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IV 

Abstract 

This thesis co mprises several co mputer si mulation experi ments in which the per

for mance of a selection of phylogenetic methods was assessed. Data were gener

ated according to a known model and used as input for the phylogenetic methods. 

So me new methods were introduced, and their perfor mance co mpared with extant 

methods. Perfor mance was judged by several criteria, being accuracy, consistency, 

efficiency, falsifiability and robustness. 

The experi ments were designed to be biologically relevant ,  and yet co mputa

tionally tractible. Hence the models of evolution used were si mple, to allow a wide 

range of para meters to be tested for their effects within the bounds of available 

co mputing resources. 

The experi ments were divided into two main types, the "s mall n" with up to 10  

taxa, and the "large n
" with fro m 10 to 30 taxa. Para meters which were allowed 

to vary in the "s mall n
" case included nu mber of taxa (n) , sequence length ,  tree 

topology, edge length probability distribution, and purity of data. In the "large 

n
" case, nu mber of taxa, sequence length, and edge length probability distribution 

were varied. 

The si mulation experi ments show that the accuracy of phylogene tic methods 

decreases with increasing n, and that the mean nu mber of internal edges of the 

generating tree which are incorrectly inferred increases at least linearly with n. 

The rate at which the sequence length must increase with n, to retain a fixed 

confidence i n  the inferred tree, is shown to be at least linear i n  n. 

All the methods are approxi mately as susceptible as each other to sa mpling 

error, which is exacerbated by the generating tree having very short or very long 

internal edges, and by finite sequence length. All the methods are susceptible to 

rando m error such as sequencing error, but provided such error is s mall ,  the effect 

is not great . 

One type of method, using edge lengths inferred by the Hada mard con jugation 



process, is shown to be much more robust to impure data and to sequenc ing error 

than are the other methods. 

·with n 2: 10  only the fastest methods were used. Increas ing n aga in decreased 

the accuracy of the methods . Vary ing the "molecular-clockness " of the generat ing 

tree was shown to have a much greater effect upon those methods incons istent w ith 

data wh ich do not sat isfy the molecular clock hypothes is. 

All the methods used are descr ibed algor ithm ically, and the ir computat ional 

complex ity is d iscussed. New proofs are prov ided of the cons istency / incons istency 

of several methods w ith the models of evolut ion used . 

A notat ion is introduced to character ize all tree topolog ies, and used throughout 

th is thes is. 

Pseudocode IS  prov ided for all the major algor ithms used m the s imulat ion 

exper iments. 

V 
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Chapter 1 

Introduction 

There is a theory, which states that, if anyone should ever discover 

exact ly what the Universe is for, and why it is here, it wi ll instant ly 

disappear, and be rep laced by something even more bizarre ly inexp li

cab le. 

There is another theory which states that this has already happened. 

There is yet a third theory, which suggests that both of the first two 

theories were concocted by a wily editor of The Hitch-Hikers' Guide To 

The Galaxy, in order to increase the leve l of universa l uncertainty and 

paranoia, and so boost sales of the Guide. 

[ The  Hitch-Hikers' Guide To The Galaxy, Douglas Adams [ 1 ] ] 

1.1 Organization of t his thesis 

1 

This thesis summarises my simulation study into the performanc e of some methods 

of phy logenetic inference. It is divided into seven chapters, with four appendices. 

The current chapter introduces the general problem of phylogenetic inference and 

defines many of the terms which are used throughout this thesis. Other terms are 

discussed in context. A lso discussed in this chapter are the mode ls of molecular 

evo lution used i n  the data generation for the simu lation experiments .  

The second chapter describes five desirable properties of phylogenetic methods: 

accuracy, consistency, efficiency, falsifiability and robustness. A concise description 

is given of some known methods, and each of these is assessed for its consistency and 

efficiency. A new method, here called 'Compatibi lity ' is introduced in this chapter, 
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because of its c lose re lationship with the 'Closest tree' se lection criterion (40] . (This 

method shou ld not be confused with the compatibi lity method used in connection 

with maximum parsimony: see Section 2.5 .2 and [91 ] . )  Genera l a lgorithms are given 

in pseudocode of the operation of the phy logenetic methods based on c lustering. 

A lgorithms are a lso provided of the exhaustive search strategies used to eva luate 

the three types of optima lity criteria used in this study. Some other methods, not 

studied here, are mentioned in the last section of Chapter 2, and reasons for their 

exc lusion from the current investigation are discussed. 

The first section of Chapter 3 addresses the question of why new methods shou ld 

be sought , and discusses some re lationships between those methods used in this 

study. Section 3.2 describes a way of inferring expected frequencies of patterns 

in sequence or character data from matrices of distances between taxa. Section 

3 .3  briefly describes the new compatibi lity method again, and Sections 3.4 and 

3 .5  describe two more new variants. The consistency and efficiency of these new 

phy logenetic methods is noted. 

The fourth chapter describes the experimenta l methods used to conduct this 

study. Section 4 . 1  discusses in depth the mode ls of sequence evo lution which were 

used to generate data in the experiments. Section 4.2 describes some of the ways in 

which data can deviate from the mode l used in the generation of data, these being 

random noise, samp ling error and inadequate or contradictory mode ls .  The next 

section ( 4.3)  describes the methods used to generate data, and the way in which 

accuracy of each method is assessed in each experiment. The study is divided into 

two parts, these ca lled the "sma ll n" and " large n
"

, where n is the number of 

taxa being considered. Section 4.4 describes in detai l the generation of data in the 

"sma ll n" c ase and provides an examp le of such data generation. Data generation 

for the " large n
" case is described in Section 4 .5 .  

Chapter 5 describes eight genera l resu lts pertaining to the performance of phy 

logenetic methods in  this investigation . Section 5.3 discusses the amount of agree

ment between the phy logenetic methods. Sections 5.4 to 5.  7 discuss the effects 

of samp ling error, tree topo logy, edge length probabi li ty distribution and number 

of taxa on the performance of the phy logenetic methods. Section 5.8 notes the 

effect of using observed distances to infer edge lengths, rather than frequencies of 

patterns of character states observed across the taxa. Sections 5.9 and 5. 10 show 

how the phy logenetic  methods behave when there is random error in the data: ( 1 )  
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when the random error is unbiassed , and (2) when t he random error is biassed , 

respectively. 

The first section of Chapter 6 discusses some computational considerations 

which apply when the number n of taxa increases , and how these considerations 

affect the choice of data generation and phylogenetic inference methods used. The 

"large n" case is restricted so that o nly 'clustering methods' of phylogenetic infer

ence are used. Section 6.2 notes the effect of sampling error on the accuracy of the 

methods used in this part , and Section 6.3 discusses the way the number of taxa 

a ffects this accuracy. Sections 6.4 and 6.5 discuss the effects of the overall time 

from the root of a phylogenetic tree to the present, and the relative time at which 

the last bifurcation (speciation) eve nt occurred . The edge length probability dis

tribution having been established as having a major influence on the performance 

of phylogenetic methods, Section 6 .6  describes an experiment in which the type of 

distribution and their spread were assessed for their affect on the performance of 

the clustering methods. Also in Chapter 6 is discussed the effect that the location 

withi n a phylogenetic tree of a given edge of the tree has, upon the probability that 

i t  will be correctly inferred by the clusteri ng methods. 

Chapter 7 summarises the results of these experime nts, and relates them, where 

possible, to similar experime nts that have been carried out by other authors. A brief 

discussion the n follows i n  Section 7.4 of the possible directions in which research 

may co ntinue. 

The appendices contai n information which, it was decided, could not be included 

within t he mai n text without interrupti ng the flow of the discussio n. Appe ndix A 

describes a method by which the shape (topology) can be charac �erized in a co ncise 

way. This notation, the 'Tree Topology Description Notation' ,  is used throughout 

this thesis. 

Appe ndix B i ncludes mathematical proofs of several theorems described i n  the 

mai n text, concer ni ng the co nsiste ncy of some methods with respect to models of 

data ge neratio n (Theorems 1 to 4) .  Also i n  this appendix are a proof (Theorem 5)  

that the 'Neighbour-joi ning' method i s  optimal i n  a more ge neral class of methods, 

that two of the methods used are equivalent i n  a special case (Theorem 6) ,  and that 

a simp le modification of the Neighbour-joining method yields a method equivale nt 

to the 'Neighbourli ness' method (Theorem 7) .  

Appendix C contains pseudocode listings of all the mai n algorithms used in  this 
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study. A brief introduction in Section C . l  describes the notation used. In Appendix 

D are described three problems which I have encountered in the simulations ,  these 

being tied decisions, rounding error, and programming errors. Appropriate courses 

of action concerning each of these potential problems are described. 

1.2 The Problem 

A central problem of taxonomy is that of inferring phylogenetic relationships, 

usually described by evolutionary trees (37] , between taxa (e.g. , families, genera, 

species, populations) .  Given data from a set of taxa, we most often want to re 

construct the evolutionary tree which best fits the data set . With the considerable 

advance of the Polymerase Chain Reaction (PCR) making the acquisition of DNA 

and RN A sequences relatively easy and cheap, there has appeared a vast quantity 

of DNA and RNA sequence data. The logical course is to take maximal advantage 

of these sequence data, and either to use them as inputs to sequence-based meth

ods of phylogeny reconstruction, or indeed to convert sequence data to distance 

data, for use with distance-based methods. Though, as has been pointed out (87] , 

a large proportion of the information in sequence data is lost when converting from 

sequences to distances, the high level of understanding of the behaviour of distance

based methods, coupled with their relatively high speed of operation, means that 

use of distance data is also a sensible course of action. 

1.3 This S tudy 

The main  aim of this study is  to examine some of the factors which can affect the 

performance of phylogenetic methods. Since the theoretical or analytical calcu 

lations required to cover all possible cases with all but the very simplest models 

and smallest numbers of taxa (typically 4 or 5) are often prohibitively complex, we 

resort to the empirical approach: we simulate. 

As a starting point for further study, simulation is very useful. It is not the 'b 

all and end-all' of phylogenetic study, but it can reveal trends in the characteristics 

of phylogenetic methods which can then perhaps be investigated theoretically ( 12] . 

The simulation methods are described fully in Chapter 4. 

The simulated data, generated according to given models of evolution and 



1. 3. This Study 5 

known phy logeny , \vere used as inputs to the various phy logenetic methods, and 

measures were obtained of the abi lity of these methods to recover the generating 

phy logeny . 

I have sp lit the investigation into two sections, which I have ca lled the "sma ll n" 

and the "large n" cases . For the "sma ll n" case unrooted trees (de fined in  the next 

section) were used, with from 4 to 10 pendant vertices, corresponding to extant 

taxa. For these unrooted trees , the fo llowing parameters were varied: 

• Number of t axa; 

• Sequence len gth; 

• Tree topo log y; 

• Edge length probabi lity distribution (range) ; 

• Purity of the data. 

Varying these parameters it was possib le to determine the e ffect each had on the 

performance of ph ylogenetic methods. 

For the " large n" case, rooted trees (de fined in the next section) were used, 

with up to 30 pendant vertices. For these rooted trees, the fo llowing parameters 

were varied : 

• Number of t axa; 

• Sequence length; 

• Overa ll time from the root to the pendant vertices; 

• Proportiona l time to the last bifurcation event; 

• Edge length probabi lity distribution (type and range) . 

The other aspect studied with rooted trees is the e ffect of the "depth" of each 

edge (de fined in Chapter 6)  on the probabi lity that it wi ll correct ly be inferred. 
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1.4 D efinitions 

There are some specia l terms used in this thesis ,  which are discussed in this sec � 
tion. They consist of some basic mathematica l termino logy and some terms com 

mon ly associated with phy logenetic inference. The definitions of some moderate ly 

new terms re lated to the behaviour of phy logenetic inference methods are given in 

Chapter 2 .  

1.4.1 Mathematical terminology 

Graphs and Trees 

A graph G consists of a set V( G) of vertices, a lso ca lled nodes, and a set of edges 

E(G) �V( G) x V(G) . An edge connecting VI and v2 can be directed, in which case 

it is denoted by the ordered pair ( v 11 v2 ) , or undirected, in which case the order of 

the pair is unimportant, and the edge may be denoted {v i, v2} . The direction of 

edge (v i, v2 ) is from VI to v2 . 

We say that edge e = {VI , v2} is incident on vertices v i  and v2 . Each directed 

edge e = ( v 11 v2) is said to be directed out of v i  and directed into v2 . 

The degree of a vertex v is the number of edges which are incident on v, and is 

written deg( v ) . The in-degree of a vertex v is the number of edges directed into v, 

and the out-degree v is the number of edges directed out of v. 

If a vertex has degree 1, i t  is a pendant vertex, and the edge incident on it 

is a pendant edge. In phy logenetics, the pendant vertices correspond to extant 

taxa, and the interna l vertices correspond to hypothetica l ancestra l taxa. (Note 

that pendant edges and vertices can a lso be referred to as 'exterior' ,  ' externa l' and 

'outer ' :  such notation is not used here. ) 

A path between two vertices v i  and v2 E V (G) is a set of edges { (v i, v ;1 ) , 

( V;11 v ;J , . . .  , ( v ;k, v2) } . The length of a path is the number of edges in it .  A graph 

G is connected if for each pair of vertices VI , v2 E V (G) ,  there exists a path between 

them. A cycle is a non -empty set of distinct edges in E( G) which describe a path 

from a vertex v to itse lf (see Figure 1 . 1 ) .  A loop is an edge of the form ( v, v) 

(see Figure 1 . 1 ) .  If G has no cyc les or loops, and is connected, then it is a tree. 

A ll trees considered in this thesis are finite, that is ,  they have a finite number of 

vertices. Note that in a tree the path 1ri,i between vertices v ;  and Vj is unique for 

each v ;, Vj E V( G) . The maximum of the number of edges in any path in T is the 
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diameter of T, and is denoted by d(T) . 

A tree T whose pendant vertices represent taxa is referred to as a phylogene tic 

tree. Sometimes phylogenet ic trees are also known as cladograms, but I do not use 

such nomenclature here [44] . 

Given a tree T with edge set E(T) and vertex set V(T), and a tree T' w ith edge 

set E(T') and vertex set V(T') ,  T' is said to be a subtree of T if E(T') � Et 7 . a:1d 

V(T') � V(T) .  

With apologies to terminology purists , I shall henceforth adopt a slightl y ,;J0ppy 
approach and refer to edges e and vertices v as simply being in the graph C where 

this is unambiguous, instead of v E V( G) and e E E(G) . I will often writ t. ·,n ed gE' 

as an ordered pair of vertices without assuming any direction, unless c-1; ,:·nvis1 

stated, so an edge jo in ing vertices v1 and v2 can equivalently be written ( 1 ; . 

(v2, vi ) . 
We can distinguish one vertex of a tree T and call it the root, in whi ch ;·· 

tree is rooted. A rooted binary tree is a rooted tree in which, when all f: · 

are directed away from the root, the in-degree of every vertex is either U. :u. 

root vertex, or 1, for the other vertices. For such a directed rooted binary L1ee, i.lh. 

out-degree of every internal vertex is 2, and that of every pendant vertex ; · U 
Each rooted binar y tree T with n pendant vertices has IV(T) I = (2·n ' · 

vertices in  total and IE(T) I = (2n - 2) edges, (n  - 2) of which are in te i  ti 

n of which are pendant . 

An unrooted binary tree is a tree in which every vertex has either ckp " 

degree 3. Any unrooted binary tree can be changed to a rooted bina ry !. · 

inserti ng a new verte x of degree 2 into an existing edge of the tree. Eac h  u n ,., -. ; · :' 

binary tree T with n pendant vertices has IV(T) I = (2n - 2)  vertices, (n ·-- :_ -

which are internal , and IE(T) I  = (2n - 3 )  edges, (n - 3) of which are ir.k•·!,-i 
Two trees have the same topology if they are indistinguishable when all L.i .. ·• 

and edge lengths or weights are ignored. This is an equivalence relation on <.dl t j, c:::: 

This definition is at odds with some authors (e.g. [9 3] ), who include the l ctl)c i. .11 

pendant vertices in their definition of tree topology, so we note it specially to avnirl 
confusion. 

If a tree has any internal vertices with degree greater than 3, i t  is sai d to he 
not fully resolved. All binary trees are fully resolved. 
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Figure 1 . 1: Example of a graph 
The above graph with 10  vertices, VI, ... , VIo has two connected components. The 
degrees of the vertices are deg( v3) = 1; deg( vi ) = deg( vs ) = deg( vs) = deg( Vg) 
= deg(vw) = 2 ;  deg(v4 ) = deg(v7) = 3; deg(v2 ) = 4; deg(v6) = 5. The edge set 
{ (vi , v6) , ( v6, v2) , ( v2, vi ) }  is a cycle, and the edge ( v6, VB) is a loop. 

Additivity 

Consider a tree T,  with edge set E(T) ,  and whose pendant vertices are labelled 

from the set L = { 1 , . . .  , n } .  Suppose that for each edge e E E(T) ,  there is 

a corresponding length (or w eight) qe E JR. Suppose also that we have a set of 

distances di,i E IR between each pair of vertices { i ,  j }  E V (T) .  The distances di,i 

are said to be additive on T, if V i, j E L, di,i = EeE1ri,j qe. 
A set D of distances di,j for which there exists a tree T upon which D is additive, 

then D is said to satisfy the additive tree hypothesis. 

Bipartitions 

A b ipartition of a set S is a division of the elements of S into two disjoint subsets, 

say A and A ', whose union is S. The trivial b ipartition of a set S is [S. )ij. 
Each edge of a tree T induces a natural bipartition of the pendant vertices 

of T, each pendant vertex being either on one side or other of that edge. If each 

bipartition in a set of bipartitions can be induced by an edge of a single t ree T ,  then 

the set of bipartitions is defined to be compatib le [7 ] .  If the bipartitions induced 

by a set of edges is compatible, then the set of edges is also said to be compatible. 

Each bipartition {A , A '} of { 1 ,  . . . , n }  shall be represented by that subset , either 
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A or A ', which does not contain n .  For example, the bipartition of { 1 ,  2, 3 ,  4 }  into 

the subsets { 1 ,  3} and { 2, 4} is represented by { 1 ,  3 } . With this representation , two 

biparti tions, say X and Y, X =J Y, are comp atibl e if X n Y E  {X, Y, 0} .  

This representation is used in  the scheme dev ised by Hendy [40] , by which the 

bipartitions of the set { 1 ,  . .. , n }  are labelled by the numbers 0, . . . , 2n-l - 1 .  

Under this labelling scheme, bipartition X is labelled with I::;ex 2i-l. In a tree 

T with n pendant vertices, each edge e has the same label as the bipartition of 

{ 1 ,  . . . , n }  that e induces. Note that the edges incident on the pendant vertices 

{ 1 ,  2, 3 ,  . . .  , n - 1 ,  n} are then labelled { 1 ,  2,  4,  . . .  , 2n-2, 2n-l - 1 } ,  respectively. 

This edge-labelling system is used throughout this thesis. For convenience, m is 

defined to be 2n-l henceforth. 

Testing two edges labelled x and y for compatibility is then achieved by the 

bitwise logical "AND" operation: Edges x and y are compatible if and only if 

x AND y E { x ,  y, 0 } .  Pendant edges are compatible with all other edges. For 

example, edges labelled with x = 1 9  = 0 1 001 1 (base 2) and y = 23 = 0 10 1 1 1 (base 2) 

are compatible, because 

X AND Y = 0 100 1 1(base 2) AND 0 10 1 1 1(base 2) = 0100ll(base2) = y, 

whereas edges labelled with x = 19 = 0 100 1 1(base 2) and z = 24 = 01 1 000(base2) are 

not compatible, because 

x AND z = 0 10000(base 2) = 16 rf. { 19, 24, 0 } .  

Complexity 

If the number of mathematical operations required by a functi on f acting on a 

data set of size k is bounded above by a constant multiple of some function g( k) 

as k increases, then the function f is  defined as being of order g( k), and is written 

O(g( k ) ) .  Hence the "bubble sort" algorithm, which requires (�) operations, I S 

O(n2 ) ,  whereas the faster "Shell sort" algorithm is O(n ln(n) )  [70]. 

The number of unrooted binary trees with n pendant vertices is 

( 2n - 5) !! = ( 2n - 5) (2n - 7) . . .  (3)( 1 ) . 

By us mg Stirling's approximation [5] it can be shown that (2n - 5 )!! '""'"'"' 
(2/ e )nnn-2 , so the number of trees with n pendant vertices is  said to be exp o

nential. 
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Throughout this thesis the number of taxa under consideration is n, and the 

sequence length is c. 

1.4.2 P hylogenetic terminology 

Character sequences 

A character is some object, common to some or all of the taxa. Here we use 

characters which are either from the four nucleotides of DNA or RNA molecules 

or from a two-element set. 

Each character is able to be in one of a finite set of states, or colours. If 

the characters are nucleotides, the possible character states are A (adenosine) , C 

(cytosine) ,  G (guanine) and either T (thymine) or U (uracil) , depending on whether 

the characters are taken from DNA or RNA molecules, respectively. If there are 

just two colours they are 0 and 1 ,  which could correspond to pyrimidines and 

purines ( {C ,  T/U} and {A ,  G}  respectively) .  

A character sequence i s  an ordered list of character states. I have assumed 

throughout this study that the character sequences have been obtained and aligned 

correctly, i .e. , that the characters (e.g. , nucleotides or amino acids) at the same po

sitions in  different sequences are homologous. The alignment problem is a separate 

(and often difficult) issue: for further detail see [4), [35), [57), [94), [99). 

Edge lengths 

The lengths of edges in phylogenetic trees are usually in lR +, the positive real 

numbers. However in  some methods (e.g. , maximum parsimony [26]) a
_ 
continuous 

measure is not always appropriate, and discrete ( integer) edge lengths are usually 

used. In the case of maximum parsimony, these inferred edge lengths can be taken 

as the minimum number of character state changes on each edge which could ac

count for the pattern of character states observed at the pendant vertices of the 

tree. (This minimum number is evaluated over all possible assignments of character 

states to the internal vertices of the tree . )  

Farris raised an objection to the use of continuous edge lengths [2 1), but this 

was based on correlating estimated distances with actual events (character state 

changes) ,  rather than, as was pointed out to be more appropriate by Felsentein 

[24), [25), with ex pected numb ers of events. 
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Occasionally i t  is possible to infer edge lengths which are negative (e.g. , with 

the Hadamard conjugation [40]), but these are a theoretical construct , and do not 

have a readily interpretable biolog ical meaning. 

Note that the number of observed character state diff erences between sequences 

at the ends of a path 1r or edge e of a tree T is not an additive measure (see above) .  

To obtain additive distances, the number of changes of character state must be 

inferred. 

Under the mol ecul ar cl ock model of evolution, the distance between the root of 

a generating tree and each of the pendant vertices is the same. This is equivalent 

to the rate of evolution being the same on all lineages of the tree, from the root to 

the extant taxa. 

Normally the distance between two character sequences is defined as a weigh ted 

sum of the various types of difference, at each site, between the sequen ces. In a 

very simple case, the distance between two sequences is the proportion d sites on 

one sequence which have a different character state at the corresponding site on the 

other sequence. With four character states, the type of difference between sequences 

is often taken into account: sites at which the difference between corr esponding 

character states require a transition (A +-+ G, C +-+ T) can be assigned different 

weights from those sites which require a transversion (all other changes) ,  depending 

on the relative rates at which such types of change occur. 

In this thesis the distance between two sequences is taken as the proportion of 

sites at which they differ, whether for two or for four character states. This is  also 

k nown as the Hamming distance. 

Under Cavender's model of evolution [ 1 0] ,  with j ust two ch aracter states and 

constant, i . i .d .  rates of change, the following formula accounts for multiple character 

s tate changes between two sequences: 

q = -0.5 ln( l - 2p) , 

w here q is the ( inferred) number of character state changes, per character, between 

t he two sequences and p <�.5 is the ( inferred) number of differences, per character, 

between the sequences [39] . 

Under the four-state model , there are several suggested formulae for the esti

mation of the number of changes. If the rates of character state change are the 

i ndependent of the states (the Jukes-Cantor !-parameter model [51 ] )  and the four 
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states are equally likely, the formula is 

q = -0.7 5ln( 1 - p/0.7 5) ) ,  

with p and q defined as before, though now p < 0.  7 5 . 

In general , with r states, exactly one parameter in the transition matrix and 

constant i .i .d . rates of change, 

1-r ( rp ) 
q = -- ln 1 - -- . 

T T - 1  

With the four states having observed proportions which may be unequal be

tween states but are the same for the same states on different sequences, the formula 

becomes 

q = -e ln( 1 - pf e) ,  

where p and q are as before, and 

e = 1 - f1 - ff: - fl; - ff, 

the f 's being the proportions of the character states in the two sequences [9 1 ] .  Note 
that if fA = fc = fa = fr = i, e = 0.7 5, and so the Jukes-Cantor formula is a 
special case. 

There are more complicated formulae for models with more parameters [7 3] , 

but these models are not used here and are not discussed. 

Clusters 

A cluster is a set of taxa. Often a cluster in a phylogeny is constructed under 

the hypothesis that it is a monophyletic group with respect to the other taxa 

under consideration. With unrooted trees, a cluster may also be formed under the 

hypothesis that its complement is monophyletic, with respect to the whole set of 

taxa. Note that a cluster may also be regarded as a taxon, and that each taxon 

can be regarded as a cluster of size 1 .  The siz e  of a cluster is the number of taxa 

in it .  A cluster of extant taxa can be represented on a phylogenetic tree T by a 

subtree T' of that tree, where the pendant vertices of T' correspond to the extant 

taxa. 
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Neighbo urs 

The nea rest neighb our of a taxon in a graph, wit h respect to a given set of taxa, 

is that taxon which is the closest taxon to it. The nearest neighbour of a taxon is 

usually taken from one of the other pendant vertices ( i .e. , extant taxa) . 

A neighb ouring pa ir of vertices is  a pair of vertices of the tree which are adjacent 

to a single common vertex. In Figure 1 . 1  vertices v3 and v7 are a neighbouring pair. 

1.5 Models of evolution 

There are many different models of evolution. The models of interest here are 

those which have some stochastic process operating over time on a set of character 

sequences (e.g. , DNA sequences) .  Also part of the model is the tree which governs 

the mechanism by which data were generated, called the genera t i ng tree and usually 

denoted here by Ta. 

Generally with these models, the probability of a character state change between 

the vertices at each end of an edge is dependent on the initial state and the final 

state, this information given in a tra nsition ma trix .  For a transition matrix M 

governing the change of state from time t1 to time t2 (perhaps on an edge of the 

tree) ,  entry mi,j of M is the probability that , given that the character is in state 

i at time t1 , it will be in state j at time t2 . Such a matrix is called a stocha stic 

ma trix ,  and the sum of the elements in each column add to 1 .  A further constraint 

is that each entry in these matrices must be non -negative. 

These are M a rkov models, and characters changing according to such a model 

are obeying a Ma rkov process. 

The transition matrix may vary over the edges of a tree and across sites of the 

sequences, but in this thesis the transition matrix for a given edge is independent 

of l ineage and sequence site, and is a function of the length of that edge. 

For two character states, the transition matrix used here is of the form 

[ 1 -x x ], 
x 1-x 
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while for four character states the transition matrix has been of the form 

1- 3x X X X 

X 1 - 3x X X 

X X 1- 3x X 

X X X 1 - 3x 

These models are the Cavender and Jukes-Cantor models ( [10] and [5 1] , respec

tively ) .  

More general models have more parameters, for example Kimura's models, 

known as the 2P and 3ST models [73] , in which there are 2 or 3 arbitrary pa

rameters in each transition matrix, as shown below (the rows and columns are 

indexed with character states A,  C ,  G, T/U, in that order) :  

The 2P model: 

1 - 2x - y X y X 

X 1 - 2x- y X y 

y X 1 - 2x- y X 

X y X 1- 2x - y 

The 3ST model: 

1 -x - y -z X y z 

X 1 -x - y -z z y 

y z 1 -x - y -z X 

z y X 1 -x - y -z 

The above matrices are all symmetric, i .e. , the i, j-th entry is identical to the 

j, i-th entry. The most general symmetric transition matrix is 

1 -u -v -w u V w 

u 1 -u-x- y X y 

V X 1 -v -x -z z 

w y z 1 -w - y -z 

The most general asymmetric transition matrix is 

1 - r -u -x 0 p q 

r 1 - o-v - y  s t 

u V 1 - p - s -z w 

X y z 1- q - t -w 
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A good discussion of all t he above models is to be found in Rodr iguez et a/ [73] . 

In t his study t he models of evolution used are very simple. In bot h t he "small 

n" and "large n" cases I have used t he Cavender and Jukes-Cantor models as 

described above, wit h two and four c haracter states, respectively. 
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Chapter 2 

Phylogenetic Methods 

I am, in  point of fact, a particularly haughty and exclusive person, of 

pre-Adamite ancestral descent. You will understand this when I tell 

you that I can trace my ancestry back to a protoplasmic primordial 

atomic globule. 

[ The Mikado, Gilb ert and Sullivan] 

2 . 1  Int ro duction 

1 7  

By  the use of phylogenetic  methods, we hope to  resolve as many as possible of the 

questions of the relationships between organisms. This chapter first lists some of 

the properties which are desirable in phylogenetic methods. It is unfortunately not 

possible for any one method to possess all of the properties listed [66). 

The following sections describe the operation of several of the phylogenetic 

methods studied here. The methods are split into two groups, being construc

tive and search methods. General algorithms are provided in pseudocode of the 

operation of the constructive methods, and of the search methods. Within each 

description are noted whether the method is consistent with additive data, and its 

computational complexity. 
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2 . 2  D esirable C haracteristics of P hylogenetic Meth

o ds 

As in Penny et al [65] we use consistency, efficiency, falsifiab ility, and rob ustness as 

desirable characteristics of phylogenetic methods. However, we do not , as Penny 

et al do, use 'power' to measure the ability of phylogenetic methods to correctly 

infer the tree from which the data were generated, as this term has other meanings 

in statistics. The probability of a method correctly inferring the generating tree is 

defined as its accuracy. 

2 .2 .1  Accuracy 

The accuracy of a phylogenetic method is a measure, albeit an imprecise one, of 

the probability that a method will correctly infer the phylogeny which generated a 

data set, when using that data set as input. It is imprecise, because the probability 

that a method will correctly infer the tree which generated a given data set is 

a complicated , and generally unknown, function of the data. The property of 

accuracy is the one which is most often sought , since we are usually most concerned 

with the overall shape of the phylogeny: up to a point , we are willing to wait for a 

slow but accurate method, as opposed to a fast but inaccurate method. 

2.2 .2  Consistency 

Consistency of a phylogenetic method must be with respect to some model of 

evolution. It is  the property that, when data are generated according to that 

model, and as sampling error of such data tends to zero, the probabillty that the 

correct phylogenetic tree will be inferred tends to unity. 

All the methods used here have been tested for consistency or inconsistency (as 

appropriate) with the molecular clock and additive tree models, described earlier. 

Consistency is desirable because we do not want to use a method which may give 

us the wrong tree, if the data fit some known model. 

2.2.3 Efficiency 

Generally speaking, a method is efficient if it is fast, and inefficient if it is slow. 

(Note that this is at odds with some authors, e.g., [50] , [80] , who deem a method 
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to be efficient if it has a high probability of returning the correct tree. ) 

19  

In this general sense, whether a method i s  efficient or not is determined by its 

implementation. For example, a search through the ::::::: 1030 trees on 25 pendant 

vertices may take years on a personal computer, and hence be generally regarded 

as ' inefficient' in that implementation , or less than a day on a massively parallel 

supercomputer, hence being regarded as 'efficient ' .  Speeding up the implementa

tion of an algori thm, for instance by using a branch and bound process to discard 

more than one tree at a time [28] , may well make it more efficient . This has been 

done for the search methods. In some other studies a conscious decision has been 

made, to sacrifice accuracy for speed by conducting the search on a proper subset 

of all potential trees ( [16] ,  [80] ) .  

A more precise definition of efficiency can be obtained by considering the com

putational complexity of each of these methods. The computational complexity of 

reconstructing phylogenies is described in [34] and [98] . More specific discussions 

of complexity in tree reconstruction are to be found in [52] and [83] . The compu

tational complexity of each of the methods used in this study is noted within its 

description. 

In general, those methods which require a number of operations which is bounded 

above by a polynomial function of the size of the input data set are regarded as 

efficient .  These are often referred to polynomial-time methods. Those methods for 

which no implementation is known to make them polynomial-time methods are 

generally regarded as inefficient. 

Note that in the statistical sense, efficiency is  related to the amount of infor

mation which can be retrieved in a test. An algorithm which is O(nn) may have a 

high p robability of returning the correct tree, and so may be 'efficient' statistically, 

but for large n, may take a very long time, and hence would be called ' inefficient' 

( though accurate) here. 

Efficient methods - in the mathematical sense - are of interest because they 

can provide answers to phylogenetic questions in a reasonable amount of time. 

Though the collection of data may take months or years, the tendency is to infer a 

phylogeny quickly. However, including the gathering of data, the phylogeny n=icon

struction can often legitimately take up the bulk of any i nvestigation, particularly 

if the �umber of taxa is large. "Large" is a again rather loose term in this case, 
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as the amount of time required for the inference of a particuar phylogeny is de

pendent on the method of phylogenetic inference used and its implementation , but 

most researchers would agree that in the order of 1 00 taxa or more is "large" . 

2 .2.4 Falsifiability 

Falsifiability is required if we are to be able to conduct valid experiments in phyla

genetic analysis (69] . It is the property that given a data set and an hypothesized 

model , a method can reject the model if it is not appropriate to the data set . For 

example, suppose we have a data set, consisting of a matrix of pair-wise distances 

between taxa, which has arisen from a phylogeny where there has been recombina

tion. In this case the underlying phylogeny cannot correctly be described by a tree. 

We would therefore like our phylogenetic method to reject the hypothesis that the 

phylogeny is tree-like. 

Note that the clustering methods do not have this property; whatever the data 

set (up to a point: the distances must be semi-metric ( i .e. , dj,i = di,j 2:: 0 V i , j and 

di,j = 0 {::=} i = j) [5] ) ,  each of the clustering methods used here will provide a 

tree, even if the input data were not generated from a tree. 

We find later that the original closest tree and compatibility methods ( CTSH 

and CoSH respectively - see later) do have this property, if the accuracy of the 

methods can be estimated in some way, and when used in conjunction with other 

methods : when data generated from more than one tree are used as input to these 

two methods ,  they perform relatively better than do the other methods. Knowing 

this, if we see such relatively high accuracy of CTSH and CoSH (with respect to 

the other methods) we can hypothesize that the data set is not pure. Judging the 

accuracy of the methods could in this case be achieved by bootstrapping sequence 

data, but has not been investigated here. 

2.2.5 Robustness 

The mbustness of a method is a measure of its insensitivity to variation in the 

mechanism by which data are generated, or, in other words, to the model of data 

generation deviating from the evolutionary model which is implicitly or explicitly 

assumed by the phylogenetic method. This is desirable because in  general we 

do not know the evolutionary mechanism, and so it is  more than likely that any 
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hypothesized model will be violated to a greater or lesser degree. (Tests of the 

robustness of maximum likelihood (ML) methods have been carried out by Fukami

Kobayashi and Tateno [30] . They varied the type of transition matrix used in the 

mechanism of evolution, and the relative frequencies of the character states. )  

In  this thesis ,  the models of data generation deviate from the hypothesized 

models used by the phylogenetic methods in the folowing ways: 

• Contamination of data; 

• Adherence to a molecular clock; 

• Random error. 

Contamination of data is modelled here by amalgamating data generated from 

trees representing two independent phylogenies. This is described in Section 4.2 .3 ,  

and experimental results given in Section 5 . 10.  

Adherence to a molecular clock is invest igated in the "large n" case, by vary ing 

the spread of the edge length probability distributions about their expected values. 

With only a small spread for these probability distributions, the edge lengths closely 

fit the molecular clock hypothesis, but with a greater spread they can deviate from 

it .  This is described in Section 4.5.4 ,  and experimental results given in Section 

6.6.2 .  

2 . 3  General C lasses of Phylogenetic Methods 

We can split t he methods used here into pairs of distinct classes. The methods 

are grouped according to the form of their input data, and how they go about 

selecting a phylogeny or set of phylogenies. If a method uses pairwise distances 

( i .e . ,  a set of d istances between pairs of the taxa) as its input, it is distance-based, 

whereas if i t  uses sequences of characters directly, it is sequence-based. Distances 

can arise from sets of morphological characteristics which vary over a continuous 

range, for example, the lengths of spines on the legs of different types of weta 

[71 ] .  Distances can also be calculated from sequences, as described in the previous 

chapter. Character sequences are most commonly sets of DNA, RNA or protein 

sequences taken from extant taxa. (Though some progress has been made with 

extracting DNA from fossi lized organisms, such sequences tend to be rather short , 

i n  the order of 100 base-pairs, due to the fragmentation of DNA over time [6 1 ] . )  
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It is important to note that while the original data set may be the same, differ

ent methods may transform the data in different ways: Here, the sequence-based 

methods (CoSH, CoSO, CTSH, CTSO, MPSH, and MPSO - see later) begin 

with a set of partition frequencies, from which are estimated path lengths and then 

edge lengths of the generating tree Ta. NJ, SL, ST, TD and UPGMA (see later) 

obtain a matrix of distances, in this study from the set of partition frequencies 

described above. Note that distances can be obtained from other sources also, e.g. , 

immunological and morphological. 

The last group of methods investigated here, which use a "distance spectrum" 

( CoDH, CTDH and MPDH - see later) , convert the above matrix of distances back 

to a set of inferred partition frequencies. These three methods are also referred to as 

"distance-based" as they do not require a set of sequences from which to calculate 

the distance spectrum, but only a distance matrix. 

Within this thesis the following methods are studied: 

• the Unweighted Pair-Group Method with Arithmetic Mean [79] , abbreviated 

UPGMA. 

• The transformed distance method of Li [54] , abbreviated TD [58]; 

• the neighbourliness method [77], abbreviated ST after the initials of its in

ventors, Sattath and Tversky; 

• the neighbour-joining method [76], [89], abbreviated NJ; 

• the closest tree method [40] , abbreviated CT; 

• the compatibility method, which is abbreviated Go; 

• maximum parsimony [26] , abbreviated MP; 

• SL, a simplification of Li's TD method; 

We describe these methods generally in the following sections, but wait until 

Section 4.4 .  7 to give examples of their operation. This is so the method of data 

generation can be explained before showing a typical data set , which is then used 

by each method . 

For algorithmic descriptions of each method, refer to Appendix C .  
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2 . 4  Constructive methods 

Methods which build a phylogeny, by successively constructing pieces of a tree, are 

called constructive methods. With such methods the construction is not reversible: 

once a decision has been made, e.g., a particular pair of taxa being supposed to be 

monophyletic with respect to the others, that decision is retained for that tree. 

The constructive methods studied here are all heuristic, in that they find solu

tions to local optimisation problems (in this case the choice of the next neighbouring 

pair) , but cannot guarantee that the final solution is globally optimal. Constructive 

phylogenetic methods are generally efficient, typically O(n3 ) .  

All the clustering methods begin with a set of distance data i n  a matrix D .  

(Note that the distances need not be  additive on any tree: none of the clustering 

methods have the ability to reject such distance data. ) 

Each method has a pair of functions F( i ,  j, D) and G( i ,  j, D) which depend 

on the method. Clusters x and y are chosen as a neighbouring pair if F(x, y ,  D) 

is optimal .  After a pair of clusters { x ,  y} is chosen, it is replaced by the cluster 

z = x U y ,  and the distance matrix D is replaced by D' = G(i, j, D) ,  which again 

is a matrix of distances, now with one row and one column fewer. This process is 

continued until there is  only one choice for the final tree. 

We can write the clustering process in an algorithmic form (see Algorithm 2 . 1) .  

Methods which use the above approach require O(n3) operations to  construct a 

tree. This is because the three nested loops ( "for . . . do" ) each run through 0 ( n) 

repeats.  The methods which use this kind of algorithm, and are therefore O(n3 ) ,  

are NJ ,  NJa, SL ,  TD ,  and UPGMA. 
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Algorithm 2 . 1  : Clustering process ( to maximise F(i ,j, D) )  

variables: 

n,  

A ,  

Cl > C2, . . .  , C2n 
k,  
z ,  ) ;  

A - { 1 , 2 , . . .  , n} 

for i = 1 to n do ci - { i} 

k - n  

while (k > 1 )  do 

i - 1 

while ( i fJ A) do i - i + 1  

{ number of taxa, n 2: 2 } 

{ the set of clusters currently available } 

{ the clusters } 

{ current number of available clusters } 

{ counters } 

x - z { x is the smallest element in A } 

i - i + 1 

while ( i fJ A) do i - i + 1  

y - z { y is the next smallest element in A } 

f - F(x , y, D) 

for i = x to 2n - k - 1 do 

if ( i  E A) then 

for j = i + 1 to 2n - k do 

if (j E A) then 

if (F(i, j, D )  > f) then 

f - F(i, j, D)  

Y - J  
C2n-k+1 - Cx u Cy 

A - A u {2n - k + 1 }  

A - A - {x} - {y} 

D - G(x, y, D) 

k - k - 1  
end. 
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2 .4 .1  Unweighted Pair-Group Method with Arithmetic 

Mean 

This method, one of the earliest developed , is almost always abbreviated UPGMA, 

as it  is here [79] . It i s  also known as the Average Linkage method (AL) .  

It i s  consistent with the molecular clock model of evolution. Given data gener

ated by such a mechanism with the added restriction that evolutionary rates are 

i . i .d .  across all si tes, and in the absence of sampling error, UPGMA will correctly 

construct the generating tree (a proof is provided in Appendix B, Theorem 1 ) . 
( However, the example tree T shown in Section 4.4.7 is not of this form; wherever 

we choose to place a root on T, we cannot thereby make all the distances from the 

root to the pendant vertices equal . )  

UPGMA is known to be inconsistent with additive data without appropriate 

adjustment of the input distances to account for varying evolutionary rates [ 12 ] .  

Hence we expect UPGiviA to perform badly in this experiment , in fact not to 

improve its performance beyond a certain imperfect level, as we increase the se

quence length c. A proof is provided in Appendix !3 , Theorem 1 of the consistency 

of UPGMA with data which satisfy the molecular clock hypothesis. Despite the 

simplicity of the proof, I am unaware of such a proof in the relevant literature. 

In UPGMA, the function F(x, y, D) is just dx,y · Suppose that at some clustering 

stage clusters x and y are amalgamated to form cluster z. Then we modify D 

according to 

• G( di,j ) = di,j if i and j are distinct from z;  

• G(dz,j ) = G(dj,z )  = o_,d:·;!::dy,;, where ax is the size of cl\fster x,  ay  that of 

cluster y.  

UPGMA requires O(n3) operations to construct a tree on n taxa. 

An algorithmic description of UPGMA is given in Appendix C, Algorithm C.23. 

2 .4.2 Transformed Distance method (TD) 

TD works by modifying the distance matrix D before using UPGMA to infer 

a tree. The modification is to take into account differing rates of evolution on 

different lineages, and is achieved by putting each of the taxa into one of two sets 

(here called L and R), which are supposed to contain all the taxa on the left- and 
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·ight-hand side of the root, respectively, and then modifying the distances so that 

.hey fit the molecular clock model . The root is assumed to lie between L and R. 
First TD finds { x, y }  such that dx,y is maximal. L is set to the singleton { x} ;  

� is set to {y} .  The set A of available taxa is then { 1 , 2, . . .  , n } - {x , y } .  The 

"ollowing process is repeated until L U R = { 1 ,  . . .  , n } :  

• Find i E A such that dL,i or dR,i i s  minimal, where dL,k = LjEL di,k/ IL I and 

dR,k = LjER dj,k/ IRI . 

• If dL,i is minimal , L = L U { i } , otherwise R = R U {i} . 

• A =  A- { i } .  

The new distance matrix, D', i s  calculated as follows: For each i E L ,  let 

·i = di,y - dx,y ,  and for each j E R, let ri = dj,x - dx,y · Then the entries d�.i of 

0' are calculated by d�.i = d;,j - ri - ri . 
These distances are then used as the input data for UPGMA. 

TD is  not consistent with additive data (see Appendix B :Theorem B . l ) . It 

·equires 0( n3) operations to construct a tree on n taxa. 

An algorithm description of TD is given in Appendix C, Algorithm C.24. 

2.4.3 Neighbourliness (ST) 

fhis method of tree construction was invented by Sattath and Tversky in 1977 

:77] . In this method, at each clustering step, each potential neighbouring pair of 

:lusters , say {x , y } ,  is evaluated to find the number f(x , y)  = f(y, x )  of quartets 

{ i , j, x , y }  for which d;,j + dx,y < d;,x + dj,y and d;,j + dx,y < di,y + dj,x · In  the context 

)f this method, we call J( x, y )  the support for the pair { x, y } .  At each stage the 

pair of clusters { x, y }  with the highest support is amalgamated to form a larger 

:luster, say z .  We then modify D according to 

• G( d;,j )  = di,j if i and j are distinct from z;  

Neighbourliness, referred to as ST after the initials of the authors, measures the 

support for a given potential neighbouring pair { x ,  y }  in a very coarse manner: It 

counts 'one' for each case where di,j + dx,y < di,x + dj,y and di,j + dx,y < di,y + dj,x, 
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whether the size of the differences between di,j + dx,y and di,x + dj,y , and between 

di,j + dx,y and di,y + dj,x , are small or large. 

Suppose we modify ST to take into account the size of these differences by 

adding up all the terms ( di,x + dj,y ) - ( d;,j + dx,y ) for all possible quartets 

{ x ,  y, i, j } .  We can show that ST modified in this way produces a method, say 

'ST+' ,  which is equivalent to the neighbour-joining method ,  outlined below. The 

proof of this assertion is described in Appendix B, Theorem 7. Note that the 

original description of NJ did not rely on this modification of ST, but was developed 

independently. 

ST is consistent with additive data [77] . 
Because there are (�) = (n)(n - 1 ) (n - 2)(n - 3)/24 possible quartets 

of a set of n objects, each clustering stage requires 0( n4 ) operations, and so the 

complete method requires 0( n5 ) operations in this implementation. Note that 

ST + ,  if  implemented in the same general way as ST has been, would also require 

O(n5 ) operations, while NJ, equivalent to ST+, requires only O(n3 ) operations. 

An algorithmic description of ST is  given in Appendix C, Algorithm C.22. 

2 .4.4 Neighbour-joining (NJ) 

This method was developed by Saitou and Nei in 1987 [76] and a modification was 

provided by Studier and Keppler in 1988 [89] which rendered a method consistent 

with additive data. It is this modified method which is referred to throughout this 

thesis as 'NJ' . 

At each clustering stage, the neighbour-joining method chooses { x ,  y }  to m in -

1 
F(x, y , D) = dx,y - 1 2 L (dx,i + dy,i ), n - iEA 

where A is  the set of clusters currently available and n' = I A I .  The quantity 

L.:ieA dx,i i s  called the net divergence Vx of vertex x .  

I n  Appendix B ,  Theorem 5,  a proof (from Charleston e t  a l  [ 12] )  i s  provided 

that NJ uses the only possible consistent weighting scheme for the net divergence. 

Suppose we choose clusters x and y to amalgamate to form cluster z. Then D 
i s  modified according to 

• G( di,j ) = di,j if i and j are distinct from z;  

• G(d · ) = G(d · ) = d:r,j+dy,j-d:r,y 
Z,] ]1Z 2 • 
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NJ is consistent with additive data [89] , and requires 0( n3 ) operations to con

struct a tree on n taxa. 

An algorithmic description of NJ is given in Appendix C ,  Algorithm C .21 .  

2 .5 Search methods 

Those methods with an explicit criterion which is optimised over a set of possible 

phylogenies are called search methods. 

Search methods evaluate some function, M say, on all or some of the set of 

possible phylogenies. If M is evaluated on all potential phylogenies, the implemen

tation is an exhaustive search . If a proper subset of potential phylogenies i s  tested, 

the search is heuristic. 

Since the number of potential phylogenies grows exponentially with the number 

of taxa, there comes a point where it is infeasible to conduct an exhaustive search, 

and then heuristic methods must be used. It is not within the scope of this study to 

investigate the performance of phylogenetic methods in conjunction with heuristic 

search methods. 

All the search methods described here use as their input data a set of inferred 

edge lengths, which is  usually denoted q
'
. The ways in which q

' is inferred, in  this 

study, from the observed data are described in Section 4.4.6. 

2 .5 .1  Closest Tree (CT) 

The Closest Tree method of Hendy [40] , [47) minimises the Euclidean distance 

between an input spectrum of inferred edge lengths q
' a.nd the spectrum o� �dge le�gths 

which could correspond to a given tree T. 

This distance is minimised when 

is maximised. 

As originally presented, the inferred edge lengths are obtained from the observed 

bipartition frequencies using a Hadamard conjugation which relates probabilities s 

of observing partitions of the taxa to edge lengths q, for a tree T. This relation is 

described in Section 4.4.3 . (Though the method was originally developed to deal 

with two character states, a four character state version is now available [46) . )  



2.5. Search methods 29 

Note that the set of inferred edge lengths could be obtained using some other 

method; the Hadamard conjugation is not peculiar to CT, nor is CT peculiar to 

the Hadamard conjugation (Co also uses the conjugation) .  

The three ways in which the observed data are treated to  obtain inferred edge 

lengths q
' are distinguished by the suffixes 'DH '  (Distances with Hadamard con

j ugation) ,  'SH'  (Sequences with Hadamard conjugation) and 'SO'  (Sequences, Ob

served) .  These ways of inferring q
' are described in detail in Section 4.4.6 .  

The Hadamard conjugation requires O(n2n ) operations to generate q'
, the num

ber of potential trees to test ( (2n - 5) ! !  = (2n - 5)(2n - 7) . . .  (3) ( 1 ) )  tends 

to a constant multiple of (2/etnn-2 , and the evaluation of M(T) for each tree 

T then requires O(n ) operations. Hence in the worst possible case CT, using the 

Hadamard conjugation, could be O(n2n + (2/e)n nn-l). With branch and bound 

methods [28] , the number of trees for which the evaluation of M(T) must be made 

can be reduced substantially (see Section 2.5 .4 ,  also [64] ) . 
The branch and bound implementation of CT is described in Section 2.5 .4, and 

an example of the saving of computing time thus achieved is shown in Table 2 . 1 .  
A n  algorithmic description of C T  i s  given i n  Appendix C ,  A lgorithm C.25. 

2 .5.2 Compatibility method ( Co)  

The Compatibility method i s  introduced here to  take advantage of the spectrum 

of inferred edge lengths which is provided by the Hadamard conjugation, outlined 

above. 

Go should not be confused with compatibility used in connection with parsimony. 

In terms of parsimony, each character is defined as compatible with a phylogeny if 

it need not arise more than once to give the observed data, and the phylogeny with 

which the most characters are compatible is taken as the true phylogeny [9 1 ] .  
In the context of Co, the support for each edge i s  defined as its estimated length 

( taken directly from the input vector q') ,  and the support for a set of compatible 

edges is the sum of the supports of these edges. The set of compatible edges which 

has maximal support is chosen as the set of edges of the tree. This method is 

described elsewhere but has not before been applied to these inferred edge lengths 

as derived by the Hadamard conjugation method. A mathematical description of 

Co is given in Chapter 3. 
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With four taxa (but not more than four) , compatibility is equivalent to maxi

mum parsimony ( they both choose T to maximise the inferred length of the only 

internal edge) 

Co is of the same computational complexity as CT (see Section 2 .5 .4) .  

Compatibility is readily amenable to branch and bound search (28] , (43] , which 

can make the search of potential trees much faster, as described in Section 2.5.4. 

The saving of computing time achieved by using branch and bound searching is 

demonstrated in Table 2. 1 .  An algorithmic description of Co is given in  Appendix 

C, Algorithm C.26. 

The consistency of Co is discussed in  Section 4.4.6. 

Note that the quantity minimised by Co is a 1-norm (the "city-block distance" ) ,  

and that minimised by CT is a 2-norm (the Euclidean distance) (78] . These opti

mality criteria could thus be considered to be members of a larger class of methods, 

which choose T as the 'best '  tree if dk ( q(T) , q(Ti))  is minimised, where q(T) is a 

set of edge lengths corresponding to tree T, q(Ti) is the set of edge lengths inferred 

from the observed data, and dk is the k-norm for the two sets of edge lengths. 

This larger class of methods has not yet been investigated as such. 

2.5 .3  Maximum Parsimony (MP) 

The maximum parsimony criterion (MP) (9] chooses the trees which minimise the 

overall number of character state changes which would be required on the edges of 

the tree to account for the observed character sequences. This minimum number 

of character state changes for a given tree is known as the parsimony length of 

the tree. Given a partition of the taxa into two character states an<;l a tree T, 

Pitch's algorithm (26] finds the parsimony length of T in O(n) operations. This 

length is then evaluated for all bipartitions in the data, and, for a complete search, 

all possible trees. Hence MP is a double-minimization procedure: the minimum 

number of character state changes is found for each tree T, and the tree or set of 

trees for which this number is minimised is chosen to estimate the true phylogeny. 

Due to the large number of potential trees, some studies have limited the search 

to testing only those trees which are 1 edge different from the current one, in a 

"hill-climbing" approach (80] . 

It has been shown that MP can be consistent with additive data if the observed 

bipartition spectrum is adjusted to account for multiple changes of character state 
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on evolutionary paths [SS] . When this adjustment i s  made via the Hadamard 

conjugation [45] we refer to the method as MPSH (Maximum Parsimony, Sequence 

Hadamard) ;  when the observed bipartit ion spectrum is used , the method is referred 

to as MPSO (Maximum Parsimony, Sequence Observed) .  MPSO is the maximum 

parsimony method commonly used in previous studies. 

It is known that MPSO is not consistent with sequence data following the 

Jukes-Cantor model [22] , (5 1 ] .  
The Fitch algorithm requires O(n )  operations to  evaluate the minimum number 

of character-state changes which could account for each bipartition in the observed 

data. The maximum number of distinct non-trivial bipartitions which can be ob

served is min{2n- 1 - 1 ,  c} , and hence with the 0((2/e)nnn-2 ) potential trees the 

MP methods are of order at most 0( (2/e)n (nt-1 k) ,  where k �min{2n- 1 - 1 ,  c} 

is the number of distinct non-trivial bipartitions. If the Hadamard conjugation 

is being used to infer expected frequencies of the m = 2n-1 - 1 non-trivial hi

partitions, these expected frequencies may all be positive, in which case the MP 

methods require at most 0( (2/ et (2n )n- 1 ) operations. 

In practice the number of operations required is generally much less than the 

above upper bounds (see Section 2.5 .4 ) .  
An algorithmic description of MP is given in  Appendix C,  Algorithm C.33. 

2.5 .4 Branch and bound implementations 

The search methods described above ( Co, CT and MP) must effectively search all 

potential trees to find the tree(s) which is (are) optimal ,  for the optimality criterion 

used. Suppose this optimality criterion is evaluated for tree T by a function M(T) .  

There are (2n - 5) ! !  = (2n - 5) (2n - 7) . . .  (3) ( 1 ) rv (2/e)n nn-2 possible 

unrooted b inary trees, so if it is necessary to evaluate M on each of these, the search 

will take an impractically long time for even moderate values of n, but there are 

alternatives in some cases. If M can be broken down into a linear or other simple 

combination of functions which can be evaluated on parts of a tree, for example 

on the edges, then we can use a branch and bound algorithm to reduce the number 

of trees that need be examined. For a general description of branch and bound 

methods, see (28] . 
CT, Co and MP are amenable to this treatment ,  which can speed up the process 

considerably (43] , depending on the input data. The next section describes the 
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')ranch and bound method used in this study for the compatibility and closest 

.;ree methods, and the subsequent section describes the branch and bound method 

1sed for maximum parsimony. Note that both techniques effectively consider all 

)Otential trees, so are equivalent to exhaustive searches. Exhaustive search, even 

.vith branch and bound techniques, is generally not possible for n more than 20-30, 

:lepending on the data and the implementation . 

Note also that the input vector may be ei ther a set of observed bipartition 

:requencies, the bipartition frequencies inferred by the Hadamard conjugation, or 

')ipartition frequencies inferred from distances. The algorithms are the same for 

�ach type of input data: the input vector is simply referred to here as q'. 

Branch and bound for compatibility and closest tree 

With the closest tree methods the quantity to be maximised , 

will be maximised when 

M(T) = L q�2 - 2n � 2 (:L q� + q�) 2 eE internal edges of T eET 

is maximised. Note that 

:L q� + q� = :L q� + :L q� + q�. eET eE internal edges of T eE pendant edges of T 

The latter two terms in the above expression are calculated at the outset, as they 

are independent of T, and their sum included in the algorithms as the variable 

"essentials" . 

In the compatibility methods, the quantity to be maximised is 

:L q�, eET 

which is maximised when 

M(T) = 

eE internal edges of T 

is maximised. 
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The first tree considered, say T0, is found by a "greedy algorithm" : The· vector 

of inferred edge lengths is sorted in descending order, discarding the pendant edges 

(in practise, the input edge lengths q
' are copied to a temporary array, and the 

pendant edge lengths set to - 1 in this array) .  Let the set of internal edges of the 

current tree ( initially T0) be S. The edge whose input length is largest is included 

in the internal edges of T0, so is the first element of S. Subsequent edges from the 

sorted list are included in S if they are compatible with all the edges already in S. 

This constructs a set of (n - 3) compatible edges, which are the internal edges of 

T0. Let the greatest value of 1\f(T) found be B, so B is initially M(T0) .  

Note that the lengths of the internal edges of T0 are stored in  decreasing order. 

The general principle of the branch and bound process for closest tree and 

compatibility is of keeping a 'core' array of edges S and stepping a candidate edge, 

say e ,  through the sorted array of inferred edge lengths (of those edges not already 

in the 'core' ) . At each step, an upper bound, say b, on the value of M(T) with 

(S U { e } )  E E(T) is calculated . For brevity, let 

lv.f(S) = max(M(T) : S � E(T)) ,  

with the maximization over all possible trees T. 

I f  b < B, or  if no compatible edge with positive inferred length can be found, 

the last element of S is removed, and stepped through the array of inferred edge 

lengths, as above. If b 2: B and I S I  < (n -- 3) ,  e is appended to S.  If b > B and 

I S I  = (n - 3) ( i .e . ,  the tree is completely resolved) ,  then S is stored (as "bestS" ) 

and B is set to b. When ! S I  = 0, the search is complete. 

( In practise, the entries of S are the positions of the edge labels in the sorted 

vector of inferred edge lengths. )  

Note that when the edge lengths are short, and few multiple changes of character 

state occur on the internal edges of Ta, the inferred q?s which do not correspond 

to the internal edges of Ta will be small. Hence the entries in the sorted q' vector 

will decrease rapidly after the first (n - 3) .  This means that the branch and 

bound process will be able to reject larger sets of candidate trees than if the edge 

lengths were longer and the decrease in the sorted q
' vector less rapid. Therefore 

with shorter edge lengths, we expect the branch and bound search to be relatively 

faster than with long edge lengths. 

Algorithm 2 .2  describes the branch and bound process for closest tree and 

compatibility. The saving in computational cost for an example case is shown in  
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Table 2. 1 .  
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Algorithm 2 .2  : Branch and bound for Co and CT 

variables : 

b ,  

bestS 

B, 

i , j, k, 

s,  

S' , 

optimal, 

q', 
r, 

V .  

{ the best possible value for M(T) with the current 

edge set S } 

{ the set of n - 3 edges which gives the best M(T) } 

{ the best value found for M(T) with a fully resolved 

tree } 

{ counters } 

{ current set of edge labels, stored as array 

[SI >  . . . , Sn-3] } 

{ temporary storage for S } 

{ flag } 

{ vector of input edge lengths } 

{ vector of ranks of q', so q� is the i-th largest input 
I 

edge length } 

{ a temporary vector of the input edge lengths } 

copy input edge lengths q' into v 

set pendant edge lengths in v to - 1  

sort v i n  descending order, and put the ranks of v into r. 

S1 .-..- 1 { note that r1 is the label of the edge with the largest 

j .--- 2 
inferred length } 

for i = 2 to n - 3 do 

while (rj is not compatible with S)  do j .-..- j + 1 

si .-..- 1 
bestS - S 

S' - S 

B .-..- M(bestS) 

optimal - FALSE 

fixed - n - 4 

{ here M(X) is max{M(T) such that X is the set 

of internal edges of T} } 

while (optimal is FALSE ) do 
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k ,_ fixed 

while (k � 0) do 
j f- k + l  

do 
j f- j + l  

b ,_ M(S u {rj} )  

Chapter 2. Phylogenetic Methods 

while (b � B) and (j < 2n-l ) and (rj is not compatible with S) 

if ((b � B) and (j < 2n-1 ) )  then 

sk ,_ j 
if ((k = n - 3) and (S' f= S ) )  then 

S' ,_ S 

B ,_ b 
bestS ,_ S 

k f-- k + l  

if ( (b � B) or (k > n - 3)) then 

fixed ,_ fixed - 1 
break 

if (fixed < 0) then optimal ,_ TRUE 

end. 

Branch and bound for maximum parsimony 

Branch and bound with maximum parsimony in  this thesis uses a different ap

proach: The evaluation of the objective function M(T) cannot be split into simple 

functions of the inferred edge lengths, but rather must be evaluated for a complete 

(and in this case fully resolved) tree. 

The process begins with the tree on pendant vertices labelled (n - 2) ,  (n - 1 )  

and n .  Initially the internal vertex i s  labelled (n + 1 ) .  All internal vertices of the 

current tree are labelled from (n + 1 )  up to (2n - 2) .  

Pendant vertices are added sequentially to the tree in all possible positions 

and the parsimony length of the new tree found. If this length is more than the 

previous best bound, the next position is tried for the insertion. If there are no 

more positions available, the pendant vertex with the lowest label is removed, and 

the pendant vertex with the next lowest label is moved along. 

This process continues until no pendant vertices can be moved any further. 
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Note that the edge lengths which are used by compatibility and closest tree are 

inferred numbers of character state changes on edges of a tree. They are therefore 

equivalent to bipartition frequencies, so the same data sets used by compatibility 

and closest tree can be used by maximum parsimony also. 

In fact ,  complete evaluation of the parsimony length of the current tree T is not 

necessary if it is known that the length will exceed the shortest length found pre

viously: if that is the case, the T is already 'too long' and will be rejected. Hence 

the spectrum of bipartition frequencies which is fed into MP is sorted in decreasing 

order, as i t  is with the branch and bound method for compatibility and closest tree, 

above, and the ranks of the bipartition frequencies stored in r. The contribution 

of a given bipartition to the parsimony length of T will in general , though not uni

formly, decrease with decreasing frequency of the bipartitions. Therefore the major 

contribution to the parsimony length of T will be from the first few bipartitions 

indexed by r. The Fitch algorithm (26] is evaluated on the bipartitions indexed by 

r1 , r2 , . . .  , until either the parsimony length of T exceeds the current best bound or 

the last entry of r is reached. 

Algorithm 2.3 describes the branch and bound process for maximum parsimony. 
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Algorithm 2.3 : Branch and bound for MP 

local variables: 

T, 

bestT, 

B,  

length, 

taxon, 

newnode, 

optimal, 

insertpos[N], 

Z , J , 
u. 

B +-- parsimony length of Ta 

{ current tree, stored as an array of pointers } 

{ best tree found so far } 

{ current shortest length of a tree } 

{ current parsimony length of the tree } 

{ number of the taxon being added , initially 

(n  - 4) }  
{ label of the new internal vertex we create by in-

serting a taxon } 

{ flag to tell when to stop } 

{ current position of insertion of each taxon } 

{ counters } 

{ number of bipartitions in input data with positive 

frequency } 

sort q in descending order, and put the ranks of q into r .  

u +-- number of bipartitions 

set up first tree 

taxon +-- n - 3 

insertpOStaxon +-- n + 1 

newnode +-- n + 2 

{ begin by including this taxon } 

{ insert in positions in decreasing order } 

{ the name of t he new node we'll create by the in-

sertion } 
for i = 1 to n - 4 do insertposi +-- 2n - 2 - i 

optimal +-- FALSE 

while (optimal is FALSE ) do 

length +-- 0 
i +-- 1 

while (length < B) do 

length +-- length+ (Fitch length of T with bipartition ri ) x q�; 

i +- i + 1  
if ( length � B)  then 

if ((taxon = 1) and (length < B)) then 
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bestT +- T 

B +- length 

{ Now we need to get the next tree: } 

if ( ( length > B) or ( taxon = 1) )  then 

while ( ( insertpOStaxon = taxon + 1)  and ( taxon < n - 2) )  do 

remove taxon from T 

taxon +- taxon + 1 
if (taxon = n - 2) then optimal +- TRUE 

else 

else 

newnode +- 2n - 1 - taxon 

if ( insertpOStaxon > taxon + 1) then 

remove taxon from T 

find the next available insert point : put this into insertpos 

insert taxon at position insertpOStaxon in T 

taxon +- taxon - 1 
newnode +- 2n - 1 - taxon 
insertpOStaxon +- 2n - 2 - taxon 

do 
insertpOStaxon +- insertpOStaxon - 1 

While ( treeinsertpOStuon = taxon + 1 )  and ( insertpOStaxon > taxon ) 
insert taxon at position insertpOStaxon in T 

if ( taxon = n - 2) then optimal +- TRUE 

end. 

Savings from branch and bound 

39 

The above branch and bound algorithms afford a substantial saving in the number 

of times the function M need be evaluated (see Table 2. 1 ,  below) . 

2 . 6  A note on some other methods 

There are numerous other methods which are not studied here. Some of these 

are maximum likelihood (ML) methods [33] . Another related group are the Fitch

Margoliash (F-M ) methods [ 1 7] ,  [27] . These have not been included due to the 
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Table 2. 1 :  The proportion of trees tested us ing branch and bound. 
In this table are shown the proportion of times, out of the number of potential trees, that 
M was evaluated for a single branch and bound search on each of several generating trees . 
The tree topologies used were UB2, UB3, . . .  , UB8, being the "caterpillar" topologies on 
4, 5, . . .  , 1 0  pendant vertices, respectively. The sequence length used was 1000 characters. 
Note that the M P  methods require more evaluations than do Co and CT of the function 
M: this is due to the branch and bound algorithm for M P  beginning at a certain fixed 
tree and requiring to finish at another fixed tree, abandoning some trees on the way, 
while the branch and bound for Co and CT begins with the "greedy tree" , which is often 
very close to the generating tree Ta. 

Ta CoDH CoSH coso CTDH CTSH 
UB2 0.33333333 0.33333333 0.33333333 0 .33333333 0.33333333 
UB3 0. 13333333 0 .13333333 0 . 13333333 0 . 13333333 0. 13333333 
UB4 0.04761905 0.02857143 0.02857143 0 .03809524 0.02857143 
UB5 0.00740741 0.00740741 0.00952381 0 .00529101 0.00529101 
UB6 0.001 05820 0.001 15440 0.001 15440 0.00105820 0.00096200 
UB7 0 .00012580 0.00013320 0 .00016280 0.00008880 0.00008880 
UB8 0 .00000839 0.00001 184 0.00001 628 0 .00000641 0.00000641 

Ta CTSO MPDH MPSH MPSO 
UB2 0.33333333 1 .00000000 1 .00000000 1 .00000000 
UB3 0 . 13333333 0.20000000 0 .20000000 0.46666667 
UB4 0 .02857143 0.06666667 0.06666667 0.37142857 
UB5 0.00740741  0.03068783 0.03068783 0 .03068783 
UB6 0.00105820 0.00394420 0.00933141  0.01240981 
UB7 0.00008880 0.00216820 0.00447700 0.01275021 
UB8 0 .00000691 0 .00005377 0 .00007351 0 .00010607 



2. 6. A note on some other methods 41 

large amount of computation time which I S  required for ML and F-M methods 

[9 1 ) .  
In  general, ML methods attempt to optimise for each tree a set of edge param

eters, which are allowed to vary continuously, to find those which would have the 

highest probability of yielding the observed data. It is implicitly (and sometimes 

explicitly ) assumed in many ML computer programs that the edge parameter space 

is unimodal for a given tree, with respect to this probability. This would mean that 

simple hill-climbing methods would find the maximum likelihood point P correctly 

[30) , [9 1 ) .  However, this is now known to be false [86) and so this approach cannot 

guarantee to find the ML tree. 

F-M methods minimise 

� w ·  · i d · . - p ·  · lcr; ,i � I ,J I,J I ,J ' 
I,J 

. where di,i is the observed distance between taxa i and j ,  Pi,j is the distance between 

taxa i and j which would be predicted by the tree, Cti,j is some real power ( 1  or 2 

in practise) , and Wi,j is the weighting assigned to the pair { i , j } .  The summation 

extends over all pairs of taxa { i, j } .  

There are algorithms which can be implemented to minimise the above sum 

in a reasonable amount of time (O(n2 ) per tree) , but these are special cases, in 

which Wi,j = 1 V i , j or Wi,j = 1 /di,j · The choice of Wi,j is made according to the 

assumed characteristics of the variance of observed distances; this variance must 

be estimated or inferred from sources other than the distances themselves (for 

example, bootstrapping the observed sequences [20] ) ,  as we only have one distance 

value for each pair of taxa. 

The choice of Cti,j is somewhat arbitrary; there seems little reason to suppose 

that the best results should come from using either Cti,j = 1 or Cti,j = 2; in  fact in 

different circumstances each may have advantages over the other. 

Perhaps for the most consistently reliable results some fractional value should 

be used for Cti,j ; this question is not easily answerable with available computing 

resources, and is not studied here. 
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Chapter 3 

New Methods 

In developing our methods, it is vital that we nourish that intellectual 

variability in approach without which, as every biologist knows, evolu

tion cannot proceed. The computer represents the gravest threat yet 

to that variability, and at the same time as we enjoy the tremendous 

advances in calculating power that it provides, we must consciously 

strive to defend our subjects from the dead hand of automation and 

the narrow logic of programmers. 

[A . W. F. Edwards [ 19] ]  

3 . 1  Why find more methods ? 

43 

It is important to investigate the properties of current methods, and to attempt if 

possible to improve upon them. By developing new methods and evaluating the 

relationships between them, more can be understood about their behaviour. Felsen

stein,  i n  1979, studied the interrelationships among a set of maximum likelihood 

methods: the interested reader is directed to [23] . 

There is a danger of producing too many methods though - there are over 1 00 

available currently [48] - and "new" methods may easily be simple modifications of 

others. For this reason too it is important to understand how proposed methods fit 

in with those already in existence. Some of the relationships between the methods 

studied in this thesis are shown in Table 3 . 1 .  
Some 'new methods' are modifications to  the treatment of the original data, 

for example the Hadamard conjugation, the use of the distance spectrum,  and the 
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Table 3 . 1 :  A classification of some phylogenetic methods 
The relationships between some phylogenetic methods are shown. The methods 
in italics are inconsistent with the evolutionary model used in Chapter 5. All 
are consistent with the molecular clock model with additive distances. Those 
methods which have not previously been described are in bold type. Where one 
method can be considered to be a modification of another, this is indicated by an 
arrow in the direction of the most obvious modification. 

Input data Search methods Constructive methods 
partition spectrum CTSH CoSH MPSH 

CTSO CoSO MPSO 
distance matrix CTDH CoDH MPDH UPGMA ( l )  S T  ( ! ) 

TD (! )  NJ (! ) 
SL NJa 

Jukes-Cantor correction for multiple changes [41 ] ,  [51 ] .  

Other modifications are new methods of selecting a tree based on inferred edge 

lengths, for example the closest tree, compatibility, Fitch-Margoliash and maxi

mum parsimony methods. These methods have different optimality criteria, to be 

evaluated on a set of trees. Hence while maximum parsimony here can take three 

different types of input data, the essential operation of MP is the same. 

3 . 2  The D istance Spectrum 

The bi partitions Bi of { 1 ,  2,  . . .  , n} can be listed in order, using the indexing system 

outlined in Section 1 .4 . 1  and described fully in [40] . 

For each Bi we define Ai such that 

{ Bi if lEd = 0 (mod 2) ;  
Ai  = 

Bi U {n} if IBi l  = 1 (mod 2) 

For example, with n = 6, this gives the m = 26-1 = 32 bipartitions listed in 

Table 3.2. 

The Ai 's are all the subsets of { 1, . . . , n} which are even-ordered, i .e . ,  they 

have an even number of elements. For each non-empty even-ordered subset A, it 

is possible to match the elements of A in pairs. Let such a matching of pairs of 

elements of a given A with IA I  = 2p > 0 be denoted { {ab bi } ,  { a2, b2 } ,  . . .  , { ap, bp } } ,  

and suppose that dx,y is a real-valued function defined on the elements of A .  The 

minimum pathset distance for a given even-ordered subset A : !A I  = 2p is then 



3.2. The Distance Spectrum 

Table 3 .2 :  The bipartitions and even-ordered subsets of { 1 ,  . . .  , 6}  
This table lists the 32 h i  partitions Bi of  { 1 , . . .  , 6} in  order, according to  the 
indexing scheme of Hendy [40] (see Section 1 .4 . 1 ) , and the subsets Ai of { 1 , . . .  , 6}  
which have an even number of  elements .  

l 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

Bi 
0 

{ 1 }  
{2} 

{ 1 , 2} 
{3} 

{ 1 , 3}  
{2 , 3}  

{ 1 , 2, 3} 
{4} 

{ 1 , 4} 
{2, 4} 

{ 1 , 2 , 4} 
{3, 4 }  

{ 1 , 3 , 4} 
{2, 3, 4} 

{r  2· :3 4} ' ' ' 

{5} 
{ 1 , 5} 
{2, 5} 

{ 1 , 2 , 5} 
{3, 5} 

{ 1 , 3 , 5 }  
{2, 3 , 5} 

{ 1 , 2, 3 , 5} 
{4, 5} 

{ 1 , 4, 5} 
{2, 4 , 5} 

{ 1 , 2 , 4, 5} 
{3, 4 , 5 }  

{ 1 , 3 , 4, 5} 
{2, 3, 4, 5} 

{ 1 , 2 , 3 , 4, 5} 

Ai 
0 

{ 1 , 6} 
{2, 6}  
{ 1 , 2} 
{3, 6}  
{ 1 ,  3}  : · � :  . :  . 

{2, 3} 
{ 1 , 2, 3 , 6} 

{4, 6}  
{ 1 , 4} 
{2, 4} 

{ 1 , 2, 4, 6} 
{3, 4} 

{ 1 , 3, 4, 6} 
{2, 3, 4, 6}  

. ' ·  , · { 1  2 3 4} ' ' ' 

{5, 6} 
{ 1 , 5} 
{2, 5} 

{ 1 , 2, 5, 6}  
{3, 5} 

{ 1 , 3, 5, 6}  
{2, 3, 5, 6}  
{ 1 , 2 , 3, 5} 

{4, 5} 
{ 1 , 4, 5, 6 }  
{2, 4, 5, 6 }  
{ 1 , 2 , 4, 5} 
{3, 4, 5 , 6 }  
{ 1 , 3, 4, 5 }  
{2, 3 , 4, 5} 

{ 1 , 2, 3, 4, 5 , 6} 

45 
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defined to be 

The distance spect1·um g is defined such that for i = 1 ,  . . .  , m = 2n-1 - 1 ,  gi is 

the minimum pathset distance of Ai � { 1 ,  . . .  , n} .  If the set of distances dx,y used 

is taken from observed data, the distance spectrum is denoted by g'. 

The calculation of g can be achieved in less time than that which may at first 

be apparent from the above description. For n = 6, A31 = { 1 ,  2, 3 ,  4 ,  5, 6} , and 

when matching the elements of A31 , 1 can be paired with 2, 3, 4, 5 or 6. If we fix 

the pair { 1 ,  2 } ,  the other elements can be paired up in 3 ways, and the component 

of g which corresponds to the minimum pathset distance of {3 , 4 , 5 , 6 }  is g2s (as 

A2s = {3 ,  4 ,  5 ,  6 }  ) . Hence . we find that g31 = min{ d1 ,2 + g2s, d1 ,3 + g26 ,  di ,4 + 

g22 , d1 ,s + g14 ,  d1 ,6 + g3o } . 
We exploit this principle in Algorithm C . 16  ( "get_pathsets" ) ,  l isted in Ap

pendix C, which calculates the minimum pathset distances of all the sets Bk for 

k = 1 ,  . . .  , m - 1 in one pass, hence requiring 0 (2n ) operations. This algorithm is 

adapted from a procedure in Hendy and Penny's "HadTree" program. 

An important property of the Hadamard conjugation is that multiplication by 

the Hadamard matrix Hn converts from a vector of edge lengths s' to a vector of path 

lengths p. The entries of p are the minimum pathset distances of the even subsets 

of { 1 ,  . . .  , n } ,  as inferred from a bipartition spectrum, whereas the entries of g are 

minimum pathset distances as inferred from a set of observed pair-wise distances. 

Either p or g can be used to infer a set of edge lengths (45) of the generating tree 

Ta, and these inferred edge lengths can be used as the input data for Co, CT and 

MP. 

3 . 3  Compat ibility - again 

Compatibili ty is introduced to take advantage of the bipartition and quadripar

tition spectra which are generated using the Hadamard conjugation. Instead of 

minimising the Euclidean distance between the spectrum s calculated from the ob

served data, and that which would be expected if the generating tree were, say, T, 

Co simply finds T to maximise the sum of the inferred edge lengths of T.  This op

timisation function is slightly quicker to evaluate than CT (though both are 0 (  n) 
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for each tree) . 

The Co method is consistent with an appropriate estimation of the edge lengths 

of the generating tree, as shown in Appendix B .  

In  Co, the function .M(T) is the sum of the estimated lengths of T, so 

!vf(T) = L q:. 
e;ET 

This maximises the sum of the inferred edge lengths , and like CT, can take a 

distance spectrum (CoDH) or the original sequence spectrum (CoSH or CoSO)  as 

its input , or a set of inferred edge lengths obtained in some other way. 

3 . 4  SL 

This i s  proposed as a modification to TD, and is consistent with additive data (see 

Appendix B ,  Theorem 4) ,  whereas TD is not (see Appendix B ,  Theorem 2) .  It is a 

simplification of Li 's original method , hence the name. (TD is described in Section 

2.4 .2 . )  

As in  TD we have sets L and R which we aim to compose from taxa which are on 

the left- and right- hand sides, respectively, of the root. The only difference between 

TD and SL is in this assignment of taxa to L and to R. First SL  finds x, y such that 

dx,y is maximal. The following process is then repeated until L U R = { 1 ,  . . .  , n }  : 

• Let A be the set of currently available taxa. 

• Find i E A such that dx,i or dy,i is minimal. 

• If dx,i is minimal, L = L U { i } ,  otherwise R = R U { i } .  

A new distance matrix is calculated i n  the same way as for TD: For each i E L, 
let ri = di,y - dx,y , and for each j E R, let Tj = dj,x - dx,y · Then the entries di,j of 

bf D' are calculated by di,i = di,i - ri - ri . These modified distances D' are fed 

into UPGMA. 

SL requires O(n3 ) operations to construct a tree on n taxa. An algorithmic 

description of SL is given in Appendix C, Algorithm C.24. 
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3 .5 NJa 

Suppose a pair of pendant vertices { x, y}  of a tree T, are adjacent to internal vertex 

z. For each other (pendant) vertex k the neighbour-joining method estimates the 

distance dz,k with (dx,k + dy,k - dx,y)/2. If distances on the tree are additive, this 

will correctly find dz,k · 
Another estimate of dz,k can be made by first obtaining an estimate of the edge 

lengths q(x,z) and q(y,z) · This can be achieved by find the average, say /3, of the 

difference between dx,j and dy,j , for all other pendant vertices j. Then 

dx,y - f3 q(x,z) = 
2 ' 

and 

Hence, for all other vertices k, dz,k = dx,k - q(x,z) and dz,k = dy,k - q(y,z) . 

In the case of additive distances, dx,k - dy,k will be equal for all k ,  so in this 

case NJ and NJa will be identical. This proves that NJa is consistent with additive 

data, as NJ is .  

The extra calculations described above are O(n2) ,  but this does not increase 

the overall complexity of NJa above O(n3) .  
This modification of N J  unfortunately does not perform well. 
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Chapter 4 

Experimental methods 

Computers are useless. They can only give you answers. 

[ Pablo Picasso] 

The experiments were carried out by computer simulation on a range of Sun 

SPARCStations; a 1 +, an ELC and two SLC's .  Computational time has been a 

guiding force in the design of the simulation experiments. 

4 . 1  Models of sequence evolution used 

In this study I have adopted the simplest models of sequence evolution, to enable 

the broadest possible survey of the behaviour of phylogenetic methods with the 

available computing resources. The number of parameters was as small as possible, 

while still allowing statistically meaningful experiments to be conducted. Hence 

in the investigation dedicated to "small n
"

, i .e . ,  with 4 ::; n ::; 10, I have used 

the Cavender two-state model, in which the probabilities of character state change 

are symmetric and independently and identically distributed across all sites of the 

sequences [ 10) . (Recall that n is the number of pendant vertices of the generating 

tree Ta, corresponding to taxa. ) 

For the case of larger n, the sampling method of data generation used for n ::; 1 0  

i s  no longer viable (see Section 4.4 .4) . We must therefore use the more conventional 

'evolutionary-type' data generation. If we are prepared to do this, we are able at 

little further computational cost to use four character states rather than two, and 

to include a quite general structure of transition matrix. This is discussed more 

fully in Section 4.5.3. 
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l.2 D eviations of t he data from a model 

n this section I describe some of the numerous ways in which a data set can 

..isagree with a hypothesized model, and confound phylogenetic methods. These 

·iolations can be grouped into 

• Inadequate models; 

• Contradictions with the model. 

• Sampling error; 

• "White noise" ; 

• "Pink noise" ; 

�hese different types of violation of the ideal case are described in the next sections .  

�he ways in which such violations have been modelled and their effects assessed 

.re discussed in  Chapters 5 and 6.  

L2.1 Inadequate and contradictory models 

Vith an inadequate model of sequence evolution, there are over-simplifications 

nade by hypothesizing that model, which cannot account for all aspects of the 

nechanism of character state change. 

One way a model can fall short of a sufficient description of the true mechanism 

s in its method of accounting for multiple character-state changes. The Jukes

::::antor correction (5 1 ]  is adequate for this when there are two or four character 

tates with just one parameter, changing according to a symmetric Poisson pro

:ess. With four character states and more parameters (e.g. , Kimura's 2P and 3ST 

nodels (73 ] )  more sophisticated formulae must be used (9 1 ] .  Without adjustment 

or multiple changes, none of the methods described here is consistent. 

If our hypothesized model contradicts the true mechanism, we are making as

umptions about the method of character state change which are patently wrong. 

:'Or example, this could be the assumption that the rates of change are indepen

lently and identically distributed ( i . i .d . )  along the character sequences, where i n  

·eality there may be several sites at which no change is possible, or that some 
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characters may be linked in their behaviour; in fact there are infinite possibilities 

for 'violations of the ideal' in this sense. 

I have not embarked upon a study of how many such violations affect the 

performance of phylogenetic methods; such a study would be impossible without a 

greater understanding than that which is current about the analytical behaviour of 

phylogenetic methods, and a systematic understanding of how these contradictions 

occur in nature. I have restricted my study to three cases in which the mechanism 

of data generation contradicts the models with which the methods are consistent . 

They are sampling error, 'white noise' and 'pink noise' ,  described below. 

4.2.2 Sampling error 

This is essentially the random error which cannot be avoided with real data, due to 

the finite data set size. Typically, nucleotide sequences are obtained of up to � 1 000 

characters. In the simulations, I have often taken a range of sequence lengths, which 

show the effect of sampling error on the performance of the phylogenetic methods. 

The set of sequence lengths used is given in Chapter 5: Experimental Methods. 

The effect of having zero sampling error can, for small n, be assessed by calcu

lating exactly the expected frequencies of character state patterns across the taxa 

and using these as input data for the phylogenetic methods (see later) [4 1 ) .  

4.2.3 "White noise" and "Pink noise" 

The term white noise is taken for its meaning in modern music: i t  is, in this case, 

essentially random error in the data, with no bias in any particular direction. For 

example, white noise is introduced if, when carrying out DNA sequencing, errors 

are made which randomly misread one character, say x, as another, say y, with 

probability independent of x and y.  It is this form of white noise which I have 

investigated here. 

On the other hand, pink noise is random error in the data which introduces a 

bias in  the parameter( s) estimated from that data, in a specific direction. If, in  the 

above case of sequencing errors, the probability of mis-reading a character was not 

independent of the character, the random error introduced would be regarded as 

pink noise. 

In another example, suppose we obtain DNA sequences from a set of bird 
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species, and obtain also a set of sequences which are from lice of these birds. 

The underlying phylogenies of the birds and their lice may well be different [62] . 

Attempting to infer the phylogeny of the birds by using the data from both sets 

of taxa would then be hampered by the pink noise introduced by the parasite 

data. The combined data set would then regarded as "contaminated" by the par

asite data, as it could no longer be guaranteed to be all generated from the tree 

describing the phylogeny of the birds. 

The above is the type of pink noise which I have studied here. 

4 . 3  General approach 

There have been many studies performed to assess the performance of phylogenetic 

methods, but all are necessarily limited by computing time [ 13] ,  [50] , [54] , [60] , [80] . 

For example, in a 1981  study by Li (54] the sequence length c was 300, and only 

20 trials could be carried out , though more recently the number of trials is around 

300 [80] . The tree topologies have been limited to only a few, generally rooted, 

trees [50] , (54] . 

I have therefore tried to exploit the computing power of the Sun SPARCStations 

available and fill i n  some of the gaps, testing over a large range of up to 4 1  different 

sequence lengths, all 27 topologies for 4 ::::; n ::::; 10 ,  and performing up to 1 000 trials 

for any given set of parameters. (For the test of the effect of tree topology, using 

the two topologies with n = 6 pendant vertices, 1 05 trials were carried out . ) The 

sequence lengths used ranged over 

{ 1 0 ,  13 ,  16 ,  20, 25, 32, 40, 50, 64, 80, 100, 125, 1 60 ,  . . .  , 1 05 } .  

The large number of trials for each case allowed the general trends i n  the per

formance of these phylogenetic methods to be seen easily. Such an exhaustive set 

of experiments as this, with such a wide range of parameters, has not been carried 

out before, but is now possible with the advances of modern computers. 

In each trial I have generated data according to some known generating tree 

To and set of edge lengths q. Thus the same data are used for each method, to 

enable comparison between methods. Note that this may give a false impression of 

coincidentally fluctuating performance of the methods, with varying data sets, but 

this is in general not the case: such fluctuation is purely an artifact of sampling 

and other random error in the data. 
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With each trial ,  the labels of the pendant vertices were permuted at random, 

to reduce the effect of the order in which data are presented to the clustering 

algorithms (see Section D. 1 ) .  

4.4 S mall n 

The general simulation procedure is as follows (more detail is provided after this 

list ) : 

1 .  Specify the topology of the tree to be used (the list of unrooted binary tree 

topologies is given in Appendix A) , which methods to include, and overall 

parameters describing the properties of the generating tree Ta. 

2. Randomly choose edge lengths qi , equal to expected numbers of character 

state changes between the end-points of each edge ei of Ta. 

3. Calculate the expected bipartition frequencies Si of all 2n-l bipartitions from 

the vector q of edge lengths. 

4. Sample from this expected frequency spectrum to obtain an observed bipar

tition spectrum, s' ( "ohs" in the program listing) . 

5. If distance-based methods are being used, obtain the distance matrix D from 

s'. 

6. Use the distance and/or bipartition data as inputs to the various methods 

under study. 

4.4.1 Choosing the tree topology and other parameters 

For small values of n,  I have used unrooted trees. This is because the compatibility, 

closest tree and maximum parsimony methods do not distinguish the root. Also, 

it should be noted that there is a lack of irrefutable evidence that ,  for small n, the 

most likely or biologically interesting cases are those in which the rooted tree is 

most appropriate. In fact there is positive evidence supporting differing rates of 

evolution on different lineages of trees in some cases (6] , (31 ] ,  (55] , (56] , and also 

( 100] . The data generated from these unrooted trees did not satisfy the molecular 
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clock hypothesis, which is that the expected distance between each extant taxon 

and the nearest common ancestor of all the taxa is the same. 

I have also often operated under the assumption that all trees are equally likely 

(abbreviated 'a.t .e.l . ') for simplicity and so as to not introduce any bias toward 

any particular type of tree (85] . This is more important in the case of large rooted 

trees, where investigating each topology and then providing a weighted average of 

the results is not possible due to the exponential growth with n in the number of 

tree topologies [8] , [36] . 

Under the 'a.t .e . l . ' assumption, the number of trees with a given topology X 

is calculated using Burnside's Theorem [29] . For any tree on n pendant vertices, 

divide n !  by the order of each of the symmetries of X.  

For example, the tree UB5, 23 on n = 9 pendant vertices (see Appendix A ) 
has three symmetries of order 2 (the three pendant neighbouring pairs) and one 

symmetry of order 3!  = 6 (the central point ) . Hence the number of trees with this 

topology is 
9! 

N(UB5, 23 ) = 
2!2 !2 !3 !  

= 7560. 

When the behaviour of phylogenetic methods was considered with respect to 

n, ignoring tree topology, the data from simulations with each topology X were 

amalgamated in  proportion to the numbers N(X ) . 

N(X ) is shown in  Table 4 . 1  for all the tree topologies with from 4 to 10  pendant 

vertices. Diagrams showing these tree topologies are in Appendix A .  

I n  this part of the investigation I have had to  assign some parameters which 

have a degree of arbitrariness: 

• The upper bound of the maximum path length u between taxa (in  terms 

of maximum expected number of observed differences in character state, per 

site) ; 

• The minimum edge length t; 

• The type of distribution of the edge lengths (uniform ,  normal, and log

normal) ; 

• The ratio r of maximum internal edge length to maximum pendant edge 

length .  
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Table 4 . 1 :  The number of trees with each topology for 4 � n � 10 .  
In the first column are the values of n used. Columns two to  five show the tree 
topology names, using the Tree Topology Description Notation (TTDN) described 
in Appendix A, and the last column shows the total number of trees for the given 
n, equal to F(n) = (2n - 5) ! ! .  

n Tree topologies X and number of trees N(X) F(n) = (2n - 5) ! !  
4 UB2 

3 3 

5 UB3 
15 1 5  

6 UB4 UB3, 12 
90 15 105 

7 UB5 UB4, 12 
630 3 15 945 

8 UB6 UB5, 1 2 UB5, 13 UB4, 1 2 , 13 
5040 2520 2520 315 1 0395 

9 UB7 UB6, 1 2 UB6,  13  UB5, 12 , 13 
45360 22680 45360 1 1 340 

UB5, 12 , 14 UB5, 23 
2835 7560 1 3 5 1 35 

1 0  UB8 UB7, 1 2 UB7, 13  UB7, 14  
453600 226800 453600 226800 

UB6, 12 , 13 UB6, 12 , 14 UB6, 1 2 , 1s UB6, 13, 1 4  
1 13400 1 13400 28350 1 13400 
UB6, 23 UB5, 12 , 13 ,  14 UB5, 1 2 , 23 
226800 14175 56700 2027025 
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I have endeavoured to use parameters which are in keeping with the oft con

flicting ideals of biological experience: phylogenetic interest ,  and practicality. 

In any given simulation experiment , the probability distribution of the pendant 

edge lengths was fixed, as was the probability distribution of the internal edge 

lengths, for each generating tree topology. These two distributions were not neces

sarily the same in range and mean, but were always of the same general type, i .e . , 

uniform, normal or log-normal. 

For a given simulation, using a specific tree topology with diameter d(T) , I 

chose the maximum internal edge length a and the maximum pendant edge length 

b, such that a = ( d(T) - 2)a + 2b. Note that a and b are upper bounds on the ranges 

of the internal and pendant edge lengths, respectively: they were not necessarily 

realised for any edge length. 

The ratio r = ajb was sometimes allowed to vary, but was usually set to 0.5. 

The maximum path length a was in general equal to 0.35, but this too was varied 

at t imes. 

The minimum edge length f for both internal and pendant edge length distribu

tions was usually taken to be a/10 . This was motivated by wanting the phylogenetic 

methods to succeed sufficiently often to give meaningful results; if  the edge lengths 

are too short , there will not be enough signal in the data for any method to resolve 

that edge in Tc: i .e . ,  with finite character sequences, the bipartition corresponding 

to that edge may not be sampled. Hence, the internal edge lengths were chosen 

from the interval [c, a ) ,  and the pendant edge lengths were chosen from [c, b) . 

As an example, given a = 0.35, ajb = 0.5, and f = a/ 10 , the edge length 

probability distributions for different diameters of the generating tree Tc are given 

in Table 4.2 .  

In most cases then, where a = 0.35, 

1 2( 1 - exp( -0.7) )  � 0.25 

was the upper bound on the maximum observed number of differences, per site, 

between any two taxa. This was taken as a reasonable upper limit .  

The above constraints usually enabled the phylogenetic methods to resolve the 

generating tree Tc with a sequence length less than about 2000 characters, which 

seems to be a common maximum attainable length for a set of aligned nucleotide 

sequences. Reducing a and a to very small values would be interesting certainly, 
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Table 4.2 :  Edge-length probability distributions for different diameters of 
generating tree. 

In this example the upper bound of the maximum path length is a = 0.35, 
afb = 0.5, and the lower bound on each edge length is £ = a/ 10.  

d(T) internal edge length range [e, a ) pendant edge length range [ e, b) 
3 [0.007 ' 0.07 ) [0.007 ' 0 . 14 ) 
4 [0.005833, 0.058333 ) [0.005833,  0 . 1 16667 ) 
5 [0.005 ' 0.05 ) [0 .005 ' 0 . 10  ) 
6 [0 .004375, 0.04375 ) [0 .004375, 0 .0875 ) 
7 [0.003889, 0 .038889 ) [0.003889, 0 .077778 ) 
8 [0.0035 ' 0.035 ) [0 .0035 ' 0 .07 ) 
9 [0.003182, 0.031818 ) [0.003182, 0 .063636 ) 
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but, with the constraint of available computing time and the requirement of gaining 

statistically significant samples, infeasible at present . 

4.4.2 Choosing the edge lengths 

The edge lengths are chosen using pseudo-random numbers, generated with the 

"drand48 ( ) " routine available in the 'C '  programming language.' This random

number generator produces double-precision (in this case, 48-bit) floating-point 

numbers, uniformly distributed on the i nterval [0, 1 ) . The inevitable finite cycle 

length (approximately 248) is in excess of the number of times the procedure has 

been invoked in the course of this study. 

Mostly the probability distribution of the edge lengths on each edge was taken to 

be uniform; this is the simplest possible case, and while not necessarily accurately 

reflecting the edge length distribution in nature, is at least not able to be completely 

rejected. The probability distribution of "real" edge lengths is not known. 

4.4.3 Calculation of the expected bipartition frequencies 

For small n, in this case up to ten, it is possible to calculate the expected frequencies 

of each of the 2n-l possible bipartitions of the two character states with n taxa, in 

a reasonable amount of time. (In fact the method is feasible for data sets of up to 

� 20 taxa, but this takes too long for simulation studies to be practicable. )  This is 

by the scheme invented by Hendy [40] . Given a vector q of edge lengths qi, which 

are taken to be expected numbers of character state change per site on each edge 
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e;, the expected numbers of bipartitions of these taxa are the components of 

where Hn is the 2n-1 x 2n-1 matrix of 1 's and - 1  's such that 

and m =  2n- 1 . 

Hn-1 ] 
' -Hn-1 

H2 = [ 1 1 ] ·  
1 - 1  

Note that it is also possible to calculate the expected frequencies of each of the 

4n- 1 quadripartitions of taxa, when there are four character states available, but 

this obviously requires much more storage (0(4n ) ) ,  and the calculation requires 

0( n4n ) operations. 

There is under development a speed-up of the Hadamard conjugation method 

for four character states, which does not calculate all the probabilities of all pos

sible quadripartitions, but such an approach is not an appropriate technique in 

this case. The advantage of the Hadamard conjugation method is in its ability 

to calculate exactly the probabilities of each of the partitions. This distribution 

of partition probabilities can then be sampled with replacement as many times 

as there are characters in  the hypothesized sequences. This gives a spectrum of 

observed partition frequencies which has exactly the same statistical properties as 

one which would be obtained from 'growing' character sequences along the edges 

of a tree (as in "Growing the data" , below).  To abandon this precision, in  the case 

of four character states, by missing out the calculation of some quadripartitions 

would be to introduce a new non-random and in all likelihood biassed source of 

error. Hence, and to reduce computing cost, I have used only two character states 

in this set of simulations. 

4.4.4 Sampling from the expected bipartition spectrum 

The spectrum s is first sorted in descending order, and a vector v of cumulative 

probabilities is calculated from it .  In other words ,  v0 = 0, and for i = 1 ,  . . . , (2n-1 -
1 ) ,  Vj = Vi-1 + S; ,  SO Vm-1 = 1 . 

For j = 1 ,  . . . , c, pseudo-random numbers ri are generated in the range [0, 1 ) ,  

and each is sequentially compared with v; , for i = 1 ,  . . .  , m - 1 until k such that 
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vk-t :::; ri < Vk is found. The number s� of observed bipartitions of type k is then 

incremented. 

After c such samples have been taken, s' is normalised by dividing each of its 

components by c. 

Calculating the bipartition probabilities and then sampling from this vector af

fords a substantial saving in computing time for small n [ 13] , [4 1 ] .  The Hadamard 

conjugation requires approximately (2n - 1 )2n-I mathematical operations; the 

( n - 1 )2n-t for each multiplication by Hn, and the term-wise exponentiation 

of the intermediate 2n-1 -component vector. This vector is sorted, which usually 

can be achieved in 0 ( n2n) operations using a Shell sorting procedure [70] , and 

certainly requires no more than (2n-I - 1 ) (2n-t - 2)/2 operations. Sampling from 

this c times (to give a spectrum corresponding to a set of sequences c characters 

long) requires more operations, but exactly how many is largely dependent on the 

numbers in the sorted vector. In Table 4.3 there are some example numbers of 

operations required for this whole process, for different edge lengths and numbers 

of taxa. Also shown are the numbers of operations required for the more traditional 

method of "growing" the data from a single ancestral sequence. 

Table 4.3: Number of operations required to generate a bipartition fre-
quency spectrum. 

The edge lengths shown in the first row are the internal edge lengths a; the 
pendant edge lengths b were taken to be twice these values. In the penultimate 
column is the mean length of the internal edges of the 'caterpillar' tree UB( n - 2) ,  
with maximum path length 0.35 .  In the last column are shown estimates of the 
number of operations required to "grow" the sequences and then calculate the 
bipartition frequencies from these. The sequence length c is 1000. With ten or 
more taxa, there is no saving for the range of edge lengths used in this thesis .  
(Note that these figures are indicative only; they should not be taken as exact. ) 

max. internal edge lengths number of operations 
n 0.001 0 .003 0.010 0 .030 0 . 100 � evol . type 
4 2149 2206 2402 2916 4277 3 1 16  7000 
5 2273 2371 2708 3632 6263 3724 9000 
6 2639 2789 3323 4898 9970 4700 1 1000 
7 3449 3664 4471 7101 16918 6283 13000 
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4.4.5 D istance Calculation 

The observed bipartition spectrum s' is used to calculate the pairwise distances 

between taxa as follows: For each bipartition i and each pair {j, k} of taxa, the 

distance Dj, k is 
m- 1 

D j,k = L 8i,j,kS � ,  
i=l 

where 8i,j,k = 0 if the j-th and k-th least significant bits in the binary expansion of 

i are equal, and 1 if they are different . 

This can be represented in algorithmic form as follows: 

Algorithm 4 . 1  : geLdistances 

for j = 1 to n - 1 do 

for k = i + 1 to n do d' · � 0 t,J 
for i = 1 to m - 1 do 

for j = 1 to n - 1 do 

for k = i + 1 to n do 

if (( i  AND 2i-t ) =/; (i AND 2k-1 ))  then 

d'. k � d'. k + s� ], J, . l 

for j = 1 to n - 1 do 

for k = j + 1 to n do 

end. 

{ Compare the j-th and k-th  bits of i. } 

d'· k � d'. k I c ], ], 

These distances are adjusted to account for multiple changes, according to the 

Cavender model [ 1 0] ,  so given observed distances d�.i ' the inferred distances are 

di,k = - ( 1 - ln(2dj,k ))/2. 
After the distances have been obtained, the data are used for each of the meth

ods under scrutiny. 

4.4.6 Inferring edge lengths 

Edge lengths can be inferred from the data in several ways. The performance of 

the phylogenetic  methods will of course be affected by the treatment of the original 
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(observed) data. The following are the ways in which edge lengths q' are inferred 

from observed data in this study: 

• For each i E { 1 ,  . . .  , 2n- I - 1 } ,  q: is taken as the observed relative frequency 

of bipartition i ,  as indexed in the scheme described in Section 1 .4. 1 ;  

• The vector q' of inferred edge lengths is obtained from the observed biparti

tion spectrum s' with the Hadamard conjugation; 

• A distance spectrum g' is obtained from the observed distance matrix D' 

after correction with the Jukes-Cantor formula [5 1 ] ,  and another vector w' of 

inferred edge lengths obtained from g' with the Hadamard conjugation. 

Note that the search methods in themselves are independent of the method of 

inferring the edge lengths of Ta. The search methods used here are all consistent 

with the model of evolution used in this study, provided the calculation of q' is 

such that q' -+ q as sampling error tends to zero (see [45] , [88] , and Appendix B ,  

Theorem 3) .  When the observed bipartition frequencies are used directly for q', 

none of the search methods is consistent ( [88] ) .  

Observed bipartition frequencies as inferred edge lengths 

If the expected number of bipartitions occurring on every edge is small, the expected 

number of such changes will be close to the number observed, as there will be very 

few (tending to zero) multiple changes of character state for a given character on 

each edge. A lso the number of parallel changes on different edges will be low 

(tending to zero) as the probabilities of character state change on different edges 

are independent in this model (see Section 4. 1 ) .  Hence the observed bipartition 

frequencies can be used to estimate the expected numbers of character state change, 

for the edges of the generating tree Ta. 

The search methods ( Co, CT, MP),  when they take this kind of input data as 

inferred edge lengths, are denoted by the suffix 'SO' , for 'Sequences, Observed' . 

Hence the 'Sequence Observed' methods are CoSO, CTSO and MPSO. 

Hadamard conjugation for inferring edge lengths 

The Hadamard conjugation can also be used to infer the edge lengths of Ta. The 

relation given in Section 4.4.3 is reversible, so that given the observed bipartition 

spectrum s' , we can estimate q. 
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Since s1 will estimate the expected bipartition spectrum s, we use this to esti

mate q by the relation 
I 1 I 

q = - Hn In Hns . 
m 

If any of the components of Hns1 are negative, the In operation will be undefined . 

I have chosen to reject such data in the simulation studies. 

When the search methods use q
' as calculated above as their input data, are 

denoted by the suffix 'SH' ,  for ' Sequences, Hadamard conjugated ' .  Hence the 

'Sequence Hadamard ' methods are CoSH ,  CTSH and MPSH. 

Distance spectrum for inferring edge lengths 

As previously noted (see Section 3.2) , the interim vector p = Hns1 corresponds to 

the minimum pathset distances of the generating tree Ta. These minimum pathset 

distances can also be estimated from the observed distance matrix D', and used to 

infer edge lengths using the rest of the Hadamard conjugation. 

When such data are used for the search methods, they are denoted by the 

suffix 'DH' ,  for 'Distances, Hadamard conjugated'. Hence the 'Distance Hadamard' 

methods are CoDH,  CTDH and MPDH. 

4.4. 7 Example 

I discuss here a typical case with n = 6 pendant vertices, describing the generating 

tree, the true and inferred edge lengths and distances, and the operation of the 

phylogenetic  methods used. The sequence length used was c = 250. 

The generating tree Tc is as shown in Figure 4 . 1 .  In Table 4.4 are shown the true 

distances between the pendant vertices, those observed as the Hamming distance 

between sequences, and the distances inferred using the Jukes-Cantor formula [5 1 ] .  

Table 4.5 shows the expected, observed and inferred edge lengths for the gen

erating tree shown in Figure 4 . 1 .  

With the data shown i n  Tables 4.4 and 4.5,  the correct tree was inferred only 

by CoSO,  CTSO ,  MPSO and NJa. In this example CoDH,  CoSH, CTDH, CTSH, 

MPDH, MPSH,  NJ, SL, ST, TD and UPGMA all inferred the incorrect tree shown 

in Figure 4.2 .  

The inferred edge length spectra, and their relationship to the inferred tree T, 

can be represented on a column chart, and the data from this example are shown 
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1 

0. 05825 0. 02004 

3 0.02326 

2 5 

Figure 4. 1 :  Typical generating tree used in simulations 
The above tree shows the actual edge lengths, in expected numbers of character 
state change per site, in italics for each edge. The edges are drawn approximately 
to scale with their lengths. 

1 2 

3 6 

5 4 

Figure 4.2: Example incorrect tree inferred by some methods 
The above tree was incorrectly inferred by CoDH,  CoSH,  CTDH,  CTSH, MPD H ,  
M P S H ,  N J ,  SL, ST, TD and UPGMA, with the experimental data shown i n  
Tables 4 .4 and 4.5. This tree i s  one edge different from the generating tree Tc. 
The edges of the tree are not to scale as different methods infer different edge 
lengths. 
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Table 4.4: Typical distance matrices, true, observed and inferred. 
This table shows the distance matrices which were obtained in one trial, with n = 6 
taxa and sequence length c = 250. The 'True distances ' were obtained from the edge 
lengths assigned to the generating tree Ta. The 'Observed distances ' were calculated 
from the observed bipartition spectrum s', and the 'Inferred distances' were calculated 
using the Jukes-Cantor correction formula [51] , [91] . In the absence of sampling error 
(i .e. , as c -+ oo ) we would find the Inferred distances -+ the True distances. 

True distances (from q) : 
pendant vertices 2 3 4 5 6 

1 0 .18465 0.05125 0 . 19509 0.21677 0 . 16688 
2 0.16864 0 . 19598 0 .2 1766 0. 12125 
3 0 . 17908 0.20076 0. 15087 
4 0 . 18802 0 . 17821 
5 0 . 19989 

Observed distances (from s') : 

pendant vertices 2 3 4 5 6 
1 0. 14800 0.06000 0 . 1 7200 0 . 1 8800 0. 13200 
2 0 .17600 0 . 17600 0 .20000 0 . 10400 
3 0 .18400 0.20000 0 . 15200 
4 0 .20800 0 . 16000 
5 0.20000 

Inferred distances (from q') : 
pendant vertices 2 3 4 5 6 

1 0 . 17549 0.06392 0.21080 0.23580 0. 15326 
2 0.21693 0 .21693 0.25541 0 . 1 1 660 
3 0.22943 0.25541 0 . 18120 
4 0 .26893 0 . 19283 
5 0.2554 1 
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Table 4.5: Typical expected, observed and inferred edge lengths 
The edge lengths shown below are in terms of numbers of character state change 
per site for each edge of Tc. The first column shows the edge and bipartition 
labels for this number of pendant vertices. In the second column the true edge 
lengths q are shown (remember that edges which are not in Tc are assigned zero 
length) .  In the third column are the probabilities 5 of each bipartition occurring, 
and in the fourth are the relative frequencies 51 at which each of the bipartitions 
occurred in the sample. The fifth and sixth columns show the edge lengths ( q' 
and w') which were inferred from the sequence spectrum and from the distance 
spectrum, respectively. Those edges which were in Tc are labelled in bold type. 
Edge 21 ,  which was incorrectly included in the inferred tree T(; by some of the 
methods, is labelled in bold type, as are its inferred lengths q�1 and w�1 .  

edge/bipartition label q 5 5' q' w' 

1 0.03363 0.02218 0.01600 0.02433 0.01947 
2 0.06951 0.04524 0.03200 0.04813 0.06783 
3 0.00000 0.00158 0.00400 0.00545 0.00096 
4 0.01 762 0.01255 0.03600 0.06259 0.04445 
5 0.05825 0.0381 1  0.03200 0.05233 0.05930 
6 0.00000 0.00092 0.00000 -0 .00309 -0.00096 
7 0.00000 0.00363 0.00400 0.00310 -0.00351 
8 0.0831 7  0.05455 0.07200 0 . 12283 0 . 1 1450 
9 0.00000 0.00192 0.00000 -0.00163 -0.00108 
10 0.00000 0.00406 0.00800 0 .00656 -0 .00229 
1 1  0.00000 0.00020 0.00000 -0 .00027 0.00073 
12 0.00000 0.00 1 13 0.00000 -0.00809 0.00108 
13 0.00000 0.00502 0.00000 -0.0 1465 -0.00530 
14 0.00000 0.00020 0.00000 0 .00026 -0 .00073 
15 0.00000 0.00385 0 .00400 -0.00184 -0.00374 
1 6  0 . 1 0485 0 .06800 0.09200 0 . 15678 0. 15251 
17 0.00000 0.00238 0.00000 -0.00382 -0 .00084 
18 0 .00000 0.00497 0.01600 0 .01969 0.00374 
19  0 .00000 0.00022 0.00000 -0.00088 0.00073 
20 0.00000 0.00138 0.00000 -0.01053 0.00084 
2 1  0.00000 0.00545 0.01200 0 . 0 0656 0.00722 
22 0 .00000 0.00019 0.00000 -0 .00060 -0 .00073 
23 0.00000 "0.00318 0 .00400 -0.00146 0.00229 
24 0 . 0 2004 0.01938 0.01200 -0 .00179 0.00714 
25 0.00000 0.00097 0.00000 -0 .00265 -0.00293 
26 0 .00000 0.00330 0.00400 0 .00003 0.00351 
27 0.00000 0.00071 0 .00000 -0 .00255 0.00096 
28 0.00000 0.00095 0 .00400 0 .00696 0.00293 
2 9  0 . 0 2326 0.01826 0.02800 0 .04561 0.03024 
30 0 .00000 0.00121  0 .00000 -0.00156 -0.00096 
3 1  0 . 05 1 74 0.03419 0.02800 0 .04563 0.04877 
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in such a chart in Figure 4.3 .  

0.06 -. -

0.05 

0.04 

• s• 

0.03 

• � 0.02 
� 

0.01 

edge 

Figure 4.3 :  Spectra of edge lengths for an example tree 
In the above chart are shown the true edge lengths ( q, in black) of t he generating 
tree shown in Figure 4. 1 ,  the expected bipartition frequencies (s, in white) , the 
observed bipartition frequencies (s', mid grey) , and the edge lengths inferred from 
s' and from D ( q', dark grey, and g', light grey, respectively) . The pendant edges 
are omitted, and the edges are sorted in decreasing size of Si . Note the close 
values of 9�4 and 9�1 (in fact 9�1 is slightly larger) and that q�1 is substantially 
larger t han q�4 • These cause some of the methods to choose the t ree shown in 
Figure 4.2. 

4 . 5  Large n 

With larger values of n ,  the above approach is not feasible, so we have to go back 

to the procedure in  which the sequences are "grown" from an ancestral sequence. 

The general procedure is as follows: 

1 .  Specify the number n of taxa (pendant vertices ) to use, the methods to 

include, and overall parameters describing the properties of the generating 

tree Ta. The structure of the transition matrix is fixed, that is, one matrix 
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M gives the instantaneous relative rates of change for each of the character 

states, for every point on the tree. M is taken to be a symmetric matrix for 

these investigations, so the probability of a character state change from state 

i to state j is the same as from state j to state i .  

2. Randomly choose a generating tree Tc for the given n .  

3 .  Assign random edge lengths for the tree, in  terms of times between bifurcation 

events .  

4. Initialize the ancestral sequence of length c. 

5. Generate the descendent sequences. 

6. After all sequences have been generated, use the data as inputs to the various 

NPMs under study. 

The details of each of these main parts are described in the next few sections. 

The descriptions below are for four character states, corresponding to the four 

nucleotides adenosine (A) ,  cytosine (C) ,  guanine (G)  and thymine (T),  of DNA 

sequences. 

4.5.1 Choosing a random tree 

With large values of n, as has been mentioned, the number of distinct tree topologies 

is too large to enable study of each separately. I have therefore adopted the practise 

of choosing a random tree topology at the start , and include the assumption that all 

t rees are equally likely in the choice mechanism for these trees. We find later (see 

Section 5.5) that there is only slight dependence of most methods on the topology 

of the generating tree. This also means that choosing trees with random topologies 

is an acceptible practice. 

The following technique of deriving a tree from a (random) permutation is 

described by Harding [36] , and has been made into an algorithm here. 

The tree T a will eventually be described by an array t = ( t l >  . . .  , tn-l ) of point

ers, where ti = j <===> vertex i is an immediate descendent of vertex j .  This 

implicitly imposes a direction on all the edges of the tree, so that all edges are 

directed towards the root vertex. 
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We first form a permutation of the numbers 1 ,  2, . . .  , n - 1 ; call this permutation 

P = (pi ,  · · · ' Pn- I ) · 
We form an array e = (eh . . .  , e2n_2 ) , so that for each i ,  e; is the label of the 

'earliest' vertex which has been chosen as an ancestor of vertex i .  Earliest in this 

sense means closest to the root. Initially e; = i for 1 :::; i :::; n and e; = 0 otherwise, 

but eventually we will have e; = 2n - 1 for all i (2n - 1 is the label of the root ) .  

Beginning with i = 1 ,  we let vertices p; and Pi+I be  descendent vertices of vertex 

en+i . Let x = ePi and y = ePi + l l i .e . ,  x and y are the earliest ancestors chosen thus 

far of vertices Pi and Pi+l ,  respectively. 

Each vertex j whose earliest ancestor was x or y now has earliest ancestor n + i .  
The vertices x and y are immediate descendants of vertex n + i ;  hence we set 

tx and iy to n + i .  

The above procedure i s  repeated until all of t i s  defined. I t  finds a random 

rooted tree on n pendant vertices, with all such trees equally likely. 

A n  example of this technique is shown in 4.4. 

2 3 4 5 6 

Figure 4.4 :  Choosing a rooted binary tree from a given permutation. 
Given n = 6 and the permutation (5,4,3 , 1 ,2) we find that pendan.t vertices 5 
and 6 have a common ancestor, which we label 7. Then e .- ( 1 , 2 , 3 , 4 , 7 ,  7) and 
t +-- (0 ,  0 ,  0 ,  0 ,  7 ,  7 ,  0 ,  0 ,  0 ,  0) .  Next we find that pendant vertices 4 and 5 have a 
common ancestor, so e .- ( 1 , 2 , 3 , 8 , 8 , 8) and t .- (0 , 0, 0 , 8, 7 ,  7 , 8 , 0 , 0, 0) .  Pro
ceeding the same way we find pendant vertices 3 and 4 have a common ancestor, 
so e +-- ( 1 , 2 , 9 , 9, 9 , 9) and t +-- (0 , 0 , 9 , 8, 7, 7 , 8 , 9, 0 , 0) ;  then 1 and 2 have a com
mon ancestor, so e +-- ( 10 ,  10 ,  9, 9 ,  9, 9) and t +-- { 10 ,  10, 9, 8 ,  7, 7, 8 ,  9, 0, 0) ;  finally 
we have e +-- ( 1 1 ,  1 1 , 1 1 ,  1 1 ,  1 1 ,  1 1 )  and t .- ( 10, 10, 9, 8, 7, 7, 8, 9 ,  1 1 ,  1 1 ) .  

Note that in  this procedure the branching order within trees is important: the 

two trees shown in Figure 4.5, which correspond to the permutations ( 1 ,3,2) and 

(2 ,3 , 1 ) ,  are distinct under this scheme, as in the first tree the taxa labelled 1 and 2 
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bifurcate before taxa 3 and 4, while in the second tree they bifurcate after taxa 3 

and 4. The two trees in Figure 4.5 do have the same topology and would correspond 

to the same phylogeny, when regarded as unrooted trees. 

2 3 4 2 3 4 

Figure 4.5: Two rooted binary trees on three pendant vertices 
The above trees, corresponding to permutations ( 1 ,3,2) and (2 ,3 , 1 ) ,  have the same 
topology, but are considered to be different by the scheme deriving rooted binary 
trees from permutations. 

(Harding [36] provided exact probabilities of each unrooted binary tree topology, 

derived from the method described above, for up to 20 pendant vertices, and an 

asymptotic formula for larger n . )  

4.5 .2  Deriving the ancestral sequence 

Recall that in all of these studies I have adopted the common practise of having the 

probabilities of character state change independently and identically distributed 

on the s ites of the sequences [10] . Hence, given the distribution of frequencies 

of character states at the root (the root distribution 7rr ) we can arbitrarily set the 

positions in the sequence at which these states occur. Hence, for a root distribution 

7rr = {fA ,  fc , fa , fr} where !A + fc + fa +  fr = 1 and sequence length c we put the 

first c x fA root characters in state A, the next c x f c root characters in state C ,  and 

so on. (We may have to round these numbers to the nearest integer. ) The sequence 

at the root is then of the form (A, . . .  , A, C, . . . , C, G, . . .  , G, T, . . .  , T), though in 

the computer these states are stored as the numbers 1 ,  2, 4 and 8, respectively. 
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4.5 .3  Growing the data 

When "growing" sequences along the edges of a tree, it is necessary to check each 

character, at each edge, for possible character state change. Whether a given char

acter changes state is determined by comparison with a pseudo-random number, 

generated for each character and edge of the tree. With two character states, there 

are just two possibilities for state change: either the character remains in the same 

state, or it changes to the other state. Therefore only one comparison need be 

made, to see if each character changes. With four character states, there are four 

possibilities for state change, and up to three comparisons may be made. 

This does not imply that using four character states requires three times as 

many operations as using two. In these studies , each character on each sequence 

has only a small probability of change. Hence in most cases only one comparison 

must be made, to determine whether the character changes state or not, and if a 

change occurs, either one or two further comparisons must be made to determine 

the next state of the character. Thus using four character states is not , in this case, 

substantially slower than using two. 

For each internal vertex v whose sequence is known, we find the vertices of 

Tc which are immediate descendants of v. Let these vertices be x and y. We 

must determine the transition matrix which will give each of the 1 6  probabilities 

of character state change for the two edges (x, v ) and (y, v ) . Since we have chosen 

M for the whole tree, we use the lengths of these edges, say lx and ly respectively, 

to get the transition matrices M1z and M1Y , which contain the probabilities of 

character state change for the length of ( relative) time given by the edge lengths. 

In order to obtain M1 we diagonalise M by 

M =  A-1DA, 

where 
1 0 0 0 

D =  
0 e-k1 0 0 

0 0 e-k2 0 

0 0 0 e-k3 

e-k1 , e- k2 and e-k3 are eigenvalues of M and the columns of A are the eigenvectors 

of M. 
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By the above relation, 

1 0 0 0 

M1"' = i\-1 D1"' i\ = i\ -1 0 e-k1 l:z: 0 0 i\ . 
0 0 e-k2 l:z: 0 

0 0 0 e-k3 l:z: 

The diagonalization of M is possible if M is symmetric: hence symmet ric 

transition matrices have always been used for this "large n" case. 

For each initial character state, the probabilities of the new state are arranged 

so that the most likely new character state is examined first , to save time. (For 

further detail, see Appendix C, Algorithms C.37 - C .40 . ) 
Thus far the investigation into the performance of phylogenetic methods with 

large n has used only the simple 1 -parameter model of Jukes and Cantor [5 1 ] ,  where 

the probability of character state change is independent of the states. 

The matrix used for the above diagonalization in my experiments was 

D =  

1 0 

0 0 .95 

0 0 

0 0 

0 

0 

0 

0 

0.95 0 

0 0.95 

This gives the Jukes-Cantor type transition matrices for the edges of the generating 

tree Ta, with the steady-state relative frequencies of each character state being 0 .2.5 ,  

0 .25, 0 .25, 0 .25. The distribution of character states at the root was also uniform. 

4.5 .4 Parameters 

As with the "small n" case, I have chosen operating parameters to maintain a sensi

ble balance between biological experience, phylogenetic interest, and computational 

practicality. 

The maximum path length IS once agam restricted, but not explicitly as it 

was before. In a further effort to mimic biological experience, the mean, over all 

lineages in the tree, of the expected time between bifurcation (speciation) events 

on a single l ineage, is constant, so that there is the same probability per lineage of 

a bifurcation event occurring, per unit time. 

This means that the mean number of bifurcation events per unit time increases 

as time progresses, so there are more bifurcations per unit time near the pendant 

vertices of the tree than there are near the root. 
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-�--� t = O  

-----!�-�--1'-i----...,;-r---'P--\1----"'H--�-.."'r--� t = overall_time 
x bif_timeJactor 

4 

Figure 4.6: An example of a rooted tree used i n  big . c .  
In  this figure the mean edge lengths, from which the actual edge lengths were 
sampled, are shown by dotted lines, and the actual edge lengths are shown by 
solid lines. The lengths are proportional to the vertical displacement of the ends 
of the edges; they are not proportional to the lengths of the lines themselves . 
The horizontal dotted lines represent the time at the "origin" ( t = 0) ,  the time 
at which the last bifurcation event is expected to happen (t = overall.iime x 
bif_time_factor) ,  and the "present" time (t = overall.lime), from top to bottom. 



4.5. Large n 73 

The normalisation of the edge lengths, and the sampling by which pseudo

random edge lengths were chosen , are described in Appendix C, Algorithms C.35 

and C.37. 
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Chapter 5 

Results 1 :  ' 'Small n " 

5 . 1  Introduction 

In this chapter I shall describe several experiments carried out with unrooted gen

erating trees with from four to ten pendant vertices, corresponding to extant taxa. 

The model of evolution used is as described in Chapter 4, Section 4. 1 .  

Section 5.2 describes how the results from these experiments are represented . 

Section 5 .3  describes the agreement between methods which was observed for a 

particular set of input data. This agreement was observed for all the experiments . 

The subsequent sections describe the effects of the following parameters: 

• Sampling error; 

• Tree topology; 

• Edge length probability distribution; 

• Number of taxa; 

• Use of the distance spectrum; 

• White noise; 

• Pink noise. 

Recall that in all the experiments comparing the performance of phylogenetic 

methods, the same observed data were used for each method. This imposes a corre

lation between the methods, which is most obvious for the tests with short sequences 
and small numbers of trials. 
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5 . 2  Representat ion of findings 

I have sought to represent my findings in an easily interpretable way, and also so 

the data can, with reasonable ease, be analysed to establish statistical properties 

of the performance of the methods. 

For this reason I have chosen most often to represent the accuracy of the meth

ods under investigation in two ways. The method most frequently used is the mean 

number of edges wrongly inferred. This is equivalent to half the partition distance 

between the inferred trees T; and the generating tree Tc (82] . The expected dis

tribution of the partition distance, which is a metric, is known for n � 16 [8] , 

[82] . 

The other predominant method of representing the accuracy of tree-building 

and tree-finding methods is the frequency at which the correct tree is inferred, i .e . ,  

where no edges are wrongly inferred. 

Both ignore the matter of the accuracy of inferred edge lengths, which is not 

being studied here, for two reasons. Firstly, not all methods provide comparable 

estimates of edge lengths (e.g. , MP usually infers minimum numbers of character 

state changes - a discrete measure over the whole tree, whereas NJ returns es

timates of edge lengths which are continuous variables, and ST in its basic form 

does not provide estimates of edge lengths at all) . Secondly, there is the pragmatic 

reason of keeping the size of the study to a reasonable level. 

Other methods of representing the performance of the phylogenetic methods 

are occasionally used in this study, and they are explained in the context in which 

they are used. 

5 . 3  Agreement b etween methods 

The agreement between methods can be measured by recording the mean partition 

distance between the inferred trees, in a matrix. 

This was carried out for the all the tree topologies with 8 pendant vertices, 

over a range of sequence lengths c. An indication of the agreement between all 

the methods is shown in Figure 5 . 1 ,  with c = 100 and 250 trials . In this figure 

the reciprocal of half the average partition distance between the inferred trees is 

shown; thus those methods which consistently infer trees which are close to each 

other show a high value on the figure. 



5.3. Agreement ·between methods 

c ... 
E ... ... ... 

= CoDH 

• coSH 
• coso 
� CfDH 

C CfSH 

"" < 

_ c::: crso 
� MPDH 

- li MPSH 

�� MPSO 

, � NJ 

Figure 5 . 1 :  The agreement of phylogenetic methods 

ffi NJa 

� SL 

. ;;; ST 

. � TD 

i m UPGMA 

In this figure is shown the reciprocal of half the average partition distance between 
t he trees inferred by all the phylogenetic methods under study. The generating 
t rees, on 8 pendant vertices, had topology UB6, and the sequence length c was 100. 
250 trials were carried out. The highest value on this graph is � 10, between CoSO 
and CTSO,  indicating that on average the distance between the trees inferred by 
t hese two methods was � 0 . 1 .  

77 



78 Cl1apter 5. Results 1: "Small n "  

In this figure we see that CoSO and CTSO are the most highly correlated. The 

second most highly correlated methods are CTDH and NJ. 

Also highly correlated are the pairs of methods CoDH and CTDH, CoDH and 

NJ, CoDH and ST, CoSH and CTSH, CTDH and MPDH, CTDH and ST, MPSH 

and NJ, NJ and ST. 

The mean number of edges different between the inferred trees for the more 

highly correlated methods mentioned above are shown in Table 5. 1 ,  below. 

Table 5 . 1 :  Half the mean partition distance between inferred trees of differ-
ent methods 

Note that while in the Figure 5 . 1  a high agreement is shown by tall columns, high 
agreement is shown here by numbers close to zero. Numbers less than 0.5 are in 
bold type, and those between 0.5 and 1 .0 are underlined. 

CoDH 
CoSH 
CoSO 
CTDH 
CTSH 
CTSO 
MPDH 
MPSH 
MPSO 

NJ 

CoSH CoSO CTDH CTSH CTSO MPDH MPSH MPSO NJ ST 
1 .5062 1 .3951 0 . 2881 1 .4938 1 .3786 0 .  7202 1 . 1564 1 . 0823 0.3621 0 .469 1 

0 1 .3210  1 .3704 0 .4486 1 .325 1 1 .4033 1 . 3292 1 .4403 1 .395 1 1 .4403 
0 1 .2675 

0 
1 .3210 0.0988 1 .3868 1 .4444 1 .4074 1 . 2840 1 .2881 
1 .3621 

0 
1 .2510 0 .481 5  0.9794 0 .9300 0. 1687 0 .3045 
1 .2757 1 .3951 1 .2798 1 .4280 1 .3704 1 .4321 

0 1 .3786 1 .4321 1 .3992 1 .2593 
0 0 .  7160 0. 7078 0 .6255 

0 0 .5309 0 .9959 
0 0 .9588 

0 

1 .2716 
0 .7037 
1 .0700 
1 .0041 

0 . 2 675 

Let the net disagreement of a phylogenetic method M with the other phyloge

netic methods be the sum of the mean distances between the tree inferred by 1\1 
and those i nferred by the other methods. Hence for example the net disagreement 

of CoDH with the other methods shown in Table 5. 1 is the sum of the numbers in 

the first row of that table. 

Table 5 .2 shows the net disagreements of all the methods shown in Table 5. 1 .  

Note that CTDH,  which i n  this case h as  the lowest net disagreement, i s  not the 

most accurate method in this trial. 

5 .4 Sampling error 

The effect of sampling error on the performance of the phylogenetic methods is 

investigated by varying the sequence length c used. I have used a range of sequence 

lengths both in the "small n" and the "large n" cases. For the "small n" case I have 
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Table 5.2: The net disagreement of some phylogenetic methods 
The second column of this table shows the net disagreement of several methods 
with each other. In the third column is shown the mean number of edges wrongly 
chosen by each method, which is equal to half the partition distance between the 
inferred tree and the generating tree. The generating tree had topology UB6, the 
sequence length was c = 100 and 250 trials were carried out .  

net disagreement mean number of edges wrongly chosen 
CoDH 9.8519 1 . 387 
CoSH 12 .9795 1 .679 
CoSO 12 .2141 1 .601 
CTDH 8.4032 1 .267 
CTSH 12.8066 1 .642 
CTSO 12.0700 1 .609 
M PDH 9.5185 1 .082 
MPSH 10.9341 0.963 
MPSO 10.8888 0 .753 

NJ 8 .6873 1 .267 
ST 9.2510 1 .300 
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used a minimum of 10 characters, and a maximum of 105 characters: in practical 

terms, from the ridiculous to the sublime. The number of trials carried out for 

each sequence length and each tree topology was 1 000. The amount of data this 

generated is too large to be included in entirety here: rather, I have selected those 

results which best i llustrate the overall behaviour of the phylogenetic methods used. 

Also, in the "small n" case, it is possible to generate data with zero sampling 

error, something impossible to achieve when using t he "evolutionary" method of 

data generation, as used in the "large n" case. This data generation is uses the 

expected bipartition spectrum s as the "observed" spectrum s', since, when c -t oo ,  

s '  -t s [41 ] .  This i s  useful in  determining whether phylogenetic  methods are con

sistent with a model, for in the absence of sampling error, consistent methods wi ll 

correctly deduce the generating tree Ta with probability 1 .  This technique demon

strates the inconsistency of UPGMA with the additive model used (see Figure 

5 .2) .  

In Figures 5.2 to 5 .4 are shown the proportions of 1000 trials in which the esti

mated tree T differs from the generating tree Ta by 0,  1, . . .  , 7 edges, for sequence 

lengths c ranging from 100 to 104 •  These figures show the strong dependence of the 

performance of UPGMA, TD and NJ (which is also seen for the other methods; 

data not shown) on sequence length .  

A lso worthy of note is the clear indication of the inconsistency of UPGMA with 
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Number of edges 
wrongly inferred 

Figure 5.2 :  UPGMA vs. c with n = 10  and all trees equally likely 

The mean proportion of trials in which UPGMA infers 0, 1 , . . .  , n - 3 = 7 edges 
incorrectly is shown. Sequence length c ranges from 100 to 1 04 • Maximum path 
length u is 0 .35 and the ratio r between maximum internal and maximum pendant 
edge lengths is 0 .5. 
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the model used : as c gets large, the most likely number of edges wrongly inferred 

tends to 4. 

In Figure 5.3 we see the improvement in accuracy of TD over UPGMA, but note 

that the probability of inferring Tc does not tend to unity. This demonstrates the 

importance of accuracy and consistency: UPGMA is both inaccurate and incon

sistent , and TD is much more accurate, though still inconsistent , \vith the model 

used. 

"' cc ·;:: 
.... 
0 
c .: t: 
0 
c. E 

c. 

Figure 5 .3 :  TD vs. c with n = 1 0  and all trees equally likely 

The mean proportion of trials in  which TD infers 0, 1 ,  . . .  , n - 3 = 7 edges incor
rectly is shown. Sequence length c range� from 10 to 1 05• Maximum path length 
u is 0 .35 and the ratio r between maximum internal and maximum pendant edge 
lengths is 0.5. 

Figure 5.4 shows the mean proportion of trials in which NJ infers 0, 1 ,  . . . , 7 

edges wrongly. The probability that more than zero edges will wrongly be inferred 

tends to zero when the sequence length c reaches � 5000 for this experiment ( this 

will not necessarily be true in other cases) .  This figure shows the importance of 

consistency with the model : N J is both accurate and consistent in this case. 

The inconsistency of MPSO does not become apparent in this part of the in

vestigation (data not shown) .  

Unfortunately, the distance methods which attempt to "correct" for multiple 
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Figure 5.4: NJ vs. c with n = 10  and all trees equally l ikely 

The mean proportion of trials in which NJ infers 0, 1 ,  . . . , n - 3 = 7 edges incor
rectly is shown. Sequence length c ranges from 10 to 1 05 . Maximum path length 
u is 0 .35 and the ratio r between maximum internal and maximum pendant edge 
lengths is 0 .5 .  
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changes, and the Hadamard conjugation process ( the H ln Hs calculation) ,  can 

give undefined values for the inferred distances when some of the components of 

Hs are non-positive. This problem occurs most often with small sequence lengths, 

to wit, 10  � c � 100, and with very long path lengths between taxa, i .e. , greater 

than about 1 .2 character-state changes expected per si te. If this happened for a 

particular observed s', I chose to reject such data sets for all methods, as it was 

not possible to compare all methods under these circumstances. 

In order to reduce the overall running time of the simulations, I have not at

tempted to obtain the same number of trials with these short sequences. Rather, 

I have borne in mind that the statistical significance of such trials is markedly 

reduced: there is still useful information to obtained from such trials, but it is 

Imprecise. 

In Figure 5 .5  below, the mean number of trials in which 0 edges were incorrectly 

inferred ( i .e . ,  the generating tree Tc was inferred) is shown for CoDH, CoSH,  

CTDH, CTSH ,  MPSH, MPSO,  NJ ,  SL ,  ST and TD. Data for UPGMA i s  not 

shown, as in this experiment the proportion of trials for which Tc was found by 

UPGMA never exceeded 0 .05 .  This shows the inconsistency of TD in that as 

c � oo ,  the probability of i nferring Tc f+ 1 .  
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� � � � � � � � � � § � � � � � � � § 
Sequence length 

--- CoDH - - - - - CoSH --- CIDH - - - - - CTSH 
- - - - - MPSH - - - - - - - - MPSO NJ ---- SL 

ST - - - - - ID 

Figure 5 .5 :  Mean proportion of trials in which the correct tree is inferred 

The proportion of trials averaged with all trees considered equally likely in which 
several methods correctly infer the generating tree To is shown. Maximum path 
length a is 0 .35 and the ratio r between maximum internal and maximum pendant 
edge lengths is 0.5 .  The number of taxa n is 10 .  

...... 
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The good performance of MPSH and MPSO is clear in Figure 5.5, and de

spite MPSO being inconsistent with the model, it is the most accurate in this 

case. The inconsistency of MPSO is not evident, probably due to the small edge 

lengths making multiple changes of character state unlikely on each edge: the 

overall maximum path length is bounded above by u = 0.35, but the expected 

m aximum path length is approximately half this value, and the expected internal 

edge lengths are 0 .023215,  calculated using the a.t.e.l . assumption. Hence the ex

pected number of multiple changes of character state on an internal edge is small, 

0 . 000263 + 0.000002 + . . .  = 0.000265 (this is calculated using the Poisson model, 

as detailed in [39] ) .  The expected number of multiple changes of character state 

on pendant edges is 0 .00 1045, calculated as above. 

5 . 5  Tree t op ology 

There have been many simulation studies of phylogenetic  methods, which have 

been conducted for specific tree topologies [92] , [93] , etc. These have not generally 

addressed the question of whether the tree topology in itself is a major contributing 

factor to the performance of the phylogenetic methods concerned, but rather, have 

usually taken certain fixed combinations of edge lengths in conjunction with a given 

tree topology. 

I have tried therefore to eradicate all other possible influencing factors and 

establish whether topology is intrinsically important. Though it is not possible to 

completely counteract all influences other than tree topology from these simulation 

tests, it is possible to reduce them to a large extent. 

It is not obvious that the tree topology really affects the performance of the 

phylogenetic methods, as closely linked with tree topology is the edge-length prob

ability distribution . For example, trees with larger diameters will have shorter 

internal edges, so the expected number of multiple character-state changes will 

be lower. The joint effect of different tree topologies and edge-length probability 

distributions for the generating tree Ta is shown in Figure 5.6, below. (The 1 1  

topologies of unrooted binary trees on 1 0  pendant vertices are listed i n  Appendix 

A .  Of these, one topology has diameter d(T) = 9, three have d(T) = 8, five have 

d(T) = 7, and two have d(T) = 6. )  

Figure 5.6 shows the slightly different accuracy NJ for those generating trees 
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Figure 5 .6 :  Performance of NJ with all tree topologies of the same diameter , 

with 10  taxa 
In the above graph the mean number of edges wrongly inferred is shown, for 
sequence length c in the range (100, 500) . For each topology, 1000 trials were 
carried out, and the mean accuracy was obtained for each diameter using the 
a.t.e.l . assumption. Those t ree topologies with the same diameter had the same 
probability distribution of edge lengths. 
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with different diameters. One explanation for this might be that the effect of 

different tree topologies may be mainly due to the different edge length probability 

distributions. 

If the edge-length probability distributions were made independent of tree topol

ogy in these simulations, the "caterpil lar" topologies UB ( n - 2) would have much 

larger expected distance between the most distant pendant vertices than would the 

more "star-like" topologies, like UB5, 23 (see Appendix A ) . 

A compromise can be reached by using a value of n which is small enough 

that the range of diameters of trees over all topologies is small (so the same edge

length probability distributions can be used for all trees without the maximum 

expected distance between pendant vertices being markedly different for different 

topologies) , but with at least two different topologies for that n .  

I have used n = 6 with the two topologies UB4 and UB3,  1 2 , and have used 

the same edge-length probability distributions for all the trees, in an experiment 

to estimate the dependence of accuracy of phylogenetic inference on tree topology. 

Results from the experiment, in which 105 trials were conducted , are given in Table 

5 .3 .  

From this table the following trends are apparent :  

• The sequence-spectrum based methods all show small but  highly statistically 

significant effects, of tree topology on their performance. The most significant 

difference in performance for the two topologies UB4 and UB3, 1 2 is shown 

by CoSO. In each case the methods are more accurate when the generating 

tree had topology UB3, 1 2 , and the level of significance was less than 0 . 0 1  %.  

• The distance-spectrum based methods all show very low dependence of  tree 

topology on their performance, with CoDH and CTDH significant at approx

imately 4.5% and MPDH significant at approximately 18%.  

• The clustering methods show much more variability in  the effect of generating 

tree topology, with UPGMA the most affected , followed by NJa and SL, then 

ST, TD, and NJ the least affected. These methods do not show the same uni

formly better performance when the generating tree Ta had topology U B3, 1 2 

as do the sequence-spectrum based methods. However it is noteworthy that 

UPGMA shows a much higher accuracy when Ta has topology U B3, h .  

In summary, though the effect of tree topology under this model is statistically 
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Table 5 .3 :  Effect of tree topology on performance of phylogenetic methods 

p(X )  is the proportion of the 1 05 trials in which the topology of the generating 
tree was X and the correct tree was found . The two tree topologies used were 
U B4 and UB3, 12 .  p = (p(UB4) + p(UB3, 12) )/2. Under the null hypothesis that 
p(X )  follows a binomial distribution, independent of tree topology, z gives the 
standard error of p(UB4) - p(UB3, 12) ,  equal to 

p(UB4) - p(UB3, 12)  
z = V(fi( 1 - p)/(5 X 104)

. 

The percentage probabilities of these values of p(UB4) - p(UB3, 12)  occurring 
by chance, and hence the level of significance at which we can reject the null 
hypothesis, are shown in the last row of the table. Note that the edge length 
probability distribution was the precisely the same for both topologies. 

Sequence-spectrum based methods: 

CoSH CoSO CTSH CTSO MPSH MPSO 
p(UB4) 0 .95436 0.93357 0.95614 0 .94901 0 .98620 0 .97157 

p(UB3, 12)  0.95893 0.96337 0 .95934 0.96777 0 .98787 0.98343 
p 0.95664 0.94847 0.95774 0.95839 0 .98703 0.97750 
z -5 .0177 -30 . 1411  -3.5567 -21 .0062 -3 .3010 - 17.8822 

% prob. :::::: 0% ::;::: 0% :::::: 0 %  :::::: 0 %  ::;::: 0% ::;::: 0% 

Distance-spectrum based methods: 

CoDH CTDH MPDH 
p(UB4) 0 .95452 0.95471 0 .97477 

p(UB3,  12) 0 .95293 0 .95312 0 .97541 
p 0.95372 0.95391 0 .97509 
z 1 .6924 1 . 6957 -0.9182 

% prob. 4.53% 4 .49% 17.94% 

Clustering methods: 

NJ NJa SL ST TD UPGMA 
p(UB4) 0 .95475 0.93908 0.92305 0 .95442 0.89563 0 .28586 

p(UB3, 12) 0.953 16  0.92374 0 .92995 0.95201 0 .89881 0 .49809 
p 0.95395 0.93141 0.92650 0.95321 0 .89722 0.39197 
z 1 .6964 13.5709 -5.9125 2.5518  -2 .3416 -97.2080 

% prob. 4 .49 % ::;::: 0% ::;::: 0% 0.96 % 0 .54 % :::::: 0 %  
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significant, except for the distance-spectrum methods and NJ , it is in general small. 

The performance of any of these methods is not greatly affected by tree topology 

except for UPGMA.  

Hence for most studies i t  is reasonable to use just one tree topology or randomly 

chosen topologies for Tc, to get an impression of the performance of a method for 

all topologies with that number of pendant vertices. In subsequent studies in this 

thesis I have therefore either used a single fixed topology or have randomly chosen 

tree topologies for Ta. 

5 . 6 Edge length distribution 

In this part of the study, the following parameters were allowed to vary: 

• ratio r between maximum internal and maximum pendant edge length; 

• overall maximum path length a. 

The generating tree had topology UB5, 23 (n = 9) for all these trials ; usmg 

n > 9 would have been infeasible with the large number of trials required for a 

statistically meaningful experiment. 

In this section of the study the overall maximum path length a ranged over 

the set {0 . 1 12, 0. 14 ,  0 . 175, 0.224, 0.28, 0.35, 0 .4375, 0.56, 0.7, 0.875, 1 . 12 } .  For each 

of these values of a the ratio r between maximum internal and maximum pendant 

edge lengths ranged over the set {0. 16 ,  0 .2,  0.25, 0.32, 0.4, 0 .5 ,  0 .64, 0.8, 1 ,  1 .25, 1 .6 }  

Hence these ranges include the values of a and r usually used, i .e. ,  0 .35 and 0 .5 

respectively. 

The sequence lengths c used ranged from 40 to 2500, in the usual exponential 

expression described previously, though only data using c = 1000 is shown here. 
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. 
In Figures 5.  7 ,  5.8 and 5.9 we see the high dependence of the performance of 

the phylogenetic methods on r for fixed values of u . Also, the effect on the different 

methods of varying u is evident. 

The following points are noteworthy: 

• The apparent parallel variation between phylogenetic methods is caused by 

using the same data sets for each method, and would disappear with larger 

sample sizes. 

• All the methods become more accurate as r increases. This is to be expected 

because the internal edge lengths become longer with increasing r and fixed 
u, and are therefore more likely to have a character state change than shorter 

edges. 

• MPSO, which does not use any information about the pendant edges (i .e. , the 

"singletons" in the set of bipartitions, in which only one taxon has a different 

character state) , does not appear to show a strong dependence on r above 

r = 0.64. This is, however, not a strong indication as MPSO is accurate at 

this level anyway. 
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Varying u whi le keeping r fixed (see Figures 5 . 10, 5 . 1 1  and 5 . 12 )  allows more 

conclusions about the effect of overall maximum path length: 

• Maximum parsimony performs the most reliably, though the MPSO variant 

becomes less accurate than MPSH when a = 0 .35, and remains so for larger 

u. This is to be expected because with large a the internal edges are longer, so 

allowing for more multiple character state changes, which are not corrected 

for in MPSO (recall that MPSO is not consistent with the model used to 

generate the data here) .  

• All methods initially either improve their accuracy or remain at the same 

accuracy as path lengths start to increase. This is to be expected due to the 

higher probability that character state changes will occur on each edge. How

ever when a increases further, we find that the accuracies of these methods 

decrease, as the observed bipartition spectra approach randomization (data 

not shown) .  

• The three variants MPDH, MPSH and MPSO do not show any great effect 

on their performance with  varying a, for r E  {0 . 16, 0 .5 , 1 } ,  and neither do 

CoDH or CTDH. 

• The accuracies of CoSH, CoSO, CTSH and CTSO improve more slowly than 

do those of the other methods, with CoSO the slowest, followed by CTSO.  

The slow improvement i n  CoSO and CTSO i s  to  be  expected because they 

are non consistent with t he model used to generate the data. 

With a � 1 .4 the number of changes of character state between taxa is so 

large that the sequences approach randomness with respect to each other. This 

means that without impractically long sequences, there is not enough signal in  

the data to infer any internal edges of the generating tree, hence the accuracy of 

all methods decreases. Also with these large values of u the distance ' correction' 

formula for inferring inter-taxon distances is frequently undefined, so these data 

sets are rejected, with the consequence that statistically significant experiments 

rapidly become infeasible. 

For example, in one experiment with a = 3.5, c = 2000 and the generating tree 

with topology UB6, every observed data set in 1 000 trials had to be rejected due 

to the inferred edge lengths being undefined. (Data not shown. )  
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5 .  7 Number of taxa 

This section details two questions which have been addressed using results from a 

broad set of experiments, in which all tree topologies with from four to ten pendant 

vertices were used for the generating trees, and the sequence length c ranged from 

10 to 1 05 .  For each generating tree topology and each sequence length ,  1 000 trials 

were carried out. 

5. 7.1  Required growth in sequence length with number 

of taxa 

Suppose we wish to have a certain confidence level in the inferred tree, with data 

generated according to our idealised model, and we have access to sequences of 

unlimited length.  It would be useful to know how long the sequences must be 

to have the desired confidence level in the inferred tree. Though the number of 

possible trees i ncreases exponentially with n ,  it has been shown that the rate at 

which the sequence length c must grow with n to retain a fixed probability P that 

a given method will reconstruct Ta need not be exponential. In fact , the minimal 

rate of growth in c with n for fixed P is no more than O(n2 ln(n ) )  (84] . 

This growth rate has been estimated for the evolutionary model used in this 

study, by interpolation from data like those in Figure 5.5. A graph showing the 

required growth rate in c with n for an 85% confidence in the inferred tree is shown 

in Figure 5 . 1 3 ,  below. 
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Figure 5 . 13  shows that in this case, the required minimum growth i n  c is ap

proximately l inear with n ,  which is less than the O(n2 ln(n) ) which has been proved 

to be an upper bound on the growth rate. This may be counterintuitive, as the 

number of trees between which a choice must be made rises exponentially with n .  

However, it must be remembered that the number of parameters which are being 

estimated (e.g. , clusters, internal edges) rises linearly with n, so finding an approx

imately linear increase in required sequence length is perhaps not so surprising. 

This indicates that to obtain reliable trees for large numbers of taxa we must 

expect to need proportionally long sequences. Note that with real data the growth 

in c may well be more than linear with n .  

5. 7.2 Optimal number of taxa for inferring a given edge 

Another question related to the number of taxa used is the following: 'What is the 

optimal number of taxa to include from a set of n taxa, to obtain the best estimate 

of the existence or non-existence of a specific internal edge of the phylogeny relating 

the n taxa? ' Putt ing this another way, it can be regarded as the problem of how 

many taxa to add to an inferred tree to obtain the highest confidence in an edge 

of Ta. 

As the simulations carried out in this study used different data sets for each 

value of n, the above question cannot be answered directly. However, by considering 

the mean number of edges wrongly inferred by an NPM when increasing n and 

keeping c fixed, we can get some idea of whether we should add more taxa or not. 

If the increase in  the mean number of edges wrongly inferred rises proportionally 

less than the number of internal edges, then the probability of each internal edge 

begin correctly inferred is increasing with added taxa. This would mean that the 

reliability of the existence of a particular edge is improved by adding taxa. If on 

the other hand the mean number of edges wrongly inferred rises proportionally 

faster than the number of internal edges, adding taxa is positively unfavourable. 

Considering Figure 5. 14, we can see that the increase in mean number of edges 

wrongly inferred i ncreases at least linearly with n, for all methods other than MPSH 

and MPSO. (Data for CoSO, CTSO and MPDH are not available for this figure . )  

From the results in this section we can conclude that for these methods it i s  

not helpful to include more taxa, in attempting to increase the confidence with 

which a given internal edge is inferred. The curves for MPSH and MPSO are too 



1 12 Chapter 5. Results 1 :  "Small n " 

6 

5 

4 

3 

2 

1 

0 

4 

- 
� - -

5 6 7 

Number of taxa 

8 

/ 

/ 
/ / 

/ 
/ 

/ 

9 

--- CoDH - - - - - CoSH --- CIDH - - - - - CTSH 

- - - - - MPSH - - - - - - - - MPSO 

ST - - - - - ID 
NJ ---- SL 

Figure 5 . 14 :  The mean number of edges wrongly inferred with i ncreasing n 
The above graph shows the mean number of edges wrongly inferred by several 
methods . The sequence length used was 500, and 1000 trials were carried out for 
each value of n. The means were calculated using the a.t.e.l. assumption. 

10 



1 1 2 Chapter 5. Results 1 :  "Small n "  

0 . 6  

0 

4 5 6 7 

Number of taxa 

8 9 

--- CoDH - - - - - CoSH --- CIDH - - - - - CTSH 

- - - - - MPSH - - - - - - - - MPSO NJ --- SL 

ST - - - - - ID 

Figure 5 . 14 :  The mean number of edges wrongly inferred with increasing n 
The above graph shows the mean number of edges wrongly inferred by several 
methods. The sequence length used was 500 , and 1000 trials were carried out for 
each value of n. The means were calculated using the a.t . e.l . assumption. 

1 0  



5.8. Use of the Distance Spectrum 1 13 

irregular to infer that including more taxa is helpful or not. (Astolfi et al in 1981  

showed that the number of errors - in  a well-defined sense - in reconstructing 

trees , using several methods, increases approximately linearly with n for a much 

simpler case, with n E  {6, 10 ,  15}  [3] . )  

5 . 8  Use of t he Distance Spectrum 

In the results seen so far, and in subsequent results, it is apparent that using the 

distance spectrum g' as input to the spectrum-based methods is more effective than 

using the bipartition spectrum s' . This is counterintuitive in that there is a huge 

loss of information in using the 2n-1 - 1  observed bipartition frequencies as opposed 

to the (;) distance measures, on a set of n taxa [87] . 

This effect may be due to the relative sizes of the variances of the edge lengths 

inferred from g' and the variances of the edge lengths inferred from s' . 

To estimate these variances the program s im . c was modified as outlined below: 

Algorithm 5 . 1  : variance.c 

{ The length of edge j as inferred from the distance spectrum is here written gj ; 

that inferred from the sequence spectrum is qj . } 

for each tree topology X 

choose a vector q of edge lengths 

calculate the vector s of expected bipartition frequencies 

for each sequence length c 

end. 

for i = 1 to 100 do 

sample from s to get observed bipartition vector s' 

calculate matrix D of pair-wise distances between taxa 

calculate observed distance spectrum g' from D 

calculate inferred edge lengths q' and w' from s' and g', respectively 

for each edge j calculate var( qj ) and var( wj) 
. L 1 "m-1 l var(qj) prmt X,c = m-1 L-j=1 n var(w'. ) ] 

If on average the ratio of var( qj ) to var( wj) were greater than one, the quantity 

Lx,c would be positive, whereas if the ratio were on average less than one, Lx,c 
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would be negative. If the two variances were on average approximately the same, 

Lx,c would be close to zero. (The geometric mean of the ratios var(qj )  to var(wj) 
[ s  equal to exp(Lx,c ) ,  for tree topology X and sequence length c. ) 

Some results from an investigation into the variance of the inferred edge lengths 

are shown in Table 5 .4, below. In Table 5.4 are shown values of Lx,c for the tree 

topology X = UB3 and for sequence lengths c = 1 00, 160 ,  250, 400, 640, 1 000. 

The most obvious feature of the data in Table 5.4 is that they are all positive. 

This means that on average the q: values inferred from s' have a higher variance 

than the w: values inferred from g'. 

Table 5.4 shows little d:epefl:aefl:ee of Lx,c oft sttmpliHg error except ·nheH ft 9, 
where Lx ,c increases with c. 

Table 5.4: Variance of edge lengths as inferred from the distance and bipar-
tition spectra 

In t his table are shown the results of the experiment described above. The number 
of t rials was 100, the sequence length c E { 100 , 160, 250, 400, 640 , 1000}, and the 
upper bound a on the maximum path length was 0.35. The generating tree had 
topology X = UB3. Note that the same set of edge lengths was used for all the 
trials , but data sampled from the expected bipartition frequencies for each trial 
and each value of c. 

sequence length c 
100 160 250 400 640 1000 

Lx,c 0 .588 0.557 0.573 0.548 0.519 0.515 

The values of Lx,c were obtained for several other topology of generating t ree, 

with 4 � n � 9 and the same set of sequence lengths. In these experiments too 

Lx,c was always positive (data not shown) .  

My conclusion from these results i s  that the distance-spectrum based methods 

perform more accurately than the sequence-spectrum based methods because the 

variances of the inferred edge lengths in the former group of methods are in  general 

less than those in the latter group. This is in agreement with the results of Waddell 

e t  al [97] . 

The results from this section help explain the unexpected result that, despite 

the large i nformation loss with conversion from bipartition frequencies to distances, 

methods using edge lengths inferred from distances frequently perform more accu

rately than those using edge lengths inferred from bipartition frequencies. 

t: 
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5 . 9  White noise 

The technique of DNA sequencing is very accurate, but is not absolutely so [ 15) .  

There is a finite (non-zero) probability that each character on a sequencing gel will 

be mis-read. I have modelled this possibility by modifying the sampling process, 

so that at each site in the aligned 2-state character sequences, there is the same 

probability e that a character selected at random from the set of taxa will be 

"flipped" from one state to the other. This probability ranged exponentially from 

0.001 to 0. 1 .  

The model I have used to mimic sequencing errors can also be regarded i n  the 

more general setting of white noise: the random flipping of one character state 

to the other is unbiassed , essentially random, �oise which may have other sources 

than sequencing errors. The simulations were carried out on the 'caterpillar'  tree 

with n = 9 (UB7) ,  and 100 trials were conducted for each value of e and c.  

The values of e used were {0.001 ,  0 .0016, 0.0025, 0.004, . . .  , 0 . 1 }  and the values of 

c used were {25, 40, 64, 100, . . .  , 1000} .  UPGMA was not used here; its behaviour is 

so poor for this model that it is not of interest . 

The simulations show the expected gradual decrease in accuracy when the error 

rate e is small ( less than about 0.01 ) . The overall effect on the accuracy of the 

phylogenetic methods is not great in this experiment for e � 0 .01 , though it is 

detectable: for example, the mean number of edges wrongly inferred by CoDH 

with c = 400 increased from � 0 .35 to � 0.5 when e increased from 0.001 to 0.01 

(data not shown) .  The accuracy of the other methods behaved similarly to the 

above example with e � 0.01 .  

However, when e increases beyond 0 .01 ,  several features become apparent : 

1 .  Above e = 0.016, CoDH,  previously the most accurate of the Co family, 

loses accuracy faster than do CoSH and CoSO.  At c � 400 and e = 0 .025, 

the accuracy of CoDH is not significantly different from that of CoSH ,  with 

CoSO still the least accurate (recall that CoSO is not consistent with the 

model) (see Figure 5 .15) .  When e reaches 0 . 1 ,  CoDH is much less accurate 

than CoSH and CoSH;  with c = 1 0000, the mean number of edges wrongly 

inferred by CoDH is � 1 ,  whereas with CoSH and CoSO this number is 

� 0 .75 (see Figure 5 . 16 ) .  

2.  For e �  0.04 and c < 640 the relative accuracies of CTDH ,  CTSH and CTSO 
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remain the same; CTDH being more accurate than CTSH and CTSO, these 

latter two having approximately the same accuracy (see Figure 5 . 1 7) . With 

e :::; 0 .04 and c � 640, CTDH performs similarly to CTSH and CTSO. With 

e = 0.064 CTDH begins to become significantly less accurate than CTSH and 

CTSO when c reaches 640, and this continues with e = 0. 1 ,  the disagreement 

beginning at c = 400 (see Figure 5 . 18) . 

3 .  Maximum parsimony exhibits similar behaviour for all three variants (MPDH, 

MPSH and MPSO) over 0 .001 :::; e :::; 0. 1 ,  as far as can be determined from 

the relatively small number of trials. It appears however that MPDH gains 

accuracy, relative to MPSH, when the error rate e becomes very large (see 

Figure 5 . 19) . 

4 .  In general , the relative accuracies of the Distance-Hadamard methods (CoDH,  

CTDH and MPDH) are maintained over 0 .001  :::; e :::; 0. 1 .  In  this case MPDH 

is more accurate than CTDH, in turn more accurate than CoDH (see Figure 

5 .20) . 

5 .  The Sequence Hadamard methods (CoSH, CTSH and MPSH )  also preserve 

this ranking (MPSH the most accurate, then CTSH, then CoSH) ,  though 

when e exceeds 0 .025 and for c less than about 250, the difference between 

CTSH and MPSH is small (see Figure 5 .21 ) . For e = 0.064 and e = 0 . 1  

CTSH becomes the most accurate method for c 2: 1000 as the accuracy of 

MPSH in this range of c decreases more rapidly than does that of CoSH and 

CTSH (see Figure 5.22) . 

6 .  The Sequence Observed methods (CoSO, CTSO,  MPSO) exhibit the same 

relative behaviour as the Sequence Hadamard methods, outl ined above (fig

ures not shown) .  

7 .  The constructive methods (NJ, NJa, SL,  ST and TD) have similar accuracies 

to each other throughout, but NJ and ST are slightly more accurate than the 

others, whereas SL and NJa are slightly less accurate, and TD lies somewhere 

in between. This distinction between the relative accuracies becomes more 

apparent as e increases (see Figure 5.23) . 

To summarise, it appears that white noise of this type affects the performance of 

the phylogenetic methods gradually, as the error rate increases. Above e = 0 .025, 



5. 9. White noise 

c CJ 

5 -

4.5 

� 4 ..c u � 3.5 - \  \ . . 
E -.. ....... . 
� 3 -· .... . : .. .  ,. 
:!) 
if 2.5 -
CJ 

... 
� 2 -
S:! 
§ c 
c 
.. CJ � 

1 .5 

0.5 
0 

-

' 

v-. 
N 0 V 

' 
\ 

\ 

Sequence length 

--- CoDH 

- - - - - CoSH 

· · · · CoSO 

Figure 5. 15 :  Compatibility methods with sequencing error rate e = 0.025 

This figure shows the accuracy of CoDH,  CoSH and CoSO with sequencing error 
rate e = 0.025. 

1 1 7 



1 18 

5 .. 

.,., 
N 

0 V 

. \ · . ' 
. ,  

· \  · . \ ·. \ 
. ·' 

. ·' 
· � 

' 

0 .,., 
N 

,. 
, . .  

' · . 
' . . ' 

' 

0 8 ;g 0 

Sequence length 

Chapter 5. Results 1: "Small n " 

--- CoDH 

- - - - - CoSH 

· · · · · · · · ·  CoSO 

....... - -- - . . . . . - ..... ....... ,.. - - -

8 .,., 
N 

Figure 5 . 16 :  Compatibility methods with sequencing error rate e = 0 . 1  

This figure shows the accuracy of CoDH,  CoSH and CoSO with sequencing error 
rate e = 0 . 1 .  
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Figure 5 . 18 :  Closest tree methods with sequencing error rate e = 0.064 

This figure shows the accuracy of CTDH,  CTSH and CTSO with sequencing error 
rate e = 0.064. 
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Figure 5.20: Distance Hadamard methods with sequencing error rate e -
0 .064 

This figure shows the accuracy of CoDH ,  CTDH and MPDH with sequencing 
error rate e = 0.064. 
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Figure 5 .22: Sequence Hadarnard methods with sequencing error rate e = 

0 . 1  
This figure shows the accuracy of CoSH,  CTSH and MPSH with sequencing error 
rate e = 0. 1 .  
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which is very high in  real terms [ 15] ,  the accuracy of all the methods is such that 

the inferred tree is unreliable, particularly for the Distance Hadamard methods, 

followed by Sequence Observed methods and Sequence Hadamard methods. This 

indicates that the Sequence Hadamard methods are more robust than the Distance 

Hadamard and Sequence Observed methods. 

The constructive methods also fared badly, with the mean number of edges 

wrongly inferred tending towards � 1 with e 2: 0 .064 and high c. The inconsistency 

of CoSO had a significant effect unless e was very high (0.064 or 0 . 1 ) ,  though the 

inconsistency of TD was in sense eclipsed by the sequencing errors when e rose to 

0.064. 

5 . 1 0  P ink Noise 

The int roduction of positive bias in the data towards a specific tree, different from 

the "true" tree, is introducing pink noise into the data. The effect of this can be 

investigated by amalgamating data generated from two different phylogenies and 

testing the methods to see how well they perform. 

It is important to determine then, ( 1 )  if data from two distinct phylogenies 

are amalgamated, whether our method will give some indication of this (which is 

a measure of falsifiability - see Section 2.2.4 ) ,  and (2) how such amalgamation 

affects the confidence we can place in the inferred tree. 

In order to answer these questions, I have chosen to use two randomly chosen 

(but distinct) trees. 

The relevant portion of the simulation program was modified as follows: 

1 .  Choose sequence length c, number of taxa n, and proportion a E [0 .05, 1] of 

data to come from each tree TG1 and TG2• 

2. Randomly choose a tree TG1 with topology X1 ( in practise, X1 = UB8). 

3. Randomly choose a tree topology X2 on n pendant vertices and a tree TG2 

with this topology, which has at least one edge different from TGI ·  

4 .  Generate observed sequence data s' with TG1 and sequence length c1 = a  x c. 

5.  Generate observed sequence data s" with TG2 and sequence length c2 = c - c1 . 

6. For each i E {0 ,  . . .  , 2n-I - 1 } ,  Si +--- asi + ( 1 - a)si'· 
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7. Use the amalgamated data as input to the NPMs, comparing the inferred 

tree with Tat · 

The simulations were carried out for all methods and the topology of the gen

erating tree Tat was UBS. a ranged from 1 . 0  down to 0.05, in steps of 0 .05 .  The 

maximum path length was bounded by 0' = 0 .35 and r, the ratio of maximum 

internal edge length to maximum pendant edge length, was 0.5. 100 trials were 

carried out for each sequence length c used, and c ranged from 100 to 2000 char

acters . Only the data from using c = 2000 are shown: the effect is most clear with 

this value of c. 

Ideally, we would like methods to correctly infer Ta1 with a < 0.5 and to infer 

the 'contaminant' tree Ta2 when a > 0.5: this would look like a step-function on 

the graph of mean number of edges wrongly inferred. 

Note that the expected number of edges different between these trees is approx

imately 6.756 [42] . (Hendy et al provide mean partition distances between any two 

randomly chosen unrooted trees on n = 10 ,  but in this case I have fixed one tree 

with topology UBS. ) 
In Figure 5.24 we see that CoSH and CTSH are much more 'step-like' than 

the other methods, and that of the other methods, all but CoDH, NJa, SL and 

UPGMA group together. This effect is also visible for lower values of c, down to 

c = 500, but is not as obvious. 

This shows the higher robustness of CoSH and CTSH to interference in the 

sequence data in the form of pink noise. 
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Figure 5 .24: Effect of amalgamating data from two trees 

In this figure is shown the effect of amalgamating data from two different trees, 
Ta1 and T02 . The topology of Ta1 was UB8, and Tc2 was chosen randomly, to 
be at least one edge different from Ta1 . The sequence length used was c = 2000 
and the number of trials was 100.  
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The original questions can now be  answered : 

1 If data from two distinct phylogenies are accidentally amalgamated, will our 

method will give some indication of this? 

This is a question of falsifiability, in that we wish to know whether the phylogenetic 

method can reject t he assumed model of data generation (in this case, the model 

of a single tree generating the data) . The answer to this question has to be "no, 

not as yet" . 

2 How does such amalgamation affect the confidence we can place in the inferred 

tree? 

If we know the proportion a of "true" data and ( 1  - a) of "false" data (from Ta1 

and Ta2 respectively ) ,  we can estimate the effect this has on the reliability of the 

inferred tree T. For example, with c = 500, the effect of introducing 35% "noise" 

in the form of data from an unknown tree is to increase the expected number of 

edges wrongly inferred by MP methods by about 1 .5 ,  whereas the expected number 

of edges wrongly inferred by CTSH increases by about 0.7 (data not shown).  With 

c = 2000 and the same a the difference is more marked: MP is  expected to get 

around 1 .5 more edges wrong than if the data were pure, while CTSH is expected 

to get around 0 .5 more edges wrong (see Figure 5.24). 

In general the results show that, though CT does not perform as well as MP 

with pure data, it is  considerably more robust with regard to contamination of  the 

data. 

It is an open question as to the conditions of amalgamating data as described 

above under which CTSH and CoSH remain consistent. 

5 . 1 1  S ummary 

The results from this chapter show several basic trends, itemised below: 

• Table 5 . 1  shows that CoDH,  CTDH, MPDH, NJ and ST infer similar trees 

in  the examples used, though the agreements between CoDH and MPDH 

and between MPDH and NJ are not as high as the others. Thus as NJ is  

reasonably accurate in the above tests, and is  of a lower complexity than the 

others in this group, it seems a good method to use in this case. 



132 Chapter 5. Results 1 :  "Small n "  

• The performances of the methods in this chapter are predominantly affected 

by sampling error, which is dependent on the sequence length. We see this 

as, whatever the model used to generate the data (with no white noise or 

pink noise) ,  when sufficiently large sequences were used (above about 2000 

characters) ,  the consistent methods all performed well ,  and when very short 

sequences were used (below about 1 00 characters) ,  none performed well .  

• The effect of tree topology was not significant over 100,000 trials in N J, TD, 

and the Distance Hadamard methods (CoDH, CTDH and MPDH).  MPDH 

exhibited the least dependence on tree topology, and UPGMA showed the 

highest dependence. 

• Up to a point, as the edge lengths increase, the accuracies of the phylogenetic 

methods also increase. (Recall that the accuracy of a phylogenetic method 

is the probability that it will infer the generating tree. ) This is due to the 

increased probability that sufficient numbers of each of the most likely hi

partitions will be sampled, so that the observed bipartition spectrum will 

accurately reflect the expected bipartition spectrum. Conversely, when the 

edge lengths are very small the accuracy of the methods decreases, for the 

same reason. 

However, when the edge lengths become very large, the sequences approach 

randomness with respect to each other, and the informative signals of the 

most likely bipartitions become swamped in the multiple character-state 

changes along paths of the generating tree Ta. Hence the accuracies of 

the phylogenetic methods decrease once more when the path lengths exceed 

� 1 .25 expected character state changes per site, and tend to zero as the 

path lengths increase further. 

• With each of the methods, the sequence length c must grow at least in propor

tion to n ,  to retain a certain probability of correctly inferring the generating 

tree. This is a promising result when considering that the growth in the num

ber of potential trees is exponential ,  and the best known theoretical upper 

bound for this growth in c is O(n2 ln(n) )  (84] . Also the correct inference of 

a specific i nternal edge is not helped by the addition of more taxa, for this 

model. Kidd and Cavalli-Svorza in 1 971 (53] studied related problems, and 

found that the probability of correctly inferring Ta increased rnonotonically 
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with n ,  but they did not discuss the shape of the growth function. 

• The use of the observed distance spectrum g' as input data reduces the vari

ance in the inferred edge lengths of the tree. This gives the unexpected result 

that although much information is lost in converting from a bipartition spec

trum s' to g', evidently more misinformation is lost, causing the edge lengths 

inferred from the g' to be more reliable than those estimated from s', and 

rendering more accurate inference of the generating tree. 

• The effect of sequencing errors and similar sources of white noise is not large 

when the error rate e is less than about 0 .0 1 ,  but becomes important for 

e � 0.04. 

• Amalgamation of data sets from two trees is less of a hindrance to the per

formance of CTSH and CoSH than i t  is to the other methods. CTSH and 

CoSH are therefore more robust to this form of pink noise than are the other 

methods. 

If confidence levels can be found for trees inferred by CoSH and CTSH and 

compared with confidence levels obtained for other phylogenetic methods, 

then the relatively high accuracy of CoSH and CTSH can indicate that the 

data used were not generated from a single tree. Thus with a priori knowledge 

of the reliability of the inferred trees, CoSH and CTSH have the property of 

falsifiability (see Section 2.2.4). Such confidence levels could be obtained 

using the boots trap resampling technique [20] , but this has not been tested 

yet . 



134 Chapter 5. Results 1 :  "Small n "  



1 35 

Chapter 6 

Results 2 :  "Large n " 

Throw big enough things at anything, and it  will fall over. 

[ Shane Dye, 1993] 

Determining large phylogenies is certainly of interest . Hughes and Nei investi

gated sets of 29 and 12 taxa using histocompatibility data [49] ; Hedges et a! looked 

for MP trees on 136 human mitochondrial DNA sequences [38] ; Chase sought MP 

trees with 499 land plant taxa [14] .  

Establishing how well i t  i s  possible to  estimate the true phylogeny of big data 

sets like these can in part be achieved by computer simulation, as I have endeav

oured to do in this part of the study. 

The next section outlines some restrictions placed by the available comput

ing power. The subsequent sections describe the effects of the following, on the 

performance of the clustering methods: 

• Sampling error; 

• Number of taxa; 

• Overall time; 

• Proportional time to last bifurcation event; 

• Edge length probabi lity distribution (type and spread) ; 

• Depth of edges in the tree. 
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The last item in the above list, depth of edges, is considered with regard to the 

probability of correctly inferring individual edges, rather than with regard to cor

rectly inferring the complete tree. 

6 . 1  Computat ional considerations 

Due to the large number of operations which are required to conduct a simulation 

trial with n > 10, the number of trials per set of parameters is limited. In some 

of the experiments in this part of the study no more than 100 trials for each 

parameter set were performed. However, such studies with large numbers of taxa 

have been limited in the past, so even this relatively small sample size provides new 

information. (The performance of UPGMA and some other methods not discussed 

here were studied by Tateno et al with 32 pendant vertices [93] ) .  

The number of possible tree topologies i s  too large to admit testing each in

dependently; rather, they must be chosen at random for a given value of n. The 

method of choice is as outlined in Chapter 4, Section 4.5. 1 .  This is acceptable 

because the effect of topology on the performance is now known to be small (see 

Chapter 5, Section 5.5) .  

It  should be noted that the ST method, requiring O(n5) operations to construct 

a tree, is not feasible for these values of n. The exhaustive search methods are not 

feasible either, due to the exponential number of potential trees to search and 

the large computational overhead of the Hadamard conjugation for inferring edge 

lengths. As has been mentioned ( in Section 2.5) , this study is not concerned with 

the performance of heuristic search methods, which consider only a subset of the 

potential trees, and therefore cannot guarantee to find a globally optimal tree. 

Also NJa has been shown to perform badly, hence for n > 10 the only methods 

I have used are NJ, SL, TD and UPGMA. 

6 . 2  S ampling error 

As before, the effect of sampling error has been investigated using differing sequence 

lengths c. The maximum value of c is restricted for large n to no more than 1000. 

Sampling error remains a strong influence on the performance of these construc

tive methods. The behaviour of the phylogenetic methods follows the same trends 
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.pparent for small n, though the their relative behaviour is different: NJ is the 

nost accurate, followed by UPGMA, TD and SL. The good behaviour of UPGMA 

nay be accounted for by the model of data generation used, i .e . ,  the rooted tree, 

ri th edge lengths satisfying the molecular clock model. The molecular clock model 

s equivalent to having equal expected amounts of change between the root and the 

>endant vertices, for all lineages. 

'With more variable rates of evolution on different lineages, I show later that 

JPGMA behaves less well, as expected by its inconsistency with data which are 

tot generated according to a molecular clock. 

3 . 3  Number of taxa 

)ne obvious problem in phylogenetic inference lies in having a large number of 

.axa; when n increases we must expect the accuracy of phylogenetic methods to 

lecrease, and this is shown in  Figure 6 .2 below. There is a strong dependence on 

� of the accuracy of constructive methods. 

In Figure 6.3 is shown the number of trials in which 0, 1 ,  . . .  , 15 internal edges 

tre wrongly inferred , for a sequence length of c = 1 000 and for n = 30. In this 

�xperiment no more than 15 edges were incorrectly inferred. 

It has been suggested that generating an initial tree with a clustering method 

mch as NJ ,  and then searching nearby trees (either one or two edges different from 

;he initial tree) will be a useful heuristic search of tree-space to find "significantly 

better" trees according to some optimality criterion [59] , [74] . Figure 6 .3 shows 

that the distribution of numbers of edges wrongly inferred for large values of n is 

potentially more than two edges removed from the generating tree: the most likely 

number of edges wrongly inferred ranges from two with NJ, through four with TD 

and UPGMA, to five with SL, even with this simple model. 

Hence, I contend that the use of most constructive methods to obtain a starting 

point for search methods based on hill-climbing is not necessarily sufficient, though 

of the methods tested here, the tree inferred by NJ is the most likely to be within 

two edges of the true tree. 

The other obvious feature of Figure 6 .3 is that for each of the clustering methods 

the probabi lity of reconstructing Ta is very small with even this moderate value of 

n .  When considering trees built by clustering methods with 1 00 or more taxa, the 
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Figure 6.2: Effect of number of taxa on the accuracy of constructive methods 

The mean number of edges wrongly chosen is shown, with varying n and c = 1000. 
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Figure 6.3 :  Distance from T a of inferred trees 
This graph shows the proportion of trials in which each of the constructive meth
ods infer 0, 1 ,  . . .  , 15 edges incorrectly, with n = 30 and c = 1000. In this ex
periment 500 trials were carried out, and no more than 14 edges were incorrectly 
inferred by any of the methods used. 
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probability of inferring Tc must therefore be vanishingly small :  extrapolating from 

Figure 6 .2  would suggest that for a generating tree with 1 00 taxa, the expected 

number of edges wrongly inferred by, for example, NJ , would be at least 10 .  

6 . 4  Overall evolutionary time 

The principle of varying the overall evolutionary time for these large rooted trees 

is similar to that of varying the maximum path length of the small unrooted trees 

(see Section 5.6. Note that the overall time is now expressed in terms of the mean 

number of character state changes to have taken place between the root and the 

pendant vertices. 
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Figure 6.4: Effect of time from the first bifurcation to the present 
The mean number of internal edges wrongly inferred by NJ, S L, TD and UPGMA 
is  shown.  The number of taxa i s  26, and the sequence length i s  1000. 

Figure 6.4 shows the mean number of edges wrongly inferred by NJ, SL, TD and 

UPGMA with sequence length c = 1 000 and overall time ot E {0 .25,  0.5, 0 .75, 1 . 00 } .  

(These times are of course relative; the overall amount of change expected between 

the root and the present is also a function of the transition matrix M.) The figure 
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;hows that the accuracies of N J ,  S L  and TD all decrease slightly with increasing 

)Verall time, but UPGMA becomes more accurate. We shall see in the following 

;ections that UPGMA is highly dependent on the "molecular-clockness" of the tree. 

The effect of overall time can be further investigated by considering the di

.rergence of just two sequences through time. (This experiment was discussed by 

?enny et al [63] . )  In the following experiment, two initially identical sequences of 
·our character states were allowed to "evolve" for the same amount of time t ,  and 

.heir dissimilarity used to infer the overall time, using the Jukes-Cantor formula. 

fhe sequence length c was 1 000 characters. For each character the probability that 

t changed state was set to 0 .01  ( 1  %) in 1 million years, and the transition matrix 

�overning the probabilities of character state change over t calculated as described 

n Section 4.5.3. 

The overall time t ranged exponentially from 0.01 to 1000 million years. For each 

;ime t ,  1 00 trials were carried out, so the probability distribution of the inferred 

�ime t' could be estimated.  

With small values of t ( :::=; 0 . 1 million years) the probabilities of change were 

>O low that often there was no .difference between the two sequences, so t' would 

)e 0. For very large values of t (� 100 million years) there was often so much 

:hange that infinite distances would be inferred with the Jukes-Cantor formula. If 

the sequences were identical , in which case t' = 0, or so dissimilar that t' -+ oo, 

the sequences were abandoned. 

In Figure 6.5 below, the mean standard error of t' is shown. Also shown are 

the proportion of trials which provided meaningful results (where t' fj. {0 ,  oo }  ) ,  and 

the mean value of t' jt, for each value of t .  

Note that the mean standard error of t '  i s  lowest for 10 million years :::=; t :::=; 1 00 

million years, and that when t gets larger or smaller than these values, the inferred 

overall t ime rapidly becomes more unreliable. Hence the most useful range of t is 

such that the expected number of character state changes between pairs of taxa is 

between approximately 0 . 1  and 1 .0 ,  per character. 

6 . 5  Time t o  last bifurcation event 

This section examines the effect of varying the relative time until the last bifurcation 

event . Such variation is equivalent to varying the ratio r between maximum internal 
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Figure 6.5: Inferred time of divergence of two sequences 

The above figure shows the behaviour of estimated divergence times of two se
quences which were allowed to changed stochastically from being originally iden
tical. Given t he actual time t ,  the inferred time for any given trial is t' . The 
horizontal scale is logarithmic. The proportion of trials in which t' � {0 ,  oo} is 
shown, a.s a.Pe the mel!::ft '+"fth:tes of���� and the mean standard error <7(t')Jt when 
for t' � {O , oo} .  
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and maximum pendant edge lengths . This helps explain the effect of the 'depth' of 

edges within Tc has upon the probability that they will be correctly inferred, but 

this is discussed more fully later. 

When assigning edge lengths to the generating tree Tc, the proportion of time in  

which bifurcation events can take place i s  the divergence time factor f (see Section 

4.5 .4) .  In this part of the investigation f was allowed to range over { 0.2 ,  0.325, 

0.45, 0 .575, 0 .7, 0 .825, 0.95} .  The number n of taxa ranged over { 10, 15, 20, 25, 30 } .  

With f small ,  the internal edge lengths are shorter than the pendant edge lengths, 

and with f -+  1, the internal edge lengths are longer than the pendant edge lengths. 

The results shown in Figure 6.6, below, show trends which were common to all 

the values of n used (data not shown) .  
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Figure 6.6: Effect of divergence time factor f 
The graph shows the mean number of edges wrongly inferred by N J, SL ,  TD and 
UPGMA, for n = 30,  c = 1000,  and varying divergence time factor f. 100 trials 
were carried out for each value of f .  

Figure 6 .6 and similar figures for n E  { 10, 15 ,  20 ,  25} show that 

• All of the methods improve their accuracy with increasing f ( and therefore 

increasing internal edge lengths) .  This is similar behaviour to the "small n" 
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case. 

• NJ performs the most accurately of the methods used , always more accurate 

than TD, in turn more accurate than SL. 

• UPGMA, while the least accurate method with f :::=; 0.33, becomes at least 

as accurate as S L  when f = 0.45, and becomes more accurate than TD when 

f = 0.83. 

• UPGMA is approximately as accurate as NJ when f = 0 .95. 

The proportional time until the last bifurcation event is clearly a major factor 

affecting the performance of these constructive methods. When f is small, none 

of the methods perform well, getting from approximately half to two-thirds of the 

internal edges wrong. When f becomes close to the overall time from the root to 

the pendant vertices, all the methods perform wel l .  This effect is almost certainly 

due to the relatively large size of the internal edges when f is larger. 

Once again,  the main factor here is the length of the internal edges, and hence, 

the sample size: with small internal edges, there is lower probability that any 

character state change will occur on the edges, so longer sequences are necessary 

to obtain enough 'signal' in the data to infer a tree. 

6 . 6  Edge length distribution 

The effect of the edge length probability distribution has been indirectly observed 

in previous sections (6.4 and 6.5) .  Now the question of how the type and spread 

of the edge length probability distribution affects the performance of the clusterinf 

methods is addressed explicitly. 

6 .6 .1  Type of distribution 

The three types of probability distribution I have used are uniform, normal and 

log-normal. In one experiment with varying n, each of these three distributions 

was used, with the other parameters constant. 

The behaviour of the clustering methods was not greatly affected by usmg 

different forms of probability distribution (see Table 6. 1 ) .  
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Table 6. 1 :  Effect of edge length probability distribution 
The mean number of edges wrongly inferred is shown, for n E { 10,  20, 30} and 
the clustering methods NJ, SL, ST, TD and UPGMA. The sequence length c was 
640 and 500 trials were carried out for each value of n .  

n = 10  NJ SL ST TD UPGMA 
uniform 1 .918 2 .086 1 .920 2 .046 1 .966 
normal 1 .836 2.070 1 .846 2 .020 1 .9 16  

log-normal 1 .830 1 .992 1 .818 1 .950 1 .850 

n = 20 NJ SL TD UPGMA 
uniform 2.204 3 .870 3 . 130 2 .320 
normal 2 .274 3 .916  3 . 1 06 2.824 

log-normal 2.226 3 .930 3 .082 2.404 

n = 30 NJ SL TD UPGMA 
uniform 3.558 6 .730 5 . 1 58 3.970 
normal 3 . 7 14 6 .888 5.436 4 .954 

log-normal 3 .716 6 .778 5 .348 4.236 

I conclude that the type of distribution is not as important as its spread, as 

outlined in the next section. With the small number of trials , only 1 00 for each 

experiment , the differences in performance are usually not significant with spread 

of the distribution, the one obvious exception being UPGMA with n = 30, this 

method being significantly less accurate when the spread of the edge length prob

ability distribution increased . 

6.6 .2 Variance of the distribution 

Making the variance of the probability distribution of the lengths of the edges of 

these rooted trees large will force the trees away from the molecular clock model. 

By letting this variance range from zero (corresponding to a perfect molecular 

clock) to the mean edge length from which each edge length is sampled, we are 

able to investigate the robustness to violation of the molecular clock hypothesis of 

each of the clustering methods used. 

In Figure 6. 7 we see the much higher dependence of UPGMA on the variance 

of the edge length probability distribution. This is of course to be expected as 

UPGMA is not consistent with distance data which do not satisfy the molecular 

clock model. Note that the other methods (NJ, SL and TD) also become less 

accurate as this variance increases. 
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Figure 6 .  7: Effect of variance of edge length probability distribution 

The mean number of edges wrongly chosen is shown, with n = 26, c = 1000, and 
overall time = 1 .0 .  
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6 .  7 D epth of edges 

Define the depth of an internal edge e to be the minimum of the two numbers of 

)endant vertices which are partitioned by that edge. Then 2 � depth(e )  � n/2. 

The question of how the depth of an edge in Ta affects the probability that it will 

be inferred correctly can be addressed by measuring the depth of each correctly 

inferred edge when comparing the inferred tree T with Ta. 

The number of possible edges with a given depth k # n/2 is h(n, k) = (�) 
�kbn-k , where bk is the number of rooted binary trees on k pendant vertices, equal 

eo (2k - 3) ! !  = (2k - 3)(2k - 5) . . . (3) ( 1 ) .  This is because there are (�) ways 

to choose k pendant vertices from {l, . . . , n} ,  bk possible rooted binary trees with 

those k pendant vertices, and bn-k possible rooted binary trees with the remaining 

( n - k) pendant vertices. 

For k = n/2, h( n, k) = ! (�) bz . The division by 2 is because (�) bz counts the 

rooted trees with k pendant vertices twice. 

The numbers of edges with depth k for n = 26 are shown in Table 6 .2 ,  below. 

Hence the count of number of trials in which edges of each possible depth k are 

correctly inferred must be normalised by dividing by h(n, k ) .  

Table 6 .2 :  Number of edges with depth k over all binary trees on 26 pendant 
vertices 

depth k of edge h(26, k)/ 1030 

2 8 .2464821840 
3 4.3981238315 
4 2.9406060501 
5 2 .2090406425 
6 1 .  7842251344 
7 1 .5 155580292 
8 1 .3369386900 
9 1 .2153988091 
10  1 . 1330653414 
1 1  1 .0797864069 
12 1 .0497923400 
13  0.5200509746 

The normalised values are depicted in Figure 6.8, below. 

In Figure 6.8 we see the influence of edge depth( e )  on the probability of four 

clustering methods correctly choosing edge e as being in the generating tree Ta. 

(Note that the numbers in the figure are relative frequencies at which edges of each 
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The graph shows the relative frequency at which edges of depth k, for k = 
2,  . . .  , 13 ,  were correctly inferred by NJ, SL, TD and UPGMA. These values have 
been adjusted to take into account the relative frequency of edges of each depth 
k. 
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::lepth k were correctly inferred . These relative frequencies estimate the actual 

·)robabilities up to multiplication by a constant. ) 

These probabilities decay approximately exponentially, which indicates that the 

::>robability of inferring edge e may follow a Poisson distribution in the depth of e .  

I f  the probability of correctly inferring an internal edge at each clustering stage 

is ,  say, some constant w, then the probability of inferring an edge of depth 3 will 

be approximately w
2

, and the probability of inferring an edge of depth 4 will be 

approximately w
3

. In general the probability of inferring an edge of depth p would 

be approximately wp- I  for n > 2p. (Note that the depth of the edge is the minimum 

of the numbers of taxa which are bipartitioned by that edge. Each internal edge 

could also be inferred by correctly deducing the monophyly of the larger of the two 

sets, which introduces some higher order terms in the probability. ) 

If then the above were true, we would expect that the graph in Figure 6.8 would 

be an exponential decay. In Table 6.3 are shown the correlation coefficients of the 

natural log of the relative frequency of inferring edge e correctly, against the depth 

of e .  

Table 6 .3 :  Effect of  depth of  edges on their correct inference 
This table shows the correlation coefficient of ln(relative frequency of correctly 
inferring edge e) with depth(e). Here n = 26 and c = 1 000. 

NJ SL TD UPGMA 
-0 .9581 -0.9403 -0.9648 -0.9427 

From this table it is clear that there is a strong negative correlation between the 

log of these relative frequencies and the depth of the edges, but this is not strong 

enough to imply the process closely follows a Poisson distribution. 

6 . 8  S ummary 

From the work described in this chapter the following general results are obtained : 

• It has been demonstrated that with larger numbers of taxa all the clustering 

methods perform less accurately. This is to be expected for two reasons: that 

as n increases, { 1 )  there are more clustering steps which must be correctly 

made to infer the generating tree Ta, and {2) the internal edge lengths are 

shorter, with consequently lower expected numbers of character state change 

on them. 
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• The overall time from the root to the pendant vertices has a large effect on  the 

performance of these clustering methods. As it  increases, the internal edge 

lengths increase and the accuracy of all the methods increases. This trend 

reverses when the lineages are all so long that they approach randomization 

with respect to the root. The same conclusion was reached in the "small n" 

case. 

• Varying the relative time to the last bifurcation event shows that with i nter

nal edges which are relatively short with respect to the pendant edges , the 

accuracy of the clustering methods is again reduced. This is in accordance 

with the result obtained in the "Small n" case. 
-

• The general type of the edge length probability distribution does not in  this 

case have a significant effect on the performance of the clustering methods. 

However, the spread of the distribution, which is a measure of the "molecular

clockness" of the generating tree, does have a strong effect. The spread of this 

distribution is highly negatively correlated with the accuracy of the clustering 

methods. 

• The ability of these methods to correctly infer the internal edges of Ta is 

reduced approximately exponentially with the depth of these edges. This 

indicates that for large n the probability that the whole of Ta will be recon

structed must tend to zero, while there is still a reasonable probability that 

the 'shallower' edges will be correctly inferred. 

This suggests that an appropriate strategy when dealing with large data sets 

may be to use only a subset of the data set to infer the deeper edges of the 

tree. 
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Chapter 7 

Discussion 

Once a method proves to be superior to others, we can use it for all 

data sets. 

[ Tateno et al [93]] 

7. 1 Introduction 

153 

This thesis was not intended as a comparison of the performance of phylogenetic 

methods. Rather, it was to study the effects of several factors on the performance 

of some phylogenetic methods. 

Comparisons of the performance of methods are abundant in the literature 

already; for example, see [48] , [50] , [54] , [56] , [58] , [75], [80], and [93] . These studies 

have used specific models of evolution to generate the data: the type of transition 

matrix, the tree topology, the sequence length, and the edge lengths have all been 

taken from a small set of possibilities , and the performance of the methods assessed. 

One danger in such studies is of assuming that because in some set of circumstances, 

method 'A '  works more accurately than method ' B ' ,  it will be the better method 

to use in some other circumstances. This may indeed be true, but is not definite, 

and the results described in this thesis do not support a single 'best' method .  I 

therefore have to disagree with the statement of Tateno et al quoted above. 

Hence throughout Chapters 5 and 6 ( "Small n" and "Large n" , respectively) I 

have avoided making any overall j udgement of the superiority of any one method 

over the others. In differing sets of circumstances, each method has its own merits. 
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But such an investigation as this is bound to reveal trends in the relative per

)rmances of these methods, and of course these trends must be considered with 

�gard to other simulation and theoretical studies which have been carried out . 

[ence in this chapter an overall view is provided of the results presented so far, 

nd how they relate to the results of some other experiments. 

This study has been inspired in part by previous work, because of necessity 

01ch work was limited by computational costs and theoretical and empirical un

erstanding. It would be folly to suppose that, j ust because this study has used 

�latively large simulations \Vith variation of many parameters, it is in some way 

onclusive, and that no more need be done. For this reason I include an indication 

f the direction in which further research into this problem may be headed. 

r .2 S ummary of results 

'he investigations I have carried out investigating factors affecting the performance 

f phylogenetic methods have involved a large amount of computer processing. The 

esults from the two programs "sirn . c" and "big . c" have been summarized, to find 

hose which are the most informative and interesting for inclusion in this thesis. 

Ience some conclusions have been made with reference to data not shown. This 

mission of data has been made purely in the interests of saving space and not 

Q.terrupting the flow of the discussion with countless figures and tables. 

The investigation has provided several conclusions about the effects on the 

1erformance of phylogenetic methods of sampling error, tree topology, number of 

axa, edge length probability distribution, treatment of observed data, white noise 

.nd pink noise. It has also enabled the desirable properties (accuracy, consistency, 

·fficiency, falsifiability, and robustness) of the phylogenetic methods used to be 

ested both empirically and theoretically. 

T.2 . 1  Sampling error 

vly results support the expected conclusion that sampling error has a strong effect 

m the accuracy of the phylogenetic methods used: all perform poorly when the 

;equence length c is less than about 100 characters, and all the methods consistent 

Nith the model by which the data were generated perform well when c is large, in 

;he order of 1000 or 2000 characters. This is  of course to be expected, but the rate 
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at which the accuracy changes with varying c is now easily observed , with the large 

set of sequence lengths used. 

With the "large n" case, the same effect of sampling error was seen with respect 

to the clustering methods NJ , SL, TD and UPGMA. 

When the internal edges were very short, there was often no change of state 

of any characters across that edge (in the "small n" case, this would mean the 

bipartition corresponding to that edge was not sampled). In such cases there was 

not enough information in the data set for phylogenetic methods to reconstruct the 

generating tree Tc, unless the sequences were very long. 

When the internal edge lengths, or indeed the pendant edge lengths, grew very 

large, the sequences effectively grew more and more dissimilar, until once again 

there was not enough information in the observed data to reconstruct T c unless 

the sequences were very long. In the "small n" case, this took place when the 

upper bound a on the maximum path length exceeded 1 .4 .  With the "large n" 

case an experiment was carried out to find the variance of the inferred divergence 

time between two sequences, given a known rate of evolutionary change. This 

highlighted the difficulty of inferring edge lengths from sequences in which there is 

not enough change to be reliable, or when the data become too dissimilar. 

By using the Hadamard conjugation technique to calculate the expected bipar

tition frequencies and effectively eradicate sampling error [4 1 ) ,  and by using very 

long sequences, it was possible to see easily which of the methods is consistent with 

the model of evolution used to generate the data. 

It was also possible to prove theoretically that the neighbour-joining method 

(NJ ) uses the only possible weighting scheme for net divergence which is consistent 

with the model (see Appendix B, Theorem 5) .  

7 . 2 . 2 Tree topology 

It has been found that , with the models used, tree topology has little effect on the 

performance of the tree reconstruction methods used, other than UPGMA. The 

other methods which are the most affected are NJa, SL, UPGMA,  and the sequence

spectrum based methods. Those least affected are the distance-spectrum based 

methods (CoDH, CTDH,  MPDH),  NJ,  ST and TD. I have shown the accuracy of 

UPGMA to be strongly dependent on tree topology. This means simulation studies 

on UPGMA need to explicitly take tree topology into account. 
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Knowing that ,  apart from UPGMA , tree topology for small n makes little dif

ference to the performance of these phylogenetic methods, it is then reasonable to 

use one tree topology for the generating tree Ta, or choose the topology of Tc at 

random, in simulation studies such as this. Therefore with the "large n" case Tc 

could be selected at random, without unnecessary concern about the affect of the 

topology of Ta on the accuracy of NJ, SL,  ST or TD, but bearing in mind that 

tree topology may have a large effect on the accuracy of UPGMA in this case also. 

This allowed the extension of the simulation experiments to 30 taxa. 

7.2 .3 Number of taxa 

The number of taxa ( n) greatly affects performance of phylogenetic methods. The 

number of unrooted binary trees with n pendant vertices is (2n - 5) ! ! , and that 

of rooted binary trees is (2n - 3 ) ! ! :  these numbers grow exponentially with n, so 

with increasing n, we predict that the accuracy of the methods must decrease. 

Also, as the maximum distance between any two sequences in a given trial was 

bounded above (usually by 0.25 - see Section 4.4. 1 ) ,  when n was increased, the 

. edge lengths decreased. Hence, with the problems known to be caused by short 

internal edges, this was another reason to expect the accuracy of the reconstruction 

methods to decrease markedly with increasing n.  

Sections 5 .  7 and 6.3 discuss this problem, and the degree to which n affects the 

mean number of edges wrongly inferred and the probability of reconstructing Tc. 

It  was possible to estimate the rate at which the sequence length must increase 

(which is related to the rate at which sampling error must decrease) with i ncreasing 

number of taxa, for a particular phylogenetic method to retain a given confidence 

in the inferred tree. This rate has been shown to be close to linear for the cases 

studied , which is a promising result , but it still suggests that for 100 or more taxa, 

proportionally long sequences must be obtained ( in the order of 104 characters) , 
which may be infeasible. 

The model used for data generation was ' ideal ' ,  in the sense that it was known, 

and the methods used for tree reconstruction were ( in this experiment) consistent 

with that model. 'Real ' data cannot be assumed to be so well behaved, and it may 

well be that with real DNA sequences the required growth rate in c; is much faster 

than a linear function of n, if a fixed confidence level is sought. 

Adding taxa to increase the confidence in a particular internal edge was not 
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supported by these experiments: the mean number of edges wrongly inferred by 

each method increased at least linearly with n ,  indicating that the probability of 

wrongly inferring a particular edge is at least increasing. This leaves aside the 

position of the edge in the tree: edges which are 'deeper' than others {see Section 

6. 7) may have a lower probability of being inferred than those which are 'shallower' .  

A study of the above effect would be rather involved, and complicated by the 

relative lengths of the internal edges and the position of the edge( s) in question : 

this may be a fruitful avenue for further study. 

7.2 .4 Edge length probability distribution 

The edge length probability distribution experiments highlighted once again the 

influence of sampling error: with short internal edges, there was frequently not 

enough information in the data to recover the generating tree, while with very 

long edges (whether internal or pendant) there was so much character state change 

between sequences that the relevant information was hidden. 

In fact all the experiments in which the lengths of the internal edges were 

varied revealed the dependence of accuracy on edges which are neither 'too long' 

nor ' too short' .  Section 6.4highlightedthis problem explicitly with Figure 6.5,  which 

demonstrated the limits to the amount of information which can be gleaned from 

sequence data: 'too short' was in  this experiment less than about 0 . 1  expected 

change of state per character, per site, between sequences, and ' too long' was more 

than about 1 . 0  expected changes of character state. 

7 .2 .5  Treatment of observed data 

It is known that no tree selection criterion using the observed data directly, without 

some compensation for multiple changes, can be consistent (88] . Hence i t  was 

expected that CoSO,  CTSO and MPSO would behave relatively poorly with long 

sequences and when multiple character state changes were l ikely. This was indeed 

the case, as described in Sections 5.6 and 6.4. 

However, the result that using the distance spectrum g' for Co, CT and MP 

would actually improve their performance over using the sequence spectrum s' was 

unexpected. This led to the independent discovery in my experiments and by 

Waddell et al (97] that edge lengths inferred from g' had a smaller variance than 
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those inferred from s', and hence were often more reliable in this study. Further 

investigation into this area is certainly warranted by these new results. 

The order in which data are presented to the clustering algorithms can affect 

their performance, as was discovered in early simulations when the same labels 

were used for the pendant vertices of a given Ta for all trials. It was decided to 

permute the labels of the pendant vertices for each trial, to remove this effect .  

7.2 .6  Relationship between phylogenetic methods 

Section 5.3 showed some of the relationships between the phylogenetic methods 

used in this study. Some of these relationships are in the treatment of the i nput 

data as mentioned above, and some were theoretical. 

The close relationships between CTDH and NJ, and between NJ and ST, were 

first seen experimentally, and then investigated mathematically: this is one of the 

great advantages of computer simulation, that answers can be obtained to questions 

not even asked [ 1 1 ] ,  and can give indications of the directions in which theroetical 

study can be fruitful. 

The close agreement between CTDH and NJ continued for many of the exper

iments, and led to the proof that CTDH anct,N}.M.�: equivalent when n = 4 (see 
. .... • ' '- ; ,- .. 

Appendix B ,  Theorem 6 ) .  

In  attempting to  improve the performance of ST, to be  more sensitive, it was 

discovered that the modified method ST+ (see Section 2.4.3) was identical to NJ 

(up to rounding error) .  This led to the proof that ST+ was mathematically equiv

alent to NJ (see Appendix B ,  Theorem 7) .  

Other close agreements were between the performances of CoDH and CTDH,  

CoDH and ST,  CoSH and CTSH, CTDH and MPDH, CTDH and ST, MPSH and 

finally N J. This should not be overemphasized though, as the phylogenetic methods 

were of course estimating the generating tree Ta, and when accurately determining 

Ta they will naturally agree with each other. 

7.2.7 White noise 

With the i ntroduction of white noise, in the form of random sequencing error, the 

robustness of the phylogenetic methods was investigated. It appears that while us

ing the distance spectrum g' from which to infer edge lengths of Ta is preferable in 
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the earlier experiments, these inferred edge lengths are less robust to sequencing er

ror than are edge lengths inferred from the sequence spectrum s' .  The constructive 

methods were also shown not to be robust to this kind of error. 

If the sequencing error rate is below about 2.5%, the relative accuracies of the 

methods is not affected, though the accuracies of all the methods decrease with 

increasing error rate. 

7.2 .8  Pink noise 

Pink noise, which is biassed random error, was introduced into the data by amal

gamating observed bipartition frequencies from two independent generating trees. 

Several tests were carried out, for sequence lengths ranging from 1 00 to 2000 

characters, but the effect of this amalgamation of data was most obvious with the 

longer sequences . 

With large amounts of 'contaminant' data, i.e. , from 1 0% to 45%, it was dis

covered that CoSH and CTSH are much more accurate than the other methods. 

This may provide some falsifiability for these methods: If the confidence in the 

inferred tree can be estimated, perhaps by the bootstrap resampling technique, the 

relatively high accuracy of CoDH and CoSH could indicate that the data come 

from two or more independent phylogenies. 

This may also be useful in determining whether two data sets, known to be 

from different sources, come from independent generating phylogenies. Further 

investigation into this question is warranted. 

7.3 Comparison with some other studies 

This section discusses some of the many previous simulation studies referred to 

above, in  connection with the investigations in this thesis .  It is not possible to 

cover all such studies, and a good overall impression of the current work being 

carried -out in this area can be obtained from a selection of these studies. 

All the experiments carried out by other researchers and discussed here have 

'grown' the data, rather than sampled it (see Chapter 4) .  This is not, in the case 

of two character states, effectively different from using the sampling process as 

described in Chapter 4. However, in the case of four character states growing the 

data does allow more general transition matrices to be used. This was the case in  
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most previous studies. In general, different models of evolution were used, with 

few tree topologies and sets of edge lengths. Often, the method of j udging the 

performance of the methods was based on the frequency at which Ta was inferred, 

whereas in my study the accuracy was based on the mean number of edges wrongly 

inferred. Many of the implementations of MPSO - the only of MPDH ,  MPSH and 

MPSO previously studied - were in earlier experiments not exhaustive searches, 

but were restricted to trees "close to" Ta. For all these reasons, the results obtained 

here are not readily comparable with those obtained elsewhere, though they do 

require consideration as part of the whole area of research. 

The following discusses four previous studies which are similar in approach to 

this one, and their relationships to this thesis. 

In 1 98 1  Li [54] described his method for dealing with unequal rates of molec

ular evolution on different lineages of a generating tree. In fact, he described two 

methods, which he labelled versions 1 and 2 (version 1 shall here be labelled Li 1 ,  

and version 2 i s  the transformed distance method, TD).  I n  his paper he showed 

that TD performed better than Li 1 ,  and it is TD that I have used i n  this study. 

He used two rooted tree topologies for his Ta's: RB3 and RB7, on 4 and 8 pendant 

vertices (i .e. , taxa) respectively. His study compared several other methods also: 

the Modified Farris method (MF),  Farris' method (Fr) , Fitch-Margoliash's  method 

(F-M)  and UPGMA. The study was limited to 20 trials on each run, with sequence 

length c = 300. 

Li found that with the model used, the accuracy of MF was the highest ,  followed 

by TD, then Li 1 (though these two behaved very similarly) ,  then Fr, F-M and 

U PGMA, in decreasing order of accuracy. 

Sourdis and Nei's 1 988 study [80] was more extensive: it compared MPSO, 

NJ ,  the Distance Wagner method (DW), MF, Faith's method (Ft)  and TD.  The 

number of trials was increased to 300, and c was 300, 600 or 1200. Four character 

states were used . The tree topologies used for Ta were RB5 and RB3, 21 on 6 

pendant vertices; RB7 and RB3, (2, 1 1 ) t ,  12  on 8 pendant vertices (RB3, (2 ,  1 1 ) t , h 
i s  the rooted "star tree" on 8 pendant vertices) .  The study concluded that when 

the evolutionary rates are low and c is small, MPSO is not as good as the other 

methods. With larger c, MPSO did improve relatively, but was still not as accurate 

as DW and NJ. This result was independent of constancy of substitution rate, and 

any transition rate bias.  
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This result may seem to  conflict with the general behaviour exhibited in  this 

thesis by MP, which is that MP is usually the most accurate method. Of course 

the models used are different: Sourdis and Nei used a more general model of 

molecular evolution, in that they took four character states and allowed different 

rates of character state change, depending on the initial state. A lso, their study 

used rooted trees for Ta (though the inferred trees were unrooted) ,  whereas I have 

used unrooted trees. Another important reason may well be in the method used 

to find most parsimonious trees . 

I have glibly been speaking of "the maximum parsimony tree" , as in my sim

ulations I have used a branch and bound method to effectively search all possible 

trees . But Sourdis and Nei , to save computing time, used a local search to find the 

"maximum parsimony" trees: with statistical j ustification, they only considered 

trees which were at most one edge different from Ta, so could not guarantee that 

the tree found in this way would be the most parsimonious. Hence this type of 

search gives a slight underestimate of the accuracy of MPSO. (Note that the assess

ment of the accuracy of methods was, in the above study, based on the probability 

of inferring Ta, rather than the mean number of edges wrongly inferred. )  

They also noted that when the comparing the set, say S, of most parsimonious 

trees with the trees inferred by other methods, MPSO performed much better, in 

that it had a high probabi lity that S contained Ta. 

My simulations have not kept track of this set S,  an omission made consciously 

to reduce computing time and memory requirements ,  so the above conclusion is 

not directly comparable with my results. The MP implementation used here found 

a single minimal-length tree for each data set . 

Another example of this misleading use of the term "maximum parsimony tree" 

is in Czelusniak et al [ 16] ,  where such a tree is proposed for a set of 1 1 6  taxa. For 

such a large data set i t  is impossible to test all trees; therefore a more appropriate 

term might be "highly parsimonious" . 

In 1991 Jin and Nei [50] investigated the relative accuracies (though the term 

used was "efficiencies" - see Section 2.2.3) of NJ,  MPSO and UPGMA, with 

restriction site data. The generating tree Ta had topology RB3, 21 , being the rooted 

"star tree" on 6 pendant vertices. The sequence lengths used were 500, 1000 and 

16000, and 300 trials were carried out for each. Once again four character states 

were used. 



162 Chapter 7. Discussion 

They found that when the substitution rate was constant ( i .e . , obeying the 

molecular clock hypothesis ) , the probability that NJ correctly inferred Ta was 

greater than that of !viPSO "generally" ,  but the average topological distance [72) 

between the inferred trees and Ta was about equal for these two methods. When 

the evolutionary rates varied with lineage, NJ was more accurate than MPSO, 

whichever measure was used. 

The above conclusions do not necessarily conflict with those made in this thesis :  

as with the study of Li  [54) and Sourdis and Nei (80) , the model used had four 

character states, and the data were generated (for the inost part ) according to the 

molecular clock hypothesis. Also the comparison between N J and MPSO was only 

made, in this thesis, with unequal rates of evolution (the "Small n" case) , so no 

conclusions are available as to the relative performance of NJ and MPSO when the 

data satisfy the molecular clock hypothesis. However, the higher accuracy of N J 

with respect to MPSO does invite further investigation. 

They also found that UPGMA only performed well when Ta satisfied the molec

ular clock hypothesis and when the edge lengths were large. This is a similar con

clusion to that which has been reached in this thesis: UPGMA does not perform 

well with unequal rates of evolution, and no methods perform well with small edge 

lengths. 

Nei, in 1 991 [58) , conducted an extensive comparison of DW, NJ, MF, MPSO, 

ST, TD and UPGMA, and also Evolutionary Parsimony (EP ) and Minimum Evo

lution (ME) . The generating trees used had the same topologies as Sourdis and 

Nei 's 1988 study, discussed above. The sequence length c took several different 

values, ranging from 300 to 2000 characters . 

With Ta satisfying a molecular clock, he found, as I have, that NJ and ST 

performed very similarly, the reason for which I believe is the close relationship 

these two methods have (see Section 2.4 .3 ,  and Appendix B, Theorem 7) . NJ and 

ST were found to be more accurate than DW, TD, MF and UPGMA, for several 

different values of overall time (see Chapter 6) .  

MPSO was found to be slightly less accurate than DW, TD, NJ and ST,  though 

with low overall time and high c, MPSO was slightly more accurate than these. 

vVith varying rates of evolution ( i .e . , not satisfying a molecular clock ) Nei found 

that UPGMA performed the least accurately of all the methods. He also found 

that NJ,  ST and ME were more accurate than the other distance methods (DvV, 
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TD and MF). With varying rates the same sorts of conclusions were reached as for 

Jin and Nei 's 1991 study. 

Nei made several useful recommendations, regarding phylogenetic inference 

with real data and simulation studies. With regard to the latter, he made the 

point that further simulation work should be done, and made particular reference 

to the need for simulations with large n .  

7.4 That which may be 

This section describes some possible directions i n  which research i n  this area could 

continue. These directions are ( 1 )  toward a greater statistical understanding of 

the sources of error in finite data sets, (2) investigation of the properties of the 

selection criteria of phylogenetic methods, and (3)  toward improved strategies for 

the search of potential trees (the "tree space" ) .  

7.4 .1  Sources of  error in finite data sets 

As was discussed in Section 6.4, the true amount of evolutionary change since the 

divergence of two sequences has a great effect on the inferred amount of evolutionary 

change between the sequences. Note that the inference of evolutionary change 

between two sequences proceeds i n  two steps: the first is the calculation of the 

number of observed differences (or some other measure of distance between the 

sequences) ,  and the second is the adjustment for multiple changes of character 

state on the lineages separating the two sequences, to estimate the number of 

character state changes which took place. 

When the amount of evolutionary change is small, the distance between the two 

sequences is highly susceptible to sampling error, as the expected number of dif

ferences between the sequences is low. Though the correction for multiple changes 

of character state has very little effect when the number of observed differences is 

low, the sampling error j ust mentioned means that the inference of evolutionary 

change between these two sequences is made unreliable. 

With high evolutionary change, the distance between the two sequences is less 

susceptible to sampling error, as the expected number of differences is larger. How

ever the correction for multiple changes of character state is in this case very 

sensit ive to any sampling error in the observed differences, once again leading to 



1 64 Chapter 7. Discussion 

unreliablility in the estimate amount of evolutionary change between the sequences. 

This concept can be visualised as shown in Figure 7. 1 .  
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Figure 7. 1 :  Possible visualisation of the sources of error in inference of 
amount of evolutionary change 

The figure above shows the two sources of sampling error which can arise in the 
inference of amount of evolutionary change, in terms of number of character state 
changes, between two character sequences. This is plotted against the expected 
number of character state changes. Also shown is an indication of how the accu
racy of inferred number of character state changes might behave. 

The problem of determining how much information can be obtained from a given 

finite data set comprising two or more character sequences is clearly of importance. 

Simulation studies and theoretical analysis with two or more taxa and more com

plex models of evolutionary change should throw some light on this area, and lead 

to better estimates of the reliability of this aspect of phylogenetic inference. 

7.4.2 Properties of selection criteria 

The performance of the compatibility (Co) , closest tree (CT) and maximum par

simony (MP ) methods has been discussed at length in this thesis, but little has 

been made of the fundamental properties of the tree selection criteria used by these 

methods, and in what way selection criteria affect performance. 
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Consider the way in which each tree selection method assigns a 'score' to in

ferred edge lengths. These edge lengths can be simply the observed relative fre

quencies of bipartitions of the taxon set into different character states, as with the 

'Sequence Observed' variants, or could be inferred with some adjustment made for 

multiple character state changes, from either distances or sequences (the 'Distance 

Hadamard' and the 'Sequence Hadamard' variants, respectively) .  Once these edge 

lengths have been estimated, potential trees, consisting of sets of compatible edges, 

are assessed for the optimality criteria of the methods. 

As in  Section 2.5 let the function to be optimized be M(T' ) ,  for each potential 

tree T'. With Co, M(T') is just the sum of the inferred edge lengths q ,  while CT 

maximises a quadratic function of the q values. Hence, Co can be considered to 

penalise each edge not included in T', in proportion to its inferred length, and CT 

can be considered to penalise each edge not in T' according to the square of its 

inferred length .  This penalty assigned by CT to edges not in T' is dependent on 

the edges in T'. 

MP methods, on the other hand, penalise each edge excluded from T' by the 

number of additional character state changes that must occur to account for the 

observed or inferred frequency of bipartitions corresponding to that edge. This 

number can vary from 1 up to Ln/2J with 2 character states and n taxa ( " Ln/2J " 

means the integral part of n/2) ,  and is  also dependent on the other edges in the 

tree. 

We therefore might suppose that since the penalty for non-inclusion of an edge 

in a potential tree T' is dependent on those edges in T' for CT and for MP that 

thse two tree selection methods would be more accurate than Co, but this has not 

always been the case. 

To understand the reasons these methods perform as they do, we must therefore 

seek deeper understanding of the theoretical properties of the tree selection criteria, 

and this is a promising avenue for future research. These theoretical properties 

are often counter-intuitive: some surprising properties of the maximum parsimony 

method are discussed in [81 ] .  

7.4.3 Search strategies 

The problem remains of inference of very large generating trees, with in the order 

of hundreds of taxa. While the advisability of attempting reconstruction of such 
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large trees is questionable, the performance of clustering methods with such data 

sets is not well understood. This can be investigated with computer simulation. 

As the number of taxa increases the number of replications must be limited (the 

generation of distance data must require 0( n2
c) operations) , but with massively 

parallel supercomputers available, this generation could take only 0( ne) time with 

a sufficient number of processors. 

Future work will almost certainly be directed towards such large simulations. 

Unfortunately, this leaves aside the search methods. The exponential number 

of potential trees means that with large n exhaustive search is impossible, and 

heuristic search strategies must be used. 

One method which has been used with some success is the Great Deluge algo

rithm [ 18 ] ,  [68) , which was able to find several significantly shorter parsimony trees 

on a subset of the "Out of Africa" mitochondrial DNA data set [38] , [96) , than were 

originally found using the program PA UP [90] . The best parsimony tree found by 

the Great Deluge method was 20 steps shorter than the best found previously. 

The ability of this method to search the tree-space for parsimonious trees should 

be further investigated , and also for the other search methods (CT, Co) . This 

too can be accomplished using massively parallel computers, by running several 

solution trees at once. 

A new strategy for conducting heuristic searches of tree space [68] I am calling 

"Hitch-hiking" . The basic premise under which Hitch-hiking works is that good 

solutions (for example, highly parsimonious trees) have common characteristics . 

Under Hitch-hiking there are a number of driver solutions, with each of which 

is associated a number of hitcher solutions, which are its passenger solutions. At 

each search step, each driver solution will be perturbed, according to some other 

search strategy, for example Great Deluge [68] , Hill-Climbing, Tabu Search [32] , 

Simulated Annealing [95] . Each passenger solution for which this perturbation is 

possible is also perturbed in  the same way. 

Properties for perturbation of the solution trees must be common to as many 

trees as possible for Hitch-hiking to work. Thus a particular non-trivial bipartition 

of the taxon set ( i .e . ,  an internal edge of the tree) is not a good choice for alteration, 

since the probability that two randomly chosen trees have one or more internal 

edges in common approaches zero with increasing n and hence in almost all cases 

the perturbation of the driver solution would not be possible for the passenger 
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solutions. 
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One property might be to consider the paths between three taxa: every three 

pendant vertices, say i ,  j, k, have a point z at which the three paths between them 

( 7r;,j , 1ri,k and 7rj,k ) intersect. Changing the point at which the path 7ri,z intersects 

7rj,k is a change which can be carried out for all trees (see Figure 7.2, below) .  

k 

Figure 7.2: Possible move in  the Hitch-hiking heuristic search strategy 
In this figure is shown a hypothetical move which could be undertaken by a driver 
or passenger solution in a Hitch-hiking search. In the left-hand graph is shown 
only the pendant vertices i , j, k ,  the paths 7ri,j , 1ri,k and 7rj,k , and the point z 
at which these paths intersect. The path 1ri,z is then moved along 7rj,k , to now 
intersect it at vertex z'. This is shown in the right-hand graph.  

k 

Hitch-hiking is a quite general strategy, and many details can be varied, for 

example the ratio of drivers to hitchers, the capacity of each driver ( i .e. , the number 

of passengers it can take), and the method of choosing the driver solutions and of 

assignment of their passenger solutions. 

Hitch-hiking has not as yet been tested, but it is ideally suited to parallel 

computers, as each solution can be stored and processed on one processor. 

I believe that this sort of investigation will be a fruitful direction for further 

investigation. 
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Algorithm 7 .1  : Example of Hitch-hiking 

{ This description is using the Great Deluge method with maximum parsimony } 

Choose running parameters: 

n 

s 

d 

c 

{ number of taxa } 

{ number of solutions, ::; S } 

{ number of drivers, ::; D } 

w 

{ capacity of each driver solution, ::; C } 

{ increment in waterlevel, � 0 .01  } 

Generate data set 

Generate root sequence 

Grow other sequences 

Pick s random start solutions treex 

Find parsimony lengths of these treex 's with Fitch 's algorithm 

Fix parsimony bounds b; for each candidate solution x (these are upper bounds) 

Repeat 

Choose d driver solutions e.g. ,  

from the top d current solutions, 

from the bottom d current solutions, or 

at random from the whole set of solutions, etc. (depending on implementa

tion) 

For each driver solution x 

Choose three pendant vertices i , j, k from treex 

Find the point z at the intersection of 7r;,j , 1ri,k and 7rj,k 

Repeat 

Remove the subtree rooted at z containing i but not j or k 

Choose r from a random probability distribution with spread parameter v 

and mean m 

Insert internal vertex z', r places along the path 1r j,k from z 

Add the sub tree removed above to vertex z' , to get tree� 

Find parsimony length I� of tree� 

until {I� < bx ) or (can't improve after several tries) 

if (I� < b,: ) then 
treex - tree� 

For each passenger solution p associated with driver solution x 
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end. 

Perform the same perturbation as above if the parsimony length [� of 

the resultant tree is shorter than bp 
bp +- bp - (bp - /� )  X W 

lp +- �� 
else if (V < Vmar) then 

increase the probability distribution spread parameter v to give larger pos

sible moves and get out of local optimum 

abandon current iteration 
if (V = V mar) then break 
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Appendix A 

Tree Topology Description 

Notation 

) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  < 
[ UB40] 

17 1  

A notation i s  described here which can be used to  characterise the distinct 

topologies of trees. The notation for a tree (called its 'TTDN'  for brevity) can 

be applied to any tree, but it is most succinct when binary trees only are used. 

The notation follows the spirit of the IUPAC naming convention for the naming of 

organic molecules [2] . 

A notation has been proposed by Harding (36] , but I believe my notation to be 

more intuitive. 

Note that the topology of a given tree is used throughout this thesis to indicate 

the underlying structure of the tree, that is, with no edge or vertex labels. Thus, 

the three unrooted binary trees on four pendant vertices all have the same topology 

(see Figure A.l) . 

The mapping from tree topology to description is onto, but not one-to-one, i .e . ,  

there may be more than one notation to describe the topology of a given tree, but 

a given notation describes just one topology. 

Rooted Binary trees 

To characterise the topology of a rooted binary tree the following rules are used: 
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2 

4 

Appendix A .  Tree Topology Description Notation 

3 2 

4 3 4 

2 

3 

Figure A . l :  The three binary unrooted trees on 4 pendant vertices . 

1 .  The first letters in the notation tell us what general type the tree is :  we 

write 'UB'  for 'Unrooted Binary' ,  and 'RB '  for 'Rooted Binary' .  If the tree 

is non-binary we write 'UN'  and 'RN'  to indicate unrooted non-binary and 

rooted non-binary trees, respectively. 

2. Except for the root , which we label 1 ,  delete all the pendant vertices and 

edges, leaving a skeleton of the original tree. 

3. In this skeleton, find a path 1r of maximal length which includes the root, and 

count the number of vertices this path contains; this is the first number in the 

notation of the topology. The choice of 1r may be arbitrary if there is more 

than one path of maximal length which includes the root, but in general 1r is 

chosen to minimise the number of subtrees which branch off it .  This serves 

to simplify the notation as much as possible. 

4. Proceeding from the root towards the other end of 1r, we treat each subtree in 

turn, and determine its notation by considering it to be a rooted tree, rooted 

at the vertex adjacent to 1r .  

5. The notation for a single path, with no subtrees branching from it ,  i s  simply 

the number of vertices which are contained in the path. 

6. The position of each subtree branching off a particular path is given by the 

subscript which follows the notation describing that subtree. 
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For example, consider the binary tree shown in Figure A.2, rooted at R. In 

this tree we can take as our maximal path the one along the ten vertices in the 

horizontal path. 

R 

Figure A.2:  Example tree T for which the TTDN is sought 

We form the skeleton by deleting pendant vertices and edges, other than vertex 

R and the edge i ncident on it (Figure A.3) .  

R 

Figure A.3:  Skeleton of tree T in the previous figure. 

The next term in the notation is 10 ,  as there are 10 vertices remaining in 1r. 

Starting at the root, we find the first subtree branching off 1r has only one vertex 

and is adjacent to the fourth vertex of 1r. Hence the next term in the notation is 

1 4 .  The next term is found by first finding the notation for the subtree branching 

off 1r at vertex 6. It has a path 1r1 of length 2, and another vertex branching off 1r' 
at position 1 .  The description of this subtree is then 2, 1 t ,  and we write (2, 1 1 )6 to 

indicate that it branches off 1r at position 6.  The last term in the notation is 1 8 . 

Hence for this topology the TTDN characterisation is RB 10 ,  1 4 ,  (2 ,  1 1 )6 , 18 . 
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U nrooted Binary trees 

Appendix A.  Tree Topology Description Notation 

F'or unrooted binary trees, we first delete all the pendant vertices and the edges 

�ncident on them. We then choose a path 1r of maximal length,  if possible to 

lllinimise the number of subtrees branching from it .  The first part of the notation 

is then 'UB' followed by the number of vertices in 1r .  

We choose one end of 1r ,  to  minimise the sum of  the indices of  the sub trees 

branching off 1r (once again, to simplify as much as possible the characterisation of 

the tree) .  We then proceed in the same way as we did with the rooted tree. 

Reconstructing a tree fro m  i t s  TTDN 

To construct an unlabelled tree from its TTDN, we use the reverse procedure. 

Consider a rooted tree first, as before. 

Suppose we are presented with the following TTDN characterisation: 

where each (X;) ;  may or may not be present. 

We first construct the path 1r with k vertices, and beginning at one end, label 

the vertices 1 ,  2, . . . , k. We determine the rooted topologies described by each of 

x2 , x3 , . . .  ' xk-1 in turn, and join them to 7r at vertices 2, 3, . . . 
' k - 1 respectively. 

Then to each vertex of degree 2 we attach another edge and pendant vertex, and 

to the others we attach two edges and pendant vertices. 

For example, suppose we have the notation RB7, 12 , (2, 1 , )3 , 24 • We first con

struct the path 1r with seven vertices, one end vertex of which is the root (Figure 

A .4 ) . Adding subtrees in turn we get the tree shown in Figure A.5.  Finally, by 

adding pendant vertices to this skeleton we get the complete rooted binary tree 

shown in Figure A .6 .  

R 

Figure A .4:  The first stage in reconstructing a tree from its TTDN.  
In  this figure only the initial maximal path 1r i s  shown. 

For unrooted trees we proceed as above, but in the last stage we add new 

pendant vertices to every vertex of degree one or two. 

We note some useful properties of this notation. For an unrooted binary tree 

T whose TTDN description is UBk, (X2)2 ,  (X3)J ,  . . .  , (Xk-dk-b the diameter d(T) 
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R 

Figure A.5 :  The second stage in reconstructing a tree from its TTDN. 
In this figure the subtrees branching off the initial maximal path 1r have been added, to 
give the skeleton shown. 

R 

Figure A.6:  The third stage in reconstructing a tree from its TTDN. 
In  this figure the pendant edges and vertices have been added to the skeleton in  Figure 
A.S above, to give the complete tree. 
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,f T is k + 1 .  Also, the number, say a ,  of internal vertices of T is the sum of the 

m-subscripted numbers , so the number of pendant vertices is a + 2.  

'IJ"on-binary trees 

rhe notation can be generalised to include non-binary trees , but by doing so much 

,f its conciseness is lost: since in binary trees all vertices have either degree 1 or 

: (apart from the root, which may have degree 2) ,  it  is possible to simplify the 

:haracterisation of the topology of such a tree by forming its skeleton, as outlined 

cbove. However, with non-binary trees we can make no such simplification, and 

tence when describing the topology of a non-binary tree, rule number 2 is omitted. 

�ist of topologies 

\ list of all the tree topologies of unrooted binary trees with from 4 to 10 pendant 

1ertices is provided below. 

UB2 >-< 

UB3 

UB4 
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UB5 
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UB7, h 
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Appendix B 

Proofs of theorems -

Theorem 1 UPGMA is consistent with distances which are additive and which 

satisfy the "molecular clock" model. 

Proof: The theorem is proved by induction on the clustering process. Consider 

the base case first. Suppose we have a set S of taxa labelled { 1 ,  . . .  , n } , corre

sponding to the pendant vertices of a given rooted phylogenetic tree and satisfying 

the above hypotheses. Let the root of the phylogenetic tree on S be r. 

Then by the molecular clock hypothesis, di,r = dj,r for all i , j  E S. For each 

i ,j  E S, let the nearest common relative of i and j be ncr(i , j ) .  Then di,j = 

di ,r + dj,r - 2dncr(i,j) ,r -
Since di,r i s  constant for i E S,  this means the minimum value of di,j occurs for 

the pair { i , j }  of taxa which have most recently diverged. 

Hence UPGMA, which at the first stage amalgamates taxa i and j if and only 

if di,j is minimal, will correctly deduce the first cluster if the distances satisfy the 

above hypotheses. 

Now suppose the clustering process has reached step k, and correctly deduced 

the first k clusters. If we can show that UPGMA correctly deduces the next pair 

of clusters to amalgamate, then the proof is complete. 

Recall that the distance matrix D = [di,j] is replaced by D' = [d�J at each 

clustering stage as follows: If clusters x and y are amalgamated into a new cluster, 

say z ,  then for each other cluster a, 

dl - axdx,a + aydy,a 
- ' z,a CXx + CXy 

where ai i s  the number of taxa in cluster i .  



182 Appendix B. Proofs of theorems 

Now since the distances satisfy the molecular clock hypothesis ,  we have 

so 

dz a = dx a = dy a · ' ' ' 

Hence the only difference between the distance matrices D and D' is that D' has 

one row and one column removed,  corresponding either to x or to y .  

The minimal dx,y entry in D having been removed, the next most closely related 

pair of clusters will have the smallest entry in D'. 

Hence UPGMA will correctly determine the next clusters to amalgamate, which 

completes the proof. 
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Theorem 2 TD is inconsistent with additive data 

Proof: The proof is by counterexample. 

Consider the tree T shown in Figure B . 1 ,  with edge lengths shown in italics. 

Under the additive distances hypothesis, the distance matrix D is 

0 8 14 22 15  

8 0 10 1 8  1 5  

D =  14 10  0 14  2 1  

22 18  14 0 29 

1 5  15  21  29 0 

We proceed with TD: 

Step 1 :  Put the two most distant taxa, here 4 and 5 ,  into L and R respectively. 

Step 2: Find dL,i for all i (j. L and dR,j for all j (j. R (recall that dL,i = 

L,jEL dj,;/ IL I and dR,j = L,jER dj,;/ IRI ) : 
dL 1 ' d4,1 = 22; dR l  ' ds,I = 15 ;  

dL,2 d4,2 = 18 ;  dR,2 ds,2 = 15;  

dL 3 ' d4,3 = 14;  dR 3 ' ds,3 = 2 1 .  

Step 3 :  dL,3 i s  minimal i n  the above, so L +--- { 3 ,  4 } .  

Step 4: dL,I +--

d£,2 +---

dl,3+dl,4 2 
d2,3 +d2,4 2 

= 18 ;  

= 14 ;  

dR,l 
dR 2 ' 

- 15 ;  

15 .  

Step 5 :  dL,2 is minimal in the above, so  put L = {2, 3, 4} .  

Step 6: 15 .  

Step 7:  dL,l is minimal in the above, so put L = { 1 , 2, 3, 4} .  

Step 8: rl dl ,S - d4,5; 

r2 d2,5 - d4,5 ; 

r3 d3,5 - d4,5 ;  
r4 O· ' 
r·s - 0. 
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Step 9:  This gives the adjusted distance matrix 

1 : 0 36 36 36 29 

2 :  36 0 32 32 29 

D' = [d�,j ] = [di,j - r; - rj] = 3 :  36 32 0 22 29 

4 :  36 32 22 0 29 

5 :  29 29 29 29 0 

Step 1 0: Now using UPGMA with D' as its input data, the first pair of taxa to 

amalgamate to form a new cluster is {3 , 4 } .  

Step 1 1 : The distance matrix is reduced to 

1 : 0 36 36 29 

D� = 
2 :  36 0 32 29 

{3 ,  4 } : 36 32 0 29 

5 :  29 29 29 0 

Step 12 :  There are now three possible pairings to make, { 1 ,  5 } ,  {2 ,  5 } ,  and 

{ {3 ,  4 } ,  5 } ,  all of which have the same entry in D� . 

Since UPGMA must now choose arbitrarily between three possible pairings, 

each of which give different final trees, it is not possible to guarantee to pick the 

correct tree. Hence TD is inconsistent with additive data. 

4 5 

Figure B . 1 :  Tree T used in the proof that TD is inconsistent . 
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Theorem 3 Go is consistent with the same models of evolution with which CT is 

consistent. 

Proof: Suppose we have a data set which was generated according to a model 

with which CT is consistent. As has been shown by Hendy (45] , the edge length 

spectrum q
' inferred from observed biparti tion frequencies will converge to the 

true edge lengths (in expected numbers of change of character state, for a Poisson 

process) as sampling error tends to zero. 

As the entries of q
' which do not correspond to the true tree (barring qb ) 

approach zero in this case, the objective function 

is maximised only when T is the generating tree. 

Hence Co is consistent. 

Note that Co being consistent with a given model does not imply that CT is 

consistent with the model: we have shown the converse. 
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Theorem 4 SL is consistent with additive data. 

Proof: Consider a tree Tc on n pendant vertices labelled { 1 ,  . . . , n } , with dis

tances D = di,j which are additive, i .e. , the distance between any two vertices i 

and j in Tc is equal to the sum of the lengths Qk of the edges ek which are in the 

path 1ri,j . Suppose also that Qk > 0 V k and that there are no vertices of degree 2. 

Because UPGMA is known to be consistent with additive distances which, in 

addition, satisfy the molecular clock hypothesis ,  it is sufficient to prove that the 

modification to D made by SL yields distances which · satisfy the molecular clock 

hypothesis, and do not conflict with the topology of Tc. 
The first step in SL finds the two most distant taxa, say x and y,  and puts them 

into sets L and R, respectively. (The order is not important in the implementation, 

but we will use it for convenience here.) 

Let 

L = { i E { 1 ,  . . .  , n } : di,x ::S di,y }  

and 

R = { i E { 1 ,  . . .  , n} : di,x > di,y } .  

(This automatically includes x and y in L and R, respectively. ) 

Choose an internal vertex r such that dx,r = dr,y, and if there isn't such a vertex 

already in T, insert one (it will be deleted later) .  

For each i E L, find Vi , the residue of vertex i ,  given by V i  = dx,y - di,y · Similarly, 

find Vi = dx,y - dx,i for each i E R. 

Now for each i E L and each j E R, put di,i = di,j + Vi + Vj = dx,y · This is 

equivalent to adding Vi to the length of the pendant edge incident on vertex i , for 

each i .  Call the tree with these new edge lengths T'. Clearly T' has exactly the 

same branching pattern as T: the branching order has not been changed by the 

above process. 

For all i , j  E L  let di.i = di,j and for all i , j  E R  let di,j = di,j · The new distances 

D' = [di,j ] define an additive tree metric, as did the original distances D = [di,j] ,  
but with the added constraint that all pendant vertices are equidistant from one 

point, which we have labelled r (the molecular clock hypothesis ) .  We now remove 

the vertex r from T'. 
Due to a theorem of Buneman [7] , which states that an additive tree metric 

specifies a unique tree, the distances D' can only correspond to T', which has the 
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same branching pattern as T. 

UPGMA is known to correctly construct T' from D', hence SL constructs T. 

(Note that the edge lengths are not correctly inferred by the above method. ) 

This completes the proof. 
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Theorem 5 NJ uses the optimal weight for net divergence. 

Proof: Consider a tree T on n 2: 4 pendant vertices, with distances between all 

pairs of vertices of T satisfying the constraints 

1 .  di,j > 0 � i =I= j ;  

2. di ,i = 0 ; 

3. di ,j = LeE1ri,i J.L( e ) ,  where J.L(  e) is the length of �dge e and 1ri,j is the path 

between vertices i and j. 

Note that this requires the length of each edge to be positive. 

Recall that at each clustering stage, NJ chooses clusters x and y to amalgamate 

i nto cluster z if and only if 

1 dx,y - -,--2 ( Vx + Vy ) n -
is minimal, where Vx, the net divergence of cluster x, is the sum over all other 

clusters k of dx,k , and n' is the number of clusters currently available for clustering. 

We show that the weighting n'�2 for the net divergence is the only one which 

yields a method consistent with additive data. 

Let mx,y = dx,y - w( Vx + vy) ,  and suppose that { x, y}  is a neighbouring pair. 

Let u be another vertex of T, which is not adjacent to either of x or y .  Let the 

edge adjacent to x be et, and that adjacent to y be e2 • Let ez be some edge on the 

path 'lrx,u , other than e1 . 
Since a proof of the consistency of NJ is known [89 ] ,  it is sufficient to show that 

mx,y - mx,u < 0 for all possible u .  

Now 

mx,y - mx,u dx,y - w(Vx + Vy) - dx,u + w(vx + Vu) 

,
J;._/{e) - ,J;.,. I'{ e) - w � c�, I'{ e)) + w � c�. l'{e} 

Let [p(e )] be the coefficient of p(e) in (mx,y - mx,u ) ·  Then 

1 - 1 - w + w = 0 ,  

[p( e2 ) ] 1 - w(n' - 1 ) + w = 1 - w(n' - 2) ,  and 

[p( ez ) ] - - 1 - w(gz - hz ) , 
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where 9z is the number of vertices i such that ez is in the path 7r;,y , and hz is the 

number of vertices i such that ez is in the path 1ri,
u · 

Note that 1 � 9z � n' - 2, 2 � hz � n' - 1 ,  and 9z + hz = n'. 

Since we require mx,y 
- mx,u < 0 for all positive edge lengths J.L;, we must 

have [J.L (e)] � 0 for all edges, and [J.L(e)] < 0 for some edge e.  We already have 

[J.L (e1 )] = 0, so consider [J.L (e2) ] .  

Now 

- w(gz - hz ) � 1 
- 1  1 

-- < w < --

n' - 4 -
- n' - 2 '  

so w = n'�2 i s  the only weight function that will guarantee N J does not choose 

{ x, u} as a neighbouring pair. 

We also require that [J.L( e)] < 0 for some edge e. Let the edge adjacent to e1 and 

e2 be e3 . Then 9e3 = n' - 2 and he3 = 2, so IJ.L(e3) 1 = - 1 - ::=:� < 0 and therefore 

we have mx,y - mx,u < 0 .  

Since u was chosen arbitrarily, NJ will only choose a neighbouring pair of ver

tices of T to amalgamate i nto a new cluster. 

This completes the proof. 
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rheorem 6 NJ and CTDH are identical for the case n = 4 -

:>ro of: Let a3 = d1 ,2 + d3,4 , as  = dl ,3 + d2,4 ,  and a6 = dl ,4 + d2,3, corresponding 

o the minimal path sets of trees T3, Ts ,  and T6 respectively, as shown in Figure 

3 .2 .  (The internal edges of these trees are 3, 5, and 6 respectively. ) 

Suppose the generating tree is T3, as in Figure B.2. Suppose also that a3 < a5 
�nd a3 < a6, so in the distance spectrum entry 97 = dl ,2,3,4 = a3. (Recall that 

n the calculation of the distance spectrum, dx is the minimum sum of distances 

1etween all pairs of elements in X. )  

3 2 

2 4 3 4 

2 

4 3 

Figure B.2: The three unrooted binary trees on four pendant vertices 

Let the square of the Euclidean distance between the observed distance spec

rum g and the expected distance spectrum if the generating tree were Tk be 

�2 (Tk ) ·  
Then we have 

Therefore 

.nd similarly, 

1 )2 16  (as - a6 , 
1 )2 1 ( )2 1 2 -(as - a6 + - -2a3 + as +  a6 + -(as - a3) . 1 6  16  12 

}8 (3(as + a6 - 2a3)2 - 3(as - a6)2 + 4(a5 - a3)2) 
1 

48 (as - a3) ( 12(a6 - a3) + 4(a5 - a3) ) , 
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The quantities 62(Ts ) - 62(T3 )  and 62(T6) - 62(T3)  are both strictly positive 

by the hypothesis, so CTDH selects T3. 
Likewise if d1 ,2,3,4 = a5 (respectively a6) ,  then CTDH selects Ts (respectively 

T6) by the same argument. 

We have supposed that d1 ,2 ,3,4 = a3 , i .e. , that a3 < as and a3 < a6 . Recall that 

in NJ,  the initial distance matrix D = [d;,i] is replaced by a modified matrix M =  

[m;,j] ,  where m;,j = d;,j - n�2 (v; + vi ) · The smallest value, say mx,y ,  of M is found 

and the pair { x ,  y}  amalgamated to form cluster. With n = 4, only one clustering 

decision is necessary, and m1 ,2 = - (dt ,3 + dt ,4 + d2,3 + d2,4 ) /2 = m3,4 , m1 ,3 = 

- (d1 ,2 + dt ,4 + d2,3 + d3,4) /2 = m2,4 , and mt ,4 = - (d1 ,2 + dt ,3 + d2,4 + d3,4 ) /2 = 

Hence NJ selects T3 {:=:} m1,2 < m1 ,3 and m1,2 < ml,4 ·  

m1 ,2 < ml ,3 {:=:} dl ,3 + dl ,4 + d2,3 + d2 ,4 > dl ,2 + dl ,4 + d2,3 + d3,4 
{:=:} dl ,3 + d2,4 > dl ,2 + d3,4 
{:=:} as > a3, 

and 

m1.2 < ml ,4 {:=:} dl ,3 + dl ,4 + d2,3 + d2,4 > dl ,2 + dl ,3 + d2,4 + d3,4 
{:=:} dl ,4 + d2,3 > dl ,2 + d3,4 
{:=:} a6 > a3 . 

If the minimum of {a3, as , a6 } i s  not unique, then neither CTDH nor NJ can 

resolve the tree. 

Hence NJ and CTDH select T3 if and only if a3 is minimal in { a3, as , a6 } , so 

the two methods are identical in this case. 
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fheorem 7 A simple modification of ST yields NJ. 

>roof: Let bi,j,k,l = 1 if di,j + dk,l < di,k + di,l and di,j + dk,l < di,l + dj,k ,  and 0 

therwise. Let 

S{a,b} = L Di,j,a,b 
i ,j:f:a,b 

rhere the sum is taken over all quartets {a , b, i , j } .  

The S T  algorithm chooses { a ,  b }  as a neighbouring pair {:::=:} { a ,  b }  maximises 
, ' {a,b} · 

NOW let Pa,b,i ,j = da,i + db,j + da,j + db,i - 2( da,b + di,j ) .  
Let 

and 

n 

Va = L da,i , 
i=l 

Q{a,b} = L Pa,b,i,j · 
i ,jEA 

We will choose { x, y} as a neighbouring pair {:::=:} Q {x,y} is maximal. 

Let A = { 1 ,  2, . . . , n } - {a ,  b} . Note that this is particular to a given {a ,  b } . 

Then 

S(a,b) = L Di,j,a,b· 
i,jEA 

For some Pi,j , 
n n n L Pa,b,i,j = L L Pa,b,i,j - L Pa,b,i,i - 2 L Pa,b,a,i - 2 L Pa,b,b,i - 2pa,b,a,b· 

i ,jEA i=l j=l i=l iEA iEA 
So 

n n 

Q{a,b} = 2n(va + Vb) - 2n2da,b - 2 L Vi - 2 L (2da,i + 2db,i - 2(da,b + di,i ) )  

This i s  

i=l i=l 

-2 L ( da,a + db,i + da,i + db,a - 2( da ,b + da,i ) )  
iEA 

-2 L (da,b + db,i + da,i + db,b - 2(da,b + db,i ) )  + 4da,b · 
iE.4 

n 

2n(va + vb) - 2n2da,b - 2 L Vi - 2(va + vb) + 2nda,b 
i=l 

-2(vb - da,b + Va - da,b - (n - 2)db,a - 2(va - da,b) )  



-2(vb - da,b + Va - da,b - (n - 2)db,a - 2(vb - da,b) ) + 4da,b · 

Further manipulation yields 

n 
2n(va + vb) - 2n2da,b - 2 L Vi - 2(va + vb) + 2nda,b 

i=l 

-2(vb - Va) + 2(n - 2)da,b - 2(va - Vb) + 2(n - 2)da,b + 4da,b 

n 
= 2(n - 1 ) (va + Vb ) - 2 L Vi + da,b (-2n2 + 2n + 4(n - 2) + 4) 

i=l 
n 

= 2(n - 1 ) (va + vb ) - 2 L Vi - 2(n - 1 ) (n - 2)da,b · 
i=l 
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This is maximal {:::::::} 2( n - 1 ) (  n - 2 ) (  Va + Vb - ( n - 2)da,b ) is maximal 

{:::::::} Va + Vb - ( n - 2)da,b is maximal <===} da,b - n�2 ( Va + vb) is minimal. 

The second part of the proof shows that the modification of the distance matrix 

D used by ST could equally well be made in the same way as it is in NJ. 

We have just shown that at the beginning of the clustering process, maximising 

Q{x,y} is equivalent to minimising dx,y - n�2 (vx + vy) ,  as with NJ.  

Suppose we choose some { x , y} as a neighbouring pair, and amalgamate clusters 

x and y to form the new cluster z .  
Let D' be defined by 

• d�.i = di,i if i , j  =/= x , y ;  

Let D" be defined by 

d/1 d ' f  . . ../.. e i,j = i,j 1 Z , J  I x , y; 

d · +d • d" . = :r,z y,z Z,J 2 ' 

If 

and 

/1 d" d" d" d" 2(d" d" ) Pa,b,i,j = a,i + b,j + a,j + b,i - a,b + i,j ' 
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we need to prove that p: b i 1· = Pa" b i 1· · ' '  t t ' '  

Clearly this is true for all a ,  b, i , j  -j. z ,  as the relevant distances have not been 

changed. 

If one of a ,  b, i , j is z, we can without loss of generality suppose that a z ,  

which gives 

d · + d  · - d  d · + d  · - d  d b + d  b - d  
= 

x,t y,t x,y + d . + x,J y,J x,y + d . _ .2( x, y, x,y + d · · ) 2 b,] 2 b,t 2 I ,J 

d · + d . d · + d . d b + d b = X ,l y,t + d . + X,] y,} + d . _ 2( X, y, + d · · ) 2 b,] 2 b,t 2 t ,} 

11 = Pz,b,i ,j · 

Hence we could equally well calculate the new distances from D in the manner 

used in NJ. 

This concludes the proof. 
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Appendix C 

Pseudo code 

C . l  Introduction 

This appendix lists and describes the fundamental components of the simulations 

programs used in this study. Such a description, free of the requirement of prior 

computer programming knowledge, and accessible to the intelligent layman, is nec

essary when comparing algorithms and heuristics in a systematic way, and is useful 

for those who wish to implement such methods in a programming language of their 

choice. 

There are a few conventions used here, which require explanation: 

• The hierarchy of instructions is indicated by their indentation, so loops and 

other repeated structures ( "for" , "do ( . . .  ) while ( . . .  )" , "while ( . . .  ) do ( . . .  )" 
and "case ( . . .  ) of ( . . .  )" ) are indented. 

• The assignment operator "�" is used so that a � b means the value of a is 

set to the value of b. 

• Swapping the values of two variables, say a and b, is indicated by "a +-+ b" . 

• A variable quantity inside a bracket, e.g. "( x )" serves as a logical operator, 

true if x =J 0 and false if x = 0.  

• A "break" indicates that the program leaves the current repeat structure (as 

listed above) .  

• "random" is a short-hand for the "drand48 ( ) "  pseudo-random number gen

erator, which returns a value from a uniform distribution on the interval 
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[0 , 1 ) .  

• The "AND" operator returns the logical AND of two numbers, say x and y ,  
so that each bit of z +- x AND y i s  ' 1 '  i f  and only i f  the corresponding bits 

of x and y are both ' 1  '. 

• Arrays of variables are indicated by square brackets after their name, enclos

ing the number of elements in the array. A vector v with 4 components is 

thus indicated by "v[4]" .  k-dimensional arrays have k such pairs of brackets. 

• Sets are stored as arrays, so for a set A =  [a1 ,  . . .  , ak] , x E A  if ax =J 0. The 

union of two sets A = [ar , . . .  ak] and B = [b1 , . . .  , bk] is C = [er , . . . ck] , where 

c; = 1 if a; =J 0 or b; =J 0. 

The two main programs used are s i m . c and big . c .  

C . 2  General functions 

Algorithm C. l : compare....sets(A, B, max) 
{ Returns the number of elements in A which are not in B.  A and B are assumed 

to be the same size, max. } 

local variables: 
differences, 

t , ) , 
same; 

differences +- 0 
for i = 1 to max do 

same +- 0 

for j = 1 to max do 

if (A; = Bj ) then 

same +- 1 

break 
if (same = 0) then 

{ number of elements of A which are different 

from all the elements in B } 

{ counters } 

{ flag } 

differences +- differences + 1 

return (differences) 

end. 
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Algorithm C.2 : Hadarnard(v, w) 

{ This function multiplies the vector v by the Hadamard matrix Hn and puts 

the result into vector w .  This uses the "fast-Hadamard method" devised by 

Hendy [45]. } 

local variables : 
i, j, k, l, a, jump, steps, { counters } 
x, y 

for i =  0 to m do Wi ...,_ Vi { m =  2n-l } 

jump ...,_ 1 

steps - m/2 

while (jump < m) do 

a .,_ O  

for i = 1 to steps do 
for j = 0 to jump - 1 do 

k .,_ a + j  

l ...,_ k + jump 

X ...,_ Wk + Wi 

y ...,_ Wk - WI 

WI ...,_ Y 

a - a + 2  x jump 

jump - 2 x jump 

steps - steps/2 

end. 
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Algorithm C.3 : HexpH(inv,outv) 

{ This function calculates ! H( exp(H(inv)))  and puts the result into outv. } 

local variables: 
t ,  

p[M] ; 

invo - 0 

for i = 1 to m - 1 do 

Hadamard( inv, p) 

{ counter } 

{ intermediate vector } 

. . . 
tnvo - tnvo - tnvi 

for i =  0 to m - 1 do Pi - exp(pi) 

Hadamard(p, outv) 

for i =  0 to m - 1 do outvi - outvifm 
end. 

Algorithm C.4 : HlnH 

{ This function calculates ! H(ln(H(inv))) and puts the result into outv. } 

local variables: 
t ,  

err, 

Pi 
Hadamard(inv ,p) 

err - 0 

for i = 0 to m - 1 do 

if (Pi > 0) then Pi - ln(pi ) 

else 
err - 1 

break 

if (err = 0) then 

Hadamard(p,outv) 

{ counter } 

{ err = 1 {::} a non-positive edge length is in

ferred } 

{ intermediate vector } 

for i =  0 to m - 1 do outvi - outvtfm 

return (err) 

end. 
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Algorithm C.5 : permute(x,  perm) 

{ This returns a pseudo-random permutation of { 1 ,  . . .  , x }. } 

local variables: i ,j ;  

for i = 1 to x do perm; ._ i 

for i = 1 to x do 

{ counters } 

j ._ random x (x - i) +  i + 1 
{ when converting type double to type int, the number is truncated } 

perm; +---+ permj 

end. 

Algorithm C.6 : rough_exp( i )  

{ This function returns � 100 x 10i/1°. } 

local variable: j 

i - 0 
if (i � - 10) then 

case i of 

- 10:  j - 10 
-9: j - 13 
-8: j - 16 

-7: j - 20 
-6: j - 25 
-5: j - 32 
-4: j - 40 
-3:  j - 50 
-2: j - 64 

- 1 :  j - 80 
0: j - 100 
1: j - 125 
default: j ._ 10 x rough..exp(i - 10) 

return (j) 

end. 
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Algorithm C. 7 : permutation_to_tree(perm ,  outpuLtree) 

{ perm is an array, a permutation of the integers 1 ,  . . .  , n - 1 .  } 

local variables: 
ea[N] , 

x ,  y, new, t , ) ;  
for i = 1 to n do 

outpuLtreei +- 0 

for i = n + 1 to 2n do 

eai +- 0 

outpuLtreei +- 0 

for i = 1 to n - 1 do 

new +- n + i 

X +- eaperm; 
Y +- eaperm;+I 
outpuLtreex +- new 

outpuLtreey +- new 

eax +- new 

eay +- new 

eanew +- new 

for j = 1 to new - 1 do 

{ ea[ N] is the array of earliest ancestors chosen 

thus far } 

{ counters } 

if ((eaj = x ) or (eaj = y) )  then eaj +- new 

end. 
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Algorithm C.8 : sample_uniform( mean, range) 

{ Here, range is max_value - min_value } 

local variable: temp; . { interim floating-point number } 
temp +-- ((random - 0.5) x range) + mean 
return (temp) 

end. 

Algorithm C. 9 : sample..normal( mean, std..Llev) 
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{ This uses the Box-Muller method of generating normally distributed random 

numbers from uniformly distributed random numbers (70) . } 
local variables : 

Xt ,  x2, y, fac, rsq, bm; 
iset +-- 0; 
gset 

if ( iset = 0) then 

do 

Xt +-- 2 x random - 1 
x2 +-- 2 x random - 1 
rsq +-- x� + x� 

{ iset is initially set to 0. } 

while (rsq � 1 )  or (rsq +-- 0)  
fac +-- J-2 1n(rsq)frsq 
gset +-- xtfac 

iset +-- 1 
bm +-- x2Jac 

else 

iset +-- 0 
bm +-- gset 

bm +-- bm x std_dev + mean 

return (bm) 

end. 
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Algorithm C.IO : sampleJog_normal( mean, std..dev) 
iocal variable: temp 

temp +-- sample_normal(ln( mean), std....dev) 

temp +-- exp( temp) 

return (temp) 

end. 

C.3 Functions used in s 1m .  c 

Algorithm C. II  : compat(x; J, A) 

{ Checks to see if the number x is compatible with the numbers which are indexed 

by the first f elements of the set A. } 

local variables: 
i , corn, ternpi; { counters } 

{ First assume j is compatible with the first f edges indexed by A. } 

corn +-- 1 

if (! > 0) then 

if (x = 0) then corn +-- 0 

else 
for i = 1 to f do 

tern pi +-- x AND opos( Ai) 

if (ternpi 't {0, x, opos(Ai) } )  then 

corn +-- 0 

break 
if (opos(Ai) = x) then 

corn +-- 0 

break 
return (corn) 

end. 

{ A bipartition is not compatible with itself } 
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Algorithm C.l2 : choose_topology(topnumber, edge....set) 
local variables: 

i , j, x, 

C[N][N],  
r[N];  

for i = 1 to n do ci +- 0 

permute( n, r) 
case topnumber of 

1 :  

2: 

3: 

Ct +- {rt , r2} 
C2 +- { TJ, r4} 

Ct +- {rt , r2} 
C2 +- { Tt , r2, TJ} 
c3 +- { r4, rs} 

27: 
Ct +- { rt , r2} 
C2 +- { TJ, T4} 
C3 +- {rt , r2, TJ, r4} 
c4 +- { rs, r6} 
Cs +- {rs, r6, r7} 
c6 +- { rs, r9} 
c7 +- { rs, r9, rto} 

default: break 

edge....set +- 0 
for i = 1 to n - 3 do 

if (n E C,) then 

x +- m - 1  

for j = 1 to n - 1 do 

{ counters } 
{ array of clusters, each a subset of { 1 ,  . . .  , n} . } 
{ array of permuted integers, { rt , . . .  , rn} ·  } 

{ UB2 } 

{ UB3 } 

{ UB4 } 

{ The other cases, 4 to 26, have been omitted for 

brevity. } 

if (j E c,) then X +- X - 2j-l 
else 
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X +- 0  

for j = 1 to n - 1 do 

if (j E Ci) then x +- x + 2j-l 

edge...seti +- x 

end. 
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Algorithm C.13 : bipartitions_to_distances(v) 

{ This calculates the distance matrix D from v .  } 

local variables: 
i, j, k, 

ok, 

{ counters } 

{ flag } 

{ the numbers 1 ,  2 ,  4, .. . , 2n } 
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t [N] ,  

dO; { = 1 if a zero pair-wise distance is observed. } 

for i = 1 to n do 

for j = 1 to n do Di,j +- 0 

tl +- 1 

for i = 2 to n do ti +- 2 x ti-1 
{ Di,j is the sum of the observed proportions of the bipartitions for which the 

characters in the i-th and j-th places differ. } 

for k = 1 to m - 1 do 

for i = 1 to n - 1 do 

for j = i + 1 to n do 

ok +- 0 

if (((k AND ti ) = ti ) and ( (k AND ti ) = 0))) then ok +- 1 

if (((k AND ti ) = 0) and ( (k AND ti ) = ti )) then ok +- 1 

if ( ok) then Di,i +- Di,j + Vk 

dO +- 0 

for i = 1 to n - 1 do 

for j = i + 1 to n do 

Dj,i +- Di,i 
if (DiJ +- 0) then dO +- 1 

return (dO) 

end. 
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Algorithm C.14  : choose_tree(x, edge...set) 

{ Chooses a tree with x pendant vertices, from the uniform distribution on all 

trees equally likely, and puts the edge set describing that tree into edge...set. } 

local variables: k, t ;  
case x of 

4: t - 1 

5: t - 2 

6 :  

{ counters } 

if (random � 3/4) then t +- 3 
else t +- 4 

7 :  

8: 

9 :  

if (random � 2/3) then t +- 5 
else t +- 6 

k +- random x 33 
if (k � 16) then t +- 7 

else if (k � 24) then t +- 8 

else if (k � 32) then t +- 9 
else t +- 10 

k +- random x 143 

if (k � 48) then t +- 1 1  

else if ( k  � 96) then t +- 13 
else if (k � 120) then t +- 12 

else if (k � 132) then t +- 14 

else if (k � 140) then t +- 16 

else t +- 15 
10 :  

k +- random x 143 
if (k � 32) then t +- 17  

else if (k � 64) then t +- 19  
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else if (k � 80) then t - 18 

else if (k  � 96) then t - 20 

else if (k  � 1 12) then t - 26 

else if (k  � 120) then t - 2 1  

else if ( k � 128) then t - 22 

else if ( k � 136) then t - 24 

else if (k � 140) then t - 27 

else if (k  � 142) then t - 23 

else t - 25 

default: break 

choose_topology( t, edge ..set) 

end. 

Algorithm C . 15 : correcLdistances 
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{ This function uses the Jukes-Cantor distance adjustment to account for multi

ple changes of character state along lineages. The input distances are in matrix 

D and the adjusted values are returned to D. The model is the simplest pos

sible, with 2 states and symmetric i.i.d. rates of change. } 

local variables: 

t , ) ,  

d_inf; 

d_inf - 0 

for i = 1 to n - 1 do 

for j = i + 1 to n do 

if (Di,j � 0.5) then 

DiJ - 1000000 

d_inf - d..i.nf + 1 

{ counters } 

{ returns 1 {::::::::} the inferred distance is infinite } 

else Di,j - - log( 1 - 2 x Di,i )/2 

D · · - D · ·  J,l l,J 
return ( d_i n f) 

end. 
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Algorithm C.16 : geLpathsets(D) 

local variables: 

{ counters } 
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i , j, k, l , b, 
i2, j2, 
parity, 
dji, 

{ i2 = 2i-l , j2 = 2i-l } 

sum; 

sum � 0 

{ total of all pairwise distances } 

for i = 1 to n - 1 do 

for j = i + 1 to n do sum � sum + Di,j 

for i = 1 to m - 1 do 9i � sum 
9o � 0 

for i = 1 to n - 1 do 

parity � 1 

i2 � 2i-l 

for j = 2i- t to 2i do 

if (parity) then 

temp � Di,n + 9j-2i-t 
if (temp < 9j) then 9i � temp 

b � j 

while (b  = 1 (mod2) )  do 

b � b/2 

parity � 1 - parity 
parity � 1 - parity 

for j = 1 to i - 1 do 

k � 2i-1 

end. 

j2 � 2j-l 

dji � DiJ 

while (k < 2i) do 

k � k + 2i-l 

for l = k to k + 2j-t do 

temp � dji + Y1-2i-1-2i-t 
if ( temp < 91) then 91 � temp 

k +- k + 2j-l 
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Algorithm C.17  : number..oLbipartitions 
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{ This function returns the number of parsimony sites (i.e., those which are used 

by MPSO) of the data set. } 

local variables : 

i , j, num, { counters } 

f[M] ; { temporary vector } 

num - 0 

for i =  1 to m - 1 do fi - freqi 
for i = 1 to n - 1 do 

j - 2i-l 

/j - 0 

fm-1 - 0 

for i = 1 to m - 1 do if (Ji > 0) then num - num + 1 

return (num) 

end. 
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Algorithm C.18 : randorn_edgeJ.engths( edge _set, outv) 

{ Assigns random edge lengths to the edges in edge...set , and puts them in the 

vector outv. } 

local variable: i; { counter } 

for i = 1 to m - 1 do outvi +- 0 

{ assign lengths to internal edges: } 

for i = 1 to n - 3 do 

outvedge_set; +- random X ( max_intJength - min_edgeJength) 
+ min_edgeJength 

outvo +- outvo - outvedge....11et; 
{ assign lengths to pendant edges: } 

i +- 1 

while (i < m) do 

outvi +- random x (max_penJength - min_edgeJength) 
+ min..edgeJength 

outvo +- outvo - outvi 

i +-- 2 X i  
outvm-1 +-- random x (max_penJength - min_edgeJength) 

+ min..edgeJength 

outvo +-- outvo - outvm-1 
end. 
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Algorithm C.19 : sample_bipartitions(length ,  error _rate, inv, outv) 
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{ samples length times from the expected hi-partition spectrum inv, with pos

sible reading errors given by error _rate, and puts the result into outv } 
local variables: 

y[M] , { vector of cumulative probabilities } 
i, j, gap, tempi, k, taxon, bit, temp, 

{ counters } 
ranked[ M} , 

r, 
v[M] ; 

{ indices of the components of y in decreasing 

order of size } 
{ interim floating-point number } 

{ interim vector of floating-point numbers } 
for i =  0 to m - 1 do freqi - 0 

for i = 0 to m - 1 do 

rankedi - i 
{ Perform a ShellSort first for speed of sampling: } 

gap - m/2 

while (gap > 0) do 

for i = gap to m - 1 do 

J - t - gap 

while ((j � 0) and (v; < Vj+gap)) do 

k - j + gap 
Vj - Vk 

ranked; - rankedk 

j - j - gap 
gap - gap/2 

Yo - tnVrankedo 

for i =  1 to m - 1 do Yi - Yi-1 + inVranked; 

if (error _rate > 0) then 

for i = 1 to length do 

r - random 

j - 0  
while ( ( r > Yi) and (j < m)) do j - j + 1 
if (random < error _rate) then 
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taxon � random x n + 1 
if (taxon = n) then k � m - j - 1 

else 
temp � 2taxon-1 

bit � ((rankedj AND temp) > 0) 

k � rankedj + ( 1 - 2 * bit) x temp 

freqranked�c � freqranked�c + 1 

else freqrankedj � freqrankedj + 1 

else 

for i = 1 to length do 

r � random 

i � o 
while ((r > Yi ) and (j < m))  do j � j + 1 

freqrankedj � freqranked; + 1 

for i =  0 to m - 1 do outvi � freqifc 
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{ this normalises the frequencies } 

end. 
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Algorithm C.20 : sorLvector_descending(inv, outv) 
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{ Uses Shell's method of sorting an array inv of real numbers. The ranks of the 

components of inv are put into outv, which is a vector of integers [70] . } 

local variables : 
gap, i, j, k, 
h[M] ; 

for i = 0 to m - 1 do 

hi +- invi 

outi +-- i 

gap +- m/2 

while (gap > 0) do 

for i = gap to m - 1 do 

J +- t - gap 

{ counters } 

{ temporary vector } 

while ((j > 0) and (hj < hj+gap)) do 

k +-- j + gap 

hj +----+ hk 

outvi +----+ outvk 

J +- J - gap 

gap +- gap/2 

end. 
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C . 3.1 Clustering methods 

Algorithm C.21  : NJ(averaging) 

{ If averaging = 1 ,  do the NJa method, otherwise do NJ. } 

local variables: 
Active[N] ,  

edge, 

t , ) , 

internals, 

>., 
mtnr, 

netdiv[NJ , 

new, 

ok, 

sub[NJ ; 

tn, 

wrong, 

x, y ,  

A[N][NJ ; 

Active +- { 1 ,  2 ,  . . .  , n} 

new +- n + 1 

{ set of clusters which are available } 

{ name of the new edge } 

{ counters } 

{ number of internal edges currently chosen } 
{ mean over all k � {x, y} of Dx,k - Dy,k } 

{ handy temporary real number } 

{ the vector of net divergences } 
{ label of the new cluster } 

{ logical flag used in comparing sets of inferred 

edges } 
{ sub, = 1 {:=> the cluster i contains pendant 

vertex n. } 

{ current number of unattached clusters } 

{ the number of edges in N J Jntedges and not in 

intedges } 

{ clusters chosen to form pair } 

{ Ai,j = Di,j - (netdiv, + netdivi )/(tn - 2) } 

for i = 0 to 2n - 1 do sub, +- 0 

subn +- 1 
e1 +- 1 

for i = 2 to n - 1 do e, +- 2 x ei-1 
en +- 2 X en-1 - 1 

internals +- 1 

while ( internals < n - 2) do 

for i = 1 to new - 1 do 

netdiv, +- 0 

for j = 1 to new - 1 do 

if (i E Active and j E Active and (i � j)) then 

netdiv, +- netdiv, + Di,j 
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for j = new to N - 1 do netdivj � 0 
for i = 1 to new - 1 do 

for j = 1 to new - 1 do 

if (i E Active and j E Active) then 

Ai,j � Di,j - (netdivi + netdivj )/(tn - 2) 

i +-- 1 

while ( ( i  < 2n) and (i f/. Active) )  do i +-- i + 1 

X +-- t 

i +- i + 1  

while ( ( i  < 2n) and (i f/. Active) )  do i +-- i +  1 

y � t 

minr +-- Ax,y 
arbitrary +-- 0 

for i = 1 to new - 2 do 

if ( i E Active) then 

for j = i + 1 to new - 1 do 

if ((j E Active) and (Ai,j :$ minr)) then 

if ( Ai,j = minr) then arbitrary � arbitrary + 1 

else arbitrary � 0 

minr +-- Ai,j 

y +- j  
Active � Active - {x , y} 
Active � Active U {new} 
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if ((x = n) or (y  = n) or (subx = 1) or (sub11 = 1)) then subnew +-- 1 

if (subnew) then edge � lex - e11 1  
else edge � ex + e11 

€new � edge 
if (averaging) then N Ja..intedgesanterna.b +-- edge 

else N J _intedgesanterna.b � edge 

if (averaging) then 

>. � o  

for i = 1 to new - 1 do 

if ( Active,) then >. � >. + Dx,i - D11,a 

>. +-- >.j(tn - 2) 

for i = 1 to new do 
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if (i E Active) then Di,new +- Di,x - (Dx,y + >.. )/2 

else Di,new +- 0 

else 

for i = 1 to new do 

if (i E Active) then Di,new +- (Di,x + Di,y - Dx,y)/2 

else Di,new +- 0 

for i = 1 to new - 1 do 

for j = i + 1 to new do Dj,i +- Di,j 
for i = 1 to new do Di,i +- 0 

tn +- tn - 1 

internals +- internals + 1 

new +- new + 1 
wrong +- 0 

if (averaging) then 

for i = 1 to n - 3 do 

ok +- 0 

for j = 1 to n - 3 do 

if ( intedgesi = N J a_intedgesj ) then 

ok +- 1 

break 
if ( ok = 0) then wrong +- wrong + 1 

N J a....scorewrong +- N J a....scorewrong + 1 

else 

for i = 1 to n - 3 do 

ok +- 0 
for j = 1 to n - 3 do 

if ( intedgesi = N J _intedgesi ) then 

ok +-- 1 

break 
if ( ok = 0) then wrong +- wrong + 1 

N J ....scorewrong +- N J ....scorewrong + 1 

end. 
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Algorithm C.22 : ST 

local variables: 

Active[N], 
edge, 

{ set of clusters which are available } 

{ name of the new edge } 
{ counters } 

2 1 7  

i, j, k, l, 
internals, 
maxSup; 

new, 

{ number of internal edges currently chosen } 

{ maximum support found for a pair { i, j }  } 
{ label of the new cluster } 

ok, 
sub[ M] , 

Sup[N][N], 
wrong, 
x, y, 

wrong +- 0 

internals +- 1 

Active +- { 1 , 2, . . .  , n} 
new +- n + 1 

{ subi = 1 if cluster i includes pendant vertex n, 
0 otherwise. } 

{ support for neighbouring pair { i, j }  } 

{ number of edges wrongly chosen by ST } 

{ clusters chosen to form pair } 

for i = 0 to N - 1 do subi +- 0 

subn +- 1 

e1 +- 1 

for i = 2 to n - 1 do ei +- 2 X ei-1 
en +- 2 X en-1 - 1 
internals +- 1 

while (internals < n - 2) do 

i +- 1 
while ( ( i  < 2n) and ( i  � Active) )  do i +- i + 1 

i +- i + 1  

while ( ( i  < 2n) and (i � Active)) do i +- i + 1 

y +- i 

maxSup +- 0 

for i = 1 to 2n - 2 do 

Supi,i +- 0 

for j = i + 1 to 2n - 1 do 
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:iupi,j +- 0 

Supj,i +- 0 

arbitrary +- 0 
for i = 1 to new - 2 do 

if ( i E Active) then 

for j = i + 1 to new - 1 do 

if (j E Active) then 

{ Get support Supi,j for the pair {i ,j} : } 

for k = 1 to new - 2 do 
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if ( (k f i) and (k f j) and (k E Active) )  then 

for l = k + 1 to new - 1 do 

if ({l f i) and (l  f j) and (l E Active) )  then 

if ((Di,i + Dk,l < Di,k + Dj,l) and (Di,i + Dk,l < Di,l + Dj,k ) )  

then 
Supi,j +- Supi,j + 1 

if (Supi,j � maxSup) then 

if (Supi,j = maxSup) then arbitrary +- arbitrary + 1 

else arbitrary +- 0 

X +- i 

y +- j 

maxSup +- Supi,i 
Active +- Active - {x , y}  

Active +- Active U {new} 

{ if x or y +- n, or if subz or sub11 +- 1 ,  then subnew +- 1 :  } 

if ( (x = n) or (y  = n) or (subz = 1 )  or (sub11 = 1 ) )  then 

subnew +- 1 

if (subnew = 1 ) then edge +- lez - e11 1 

else edge +- ez + e11 

enew +- edge 

ST _intedgesinteTnalll +- edge 

for i = 1 to new do 

if ( i  E Active) then Di,new +- ( Di,z + Di,y)/2 

else Di,new +- 0 

for i = 1 to new - 1 do 

for j = i + 1 to new do Dj,i +- Di,j 
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for i = 1 to new do D;,; +- 0 

internals +-- internals + 1 
new +- new + 1 

wrong +- 0 

for i = 1 to n - 3 do 

ok +- 0 
for j = 1 to n - 3 do 

if (intedges; = ST_intedgesj) then 

ok +- 1 

break 
if ( ok = 0) then wrong +- wrong + 1 

ST .....scorewrong +- ST ..scorewrong + 1 

end . 
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Algorithm C.23 : UPGMA(version) 

{ version = 0 for U PGMA, 1 for SL and 2 for TD . } 

local variables: 
A[N][N] , 

Active[N], 

cs[N] , 

edge, 

z , ] ,  
internals, 

mznr, 

new, 

ok, 

sub[ M] ; 

wrong, 

x, y; 

if (version > 0 )  then 

for i = 1 to n do 

{ the distance matrix used as input } 

{ set of clusters which are available } 

{ the number of pendant vertices in each cluster } 

{ name of the new edge } 

{ counters } 

{ number of internal edges currently chosen } 

{ handy temporary real number } 

{ label of the new cluster } 

{ temporary flag } 

{ subi = 1 if cluster i includes pendant vertex n, 

0 otherwise. } 

{ the number of edges UPGMA gets wrong } 

{ clusters chosen to form pair } 

for j = 1 to n do A,i - tranDi,j 

else 

for i = 1 to n do 

for j = 1 to n do Ai,j - Di,j 

wrong - 0 
if ( version = 1 )  then 

{ SL } 

for i =  0 to N - 1 do SL_intedgesi - 0 
else if (version = 2 )  then 

{ TD } 

for i = 0 to N - 1 do T D_intedgesi - 0 
else 

{ UPGMA } 

for i =  0 to N - 1 do U PGM A_intedgesi - 0 
Active - { 1 , 2 ,  . . .  , n} 

for i = 1 to n do csi - 1 
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new +- n + 1 
for i = 1 to N - 1 do subi +- 0 

subn +- 1 

e1 +- 1 

for i = 1 to n - 1 do ei +- 2i-l 

en +- 2n-1 - 1 

internals +- 1 

while (internals < n - 2) do 

i +- 1 

while ((i < N) and (i t/. Active)) do i +- i + 1 

i +- i + 1  

while ((i < N )  and ( i  tf. Active)) do i +- i + 1 

y +- t  

arbitrary +- 0 

minr +- Ax,y 

for i = 1 to new - 2 do 
if (i E Active) then 

for j = i + 1 to new - 1 do 

if ((j E Active) and (Ai,j � minr)) then 

if ( A;,j = minr) then arbitrary +- arbitrary + 1 

else arbitrary +- 0 

minr +- Ai,i 

y +- ) 
Active +- Active - { x ,  y} 

Active +- Active U {new} 

if ( (x = n) or (y = n) or (subx = 1) or (suby = 1 ) )  then 

subnew +- 1 

if (subnew = 1) then edge +- lex - ey l 

else edge +- e:r + ey 
enew +- edge 

CSnew +- CS.r + CSy 
if (version = 1 )  then 

S L_intedgesinterna.ls +- edge 
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else if (version = 2) then 

T D_intedgeSinternals � edge 

else U PGM A_intedgesinternals � edge 

for i = 1 to new do 
if (Active;) then 

Ai,new � ( CSx X A;,x + CSy X A;,y ) / ( CSx + CSy ) 

else Ai,new � 0 

for i = 1 to new - 1 do 

for j = i + 1 to new do A - · � A - ·  ),l l ,) 
for i = 1 to new do Ai.i - 0 

internals � internals + 1 

new � new + 1 
wrong � 0 

if (version = 1 )  then 

for i = 1 to n - 3 do 

ok � 0 

for j = 1 to n - 3 do 

if ( intedges; = S L_intedges j )  then 

ok � 1 

break 
if ( ok = 0) then wrong � wrong + 1 

S L....scorewrong � S L...scorewrong + 1 

else if (version = 2) then 

for i = 1 to n - 3 do 

else 

ok � 0 
for j = 1 to n - 3 do 

if ( intedges; = T D_intedgesj ) then 

ok � 1 

break 
if ( ok = 0)  then wrong � wrong + 1 

T D ....scorewrong � T D ...scorewrong + 1 

for i = 1 to n - 3 do 

ok � 0 

for j = 1 to n - 3 do 

if ( intedges; = U PG M A_intedgesj ) then 
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ok ..._ 1 

break 
if (ok = 0) then wrong +- wrong + 1 

U PG !11 A_scorewrong ..._ U PG M A...scorewrong + 1 

end . 
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Algorithm C.24 : TD(version)  

{ SL (version = 1 )  and TD (version = 2) . } 

local variables: 
dL (N] , dR[N ] ,  

dmax, 

dmin, 

i , j, k ,  

L[N] , R[NJ, 

tempsum, 

x , y, 
z ,  

r [N] ; 

{ set up R and L: } 

L +--- 0 

R +--- 0 

{ find most distant taxa: } 

dmax +--- - 1 

for i = 1 to n - 1 do 

for j = i + 1 to n do 

if (Di,j > dmax) then 

X +--- 2 

y +-- ) 
dmax +--- Di,j 

L +--- {y} 

R +-- {x } 

Lo +--- 1 

Ro +--- 1 

for i = 1 to n do 

{ average distances between elements in L (or R) 

and the other taxa } 

{ Dx,y } 

{ current shortest distance between R (or L) and 

any other taxon } 

{ counters } 

{ sets of taxa to the left and right of the root ( the 

cardinality of each is in the zero-th place of the 

array) } 

{ the two most distant taxa } 

{ the taxon to be added to R or L } 

{ the residue of extra changes picked up by each 

taxon, as estimated by differences in dR,i and 

dL,i } 
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if (version = 2 )  then 

while ( (Ro + Lo) < n) do 

dmin +- dmax + 1 

else 

for i = 1 to n do 
if ((i � R) and (i � L) )  then 

if ( dL,i � dmin) then 

Z +- t  

dmin +- dL,i 

k +- 0  
if (dR,i � dmin) then 

Z +- t  

dmin +- dR,i 

k +- 1 
if (k > 0) then 

R +- R U {z} 

Ro +- Ro + 1 

for i = 1 to n do 

else 

if (Ri ) then dR,i +- 0 

else 
tempsum +- 0 

for j = 1 to n do 

if (Rj ) then tempsum +- tempsum + Di,j 

dR,i +- tempsumf Ro 

L +- L U {z} 

Lo +- Lo + 1 

for i = 1 to n do 
if (i E L) then dL,i +- 0 

else 
tempsum +- 0 

for j = 1 to n do 

if (j E L) then tempsum +- tempsum + Di,j 

dL,i +- tempsumf Lo 

for i = 1 to n do 
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if (Dx,i < Dy, i )  then 

R ,_ R u {i} 
Ro <- Ro + 1  

else 

L ,_ L u {i} 

Lo <- Lo + 1 
for i = 1 to n do 

if (i E L) then r; +-- dR,i - dR,y 

else r; +-- dL,i - dL,x 

for i = 1 to n do 

for j = 1 to n do tranD;,j +-- D;,j - r; - Tj 

for i = 1 to n do tranD;,; +-- 0 

UPGMA( version) 

end. 
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C.3.2 Search methods 

Algorithm C.25 : CT(v, distances , useJI adamard) 
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{ distances = 1 if the input vector is inferred from the distance matrix D,  0 

otherwise. 

use_H adamard = 1 if the Hadamard conjugation method is used , 0 otherwise. } 

local variables: 
b, 

bestS[N], 

bound, 

l , ) , x, y, 

essentials, 

fixed, 

gen_bound, 

ok, 

optimal, 

sum_gs_inS[N], 

sum_g2s_inS[N], 

wrong; 

if (distances) then 

{ the best possible value for tJ. 2 with the current 
-; 

edge set S. } 

{ the set of edges which gives the best tJ. 2 value } 

{ the best value found for tJ. 2 with a fully resolved 

tree } 

{ counters } 

{ the sum of the inferred edge lengths of the pen-

dant vertices } 

{ number of "good" edges in S } 

{ the tJ. 2 value for the generating tree } 

{ flag for edge label comparison } 
{ flag } 

{ number of edges CT gets wrong } 

for i =  1 to n - 3 do CT DH _intedgesi f- 0 

else if ( useJI adamard) then 

for i =  1 to n - 3 do CTSH _intedgesi f- 0 

else 

for i =  1 to n - 3 do CTSO..intedgesi f- 0 

v0 f- 0 
for i = 1 to m - 1 do 

Vo f- Vo - Vj 
ho f- - 1 

for i = 1 to m - 1 do hi f- Vi 

i f- 1 
while ( i  < m) do 
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h; +-- - 1 

i +- 2 X i  
hm - 1 +-- - 1 

sorLvector _descending(h , opos) 

SI +-- 1 

bestS1 +-- 1 

sum_gs_inSo +-- 0 

sum_g2s_inSo +-- 0 

for i = 1 to n - 3 do 

sum_gs_in_S; +-- sum_gs_inSi-1 + Vintedges; 

sum_g2s_inS; +-- sum_g2s...in_Si- 1  + ( Vintedges; )2 

essentials +-- 0 
i +-- 1 

while (i < m) do 

essentials +-- essentials + v; 

i +- 2 X i  
essentials +-- essentials + Vm-1 

essentials +-- essentials + v0 

gen_bound +-- sum_g2s_inSn-3 

- ((sum_gs_inSn-3 + essentials)2 )/(2n - 2) 
{ get greedy tree: } 

for i = 2 to n - 3 do 

j +- i  

Appendix C. Pseudocode 

while (corn pat( opos(j) ,  i - 1, S) = 0) do j +-- j + 1 
S; +-- j 

bestS; +-- j 
sum_gs_inSo +-- 0 

sum_g2s_inSo +-- 0 
for i = 1 to n - 3 do 

sum_gs_in_S; +-- sum_gs_inSi-1 + Vopos(S; ) 

sum_g2s_inS; +-- sum_g2s...inSi-1 + ( V0pos(Si ) )2 

bound +-- sum_g2s_inSn-3 - ((sum_gs_in_Sn-3 + essentials? )/(2n - 2) 

bound +-- gen..hound 

optimal +-- 0 
fixed +-- n - 4 

while (optimal = 0) do 
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k +-- fixed + 1 
while ( (k � n - 3) and (k > 0)) do 

j +- k 

do 
j +- j + 1  

if (k  = 0) then b +-- - (essentials2 )j(2n - 2) 
else 

b +-- sum_g2s_in_Sk-I + (n - k - 2) X v;pos(j) 
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-( sum_gs_in_Sk-I + ( n - k :- 2) X Vopos(j) + essentials )2 /(2n - 2) 

if (b � bound) then y +-- compat(opos(j) ,  k - 1 ,  S) 

else y +-- 0 

while (b � bound) and (j < m) and (y = 0) and ( Vopos(j) � 0) 

if ( (b  � bound) and (j  < m)) then 

sk +-- i 
sum_gs_in..Sk +-- sum_gs_in..Sk-I + Vopos(j) 

sum_g2s_in..Sk +-- sum_g2s_in_Sk-I + v;pos(j )  
if (k � n - 3) then 

bound +-- b 

for x = 1 to n - 3 do bestSx +-- Sx 
k +- k + 1  

if ((b � bound) or (k > n - 3)) then 

fixed +-- fixed - 1 

for x = fixed + 1 to N - 1 do Sx +-- 0 

break 
if (fixed < 0) then optimal +-- 1 

if (distances) then 

for i =  1 to n - 3 do CT DH _intedgesi +-- opos(bestSi) 

else if ( useJI adamard) then 

for i =  1 to n - 3 do CTSH ..i.ntedgesi +-- opos(bestSi ) 

else 

for i =  1 to n - 3 do CTSOJ.ntedgesi +-- opos(bestSi )  

wrong +-- 0 

for i = 1 to n - 3 do 

ok +-- 0 
for j = 1 to n - 3 do 

if (intedgesi = opos(bestSj ) )  then 
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ok - 1 

break 
if (ok = 0) then wrong - wrong + 1 

if (distances) then 

CT D H ..scorewrong - CT D H _score wrong + 1 

else if ( useJl adamard) then 

CT S H ..scorewrong - CT S H ..score wrong + 1 

else 

CTSO..scorewrong - CTSO....scorewrong + 1 

end. 
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Algorithm C.26 : Co(v, distances , useJ!adamard) 
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{ distances = 1 if the input vector is  inferred from the distance matrix D, 0 

otherwise. 

use_H adamard = 1 if the Hadamard conjugation method is used, 0 otherwise. } 

local variables: 
b, 

bestS[N] 

bound, 

i, j, k, x, y, 
fixed, 

gen_bound, 

ok, 

optimal, 

sum_gs_in_S[N] , 

wrong, 

ho � - vo 
for i = 1 to m - 1 do hi f- Vi 
i � 1 

while (i < m) do 

hi - - 1  

i � 2 X i  
hm-1 f- - 1 

{ the best possible value for n with the current 

edge set S }  
{ the set of edges which gives the best sum of 

estimated edge lengths } 
{ the best value found for n with a fully resolved 

tree } 

{ counters } 

{ number of "good" edges in S } 

{ the n value for the generating tree } 

{ flag for edge label comparison } 

{ flag } 

{ the number of edges C o gets wrong } 

sorLvector _descending(h, opos) 

gen_bound f- 0 

for i = 1 to n - 3 do gen.bound - gen.bound + Vintedge8; 
if ( distances) then 

for i =  1 to n - 3 do CoDH _intedgesi - intedgesi 

else if ( useJI adamard) then 

for i =  1 to n - 3 do CoSH _intedgesi - intedgesi 

else 

for i =  1 to n - 3 do CoSO.i.ntedgesi - intedgesi 
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{ Get greedy tree in terms of positions in opos: } 

s1 +-- 1 

j +-- 2 
for i = 2 to n - 3 do 
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while (corn pat( opos(j ) ,  i - 1 ,  S) = 0) do j +-- j + 1 
S; +- j 

bestS; +-- j 

sum_gs_inSo +-- 0 

for i = 1 to n - 3 do sum_gs_inS; +-- sum_gs_iri_Si- 1 + vopos(S; ) 
bound +-- sum_gs_in_Sn-3 
if (gen_bound < bound) then bound +-- gen_bound 

optimal +-- 0 

fixed +-- n - 4 

while (optimal = 0) do 

k +- fixed 

arbitrary +-- 0 

while (k � 0 )  do 

j +- k + 1 
do 

j +-- j + l  
if (k = 0 )  then b +-- V0pos(j) 
else b +-- sum_gs_inSk-1 + ( n - 3 - fixed) X Vopos(j) 
if ( b � bound) then y +-- corn pat( opos(j) ,  k - 1, S) 

else y +- 0 
while (b � bound) and (j < m) and (y = 0) 

if ((b � bound) and (j < m)) then 

sk +-- j 

sum_gs_inSk +-- sum_gs_inSk-1 + vopos(j) 

if ( ( k = n - 3) and ( compare...sets(lastS, S, n - 3) > 0 ) )  then 

for i = 1 to n - 3 do lastS; +-- S; 

b +-- sum_gs_inSk 

bound +-- b 

for x = 1 to n - 3 do bestSx +-- Sx 
k +-- k + 1  

if ( (b :::; bound) or (k > n - 3))  then 
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fixed +- fixed - 1 

break 
if (fixed < 0) then optimal +- 1 

if (distances) then 

for i =  1 to n - 3 do CoDH _intedgesi +- opos(bestSi ) 

else if ( useJl adamard) then 

for i =  1 to n - 3 do CoSH_intedgesi +- opos(bestSi ) 

else 

for i =  1 to n - 3 do CoSQ_intedgesi +- opos(bestSi ) 

wrong +- 0 

for i = 1 to n - 3 do 

ok +- 0 
for j = 1 to n - 3 do 

if ( intedgesi = opos( best Si ) )  then 

ok +- 1 
break 

if (ok = 0 )  then wrong +- wrong + 1 

if (distances) then 

CoD H ....scorewrong +- CoD H ....scorewrong + 1 

else if ( useJl adamard) then 

CoSH ....scorewrong +- CoSH ....scorewrong + 1 

else 

CoSO....scorewrong +- CoSO....scorewrong + 1 

end. 
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Algorithm C.27 : seLupJirsLtree(A) 

{ A is  the array into which we shall put the pointers describing the first tree . 

The first tree is the tree on the three pendant vertices n - 2, n - 1 and n. } 

local variable: i ; { counter } 
for i = 1 to 2n do Ai <- 0 

An-2 <- n + 1 

An-1  <- n + 1 

An-3 <- n + 2 

An+l  <- n + 2 

An+2 ...._ n 

end. 

Algorithm C.28 : add_taxon( taxon , position, A ,  new_node) 

{ taxon is the label of the pendant vertex which we are adding to the tree de

scribed by the array A. position is the insertion point of taxon, and the label 

of the new internal vertex thus created is new_node. } 

Ataxon <- new_node 

Anew_node <- Aposition 

Aposition ...._ new_node 

end. 

Algorithm C.29 : remove_taxon(taxon, position,  A, node) 

{ taxon is the label of the pendant vertex to be removed, and node is the internal 

vertex which must be removed also. Vertex position is directed towards node 

also.  } 

Aposition <- Anode 

Ataxon <- 0 

Anode <- 0 
end. 
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Algorithm C.30 : converLedges_to_tree( edge..set, t ree..llrray) 
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{ edge ..set is the set of internal edge labels of a tree T, and tree_array is the 

array of pointers which will describe T. } 

local variables : i, j ;  { counters } 

for i = 1 to n - 1 do si � 2i- l 

for i = 1 to n - 3 do Sn-I+i � edge..set; 

{ Sort the edge labels in S in ascending order: } 

for i = n to 2n - 5 do 

for j = i + 1 to 2n - 4 do 

if ( S; > Si) then S; +------+ Si 

S2n-3 � m - 1 

for i = 1 to 2n - 4 do tree_array; +- 2n - 2 
for j = 2n - 3 down to n do 

for i = j - 1 down to 1 do 

if ((Sj AND S; ) = S; ) then tree_array; +- j + 1 

tree_array2n-2 � n 

for i = 2n - 3 down to n + 1 do tree_array; +- tree_arrayi-I 
tTee_arrayn � 0 

end. 
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Algorithm C.31 : converLtree_to_edges( tree_array, edge_.set) 

{ tree_array is the array of pointers which describe as tree T,  and edge....set is 

the set of internal edge labels of T. } 

local variables: 
A[N] [2] , 

edges_found, 

z , ) ;  

{ matrix of pointers and edge labels } 

{ number found so far } 

{ counters } 

for i = 1 to N - 1 do 

edge..set; +- 0 

Ai,l +- 0 

Ai,O +- 0 

for i = 1 to 2n - 1 do Ai,l +- tree_array; 

for i = 1 to n do A;,o +- 2i-l 

i +- 1 

for edges_found = 1 to n - 3 do 

while ( (A;,o = 0) and (i < 2n - 1 ) )  do i +- i + 1 

if ( i  < 2n) then 

end . 

j - i + 1 

while ((Aj,l :/= A;,1 ) and (j < 2n)) do j +- j + 1 

if (Aj,o = 0) then i +- i +  1 
else 

AA;,1 ,o +- A;,o + Aj,o 

edge...setedgell-found +- A;,o + Aj,O 

A;,o +- Aj,o +- 0 
edges_found +- edges-found + 1 

i - 1 
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Algorithm C.32 : Fitch(A,  nodes , v, bound) 

237 

{ This function returns the parsimony length of the input tree described by A, 

up to the size of bound. As soon as the length exceeds bound then this length 

is returned. 

A is the array of pointers to vertices which describes the tree, and Ao is the 

cardinality of A. All edges are directed to the root at taxon n. 

nodes is the number of vertices in the tree described by A. v is the vector of 

bipartition frequencies used . bound is the maximum desired parsimony length 

of the tree described by A: if the length is larger than bound, we are not 

interested in the tree anyway. } 

local variables : 
i, j, a, b, nodes..assigned, k ,  

assigned[ N] [M] , 

Ftree[N], 

length; 

for i = 0 to 2n - 2 do 

{ counters } 

{ the characters assigned to the internal nodes of 

the tree } 

{ internal storage of the tree described by A } 

{ the overall parsimony length of the t ree } 

for j = 1 to num_bips do assignedi,j � 0 

Ftreei � Ai 

k � o 
for i = 1 to n - 1 do 

if (Ftreei > 0) then 

for j = 1 to num_bips do 

if (opos(j) AND 2(i-l ) ) then assignedi,j � 2 

else assignedi,j � 1 

k � k +  1 

for j = 1 to num..hips do assign.edn,j � 1 

length � 0 

nodes_assigned � 0 
while ((nodes_assigned < k - 1 )  and (length � bound) ) do 

i � n +  1 

while ((i � n + 1 )  and (length � bound)) do 
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a +--- 1 

while ((a < nodes) and (Ftreea :/= i)) do a +--- a +  1 

b +--- a +  1 

while ((b � nodes) and (Ftreeb :/= i)) do b +--- b + 1 
if ( ( b � nodes) and ( Ftreea = i) and ( Ftreeb = i) 

and (assigneda,d and (assignedb,I ) )  then 

j - 1 
while ((j � num_bips) and (length � bound)) do 

assignedi,i +--- assigneda,j AND assignedb,j 

if (assignedi,j = 0) then 

assignedi,j +--- 3 

length +--- length + V0pos(j) 

j +- j + 1 

Ftreea +--- 0 

Ftreeb +--- 0 
nodes_assigned +--- nodes_assigned + 1 

i - i + 1 

i - 1 

while ( ( i  � nodes) and (Ftreei :/= n) )  do i +--- i + 1 

j - 1 
while ( (length � bound) and (j � num...bips)) do 

if ( (assignedi,j AND assignedn,j = 0)) then 

length +--- length + V0pos(j) 

return (length) 

end. 
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Algorithm C.33 : l\1P(v, distances, useJ! adamard) 

{ v is the input vector of bipartition frequencies, with or without the Hadamard 

conjugation, determined by use_H adamard. 

Another branch and bound method for MP has been given by Penny and Hendy 

[67] . } 

local variables : 
w[M] , 

bound, 

length, 

gen.Jength, 

taxon, 

new_node, 

nodes, 

optimal, 

inserLpos[N], 

t , J ' 
tree[N], 

num..tied_t·rees, 

besLtree[ N]; 

bound +- n x c 

{ temporary vector, used when sorting } 

{ current shortest length of a tree } 

{ current Fitch (minimum) length of the tree } 

{ length of generating tree } 

{ number of the taxon we're adding, initially n -

4 }  

{ label of the new internal vertex we create by 

inserting a taxon } 

{ number of nodes in the current tree } 

{ flag to tell when to stop } 

{ current position of insertion of each taxon } 

{ counters } 

{ array of pointers to nodes } 

{ number found so far with same smallest length: 

redundant , should be removed } 

{ best tree found so far, up to ties } 

num_tied..trees +- 1 

converLedges_to_tree( intedges, tree) 

for i = 1 to 2n - 2 do besLtreei +- treei 

for i = 2n - 1 to N - 1 do 

treei +- 0 

besLtreei +- 0 

for i = 0 to m - 1 do Wi +- Vi 

for i = 1 to n - 1 do 
j - 2i- l 

Wj +- - 1  
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Wm-1 +-- - 1 

sorLvector _descending( w, opos) 
num_bips +-- number _oLbipartitions 

nodes +-- 2n - 2 
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new_node +-- 2n - 2 { = number of nodes in complete binary tree } 
bound +-- Fitch(tree, nodes, v, bound) 

gen_length +-- bound 

seLupJirsLtree( tree) 

taxon +-- n - 3 { begin by including this taxon } 

inserLpOStaxon +-- n + 1 

nodes +-- n + 2 

new_node +-- n + 2 

{ insert in positions in decreasing order } 

{ the name of the new node we'll create by the 

insertion } 
for i =  1 to n - 4 do inserLposi +-- 2n - 2 - i 

optimal +-- 0 

if (gen.Jength < bound) t hen bound +-- gen.Jength 

while (optimal = 0) do 

length +-- Fitch(tree, nodes, v, bound) 
if (length � bound) then 

if ((taxon = 1) and (length < bound)) then 

for i = 1 to 2n - 2 do besLtreei +-- treei 

bound +-- length 
{ Now we need to get the next tree: } 

if ( (length > bound) or (taxon = 1 ) )  then 

w hile ( ( inserLpOStaxon = taxon + 1) and (taxon < n - 2)) do 

remove_taxon(taxon, inserLpOStaxon , tree, treetaxon ) 

taxon +-- taxon + 1 
if ( taxon = n - 2) then optimal +- 1 
else 

else 

new_node +-- 2n - 1 - taxon 

if ( inserLpOStaxon > taxon + 1 )  then 

remove_taxon( taxon, inserLpOStaxon , tree, treetaxon) 
do 

inserLpOStaxon +-- inserLpOStaxon - 1 

while ( treeinserLposra:ron = 0)  and (inserLpOStaxon > taxon + 1 )  

add_taxon(taxon, inserLpostaxon , tree, new_node) 
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taxon +- taxon - 1 

nodes +- new_node +- 2n - 1 - taxon 

inserLpOStaxon +- 2n - 2 - taxon 

do 
inserLpOStaxon +- inserLpOStaxon - 1 

while ( treeinserLposra:r:on = taxon + 1 )  and ( inserLpOStaxon > taxon) 

add_taxon( taxon, inserLpOStaxon , tree , new_node) 

if (taxon = n - 2) then optimal +- 1 

if (distances) then 

converLtree_to_edges( besUree, MP D H _i ntedges) 

i +- compare..sets(M P DH _intedges, intedges, n - 3) 

MP DH _scorei +- MP DH _scorei + 1 
else if ( useJI adamard) then 

converLtree_to_edges( besUree, MPS H _intedges) 

i +- compare..sets(M PS H _intedges, intedges, n - 3) 

M PSH _scorei +- M  PSH _scorei + 1 
else 

converLtree_to_edges( besUree, MPS 0 _intedges) 

i +- compare..sets(M PSQ_intedges, intedges, n - 3) 

MPSO_scorei +- MPSO...scorei + 1 
end. 
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C .4 Main program structure of s im .  c 

Algorithm C.34 : sim.c 

local variables: 

topnum, 

mpl, 

mplmin , mplmax. 
max _path_[ ength, 

ratio, 

ratiOmin , ratiOmax , 

er, 

amal, 

amalmin , amalma:r;, 

/en, 

c l ,  c2, 

run, z, 
a, b, 

ok..trials ; 

read in run-time arguments 

{ denotes the topology number } 

{ maximum path length descriptor } 

{ range of mpl } 

{ upper bound on maximum number of expected 

character state changes between any two taxa } 
{ descriptor for (m�x. internal edge 

length)/(m�x. pendant edge length) } 

{ range of ratio } 
{ sequencing error rate descriptor } 

{ range of er } 

{ proportion of data to come from a second gen-

erating tree T2 } 

{ range of amal } 
{ sequence length descriptor } 

{ range of len } 
{ sequence lengths for generating trees T1 and 

T2 } 

{ counters } 

{ logical flags } 

{ number of trials in which all methods could be 

used } 

for topnum = topnummin to topnummax do 

for mpl = mplmin to mplmax do 

max_pathJ.ength +- rough_exp( mpl) x 0.0035 

for ratio = ratiomin to ratiomax do 

a +- rough_exp( ratio) x 0.05 

for er = ermin to ermax do 

if ( reading_errors) then 

reading_error _rate +- rough_exp( er )/10000 

else reading_error _rate +- 0 

for amal = amalmin to amalmax do 
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end . 

for /en = lenmin to lenmax do 

c2 - amal x c 
cl - c - c2 

for run = 1 to tests do 
choose_topology( topnum, intedges) 

random_edgeJengths( intedges, q l )  

HexpH( q l ,  s )  

sample_bipartitions( cl ,  reading_error _rate, s ,  ohs) 

if (a mal > 0) then 

do  

choose_tree( n ,  intedges2) 

while compare...sets( intedges, intedges2, n - 3) = 0 

random_edgeJengths( intedges2, q2) 

HexpH( q2 , s) 

sample_biparti tions( c2, reading _error_rate, s,  o hs2)  

for i = 0 to m - 1 do obsi - obsi + obs2i 
num..bips - number _of _bipartitions() 

a - HlnH(ohs, g ) 

b - bipartitions_to_distances ( ohs) 

if ( (a > 0 )  or  (b > 0)  or  (num..bips = 0)) then 

if (a > 0) then dnegative - dnegative + 1 
if (b > 0) then dzero - dzero + 1 

else 

if (Correct..distances() > 0) then dinfinite - dinfinite + 1 

if ( using any Distance Hadamard methods ) then 

get_distancespectrum 

ok_trials - ok_trials + 1 

Do methods 
print scores 

zero scores 
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C . 5  Funct ions used i n  big . c 

Algorithm C.35 : geLbiLtimes( output_biLtime) 

{ outpuLbif _time is an array of the bifurcation times of each of the internal 

vertices of Tc . } 

local variables: 
t , J , { counters } 

random[N] ,  { temporary array of random numbers } 

for i = 1 to n - 1 do random; +- random 

for i = 1 to n - 1 do 
for j = i + 1 to n do 

if (random; > randomi) then random; +---+ randomi 

outpuLbif _time2n-l +- 0 

randomo +- 0 

for i = 1 to n - 2 do 

outpuLbif _time2n-l-i +- outpuLbif _time2n-i 

+ (random; - random;-t )f(i + 1 )  

for i = 2 n  down t o  n + 1 do 

outpuLbif_time; +- outpuLbif..time; x dtffoutpuLbif_timen+l 
for i =  1 to n do outpuLbif_time; +- 1 

end. 

Algorithm C.36 : ones_count(z) 

local variables: t ,  ones 

ones +- 0 

for i = 1 to n do 

{ counters } 

if (z[i] AND (2i-I )) then ones +- ones + 1 

if (2 x ones > n) then ones +- n - ones 

return (ones) 

end . 
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Algorithm C.37 : geLwhole_tree 

local variables: 

Z , J , { counters } 

245 

perm[N] , 

labels[N] , 

temp_tree[ N2], 

bif _time[N2] ; 

{ temporary array of ( 1 ,  . . . , n - 1 ) ,  permuted } 

{ array of permuted taxon labels } 

{ in pointer form } 

{ bifurcation times of nodes 2n - 1 ,  . . . , n + 1 } 

geLbiLtimes(biLtime) 

permute(n - 1 , perm) 

permutation_to_tree(perm, tree) 

permute( n, labels ) 

for i = 1 to n do temp_treei +-- treelabels(i) 
for i = 1 to n do treei +-- temp_treei 

for i = 1 to 2n - 2 do 

for j = i + 1 to 2n - 1 do 

if (treei = j) then 

mean_edge_lengthi,j +-- (bif_timei - bif _timei ) x ot 

case sampling..rnethod of 

1 :  

2 :  

{ uniform distribution } 

for i = 1 to 2n - 2 do 

for j = i + 1 to 2n - 1 do 

if ( treei = j) then 

do 

edge_lengthi,j +-- sample_uniform( mean_edgeJengthi,j , 
var x mean_edge_lengthi,j ) 

while edgeJengthi,j � 0 

break 

{ normal distribution } 

for i = 1 to 2n - 2 do 

for j = i + 1 to 2n - 1 do 

if ( treei = j )  then 

do 

edge_lengthi,j +-- sample..normal{ mean_edge_lengthi,j , 
var x mean_edge_lengthi,j ) 
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3 :  

while edgeJ.engthi,j � 0 

break 

Appendix C. Pseudocode 

{ log-normal distribution } 

for i = 1 to 2n - 2 do 

for j = i + 1 to 2n - 1 do 

if ( treei = j)  then 

do 

edgeJ.engthi,j +-- sampleJog-normal( mean_edgeJengthi,j , 

var x mean_edgeJengthi,j ) 

while edgeJ.engthi,j � 0 

break 

default: break 

end. 
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Algorithm C.38 : grow_data 
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{ EV is the first matrix in the diagonalization of TM, and diag is the set of 

four eigenvalues of TM. diag1 is always 1 .  } 

local variables: 
i , j, k, 
r, 
edge_prob(N2) [N2] , 

Diag, 

tern pM, 

M, 

C· 
' 

for i = 1 to 4 do 

{ counters } 

{ temporary real number } 

{ matrix of edge lengths } 

{ 4 X 4 matrix whose diagonal entries are the 

entries of diag and the off-diagonal entries of 

which are zero. } 

{ temporary 4 x 4 matrix } 
{ transition matrix for an edge } 

{ matrix of sorted components of M, to speed up 

sampling. } 

for j = 1 to 4 do Diagi,i � 0 

Diag1 ,1 � 1 

for i = 2 to 4 do Diagi,i � exp( -diagi) 

{ fix the root distribution: } 

j � 2n - 1 

for i = 1 to c X 1r A do 

characterj,i � 1 

for i = c x 1r A + 1 to c x ( 1r A + 1r c ) do 

character j,i � 2 

for i =  C X (7rA + 1rc) + 1 to C X (7rA + 1rC + 7rG) do 

characterj,i � 4 

for i = c x ( 1r A + 1rc + 7rG ) + 1 to c do 

character j,i � 8 

for k = 2n - 1 down to n + 1 do 

for i = k - 1 down to 1 do 

if (treei = k) then { i .e . ,  there exists the edge { i, k} } 

{ Find the product EV(Diagt)(invEV): this gives the transition matrix 

for the edge. } 

for j = 2 to 4 do { note that Diag1 ,1 = 1 } 
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Diagj,j +- exp( -diagj X edgeJ.engthi,tree(i) ) 

tempM +- Diag X invEV 

M +- EV x tempM 

{ Rank the components of M into C to speed up the sampling process: } 

C1 ,1 +- M1 ,1 ;  
C2,2 +- M2,2 ; 
C3,3 +- M3,3) 

C1 ,2 +- C1 ,1 + M1,2 ;  
C2,1 +- C2,2 + M2,1 ;  
C3,1 +- C3,3 + M3,1 ; 

Ct ,3 +- C1 ,2 + Mt,3 
C2,3 +- C2,1 + M2,3 
C3,2 +- C3,t + M3,2 
C4,2 +- C4,1 + M4,2 C4,4 +- M4,4 ; C4,1 +- C4,4 + M4,t ; 

Ct ,4 +- C2,4 +- C3,4 +- C4,3 +- 1 
for j = 1 to c do 

r +- random 

case characterk,j of 

1 :  

2 :  

4:  

8 :  

if (r  < C1 ,1 )  then character;,j +- 1 

else if (r < C1,2) then character;,j +- 2 
else if ( r < C1 ,3) then character;,j +- 4 
else character;,j +- 8 

break 

if ( r < C2,2 ) then characteri,j +- 2 

else if ( r < C2,1 )  then character;,j +- 1 

else if ( r < C2,3) then character;,j +- 4 
else character;,j +- 8 

break 

if ( r < C3,3) then character;,j +- 4 
else if (r < C3,1 )  then character;,j +- 1 

else if ( r < C3,2) then characteri,j +- 2 

else character;,j +- 8 

break 

if ( r < C4,4 ) then character;,j +- 8 

else if ( r < C4,1 )  then character;,j +- 1 

else if ( r < C4,2) then character;,j +- 2 
else character;,j +- 4 
break 
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default: break 

end. 

Algorithm C.39 : generalJC 
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{ This is a generalised version of the Jukes-Cantor distance correction, allowing 

for different character state frequencies between two taxa [9 1 ] .  } 

local variables: 
i , j, k, { counters J 

b, { temporary real number } 

f[N][4] , { observed frequency of each of the character 

states in the sequences } 

td[4] ; { temporary array of real numbers } 

{ Obtain observed frequencies : } 

for i = 1 to n - 1 do 

for j = 1 to 4 do li.i � 0 

for j = 1 to c do 

if ( characteri,j = 1 )  then fi. t  � !i,l + 1 

else if ( character;,j = 2) then fi.2 � !i,2 + 1 
else if (characteri,j = 4) then !i,3 � !i,3 + 1 
else fi.4 � fi.4 + 1 

for j = 1 to 4 do !i,j � li.i/c 

for i = 1 to n - 1 do 

for j = i + 1 to n do 

end. 

for k =  1 to 4 do tdk � (fi.k + fi.k )/2 

b � 1 - td� - td� - td§ - td� 

if (Di,j < b) then 

D;,j � - b x log(1 - D;,j/b) 

Dj,i � D;,i 
else 

D;,i � BIG 

Di,i � D;,i 
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C . 6 Main program struct ure of big . c 

Algorithm C.40 : big.c 

local variables: 

n, 

ot , 

otmin ' otmax ' 
dtf 

dtfmin 7 dtfmax 7 
var, 

Zen, 

Zenmin 7  Zenmax 7 
c,  

run; 

read i n  run-time arguments 

invEV +- EV-1 

detEV +- det( EV) 

{ number of taxa } 

{ range of n }  

{ expected overall 'time' from root of tree to pen

dant vertices } 

{ range of ot } 

{ 'divergence time factor', the proportal time at 

which the last bifurcation event is expected to 

occur } 

{ range of dtf } 

{ descriptor for variance of edge length probabil-

ity distribution } 

{ range of var } 

{ sequence length descriptor } 
{ range of Zen } 

{ sequence length } 

{ counter } 

for n = nmin to nmax in steps of nincr do 

for ot = otmin to otmax in steps of otincr do 

for dtf = dtfmin to dtfmax in steps of dtfincr do 

for var = varmin to varmax in steps of varincr do 

for Zen = lenmin to Zenmax in steps of Zenincr do 

c +- rough_exp( len) 
for run = 1 to test do 
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end. 

geLwhole_tree 

converLtree_to_edges( tree, intedges) 

grow_data 

sequences_to_distances 

if (stdJC) then JukesCantor 

else if (genJC) then genera!JC 

Do methods 
print scores 

zero scores 
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Appendix D 

Dangers of Computer Simulation 

Never worry about theory as long as the machinery does what it's sup

posed to do. 

[Robert A .  Heinlein] 

It seems appropriate that some of the problems and caveats that I have en

countered while conducting these experiments should be described. There are a 

great many simulation studies in the literature, which have already been cited in 

the body of this thesis, but little is said about the computations themselves; for 

example, how ties were resolved, the effect of rounding error, the amount of time 

required, and so on. 

Hence in this section I outline some of these potential problems, and some of 

their remedies. 

D . l  Tied Decisions 

Problem: Consider a clustering method 'A', which works by clustering together 

groups of taxa until there is just one cluster. It checks, at each clustering stage, 

all the potential pairs of clusters to see which is the "best" in some sense. This 

equates to evaluating some function on the pairs and maximising it. 

However, if there is more than one pair that maximises the function, some 

choice has to be made between them. 

Most program loops to do this will take the form shown in Algorithm D.l,  

below. 
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Algorithm D.l : Typical loop to find {i , j }  to maximise J(i , j )  

for i = 1 to  n - 1 do 

for j = i + 1 to n do 

evaluate f(i, j )  

{ n is the number of clusters } 

if {!( i, j )  is better than anything previously found) then 

end. 

best_pair � { i ,j}  
besLfunction_value � J( i, j )  

So if  we had decided to accept only those pairs {i , j }  for which J(i, j )  was 

strictly greater than our previous best , in the event of a tie we would keep the first 

pair we found. 

If on the other hand we accepted as our best option a pair { i , j }  for which 

f( i ,  j )  equals our previous best, in the event of a tie we would end up with the last 

prur. 

Another alternative might be that we choose arbitrarily between them using a 

random number generator, but this has drawbacks too: it introduces indeterminacy 

into the method. 

One way around the problem for clustering methods may be to build up trees 

in parallel, being abandoned if they are found to give 'worse' solutions than others. 

This has not been implemented in this study. 

The order in which the taxa are labelled obviously has a strong effect on the 

resulting tree, particularly for those input data sets which can take only a small 

number of values, and can give spurious results: 

Consider the generating tree T in Figure D.1 ,  in which the pendant vertices are 

labelled 1 ,  2, . . .  , 8.  Suppose the loop used for the clustering methods was of the 

form given above, taking the first pair {i ,j} of taxa if subsequent pairs do not give 

strictly greater values for f. Suppose also that the sequence lengths were small, so 

that the number of possible distance values between any two taxa was also small. 

In this case tied decisions would occur comparatively often. The first pair upon 

which f would be evaluated is { 1 ,  2} ,  which would have a finite probability of giving 



D.2. Rounding error 255 

at least as high a value of f as any other subsequently considered pair, so there 

would be a definite bias toward producing the correct initial cluster { 1 , 2} .  

This effect did give biassed results, as in  the first implementation of the simu

lation program s im . c the generating trees had fixed labelling schemes. 

Figure D . l :  An example labelled tree 

Remedy: The effect was countered by pseudo-randomly permuting the labels of 

the pendant vertices before constructing the generating tree. 

D . 2  Rounding error 

Problem: Computers do not know that two numbers are theoretically equal : if 

the computational paths to two theoretically identical floating-point numbers are 

different, rounding error is almost certain to render them different .  

Suppose method M works by counting up the number of times di,j + dk,l is 

strictly less than di,k + dj,l and clusters together { i, j }  if it maximises this count. 

Whereas dw,z: + d11,z may equal dw,11 + dz:,z , in all likelihood they will be different, 

thus spuriously affecting the count. 

For example, having proved the two methods NJ and CTDH were identical 

when n = 4, it was surprising to discover that they performed differently. This was 

because of rounding error; the actual calculations were different (though theoreti

cally equivalent) ,  so came up with different numbers. 

Remedy: One suggested stratagem for dealing with this problem is to use a 

somewhat looser definition of equality, in the context of computer calculations. 

This would have to take into account the maximum size, say 6 of the rounding 

errors, and call two numbers 'equal' if their difference is less than 6. 
In this study however the technique was simply to use the highest precision 

available: 48-bit floating point numbers. Though memory requirements are con

commitantly larger, this is not a major problem in most cases. (Note that using 
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variables of this type, "double" , actually requires less computing time for basic 

mathematical operations than is required for the 24-bit floating-point numbers of 

type "float" . This is because the variables of type float are converted anyway 

to type double before the operations are carried out. ) 

D .3 Programming errors 

Problem: It is not always easy to detect program errors. One reason is that it is 

easily possible for a program to perform "as expected" , and thus close inspection 

of the operation of the program is not seen as necessary. This close inspection is 

not easy either: when the programs are of the order of 100 kbytes long, detecting 

'bugs' is difficult, and when the output data sets are of the order of 100 kbytes 

to 1000 kbytes in size, closely investigating and checking them is in many cases 

impossible. 

Also, the results of simulation experiments like this one are published without 

explicit descriptions of their implementation, which makes checking of published 

results by other researchers impossible. 

Remedy: One obvious remedy is to take ever more care when using computer 

programs, checking their operation is correct, whether or not they are operating 

:as we expect'. This is of course time-consuming, but must be done, even when the 

results seem 'normal'. 

Another way in which simulation experiments can be made more reliable is for 

the programs to be explicitly described, in an algorithmic form, rather than, as I 

have seen in more than one case, where the 'algorithm' is 'described' by a single 

example (93) . For this reason the pseudocode for the algorithms used in this study 

has been included. 
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