circumstances. The only
thing needs to be care is that the value needs to be high enough if the jobs include the

collect operation to gather all the data to the driver process.

spark.default.parallelism

This parameter is used to configure the default amount of tasks for each stage [52]. This
parameter can affect the efficiency of the Spark jobs significantly once it is configured
properly. Since one partition correspond to one task, this parameter is actually to set the
parallelism of tasks.

The proper setting should around 500 to1000. If this parameter is not configured, the
default amount of tasks will be decided by the blocks of HDFS and one block correspond
to one task. Normally, this default setting is smaller than expected which means the few

tasks takes large resource. Thus, the efficiency will be low and the resource assigned to
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executors will be wasted. The suggestion is that setting this parameter twice or three

*

times as many as num-executors * executor-cores to fully utilize the resource.

spark.storage.memory.Fraction

This parameter is utilized for setting the percentage of executor memory which can be
utilized for cache operation and the default value is 0.6. In other words, 60% of the
executor memory can be utilized to save the RDDs. Based on the different RDD persist
level, this parameter can help the user save the data on local disks or memory.

If there are many cache operations in Spark jobs, the value should be configured larger
to ensure all the data the user needs can be saved on the memory. On the contrary, if
there are many shuffle operations in Spark jobs, the value will be configured smaller to

ensure the efficiency.

spark.shuffle.memoryFraction

This parameter is used to set the percentage of executor memory that can be used for
aggregation operations after a task pulled the output from the previous stage during the
shuffle process. The default value is 0.2 [51]. In other words, 20% of the memory can be
utilized for this operation. If the memory is above the value during the shuffle process,
Spark will write the other data into the local files and thus reduce the efficiency.

If there are many cache operations and few shuffle operations in the Spark jobs, the
value should be configured smaller to avoid the efficiency lose because of too much data
during the shuffle process.

Apart from the optimization for Spark core, Spark provides many other parameters
that related to other aspects of the jobs. Table 2.4 and Table 2.5 illustrates some important

parameters related to the internet problems as well as the shuffie process respectively.

Default L.
Parameters Type Description
value
The largest message size allowed in “control plane” communication. It
spark.rpc.message.maxSize | Int 128 only applies to describe the size of information sent between executors and
the driver
spark.network.timeout Int 120 The default timeout for all the network application
. Maximum
spark.port.maxRetries Int 16
number of times when bind to a port
. The
spark.rpc.lookupTimeout Int 120
duration for an RPC remote endpoint operation waiting before time out

Table 2.4: The parameters for internet problems modified from [20]
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Default Lo
Parameters Type Description
value
spark.shuffle.file.buffer Int 32 Buffer of Bufferoutputstream during the shufflewriter process
i i Buffer size of shuffle read tasks which controls how much data can be
spark.reducer.maxSizeInFlight Int 48
pulled for once
. . The
spark.shuffle. manager String Sort
type of shuffle manager. There are three options: hash, sort and tungsten-sort
When
the shuffle manager is sort, if the number of shuffle read tasks is smaller
spark.shuffle.sort.bypassMergeThreshold | Int 200
than the threshold, shuffle writer will not perform sort operation while
write the data based on Hash values.
This
i X parameter will be valid if the user choose HashShuffleManager. If the value
spark.shuffle.consolidateFiles Boolean | false
is true, the consolidate mechanism will be enabled and the output of the
shuffle writer will be merged.

Table 2.5: The parameters for shuffle performance modified from [20]

2.10 Summary

In this chapter many interesting literatures have been discussed to evaluate the perfor-
mance of the cluster. Based on them, Hadoop and Spark are the most powerful and
popular frameworks that can put the ideas of process large volume of data into practice.
Also, Hibench suite provides us many interesting workloads to evaluate the performance
of the cluster from many aspects. Thus, we decide to conduct our own experiments to
test the performance of our cluster with the three existing jobs in HiBench suite.

Since the limitation of HiBench suite is obvious, we decided to withdraw three work-
loads from HiBench suite and run the jobs on our own cluster. We are going to implement
all the workloads by Spark and MapReduce. This can help us evaluate the performance
of the jobs through more aspects. In addition, apart from implementing the jobs, we de-
cide to put parameters tuning into consideration. By configuring the jobs through many
aspects, we hope to see the difference between Spark and MapReduce and how much the
parameters can affect the job efficiency. Thus, we choose Yarn as our Resource Manager
because it provides a set of complete system to monitor the cluster performance while

giving us freedom to tune different parameters related to MapReduce and Spark.
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Chapter 3

Experiment settings

3.1 Hardware configuration

Our Hadoop and Spark clusters are built under the same hardware configuration with 10
nodes. Each node has 8 CPU cores at 2.9 GHz, 1 Tb disk, and 32 GB physical memory.
Overall, our 10 nodes cluster owns 104 CPU cores, 420 GB RAM and 51 TB local storage.
Regarding to its reading ability, our cluster provides an aggregate bandwidth of about 10
GB/second. Also, the writing speed is about 5 GB/sec through dd test. Our nodes are
connected by 1,000 MB internet and run Ubuntu 16.04.2 (GNU/Linux 4.13.0-37-generic
x86_64).

As a comparison, the hardware of our cluster is roughly equivalent to a cluster with 40
virtual machines. Our hardware is suitable for handling various difficult situation in Spark
and Hadoop. For example, there are many concurrent tasks running on our cluster and
sometimes more than one type of jobs exists on the cluster which prove that our cluster
has enough CPU cores and RAM to solve any kinds of problems. However, experiments
related to large number of nodes (e.g., evaluating the scalability of different nodes) are

out of the scope of our thesis.

3.2 Software configuration

Both Spark and Hadoop are configured on Java 1.7.0.

Hadoop: we choose Hadoop version 2.4.0 to run MapReduce job and selected Yarn
as the resource manager. All of the 10 nodes can be used to sort the data and the
intermediate data will be saved on HDFS. We keep the default settings of HDFS which
utilize 128 MB as block size and 3 as replication factor. In order to control the parallelism
degree of the job better, we enable the CPU-scheduling function on YARN. Also, we give
each map tasks 7 GB memory for map tasks and 14GB memory for reduce tasks.

Spark: we use Spark 2.1.0 to run the jobs on YARN. The intermediate data is also
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saved on HDFS. We set the default number of executors as two and each of the executor

own 1 vocre and 1GB memory.

3.3 Profiling tools

In this section, we present a novel and powerful cluster management tool which we have
used to monitor and profile the selective workloads running on Spark and Hadoop. It is
called Apache Ambari.

3.3.1 Ambari

Apache Ambari is a web-based project aimed at simplifying Hadoop management. Until
now, it already supports most of the Hadoop components, “including HDF'S, MapReduce,
Hive, Pig, Hbase, Zookeeper, Sqoop, and Hcatalog” [53]. In addition, Ambari supports
the users to control the Hadoop cluster on the following three aspects [53]:

Provision

e Ambari provides detailed instruction for configuring Hadoop cluster to many nodes.

e Ambari integrates all the important configuration settings related to Hadoop cluster

on the website.

Management

e Ambari provides powerful management system which includes start, stop and re-

configure the Hadoop service across the all the nodes.

Monitoring

e Ambari provides a dashboard to monitor the condition of the whole cluster.
e “Ambari adopts Ambari Metrics System to collect the metric information” [54].

e “Ambari adopts Ambari Alert Framework for system alerting and will remind you

when needed (e.g., data node goes down, low disk space, etc)” [54].

Ambari has achieved the following:
1. Simplified cluster provisioning with “a step-by-step installation wizard” [53].

2. Pre-configure key metrics to check whether Hadoop Core (HDFS and MapReduce)
and related components (such as HBase, Hive, and HCatalog) are healthy [53].
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3. Check the job dependencies and performance by supporting visualize and analysis

job execution.

4. The information is exposed through a complete RESTful'! API that integrates ex-

isting operations tools.

5. The user interface is intuitive and allows users to view information and control the

cluster easily.

Our experiments include the following components in Ambari: HDFS, MapReduce
2.0, Spark 2.0, Yarn and Mahout.

3.3.2 HDFS:

For our experiment, we use HDFS to upload and downloads important files which in-
cludes the input data, Jar package or configuration files. Since the sizes of our data are
huge and some of them can reach to 500 GB, HDFS presents its strong storage ability by
splitting the data into different blocks and save them on the different data nodes. Also,
HDFS not only allows users to save the big files on HDFS, but also it gives us the free-
dom to visit the HDFS from different locations which enhance its availability. Besides,
HDFS supports us conduct reading and writing operation which means when we run our
MapReduce or Spark jobs on the cluster, we can select the files on HDFS as the input
data or select somewhere as the output directory. In addition, the log files from different
nodes will be saved on the HDFS automatically which can help us diagnosis the problem
happened during the job running. Finally, Ambari provides multiple metrics to visual-
ize the resource utilization on HDFS. We can monitor the situation of each data nodes
by checking the Heatmaps function. There are eight indexes integrated under Heatmaps
function which are: HDFS Bytes Written, DataNode Garbage Collection Time, DataNode
JVM Heap Memory Used, DataNode JVM Heap Memory Committed, DataNode Process
Disk 1/0 Utilization, DataNode Process Network 1/0 Utilization, HDFS Space Utilization
and HDFS Bytes Read. These functions are powerful enough to help us understand the

situation of each datanode under working and idle situation.

3.3.3 MapReduce 2.0:

MapReduce 2.0 separates “what to do” and “how to do” through abstract model and
computing framework, providing the programmers a high-level programming interface and
framework. Compared to MapReduce framework, more powerful tools are proposed that
include ResourceManger,NodeManger and ApplicationMaster. By splitting the data to

be processed by our job and assigning the blocks to different tasks, it achieves distributive

LA kind of design strategy which provides a set of design principles and constrain conditions.
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computing through different nodes. Thus, the framework can improve the efficiency of
our experiment dramatically. Also, once the job finishes, MapReduce can provides the
details of the map and reduce stage to help us understand what happened under different
nodes. Besides, by tuning the parameters provided by MapReduce, we can improve our

job efficiency while reducing the pressure of the cluster.

3.3.4 Spark 2.0:

Similar to MapReduce, Spark 2.0 proposes another distributed computing framework
which implements parallel computing by processing different RDDs. Compared to Spark
1.0, the performance improves sharply and the API are more easy to use. For our ex-
periment, the DAG scheduler will split our jobs into different stages and assign different
tasks to each stage. Also, by applying different storage strategy, Spark allows us to move
the intermediate data from disk to memory and thus improve the job efficiency obviously.
Finally, Spark 2.0 provides a set of well-established monitor system which can help us

track the situation of different stages or tasks easily.

3.3.5 Yarn:

Essentially, Yarn plays a role of resource manager which applying resources for MapReduce
and Spark jobs. This entity controls the entire cluster and manages the allocation of
applications to the underlying fundamental resources. Yarn carefully arranges the various
resources (calculation, memory, bandwidth, etc.) to the NodeManager and monitor their
applications with it. For our experiment, Yarn is mainly charged for monitoring different
jobs. All the information related to the jobs can be found from Yarn which includes the
parameter settings and job status. Also, Yarn provides the different metrics for resource
utilization for the entire cluster. By monitoring the resource utilization of the whole
cluster and different nodes, we can evaluate our cluster performance and optimize our

jobs from each node.

3.3.6 Mahout:

Mahout is a unique member of the Hadoop ecosystem, it is a distributed computing frame-
work based on machine learning and data mining. It not only provides the implementation
of many professional machine-learning algorithms, but also extends them into the Hadoop
clusters. For our project, we use Mahout to pre-process the input data and implement K-
means algorithm based on that. Also, since the result are also under sequencefile format,

Mahout can help us transfer the files into text format for further analysis.
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3.4 Experiment workflow

In this section, we are going to present the experiment workflow and how to use the tools
we mentioned above to conduct the experiment. Also, this part includes two steps: data

preparation and workloads execution.

3.4.1 Data preparation

Before putting the workloads into practice, we need to produce the input data. We utilize
the function provided by HiBench suite to create the input data. Based on the package,
the first step is finding the directory of the specific workloads and set the size of the jobs

we want. Listing 3.1 presents how we set different sizes of datasets for Wordcount.

1 #datagen

2 hibench.wordcount.tiny.datasize 32000

3 hibench.wordcount.small.datasize 320000000

4 hibench .wordcount.large.datasize 3200000000

5 hibench.wordcount . huge. datasize 32000000000

6 hibench.wordcount. gigantic.datasize 320000000000

7 hibench.wordcount.bigdata.datasize 1600000000000

8 hibench.wordcount.10g.datasize 10459610972

9 hibench.wordcount.50g. datasize 52298054860

10 hibench.wordcount.100g. datasize 104596109720

11 hibench.wordcount.150g. datasize 156894164580

12 hibench.wordcount.200g. datasize 209192219440

13 hibench.wordcount.250g. datasize 261490274300

14 hibench.wordcount.300g. datasize 313788329160

15 hibench.wordcount.350g. datasize 366086384020

16 hibench.wordcount.400g. datasize 418384438880

17 hibench.wordcount.450g. datasize 470682493740

18 hibench.wordcount.500g. datasize 522980548600

19

20

21  hibench.workload.datasize ${hibench.wordcount.${hibench.scale.profile }.
datasize}

22

23 # export for shell script

24 hibench.workload.input ${hibench . hdfs.data.dir}/Wordcount/Input

25 hibench.workload.output ${hibench.hdfs.data.dir}/Wordcount/Output

Listing 3.1: The configuration of Wordcount modified from [27]

Next, we need to change the settings of HiBench configuration files to let the workloads
accept and produce the datasets. Here, we need to go the directory of conf files under
HiBench suite and change the settings of hibench.scale.profile based on the size of datasets
we want. Listing 3.2 presents the situation that we want to produce the 50GB data for

wordcount.

Data scale profile. Available value is tiny, small, large, huge, gigantic and bigdata.
# The definition of these profiles can be found in the workload conf file i.e. conf/

workloads /micro/wordcount. conf

3

4 hibench.scale.profile 50g

5 # Mapper number in hadoop, partition number in Spark

6 hibench.default .map. parallelism 10

7

8 # Reducer nubmer in hadoop, shuffle partition number in Spark
9 hibench.default.shuffle.parallelism 25

10
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Listing 3.2: The configuration of Wordcount modified from [27]

After setting all the configurations properly, we are going to produce the input data.
The preparation function is under the bin directories and we can select any workloads
we want and create the input data with the prepare function. Listing 3.3 and Figure 3.4
show how we create the input data for Wordcount and the files on HDFS respectively.

yjliu@it066427:~ /Hibench/HiBench—master/bin/workloads/micro/wordcount/prepare$ ./prepare.sh
patching args=

Parsing conf: /home/yjliu/Hibench/HiBench—master/conf/hadoop.conf

Parsing conf: /home/yjliu/Hibench/HiBench—master/conf/hibench.conf

Parsing conf: /home/yjliu/Hibench/HiBench—master/conf/spark.conf

Parsing conf: /home/yjliu/Hibench/HiBench—master/conf/workloads/micro/wordcount.conf

N O U W =

probe sleep jar: /usr/hdp/current/hadoop—client /../hadoop—mapreduce/hadoop—mapreduce—client —
jobclient —tests . jar

start HadoopPrepareWordcount bench

© 0

hdfs rm —r: /usr/hdp/current/hadoop—client /bin/hadoop ——config /usr/hdp/current/hadoop—
client /etc/hadoop fs —rm —r —skipTrash hdfs://it066427:8020//user/yjliu//HiBench/
Wordcount/Input
10 Deleted hdfs://it066427:8020/user/yjliu/HiBench/Wordcount/Input
11  Submit MapReduce Job: /usr/hdp/current/hadoop—client/bin/hadoop ——config /usr/hdp/current/
hadoop—client /etc/hadoop jar /usr/hdp/current/hadoop—client /../hadoop—mapreduce/hadoop—
mapreduce—examples. jar randomtextwriter —D mapreduce.randomtextwriter.totalbytes=32000 —
D mapreduce.randomtextwriter.bytespermap=3200 —D mapreduce. job .maps=10 —D mapreduce. job .
reduces=20 hdfs://it066427:8020//user/yjliu//HiBench/Wordcount/Input
12 ECDSA key fingerprint is SHA256:jzLxe64jvR403rWO6I2A0SnKZsi+piplIWE+cC20Ztc.
13 The job took 24 seconds.
14 finish HadoopPrepareWordcount bench
15 yjliu@it066427:” /Hibench/HiBench—master/bin/workloads/micro/wordcount/prepare$

Listing 3.3: The process of creating the input data for Wordcount

N Ambari  test {EES) 4aters Dashboard ~ Services  Hosts  Alers  Admin

. a
# o Bz E] HiBench - Wordcount Total: 12 files or folders & Upload Qu

Q

Name » Size » Last Modified » Owner » Group » Permission
=

O3 Input - 2019-01-25 16:01 yjliu yjliu ArwWxr-xr-x
[0 Output1 - 2019-01-17 15:57 yjliu yiliu Arwxr-xr-x
[ Outputio - 2019-01-17 16:01 yiliu yiliu ArWXr-XT-X
3 Qutput11 - 2019-01-17 16:01 yjliu yiliu drwxr-xr-x
[0 Cutput2 - 2019-01-17 1558 yjliu yiliu Arwxr-xr-x
03 Outputs - 2019-01-17 15:58 yiliu yiliu ArWXr-XT-X
[3 Outputd - 2019-01-17 15:59 yjliu yjliu drwxr-xr-x
[ Cutputs - 2019-01-17 15:59 yjliu yjliu Arwxr-xr-x

Figure 3.1: wordcount files on HDFS

The last step is to check whether the input data is under correct formats for our

experiment. Since the input data is under sequencefile format, we are unable to open it
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directly to check the content. Thus, Mahout is used to help us transform the dataset to
make it visible. Listing 3.4 shows the datasets we create for Wordcount.

1 yjliu@it066427:” /mahout—distribution —0.8$% bin/mahout seqdumper —i /user/yjliu/HiBench/
Wordcount/Input/part—m—00000

2 Running on hadoop, using /usr/bin/hadoop and HADOOP_-CONF_DIR=

3 MAHOUT-JOB: /home/yjliu/mahout—distribution —0.8/mahout—examples —0.8—job . jar

4 19/02/21 15:33:40 INFO common. AbstractJob: Command line arguments: {——endPhase=[2147483647],
——input=[/user/yjliu/HiBench/Wordcount/Input/part—-m—00000], —startPhase=[0], —tempDir
=[temp]}

5 Input Path: /user/yjliu/HiBench/Wordcount/Input/part—m—00000

6 Key class: class org.apache.hadoop.io.Text Value Class: class org.apache.hadoop.io.Text

7 Key: acocotl overcrown mericarp uncompromisingly drome bromate stachyuraceous Hysterocarpus
allotropic : Value: sequacity reciprocation unchatteled spermaphyte sedentariness anta
homotransplant uncompromisingly ethnocracy tomorrowness lyrebird bladderwort flatman
trip decardinalizesymbiogenetically absvolt atlantite subfoliar ribaldrous unscourged
oratorize bromic devilwise friarhood abthainry coracomandibular epidymides subangulated
migrainoid reappreciate ununiformly groundneedle pentosuria supermarket subirrigate
frenal blightbird phytonic

8 Key: commandingness times barkometer liquidity coracomandibular abstractionism seeingness
authorling trip : Value: phallaceous ambitus figureheadship unrepealably lebensraum
rehabilitative various posterishness kenno metaphrastical astucious ommniscribent
approbation tonsure mustafina subofficer Triconodonta cubby culm seraphism Shiah slait
perculsive barkometer uninhabitedness putative archesporial insatiately Animalivora
quintette rizzomed astucious sviatonosite orgiastic Joachimite prescriber eristically
Macraucheniidae warlike rainproof plerome dialoguer equiconvex oinomancy redescend quad

9 Key: circular unchatteled ascitic stormy danseuse tonsure Dunlop : Value: mastication
overcrown lithotresis swoony almud hemimelus lithotresis archesporial dehairer
venialness paranephros calycular trailmaking impressor sesquiquintile unswanlike
iniquitously atlantite zenick mangonism diplomatize Effie valvula raphis trip flatman
seeingness parmelioid isopelletierin ribaldrous quadrennial licitness bugre brutism
trabecular octogynous sapphiric laurinoxylon bugre enhedge mendacity mammonish Helvidian
shellworker meloplasty acocotl steprelationship groundneedle foursquare Jerusalem
Pishquow erlking embryotic sloped eternal hysterolysis dunkadoo isopelletierin chooser
taurocolla oblongly noreast pentosuria ten abstractionism mammonish Bermudian
lophotrichic pope Passiflorales soorkee ribaldrous floatability mechanist
uninhabitedness slait counteractively

10 Key: Hydrangea choralcelo psychofugal sialadenitis tum : Value: oflete posterishness
cobeliever pseudohalogen unschematized Mormyrus Munychian diopside boor overcontribute
guitarist seeingness widdle Orbitolina electrotechnics craglike iniquitously equiconvex
outwealth arrowworm Lentibulariaceae dastardliness elemicin ticktick karyological naught
biventer Bushongo lineamental groundneedle arval commotion oinomancy redesertion
Bulanda entame pope oversand pamphlet vesperal flutist pomiferous topline sequestrum
sportswomanship unpeople Ophiosaurus slangy returnability ordinant critically
psychofugal monogoneutic basto subtransverse comism antalgol bot rebilling Pishquow
penult Glecoma squit scyphostoma silicize craglike decidable appetible reciprocation
bromic predebit comparability stiffish comism inventurous peptonate elemicin
orchiocatabasis unefficient idiotize pamphlet Alethea naught Aktistetae bromic
homotransplant paradisean sheepskin perculsive superindifference Confervales
unreprimanded Isokontae dishpan raphis nonlustrous flutist culm

11 Key: bespin macropterous bismuthiferous prolificy frictionlessly coldfinch adscendent
inferent tautness : Value: digitule Alethea chalcites skyshine wingable manilla
alveolite arsenide seelful oflete tonsure emir unimmortal subtransverse unexplicit
yawler biopsic unexplicit stereotypography overcrown precostal

12 Count: 5

13 19/02/21 15:33:41 INFO driver.MahoutDriver: Program took 1267 ms (Minutes:
0.021116666666666666)

14 yjliu@it066427:" /mahout—distribution —0.8$

Listing 3.4: The input data under Mahout

3.4.2 Workloads execution

The first step is ssh the command line of the master node. There are many software that
provides the function. Among them, we select putty and access our cluster with its IP

address. The settings of our putty and the command line of our master node can be seen
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from Figure 3.2 and Figure 3.3.

ﬁ PuTTY Configuration 4
Category:
=- Sfassinn | Basic options for your PuT T session |
i - Logding Specify the destination you warnt to connect to
- reminal Host N IP add Pot
EI Window . ost Name (or IP address) o
. L. Appearance |rtﬂ'EJE42?.massey.ac.nz| | |22 |
- Behaviour Connection type:
- Translation (JRaw () Telnet () Rlogin @ 55H () Seral
. Selecti
=ecton Load, save or delete a stored session
i Colours
- Connection Saved Sessions
s | |
~ Proxy Default Settin
as
- Telnet Load
- Rlagin Forz
- 55H
.. Serial Delete

Close window on exit:
(O fways () Mever  (®) Only on clean exit

Figure 3.2: The settings of PuTTY

EP yiliu@itDE6427: ~
login as: yjliu
vjliu@it066427.massey.ac.nz's password:
Welcome to Ubuntu 16.04.2 LTS (GNU/Linux 4.13.0-45-generic xE6_64)
* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/advantage

301 packages can ke updated.
4 uypdates are security updates.

Hew release '18.04.1 LTIS' available.
Bun 'do-release-upgrade' to upgrade to it.

¥%% System restart reguired ***
Last login: Fri Feb 15 19:56:18 2019 from 130.123.244.74
vilin@itogeaz7:~5 [I

Figure 3.3: The command line of Master node

The second step is settings the environment parameters for MapReduce and Spark.
Since our experiments utilize the jar package provided by HiBench, some jobs need to read

the configuration files from HiBench directory. Thus, we configure two environment pa-
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rameters which are SPARKBENCH_PROPERTIES_FILES and HADOOP_CONF_DIR.
The ways we export these two settings are shown from Listing 3.5 and 3.6.

1 export SPARKBENCH_PROPERTIES FILES=/home/yjliu/Hibench/HiBench—master/report/terasort/spark/
conf/sparkbench/sparkbench.conf

Listing 3.5: Export SPARKBENCH_PROPERTIES_FILES

1 export HADOOP_.CONF.DIR=/usr /hdp/current /hadoop—client /etc/hadoop

Listing 3.6: Export HADOOP_CONF _DIR

The third step is about executing our experiments with the default settings. We need
to provide the parameters we want to use and execute the experiment with the correct
script. Listing 3.7 presents the example of MapReduce WordCount.

1 /usr/hdp/current/hadoop—client/bin/hadoop jar /usr/hdp/current/hadoop—client /../hadoop—

mapreduce/hadoop—mapreduce—examples. jar wordcount hdfs: //it066427:8020//user/yjliu//
HiBench/wordcount50g/Input hdfs://it066427:8020//user/yjliu//HiBench/Wordcount/Output

Listing 3.7: Execute WordCount job in MapReduce

Next, we need to monitor the status of our jobs through Ambari YARN web UL It
provides many useful information including the execution time, resource utilization and
tasks status. We can find as much as information as we want from the web UI. Besides, this
UI also provide configuration function which allows us to check the parameters setting
for the jobs. This function is powerful to help us understand whether the customized
parameters settings works or not. The Figure 3.4, 3.5 and 3.6 show the Ambari Ul, Yarn

UI and Configuration function respectively.
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Services
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Figure 3.4: Ambari Ul
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Figure 3.5: YARN UI
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Figure 3.6: Configuration function

The last step is changing the configuration of the chosen parameters. We can change
any parameters we want from the command line and use Yarn Ul to monitor the situation
of the jobs. The Listing 3.8 shows the MapReduce WordCount jobs with customized

parameter settings realed to the resource utilization.

1  /usr/hdp/current/hadoop—client /bin/hadoop jar /usr/hdp/current/hadoop—client /../hadoop—
mapreduce/hadoop—mapreduce—examples. jar wordcount —D mapreduce.reduce.memory.mb=16384 —
D mapreduce.reduce.cpu.vcores=1 —D mapred.reduce.tasks=25 hdfs://it066427:8020//user/
yjliu//HiBench/wordcount50g hdfs://it066427:8020//user/yjliu//HiBench/Wordcount/Output

Listing 3.8: Wordcount with resource utilization settings

3.5 Data collection

In this section, how to collect the input data are going to be discussed. Since the execution
time can present the efficiency of the workloads directly, we decide to use it to present
our results. Also, we are going to test each experiment for 5 times to ensure the result
accuracy. Then, we can get the average execution time through the five experiments and
calculate the average standard deviation based on the results. In addition, we set the
threshold for the standard deviation as 20% which means the execution times that shows
higher deviate trend will be defined as the outliers. If there is one outlier exists in one
experiment, we will drop it and re-calculate the average execution time based on the other
four. We hope this data collection method can help us get the results that shows the real

performance of our cluster.
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Chapter 4

Methodology

For our experiments, we apply three kinds of jobs: aggregation job, shuffle job and iterative
job. All our jobs have two implement ways which are Spark and MapReduce. Also, we
ran all the jobs on our research cluster which owns one master node and 9 slave nodes.
Since each slave node provides 42GB RAM and 8 CPU cores, we are able to assign 420
GB RAM and 104 CPU cores to each of the job. Besides, we selected Yarn as our resource
manager which can help us monitor the situation of each working nodes as well as track
the details of each job with its history serve. In addition, we select three workloads already
provided by Hibench to represent the three types of jobs: Wordcount (aggregation job),
TeraSort (shuffle job) and K-means (iterative job). Next, we are going to introduce our

first experiment: Wordcount.

4.1 Wordcount

4.1.1 Input Datasets

The input data is produced by RandomTextWriter and is divided into 10 pieces from
500GB to 50GB with 50GB as the interval. We choose the one with default settings as
the benchmark and use it as comparison group to visualize the result of the 10 different
datasets. Also, we divide our datasets as three categories: small, intermediate and large.
Each of the category represents one possible scale of the dataset and contains three or
four datasets. We hope this subdivision can simulate the real-world situation and help us

visualize the results difference in detail.

4.1.2 MapReduce experiment

For our first experiment in MapReduce, we modified the wordcount examples provided by
Hadoopexamples package. Since all our input data is under sequencefile format, we need

to modify the source code to let it accept the sequencefile. Besides, our first experiments
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list three aspects that may affect the cluster performance which are resource utilization,

input splits and map-side parameters. Next is about introducing all of them in details.

Resource utilization

First is about something related to resource utilization. Since MapReduce framework
only provides map and reduce function to handle the problem, most of the resource is
spent on the map tasks and reduce tasks. Thus, we are going to compare the performance
difference by tuning the map and reduce resource.

For MapReduce jobs, there are two kinds of resource that we can assign to different jobs
which are memory and CPU cores. Thus, we need to set the resource for both map tasks
and reduce tasks. For our cluster, the default resource settings for the map tasks are 7GB
memory and 1 vcore while the Reduce tasks are 14GB RAM and 1 vcore which means
when one Mapper or Reducer launches, it will be given these resources for processing
different tasks. Based on that, we decide to change the memory and CPU cores for each
map tasks and reduce tasks to see whether there are some difference. For our experiments,
we set up three groups of parameters with seven different settings: the default group is
7GB memory with 1 vcore for map tasks, 14GB memory and 1 vcore for reduce tasks.
The reducing group includes three settings which are 4GB memory and 1 vcore for map
tasks and 8 GB memory and 1 vcore for reduce tasks, 5GB memory and 1 vcore for map
tasks and 10 GB memory and 1 vcore for reduce tasks and 6GB memory and 1 vcore
for map tasks and 12 GB memory and 1 vcore for reduce tasks. Similarly, the increasing
group also includes three settings that are 8GB memory with 2 vcores for map tasks and
16GB memory with 2 vcores for reduce tasks, 9GB memory with 2 vcores for map tasks
and 18GB memory with 2 vcores for reduce tasks and 10GB memory and 2 vcores for
map tasks and 20GB memory and 2 vcores for reduce tasks. By comparing increasing and
reducing the resource for map and reduce tasks, we can get whether resource can affect

the job performance.

Input splits

Inputsplits controls the number of map tasks. As we mentioned above, the default block
size of MapReduce is 128MB which means all the data in HDFS will be splits into different
blocks and save on the different data nodes. Then MapReduce will use input splits to
record the starting and end position of the job and match them to different map tasks.
Since each map tasks correspond to one input split, tuning input splits can affect the
number of map tasks. For our cluster, the default input split is 128MB which means each
map tasks will process 128MB data. Thus, we decide to increase that settings forcing
MapReduce to process large amount of data for each map tasks. We also set up three

groups of parameters: 256MB, 512MB and 1024MB. By setting these parameters on the
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command line when we run the MapReduce job, we can control the numbers of map tasks
and thus improve the efficiency by reducing the 1/O pressure. Through these settings,
we want to know whether the number of map tasks or the input splits can affect the job

efficiency.

Map-side parameters

Map-side parameters represent some parameters related to I/O process when map tasks
merging the data at the end of the map stage. Among all of them, the most important two
should be i0.sort.mb and io0.sort.factor. io.sort.mb refers to the size of the buffer when the
map tasks spills while i0.sort.factor refers to how many spill files can be process together.
For our experiments, the default value of io0.sort.mb is 2GB which means the map tasks
will spill as an intermediate files when the output reach to 2GB. Also, the default value of
10.sort.factor equals 100 which means MapReduce will merge 100 spill files at one time.
From our understanding, although the larger buffer size and higher parallelism can reduce
I/O pressure, large intermediate files may lead map tasks merge slowly and thus reduce
the efficiency. Thus, we choose four groups of parameters which are default settings and
the other three settings (1.5GB and 75, 1GB and 50, 0.5GB and 25). By comparing the
different settings of the merge process, we can understand whether the I/O parameters

can affect the job results.

Execution detalils

In general, our first experiment needs to utilize each dataset for 13 times. 6 for increasing
and reducing map and reduce resource, 3 for input splits and 4 for I/O factors. Next,
we are going to explain how to execute the experiments on our own cluster and tune the
parameters.

Listing 4.1 illustrates the way we submit our jobs on the cluster related to resource
utilization. For MapReduce jobs, we need to locate the jar package and point out the
class file the job needs. Then, we need to set some environment parameters for our
job. All the parameter settings are implemented by —D command. For our experi-
ments, we set the memory and vcores for each map and reduce tasks and change the
input format as sequencefile. Finally, we give the HDFS directories as the location
of input and output file to make sure the job run properly. Thus, we just need to
change the mapreudce.map.memory.mb and mapreudce.map.cpu.vcores for map tasks and
mapreudce.reduce.memory.mb and mapreudce.map.cpu.vcores for reduce tasks and change
the HDF'S directory to test the experiments related to resource utilization.

1 /usr/hdp/current/hadoop—client /bin/hadoop jar /usr/hdp/current/hadoop—client /../hadoop—
mapreduce/hadoop—mapreduce—examples. jar wordcount —D mapreduce.map.memory . mb=7168 —D
mapreduce .map.cpu.vcores=1 —D mapreduce.reduce.cpu.vcores=1 —D mapreduce.reduce . memory.
mb=14436 —D mapreduce.inputformat.class=org.apache.hadoop.mapreduce.lib .input.

SequenceFileInputFormat —D mapreduce.outputformat.class=org.apache.hadoop.mapreduce.lib .
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output.SequenceFileOutputFormat —D mapreduce. job.inputformat.class=org.apache.hadoop.
mapreduce. lib.input.SequenceFileInputFormat —D mapreduce. job.outputformat.class=org.
apache.hadoop.mapreduce. lib.output.SequenceFileOutputFormat hdfs://it066427:8020//user/
yjliu//HiBench/wordcount50g/Input hdfs://it066427:8020//user/yjliuv//HiBench/Wordcount/
Output

Listing 4.1: The MapReduce experiment about the resource utilization for Word Count

Listing 4.2 presents the way we implement the experiments about the input splits.
We add two parameters to configure the input splits which are: mapred.min.split.size and
mapred.max.split.size. By forcing both to a specific value, we can control the input splits
as a given value.

1 /usr/hdp/current/hadoop—client /bin/hadoop jar /usr/hdp/current/hadoop—client /../hadoop—
mapreduce/hadoop—mapreduce—examples.jar wordcount —D mapred.min.split.size=268435456 —D
mapred . max. split .size=268435456 —D mapreduce.inputformat.class=org.apache.hadoop.
mapreduce. lib.input.SequenceFileInputFormat —D mapreduce.outputformat.class=org.apache.
hadoop . mapreduce. lib .output.SequenceFileOutputFormat —D mapreduce. job.inputformat.class=
org.apache.hadoop.mapreduce. lib.input.SequenceFileInputFormat —D mapreduce. job .
outputformat.class=org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat hdfs:

//it066427:8020//user/yjliu//HiBench/wordcount50g/Input hdfs://it066427:8020//user/
yjliu//HiBench/Wordcount/Output

Listing 4.2: The MapReduce experiment about the input splits for WordCount

Listing 4.3 reveals the way we submit the jobs related to Map-side parameters. From
the figure, we can see that we add two parameters: mapreduce.task.io.sort.mb and mapre-
duce.task.io.sort.factor. By tuning these two, we can find the relationship between jobs
and I/O pressure.

1 /usr/hdp/current/hadoop—client /bin/hadoop jar /usr/hdp/current/hadoop—client /../hadoop—
mapreduce/hadoop—mapreduce—examples.jar wordcount —D mapreduce. task.io.sort.mb=1024 —D
mapreduce. task.io.sort.factor=50 —D mapreduce.inputformat.class=org.apache.hadoop.
mapreduce. lib .input.SequenceFileInputFormat —D mapreduce.outputformat.class=org.apache.
hadoop.mapreduce. lib .output.SequenceFileOutputFormat —D mapreduce. job.inputformat.class=
org.apache.hadoop.mapreduce. lib .input.SequenceFileInputFormat —D mapreduce. job .
outputformat.class=org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat hdfs:

//it066427:8020//user/yjliu//HiBench/wordcount50g/Input hdfs://it066427:8020//user/
yjliuw//HiBench/Wordcount/OQutput

Listing 4.3: The MapReduce experiment about the Map-side parameters for WordCount

4.1.3 Spark experiment

For our first experiments in Spark, we also modify the source code from Sparkexample
package and make them possible to accept the sequencefile as the input data. In addition,
there are many aspects from our research that may affect the efficiency of the Spark jobs:
resource utilization, input splits and parallelism. Next, we are going to introduce each of

them in details.
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Resource utilization

Different from MapReduce framework, Spark proposes its own strategy to assign resource
to different executors. The executors will be launched under different work nodes and each
of them will charge many tasks to implement parallel computing. Also, Spark allows the
users to set the number of executors as well as memory and vcores for each executor. For
our cluster, the default setting is 2 executors with 2GB memory and 1 vcore. Apparently,
this setting can’t fully utilize the resource of our cluster and thus we decide to use our
own settings.

Based on Spark user manual, the proper setting of number of executors ranges from 50
to 100. Thus, we decide to set 6 groups of parameters to test the efficiency of Wordcount
which are 50 executors with 8GB memory and 4 vcores, 60 executors with 7GB memory
and 4vcores, 70 executors with 6GB memory and 3 vcores, 80 executors with 5GB memory
and 3 vcores, 90 executors with 4GB memory and 2 vcores and 100 executors with 4GB
memory and 2 vcores. By conducting this experiment, we hope to see whether the different

resource strategy affect the result.

Input Splits

Similar to MapReduce, Spark also reads the input data from HDFS and thus the input
splits can affect the amount of map tasks as well. As the comparison of the MapReduce
input splits experiment, we also set the input splits as 256 MB, 512MB and 1024MB. By
forcing each map tasks to process larger scale of data, we want to find out whether 1/0O
pressure is the key factor for both MapReduce and Spark. Also, we want to see how much

I/O pressure can affect the efficiency of both jobs.

Parallelism

Parallelism in Spark is utilized to describe how many tasks are going to run together for
each Spark stage. After finished resource allocation, we need to set parallelism to ensure
all the executors are fully occupied. According to the Spark manual, parallelism should
be large enough to make sure that all the resources are fully used. For our cluster, the
default parallelism is not set which means some resource will be wasted when several tasks
end early. To improve the efficiency, we set five groups of parallelism to see whether these
can improve the efficiency.

Since the largest dataset of our experiment is 500GB which equals to 4000 map tasks
and our default number of executors is 50, the parallelism should be 4000 divide 50 and
the result is 80. Thus, we need to set the parallelism bigger than 80 to make sure once one
tasks finishes early, the resource will be assigned to other tasks. Based on Spark manual,
we choose five parameters from 100 to 500 as the parallelism to see whether enlarge the

parallelism multiple times can affect Spark efficiency.
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Execution details

Thus, our experiment in Spark needs to utilize each dataset for 15 times, 6 times for
resource utilization, 4 times for input splits and 5 times for parallelism. Then, the details
of how we implement our jobs are shown below.

Listing 4.4 illustrates how we submit our jobs on the cluster through spark-submit
command. For Spark jobs, we need to set the class file through —class command and set
the master model through -master command. Then, we need to assign different resource
for each executor. For our experiments, we assign different memory and vcores for each
executor to see the difference. Finally, we need to provide the HDFS location as input
and output directories.

1 /usr/hdp/current/spark2—client/bin/spark—submit ——class com.intel.hibench.sparkbench.micro.
ScalaWordCount —master yarn—client ——num—executors 50 ——executor—cores 4 —executor—
memory 8g /home/yjliu/Hibench/HiBench—master/sparkbench/assembly/target/sparkbench—

assembly —7.1—-SNAPSHOT-dist . jar hdfs://it066427:8020//user/yjliu//HiBench/wordcount50g/
Input hdfs://it066427:8020//user/yjliu//HiBench/Wordcount/Output

Listing 4.4: The Spark experiment about the resource utilization for WordCount

Listing 4.5 presents how we submit Spark jobs related to input splits. Since Spark
shares the parameters with MapReduce, we need to tune this parameter by adding the two
variables: spark.hadoop.mapreduce.input.fileinputformat.split.minsize and spark.hadoop.
mapreduce.input. fileinputformat. split. mazxsize. Then, we need to configure these two pa-
rameters by —conf command and they allow us to change any values we want.

1 /usr/hdp/current/spark2—client /bin/spark—submit ——class com.intel.hibench.sparkbench.micro.
ScalaWordCount ——master yarn—client —num—executors 50 ——executor—cores 4 ——executor—
memory 8g ——conf spark.hadoop.mapreduce.input. fileinputformat.split.maxsize=268435456
——conf spark.hadoop.mapreduce.input.fileinputformat.split.minsize=268435456 /home/
yjliu/Hibench/HiBench—master /sparkbench/assembly/target/sparkbench—assembly —7.1 —SNAPSHOT
—dist.jar hdfs://it066427:8020//user/yjliu//HiBench/wordcount50g/Input hdfs://it066427
:8020//user/yjliu//HiBench/Wordcount/Output

Listing 4.5: The Spark experiment about the input splits for WordCount

Listing 4.6 shows how we execute the Spark jobs related to parallelism. For our
experiments, we add the parameter spark.default.parallelism and implement it by —conf

command. Then, we just need to change the value to see the difference.

1 /usr/hdp/current/spark2—client /bin/spark—submit ——class com.intel.hibench.sparkbench.micro.
ScalaWordCount —master yarn—client —num—executors 50 ——executor—cores 4 ——executor—
memory 8g ——conf spark.default.parallelism=100 /home/yjliu/Hibench/HiBench—master/
sparkbench /assembly /target /sparkbench—assembly —7.1—-SNAPSHOT-dist . jar hdfs://it066427
:8020//user/yjliu//HiBench/wordcount50g/Input hdfs://it066427:8020//user/yjliu//HiBench/
Wordcount/Output

Listing 4.6: The Spark experiment about the parallelism for WordCount



CHAPTER 4. METHODOLOGY 60

4.2 K-means

Next, we describe our second experiment: K-means. As an iterative task, it needs to save
the previous results on somewhere for further processing. MapReduce and Spark provide
different strategies to handle the problems. MapReduce framework provides the function
to save the intermediate data on HDFS while Spark allows the users to save the data on
memory or disk. For our experiments, we decide to test both strategies to see what is the

difference between the two. Our plan is as follows.

4.2.1 Input Datasets

The input data are created by GenKMeansDataset! function provided by HiBench suite.
The datasets include 6 parts ranging from 50GB to 150GB with 25GB as the interval.
Since our cluster only owns 420GB memory and 250 vcores, we decide to use 300 GB
memory and 210 vcores for cache operation. Besides, since 20% of the memory for each
executor will be used for shuffle process and each executor needs to give some space for
memoryQOverHead which stands for the space for JVM as well as store some important files.
Thus, the upper line of the size of our dataset is set as 150GB to avoid data overflow. Also,
the datasets are divided into two groups: small and intermediate. These groups can help
us visualize the difference as well as presents the improvement in detail. We hope these
datasets can simulate the real situation when processing iterative tasks for MapReduce

and Spark.

4.2.2 MapReduce experiment

We implement our MapReduce job with Mahout K-means function. Since the input data
is under sequencefile format, we can use the data directly to get the result. Although
MapReduce job is not good at processing the iterative jobs because of the repeated I/0
operation, we keep it there to see the difference between hard drive reading and memory
storage. Thus, we use MapReduce job results as the benchmark to compare with the
Spark jobs with different persist strategy. For our experiments, we are going to run all
the experiments with the default settings and hope to get the obvious result with the help

of our datasets.

Execution details

As we explained above, our MapReduce experiment is simple. It just needs to execute all
the datasets for once with the default settings. The details are as follows.
Listing 4.7 illustrates the implementation of K-means in MapReduce. From the list-

ing, we can see that there are several parameters need to be set to make sure the jobs

!The function to create k-means data.
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can be executed properly. The first two are input and output directories and they are
implemented by — and —o command. The other parameters are all related to K-means
algorithm: the number of K (-K), the number of iteration (-z), the convergence Delta
(-cd), the distance measurement (-dm) and the execution model (-zm). We can test the

performance by tuning the parameters provided above.

1 mahout kmeans —i hdfs: //it066427:8020//user/yjliu/HiBench/Kmeans2/Input/samples —c hdfs://
1t066427:8020//user/yjliu/HiBench/Kmeans2/Input/cluster —o hdfs://it066427:8020//user/
yjliu/outputyyy —z 10 —cd 0.5 —dm org.apache.mahout.common. distance .

FEuclideanDistanceMeasure —xm mapreduce

Listing 4.7: The MapReduce experiment about K-means

4.2.3 Spark experiment

For K-means in Spark, the main effort of our second experiment is gathering there. There
are three persistence levels provided by Spark which offers three ways to save the inter-
mediate results: MEMORY_ONLY, MEMORY_AND_DISK and DISK_ONLY. Next, we

are going to introduce each of them in details.

MEMORY _ONLY

As the most common persist strategy for Spark cache operation, MEMORY_ONLY pro-
vides the function to saves all the intermediate data on the RAM and thus improve the
efficiency of the jobs dramatically. Also, it is the best strategy for Spark jobs without con-
sidering the resource utilization. For our experiments, we set 30 as executor numbers, 8GB
as executor memory and 3 as executor vcrores to fully utilize our cluster resource. Also,
we set the memoryOverHead as 2GB for each executor. Then, we run all the datasets with
MEMORY_ONLY strategy and set them as the Spark benchmark. These benchmarks can
help us comparing the difference between different Spark persist strategy and MapReduce

jobs later.

MEMORY_AND_DISK

As a compromised persist strategy, MEMORY _AND_DISK provides the function to save
the data on the disk and memory together. The strategy is like that: Spark utilizes the
unserialized Java objects as the storage format and give priority to save data in memory.
If there is not enough memory to store all the data, Spark will write the others on the
disks. This strategy is suitable for the situation that the RDDs are too huge to save on the
memory. Although it may reduce the efficiency, it can guarantee the jobs run smoothly
and thus accepted by many users.

For our experiment, we set 30 executors with 8GB memory, 2GB memoryOverHead

and 7 vcores to fully utilize the resource. Thus, we have 300GB memory and 210 vcores
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totally. Then, we set the threshold of memory utilization as 50% which means our exper-
iments will save 90% to 50% of the data on memory with 10% as the interval. The reason
is because memory should be the main resource for Spark to allocate and if there are more
data saved on disks than memory, the efficiency may be lower than save all of them on
disks. Also, since we have 5 datasets from 50GB to 150GB, we need to calculate how much
data needs to save on memory and disks for each. Since spark.storage.memoryFraction
can control the percent of each executor for caching operation, we needs to assign each
of them with a value from 90% to 50%. Take 150GB as an example: since the threshold
is 50%, our experiments need to save 75GB (50%), 90GB (60%), 105GB (70%), 120GB
(80%) and 135GB (90%) data into memory. Based on that we can get that the memo-
ryFraction values are 0.36, 0.43, 0.5, 0.57, 0.64. We hope this experiment can helps us

understand how much the disks storage strategy can affect the results.

DISK_ONLY

As the most rarely used persist strategy, DISK_ONLY provides the function to save all
the intermediate data on the disks and thus reduce the efficiency of Spark jobs. Similar to
MapReduce framework, Spark also provides the storage strategy and can save the memory
resource to the greatest extent. For our experiments, we also set 30 as executor numbers,
8GB as executor memory, 2GB as memoryOverHead and 7 as executor vcrores to fully
utilize our cluster resource. Then, all the datasets will be run under this storage strategy

to see the similarities and differences of the MapReduce jobs.

Execution details

In total, our Spark experiments requires to run all the datasets for 7 times, 1 time for
MEMORY_ONLY, 5 times for MEMORY _AND_DISK and 1 time for DISK_ONLY. Since
each spark job can utilize one cache strategy, we need to modify the source codes and
compress them as three different jar packages to execute on our cluster. The details of
our experiment are shown below.

Listing 4.8 illustrates how Spark jobs work on the cluster with DISK_ONLY strategy.
From the listing, we can find that the class file, master model and resource parameter
need to be set which are similar to that on the last Spark experiment. In addition, we
also set one parameter called spark.yarn.ezecutor.memoryQOuverhead which represent the
space to run the JVM as well as store some important files. Also, we need to configure
the directory of jar files and give the k value and number of iterations to make the jobs
work.

1 spark—submit —class com.intel.hibench.sparkbench.ml.DenseKMeans —master yarn—client ——num—
executors 30 ——executor—cores 8 ——executor—memory 8g ——driver —memory 2g ——conf spark.
yarn.executpr.memoryOverhead=2048 /home/yjliu/Hibench/HiBench—master/sparkbench/
assembly /target /sparkbench—assembly —7.1 —-SNAPSHOT-distDiskOnly.jar —k 5 —numlterations 5

hdfs: //it066427:8020//user/yjliu//HiBench/Kmeans2/Input/samples
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Listing 4.8: The Spark experiment about K-means DISK_ONLY

Listing 4.9 presents how Spark jobs work with MEMORY_ONLY strategy. For our
experiments, we enable one function called useLegacyMode to allow the users to assign the
memory for cache operation. Then we set the parameter called spark.storage.memoryFraction
to change the percentage of executor memory used for cache operation. Finally, we change

the jar package and set the k value and number of iterations to make the job works.

1 spark—submit ——class com.intel.hibench.sparkbench.ml.DenseKMeans —master yarn—client ——num—
executors 30 ——executor—cores 8 ——executor—memory 8g ——driver —memory 2g ——conf spark.
yarn.executpr.memoryOverhead=2048 ——conf spark.memory.uselLegacyMode=true ——conf spark.

storage . memoryFraction=1 /home/yjliu/Hibench/HiBench—master/sparkbench/assembly/target
/sparkbench—assembly —7.1 —-SNAPSHOT-distmemoryonly.jar —k 5 —numlterations 5 hdfs://
it066427:8020//user/yjliu//HiBench/Kmeans2/Input/samples

Listing 4.9: The Spark experiment about K-means MEMORY _ONLY

Listing 4.10 shows how Spark executes the experiment of MEMORY_AND_DISK. All
the setting are similar to the MEMORY_ONLY experiment, we just need to change the

jar package as well as the value of spark.storage.memoryFraction to see the difference.

1 spark—submit ——class com.intel.hibench.sparkbench.ml.DenseKMeans —master yarn—client ——num—
executors 30 ——executor—cores 8 ——executor—memory 8g ——driver —memory 2g ——conf spark.
yarn.executpr.memoryOverhead=2048 ——conf spark.memory.useLegacyMode=true ——conf spark.

storage . memoryFraction=0.5 /home/yjliu/Hibench/HiBench—master/sparkbench/assembly/
target /sparkbench—assembly —7.1 —SNAPSHOT-distMemoryandDIsk.jar —k 5 ——numlterations 5
hdfs://it066427:8020//user/yjliu//HiBench/Kmeans2/Input/samples

Listing 4.10: The Spark experiment about K-means MEMORY_AND _DISK

4.3 TeraSort

The third experiment is Terasort. As a kind of shuffle job, Terasort spends the most
resources and execution time on transferring data from map side to reduce side. Since
shuffle performance can be recognized as the key point of the MapReduce and Spark jobs,
Terasort can help us understand how much the parameters settings can affect the results.
For our experiments, we take three kinds of parameters into consideration: resource uti-
lization, input splits and reduce-side parameters. The plan of our experiments is shown

below.

4.3.1 Input Datasets

The input data is created by TeraGen function provided by Hadoop-example package. Our
datasets are divided into 10 pieces ranging from 50GB to 500GB with 50GB as interval

and are classified as three categories based on its sizes. The small category includes 50GB,
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100GB and 150GB, the intermediate one includes 200GB, 250GB and 300GB while the
big one includes 350GB, 400GB, 450GB and 500GB. Since our datasets are various enough
to cover different scale of jobs, we hope these can help us simulate the real-world situation

of shuffle jobs and propose the insights to improve the job efficiency.

4.3.2 MapReduce experiment

For our third experiment, we utilize the function directly from Hadoop-example package
to implement our design. Also, we modify the source code a little bit to let it accept
the sequencefile as the input data. During the experiment, the most important part is
changing the parameters from three aspects and compare the performance of them. Thus,
we are going to talk about these three aspects and visualize the results later. The plan is

below.

Resource utilization

The first aspect is about assigning different resource for our jobs. There are two kinds
of resources that we can assign to different map and reduce tasks: memory and vcores.
Thus, we are going to design our experiments by giving different memory and vcores to
map and reduce tasks.

For our experiments, the default resource settings for map tasks is 7GB memory with 1
vcore and the reduce tasks is 14GB memory with 1 vcore. Since Terasort belongs to shuffie
jobs and our cluster owns 420GB memory and 250 vcores, we decide to set the map tasks
as the default value while changing the parameters related to reduce tasks. We also put
number of reduce tasks into consideration because the default settings for reduce tasks is
only one which may strongly affect our job efficiency. To fully utilize our resource, we set
the reduce memory from 10GB to 18GB with 2GB as interval. Then, we assign different
reduce numbers to different settings: 40 reduce tasks are launched and each of them are
given 10GB memory, 35 reduce tasks are given 12GB memory for each, 30 reduce tasks
are given 14GB memory for each, 25 reduce tasks are given 16GB memory and 20 reduce
tasks are given 20GB memory for each. Besides, we provide different vcores for different
memory settings: we give 1 vcore for reduce tasks for the memory between 10GB and
14GB while giving 2 vcores for memory larger than 14GB. From tuning these parameters,
we want to know whether more reduce tasks with small resource or less reduce tasks with

more resource can improve the efficiency.

Input Splits

The second aspect is input splits which stands for how many map tasks our jobs need to
process. The default setting of our MapReduce is 128MB which means each map tasks
contains 128MB data. Since the shuflie efficiency depends on both the size of shuffle jobs
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as well as the number of shuffle jobs, we decide to take the input splits into consideration
to see which strategy can improve the efficiency. Similar to the first experiment, we set
the input splits as 256 MB, 512MB and 1024MB. From the experiments, we not only want
to see whether the shuffle performance can be affected by the number or the size of map
tasks, but also curious about if the result of the aggregation job is similar to the shuffle

jobs.

Reduce-side parameters

The third aspect is about the parameters related to reduce tasks. Although the shuf-
fle process is not equal to the reduce process, MapReduce integrates both of them un-
der reduce parameters. Thus, these parameters can not only affect shuffle performance,
but also control the efficiency of reduce tasks. Among all of them, we select two that
may strongly affect the shuffle performance: MapReduce.reduce.shuffle.parallelcopies and
MapReudce.task.io.sort.factor. The first one represents the number of threads that copy
map output data and the second on represents the number of files that combine together.
These two parameters control the parallelism and the size of each shuffle tasks and thus
need to be considered. For our experiments, the default value of parallelcopies is 100
while the io.sort.factor is 30. To ensure considering both aspects, we decide to set four
groups of the values that contains both of the increasing and decreasing situation and
compare them to the default setting. For our experiments, we set 200, 150, 75 and 50 as
parallelcopies while 60, 45, 20 and 15 as the io.sort.factor. Through the experiments, we
hope to understand how much these reduce-side parameters can affect the MapReduce

job efficiency.

Execution details

Totally, we need to execute all the datasets for 12 times, 5 times for resource utilization,
3 times for input splits and 4 times for reduce-related parameters. The details of how we
implement the Spark jobs are shown below.

Listing 4.11 illustrates how resource utilization experiments work for Terasort. For
the MapReduce jobs, we need to set the directory of jar package and the class file we
used. Then, we need to set the resource utilization parameters with —D function. Thus,
we add two parameters to control the shuffle process: mapreduce.reduce.memory.mb and
mapred.reduce.tasks. By tuning these two parameters, we can find out whether more
resource for reduce tasks can affect the efficiency of shuffle jobs.

1 /usr/hdp/current/hadoop—client /bin/hadoop jar /usr/hdp/current/hadoop—client /../hadoop—
mapreduce/hadoop—mapreduce—examples. jar terasort —D mapreduce.reduce.memory=16384 —D
mapreduce.reduce.cpu.vcores=1 —D mapred.reduce.task=25 hdfs://it066427:8020//user/yjliu
//HiBench/Terasort/Terasortl0g hdfs://1t066427:8020//user/yjliu//HiBench/Terasort/Output
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Listing 4.11: The MapReduce experiment about resource utilization for Terasort

Listing 4.12 presents how MapReduce jobs works with different input splits. For the
experiments, we also add mapred.min.split.size and mapred.max.split.size and force them
to the same value to see the difference.

1 /usr/hdp/current/hadoop—client/bin/hadoop jar /usr/hdp/current/hadoop—client /../hadoop—
mapreduce/hadoop—mapreduce—examples.jar terasort —D mapreduce.reduce.memory=16384 —D
mapreduce.reduce.cpu.vcores=1 —D mapred.reduce.task=25 —D mapred . min.split.size

=268435456 —D mapred.max.split.size=268435456 hdfs://it066427:8020//user/yjliu//
HiBench/Terasort/Terasortl0g hdfs://it066427:8020//user/yjliw//HiBench/Terasort/Output

Listing 4.12: The MapReduce experiment about input splits for Terasort

Listing 4.13 shows how the experiments related to reduce-side parameters work. From
the figure, we can find that two new parameters are available which are mapreduce.reduce
.shuffle.parallelcopies as well as mapreduce.task.io.sort.factor. These two parameters can
help us find the difference by tuning the reduce-related parameters.

1 /usr/hdp/current/hadoop—client /bin/hadoop jar /usr/hdp/current/hadoop—client /../hadoop—
mapreduce/hadoop—mapreduce—examples. jar terasort —D mapreduce.reduce.memory=16384 —D
mapreduce.reduce.cpu.vcores=1 —D mapred.reduce.task=25 —D mapreduce.reduce.shuffle.
parallelcopies=15 —D mapreduce. task.io.sort.factor=50 hdfs: //it066427:8020//user/yjliu

//HiBench/Terasort/Terasortl0g hdfs://it066427:8020//user/yjliuv//HiBench/Terasort/
Output

Listing 4.13: The MapReduce experiment about reduce-related parameters for Terasort

4.3.3 Spark experiment

Regarding to the experiments in Spark, we utilize the function provided by Hibench and
compress them into the jar package to execute it on our own cluster. Besides, we also
set some related parameters that may improve the efficiency of Spark jobs. Similar to
MapReduce experiments, there are three kinds of parameters which are the number of
reduce tasks, input splits and shuffle-related parameters. The details of our experiment

are discussed below.

Resource utilization

The first aspect is the number of reduce tasks. Since Spark adopts different ways to assign
resources compared to MapReduce, we need to give different executors memory and vcores
before running our jobs. Next is about setting the number of partitions for Terasort.
Because the number represents how much data in each partition and is correspond to the

number of reduce tasks, we take it into consideration and put it at the first place.
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For our experiments, we set 70 executors and give each of them 6GB memory as well
as 3 vcores. These settings reach the limit of our cluster and thus can help us fully utilize
our resource. Then, the amount of reduce tasks is set from 20 to 40 with 5 as the interval.
We keep this setting same to the MapReduce jobs to make sure both of MapReduce and
Spark meet the same situation. Also, we change the replication factor as 1 which already
implemented by MapReduce to improve the job efficiency. Through the experiments, we
want to see the difference for the shuffle jobs between MapReduce and Spark based on

the same settings.

Input splits

The second aspect is input splits. Similar to MapReduce experiments above, they are
about changing the sizes of each map tasks and thus reducing the shuffle pressure. For
our experiments, the input splits are set as 256MB, 512MB and 1024MB. By enlarging
the values multiple times, we hope to see whether the different sizes of map tasks can
strongly affect the efficiency of shuffle jobs. Besides, we can compare the performance

between MapReduce and Spark by implementing both with same settings.

shuffle-related parameters

The last aspect is about parameters related to the shuffle process. Based on our study,
there are two parameters that may affect the shuffle process which are spark.shuffle.file. buff
er and spark.reducer.mazxSizeInFlight. The first one stands for the size of in-memory buffer
for each shuffle output stream. This buffer can improve the shuffle efficiency by reducing
the number of system calls as well as disk seeks when creates the intermediate shuffle files.
The second one represents the buffer size of the shuffle read tasks which decides how much
data can be fetched for once. Also, enlarging this value can reduce the fetch times which
may affect the times of network transformation times to improve the efficiency.

For our experiments, these two parameters are not included in our Spark jobs. Thus,
we select four groups of values to test whether they can affect the efficiency. These values
are 16K and 32MB, 32K and 48MB, 64K and 96MB and 128K and 192MB. By enlarging
both values multiple times, we want to see whether these two parameters can dramatically
improve the shuffle efficiency. Also, these parameters provide us a clue that how much
the shuffle-related parameters can improve the job efficiency compared to MapReduce

reduce-related parameters.

Execution details

Totally, our experiment needs to run all our datasets from 50GB to 500GB for 12 times, 5
times for the number of reduce tasks, 3 times for input splits and 4 times for shuffle-related

parameters. The results of the experiments can be seen below.
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Listing 4.14 and 4.15 illustrate how the experiment related to the number of reduce
tasks works. Listing 4.14 shows us the basic configuration for Spark jobs and the only thing
we need to care is about the replication number. Since MapReduce Terasort set the repli-
cation number as 1 to improve the efficiency, we also set it as 1 for Spark to reduce the exe-
cution time for copy the results to HDF'S. Besides, Listing 4.15 presents how we change the
number of the reduce tasks for Spark. By changing the hibench.default. shuffie.parallelism
from the HiBench conf folder, we can set the number of reduce tasks to compare with

MapReduce jobs.

1 /usr/hdp/current/spark2—client /bin/spark—submit ——class com.intel.hibench.sparkbench.micro.
ScalaTeraSort ——master yarn—client ——num—executors 60 ——executor—cores 4 ——executor—
memory 5g ——conf spark.hadoop.dfs.replication=1 /home/yjliu/Hibench/HiBench—master/
sparkbench/assembly /target /sparkbench—assembly —7.1—-SNAPSHOT-dist . jar hdfs://it066427
:8020//user/yjliu//HiBench/Terasort/TerasortiO0g hdfs://it066427:8020//user/yjliu//
HiBench/Terasort/Output

Listing 4.14: The Spark experiment about number of reduce tasks for Terasort

1 Data scale profile. Available value is tiny, small, large, huge, gigantic and bigdata.

2 # The definition of these profiles can be found in the workload conf file i.e. conf/
workloads/micro/wordcount.conf

3

4 hibench.scale.profile tiny

5 # Mapper number in hadoop, partition number in Spark

6 hibench.default .map. parallelism 10

7

8 # Reducer nubmer in hadoop, shuffle partition number in Spark

9 hibench.default.shuffle.parallelism 20

Listing 4.15: Changing the reduce number for Spark Terasort

Listing 4.16 shows us how to implement the Spark jobs related to input splits. Same
to the previous settings above, we add mapred.min.split.size and mapred.mazx.split.size to

change the settings of input splits.

1 /usr/hdp/current/spark2—client /bin/spark—submit ——class com.intel.hibench.sparkbench.micro.
ScalaTeraSort —master yarn—client —num—executors 60 ——executor—cores 4 ——executor—
memory 5g ——conf spark.hadoop.dfs.replication=1 —conf spark.hadoop.mapreduce.input.
fileinputformat.split.maxsize=268435456 ——conf spark.hadoop.mapreduce.input.
fileinputformat.split.minsize=268435456 /home/yjliu/Hibench/HiBench—master/sparkbench/
assembly /target /sparkbench—assembly —7.1 —-SNAPSHOT-dist . jar hdfs://it066427:8020//user/
yjliu//HiBench/Terasort/Terasorti0g hdfs://it066427:8020//user/yjliu//HiBench/Terasort/
Output

Listing 4.16: The Spark experiment about input splits for Terasort

Listing 4.17 reveals the Spark experiments related to shuffle-side parameters. From the
listing, we set two new parameters to optimize the shuffle process which are spark.shuffie. file
buffer and spark.reducer,maxSizeInFlight. By tuning these two, we hope to see whether

the shuffle parameters can strongly affect the Spark jobs performance.

1 /usr/hdp/current/spark2—client /bin/spark—submit ——class com.intel.hibench.sparkbench.micro.
ScalaTeraSort —master yarn—client —num—executors 60 ——executor—cores 4 ——executor—
memory 5g ——conf spark.hadoop.dfs.replication=1 —conf spark.shuffle. file.buffer=16k ——
conf spark.reducer.maxSizelnFlight=48m /home/yjliu/Hibench/HiBench—master/sparkbench/
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assembly /target /sparkbench—assembly —7.1 —-SNAPSHOT-dist . jar hdfs://it066427:8020//user/
yjliu//HiBench/Terasort/Terasortli0g hdfs://it066427:8020//user/yjliu//HiBench/Terasort/
Output

Listing 4.17: The Spark experiment about shuffle-related parameters for Terasort
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Chapter 5
Experiment Results and Analysis

In this section, the methods to analysis our findings and the results of our experiments

are going to be discussed.

5.1 Performance evaluation

This section will explain how to evaluate the performance of the MapReduce and Spark
jobs with the three existing experiments. For both MapReduce and Spark jobs, we utilize
the execution time to present the efficiency because it can show the difference and efficiency
directly. Also, we apply three kinds of graphs to visualize the results of our findings which
are execution time graph, gap/relationship graph and increment graph. The first one is the
basic application of our experiment results. By showing the execution time of different jobs
directly, we can get the basic information of our experiments and compare the difference
roughly. To ensure the accuracy of our experiments, we put standard deviation into this
graph to present the dispersion of our experiments results. This graph is widely used
for all our experiments. The second one is gap/relationship graph which represents the
comparison between the benchmark and jobs with different settings. The relationship
graph is using the benchmark execution time to divide the others, if it is above 1, the
relationship is positive, else it is negative. The gap graph is based on the relationship
table and used to express the specific improvement or decline percentage for the tasks
compared to the benchmark. These two tables are widely used for experiment one and
three. For increment graph, it is about the increment rates when the settings change and
it is calculated by using execution time of the new settings to divide the last execution
time with previous settings. This graph is mainly used for experiment two. By plotting

these graphs, we hope to visualize the experiment results more clearly to others.
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5.2 WordCount results

The average execution time of Wordcount for MapReduce and Spark can be shown from
Table 5.1 and 5.2. Based on that, we plot the results as different graphs for further
analysis. Also, we highlight the best and worst execution time with red and green colours
based on different experiment settings. The raw data that includes all the experiments

records can be found in the appendix.

Hadoop 50G | 100G | 150G | 200G | 250G | 300G | 350G | 400G | 450G | 500G

Resource utilization

7G lvcore:map
14G 1vcore:reduce 212 | 407 600 790 979 1170 | 1364 | 1549 | 1769 | 1934
(default)

4G lvcore: map

192 | 369 538 716 887 1054 | 1226 1400 1587 | 1769
8G 1lvcore:reduce

5G lvcore:map
197 | 378 559 717 898 1065 | 1242 | 1445 | 1625 | 1805
10G 1lvcore:reduce

6G lvcore: map
201 | 392 581 755 936 1114 | 1307 | 1505 | 1665 | 1865
12G lvcore:reduce

8G 2vcores: map
444 653 867 1078 | 1464 | 1507 | 1707 | 1907 | 2115
16G 2vcores:reduce

9G 2vcores: map

256 | 506 737 981 1460 2417
18G 2vcores:reduce
10G 2vcores: map

259 1225 1700 | 1933 | 2186
20G 2vcores:reduce
Input Splits:
128M(default) 212
256M 205 | 364 541 712 896 1047 | 1223 | 1380 | 1537 | 1720
512M 168 | 360 531 690 824 1006 | 1140 | 1312 | 1448 | 1631
1024M 370 525 688 841 1022 | 1132 | 1279 | 1429 | 1572

Map-Side parameters
default(2047,100)
i/o.sort.mb=1024

202 | 394 | 574 | 753 | 946 | 1130 | 1314 | 1486 | 1674 | 1853
i/o.sort.factor=50

(1536,75) 206 | 400 592 771 963 1155 | 1326 | 1531 | 1713 | 1891
(512,25) 200 | 372 560 735 922 1091 | 1266 | 1461 | 1608 | 1769

Table 5.1: The average execution time for MapReduce WordCount
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Spark 50G | 100G | 150G | 200G | 250G | 300G | 350G | 400G | 450G | 500G
Resource utilization

50 executors 8G memory 4 vcores | 56 83 120 145 189 201 243 266 285 333

60 74 56 94 120 166 200 220 276 297 316 371
70 6 3(default) 58 93 114 169

8053 61 127 209 249 272 318 328 379
90 4 2 95 127 162 184 218 251 290 300 353
100 4 2 60 161 193 216 247 287 317 341

Input splits

128M(default) 58 93 114 169 213 254 286 327 355 410
256M 70 119 146 202 260 310 341 454
512M 78 115 187 216 305 340 353 383 464
1024M 277 363 399
Parallelism

100 54 79 113 134 176 199 230 277 287 309
200 60 84 108 183 201 234 265 286 328
300 60 108 140 195 239 275

400 88 114 146 169 292 326
500 60 86 144 173 205 240 278 286 342

Table 5.2: The average execution time for Spark Wordcount

5.2.1 Resource utilization

Firstly, we are talking about the resource utilization for MapReduce and Spark. Figure 5.1
shows the execution time of different datasets for MapReduce and Spark. These results
are based on the default settings and we recognize them as the benchmark for Spark and
MapReduce. From the figure we can see that Spark curve is more sharp which means
Spark shows higher efficiency compared to MapReduce. Also, the difference becomes
larger with the data size grows that gives us an idea that Spark is better option to process
large datasets. Besides, the standard deviation bar for MapReduce is much longer than

that on Spark which shows stronger fluctuation when conducting the experiments.
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Benchmark comparison
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Figure 5.1: The original difference between MapReduce and Spark

Next, Figure 5.2 and Figure 5.3 present the relationship and improvements rates when
adopts different resource settings for MapReduce jobs. From the first figure, we can
find that: compared to the benchmark, the smaller resource assigned to map and reduce
tasks, the higher efficiency MapReduce jobs can be. Also, we can find that the trends
for MapReduce jobs which adopts fewer resource than the default settings are stable.
It presents the strategy with few resources is suitable for all the datasets we used and
can improve the efficiency obviously. On the contrary, the trends for the jobs with more
resource than default settings are in chaos. The biggest two lines on the bottom are even
overlap and the efficiency is low compared to the benchmark. Then, from the Figure 5.3,
we can find how much the different settings affect the efficiency. This figure visualizes the

trends in detail and help us understand the positive and negative relation clearly.
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Figure 5.2: The relationship graph for MapReduce after applying different resource strate-

gies
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Figure 5.3: The gap graph for MapReduce after applying different resource strategies

Then, Figure 5.4 shows us the situations when applying different resources for Spark.
From the figure we can find that the blue line which stands for 50 executors with 8GB
memory and 4 vcores is always the best compared to other settings. Since 50 is the
smallest executor number in our experiment while 8GB memory is the biggest memory
for each executor. Thus, we can find that the small number executors with large resource
settings can be an optimal idea when running Spark jobs. Also, we can find that the trends
of yellow and navy fluctuate strongly from 150GB to 500GB. The yellow line shows the
worst performance at the beginning and keeps increasing to the end while the navy shows
its worst performance at 150GB but climbs obviously during the rest of the experiments
and finally reach to the second with a small gap to the blue line. Since both yellow and
navy belongs to the large executor numbers with few resources and both of them increase
sharply when the data sizes grow, we can find that the large executor numbers with small

resource strategy is also usable especially for processing the large datasets.
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Figure 5.4: The relationship graph of different datasets for Spark

Figure 5.5 presents the optimal improvement rates from resource utilization for dif-
ferent datasets. It divides the datasets as three categories and visualize the improvement
under bar chart format. From the figure, we can find that the efficiency of MapReduce
jobs improve strongly when processing small datasets while Spark shows higher improve-
ment rates for intermediate and large datasets. Besides, we can find that: for all the
datasets, the improvement rates for MapReduce jobs are stable and they are about 10%.
For Spark, the rates are small for small datasets and they climb when the datasets grow
and finally reach to the top when processing the large datasets. The improvement rates
are about twice as much as MapReduce jobs when processing large datasets. Thus, we can
find that resource utilization can affect both MapReduce and Spark jobs. However, for
MapReduce jobs, tuning resource parameters properly can improve the efficiency slightly

for all the datasets while Spark shows high potentiality especially for large datasets.
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Figure 5.5: The optimal improvement rates for Spark and MapReduce
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Finally, Figure 5.6 presents the best execution time after tuning resource parameters
for Spark and MapReduce. From the figure, we can find that Spark curve is still sharper
than MapReduce curve which means Spark jobs are still more efficient than MapReduce
jobs. Also, compared to the Figure 5.1, we can find that the angle between the two
lines becomes larger which represents the difference between the two frameworks becomes
larger. In other words, Spark is not only more efficient than MapReduce, but also shows

higher potentiality for resource parameters tuning.

Optimal performance based on resource utilization
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Figure 5.6: The optimal performance for MapReduce and Spark with different resource

strategies

5.2.2 Input splits

Next, we take input splits into consideration and try to find out whether the related
parameters can affect the results obviously. Figure 5.7 shows us the improvement rates
of MapReduce jobs for different input splits compared to the default settings. From the
figure, we can find that all the data on the figure is positive which means adding the size
of input splits has positive effects on the job efficiency. Also, we can see that the trend of
the orange line is always increasing after experienced a drop from the beginning while the
trend of the grey line keeps climbing from the bottom and finally reach to the top when
the size of datasets reaches to 350GB. Besides, regarding to the improvement rates, they
are various when the datasets smaller than 150GB. However, the rates of orange and grey
lines gathered at the range between 15% and 20% after the datasets becomes larger. Thus,
we can conclude that adding the input splits values properly can affect the efficiency of
the MapReduce jobs and may bring a increment about 15% to 20% when processing large

datasets.
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Figure 5.7: The performance of MapReduce jobs with different input splits

Figure 5.8 presents the performance improvement rates compared to the benchmark

when applying different input splits. From the figure, we can see that all the data from the

figure are negative which means that adding the value of input splits may bring negative

effects on Spark jobs. Also, the increase rates are various at the beginning and the smaller

input splits shows its advantages before the size of datasets reach to 300GB. After that,

all the lines overlap together which means the effects of different settings becomes similar.

Thus,

we can conclude that adding input splits for Spark is not a wisdom strategy and

we need to keep it as the default value (128MB). Adding the value can not only decrease

the efficiency and may bring about 25% to 30% side effects to Spark jobs.
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Figure 5.8: The performance of Spark jobs with different input splits

Figure 5.9 and Figure 5.10 illustrate the improvement rates for MapReduce and Spark
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in details. From Figure 5.9, we can see that: apart from the first dataset, the trend of the
MapReduce jobs increases when the sizes of the datasets grow. For small datasets, the
improvement rates are around 15% while the rates increase to 19% for the intermediate
datasets. The rates finally reach to 23% for the big datasets. Thus, we can conclude
that the input splits can affect the efficiency of the MapReduce job and the improvements
becomes more obvious when the datasets increase. Also, from Figure 5.10, we can find
that input splits have negative effects on Spark jobs. For small datasets, the decrease rates
are around 20% and they reach to 30% when the sizes of datasets become larger. Finally,
the rates go back to 25% for large datasets. Thus, we strongly recommend not to change

the input splits value when running Spark jobs especially for processing intermediate data.
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Figure 5.9: The optimal improvement rates for MapReduce with different input splits
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Figure 5.10: The optimal improvement rates for Spark with different input splits

Figure 5.11 illustrates the best performance for MapReduce and Spark after applying
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different input splits. From the figure, we can see that Spark jobs shows higher efficiency
for all the datasets and its trend is stable with the datasets increases. However, the angle
between the two lines becomes smaller which represents that the difference between Spark
and MapReduce narrows when applying different input splits. Thus, we can conclude that

input splits is a parameter worth to test for MapReduce jobs.
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Figure 5.11: The optimal performance for MapReduce and Spark with different input
splits

5.2.3 Map-side parameters

Finally, we are going to talk about some other parameters that may affect the MapReduce
and Spark jobs efficiency. They are I/O factors and memory for MapReduce jobs and
parallelism for Spark. Figure 5.12 shows the MapReduce efficiency with different Map-
side I/0O settings. From the figure, we can find that grey line which represents the smallest
I/O memory and factors presents the best performance and the range of the improvement
rates are from 6% to 10%. The blue line and the orange line also present increasing
trend and the rates are around 5% and 2%. Thus, we can find out that the Map-side
I/0O factors can improve the MapReduce efficiency and the smaller I/O settings can be a

useful strategy.
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Figure 5.12: The performance of MapReduce jobs with different I/O parameters

Figure 5.13 illustrates the performance changes for Spark jobs with different parallelism
degree. Although the situation seems in chaos, the trends are clear and can be divided
into three categories: one contains 100,200, another contains 400 and 500 while the others
contains 300. For the first category, after experiment a short increase, both lines drop
sharply and then keeps climbing to the top with some fluctuation. For the second category,
they also increase at the beginning and drops sharply. After that, they climb dramatically
to the top and experiment an obvious decrease and finally increase to the end. For the
third category, it begins with a moderate increase and then fluctuate to the top. Finally,
it experiments a drop until the end. Also, we notice that most of the lines starts with 0
or a negative value which means the parallelism has a small or even negative impacts on
the small datasets. However, things change when the datasets become larger since all of
the lines increase sharply and keep positive until the end. From the figure, we can find
that applying a proper parallelism can improve the efficiency of Spark jobs dramatically.
However, the best settings may not be the largest one or the smallest one. Based the
trends, we can conclude that we need to set different parallelism degree for different sizes

of jobs.
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Spark parallelism
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Figure 5.13: The performance of Spark jobs with different parallelism

Figure 5.14 illustrates the best improvement rates for Spark and MapReduce jobs
compared to their benchmarks. From the figure, we can find that the improvement rates
for MapReduce are stable ranging from 6% to 10% for all the datasets. For Spark, the
improvement rates are small for the small datasets while they increase sharply for interme-
diate datasets around 26%. Then, they keep steady for big datasets around 24%. Based
on that, we can conclude that parallelism degree is an important parameter for Spark jobs

which can bring an obvious improvement especially for big datasets.

Other parameters comparison

35% 32.68%
— 30.25%

30%

26.11% 26.03%

. 24.24% 3.399% 24.12%
0
20% 17.72%
15%

9.40 s . 10.01 9.30
10% g7 -40% T4 - R, 7.24 : o2
o | | Inm I o I
0%

50GB 100GB 150GB 200GB 250GB 300GB 350GB 400GB 450GB 500GB
The size of datasets(GB)

Improvement rates(%

Type of jobs B MapReduce M Spark

Figure 5.14: The optimal improvement rates for Spark and Mapreduce jobs

Figure 5.15 presents the efficiency difference between MapReduce and Spark jobs after
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tuning their own parameters. From the figure, we can find that Spark shows obvious
advantages for all the datasets compared to MapReduce and the gap becomes larger when
the datasets grows. Also, based on Figure 5.1, we can find that the angle between the two
lines becomes smaller which means the difference becomes larger when applying different
parameters. Thus, we can conclude that Spark parallelism have stronger effect than Map-

side I/O parameters for MapReduce jobs.
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Figure 5.15: The difference for MapReduce and Spark after tuning parameter

5.3 K-means results

The average execution time of K-means can be shown from Table 5.3. The green values
represent the worst execution times while the red values stand for the best execution
times. Also, the raw data can be found in the appendix. Next, we are going to analysis

the results based on the graphs we build.
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50G 75G 100G 125G 150G
MapReduce 591 835 1119 1337 1630
Spark
Disk_only 194 267 646 944 1554
Memory_only 73 117 140 198 561
(Memory _and_Disk)
50% 166 262 725 1528 1888
60% 138 240 600 1140 1660
70% 125 221 572 1020 1607
80% 117 202 454 836 1229
90% 111 186 387 693 901
30 executors with 8G memory and 2G memory overhead

Table 5.3: The result of K-means

5.3.1 MapReduce and DISK_ONLY

Figure 5.16 illustrates the execution time for MapReduce jobs and Spark jobs. From the
figure, we can find that there is a huge difference between MapReduce jobs and Spark jobs
at the beginning and this difference becomes smaller with the datasets grow. Finally, the
gap narrows to the minimum when the datasets increases to 150GB: 76s. Through the
result, we can conclude that Spark is better than Mapreduce when processing lightweight
iterative tasks with DISK_ONLY strategy. But when the datasets grow larger, both are
good options to handle the tasks.

The comparison between MapReduce and DISK_ONLY
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Figure 5.16: The execution time for MapReduce and Spark DISK_ONLY strategy

5.3.2 MapReduce, DISK_ONLY and MEMORY_ONLY

Figure 5.17 presents the situation of MapReduce job, MEMORY_ONLY and DISK_ONLY

when processing different sizes of iterative tasks. From the figure, we can see clearly that
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MEMORY_ONLY curve appears to a sharp trend which mitigates a little when the size
increases from 125GB to 150GB.On the contrary, the curve of DISK_ONLY starts with
a sharp trend and experience two mitigation and ends with similar rates as MapReduce
curve. For the MapReduce curve, it keeps stable from the beginning to the end. Thus,
we can conclude that MEMORY _ONLY strategy shows little advantages for small tasks
compared to the other two lines while the advantages becomes more and more obvious

with the datasets grow.
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Figure 5.17: The execution time for MapReudce, DISK_ONLY and MEMORY _ONLY

5.3.3 MEMORY_AND_DISK

For MEMORY_AND_DISK strategy, we divide our datasets into two categories: one is
small datasets which contains 50GB, 75GB and 100 GB while the intermediate contains
125GB and 150GB. Figure 5.18 shows the execution time for small datasets with different
settings. From the figure, we can see that there is a decrease trend when the percentage of
memory increases for all the datasets which means the efficiency becomes higher with the
datasets increases. For 100GB dataset, the best performance is the strategy with 90% of
memory and it can save nearly half of the execution time compared to the strategy with
50% of memory which stands for the worst performance from the figure. Also, there are
obvious improvements exit for others when the percentage increases. For 75GB datasets,
we can see that the execution time decline sharply compared to 100GB datasets and
this improvement trend keeps stable with the percentage increases. For 50GB datasets,
the gap is not obvious compared to 75GB datasets and this trend also keep stable until
the percentage decrease to 50%. There is a huge decrease happened when the memory
rate decreases from 60% to 50%. Thus, we can find that the efficiency of iterative jobs
keeps stable when applying DISK_AND_MEMORY strategy for small datasets. However,
when the datasets increase to a large number, the efficiency will drop sharply with huge
difference between different percentages of DISK_AND_MEMORY value.
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The comparison for MEMORY_AND_DISK with small settings
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Figure 5.18: The execution time for different settings of MEMORY_AND_DISK

Figure 5.19 belongs to increment graph that mentioned above and illustrates the de-
crease rates compared to the last execution time when the percentage increases. Thus,
the high values present a sharp decrease. Since we select 90% as the benchmark, it is not
presented in the picture. From the figure, we can see that all the values are positive which
means reduce the memory percentage can have negative effects on the efficiency contin-
uously. Also, we notice that there is an obvious decline during the percentage decrease
for the three datasets. For 50GB dataset, it happens when the percentage drop from 60%
to 50%. For 75GB dataset, it is from 70% to 60%. For 100GB datasets, it is from 80%
to 70%. Since the root causes of the decline are insufficient memory and excessive I/0
operation, we can conclude that the memory becomes insufficient during the periods we
mentioned above. Also, we find that the situation happens earlier when the datasets grow
and the decrease rates of 100GB datasets are much larger than the other two. Thus, we
can conclude keeping memory percentage to a higher value is crucial for big datasets to

avoid obvious efficiency lose.
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The decrease rates for small datasets with different settings
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Figure 5.19: The decreasing rates for different settings of MEMORY_AND_DISK

Figure 5.20 presents the results of intermediate datasets. From the figure, we can
see that the difference between the best and the worst performance is obvious. For both
datasets, the difference reach to 2 times and the gap becomes larger compared to the

difference in small datasets.
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Figure 5.20: The execution time for different settings of MEMORY_AND_DISK

Figure 5.21 belongs to the increment graph and illustrates the decrease rates for in-
termediate datasets which contains 125GB and 150GB. The benchmark is still set as
90% and thus unable to see it from the picture. From the figure, we can find that the
most obvious decline happens from 60% to 50% for 125GB datasets and from 90% to
80% for 150GB datasets. Although this situation happens late for 125GB, the decreasing
rates from 90% to 80% and 80% to 70% are still obvious which are 20.63% and 22.00%
respectively. Besides, 150GB datasets experience two sharp decrease when the memory
percentage decrease from 90% to 70% and the rates are 36.43% and 30.75%. Thus, based
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on the findings from the small datasets and intermediate datasets, we can conclude that
the memory percentage should be set as a high value for big datasets while it can be set

as a low value for some small datasets.

The decrease rates for MEMORY_AND _DISK
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Figure 5.21: The decreasing rates for different settings of MEMORY AND DISK

5.3.4 DISK_ONLY, MEMORY_ONLY and MEMORY_AND_DISK

Figure 5.22 presents the situation for DISK_ONLY, MEMORY_ONLY and best and worst
performance of MEMORY _AND _DISK. It is used to help us understand the difference
between the three persist strategies provided by Spark. From the figure, we can find that
all the curves share the similar execution time around 200s at the beginning. Then, the
trend of MEMORY _ONLY increases smoothly all the time until meets a transition when
the datasets increase to 150GB. For MEMORY_AND_DISK, the best and worst curves
increase with same rates at first and appear different situation when the datasets reach to
75GB. The worst one experience threes obvious mitigation while the best one experience
two slight mitigation when processing the following datasets. For DISK_ONLY curve,
it overlaps the worst one at first and then experience a slight mitigation followed by an
obvious one until the end. Thus, we can conclude that MEMORY _ONLY is the best option
for all the iterative tasks. Also, MEMORY_AND_DISK with high memory percentage
can bring high efficiency than DISK_ONLY and thus can be the second choice. Finally,
DISK_ONLY can be the third choice and much faster than the MEMORY_AND_DISK

with low memory percentage.
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The comparison between the three persist strategy in Spark
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Figure 5.22: The comparison between DISK_ONLY, MEMORY_ONLY and MEM-
ORY_AND_DISK

5.4 TeraSort results

The average execution time of TeraSort for Spark and MapReduce can be seen from the
Table 5.4 and Table 5.5. The green values stand for the worst execution time while the
red values represent the best based on different settings. Also, the raw data can be seen

in the appendix. Next, we are going to analysis our results based on the graphs we build.
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Hadoop 50G | 100G | 150G | 200G | 250G | 300G | 350G | 400G | 450G | 500G

Resource utilization

14G 1vcore:reducer
30 :reduce number 190 | 346 619 987 | 1076 | 1779 | 1919 | 2011 | 2482 | 2779
(default)

10G 1vcores: reduce

40:reduce number

12G 1vcores: reduce
221 | 405 745 | 1229 | 1315 | 1741 | 2075 | 2265 | 2503 | 2795
35:reduce number

16G 2vcores: reduce
214 | 374 582 825 | 1079 | 1350 | 1611 | 2024 | 2461 | 2723
25:reduce number

18G 2cvore: reduce .
205 327 556 813 1023 | 1223 | 1457 | 1734 | 2058 | 2412
20:reduce number

Input Splits:

128M(default) 2011 | 2482 | 2779
256M 143 | 316 486 705 930 | 1217 | 1680 | 1946 | 2393 | 2705
512M 187 | 269 466 660 903 | 1255 | 1514 2561 | 2837
1024M 182 | 319 540 705 | 1042 | 1304 | 1560 | 1969

Reduce-Side parameters

default(100,30) 346 619 1076 1919 | 2011 | 2482 | 2779

mapreduce.reduce.shuffle.parallelcopies=200

184 612 894 1169 | 1719 | 1911 | 2394 3429
mapreduce.task.io.sort.factor =60
(150,45) 176 | 372 562 813 | 1175 | 1501 2267 | 2880
(75,20) 185 | 350 608 963 | 1133 | 1482 | 1996 | 2273 | 2785 | 3109
(50,15) 189 | 358 871 1619 | 1901 2718 | 2884

Table 5.4: The result of MapReduce TeraSort
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Spark 50G | 100G | 150G | 200G | 250G | 300G | 350g | 400G | 450G | 500G

Resource utilization

(70 executors
6G memory

3 vcores)

Reducer number:20

25 253 | 505 899 | 1183 | 1588 | 2043 | 2467 | 2651 | 2869 | 3096
30(default) 239 | 496 857 | 1093 | 1444 | 1826 | 2067 | 2445 | 2794 | 3042
35 231 435 677 | 1051 | 1239 | 1764 | 1947 | 2019 | 2529 | 2839
40 232 | 425 619 984 | 1222 | 1531 | 1698 | 1967 | 2475 | 2750

Input splits

(reducer number:30)

128M (default) 239 | 496 1093 | 1444 | 1826 | 2067 | 2445 | 2794 | 3042
256M 266 | 457 682 919 | 1371 | 1612 | 2052 | 2147 | 2507 | 2928
512M 252 | 491 792 | 1101 | 1451 | 1845 | 2072 | 2188 | 2806
1024M 848 3151

Shuffle parameters
spark.shuffle.file.buffer=16k
spark.reducer.maxSizelnFlight=24M

(32k,48M) 212 | 492 750 | 1084 | 1496 | 1565 | 2006 | 2446 | 2621 | 2796
(64k,96M) 238 | 471 744 920 | 1289 | 1439 | 1909 | 2138 | 2434 | 2731
(128k,192M) 193 | 444 673 947 | 1191 | 1400 | 1675 | 1990 | 2410 | 2634

Replication of Spark jobs =1

Table 5.5: The results of Spark Terasort

5.4.1 Number of reduce tasks

Firstly, we are talking about the number of reduce tasks for MapReduce and Spark. For
both frameworks, the default number of reduce tasks will be one which is unable to fully
utilize our cluster resource and thus reduce the job efficiency. For MapReduce jobs, we
keep the default resource settings of the reduce tasks as 14GB memory and 1 vcore and
set the number of reduce tasks as 30. For Spark, we launch 70 executors and give each of
them 6GB memory and 3 vcores and set the number of reduce tasks as 30. Then, we set
both as the benchmark to help us present our finding easily. The figures below present
our results.

Figure 5.23 illustrates the comparison between the two benchmarks. From the figure,
we can find that MapReduce job is always superior to Spark jobs. Besides, The Spark
curve shows a stable trend during the whole process and the execution time grows steadily
with the datasets becomes larger. However, MapReduce curve experience two mitigations
when the datasets reach to 200GB and 300GB while it stills shows higher efficiency at the
end of our experiment. Based on the figure, we can conclude that MapReduce is better

than Spark when processing the shuffle jobs before tuning any parameters.
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Benchmark comparison
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The size of datasets(GB)

Type of job == MapReduce === Spark

Figure 5.23: The comparison between the benchmarks for Spark and MapReduce

Figures 5.24 and 5.25 present the relationship and gaps after changing the number
of reduce tasks for MapReduce jobs. From Figure 5.24, we can find that there are two
curves that are always above 1.0 which means that these two are always superior to the
benchmark. On the contrary, the orange and blue curves experienced some fluctuations
and finally failed to beyond 1.0. Besides, the yellow and grey curves can represent the
strategy with few reduce tasks and more resource while the other two represent large
reduce tasks with few resource. Thus, we can conclude that the less reduce tasks with
more resource can be a wisdom strategy and can bring positive effects to the MapReduce
jobs compared to the benchmark. From figure 5.25, we can find the specific improvement
rates for MapReduce tasks after configuring different reduce tasks. At the beginning, all
the values are negative until the datasets reach to 100GB. Then, the grey and yellow pillar
keeps positive while the blue and orange pillar keeps negative. Based on the fact, we can
find that the difference between the two is obvious at first and reach to the top when the
datasets reach to 300GB and then the difference narrows until the end. Finally, we can
conclude that the number of reduce tasks can strongly affect the efficiency of MapReduce

jobs especially for small and intermediate datasets.
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, Number of reduce tasks for MapReduce 1
ratio=(benchmark/others)
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Figure 5.24: The relationship graph for MapReudce after changing the number of reduce
tasks

Number of reduce tasks for MapReduce 2
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50.00%

40.00%

30.00% |
20.00% i
10.00%

0.00% W | — — —m
ooss d oG Mo Wobes  fsoes 5
-10.00% B GB GB GB-——300GB GB GB 50GB-—500GB
-20.00%

-30.00%

-40.00%

Improvement rates(%)

The size of input datasets(GB)

Number of reducer mreducer40 mreducer35 m reducer:25 reducer:20

Figure 5.25: The gap graph for MapReudce after changing the number of reduce tasks

Figures 5.26 and 5.27 illustrate the relationship and gap graphs for Spark after applying
different numbers of reduce tasks. From the first figure, we can find that the blue and
orange curves are above 1.0 while the orange and grey curves are below. Also, since
Spark provides the fixed resource before executing the experiments, the orange and blue
line can be recognized as the higher efficiency compared to the benchmark while the grey
and yellow represent the lower efficiency. Thus, we can conclude that the few reduce tasks
under fixed resource is a good option for Spark jobs which can bring obvious improvement.
From the second figure, we can find that blue and orange pillars keep positive while the
grey and yellow pillars keep negative. Also, the biggest difference between the two happens
when the datasets reach to 150GB. Then, the difference keeps steady and becomes a little

bit smaller at the end of our experiment. In fact, when the datasets reach to 400GB,
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the blue and orange curves show an obvious decrease and the other two present a slightly
increase. Thus, we can conclude that the number of reduce tasks can strongly affect the
efficiency of Spark jobs and the effects becomes obvious from intermediate datasets and

becomes less obvious when the datasets becomes larger.

Number of reduce tasks for Spark 1
ratio=(benchmark/others)

1.350
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0.750
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Figure 5.26: The relationship graph for Spark after changing the number of reduce tasks
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Figure 5.27: The gap graph for Spark after changing the number of reduce tasks

Figure 5.28 shows the best performance for MapReduce and Spark after configuring
the number of reduce tasks. From the figure we can find that MapRede jobs are still
superior to Spark jobs when processing the shuffle tasks. Compared to the benchmark
comparison graph, we can find that the difference for small datasets is nearly disappear
while the difference becomes more and more obvious when the datasets reach to 200GB.
Thus, we can conclude that MapReduce jobs is better than Spark jobs when applying
different number of reduce tasks and its parameters brings higher efficiency than Spark

parameters do.
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The optimal performance after changing the number of reduce tasks
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Figure 5.28: The optimal performance for MapReduce and Spark after tuning number of

reduce tasks

5.4.2 Input splits

Next, we take input splits into consideration. Since the default input splits for Spark and
MapReduce is 128MB, we set these experiment results as the benchmark and compare
them with other settings. Figure 5.29 presents the gap graph after tuning the parameters
related to the input splits. From the figure, we can find that the curves are always positive
which means the input splits can bring positive effects to the MapReduce jobs. Also, we
notice that the orange and blue curves show the similar trend from 100GB and they can
bring similar improvement rates to the jobs. On the contrary, the trend of grey curve is
not as sharp as the other two and ends at the negative rates which will bring negative
effects compared to the benchmark. Besides, since the orange and blue represent the small
and intermediate value for the input Spark jobs while the grey one represents the large
value, we can conclude that increase the value of input splits can be a good suggestion for

shuffle jobs and the value should be not too large.

Input splits for MapReduce
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F 45.00%
& 35.00%
m
= 25.00%
=
2 15.00%
@
5 S00% 7 R~
= _5.00% —_— o
£ 50GB  100GB  150GB  200GB  250GB  300GB  350GB 4 450GB.eb00GB
T 15.00% :
The size of datasets(GB)
Input splits e )56 M e 512 M) 1024M

Figure 5.29: The gap graph after tuning input splits for MapReduce jobs
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Figure 5.30 illustrates the gap graphs for Spark jobs with different input splits. From
the figure, we can find that the blue and orange curves always stay positive while the
grey curve keeps negative compared to the benchmark. For the blue curve, the trend is
sharp at the beginning and fluctuate to around 5% in the end. The orange curve starts
with a negative value experience two fluctuations and a stable period and finally drop to
-5%. The grey line starts with an extreme negative value and climb slightly to a similar
value as the orange curve. Also, since the three curves represent the small, intermediate
and large value of input splits for Spark, we can conclude that changing the input splits
may not a compulsory to improve the Spark efficiency and increase this value slightly can

bring positive effects.

Input splits for Spark
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Figure 5.30: The gap graph after tuning input splits for Spark jobs

Figure 5.31 express the optimal improvement rates after configuring the best value of
input splits. From the figure, we can find that the improvement rates for MapReduce are
high until the datasets increase to 400GB and the Spark jobs shows small improvement
at first while increase sharply when processing the big datasets. For MapReduce jobs, we
can see that the improvement rates are high and the best performance happens at 200GB
which can bring nearly 50% improvement. However, this situation ends when the datasets
reach to 400GB and the parameters can bring about 3% improvement for the following
experiments. For Spark jobs, the improvement rates are stable compared to MapReduce
jobs at first and the difference is obvious from the graph. However, when the datasets
increase to 400GB, the improvement rates for Spark beyond MapReduce jobs and about
several times as much as the MapReduce jobs. Thus, we can conclude that input splits
should be considered as an important factor to improve the efficiency of MapReduce shuffle
jobs when processing the small and intermediate datasets while it is more important for

Spark when processing large datasets.
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The optimal improvement rates for Spark and MapReudce
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Figure 5.31: The optimal improvement rates for MapReduce and Spark

The Figure 5.32 presents the difference after configuring the best input splits for
MapRedue and Spark. From the figure, we can find that MapReduce jobs are still superior
to the Spark jobs. However, compared to the benchmark graph, the gap narrows at the
beginning and the end while the difference becomes larger from 200GB to 350GB. Thus,
we can make a conclusion that MapReduce jobs are more efficient than Spark jobs for
shuffle tasks after configuring the input splits and the parameters bring different effects

for different sizes of data.

The optiaml performance after changing the input splits
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Figure 5.32: The Comparison after configuring the best input splits for Spark and MapRe-

duce

5.4.3 Shuflle-related parameters

Then, we take some shuffle-related parameters into consideration. For MapReduce jobs,
the default mapreduce.reduce.shuffle.parallelcopies is 100 and mapreduce.task.io.sort.factor
is 60. For Spark, spark.shuffle.file.buffer and spark.reduce.mazSizelnFlight are not in-
cluded in the default settings. Thus, we set the MapReduce jobs with the default settings

and the Spark jobs without any settings as the benchmark for further comparison. Figure
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5.33 illustrates the gap graph after configuring different reduce-side parameters. From the
figure, we can find that the trends for all the settings are similar and half of the experi-
ment results keeps positive while the others are negative. Also, we find that there are two
periods that the positive effects are obvious which are 100GB to 250GB and 250GB to
350GB. Besides, the period between 400GB to 500GB are always negative. As a result,
we can conclude that the reduce-side parameters are suitable for small and intermediate

datasets when processing the shuffle jobs under the MapReduce framework.

Reduce-side parameters for MapReduce
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Figure 5.33: The gap graph after changing the reduce-side parameters

Figure 5.34 present the gap graph after adding the shuffle-related parameters for Spark
jobs. From the figure, we can find that yellow, orange and grey curves keep positive while
the blue curve after a slight decrease and a sharp increase keeps negative at the end.
Also, the trends for yellow is the most sharp followed by the grey and orange. Since the
yellow and grey curve can be recognized as big value group and the blue and orange can
be reckoned as the small value group, we can conclude that adding the shuffle-related
parameters can improve the job efficiency for Spark under most circumstances and the

large value should be a better option.
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Figure 5.34: The gap graph after changing the shuffle-related parameters
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Figure 5.35 presents the improvement rates after configuring the best shuffle-related
parameters for Spark and MapReduce. From the figure, we can find that Spark parameters
show higher efficiency for almost all the datasets and the improvement rates are obvious.
On the contrary, MapReduce parameters fluctuates strongly and the best period should
be intermediate datasets. Thus, we can conclude that shuffle parameters related to Spark
are strongly suggested to improve efficiency while the parameters related to MapReduce

shuffle process need to be considered seriously.

The optimal improvement rates for Spark and MapReudce
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Figure 5.35: The optimal improvement rates after changing the shuffle-related parameters

Figure 5.36 illustrates the performance difference after changing the parameters related
to the shuffle process. From the figure, we can find that two curves intersect together which
represents the difference between MapReduc and Spark is not obvious. Also, we find that
MapReduce shows higher efficiency until 250GB and then Spark overtakes it and finally
win the match. Compared to the benchmark graph, we can notice that Spark is superior
to MapReduce after tuning the parameters related to the shuffle process. Finally, we can
conclude that parameters related to Spark can bring obvious improvement to the jobs and

thus strongly suggested to be configured.
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The optimal perofrmance after changing shuffle-related parameters
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Figure 5.36: The difference after configuring the best shuffle-related parameters
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Chapter 6
Insights and suggestions

In this section, we conclude the insights from our experiment results and discuss the lessons
we learned from our research. Overall, the result shows that Spark is more efficient when
processing aggregation and iterative jobs while MapReduce presents its advantages when
facing the shuffle jobs. Although it is a well-known fact that Spark is faster than MapRe-
duce under most circumstances, our thesis presents a novel analysis of the performance
difference between different kinds of jobs and take various parameters into consideration.
Particularly, we compare the original difference between Spark and MapReduce jobs with
default settings as well as the difference after tuning the parameters. By plotting different
graphs, we visualize the difference and present it vividly to the users. Also, through the
experiments, we gained lots of experience about running different kinds of jobs which can
help us provide the suggestions for the users when implementing these kinds of jobs. In

the next section, the details of the findings are going to be discussed.

6.1 Wordcount

For WordCount or similar workloads, Spark presents a comprehensive advantage from all
the aspects. For the jobs with default settings, Spark jobs are slightly faster than MapRe-
duce jobs when processing the small datasets while the difference becomes huge when
the datasets grow to intermediate or large group. Also, when considering the resource
parameters for both jobs, MapReduce are more sensitive when the datasets are small and
the improvement rates keep around 10% for all the datasets. Spark shows a little improve-
ment for the small datasets and keep increasing until the datasets reach to large group.
The improvement rates for small, intermediate and large groups are about 5%, 17% and
23% respectively. Thus, the difference after tuning resource parameters become larger for
MapReduce jobs.

Considering the input splits, Spark and MapReduce show the opposite results when

processing the different datasets. For MapReduce jobs, it presents the positive effects and
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the larger value can bring the significant improvement when the datasets grow. However,
Spark shows a decrease trend when enlarging the input splits. These parameters weaken
the efficiency in varying degrees when process the small datasets while the side effects
become same when the datasets grow to large degree.

The last aspect is map-side parameters for MapReduce and parallelism for Spark.
For MapReduce jobs, keep the settings small can bring positive effects and the optimal
improvement rates is about 7%. For Spark jobs, the parallelism brings negative effects
when the datasets are small while the trend reverses and reach to the top when the datasets
grow from intermediate to large group. The optimal improvement rates are about 25% for
intermediate and large group. Thus, the difference after tuning these parameters become
larger for MapReduce jobs.

In conclusion, all the aspects can bring positive effects for MapReduce jobs through
our experiments. The average optimal improvement rates are 10.65% for resource uti-
lization,19.18% for input splits and 7.65% for map-side parameters. Based on that, we
can provide the following suggestions that: for the users who are running the MapReduce

WordCount or related workloads:

(1) Reducing the memory and vcores to a small value for both map and reduce tasks

can dramatically improve the MapReduce efficiency.

(2) The I/O related parameters for MapReduce can slightly improve the efficiency and

smaller value shows better performance.

(3) Enlarging the input splits is a good strategy when running the WordCount and the

larger value can strongly affect the efficiency especially for big datasets.

For Spark jobs, through our experiments we can find that: resource utilization, paral-
lelism can improve the efficiency while the input splits can reduce the efficiency. Also, the
average optimal rates for different aspects are: 16.68% for resource utilization, -25.45%
for input splits and 21.75% for parallelism. Thus, we can give the suggestion that for the

users who run Spark WordCount or related workloads:

(1) The small executors with large memory and vcores can be the best strategy compared

to other settings.
(2) Input Splits should not be considered when processing the aggregation jobs.

(3) The parallelism can improve the Spark job efficiency obviously. But the value of the
parallelism should be decided based on the job itself.
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6.2 K-means

For k-means or iterative workloads, Spark shows its strength with all the persistence
strategies compared to MapReduce jobs. Take DISK_ONLY strategy into consideration,
the original difference between Spark and MapReduce is huge when processing small
datasets, but the gap narrows when the datasets grow larger. Finally, they share similar
performance when the datasets reach to 150GB. Thus, we can conclude that MapReduce
is good at handling larger iterative jobs while Spark are competent for all the sizes of jobs.

Regarding Spark MEMORY_ONLY strategy, the results show that the difference be-
tween DISK_ONLY strategy and MEMORY_ONLY strategy is not obvious when the
dataset is small. However, it becomes more and more clear with the datasets increase. Be-
sides, the difference between MapReduce and MEMORY _ONLY strategies is stable which
means the gap is not narrow when the datasets grow. Thus, we can conclude that Spark
MEMORY_ONLY strategy is better than MapReduce and Spark DISK_ONLY strategies
from all the aspects.

Considering the MEMORY _AND_DISK strategy for Spark, the results show that the
efficiency becomes higher with the percentage of memory increases and the gap becomes
more and more obvious when the sizes of the datasets grow. This situation happens for
both small and intermediate datasets. Also, we can find that the time when the biggest
drop happens which represent insufficient memory appears earlier when the datasets grow.
For intermediate and small datasets, the biggest drop happens when the low percentage
of memory are used. Then, the drop appears at the higher percentage and finally happens
at the biggest percentage. It shows that the situation of insufficient memory becomes
more and more significant when the datasets grow. Thus, we can conclude that memory
should be recognized as an important resource to allocate to ensure the efficiency of the
Spark jobs.

The last part is all about the Spark persist strategies. The results illustrate that the
utilization of memory can strongly affect the job efficiency since the difference between
the worst and the best performance of MEMORY_AND_DISK strategy is clear. Also,
DISK_ONLY strategy is among the best and worst performance which means that the
bad memory utilization may slower than saving all the data on disks. Besides, there
is an obvious gap between MEMORY_ONLY strategy and best performance of MEM-
ORY_AND_DISK which can give us a clear idea that how strong the MEMORY_ONLY
strategy can be.

In conclusion, memory is the most important resource for Spark jobs to allocate. It can
not only reduce the execution time dramatically but also ensure the job efficiency. Also,
Spark is a better option compare to MapReduce from all the aspects when processing the

iterative tasks. Thus, we propose our suggestions that:
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(1) Without considering the resource utilization, MEMORY _ONLY strategy is the best

option to process the iterative tasks.

(2) When the memory is not enough to save all the intermediate data, MEMORY_AND _DISK
strategy can be utilized to enhance the scalability. But the percentage of memory

must be high to ensure the efficiency.

(3) Spark is better than MapReduce even with the DISK_ONLY strategy. When the
memory resource is too limited, DISK_ONLY strategy can be the second choice to

make the job more efficient.

6.3 TeraSort

For TeraSort or similar workloads, MapReduce presents its advantages considering the
number of reduce tasks and input splits while Spark shows higher efficiency after config-
uring the shuffle-related parameters. For the jobs with the default settings, MapReduce
is slightly faster at the beginning and the gap becomes larger when the datasets grows.
Besides, when we take the number of reduce tasks into consideration, it can strongly affect
the efficiency of the MapReduce jobs and the improvement rates even reach to 45%. Also,
the most obvious improvement happens when processing the intermediate datasets. For
Spark jobs, although the improvements rates are not as obvious as MapReduce jobs, the
parameters related to the amount of reduce tasks can bring steady improvement for all the
datasets especially for small datasets. In addition, the best performance for MapReduce
happens when the jobs with less reduce tasks while it happens when the jobs with more
reduce tasks for Spark.

Regarding to the input splits, MapReduce and Spark show different ranges and degree
when tuning these parameters. For MapReduce, the best period is between 100GB and
350GB and the improvement rates are around 25%. For Spark, the period is between
100GB and 300GB which can bring 10% improvement. Also, the biggest difference hap-
pens when processing large datasets: the parameters related to MapReduce can hardly
bring any improvement to the jobs while Spark parameters can provide around 10% im-
provement for large datasets. Besides, the optimal value of input splits for MapReduce
may between small and intermediate while it should be a small value for Spark jobs.

Considering the parameter related to the shuffle process, MapReduce jobs present a
compromise situation: the parameters can improve and decrease the efficiency for the
jobs compared to the benchmark. Based on the situation, we can still find that setting
the value slightly bigger can improve the efficiency which is about 10% for intermediate
datasets. On the contrary, Spark parameters shows a steady increase for all the datasets
and the improve rates are around 20%. Also, the larger values are the more efficient the
job will be.
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In conclusion, MapReduce is suitable for processing all the sizes of the shuffle jobs
which can provide great efficiency compared to Spark. Also, the number of reduce tasks
and the input splits can bring positive effects to the jobs while the reduce-side parameters
can help under some certain circumstances. Besides, the best improvement rates from the
amount of reduce tasks and the input splits are 45.64% and 49.54%. These values can be
defined as huge improvement and strongly affect the efficiency of the jobs. Thus, based

on the findings, we propose some suggestions that:

(1) Without considering any parameters settings, MapReduce should be the first choice

when processing the shuffle jobs.

(2) The number of reduce tasks can strongly affect the efficiency of the shuffle jobs and
thus should be considered. Also, allocating more resource to the reduce tasks with

few numbers is the best strategy for MapReduce jobs.

(3) The default input splits should be set larger to improve efficiency. The value should

not be too large.

(4) Reduce-side parameters should be used with caution when processing the shuffle

jobs.

For Spark, although the efficiency is not as good as MapReduce, it is still a good
option when processing the shuffle jobs and the difference is not obvious. Besides, all
the aspects can improve the efficiency and the best improvement rates are 38.4%, 25.65%
and 30.42% for the number of reduce tasks, input splits and shuffle-related jobs. Thus,
the parameters can bring much improvement for the jobs either. Based on the facts, we

propose our suggestions that:
(1) Spark jobs have strong flexibility when applying different parameters for shuffle jobs.

(2) The number of reduce tasks can bring positive effects for the shuffle jobs and the

suggested value should be larger.

(3) Setting the input splits a little bit larger can obviously improve the job efficiency.

But the value should not be too large.

(4) Shuffle-related parameters can improve the efficiency a lot and thus should be taken

into consideration.



105

Chapter 7

Conclusion

7.1 Conclusion

In our research, we have talked about how to process the large scale of data with the exist-
ing technique. A modified approach was proposed to put different workloads into practice
and deploy them on the cluster model. The new approach offers a complete process which
includes data preparation, job execution and status monitoring and provides two ways
to implement each workload. Furthermore, the same method can help us implement any
workloads and monitor their life cycle from web UI. The major components of our ex-
periments were comparing the performance difference between Hadoop MapReduce and
Spark with three existing workloads. The results show that Spark is superior to Hadoop
when processing aggregation and iterative jobs and it is more sensitive and efficient when
configuring the parameters related to the workloads. On the contrary, Hadoop MapRe-
duce shows higher efficiency when processing the shuffle jobs while the improvement rates
keeps stable when facing different parameters.

A new parameter tuning method was proposed and was able to help the users optimize
their job efficiency through any aspects they want. By utilizing the web UI from Ambari,
we were able to set and monitor any parameters clearly.

The instruction mentioned in Chapter 3 should be followed to conduct our experiments.
The users must download the Hibench Suite package and install it on their own linux
system properly. Then, following the steps, they can easily implement any jobs they want

and monitor them through the Ambari Ul

7.2 Future work

In this section, we are talking about the future work of our research. There are four
aspects that may be consider or improved in the future: the size of the cluster, the types

of our jobs, evaluation aspects and related parameters.



CHAPTER 7. CONCLUSION 106

7.2.1 Size of the cluster

The first aspect is about the size of our cluster. Since our cluster is small which only
contains 10 nodes, the ranges for aggregation and shuffle jobs are between 50GB and
500GB while the iterative jobs are between 50GB to 150GB. Although the size may big
enough to simulate the situation of our daily life, we still hope to transfer our experiments
to a larger cluster to see whether there are some difference. Also, we hope to enlarge the

sizes our datasets to find out more interesting phenomenon.

7.2.2 Types of our jobs

The second aspect is the types of workloads. There are three types of workloads included
in our research and all of them are from HiBench. Also, HiBench provides more than 15
kinds of jobs for the users to test the performance of the cluster. Thus, we hope to put

more workloads into our experiments to present more aspects of our cluster.

7.2.3 Evaluation aspects

For our experiments, we utilize the execution time as the main character to present the
job efficiency. Also, the execution time is from the average value after running the jobs
for 5 times. Since Ambari UI provides many aspects of the jobs which includes resource
utilization and the internet connection, we hope to take more aspects into consideration
to find out the details of our jobs. Also, we hope to improve the accuracy of our jobs by

running them for more times.

7.2.4 Parameter

Based on the documents online, we select several parameters for different jobs that most
likely to affect the job efficiency. However, MapReduce and Spark provide many parame-
ters from all the aspects of the process to enhance the job efficiency. Thus, we are going to
put more parameters into our experiments to see whether they can affect the job efficiency

for MapReduce and Spark.
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Appendix A

Tables

The tables in the appendix are the results of our experiments in details. Table 8.1 and 8.2
represent the results of WordCount in MapReduce and Spark. Table 8.3 represents the
results of k—means in both while Table 8.4 and 8.5 illustrates the results of TeraSort. Since
we did each experiment for five times, the red numbers represent the average execution
time followed by the five specific execution time which colors are black. Also, we calculate
the standard deviation with STDEVA function from excel and put it behind the average
execution time. Besides, the outlier which means excess 20% of the average execution

time was canceled by the cross sign.

Hadoop 50G 100G 150G 200G 250G 300G 350G 400G 450G 500G
Resource
utilization
7G 1lvcore:map )
14G1evore:reduce 212 407 600 790 979 1170 1364 1549 1769 1934
+32 +41 +63 +67 +76 +81 +59 +69 +205 +125
(default)
248 479 705 902 925 1195 1325 1646 2065 2065
245 401 600 766 932 1027 1322 1552 1670 1970
185 384 547 801 936 1203 1318 1454 1870 2007
194 382 591 741 1104 1222 1415 1527 1529 1745
188 389 557 740 998 1203 1440 1566 1711 1883
4G lcvore: map 192 369 538 716 887 1054 1226 1400 1587 1769
8Glvcore:reduce +11 +18 +14 +11 +21 +13 +36 +99 +27 +75
189 370 537 710 889 1061 1230 1407 1562 1749
194 369 539 715 887 1060 1229 1411 1560 1748
177 368 542 725 901 1052 1170 1502 1595 1828
208 394 555 702 906 1033 1230 1237 1626 1855
192 344 517 728 852 1064 1271 1443 1592 1665
5G lcvore: map 197 378 559 717 898 1065 1242 1445 1625 1805
10G 1lvcore:reduce +8 +15 +24 +40 +54 +66 +84 +83 +84 +90
199 395 573 691 954 1130 1335 1497 1665 1861
200 385 )251 760 947 1140 1217 1318 1700 1876
207 386 580 756 841 1037 1117 1413 1688 1693
191 358 526 709 846 995 1244 1531 1557 1874
188 366 557 669 902 1023 1297 1466 1515 1721
6G lvcore: map 201 392 581 755 936 1114 1307 1505 1665 1865
12G 1lvcore:reduce +29 +43 +48 +62 +67 +93 +109 +87 +131 +138
218 452 619 831 1045 1234 1446 1636 1848 2050
219 421 625 737 940 1138 1247 1439 1543 1953
156 362 532 731 931 975 1352 1441 1631 1837
188 348 602 675 888 1117 1159 1457 1748 1701
224 377 527 801 876 1106 1331 1552 1555 1784
8G 2vcores: map 235 444 653 867 1078 1464 1507 1707 1907 2115
16G 2vcores:reduce +45 +84 +91 +60 +84 +147 +120 +147 +123 +115
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300 575 778 958 1149 1434 1523 1706 1983 2086
202 478 678 862 1048 1535 1632 1905 2080 2176
263 394 661 870 945 1223 1601 m 1826 2283
209 406 526 789 1137 1595 1337 1552 1777 2029
201 367 622 856 1111 1533 1442 1665 1869 2001
9G 2vcores: map 256 506 737 981 1231 1460 1701 1940 2192 2417
18G 2vcores:reduce +40 +65 +87 +112 +51 +56 +32 +113 +94 +170
304 572 871 1157 1250 1529 1716 2000 2291 2687
279 574 774 959 1258 1418 1728 1901 2183 2482
207 493 685 864 1148 1444 1729 2102 2087 2281
224 436 656 914 1279 1402 1665 1809 2285 2334
266 455 699 1011 1220 1507 1667 1888 2114 2301
10G 2vcores: map 259 507 744 983 1225 1470 1700 1933 2186 2418
20G 2vcores:reduce +47 +56 +89 +86 +30 +54 +59 +127 +123 +48
225 603 881 881 1212 1503 1788 2118 2118 2385
307 492 695 1015 1210 1499 1691 1888 2088 2381
312 502 718 918 1192 1525 1697 1885 2085 2405
235 471 649 1100 1245 1410 1623 1782 2332 2419
216 467 T 1001 1266 1413 1701 1992 2307 2500
Input Splits:
256M 205 364 541 712 896 1047 1223 1380 1537 1720
+36 +49 +66 +83 +64 +43 +58 +116 +90 +32
233 402 601 630 852 1054 1252 1402 1660 1701
228 323 557 730 965 1052 1261 1442 1593 1693
167 411 599 621 850 1032 1258 1227 1473 1706
233 A—G’G/ 498 T 845 989 1123 1305 1438 1772
164 320 450 802 968 1108 1221 1524 1521 1728
512M 168 360 531 690 824 1006 1140 1312 1448 1631
+22 +49 +63 +54 +43 +22 +50 +77 +94 +47
198 345 567 698 802 996 1172 1364 1574 1656
183 426 601 702 806 991 1173 1368 1474 1655
160 387 489 598 797 1000 1178 1371 1477 1666
155 344 552 741 814 999 1065 1213 1333 1627
144 298 446 711 901 1044 1112 1244 1382 1551
1024M 221 370 525 688 841 1022 1132 1279 1429 1572
+47 +46 +47 +55 +45 +27 +51 +123 +56 +48
267 418 569 603 840 998 1157 1383 1444 1533
274 317 582 692 831 1018 1195 1385 1448 1539
168 326 477 672 839 994 1148 }5‘56 1473 1550
197 385 501 744 784 1045 1072 1147 1331 1648
199 404 496 729 911 1055 1088 1201 1449 1590
Map-Side
parameters
default(2047,100)
i/o.sort.mb=1024 202 394 574 753 946 1130 1314 1486 1674 1853
i/o.sort.factor=50 +55 +49 +47 +69 +30 +35 +62 +56 +89 +24
238 471 612 694 959 1159 1304 1451 1604 1845
141 362 501 695 925 1155 1412 1415 1612 1832
144 367 600 732 915 1153 1313 1482 1613 1831
255 415 552 857 990 1096 1240 1554 1759 1880
232 355 605 787 941 1087 1301 1528 1782 1877
(1536,75) 206 400 592 771 963 1155 1326 1531 1713 1891
+35 +46 +23 +65 +47 +33 +91 +34 +92 +47
240 468 598 798 924 1165 1393 1558 1610 1843
248 426 605 705 930 1164 1234 1563 1719 1846
187 375 599 699 933 1097 1392 1501 1632 1933
182 358 551 841 1011 1167 1391 1488 1826 1890
173 373 607 812 1017 1182 1220 1545 1778 1943
(512,25) 200 372 560 735 922 1091 1266 1461 1608 1769
+34 +43 +36 +57 +29 +51 +73 +64 +55 +52
230 345 602 770 921 1128 1343 1458 1603 1780
194 447 569 676 901 1033 1348 1563 1701 1821
162 360 533 679 973 1059 1202 1396 1588 1782
240 344 582 806 907 1077 1216 1466 1556 1682
174 364 514 744 908 1158 1221 1422 1592 1780

Table A.1: The results of Wordcount in MapReduce
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Spark 50G 100G 150G 200G 250G 300G 350G 400G 450G 500G
Resource utilization
50 executors 8G memory 4 veores 56 83 120 145 189 201 243 266 285 333
+8 +13 +16 +24 +14 +29 +30 +21 +27 +17
66 105 124 170 203 222 290 281 304 347
59 95 135 166 176 224 248 283 266 345
}5 93 102 124 197 167 218 230 308 342
52 70 134 148 171 171 244 265 247 308
47 74 105 117 198 221 215 271 300 323
60 7 4 56 94 120 166 200 220 276 297 316 371
+11 +5 +18 +12 +8 +9 +23 +14 +16 +35
66 102 120 167 198 225 250 293 306 352
69 93 137 155 192 223 253 288 298 415
45 95 103 153 202 220 292 282 329 338
48 87 138 177 212 204 301 318 312 349
52 93 102 178 196 228 284 304 335 401
7063 58 93 114 169 213 254 286 327 355 410
+10 +11 +17 +10 +20 +18 +5 +38 +41 +66
}tf 94 137 162 205 267 286 341 305 347
68 102 113 163 202 228 283 312 367 481
52 104 122 172 197 246 287 387 321 345
48 78 94 185 214 274 294 299 405 401
64 87 104 163 247 255 280 296 377 476
8053 61 97 127 170 209 249 272 318 328 379
+8 +15 +17 +7 +11 +21 +16 +33 +37 +25
71 99 134 167 212 236 263 306 308 366
50 100 148 165 205 225 266 312 295 405
61 84 130 180 203 248 263 291 344 356
57 120 101 174 198 281 267 305 307 360
66 82 122 164 227 255 301 376 386 408
00 4 2 63 95 127 162 184 218 251 290 300 353
+8 +14 +14 +7 +22 +11 +15 +23 +23 +14
56 112 128 171 198 233 254 289 325 364
71 79 118 165 201 226 253 326 308 351
72 96 137 157 156 210 273 268 315 344
57 83 108 164 200 214 232 296 274 336
59 105 144 153 165 207 243 271 278 370
100 4 2 60 97 132 161 193 216 247 287 317 341
+11 +14 +5 +14 +12 +14 +15 +8 +14 +33
74 104 130 174 200 233 268 289 303 355
53 116 134 151 177 205 243 294 312 380
45 87 139 178 204 230 237 287 307 302
67 81 126 149 200 203 256 292 338 310
61 97 131 153 184 209 231 273 325 358
Input splits
256M 70 119 146 202 260 310 341 365 404 454
+8 +12 +18 +34 +36 +20 +33 +35 +26 +39
78 138 165 230 268 446 324 330 396 467
68 120 141 246 299 331 369 408 438 606
62 119 157 190 225 301 304 329 424 435
79 107 117 166 287 322 383 386 385 502
63 111 150 178 221 286 325 372 377 412
519M 78 115 187 216 291 305 340 353 383 464
+9 +8 +21 +22 +33 +27 +41 +31 +33 +37
80 153 158 236 336 276 344 314 401 456
86 107 200 244 247 304 407 327 353 513
87 125 210 200 277 281 316 367 341 490
66 109 175 197 293 328 298 389 411 428
71 119 192 203 302 336 335 368 409 433
1024M 90 160 203 249 277 327 355 363 399 480
+16 +16 +24 +20 +37 +27 +30 +18 +28 +31
94 188 192 251 311 296 336 337 429 480
7 156 222 242 238 316 357 361 360 440
117 151 234 260 251 360 321 360 417 490
83 158 190 219 321 312 399 386 407 465
79 147 177 273 264 351 362 371 382 525
Parallelism
100 54 79 113 134 176 199 230 277 287 309
+9 +12 +13 +15 +9 +17 +15 +14 +20 +25
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59 95 116 151 163 212 233 269 290 337
66 69 132 137 183 215 240 274 280 336
45 74 105 126 186 192 236 273 318 286
52 89 99 112 177 174 238 301 263 297
48 68 113 144 171 202 203 268 284 289
200 60 84 108 151 183 201 234 265 286 328
+8 +9 +9 +10 +23 +21 +16 +25 +9 +14
70 90 103 153 213 230 243 272 289 343
55 84 111 156 189 213 243 302 292 335
67 72 121 139 151 174 207 237 296 319
52 96 98 163 188 195 246 263 274 335
56 78 107 144 174 193 231 251 279 308
300 60 93 108 140 189 195 239 275 295 347
+7 +5 +13 +10 +2 +26 +11 +9 +19 +12
71 95 130 145 189 220 257 269 286 349
52 94 108 135 189 195 229 282 318 345
58 99 97 152 187 222 242 285 286 351
63 90 101 127 192 167 230 263 311 329
56 87 104 141 188 171 237 276 274 361
400 62 88 114 146 169 207 248 284 292 326
+6 +13 +9 +16 +13 +19 +13 +14 +13 +18
65 99 126 159 187 236 244 274 295 352
59 100 110 127 160 215 245 285 296 324
71 73 107 148 171 192 242 272 297 335
57 92 122 132 154 203 271 308 269 306
58 76 105 164 173 189 238 281 303 313
=00 60 86 119 144 173 205 240 278 286 342
+9 +12 +7 +17 +22 +12 +14 +5 +13 +13
70 90 130 124 179 218 244 281 288 350
69 77 112 155 209 212 250 277 300 343
52 104 120 167 160 208 239 283 296 330
55 85 119 143 152 189 250 269 279 359
54 74 114 131 165 198 217 280 267 328
Table A.2: The results of Wordcount in Spark
50G 75G 100G 125G 150G
MapReduce 591 835 1119 1337 1630
+16 +23 +36 +32 +22
607 860 1180 1382 1662
587 847 1098 1326 1637
593 822 1121 1357 1607
602 844 1102 1311 1611
566 802 1094 1309 1633
DISK ONLY 194 267 646 944 1554
+19 +28 +25 +62 +22
222 33€ 666 836 1579
177 298 621 974 1545
179 235 678 992 1566
188 255 639 966 1521
204 280 626 952 1559
MEMORY ONLY 73 117 140 198 561
+13 +14 +11 +18 +44
74 136 155 215 523
67 104 124 187 615
95 126 144 199 580
69 117 137 174 510
60 102 140 215 577
(MEMORY_AND_DISK)
50% 166 262 725 1528 1888
+17 +29 +28 +177 +187
186 232 717 1248 1672
143 250 766 1496 2465
177 244 977 1544 3463
168 299 711 1650 1995
156 285 706 1702 1997
0% 138 240 600 1140 1660
+14 +22 +16 +58 +46
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121 243 597 1057 1710
128 266 625 1142 1619
155 251 606 1113 1659
145 208 588 1199 1702
141 232 584 1189 1610
70% 125 221 572 1020 1607
+13 +15 +20 +135 +261
118 227 581 975 1323
137 214 550 1239 2185
142 198 603 1220 1885
115 234 553 923 1762
113 232 573 962 1458
80% 117 202 454 836 1229
+8 +16 +46 +64 +48
127 226 458 834 1299
122 207 522 926 1778
105 181 468 868 1189
114 199 412 778 1207
117 197 410 774 1221
90% 111 186 387 693 901
+9 +6 +58 +25 +122
116 189 48T 702 764
101 188 369 688 660
124 193 53T 723 996
110 177 452 697 833
104 183 340 655 1011
30 executors with 8G memory and 2G memory overhead
Table A.3: The results of k—means
Hadoop 50G 100G 150G 200G 250G 300G 350G 400G 450G 500G
Resource utilization
14G 1lvcore:reduce
30 :reduce number 190 346 619 987 1076 1779 1919 2011 2482 2779
+26 +20 +34 +88 +100 +165 +57 +127 +195 +168
(default)
210 364 630 1062 986 1800 1946 1902 2249 2600
223 350 655 1100 953 2020 1969 1860 2310 2704
166 362 642 904 1130 1795 1907 2069 2692 2820
186 315 572 943 1183 1564 1948 2167 2631 2992
165 339 596 926 1128 1716 1825 2057 2528 },4*9{
10G 1lvcores: reduce 230 422 847 1268 1471 1786 2186 2678 2886 2914
40:reduce number +30 +78 +37 +55 +30 +114 +91 +140 +231 +364
261 509 870 1241 1468 1617 2270 2809 2611 2711
246 501 861 1223 1421 1765 2053 2652 2715 2505
193 370 887 1292 1482 1821 2197 2478 2892 3392
220 338 799 1353 1501 1794 2143 2815 3027 2777
174 392 818 1231 1483 1933 2267 2636 3185 3185
12G 1lvcores: reduce 221 405 745 1229 1315 1741 2075 2265 2503 2795
35:reduce number +36 +22 +39 +123 +53 +55 +36 +233 +71 +223
255 377 729 1339 1339 1784 2101 2414 2466 2924
174 424 719 1168 1361 1777 2121 2530 2444 3075
259 430 813 1381 1299 1744 2073 2337 2622 2834
211 394 722 1104 1230 1752 2043 2040 2510 2540
206 400 742 1153 1346 1648 2037 2004 2473 2602
16G 2vcores: reduce 214 374 582 825 1079 1350 1611 2024 2461 2723
25:reduce number +9 +55 +20 +21 +77 +130 +148 +56 +70 +299
218 408 583 807 1030 1272 1515 2067 2339 3043
223 419 595 823 1017 1253 1530 2029 2494 2876
218 414 580 805 1023 1248 1474 2079 2468 2399
210 315 602 835 1145 1445 1811 2008 2500 2408
201 314 550 855 1180 1532 1725 1937 2504 2889
18G 2cvore: reduce 205 327 556 813 1023 1223 1457 1734 2058 2412
20:reduce number +15 +24 +49 +44 +56 +170 +222 +58 +72 +75
221 328 602 858 1096 1320 1636 1634 2062 2520
218 343 575 846 1045 1343 1650 1756 2067 2439
201 357 594 790 946 1037 1227 1737 2171 2350
185 304 489 749 998 1040 1207 1779 1990 2335
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200 303 520 822 1030 1375 1565 1764 2000 2416

Input Splits:

256M 143 316 486 705 930 1217 1680 1946 2393 2705
+6 +16 +44 +46 +101 +70 +82 +241 +95 +162
147 295 457 679 1074 1328 1607 2139 2420 2938
134 303 454 663 }1/91 1233 1777 gﬁkﬁg 2530 2779
141 332 461 713 878 1178 1587 1762 2411 2700
150 328 558 690 922 1202 1740 2168 2298 2560
143 322 500 780 846 1144 1689 1715 2306 2548

512M 187 269 466 660 903 1255 1514 2170 2561 2837
+35 +42 +24 +90 +87 +52 +118 +85 +224 +175
191 316 458 637 }1/4'6 1281 1674 2188 2297 3081
142 251 435 545 994 1165 1343 2168 2746 2896
168 310 463 620 961 1284 1532 2302 2830 2847
234 220 474 771 824 1290 1521 2100 2520 2751
200 248 500 727 833 1255 1500 2092 2412 2610

1024M 182 319 540 705 1042 1304 1560 1969 2780 2993
+19 +33 +61 +64 +66 +45 +139 +86 +143 +217
/24’5 340 640 744 1004 1320 1430 1867 2977 2977
192 338 486 713 965 1367 1463 2087 2802 2802
204 349 549 616 1020 1287 1690 2011 2622 2839
169 276 520 671 1120 1301 1487 1972 2660 2996
163 292 505 781 1101 1245 1730 1908 2839 3351

Reduce-Side parameters

default(100,30)

mapreduce.reduce.

shuffle.parallelcopies =60 184 415 612 894 1169 1719 1911 2394 3032 3429

mapreduce.task.io. +24 +58 +41 +122 +67 +64 +206 +169 +260 +88

sort.factor =200
219 342 568 817 1087 1653 1772 2585 2847 3439
159 462 650 780 1238 1817 2208 2328 3327 3302
171 527 660 1050 1110 1681 2039 2556 2809 3414
195 395 582 999 1190 1743 1716 2302 3303 3440
176 461 600 824 1220 1701 1820 2199 2874 3550

(150,45) 176 372 562 813 1175 1501 1998 2267 2880 3594
+6 +24 +62 +115 +64 +126 +45 +103 +85 +237
186 332 644 965 1160 1460 2070 2216 2807 3204
171 380 612 820 1108 1375 1947 2161 2862 3567
175 379 522 877 1252 1408 1994 2334 2890 3695
171 374 529 721 1230 1592 2000 2211 3020 3673
177 395 503 682 1125 1670 1979 2413 2821 3831

(75,20) 185 350 608 963 1133 1482 1996 2273 2785 3109
+19 +15 +59 +137 +52 +106 +114 +221 +136 +148
168 370 577 844 1168 1465 1934 2555 2711 3119
163 358 529 905 1131 1641 2071 2365 2762 3349
187 349 662 1103 1194 1396 2145 1967 3016 3092
206 334 601 845 1112 1525 1855 2312 2770 3027
201 339 671 1118 1060 1383 1975 2166 2666 2958

(50,15) 189 358 644 871 1242 1619 1901 2495 2718 2884
+12 +26 +97 +61 +134 +89 +144 +72 +160 +379
187 345 572 842 1067 1712 1987 2439 2564 3305
170 344 572 804 1253 1479 1972 2449 2871 2714
192 337 770 931 1177 1606 2037 2595 2857 3279
200 362 577 838 1430 1676 1820 2547 2763 2511
196 402 729 940 1283 1622 1689 2445 2535 2611

Table A.4: The results of Terasort in MapReduce

Spark 50G 100G 150G 200G 250G 300G 350G 400G 450G 500G

Resource utilization

(70 executors

6G memory

3 vcores)

Reducer number:20 287 584 961 1261 1712 2211 2584 3113 3258 3656

+15 +54 +118 +139 +51 +191 +84 +136 +185 +165
303 527 1011 1450 1736 2267 2510 2987 2969 3603
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282 564 815 1116 1657 2497 2655 2949 3179 3874
290 619 881 }Hﬁ M 2011 2483 3243 3384 3465
265 550 1120 1256 1684 2213 2667 3220 3348 3772
295 660 978 1222 1771 2067 2605 3166 3410 3566

25 253 505 899 1183 1588 2043 2467 2651 2869 3096
+38 +36 +68 +84 +177 4148 +92 +82 +131 +115
283 549 871 1261 1366 1938 2318 2573 3097 3284
210 532 802 1112 1565 2102 2506 2724 2821 3077
212 460 918 1082 1477 1839 2558 2552 2843 2983
277 481 918 1195 1757 2180 2448 2696 2819 3031
283 503 986 1265 1775 2156 2505 2710 2765 3105

30 239 496 857 1093 1444 1826 2067 2445 2794 3042
+11 +43 +66 +111 +126 +79 +73 +184 +71 +192
234 475 764 1180 1269 1811 2158 2343 2717 3138
246 473 931 1222 1355 1859 2049 2771 2768 3097
225 466 869 1089 1537 1859 2127 2349 2856 3226
236 570 820 950 1502 1697 2004 2411 2749 2724
254 496 901 1024 1557 1904 1997 2351 2880 3025

35 231 435 677 1051 1239 1764 1947 2019 2529 2839
+16 +58 +68 +89 +87 +77 +215 +115 +83 +81
240 500 743 1046 1099 1633 2236 2054 2563 2912
212 436 603 912 1283 1787 1812 2165 2656 2938
/29’2/ 367 697 1086 1216 1802 2117 2040 2501 2810
247 484 734 1155 1322 1766 1750 1987 2449 2764
225 388 608 1056 1275 1832 1820 1849 2476 2771

40 232 425 619 984 1222 1531 1698 1967 2475 2750
+26 +69 +71 +104 +156 +107 +193 +155 +82 +118
236 458 699 930 1387 1543 1887 2159 2480 2599
195 481 555 1093 1359 1520 1643 2090 2546 2790
232 351 658 901 1024 1703 1521 1799 2417 2892
269 485 649 896 1229 1468 1917 1945 2371 2807
228 350 534 1100 1111 1421 1522 1842 2561 2662

Input splits

(reducer number:30)

256M 266 457 682 919 1371 1612 2052 2147 2507 2928
+24 +32 +81 +61 +44 +191 +136 +158 +221 +127
}e’f 507 717 },1/3'6 1366 1891 2210 2060 2663 3112
278 421 766 913 1398 1708 2117 2352 2780 3002
234 456 606 988 1296 1558 2105 2280 2456 2848
264 443 735 935 1392 1407 1872 2003 2422 2798
288 458 586 840 1403 1496 1956 2040 2214 2880

519M 252 491 792 1101 1451 1845 2072 2188 2806 3228
+20 +33 +75 +61 +162 +133 +152 +93 +220 +127
255 518 723 1114 1403 1954 2285 2332 2713 3178
233 444 742 1011 1233 1967 2105 2113 2475 3122
284 503 },056 1075 1409 1639 1863 2194 2904 3140
242 470 816 1172 1553 1810 2076 2100 2888 3432
246 520 887 1133 1657 1855 2031 2201 3050 3268

1024M 297 532 848 1215 1465 1895 2309 2695 2989 3151
+14 +35 +88 +135 +117 +136 +122 +248 +297 +283
279 482 978 1083 1392 1831 2278 2912 3193 3371
289 542 789 1238 1525 1729 2225 2740 3374 3389
296 569 753 1332 1323 1853 2210 2949 2966 3310
307 555 834 1067 1624 2070 2320 2436 2735 2846
314 512 886 1355 1461 1992 2512 2438 2677 2839

Shuffle parameters

spark.shuffle.
file.buffer=16k 233 501 849 1135 1509 1610 2131 2486 3007 3080
spark.reducer. +13 +33 +115 +120 +84 +161 +47 +203 +119 +147

maxSizeInFlight=24M
247 478 729 1036 1517 1819 2102 2795 2878 3297
243 470 }Q’Tﬁ 1002 1446 1668 2112 2452 2957 3017
235 503 798 1287 1618 1649 2158 2258 3004 3004
219 500 998 1216 1555 1392 2083 2548 2995 3155
221 554 871 1134 1409 1522 2200 2377 3201 2927

(32k,48M) 212 492 750 1084 1496 1565 2006 2446 2621 2796
+37 +41 +87 +120 +102 +112 +284 +245 +140 +217
232 508 698 1213 1467 1694 1963 2161 2749 3159
248 522 730 968 1410 1413 2285 2299 2610 2839
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171 420 885 1214 1411 1655 2307 2796 2772 2662
236 507 661 1003 1650 1531 1673 2564 2523 2675
173 503 776 1022 1542 1532 1802 2410 2451 2645
(64k,96M) 238 471 744 920 1289 1439 1909 2138 2434 2731
+31 +58 +32 +89 +82 +190 +100 +180 +92 +144
198 536 730 907 1323 1604 1986 2360 2443 2742
214 474 785 1000 1179 1682 1762 2184 2547 2881
270 380 718 1018 1366 1275 1882 2238 2348 2840
244 462 772 808 1352 1289 2019 1935 2497 2518
264 503 715 867 1225 1345 1896 1973 2335 2674
(128Kk,192M) 193 444 673 947 1191 1400 1675 1990 2410 2634
+35 +29 +79 +123 +101 +65 +135 +210 +173 +260
232 422 727 1087 1271 1491 1672 2062 2219 2335
229 481 617 1007 1283 1371 1901 2240 2355 2702
156 465 786 992 1035 1390 1635 2098 2302 2511
179 441 613 775 1155 1318 1623 1818 2530 2588
169 411 622 874 1211 1430 1544 1732 2644 3034

Replication of Spark jobs =1

Table A.5: The results of Terasort for Spark




