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Abstract

This thesis comprises several computer simulation experiments in which the per-
formance of a selection of phylogenetic methods was assessed. Data were gener-
ated according to a known model and used as input for the phylogenetic methods.
Some new methods were introduced, and their performance compared with extant
methods. Performance was judged by several criteria, being accuracy, consistency,
efficiency, falsifiability and robustness.

The experiments were designed to be biologically relevant, and yet computa-
tionally tractible. Hence the models of evolution used were simple, to allow a wide
range of parameters to be tested for their effects within the bounds of available
computing resources.

The experiments were divided into two main types, the “small n” with up to 10
taxa, and the “large n” with from 10 to 30 taxa. Parameters which were allowed
to vary in the “small n” case included number of taxa (n), sequence length, tree
topology, edge length probability distribution, and purity of data. In the “large
n” case, number of taxa, sequence length, and edge length probability distribution
were varied.

The simulation experiments show that the accuracy of phylogenetic methods
decreases with increasing n, and that the mean number of internal edges of the
generating tree which are incorrectly inferred increases at least linearly with n.
The rate at which the sequence length must increase with n, to retain a fixed
confidence in the inferred tree, is shown to be at least linear in n.

All the methods are approximately as susceptible as each other to sampling
error, which is exacerbated by the generating tree having very short or very long
internal edges, and by finite sequence length. All the methods are susceptible to
random error such as sequencing error, but provided such error is small, the effect
1s not great.

One type of method, using edge lengths inferred by the Hadamard conjugation



process, is shown to be much more robust to impure data and to sequencing error
than are the other methods.

With n > 10 only the fastest methods were used. Increasing n again decreased
the accuracy of the methods. Varying the “molecular-clockness” of the generating
tree was shown to have a much greater eftect upon those methods inconsistent with
data which do not satisfy the molecular clock hypothesis.

All the methods used are described algorithmically, and their computational
complexity is discussed. New proofs are provided of the consistency/inconsistency
of several methods with the models of evolution used.

A notation is introduced to characterize all tree topologies, and used throughout

this thesis.
Pseudocode is provided for all the major algorithms used in the simulation

experiments.
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Chapter 1
Introduction

There is a theory, which states that, if anyone should ever discover
exactly what the Universe is for, and why it is here, it will instantly
disappear, and be replaced by something even more bizarrely inexpli-
cable.

There is another theory which states that this has already happened.
There is yet a third theory, which suggests that both of the first two
theories were concocted by a wily editor of The Hitch-Hikers’ Guide To
The Galazy, in order to increase the level of universal uncertainty and

paranoia, and so boost sales of the Guide.
(The Hitch-Hikers’ Guide To The Galazy, Douglas Adams (1]

1.1 Organization of this thesis

This thesis summarises my simulation study into the performance of some methods
of phylogenetic inference. It is divided into seven chapters, with four appendices.
The current chapter introduces the general problem of phylogenetic inference and
defines many of the terms which are used throughout this thesis. Other terms are
discussed in context. Also discussed in this chapter are the models of molecular
evolution used in the data generation for the simulation experiments.

The second chapter describes five desirable properties of phylogenetic methods:
accuracy, consistency, efficiency, falsifiability and robustness. A concise description
is given of some known methods, and each of these is assessed for its consistency and

efficiency. A new method, here called ‘Compatibility’ is introduced in this chapter,



2 Chapter 1: Introduction

because of its close relationship with the ‘Closest tree’ selection criterion [40]. (This
method should not be confused with the compatibility method used in connection
with maximum parsimony: see Section 2.5.2 and [91].) General algorithms are given
in pseudocode of the operation of the phylogenetic methods based on clustering.
Algorithms are also provided of the exhaustive search strategies used to evaluate
the three types of optimality criteria used in this study. Some other methods, not
studied here, are mentioned in the last section of Chapter 2, and reasons for their
exclusion from the current investigation are discussed.

The first section of Chapter 3 addresses the question of why new methods should
be sought, and discusses some relationships between those methods used in this
study. Section 3.2 describes a way of inferring expected frequencies of patterns
in sequence or character data from matrices of distances between taxa. Section
3.3 briefly describes the new compatibility method again, and Sections 3.4 and
3.5 describe two more new variants. The consistency and efficiency of these new
phylogenetic methods is noted.

The fourth chapter describes the experimental methods used to conduct this
study. Section 4.1 discusses in depth the models of sequence evolution which were
used to generate data in the experiments. Section 4.2 describes some of the ways in
which data can deviate from the model used in the generation of data, these being
random noise, sampling error and inadequate or contradictory models. The next
section (4.3) describes the methods used to generate data, and the way in which
accuracy of each method is assessed in each experiment. The study is divided into
two parts, these called the “small n” and “large n”, where n is the number of
taxa being considered. Section 4.4 describes in detail the generation of data in the
“small n” case and provides an example of such data generation. Data generation
for the “large n” case is described in Section 4.5.

Chapter 5 describes eight general results pertaining to the performance of phy-
logenetic methods in this investigation. Section 5.3 discusses the amount of agree-
ment between the phylogenetic methods. Sections 5.4 to 5.7 discuss the effects
of sampling error, tree topology, edge length probability distribution and number
of taxa on the performance of the phylogenetic methods. Section 5.8 notes the
effect of using observed distances to infer edge lengths, rather than frequencies of
patterns of character states observed across the taxa. Sections 5.9 and 5.10 show

how the phylogenetic methods behave when there is random error in the data: (1)
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when the random error is unbiassed, and (2) when the random error is biassed,
respectively.

The first section of Chapter 6 discusses some computational considerations
which apply when the number n of taxa increases, and how these considerations
affect the choice of data generation and phylogenetic inference methods used. The
“large n” case is restricted so that only ‘clustering methods’ of phylogenetic infer-
ence are used. Section 6.2 notes the effect of sampling error on the accuracy of the
methods used in this part, and Section 6.3 discusses the way the number of taxa
affects this accuracy. Sections 6.4 and 6.5 discuss the effects of the overall time
from the root of a phylogenetic tree to the present, and the relative time at which
the last bifurcation (speciation) event occurred. The edge length probability dis-
tribution having been established as having a major influence on the performance
of phylogenetic methods, Section 6.6 describes an experiment in which the type of
distribution and their spread were assessed for their affect on the performance of
the clustering methods. Also in Chapter 6 is discussed the effect that the location
within a phylogenetic tree of a given edge of the tree has, upon the probability that
it will be correctly inferred by the clustering methods.

Chapter 7 summarises the results of these experiments, and relates them, where
possible, to similar experiments that have been carried out by other authors. A brief
discussion then follows in Section 7.4 of the possible directions in which research

may continue.

The appendices contain information which, it was decided, could not be included
within the main text without interrupting the flow of the discussion. Appendix A
describes a method by which the shape (topology) can be characterized in a concise
way. This notation, the ‘Tree Topology Description Notation’, is used throughout
this thesis.

Appendix B includes mathematical proofs of several theorems described in the
main text, concerning the consistency of some methods with respect to models of
data generation (Theorems 1 to 4). Also in this appendix are a proof (Theorem 5)
that the ‘Neighbour-joining’ method is optimal in a more general class of methods,
that two of the methods used are equivalent in a special case (Theorem 6), and that
a simple modification of the Neighbour-joining method yields a method equivalent
to the ‘Neighbourliness’ method (Theorem 7).

Appendix C contains pseudocode listings of all the main algorithms used in this
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study. A brief introduction in Section C.1 describes the notation used. In Appendix
D are described three problems which I have encountered in the simulations, these
being tied decisions, rounding error, and programming errors. Appropriate courses

of action concerning each of these potential problems are described.

1.2 The Problem

A central problem of taxonomy is that of inferring phylogenetic relationships,
usually described by evolutionary trees [37], between taxa (e.g., families, genera,
species, populations). Given data from a set of taxa, we most often want to re-
construct the evolutionary tree which best fits the data set. With the considerable
advance of the Polymerase Chain Reaction (PCR) making the acquisition of DNA
and RNA sequences relatively easy and cheap, there has appeared a vast quantity
of DNA and RNA sequence data. The logical course is to take maximal advantage
of these sequence data, and either to use them as inputs to sequence-based meth-
ods of phylogeny reconstruction, or indeed to convert sequence data to distance
data, for use with distance-based methods. Though, as has been pointed out [87],
a large proportion of the information in sequence data is lost when converting from
sequences to distances, the high level of understanding of the behaviour of distance-
based methods, coupled with their relatively high speed of operation, means that

use of distance data is also a sensible course of action.

1.3 This Study

The main aim of this study is to examine some of the factors which can affect the
performance of phylogenetic methods. Since the theoretical or analytical calcu-
lations required to cover all possible cases with all but the very simplest models
and smallest numbers of taxa (typically 4 or 5) are often prohibitively complex, we
resort to the empirical approach: we simulate.

As a starting point for further study, simulation is very useful. It is not the ‘b-
all and end-all’ of phylogenetic study, but it can reveal trends in the characteristics
of phylogenetic methods which can then perhaps be investigated theoretically [12].
The simulation methods are described fully in Chapter 4.

The simulated data, generated according to given models of evolution and
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known phylogeny, were used as inputs to the various phylogenetic methods, and
measures were obtained of the ability of these methods to recover the generating
phylogeny.

I have split the investigation into two sections, which I have called the “small n”
and the “large n” cases. For the “small n” case unrooted trees (defined in the next
section) were used, with from 4 to 10 pendant vertices, corresponding to extant

taxa. For these unrooted trees, the following parameters were varied:
e Number of taxa,;

e Sequence length;

Tree topology:

Edge length probability distribution (range);

Purity of the data.

Varying these parameters it was possible to determine the effect each had on the

performance of phylogenetic methods.

For the “large n” case, rooted trees (defined in the next section) were used,
with up to 30 pendant vertices. For these rooted trees, the following parameters

were varied:

e Number of taxa;

Sequence length;

Overall time from the root to the pendant vertices;

Proportional time to the last bifurcation event;

Edge length probability distribution (type and range).

The other aspect studied with rooted trees is the effect of the “depth” of each
edge (defined in Chapter 6) on the probability that it will correctly be inferred.
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1.4 Definitions

There are some special terms used in this thesis, which are discussed in this sec-
tion. They consist of some basic mathematical terminology and some terms com-
monly associated with phylogenetic inference. The definitions of some moderately
new terms related to the behaviour of phylogenetic inference methods are given in

Chapter 2.

1.4.1 Mathematical terminology
Graphs and Trees

A graph G consists of a set V(G) of vertices, also called nodes, and a set of edges
E(G) C V(G) x V(G). An edge connecting v; and v, can be directed, in which case
it is denoted by the ordered pair (v;,v2), or undirected, in which case the order of
the pair is unimportant, and the edge may be denoted {v;,v2}. The direction of
edge (v1,v;) is from v; to v,.

We say that edge e = {vy,v2} is incident on vertices v; and v,. Each directed
edge e = (vy,v;) is said to be directed out of v; and directed into v,.

The degree of a vertex v i1s the number of edges which are incident on v, and is
written deg(v). The in-degree of a vertex v is the number of edges directed into v,
and the out-degree v is the number of edges directed out of v.

If a vertex has degree 1, it is a pendant vertez, and the edge incident on it
i1s a pendant edge. In phylogenetics, the pendant vertices correspond to extant
taxa, and the internal vertices correspond to hypothetical ancestral taxa. (Note
that pendant edges and vertices can also be referred to as ‘exterior’, ‘external’ and
‘outer’: such notation is not used here.)

A path between two vertices v; and v, € V(G) is a set of edges {(v1,v;,),
(ViysViy)y - -+ (Vig,v2)}. The length of a path is the number of edges in it. A graph
G is connected if for each pair of vertices v,,v; € V(G), there exists a path between
them. A cycle is a non-empty set of distinct edges in E(G) which describe a path
from a vertex v to itself (see Figure 1.1). A loop is an edge of the form (v, v)
(see Figure 1.1). If G has no cycles or loops, and is connected, then it is a tree.
All trees considered in this thesis are finite, that is, they have a finite number of
vertices. Note that in a tree the path 7;; between vertices v; and v; is unique for

each v;,v; € V(G). The maximum of the number of edges in any path in T is the
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diameter of T, and is denoted by d(T).

A tree T whose pendant vertices represent taxa is referred to as a phylogernetic
tree. Sometimes phylogenetic trees are also known as cladograms, but I do not use
such nomenclature here [44].

Given a tree T with edge set E(T') and vertex set V(T'), and a tree T’ with .dge
set E(T') and vertex set V(T"), T" is said to be a subtreeof T if E(T") C E:" . and
V(T') C V(T).

With apologies to terminology purists, I shall henceforth adopt a slightls sinppy
approach and refer to edges e and vertices v as simply being in the graph ' where
this is unambiguous, instead of v € V(G) and e € E(G). I will often write «n edge
as an ordered pair of vertices without assuming any direction, unless ¢! irwise
stated, so an edge joining vertices v; and v, can equivalently be written (7., " :
(v2,v1)-

We can distinguish one vertex of a tree T and call it the root, in which
tree is rooted. A rooted binary tree is a rooted tree in which, when all t:
are directed away from the root, the in-degree of every vertex is either U. ..
root vertex, or 1, for the other vertices. For such a directed rooted binary t.ce. ilic
out-degree of every internal vertex is 2, and that of every pendant vertex '

Each rooted binary tree T with n pendant vertices has |V(T)| = (2» -
vertices in total and |E(T)| = (2n — 2) edges, (n — 2) of which are intei
n of which are pendant.

An unrooted binary tree is a tree in which every vertex has either deg . -
degree 3. Any unrooted binary tree can be changed to a rooted binary -
inserting a new vertex of degree 2 into an existing edge of the tree. Each nunre
binary tree T with n pendant vertices has |V(T)| = (2n — 2) vertices, (n - :
which are internal, and |E(T)| = (2n — 3) edges, (n — 3) of which are intc-iai

Two trees have the same topology if they are indistinguishable when 2!l l.t.»
and edge lengths or weights are ignored. This is an equivalence relation on all {2z
This definition is at odds with some authors (e.g. [93]), who include the lahei- i
pendant vertices in their definition of tree topology, so we note it specially to avoid
confusion.

If a tree has any internal vertices with degree greater than 3, it is said to be

not fully resolved. All binary trees are fully resolved.
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Vg

Ve
v, 4

V1o
V7

Figure 1.1: Example of a graph
The above graph with 10 vertices, v, ..., v;0 has two connected components. The
degrees of the vertices are deg(v3) = 1; deg(v;) = deg(vs) = deg(vg) = deg(vg)
= deg(v10) = 2; deg(vq) = deg(v7) = 3; deg(vz) = 4; deg(ve) = 5. The edge set
{(v1, v6), (v6,v2), (v2,v1)} is a cycle, and the edge (ve,vs) is a loop.

Additivity
Consider a tree T', with edge set F(T'), and whose pendant vertices are labelled
from the set L = {1,...,n}. Suppose that for each edge e € E(T), there is
a corresponding length (or weight) g. € R. Suppose also that we have a set of
distances d;; € R between each pair of vertices {¢,5} € V(T'). The distances d;;
are said to be additive on T, if V i,j € L,dij = Leen, ; Ge-

A set D of distances d; ; for which there exists a tree 7" upon which D is additive,

then D 1is said to satisfy the additive tree hypothesis.

Bipartitions

A bipartition of a set S is a division of the elements of S into two disjoint subsets,
say A and A’, whose union is S. The trivial bipartition of a set S is {S. ¥1-

Each edge of a tree T induces a natural bipartition of the pendant vertices
of T', each pendant vertex being either on one side or other of that edge. If each
bipartition in a set of bipartitions can be induced by an edge of a single tree T', then
the set of bipartitions is defined to be compatible [7]. If the bipartitions induced
by a set of edges is compatible, then the set of edges is also said to be compatible.

Each bipartition {4, A’} of {1,...,n} shall be represented by that subset, either
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A or A', which does not contain n. For example, the bipartition of {1,2, 3,4} into
the subsets {1, 3} and {2,4} is represented by {1,3}. With this representation, two
bipartitions, say X and Y, X # Y, are compatible if X NY € {X,Y,0}.

This representation is used in the scheme devised by Hendy [40], by which the
bipartitions of the set {1,...,n} are labelled by the numbers 0,...,2""!' — 1.
Under this labelling scheme, bipartition X is labelled with ¥ ,cx 2'"!. In a tree
T with n pendant vertices, each edge e has the same label as the bipartition of
{1,...,n} that e induces. Note that the edges incident on the pendant vertices
{1,2,3,...,n — 1,n} are then labelled {1,2,4,...,2"72,2"~1 — 1}, respectively.
This edge-labelling system is used throughout this thesis. For convenience, m is
defined to be 2"~! henceforth.

Testing two edges labelled z and y for compatibility is then achieved by the
bitwise logical “AND” operation: Edges z and y are compatible if and only if
z AND y € {z,y,0}. Pendant edges are compatible with all other edges. For
example, edges labelled with z = 19 = 010011 (3ase 2) and y = 23 = 010111 pase 2)

are compatible, because
z AND y = 010011(base 2) AND 010111((,,138 2) = 010011(base2) =y,

whereas edges labelled with z = 19 = 010011 (305 2) and z = 24 = 011000(sase2) are

not compatible, because

z AND z = 010000(sase 2) = 16 & {19,24,0}.

Complexity

If the number of mathematical operations required by a function f acting on a
data set of size k is bounded above by a constant multiple of some function g(k)
as k increases, then the function f is defined as being of order g(k), and is written
O(g(k)). Hence the “bubble sort” algorithm, which requires ('2‘) operations, 1s
O(n?), whereas the faster “Shell sort” algorithm is O(nln(n)) [70].

The number of unrooted binary trees with n pendant vertices is
(2n — 5= (2n — 5)(2n — 7)..(3)(1).

By using Stirling’s approximation [5] it can be shown that (2n — 5)!! ~
(2/e)"n""%, so the number of trees with n pendant vertices is said to be ezpo-

nential.
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Throughout this thesis the number of taxa under consideration is n, and the

sequence length is c.

1.4.2 Phylogenetic terminology
Character sequences

A character is some object, common to some or all of the taxa. Here we use
characters which are either from the four nucleotides of DNA or RNA molecules
or from a two-element set.

Each character is able to be in one of a finite set of states, or colours. If
the characters are nucleotides, the possible character states are A (adenosine), C
(cytosine), G (guanine) and either T (thymine) or U (uracil), depending on whether
the characters are taken from DNA or RNA molecules, respectively. If there are
just two colours they are 0 and 1, which could correspond to pyrimidines and
purines ({C, T/U} and {A, G} respectively).

A character sequence is an ordered list of character states. I have assumed
throughout this study that the character sequences have been obtained and aligned
correctly, i.e., that the characters (e.g., nucleotides or amino acids) at the same po-
sitions in different sequences are homologous. The alignment problem is a separate
(and often difficult) issue: for further detail see [4], [35], [57], [94], [99].

Edge lengths

The lengths of edges in phylogenetic trees are usually in R*, the positive real
numbers. However in some methods (e.g., maximum parsimony [26)) a continuous
measure is not always appropriate, and discrete (integer) edge lengths are usually
used. In the case of maximum parsimony, these inferred edge lengths can be taken
as the minimum number of character state changes on each edge which could ac-
count for the pattern of character states observed at the pendant vertices of the
tree. (This minimum number is evaluated over all possible assignments of character
states to the internal vertices of the tree.)

Farris raised an objection to the use of continuous edge lengths [21], but this
was based on correlating estimated distances with actual events (character state
changes), rather than, as was pointed out to be more appropriate by Felsentein

[24], [25], with ezpected numbers of events.
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Occasionally it is possible to infer edge lengths which are negative (e.g., with
the Hadamard conjugation [40]), but these are a theoretical construct, and do not

have a readily interpretable biological meaning.

Note that the number of observed character state differences between sequences
at the ends of a path 7 or edge e of a tree T is not an additive measure (see above).
To obtain additive distances, the number of changes of character state must be
inferred.

Under the molecular clock model of evolution, the distance between the root of
a generating tree and each of the pendant vertices is the same. This is equivalent
to the rate of evolution being the same on all lineages of the tree, from the root to
the extant taxa.

Normally the distance between two character sequences is defined as a weighted
sum of the various types of difference, at each site, between the sequences. In a
very simple case, the distance between two sequences is the proportion c! sites on
one sequence which have a different character state at the corresponding site on the
other sequence. With four character states, the type of difference between sequences
1s often taken into account: sites at which the difference between corresponding
character states require a transition (A « G, C « T) can be assigned different
weights from those sites which require a transversion (all other changes), depending
on the relative rates at which such types of change occur.

In this thesis the distance between two sequences is taken as the proportion of
sites at which they differ, whether for two or for four character states. This is also
known as the Hamming distance.

Under Cavender’s model of evolution [10], with just two character states and
constant, 1.1.d. rates of change, the following formula accounts for multiple character

state changes between two sequences:
g =—0.5In(1 — 2p),

where ¢ is the (inferred) number of character state changes, per character, between
the two sequences and p<9.5 is the (inferred) number of differences, per character,
between the sequences [39].

Under the four-state model, there are several suggested formulae for the esti-
mation of the number of changes. If the rates of character state change are the

independent of the states (the Jukes-Cantor 1-parameter model [51]) and the four
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states are equally likely, the formula is
g = —0.751n(1 — p/0.75)),

with p and ¢ defined as before, though now p < 0.75.

In general, with r states, exactly one parameter in the transition matrix and
constant i.i.d. rates of change,

l—-r Tp
q= n 1n<l—r_1>.

With the four states having observed proportions which may be unequal be-
tween states but are the same for the same states on different sequences, the formula
becomes

g = —eln(l — p/e),

where p and ¢ are as before, and
e=1-fi—fé—fé-Ir,

the f’s being the proportions of the character states in the two sequences [91]. Note
that if f4 = fo = fe = fr = i— e = 0.75, and so the Jukes-Cantor formula is a
special case.

There are more complicated formulae for models with more parameters (73],

but these models are not used here and are not discussed.

Clusters

A cluster is a set of taxa. Often a cluster in a phylogeny is constructed under
the hypothesis that it is a monophyletic group with respect to the other taxa
under consideration. With unrooted trees, a cluster may also be formed under the
hypothesis that its complement is monophyletic, with respect to the whole set of
taxa. Note that a cluster may also be regarded as a taxon, and that each taxon
can be regarded as a cluster of size 1. The size of a cluster is the number of taxa
in it. A cluster of extant taxa can be represented on a phylogenetic tree T by a
subtree T” of that tree, where the pendant vertices of 7’ correspond to the extant

taxa.
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Neighbours

The nearest neighbour of a taxon in a graph, with respect to a given set of taxa,
is that taxon which is the closest taxon to it. The nearest neighbour of a taxon is
usually taken from one of the other pendant vertices (i.e., extant taxa).

A neighbouring pairof vertices is a pair of vertices of the tree which are adjacent

to a single common vertex. In Figure 1.1 vertices v3 and v are a neighbouring pair.

1.5 Models of evolution

There are many different models of evolution. The models of interest here are
those which have some stochastic process operating over time on a set of character
sequences (e.g., DNA sequences). Also part of the model is the tree which governs
the mechanism by which data were generated, called the generating tree and usually
denoted here by Tg.

Generally with these models, the probability of a character state change between
the vertices at each end of an edge is dependent on the initial state and the final
state, this information given in a transition matriz. For a transition matrix M
governing the change of state from time ¢, to time ¢, (perhaps on an edge of the
tree), entry m; ; of M is the probability that, given that the character is in state
¢ at time t;, it will be in state 7 at time ¢3. Such a matrix is called a stochastic
matriz, and the sum of the elements in each column add to 1. A further constraint
is that each entry in these matrices must be non-negative.

These are Markov models, and characters changing according to such a model
are obeying a Markov process.

The transition matrix may vary over the edges of a tree and across sites of the
sequences, but in this thesis the transition matrix for a given edge is independent
of lineage and sequence site, and is a function of the length of that edge.

For two character states, the transition matrix used here is of the form

1—-1z T
T n—mil’
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while for four character states the transition matrix has been of the form

1 -3z T T z
z 1-3z z z
T T 1-3z T
z T x 1 -3z

These models are the Cavender and Jukes-Cantor models ([10] and [51], respec-
tively).
More general models have more parameters, for example Kimura’s models,

known as the 2P and 3ST models [73], in which there are 2 or 3 arbitrary pa-

rameters in each transition matrix, as shown below (the rows and columns are
indexed with character states A, C, G, T/U, in that order):
The 2P model:

1-2z—y z Y z
T 1-2z—y T Yy
Yy z 1—-2z—y T
z Yy z ly— 2z vl i}

The 3ST model:

Fl—x—y—z T i z
E l—-z—-y—2
i z l—-z—-y—2=z B
i i T h—a—y— 2]

The above matrices are all symmetric, 1.e., the z,j-th entry is identical to the

J,t-th entry. The most general symmetric transition matrix is

l—-u—v—w u v w
u L—w—a—y T i
v T l—-v—z-2 z
w i z l-w-y-—2

[ 1—r—u-—1z 0 p q ]
T l—-0o—v—y s t
u v l-p—s—-2 w
T i z l—gqg—-t—-—w
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A good discussion of all the above models is to be found in Rodriguez et al [73].
In this study the models of evolution used are very simple. In both the “small
n” and “large n” cases I have used the Cavender and Jukes-Cantor models as

described above, with two and four character states, respectively.
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Chapter 2

Phylogenetic Methods

[ am, in point of fact, a particularly haughty and exclusive person, of
pre-Adamite ancestral descent. You will understand this when I tell
you that I can trace my ancestry back to a protoplasmic primordial

atomic globule.
[The Mikado, Gilbert and Sullivan]

2.1 Introduction

By the use of phylogenetic methods, we hope to resolve as many as possible of the
questions of the relationships between organisms. This chapter first lists some of
the properties which are desirable in phylogenetic methods. It is unfortunately not
possible for any one method to possess all of the properties listed [66].

The following sections describe the operation of several of the phylogenetic
methods studied here. The methods are split into two groups, being construc-
tive and search methods. General algorithms are provided in pseudocode of the
operation of the constructive methods, and of the search methods. Within each
description are noted whether the method is consistent with additive data, and its

computational complexity.
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2.2 Desirable Characteristics of Phylogenetic Meth-
ods

As in Penny et al [65] we use consistency, efficiency, falsifiability, and robustness as
desirable characteristics of phylogenetic methods. However, we do not, as Penny
et al do, use ‘power’ to measure the ability of phylogenetic methods to correctly
infer the tree from which the data were generated, as this term has other meanings
in statistics. The probability of a method correctly inferring the generating tree is

defined as its accuracy.

2.2.1 Accuracy

The accuracy of a phylogenetic method is a measure, albeit an imprecise one, of
the probability that a method will correctly infer the phylogeny which generated a
data set, when using that data set as input. It is imprecise, because the probability
that a method will correctly infer the tree which generated a given data set is
a complicated, and generally unknown, function of the data. The property of
accuracy is the one which is most often sought, since we are usually most concerned
with the overall shape of the phylogeny: up to a point, we are willing to wait for a

slow but accurate method, as opposed to a fast but inaccurate method.

2.2.2 Consistency

Consistency of a phylogenetic method must be with respect to some model of
evolution. It is the property that, when data are generated according to that
model, and as sampling error of such data tends to zero, the probability that the
correct phylogenetic tree will be inferred tends to unity.

All the methods used here have been tested for consistency or inconsistency (as
appropriate) with the molecular clock and additive tree models, described earlier.
Consistency is desirable because we do not want to use a method which may give

us the wrong tree, if the data fit some known model.

2.2.3 Efficiency

Generally speaking, a method is efficient if it is fast, and inefficient if it is slow.

(Note that this is at odds with some authors, e.g., [50], [80], who deem a method
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to be efficient if it has a high probability of returning the correct tree.)

In this general sense, whether a method is efficient or not is determined by its
implementation. For example, a search through the ~ 103° trees on 25 pendant
vertices may take years on a personal computer, and hence be generally regarded
as ‘ineflicient’ in that implementation, or less than a day on a massively parallel
supercomputer, hence being regarded as ‘efficient’. Speeding up the implementa-
tion of an algorithm, for instance by using a branch and bound process to discard
more than one tree at a time [28], may well make it more efficient. This has been
done for the search methods. In some other studies a conscious decision has been
made, to sacrifice accuracy for speed by conducting the search on a proper subset
of all potential trees ([16], [80]).

A more precise definition of efficiency can be obtained by considering the com-
putational complexity of each of these methods. The computational complexity of
reconstructing phylogenies is described in [34] and [98]. More specific discussions
of complexity in tree reconstruction are to be found in [52] and [83]. The compu-
tational complexity of each of the methods used in this study is noted within its
description.

In general, those methods which require a number of operations which is bounded
above by a polynomial function of the size of the input data set are regarded as
efficient. These are often referred to polynomial-time methods. Those methods for
which no implementation is known to make them polynomial-time methods are
generally regarded as inefficient.

Note that in the statistical sense, efficiency is related to the amount of infor-
mation which can be retrieved in a test. An algorithm which is O(n") may have a
high probability of returning the correct tree, and so may be ‘efficient’ statistically,
but for large n, may take a very long time, and hence would be called ‘inefficient’
(though accurate) here.

Efficient methods — in the mathematical sense — are of interest because they
can provide answers to phylogenetic questions in a reasonable amount of time.
Though the collection of data may take months or years, the tendency is to infer a
phylogeny quickly. However, including the gathering of data, the phylogeny recon-
struction can often legitimately take up the bulk of any investigation, particularly

if the number of taxa is large. “Large” is a again rather loose term in this case,
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as the amount of time required for the inference of a particuar phylogeny is de-
pendent on the method of phylogenetic inference used and its implementation, but

most researchers would agree that in the order of 100 taxa or more is “large”.

2.2.4 Falsifiability

Falsifiability is required if we are to be able to conduct valid experiments in phylo-
genetic analysis [69]. It is the property that given a data set and an hypothesized
model, a method can reject the model if it is not appropriate to the data set. For
example, suppose we have a data set, consisting of a matrix of pair-wise distances
between taxa, which has arisen from a phylogeny where there has been recombina-
tion. In this case the underlying phylogeny cannot correctly be described by a tree.
We would therefore like our phylogenetic method to reject the hypothesis that the
phylogeny is tree-like.

Note that the clustering methods do not have this property; whatever the data
set (up to a point: the distances must be semi-metric (i.e., d;; = d;; >0V, and
dij =0 <= i =j) [5]), each of the clustering methods used here will provide a
tree, even if the input data were not generated from a tree.

We find later that the original closest tree and compatibility methods (CTSH
and CoSH respectively — see later) do have this property, if the accuracy of the
methods can be estimated in some way, and when used in conjunction with other
methods: when data generated from more than one tree are used as input to these
two methods, they perform relatively better than do the other methods. Knowing
this, if we see such relatively high accuracy of CTSH and CoSH (with respect to
the other methods) we can hypothesize that the data set is not pure. Judging the
accuracy of the methods could in this case be achieved by bootstrappi;lg sequence

data, but has not been investigated here.

2.2.5 Robustness

The robustness of a method is a measure of its insensitivity to variation in the
mechanism by which data are generated, or, in other words, to the model of data
generation deviating from the evolutionary model which is implicitly or explicitly
assumed by the phylogenetic method. This is desirable because in general we

do not know the evolutionary mechanism, and so it is more than likely that any
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hypothesized model will be violated to a greater or lesser degree. (Tests of the
robustness of maximum likelihood (ML) methods have been carried out by Fukami-
Kobayashi and Tateno [30]. They varied the type of transition matrix used in the
mechanism of evolution, and the relative frequencies of the character states.)

In this thesis, the models of data generation deviate from the hypothesized

models used by the phylogenetic methods in the folowing ways:
e Contamination of data;
e Adherence to a molecular clock;

e Random error.

Contamination of data is modelled here by amalgamating data generated from
trees representing two independent phylogenies. This is described in Section 4.2.3,
and experimental results given in Section 5.10.

Adherence to a molecular clock is investigated in the “large n” case, by varying
the spread of the edge length probability distributions about their expected values.
With only a small spread for these probability distributions, the edge lengths closely
fit the molecular clock hypothesis, but with a greater spread they can deviate from
it. This is described in Section 4.5.4, and experimental results given in Section
6.6.2.

2.3 General Classes of Phylogenetic Methods

We can split the methods used here into pairs of distinct classes. The methods
are grouped according to the form of their input data, and how they go about
selecting a phylogeny or set of phylogenies. If a method uses pairwise distances
(i.e., a set of distances between pairs of the taxa) as its input, it is distance-based,
whereas if it uses sequences of characters directly, it is sequence-based. Distances
can arise from sets of morphological characteristics which vary over a continuous
range, for example, the lengths of spines on the legs of different types of weta
[71]. Distances can also be calculated from sequences, as described in the previous
chapter. Character sequences are most commonly sets of DNA, RNA or protein
sequences taken from extant taxa. (Though some progress has been made with
extracting DNA from fossilized organisms, such sequences tend to be rather short,

in the order of 100 base-pairs, due to the fragmentation of DNA over time [61].)
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It is important to note that while the original data set may be the same, differ-
ent methods may transform the data in different ways: Here, the sequence-based
methods (CoSH, CoSO, CTSH, CTSO, MPSH, and MPSO — see later) begin
with a set of partition frequencies, from which are estimated path lengths and then
edge lengths of the generating tree T. NJ, SL, ST, TD and UPGMA (see later)
obtain a matrix of distances, in this study from the set of partition frequencies
described above. Note that distances can be obtained from other sources also, e.g.,
immunological and morphological.

The last group of methods investigated here, which use a “distance spectrum”
(CoDH, CTDH and MPDH — see later), convert the above matrix of distances back
to a set of inferred partition frequencies. These three methods are also referred to as
“distance-based” as they do not require a set of sequences from which to calculate
the distance spectrum, but only a distance matrix.

Within this thesis the following methods are studied:

e the Unweighted Pair-Group Method with Arithmetic Mean [79], abbreviated
UPGMA.

e The transformed distance method of Li [54], abbreviated TD [58];

e the neighbourliness method [77], abbreviated ST after the initials of its in-
ventors, Sattath and Tversky;

e the neighbour-joining method [76], [89), abbreviated NJ;
e the closest tree method [40], abbreviated CT;

e the compatibility method, which is abbreviated Co;

e mazimum parsimony [26)], abbreviated MP;

e SL, a simplification of Li’s TD method;

We describe these methods generally in the following sections, but wait until
Section 4.4.7 to give examples of their operation. This is so the method of data
generation can be explained before showing a typical data set, which is then used
by each method.

For algorithmic descriptions of each method, refer to Appendix C.
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2.4 Constructive methods

Methods which build a phylogeny, by successively constructing pieces of a tree, are
called constructive methods. With such methods the construction is not reversible:
once a decision has been made, e.g., a particular pair of taxa being supposed to be
monophyletic with respect to the others, that decision is retained for that tree.

The constructive methods studied here are all heuristic, in that they find solu-
tions to local optimisation problems (in this case the choice of the next neighbouring
pair), but cannot guarantee that the final solution is globally optimal. Constructive
phylogenetic methods are generally efficient, typically O(n?).

All the clustering methods begin with a set of distance data in a matrix D.
(Note that the distances need not be additive on any tree: none of the clustering
methods have the ability to reject such distance data.)

Each method has a pair of functions F(i,3,D) and G(z, 3, D) which depend
on the method. Clusters z and y are chosen as a neighbouring pair if F(z,y,D)
is optimal. After a pair of clusters {z,y} is chosen, it is replaced by the cluster
z = z Uy, and the distance matrix D is replaced by D' = G(z, j, D), which again
is a matrix of distances, now with one row and one column fewer. This process is
continued until there is only one choice for the final tree.

We can write the clustering process in an algorithmic form (see Algorithm 2.1).

Methods which use the above approach require O(n3) operations to construct a
tree. This is because the three nested loops (“for ... do”) each run through O(n)
repeats. The methods which use this kind of algorithm, and are therefore O(n3),
are NJ, NJa, SL, TD, and UPGMA.
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Algorithm 2.1 : Clustering process (to maximise F(z,7,D))

variables:
n, { number of taxa,n > 2 }
A, { the set of clusters currently available }
C1,Coy...,Copn { the clusters }
k, { current number of available clusters }
i { counters }

A~ {1,2,..,n}
fori=1tondo Ci« {i}
ke—n
while (k > 1) do
11
while (1¢ A)do i~ i+1
T —1 { z is the smallest element in A }
1—1+41
while (1 ¢ A)do 1 —1i1+1
ye—1 { v is the next smallest element in A }
f « F(z,y,D)
fori=zto2n-k-1do
if (i € A) then
forj=i1+1to2n-%kdo
if (7 € A) then
if (F(i,7,D) > f) then
f < F(i,3,D)
T — 1
ye—17J
Can—ik41 — CzUC,y
A—Au{2n-k+1}
A= A-{z}-{y}
D ~ G(z,y,D)
ke—k-1
end.
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2.4.1 Unweighted Pair-Group Method with Arithmetic
Mean

This method, one of the earliest developed, is almost always abbreviated UPGMA,
as it is here [79]. It is also known as the Average Linkage method (AL).

It is consistent with the molecular clock model of evolution. Given data gener-
ated by such a mechanism with the added restriction that evolutionary rates are
i.i.d. across all sites, and in the absence of sampling error, UPGMA will correctly
construct the generating tree (a proof is provided in Appendix B, Theorem 1).
(However, the example tree T shown in Section 4.4.7 is not of this form; wherever
we choose to place a root on T, we cannot thereby make all the distances from the
root to the pendant vertices equal.)

UPGMA is known to be inconsistent with additive data without appropriate
adjustment of the input distances to account for varying evolutionary rates [12].
Hence we expect UPGMA to perform badly in this experiment, in fact not to
improve its performance beyond a certain imperfect level, as we increase the se-
quence length ¢. A proof is provided in Appendix B , Theorem 1 of the consistency
of UPGMA with data which satisfy the molecular clock hypothesis. Despite the
simplicity of the proof, I am unaware of such a proof in the relevant literature.

In UPGMA, the function F(x, y, D) is just d,,. Suppose that at some clustering
stage clusters z and y are amalgamated to form cluster z. Then we modify D

according to
e G(d;i;) =d;;if i and j are distinct from z;

o G(d;) = G(d;.) = esdeatendyy yhere oy is the size of cluster z, a, that of
’ ’ artay

cluster y.

UPGMA requires O(n3) operations to construct a tree on n taxa.

An algorithmic description of UPGMA is given in Appendix C, Algorithm C.23.

2.4.2 Transformed Distance method (TD)

TD works by modifying the distance matrix D before using UPGMA to infer
a tree. The modification is to take into account differing rates of evolution on
different lineages, and is achieved by putting each of the taxa into one of two sets

(here called L and R), which are supposed to contain all the taxa on the left- and
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ight-hand side of the root, respectively, and then modifying the distances so that

hey fit the molecular clock model. The root is assumed to lie between L and R.
First TD finds {z,y} such that d., is maximal. L is set to the singleton {z};

R is set to {y}. The set A of available taxa is then {1,2,...,n} — {z,y}. The

ollowing process is repeated until LU R = {1,...,n}:

e Find ¢ € A such that dr; or dr; is minimal, where dox = 3";cp djk/|L| and
drk = Ljerdik/|R|-

e If dy; is minimal, L = L U {t¢}, otherwise R = RU {i}.
o A= A {i}.

The new distance matrix, D’, is calculated as follows: For each : € L, let
i=diy — d;y,and for each j € R, let r; =d;, — d.,. Then the entries d;; of
D’ are calculated by d}; = d;; — i — 7;.

These distances are then used as the input data for UPGMA.

TD is not consistent with additive data (see Appendix B:Theorem B.1). It
‘equires O(n3) operations to construct a tree on n taxa.

An algorithm description of TD is given in Appendix C, Algorithm C.24.

2.4.3 Neighbourliness (ST)

T'his method of tree construction was invented by Sattath and Tversky in 1977
‘77]). In this method, at each clustering step, each potential neighbouring pair of
clusters, say {z,y}, is evaluated to find the number f(z,y) = f(y,z) of quartets
{¢,7,z,y} for which d; ;+d., < d;.+d;, and d;;+d;, < diy +d; .. Inthe context
of this method, we call f(z,y) the support for the pair {z,y}. At each stage the
pair of clusters {z,y} with the highest support is amalgamated to form a larger

cluster, say z. We then modify D according to

e G(di;) =d;; if 1 and j are distinct from z;

dy,+d
o G(d;;) = G(dj;) = =572t
Neighbourliness, referred to as ST after the initials of the authors, measures the
support for a given potential neighbouring pair {z,y} in a very coarse manner: It

counts ‘one’ for each case where d; ; + d;, < di, +dj, and d;; + d;y < diy + d; s
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whether the size of the differences between d; ; + d., and d;; + d;,, and between
di; +d;y and d;, + d; ;, are small or large.

Suppose we modify ST to take into account the size of these differences by
adding up all the terms (d;; + dj,) — (d.; + dz,) for all possible quartets
{z,y,1,7}. We can show that ST modified in this way produces a method, say
‘ST+’, which is equivalent to the neighbour-joining method, outlined below. The
proof of this assertion is described in Appendix B, Theorem 7. Note that the
original description of NJ did not rely on this modification of ST, but was developed
independently.

ST is consistent with additive data [77).

Because there are (:) = (n)(n — 1)(n — 2)(n — 3)/24 possible quartets
of a set of n objects, each clustering stage requires O(n*) operations, and so the
complete method requires O(n®) operations in this implementation. Note that
ST+, if implemented in the same general way as ST has been, would also require
O(n®) operations, while NJ, equivalent to ST+, requires only O(n®) operations.

An algorithmic description of ST is given in Appendix C, Algorithm C.22.

2.4.4 Neighbour-joining (NJ)

This method was developed by Saitou and Nei in 1987 [76] and a modification was
provided by Studier and Keppler in 1988 [89] which rendered a method consistent
with additive data. It is this modified method which is referred to throughout this
thesis as ‘NJ’.

At each clustering stage, the neighbour-joining method chooses {z,y} to min-

Smlge’ #50¢ W 392 o baux & Tony Yreani
1
F(z,y, D)=d;, — i Z (dzii + dy,i)’
n' — 2
where A is the set of clusters currently available and n’ = |A|. The quantity

> iea dz,i 1s called the net divergence v, of vertex z.
In Appendix B, Theorem 5, a proof (from Charleston et al [12]) is provided
that NJ uses the only possible consistent weighting scheme for the net divergence.
Suppose we choose clusters z and y to amalgamate to form cluster z. Then D

is modified according to
o G(dij) =d;; if i and j are distinct from z;

¢ G(d:;) = G(d;;) = Zarttpazdun
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NJ is consistent with additive data [89], and requires O(n?®) operations to con-

struct a tree on n taxa.
An algorithmic description of NJ is given in Appendix C, Algorithm C.21.

2.5 Search methods

Those methods with an explicit criterion which is optimised over a set of possible
phylogenies are called search methods.

Search methods evaluate some function, M say, on all or some of the set of
possible phylogenies. If M is evaluated on all potential phylogenies, the implemen-
tation is an ezhaustive search. If a proper subset of potential phylogenies is tested,
the search is heuristic.

Since the number of potential phylogenies grows exponentially with the number
of taxa, there comes a point where it is infeasible to conduct an exhaustive search,
and then heuristic methods must be used. It is not within the scope of this study to
investigate the performance of phylogenetic methods in conjunction with heuristic
search methods.

All the search methods described here use as their input data a set of inferred
edge lengths, which is usually denoted q'. The ways in which q’ is inferred, in this

study, from the observed data are described in Section 4.4.6.

2.5.1 Closest Tree (CT)

The Closest Tree method of Hendy [40], [47] minimises the Euclidean distance
between an input spectrum of inferred edge lengths q' and the spectrum of edge lengths
which could correspond to a given tree 7'

This distance is minimised when

M(T) =

eGT

2n— (Zqﬁ%)z (o=- > q)

e€T 1<i<m
1s maximised.

Asoriginally presented, the inferred edge lengths are obtained from the observed
bipartition frequencies using a Hadamard conjugation which relates probabilities s
of observing partitions of the taxa to edge lengths q, for a tree 7. This relation is
described in Section 4.4.3. (Though the method was originally developed to deal

with two character states, a four character state version is now available [46].)
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Note that the set of inferred edge lengths could be obtained using some other
method; the Hadamard conjugation is not peculiar to CT, nor is CT peculiar to
the Hadamard conjugation (Co also uses the conjugation).

The three ways in which the observed data are treated to obtain inferred edge
lengths q' are distinguished by the suffixes ‘DH’ (Distances with Hadamard con-
jugation), ‘SH’ (Sequences with Hadamard conjugation) and ‘SO’ (Sequences, Ob-
served). These ways of inferring q' are described in detail in Section 4.4.6.

The Hadamard conjugation requires O(n2") operations to generate q', the num-
ber of potential trees to test ((2n — 5)!! = (2n — 5)(2n — 7)...(3)(1)) tends
to a constant multiple of (2/e)"n""%, and the evaluation of M(T) for each tree
T then requires O(n) operations. Hence in the worst possible case CT, using the
Hadamard conjugation, could be O(n2" + (2/e)® n®~'). With branch and bound
methods (28], the number of trees for which the evaluation of M(T') must be made
can be reduced substantially (see Section 2.5.4, also [64]).

The branch and bound implementation of CT is described in Section 2.5.4, and
an example of the saving of computing time thus achieved is shown in Table 2.1.

An algorithmic description of CT is given in Appendix C, Algorithm C.25.

2.5.2 Compatibility method (Co)

The Compatibility method is introduced here to take advantage of the spectrum
of inferred edge lengths which is provided by the Hadamard conjugation, outlined
above.

Co should not be confused with compatibility used in connection with parsimony.
In terms of parsimony, each character is defined as compatible with a phylogeny if
it need not arise more than once to give the observed data, and the phylogeny with
which the most characters are compatible is taken as the true phylogeny [91].

In the context of Co, the support for each edge is defined as its estimated length
(taken directly from the input vector q’), and the support for a set of compatible
edges is the sum of the supports of these edges. The set of compatible edges which
has maximal support is chosen as the set of edges of the tree. This method is
described elsewhere but has not before been applied to these inferred edge lengths
as derived by the Hadamard conjugation method. A mathematical description of

Co is given in Chapter 3.
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With four taxa (but not more than four), compatibility is equivalent to maxi-
mum parsimony (they both choose T to maximise the inferred length of the only
internal edge)

Co is of the same computational complexity as CT (see Section 2.5.4).

Compatibility is readily amenable to branch and bound search [28], [43], which
can make the search of potential trees much faster, as described in Section 2.5.4.
The saving of computing time achieved by using branch and bound searching is
demonstrated in Table 2.1. An algorithmic description of Co is given in Appendix
C, Algorithm C.26.

The consistency of Co is discussed in Section 4.4.6.

Note that the quantity minimised by Cois a 1-norm (the “city-block distance”),
and that minimised by CT is a 2-norm (the Euclidean distance) [78]. These opti-
mality criteria could thus be considered to be membersof a larger class of methods,
which choose T as the ‘best’ tree if di(q(T),q(7;)) is minimised, where q(T) is a
set of edge lengths corresponding to tree T, q(T;) is the set of edge lengths inferred
from the observed data, and di is the k-norm for the two sets of edge lengths.

This larger class of methods has not yet been investigated as such.

2.5.3 Maximum Parsimony (MP)

The maximum parsimony criterion (MP) [9] chooses the trees which minimise the
overall number of character state changes which would be required on the edges of
the tree to account for the observed character sequences. This minimum number
of character state changes for a given tree is known as the parsimony length of
the tree. Given a partition of the taxa into two character states and a tree T,
Fitch’s algorithm [26] finds the parsimony length of T in O(n) operations. This
length is then evaluated for all bipartitions in the data, and, for a complete search,
all possible trees. Hence MP is a double-minimization procedure: the minimum
number of character state changes is found for each tree T', and the tree or set of
trees for which this number is minimised is chosen to estimate the true phylogeny.

Due to the large number of potential trees, some studies have limited the search
to testing only those trees which are 1 edge different from the current one, in a
“hill-climbing” approach [80].

It has been shown that MP can be consistent with additive data if the observed

bipartition spectrum is adjusted to account for multiple changes of character state
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on evolutionary paths [88]. When this adjustment is made via the Hadamard
conjugation [45] we refer to the method as MPSH (Maximum Parsimony, Sequence
Hadamard); when the observed bipartition spectrum is used, the method is referred
to as MPSO (Maximum Parsimony, Sequence Observed). MPSO is the maximum
parsimony method commonly used in previous studies.

It is known that MPSO is not consistent with sequence data following the
Jukes-Cantor model [22], [51].

The Fitch algorithm requires O(n) operations to evaluate the minimum number
of character-state changes which could account for each bipartition in the observed
data. The maximum number of distinct non-trivial bipartitions which can be ob-
served is min{2"~! — 1,c}, and hence with the O((2/e)"n"~?) potential trees the
MP methods are of order at most O((2/e)™ (n)*~! k), where k <min{2"~! — 1,c}
is the number of distinct non-trivial bipartitions. If the Hadamard conjugation
is being used to infer expected frequencies of the m = 2""! — 1 non-trivial bi-
partitions, these expected frequencies may all be positive, in which case the MP
methods require at most O((2/e)™ (2n)""!) operations.

In practice the number of operations required is generally much less than the
above upper bounds (see Section 2.5.4).

An algorithmic description of MP is given in Appendix C, Algorithm C.33.

2.5.4 Branch and bound implementations

The search methods described above (Co, CT and MP) must effectively search all
potential trees to find the tree(s) which is (are) optimal, for the optimality criterion
used. Suppose this optimality criterion is evaluated for tree T by a function M (T).

There are (2n — 5)!! = (2n — 5)(2n — 7)...(3)(1) ~ (2/e)" n"~? possible
unrooted binary trees, so if it is necessary to evaluate M on each of these, the search
will take an impractically long time for even moderate values of n, but there are
alternatives in some cases. If M can be broken down into a linear or other simple
combination of functions which can be evaluated on parts of a tree, for example
on the edges, then we can use a branch and bound algorithm to reduce the number
of trees that need be examined. For a general description of branch and bound
methods, see [28).

CT, Co and MP are amenable to this treatment, which can speed up the process

considerably [43], depending on the input data. The next section describes the
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osranch and bound method used in this study for the compatibility and closest
.:ree methods, and the subsequent section describes the branch and bound method
1sed for maximum parsimony. Note that both techniques effectively consider all
>otential trees, so are equivalent to exhaustive searches. Exhaustive search, even
with branch and bound techniques, is generally not possible for n more than 20-30,
lepending on the data and the implementation.

Note also that the input vector may be either a set of observed bipartition
requencies, the bipartition frequencies inferred by the Hadamard conjugation, or
oipartition frequencies inferred from distances. The algorithms are the same for

zach type of input data: the input vector is simply referred to here as q'.

Branch and bound for compatibility and closest tree

With the closest tree methods the quantity to be maximised,

24—~ (qu'f'%) ,

eeT eeT

will be maximised when

M(T) = > g - 2n_ (ch+‘10>2

e€ internal edges of T eeT

is maximised. Note that

dgit+aq= X q. + > g. + go-

eeT e€ internal edges of T e€ pendant edgesof T

The latter two terms in the above expression are calculated at the outset, as they

are independent of T, and their sum included in the algorithms as the variable

“essentials”.
In the compatibility methods, the quantity to be maximised is

Z q;a

eeT

which is maximised when

M(T) = > g

€€ internal edges of T

Is maximised.



2.5. Search methods 33

The first tree considered, say Ty, is found by a “greedy algorithm”: The vectar
of inferred edge lengths is sorted in descending order, discarding the pendant edges
(in practise, the input edge lengths q’ are copied to a temporary array, and the
pendant edge lengths set to —1 in this array). Let the set of internal edges of the
current tree (initially 7o) be S. The edge whose input length is largest is included
in the internal edges of 7o, so is the first element of S. Subsequent edges from the
sorted list are included in S if they are compatible with all the edges already in S.
This constructs a set of (n — 3) compatible edges, which are the internal edges of
To. Let the greatest value of M(T') found be B, so B is initially M(Tp).

Note that the lengths of the internal edges of Tj are stored in decreasing order.

The general principle of the branch and bound process for closest tree and
compatibility is of keeping a ‘core’ array of edges S and stepping a candidate edge,
say e, through the sorted array of inferred edge lengths (of those edges not already
in the ‘core’). At each step, an upper bound, say b, on the value of M(T) with
(SU{e}) € E(T) is calculated. For brevity, let

M(S) = maz(M(T) : S C E(T)),

with the maximization over all possible trees T'.

If b < B, or if no compatible edge with positive inferred length can be found,
the last element of S is removed, and stepped through the array of inferred edge
lengths, as above. If b> B and |S| < (n — 3), eis appended to S. If > B and
|S| = (n — 3) (i.e., the tree is completely resolved), then S is stored (as “bestS”)
and B is set to b. When |S| = 0, the search is complete.

(In practise, the entries of S are the positions of the edge labels in the sorted
vector of inferred edge lengths.)

Note that when the edge lengths are short, and few multiple changes of character
state occur on the internal edges of Tg, the inferred g;’s which do not correspond
to the internal edges of T will be small. Hence the entries in the sorted q’ vector
will decrease rapidly after the first (n — 3). This means that the branch and
bound process will be able to reject larger sets of candidate trees than if the edge
lengths were longer and the decrease in the sorted q’ vector less rapid. Therefore
with shorter edge lengths, we expect the branch and bound search to be relatively
faster than with long edge lengths.

Algorithm 2.2 describes the branch and bound process for closest tree and

compatibility. The saving in computational cost for an example case is shown in
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Table 2.1.
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Algorithm 2.2 : Branch and bound for Co and CT

variables:

b, { the best possible value for M (T') with the current
edge set S }

bestS { the set of n — 3 edges which gives the best M(T) }

B, { the best value found for M(T) with a fully resolved
tree }

i,7,k, { counters }

St { current set of edge labels, stored as array
[S1y.-ey Sn=3) }

s, { temporary storage for S }

optimal, { flag }

q, { vector of input edge lengths }

r, { vector of ranks of q’, so g;, is the i-th largest input
edge length }

V. { a temporary vector of the input edge lengths }

copy input edge lengths q' into v
set pendant edge lengths in v to —1
sort v in descending order, and put the ranks of v into r.
S1<1 { note that r; is the label of the edge with the largest
inferred length }
Jje2
for:=2ton-3do
while (7; is not compatible with §)do j « j+1
Si—17J
bestS — S
S'—S
B — M (bestS) { here M(X) is max{M(T) such that X is the set

of internal edges of T'} }
optimal — FALSE

fized — n—4

while (optimal is FALSE ) do
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k — fized
while (k > 0) do
J—k+1
do
J—J+1
b— M(SU{r;})
while (b > B) and (j < 2"7!) and (r; is not compatible with §)
if (b > B) and (j < 2"7!)) then
Sk 17
if (k=n-3)and (S’ # S)) then
S'— S
B ~b
bestS — S
k—k+1
if (< B)or (k>n-3))then
fized — fized — 1
break
if (fized < 0) then optimal — TRUE

end.

Branch and bound for maximum parsimony

Branch and bound with maximum parsimony in this thesis uses a different ap-
proach: The evaluation of the objective function M(T') cannot be split into simple
functions of the inferred edge lengths, but rather must be evaluated for a complete
(and in this case fully resolved) tree.

The process begins with the tree on pendant vertices labelled (n — 2),(n — 1)
and n. Initially the internal vertex is labelled (n + 1). All internal vertices of the
current tree are labelled from (n + 1) up to (2n — 2).

Pendant vertices are added sequentially to the tree in all possible positions
and the parsimony length of the new tree found. If this length is more than the
previous best bound, the next position is tried for the insertion. If there are no
more positions available, the pendant vertex with the lowest label is removed, and
the pendant vertex with the next lowest label is moved along.

This process continues until no pendant vertices can be moved any further.
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Note that the edge lengths which are used by compatibility and closest tree are
inferred numbers of character state changes on edges of a tree. They are therefore
equivalent to bipartition frequencies, so the same data sets used by compatibility
and closest tree can be used by maximum parsimony also.

In fact, complete evaluation of the parsimony length of the current tree T is not
necessary if it is known that the length will exceed the shortest length found pre-
viously: if that is the case, the T is already ‘too long’ and will be rejected. Hence
the spectrum of bipartition frequencies which is fed into MP is sorted in decreasing
order, as it is with the branch and bound method for compatibility and closest tree,
above, and the ranks of the bipartition frequencies stored in r. The contribution
of a given bipartition to the parsimony length of 7' will in general, though not uni-
formly, decrease with decreasing frequency of the bipartitions. Therefore the major
contribution to the parsimony length of T' will be from the first few bipartitions
indexed by r. The Fitch algorithm [26] is evaluated on the bipartitions indexed by
T1,T2,..., until either the parsimony length of T' exceeds the current best bound or
the last entry of r is reached.

Algorithm 2.3 describes the branch and bound process for maximum parsimony.
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Algorithm 2.3 : Branch and bound for MP

local variables:

T, { current tree, stored as an array of pointers }

bestT, { best tree found so far }

B { current shortest length of a tree }

length, { current parsimony length of the tree }

tazon, { number of the taxon being added, initially
(n - 4))

newnode, { label of the new internal vertex we create by in-

serting a taxon }

optimal, { flag to tell when to stop }

insertpos[N], { current position of insertion of each taxon }

1,7, { counters }

u. { number of bipartitions in input data with positive

frequency }

B « parsimony length of T
sort q in descending order, and put the ranks of q into r.
u — number of bipartitions
set up first tree
tazon — n—3 { begin by including this taxon }
insertpostazon — N + 1 { insert in positions in decreasing order }
newnode — n + 2
{ the name of the new node we’ll create by the in-

sertion }
for i =1ton—4do insertpos; «— 2n—-2—1

optimal — FALSE
while (optimal is FALSE ) do
length — 0
11
while (length < B) do
length — length+ (Fitch length of T with bipartition r;) x g7,
1e—1t1+1
if (length < B) then
if ((tazon = 1) and (length < B)) then
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bestT — T
B « length
{ Now we need to get the next tree: }

if ((length > B) or (tazon = 1)) then
while ((insertposiazon = tazon + 1) and (tazon < n — 2)) do
remove tazon from T

taron « taron + 1
if (tazon = n — 2) then optimal — TRUE

else
newnode — 2n — 1 — tazon

if (insertposiazon > tazon + 1) then
remove tazon from T
find the next available insert point: put this into insertpos
insert tazon at position insertposigzon in T
else

tazon « tarzon — 1

newnode — 2n — 1 — tazon

insertPosiazon — 2n — 2 — tazon

do
insertpostaron — insertpostaron -1

while (tre€insertposiazon = taron + 1) and (insertposiazon > taTon)
insert taron at position insertposiazon in T
if (tazon = n— 2) then optimal — TRUE

end.

Savings from branch and bound

The above branch and bound algorithms afford a substantial saving in the number

of times the function M need be evaluated (see Table 2.1, below).

2.6 A note on some other methods

There are numerous other methods which are not studied here. Some of these
are mazimum likelthood (ML) methods [33]). Another related group are the Fitch-
Margoliash (F-M) methods [17], [27]. These have not been included due to the
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Table 2.1: The proportion of trees tested using branch and bound.

In this table are shown the proportion of times, out of the number of potential trees, that
M was evaluated for a single branch and bound search on each of several generating trees.
The tree topologies used were UB2, UB3, ..., UBS8, being the “caterpillar” topologies on
4,5, ..., 10 pendant vertices, respectively. The sequence length used was 1000 characters.
Note that the MP methods require more evaluations than do Co and CT of the function
M: this is due to the branch and bound algorithm for MP beginning at a certain fixed
tree and requiring to finish at another fixed tree, abandoning some trees on the way,
while the branch and bound for Co and CT begins with the “greedy tree”, which is often
very close to the generating tree Tg.

Tc CoDH CoSH COSO CTDH CTSH
UB2 | 0.33333333 0.33333333 0.33333333 0.33333333 0.33333333
UB3 | 0.13333333 0.13333333 0.13333333 0.13333333 0.13333333
UB4 | 0.04761905 0.02857143 0.02857143 0.03809524 0.02857143
UBS5 | 0.00740741 0.00740741 0.00952381 0.00529101 0.00529101
UB6 | 0.00105820 0.00115440 0.00115440 0.00105820 0.00096200
UB7 | 0.00012580 0.00013320 0.00016280 0.00008880 0.00008880
UB8 | 0.00000839 0.00001184 0.00001628 0.00000641 0.00000641
Te CTSO MPDH MPSH MPSO
UB2 | 0.33333333 1.00000000 1.00000000 1.00000000
UB3 | 0.13333333 0.20000000 0.20000000 0.46666667
UB4 | 0.02857143 0.06666667 0.06666667 0.37142857
UBS | 0.00740741 0.03068783 0.03068783 0.03068783
UB6 | 0.00105820 0.00394420 0.00933141 0.01240981
UB7 | 0.00008880 0.00216820 0.00447700 0.01275021
UB8 | 0.00000691 0.00005377 0.00007351 0.00010607
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large amount of computation time which is required for ML and F-M methods
(91).

In general, ML methods attempt to optimise for each tree a set of edge param-
eters, which are allowed to vary continuously, to find those which would have the
highest probability of yielding the observed data. It is implicitly (and sometimes
explicitly) assumed in many ML computer programs that the edge parameter space
is unimodal for a given tree, with respect to this probability. This would mean that
simple hill-climbing methods would find the maximum likelihood point P correctly
[30], [91]). However, this is now known to be false [86] and so this approach cannot
guarantee to find the ML tree.

F-M methods minimise
o
> wijldij — pijl™,
1,7

-where d; ; is the observed distance between taxa ¢ and j, p;,; is the distance between
taxa 7 and j which would be predicted by the tree, a; ; is some real power (1 or 2
in practise), and w; ; is the weighting assigned to the pair {z,;}. The summation
extends over all pairs of taxa {z,7}.

There are algorithms which can be implemented to minimise the above sum
in a reasonable amount of time (O(n?) per tree), but these are special cases, in
which w;; = 1V 14,5 or w;; = 1/d;;. The choice of w;; is made according to the
assumed characteristics of the variance of observed distances; this variance must
be estimated or inferred from sources other than the distances themselves (for
example, bootstrapping the observed sequences [20]), as we only have one distance
value for each pair of taxa.

The choice of «; ; is somewhat arbitrary; there seems little reason to suppose
that the best results should come from using either a;; = 1 or a;,; = 2; in fact in
different circumstances each may have advantages over the other.

Perhaps for the most consistently reliable results some fractional value should
be used for «; ;; this question is not easily answerable with available computing

resources, and is not studied here.
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New Methods

In developing our methods, it is vital that we nourish that intellectual
variability in approach without which, as every biologist knows, evolu-
tion cannot proceed. The computer represents the gravest threat yet
to that variability, and at the same time as we enjoy the tremendous
advances in calculating power that it provides, we must consciously
strive to defend our subjects from the dead hand of automation and

the narrow logic of programmers.

[A. W. F. Edwards [19]]

3.1 Why find more methods ?

It 1s important to investigate the properties of current methods, and to attempt if
possible to improve upon them. By developing new methods and evaluating the
relationships between them, more can be understood about their behaviour. Felsen-
stein, in 1979, studied the interrelationships among a set of maximum likelihood
methods: the interested reader is directed to [23].

There is a danger of producing too many methods though — there are over 100
available currently [48] — and “new” methods may easily be simple modifications of
others. For this reason too it is important to understand how proposed methods fit
in with those already in existence. Some of the relationships between the methods
studied in this thesis are shown in Table 3.1.

Some ‘new methods’ are modifications to the treatment of the original data,

for example the Hadamard conjugation, the use of the distance spectrum, and the
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Table 3.1: A classification of some phylogenetic methods
The relationships between some phylogenetic methods are shown. The methods
in italics are inconsistent with the evolutionary model used in Chapter 5. All
are consistent with the molecular clock model with additive distances. Those
methods which have not previously been described are in bold type. Where one
method can be considered to be a modification of another, this is indicated by an
arrow in the direction of the most obvious modification.

Input data Search methods Constructive methods
partition spectrum || CTSH | CoSH | MPSH
CTS0 | CoSO | MPSO
distance matrix || CTDH | CoDH | MPDH || UPGMA (|)| ST (l)
TD (1) NJ (1)

SL NJa

Jukes-Cantor correction for multiple changes [41], [51].

Other modifications are new methods of selecting a tree based on inferred edge
lengths, for example the closest tree, compatibility, Fitch-Margoliash and maxi-
mum parsimony methods. These methods have different optimality criteria, to be
evaluated on a set of trees. Hence while maximum parsimony here can take three

different types of input data, the essential operation of MP is the same.

3.2 The Distance Spectrum

The bipartitions B; of {1,2,...,n} can be listed in order, using the indexing system
outlined in Section 1.4.1 and described fully in [40].
For each B; we define A; such that

~_J Biif |Bi| =0 (mod 2);
" | Biu{n}if |Bi|=1 (mod 2)

For example, with n = 6, this gives the m = 261 = 32 bipartitions listed in
Table 3.2.

The A;’s are all the subsets of {1,...,n} which are even-ordered, i.e., they
have an even number of elements. For each non-empty even-ordered subset A, it
1s possible to match the elements of A in pairs. Let such a matching of pairs of
elementsof a given A with |A| = 2p > 0 be denoted {{a1, b1}, {az, b2}, .-, {ap, bp}},
and suppose that d;,, is a real-valued function defined on the elements of A. The

minimum pathset distance for a given even-ordered subset A : |A| = 2p is then
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Table 3.2: The bipartitions and even-ordered subsets of {1,...,6}

This table lists the 32 bipartitions B; of {1,...,6} in order, according to the
indexing scheme of Hendy [40] (see Section 1.4.1), and the subsets A4; of {1,...,6}
which have an even number of elements.

1 B; A;

0 0 0

i {1} {1,6}

2 {2} {2,6}

3 {1,2) {1,2)

4 {3} {3,6}

5 {1,3} {L,3}....}..
6 {2,3} {2,3}
7 {1,2,3} {1,2,3,6}
8 {4} {4.6}

9 {1,4} {1,4}
10 {2,4}) {2,4)
11| {1,2,4) {1,2,4,6}
12 {3,4} {3,4}
13| {1,3,4} {1,3,4,6})
14 | {2,3,4} {2,3,4,6}
15 | {1,2;3,4) |- {1,2,3,4}
16 {5} {5,6}
17 {1,5} {1,5}
18 {2,5} {2,5}
19| {1,2,5} {1,2,5,6}
20 {3,5} {3,5}
21| {1,3,5) {1,3,5,6}
22| {2,3,5) {2,3,5,6}
23 | {1,2,3,5} {1,2,3,5}
24 {4,5} {4,5}
25| {1,4,5)} {1,4,5,6}
2 | {2,4,5) {2,4,5,6}
27| {1,2,4,5) {1,2,4,5}
28 | {3,4,5} {3,4,5,6}
29 | {1,3,4,5} {1,3,4,5}
30| {2,3,4,5} {2,3,4,5}
311 {1,2,3,4,5} | {1,2,3,4,5,6}
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defined to be
min P
A
all matchings {{a1,b1},...,{ap,bp}} of A \;=3

The distance spectrum g is defined such that for: = 1,...,m = 2""1 -1, g; is
the minimum pathset distance of A; C {1,...,n}. If the set of distances d,, used
is taken from observed data, the distance spectrum is denoted by g’'.

The calculation of g can be achieved in less time than that which may at first
be apparent from the above description. For n = 6, A3 = {1,2,3,4,5,6}, and
when matching the elements of A3, 1 can be paired with 2, 3, 4, 5 or 6. If we fix
the pair {1,2}, the other elements can be paired up in 3 ways, and the component
of g which corresponds to the minimum pathset distance of {3,4,5,6} is gs (as
Ass = {3,4,5,6}). Hence we find that gs; = min{di 2 + g2s,d1,3 + g26,d1.4 +
922,d1,5 + g14,d1,6 + g30}-

We exploit this principle in Algorithm C.16 (“get_pathsets”), listed in Ap-
pendix C, which calculates the minimum pathset distances of all the sets By for
k=1,...,m —1 in one pass, hence requiring O(2") operations. This algorithm is
adapted from a procedure in Hendy and Penny’s “HadTree” program.

An important property of the Hadamard conjugation is that multiplication by
the Hadamard matrix H,, converts from a vector of edge lengths s’ to a vector of path
lengths p. The entries of p are the minimum pathset distances of the even subsets
of {1,...,n}, as inferred from a bipartition spectrum, whereas the entries of g are
minimum pathset distances as inferred from a set of observed pair-wise distances.
Either p or g can be used to infer a set of edge lengths [45] of the generating tree
T, and these inferred edge lengths can be used as the input data for Co, CT and
MP.

3.3 Compatibility — again

Compatibility is introduced to take advantage of the bipartition and quadripar-
tition spectra which are generated using the Hadamard conjugation. Instead of
minimising the Euclidean distance between the spectrum s calculated from the ob-
served data, and that which would be expected if the generating tree were, say, T,
Co simply finds T to maximise the sum of the inferred edge lengths of T'. This op-
timisation function is slightly quicker to evaluate than CT (though both are O(n)
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for each tree).
The Co method is consistent with an appropriate estimation of the edge lengths

of the generating tree, as shown in Appendix B.
In Co, the function M(T) is the sum of the estimated lengths of T', so

M(T) =3 g
e, €T

This maximises the sum of the inferred edge lengths , and like CT, can take a
distance spectrum (CoDH) or the original sequence spectrum (CoSH or CoSO) as

its input, or a set of inferred edge lengths obtained in some other way.

3.4 SL

This is proposed as a modification to TD, and is consistent with additive data (see
Appendix B, Theorem 4), whereas TD is not (see Appendix B, Theorem 2). It is a
simplification of Li’s original method, hence the name. (TD is described in Section
2.4.2)

Asin TD we have sets L and R which we aim to compose from taxa which are on
the left- and right- hand sides, respectively, of the root. The only difference between
TD and SL is in this assignment of taxa to L and to R. First SL finds z,y such that

d., is maximal. The following process is then repeated until LU R = {1,...,n}:

e Let A be the set of currently available taxa.
e Find ¢ € A such that d;; or d; is minimal.
e If d,; is minimal, L = L U {¢}, otherwise R = R U {1}.

A new distance matrix is calculated in the same way as for TD: For eachz € L,
let r; = d;y — d;y, and for each j € R, let r; = d;; — d;,. Then the entries d; ; of
bf D' are calculated by d;; = d; ; — ri — r;. These modified distances D’ are fed
into UPGMA.

SL requires O(n3) operations to construct a tree on n taxa. An algorithmic

description of SL is given in Appendix C, Algorithm C.24.
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3.5 NJa

Suppose a pair of pendant vertices {z, y} of a tree T, are adjacent to internal vertex
z. For each other (pendant) vertex & the neighbour-joining method estimates the
distance d,x with (dzx + dyx — d,,)/2. If distances on the tree are additive, this
will correctly find d, .

Another estimate of d,x can be made by first obtaining an estimate of the edge
lengths q(;,;) and q(,,.). This can be achieved by find the average, say 3, of the
difference between d; ; and d,;, for all other pendant vertices j. Then

d::. i ﬂ
9(z,2) = y2 )

and

9(y,z) = d:.y = 4(z,2)-

Hence, for all other vertices k, d.x = dzk — q(z,z) and d.x = dyi — q(y.2)-

In the case of additive distances, d;x — d,x will be equal for all k, so in this
case NJ and NJa will be identical. This proves that NJa is consistent with additive
data, as NJ is.

The extra calculations described above are O(n?), but this does not increase
the overall complexity of NJa above O(n?).

This modification of NJ unfortunately does not perform well.
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Computers are useless. They can only give you answers.
[Pablo Picasso]

The experiments were carried out by computer simulation on a range of Sun
SPARCStations; a 1+, an ELC and two SLC’s. Computational time has been a

guiding force in the design of the simulation experiments.

4.1 Models of sequence evolution used

In this study I have adopted the simplest models of sequence evolution, to enable
the broadest possible survey of the behaviour of phylogenetic methods with the
available computing resources. The number of parameters was as small as possible,
while still allowing statistically meaningful experiments to be conducted. Hence
in the investigation dedicated to “small n”, i.e., with 4 < n < 10, I have used
the Cavender two-state model, in which the probabilities of character state change
are symmetric and independently and identically distributed across all sites of the
sequences [10]. (Recall that n is the number of pendant vertices of the generating
tree Tg, corresponding to taxa.)

For the case of larger n, the sampling method of data generation used for n < 10
is no longer viable (see Section 4.4.4). We must therefore use the more conventional
‘evolutionary-type’ data generation. If we are prepared to do this, we are able at
little further computational cost to use four character states rather than two, and
to include a quite general structure of transition matrix. This is discussed more

fully in Section 4.5.3.
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1.2 Deviations of the data from a model

n this section I describe some of the numerous ways in which a data set can
.1sagree with a hypothesized model, and confound phylogenetic methods. These

1olations can be grouped into
e Inadequate models;
e Contradictions with the model.
e Sampling error;
e “White noise”;
e “Pink noise”;

“hese different types of violation of the ideal case are described in the next sections.
"he ways in which such violations have been modelled and their effects assessed

re discussed in Chapters 5 and 6.

t.2.1 Inadequate and contradictory models

Vith an inadequate model of sequence evolution, there are over-simplifications
nade by hypothesizing that model, which cannot account for all aspects of the
aechanism of character state change.

One way a model can fall short of a sufficient description of the true mechanism
s in its method of accounting for multiple character-state changes. The Jukes-
Cantor correction [51] is adequate for this when there are two or four character
tates with just one parameter, changing according to a symmetric Poisson pro-
‘ess. With four character states and more parameters (e.g., Kimura’s 2P and 3ST
nodels [73]) more sophisticated formulae must be used [91]. Without adjustment

or multiple changes, none of the methods described here is consistent.

If our hypothesized model contradicts the true mechanism, we are making as-
umptions about the method of character state change which are patently wrong.
“or example, this could be the assumption that the rates of change are indepen-
lently and identically distributed (i.i.d.) along the character sequences, where in

-eality there may be several sites at which no change is possible, or that some
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characters may be linked in their behaviour; in fact there are infinite possibilities
for ‘violations of the ideal’ in this sense.

I have not embarked upon a study of how many such violations affect the
performance of phylogenetic methods; such a study would be impossible without a
greater understanding than that which is current about the analytical behaviour of
phylogenetic methods, and a systematic understanding of how these contradictions
occur in nature. I have restricted my study to three cases in which the mechanism
of data generation contradicts the models with which the methods are consistent.

They are sampling error, ‘white noise’ and ‘pink noise’, described below.

4.2.2 Sampling error

This is essentially the random error which cannot be avoided with real data, due to
the finite data set size. Typically, nucleotide sequences are obtained of up to =~ 1000
characters. In the simulations, I have often taken a range of sequence lengths, which
show the effect of sampling error on the performance of the phylogenetic methods.
The set of sequence lengths used is given in Chapter 5: Experimental Methods.
The effect of having zero sampling error can, for small n, be assessed by calcu-
lating exactly the expected frequencies of character state patterns across the taxa

and using these as input data for the phylogenetic methods (see later) [41].

4.2.3 “White noise” and “Pink noise”

The term white noise is taken for its meaning in modern music: it is, in this case,
essentially random error in the data, with no bias in any particular direction. For
example, white noise is introduced if, when carrying out DNA sequencing, errors
are made which randomly misread one character, say z, as another, say y, with
probability independent of z and y. It is this form of white noise which I have
investigated here.

On the other hand, pink noise is random error in the data which introduces a
bias in the parameter(s) estimated from that data, in a specific direction. If, in the
above case of sequencing errors, the probability of mis-reading a character was not
independent of the character, the random error introduced would be regarded as
pink noise.

In another example, suppose we obtain DNA sequences from a set of bird
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species, and obtain also a set of sequences which are from lice of these birds.
The underlying phylogenies of the birds and their lice may well be different [62].
Attempting to infer the phylogeny of the birds by using the data from both sets
of taxa would then be hampered by the pink noise introduced by the parasite
data. The combined data set would then regarded as “contaminated” by the par-
asite data, as it could no longer be guaranteed to be all generated from the tree
describing the phylogeny of the birds.
The above is the type of pink noise which I have studied here.

4.3 General approach

There have been many studies performed to assess the performance of phylogenetic
methods, but all are necessarily limited by computing time [13], [50], [54], [60], [80].
For example, in a 1981 study by Li [54] the sequence length ¢ was 300, and only
20 trials could be carried out, though more recently the number of trials is around
300 [80]. The tree topologies have been limited to only a few, generally rooted,
trees [50], [54).

I have therefore tried to exploit the computing power of the Sun SPARCStations
available and fill in some of the gaps, testing over a large range of up to 41 different
sequence lengths, all 27 topologies for 4 < n < 10, and performing up to 1000 trials
for any given set of parameters. (For the test of the effect of tree topology, using
the two topologies with n = 6 pendant vertices, 10° trials were carried out.) The

sequence lengths used ranged over
{10,13,186, 20, 25, 32, 40, 50, 64, 80,100, 125,160, ...,10°}.

The large number of trials for each case allowed the general trends in the per-
formance of these phylogenetic methods to be seen easily. Such an exhaustive set
of experiments as this, with such a wide range of parameters, has not been carried
out before, but is now possible with the advances of modern computers.

In each trial I have generated data according to some known generating tree
T and set of edge lengths q. Thus the same data are used for each method, to
enable comparison between methods. Note that this may give a false impression of
coincidentally fluctuating performance of the methods, with varying data sets, but
this is in general not the case: such fluctuation is purely an artifact of sampling

and other random error in the data.
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With each trial, the labels of the pendant vertices were permuted at random,
to reduce the effect of the order in which data are presented to the clustering

algorithms (see Section D.1).

4.4 Small n

The general simulation procedure is as follows (more detail is provided after this

list):

1. Specify the topology of the tree to be used (the list of unrooted binary tree

topologies is given in Appendix A), which methods to include, and overall

parameters describing the properties of the generating tree Tg.

2. Randomly choose edge lengths ¢;, equal to expected numbers of character

state changes between the end-points of each edge e; of T.

3. Calculate the expected bipartition frequencies s; of all 2"~! bipartitions from

the vector q of edge lengths.

4. Sample from this expected frequency spectrum to obtain an observed bipar-

tition spectrum, s’ (“obs” in the program listing).

5. If distance-based methods are being used, obtain the distance matrix D from

s’.

6. Use the distance and/or bipartition data as inputs to the various methods

under study.

4.4.1 Choosing the tree topology and other parameters

For small values of n, I have used unrooted trees. This is because the compatibility,
closest tree and maximum parsimony methods do not distinguish the root. Also,
it should be noted that there is a lack of irrefutable evidence that, for small n, the
most likely or biologically interesting cases are those in which the rooted tree is
most appropriate. In fact there is positive evidence supporting differing rates of
evolution on different lineages of trees in some cases [6], [31], [55], [56], and also

[100]. The data generated from these unrooted trees did not satisfy the molecular
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clock hypothesis, which is that the expected distance between each extant taxon
and the nearest common ancestor of all the taxa is the same.

I have also often operated under the assumption that all trees are equally likely
(abbreviated ‘a.t.e.l.”) for simplicity and so as to not introduce any bias toward
any particular type of tree [85]. This is more important in the case of large rooted
trees, where investigating each topology and then providing a weighted average of
the results is not possible due to the exponential growth with n in the number of
tree topologies [8], [36].

Under the ‘a.t.e.l.” assumption, the number of trees with a given topology X
is calculated using Burnside’s Theorem [29]. For any tree on n pendant vertices,
divide n! by the order of each of the symmetries of X.

For example, the tree UB5,23 on n = 9 pendant vertices (see Appendix A)
has three symmetries of order 2 (the three pendant neighbouring pairs) and one
symmetry of order 3! = 6 (the central point). Hence the number of trees with this
topology is

N(UBS, 23) = 7560.

21212!3!

When the behaviour of phylogenetic methods was considered with respect to
n, ignoring tree topology, the data from simulations with each topology X were
amalgamated in proporfion to the numbers N(X).

N(X) is shown in Table 4.1 for all the tree topologies with from 4 to 10 pendant

vertices. Diagrams showing these tree topologies are in Appendix A.

In this part of the investigation I have had to assign some parameters which

have a degree of arbitrariness:

e The upper bound of the maximum path length o between taxa (in terms
of maximum expected number of observed differences in character state, per

site);
e The minimum edge length ¢;

e The type of distribution of the edge lengths (uniform, normal, and log-

normal);

e The ratio r of maximum internal edge length to maximum pendant edge

length.
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Table 4.1: The number of trees with each topology for 4 < n < 10.
In the first column are the values of n used. Columns two to five show the tree
topology names, using the Tree Topology Description Notation (TTDN) described
in Appendix A, and the last column shows the total number of trees for the given
n, equal to F(n) = (2n - 5)!.

| n | Tree topologies X and number of trees N(X) [ F(n) = (2n — 5)!!
4 UB2
3 3
5 UB3
15 15
6 UB4 UB3, 1,
90 15 105
7 UBS UB4,1,
630 315 945
8 UB6 UBS5, 1, UB5,13  UB4,15,13
5040 2520 2520 315 10395
9 UB7 UB6, 1, UB6,13  UBS5, 15,13
45360 22680 45360 11340
UB5, 12,14 UB5,23
2835 7560 135135
10 UB8 UB7,1, UB7,13 UB7,14
453600 226800 453600 226800
UB6,1,,13  UB6,15,14 UB6,1,,15 UB6,13,14
113400 113400 28350 113400
UB6,2;  UB5,15,13,1; UB5, 12,2,
226800 14175 56700 2027025
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I have endeavoured to use parameters which are in keeping with the oft con-
flicting ideals of biological experience. phylogenetic interest, and practicality.

In any given simulation experiment, the probability distribution of the pendant
edge lengths was fixed, as was the probability distribution of the internal edge
lengths, for each generating tree topology. These two distributions were not neces-
sarily the same in range and mean, but were always of the same general type, i.e.,
uniform, normal or log-normal.

For a given simulation, using a specific tree topology with diameter d(7T'), I
chose the maximum internal edge length a and the maximum pendant edge length
b, such that o = (d(T)—2)a+2b. Note that a and b are upper bounds on the ranges
of the internal and pendant edge lengths, respectively: they were not necessarily
realised for any edge length.

The ratio r = a/b was sometimes allowed to vary, but was usually set to 0.5.
The maximum path length o was in general equal to 0.35, but this too was varied
at times.

The minimum edge length € for both internal and pendant edge length distribu-
tions was usually taken to be a/10. This was motivated by wanting the phylogenetic
methods to succeed sufficiently often to give meaningful results; if the edge lengths
are too short, there will not be enough signal in the data for any method to resolve
that edge in Tg. i.e., with finite character sequences, the bipartition corresponding
to that edge may not be sampled. Hence, the internal edge lengths were chosen
from the interval [¢,a), and the pendant edge lengths were chosen from [e, b).

As an example, given ¢ = 0.35, a/b = 0.5, and ¢ = a/10, the edge length
probability distributions for different diameters of the generating tree T are given
in Table 4.2.

In most cases then, where o = 0.35,
1
5(1 — exp(—0.7)) = 0.25

was the upper bound on the maximum observed number of differences, per site,
between any two taxa. This was taken as a reasonable upper limit.

The above constraints usually enabled the phylogenetic methods to resolve the
generating tree T with a sequence length less than about 2000 characters, which
seems to be a common maximum attainable length for a set of aligned nucleotide

sequences. Reducing o and a to very small values would be interesting certainly,
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Table 4.2: Edge-length probability distributions for different diameters of

In this example the upper bound of the maximum path length is o = 0.35,

generating tree.

a/b = 0.5, and the lower bound on each edge length is ¢ = a/10.

internal edge length range (e, a)

pendant edge length range [e, b)

QU
om«xc:cn.qu
N

[0.007 , 0.07) [0.007 , 0.14 )
[0.005833, 0.058333 ) [0.005833,0.116667 )
[0.005 , 0.05 ) [0.005 , 0.10)

(0.004375, 0.04375 )
(0.003889, 0.038889 )
(0.0035 , 0.035 )
[0.003182, 0.031818 )

(0.004375, 0.0875 )
[0.003889, 0.077778 )
(0.0035 , 0.07 )
(0.003182, 0.063636 )

but, with the constraint of available computing time and the requirement of gaining

statistically significant samples, infeasible at present.

4.4.2 Choosing the edge lengths

The edge lengths are chosen using pseudo-random numbers, generated with the
“drand48()” routine available in the ‘C’ programming language.‘ This random-
number generator produces double-precision (in this case, 48-bit) floating-point
numbers, uniformly distributed on the interval [0,1). The inevitable finite cycle
length (approximately 248) is in excess of the number of times the procedure has
been invoked in the course of this study.

Mostly the probability distribution of the edge lengths on each edge was taken to
be uniform; this is the simplest possible case, and while not necessarily accurately
reflecting the edge length distribution in nature, is at least not able to be completely

rejected. The probability distribution of “real” edge lengths is not known.

4.4.3 Calculation of the expected bipartition frequencies

For smalln, in this case up to ten, it is possible to calculate the expected frequencies
of each of the 2"~! possible bipartitions of the two character states with n taxa, in
a reasonable amount of time. (In fact the method is feasible for data sets of up to
~ 20 taxa, but this takes too long for simulation studies to be practicable.) This is
by the scheme invented by Hendy [40]. Given a vector q of edge lengths g¢;, which

are taken to be expected numbers of character state change per site on each edge
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e;, the expected numbers of bipartitions of these taxa are the components of
p=H expH. 9.

where H,, is the 2*~! x 2! matrix of 1’s and —1’s such that

H,, H. 1 1
Hn — ! ! 9 H2 = .
H,, —-H., 1 -1

and p=2"-%,

Note that it is also possible to calculate the expected frequencies of each of the
4"=1 gquadripartitions of taxa, when there are four character states available, but
this obviously requires much more storage (O(4")), and the calculation requires
O(n4™) operations.

There is under development a speed-up of the Hadamard conjugation method
for four character states, which does not calculate all the probabilities of all pos-
sible quadripartitions, but such an approach is not an appropriate technique in
this case. The advantage of the Hadamard conjugation method is in its ability
to calculate ezactly the probabilities of each of the partitions. This distribution
of partition probabilities can then be sampled with replacement as many times
as there are characters in the hypothesized sequences. This gives a spectrum of
observed partition frequencies which has exactly the same statistical properties as
one which would be obtained from ‘growing’ character sequences along the edges
of a tree (as in “Growing the data”, below). To abandon this precision, in the case
of four character states, by missing out the calculation of some quadripartitions
would be to introduce a new non-random and in all likelihood biassed source of
error. Hence, and to reduce computing cost, I have used only two character states

in this set of simulations.

4.4.4 Sampling from the expected bipartition spectrum

The spectrum s is first sorted in descending order, and a vector v of cumulative
probabilities is calculated from it. In other words, v = 0, and forz =1,...,(2"! -
1),v; = vi—1 + Si, SO V1 = 1.

For j = 1,..., ¢, pseudo-random numbers r; are generated in the range [0,1),

and each is sequentially compared with v;, for : = 1,...,m — 1 until £ such that
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vk—1 < 1r; < vy is found. The number s of observed bipartitions of type & is then
incremented.

After ¢ such samples have been taken, s’ is normalised by dividing each of its
components by c.

Calculating the bipartition probabilities and then sampling from this vector af-
fords a substantial saving in computing time for small n [13], [41]. The Hadamard
conjugation requires approximately (2rn — 1)2"~! mathematical operations; the
(n — 1)2"! for each multiplication by H,, and the term-wise exponentiation
of the intermediate 2"~!-component vector. This vector is sorted, which usually
can be achieved in O(n2") operations using a Shell sorting procedure [70], and
certainly requires no more than (2"~! —1)(2"~! — 2)/2 operations. Sampling from
this ¢ times (to give a spectrum corresponding to a set of sequences ¢ characters
long) requires more operations, but exactly how many is largely dependent on the
numbers in the sorted vector. In Table 4.3 there are some example numbers of
operations required for this whole process, for different edge lengths and numbers
of taxa. Also shown are the numbers of operations required for the more traditional

method of “growing” the data from a single ancestral sequence.

Table 4.3: Number of operations required to generate a bipartition fre-
quency spectrum.
The edge lengths shown in the first row are the internal edge lengths a; the
pendant edge lengths b were taken to be twice these values. In the penultimate
column is the mean length of the internal edges of the ‘caterpillar’ tree UB(n —2),
with maximum path length 0.35. In the last column are shown estimates of the
number of operations required to “grow” the sequences and then calculate the
bipartition frequencies from these. The sequence length ¢ is 1000. With ten or
more taxa, there is no saving for the range of edge lengths used in this thesis.
(Note that these figures are indicative only; they should not be taken as exact.)

max. internal edge lengths number of operations
n | 0.001 | 0.003 | 0.010 | 0.030 | 0.100 | %192 evol. type
4 | 2149 | 2206 | 2402 | 2916 | 4277 | 3116 7000
5| 2273 | 2371 | 2708 | 3632 | 6263 | 3724 9000
6 | 2639 | 2789 | 3323 | 4898 | 9970 | 4700 11000
7| 3449 | 3664 | 4471 | 7101 | 16918 | 6283 13000
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4.4.5 Distance Calculation

The observed bipartition spectrum s’ is used to calculate the pairwise distances
between taxa as follows: For each bipartition ¢ and each pair {j, ¥} of taxa, the

distance D; , is
m~1
/
Djx = Y ijnsi;
=1

where §;; « = 0 if the j-th and k-th least significant bits in the binary expansion of
1 are equal, and 1 if they are different.

This can be represented in algorithmic form as follows:

Algorithm 4.1 : get_distances

m — 9n—1
for j=1ton-1do
fork=i+1tondo di; — 0
fori=1tom-1do
forj=1ton-1do
for k=141 to ndo
if (i AND 2771) # (i AND 2%-1)) then
{ Compare the j-th and k-th bits of 7. }
dip — djp +5;
forj=1ton-1do
fork=j+1tondo dj, «dj,/c

end.

These distances are adjusted to account for multiple changes, according to the

Cavender model [10], so given observed distances d; ;, the inferred distances are

dj7k = —(1 — ln(2df,_k))/2
After the distances have been obtained, the data are used for each of the meth-

ods under scrutiny.

4.4.6 Inferring edge lengths

Edge lengths can be inferred from the data in several ways. The performance of

the phylogenetic methods will of course be affected by the treatment of the original
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(observed) data. The following are the ways in which edge lengths q’ are inferred

from observed data in this study:

e For each 7 € {1,...,2""! — 1}, ¢! is taken as the observed relative frequency

of bipartition ¢, as indexed in the scheme described in Section 1.4.1;

e The vector q' of inferred edge lengths is obtained from the observed biparti-

tion spectrum s’ with the Hadamard conjugation;

e A distance spectrum g’ is obtained from the observed distance matrix D’
after correction with the Jukes-Cantor formula [51], and another vector w’ of

inferred edge lengths obtained from g’ with the Hadamard conjugation.

Note that the search methods in themselves are independent of the method of
inferring the edge lengths of 7. The search methods used here are all consistent
with the model of evolution used in this study, provided the calculation of q’ is
such that ' — q as sampling error tends to zero (see [45], [88], and Appendix B,
Theorem 3). When the observed bipartition frequencies are used directly for q’,

none of the search methods is consistent ([88]).

Observed bipartition frequencies as inferred edge lengths

If the expected number of bipartitions occurring on every edge is small, the expected
number of such changes will be close to the number observed, as there will be very
few (tending to zero) multiple changes of character state for a given character on
each edge. Also the number of parallel changes on different edges will be low
(tending to zero) as the probabilities of character state change on different edges
are independent in this model (see Section 4.1). Hence the observed bipartition
frequencies can be used to estimate the expected numbers of character state change,
for the edges of the generating tree 75.

The search methods (Co, CT, MP), when they take this kind of input data as
inferred edge lengths, are denoted by the suffix ‘SO’, for ‘Sequences, Observed’.
Hence the ‘Sequence Observed’ methods are CoSO, CTSO and MPSO.

Hadamard conjugation for inferring edge lengths

The Hadamard conjugation can also be used to infer the edge lengths of T. The
relation given in Section 4.4.3 is reversible, so that given the observed bipartition

spectrum s’, we can estimate q.
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Since s’ will estimate the expected bipartition spectrum s, we use this to esti-

mate q by the relation .
q' = —H,InH,s'.
m

If any of the components of H,s’ are negative, the In operation will be undefined.
I have chosen to reject such data in the simulation studies.

When the search methods use q’ as calculated above as their input data. are
denoted by the suffix ‘SH’, for ‘Sequences, Hadamard conjugated’. Hence the
‘Sequence Hadamard’ methods are CoSH, CTSH and MPSH.

Distance spectrum for inferring edge lengths

As previously noted (see Section 3.2), the interim vector p = H,s’ corresponds to
the minimum pathset distances of the generating tree 7. These minimum pathset
distances can also be estimated from the observed distance matrix D’, and used to
infer edge lengths using the rest of the Hadamard conjugation.

When such data are used for the search methods, they are denoted by the
suffix ‘DH’, for ‘Distances, Hadamard conjugated’. Hence the ‘Distance Hadamard’
methods are CoDH, CTDH and MPDH.

4.4.7 Example

I discuss here a typical case with n = 6 pendant vertices, describing the generating
tree, the true and inferred edge lengths and distances, and the operation of the

phylogenetic methods used. The sequence length used was ¢ = 250.

The generating tree T¢ is as shown in Figure 4.1. In Table 4.4 are shown the true
distances between the pendant vertices, those observed as the Hamming distance
between sequences, and the distances inferred using the Jukes-Cantor formula [51].

Table 4.5 shows the expected, observed and inferred edge lengths for the gen-
erating tree shown in Figure 4.1.

With the data shown in Tables 4.4 and 4.5, the correct tree was inferred only
by CoSO, CTSO, MPSO and NJa. In this example CoDH, CoSH, CTDH, CTSH,
MPDH, MPSH, NJ, SL, ST, TD and UPGMA all inferred the incorrect tree shown
in Figure 4.2.

The inferred edge length spectra, and their relationship to the inferred tree T,

can be represented on a column chart, and the data from this example are shown
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1 0.08317
Xo&sw
0.05825  0.02004
4 01762
3 0.02326
0.10485
2 5

Figure 4.1: Typical generating tree used in simulations
The above tree shows the actual edge lengths, in expected numbers of character
state change per site, in italics for each edge. The edges are drawn approximately
to scale with their lengths.

5 4

Figure 4.2: Example incorrect tree inferred by some methods
The above tree was incorrectly inferred by CoDH, CoSH, CTDH, CTSH, MPDH,
MPSH, NJ, SL, ST, TD and UPGMA, with the experimental data shown in
Tables 4.4 and 4.5. This tree is one edge different from the generating tree Tg.
The edges of the tree are not to scale as different methods infer different edge
lengths.
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Table 4.4: Typical distance matrices, true, observed and inferred.
This table shows the distance matrices which were obtained in one trial, with n = 6
taxa and sequence length ¢ = 250. The ‘True distances’ were obtained from the edge
lengths assigned to the generating tree Tz. The ‘Observed distances’ were calculated
from the observed bipartition spectrum s’, and the ‘Inferred distances’ were calculated
using the Jukes-Cantor correction formula [51], [91]. In the absence of sampling error
(i.e., as ¢ — oo) we would find the Inferred distances — the True distances.

True distances (from q):

pendant vertices 2 3 4 5 6
1 0.18465 0.05125 0.19509 0.21677 0.16688
2 : 0.16864 0.19598 0.21766 0.12125
3 0.17908 0.20076 0.15087
4 0.18802 0.17821
5 0.19989
Observed distances (from s’):
pendant vertices 2 3 4 5 6
1 0.14800 0.06000 0.17200 0.18800 0.13200
2 0.17600 0.17600 0.20000 0.10400
3 0.18400 0.20000 0.15200
4 0.20800 0.16000
5 0.20000
Inferred distances (from q’):
pendant vertices 2 3 4 5 6

0.17549 0.06392 0.21080 0.23580 0.15326
0.21693 0.21693 0.25541 0.11660
0.22943 0.25541 0.18120

0.26893 0.19283

0.25541

S I ~NJU )
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Table 4.5: Typical expected, observed and inferred edge lengths

The edge lengths shown below are in terms of numbers of character state change
per site for each edge of T. The first column shows the edge and bipartition
labels for this number of pendant vertices. In the second column the true edge
lengths q are shown (remember that edges which are not in T are assigned zero
length). In the third column are the probabilities s of each bipartition occurring,
and in the fourth are the relative frequencies s’ at which each of the bipartitions
occurred in the sample. The fifth and sixth columns show the edge lengths (q’
and w') which were inferred from the sequence spectrum and from the distance
spectrum, respectively. Those edges which were in T are labelled in bold type.
Edge 21, which was incorrectly included in the inferred tree T by some of the

methods, is labelled in bold type, as are its inferred lengths g3, and wj,.

!

’

/

edge/bipartition label q s s q w
1 0.03363 | 0.02218 | 0.01600 | 0.02433 | 0.01947
2 0.06951 | 0.04524 | 0.03200 | 0.04813 | 0.06783
3 0.00000 | 0.00158 | 0.00400 | 0.00545 | 0.00096
4 0.01762 | 0.01255 | 0.03600 | 0.06259 | 0.04445
5 0.05825 | 0.03811 | 0.03200 | 0.05233 | 0.05930
6 0.00000 | 0.00092 | 0.00000 | -0.00309 | -0.00096
7 0.00000 | 0.00363 | 0.00400 | 0.00310 | -0.00351
8 0.08317 | 0.05455 | 0.07200 | 0.12283 | 0.11450
9 0.00000 | 0.00192 | 0.00000 | -0.00163 | -0.00108
10 0.00000 | 0.00406 | 0.00800 [ 0.00656 | -0.00229
11 0.00000 | 0.00020 | 0.00000 | -0.00027 | 0.00073
12 0.00000 | 0.00113 | 0.00000 | -0.00809 | 0.00108
13 0.00000 | 0.00502 | 0.00000 | -0.01465 | -0.00530
14 0.00000 | 0.00020 | 0.00000 | 0.00026 | -0.00073
15 0.00000 | 0.00385 | 0.00400 | -0.00184 | -0.00374
16 0.10485 | 0.06800 | 0.09200 | 0.15678 | 0.15251
17 0.00000 | 0.00238 | 0.00000 | -0.00382 | -0.00084
18 0.00000 | 0.00497 | 0.01600 | 0.01969 | 0.00374
19 0.00000 | 0.00022 | 0.00000 | -0.00088 | 0.00073
20 0.00000 | 0.00138 | 0.00000 | -0.01053 | 0.00084
21 0.00000 | 0.00545 | 0.01200 | 0.00656 | 0.00722
22 0.00000 | 0.00019 | 0.00000 | -0.00060 | -0.00073
23 0.00000 | 0.00318 | 0.00400 | -0.00146 | 0.00229
24 0.02004 | 0.01938 | 0.01200 | -0.00179 | 0.00714
25 0.00000 | 0.00097 | 0.00000 | -0.00265 | -0.00293
26 0.00000 | 0.00330 | 0.00400 | 0.00003 | 0.00351
27 0.00000 | 0.00071 | 0.00000 | -0.00255 | 0.00096
28 0.00000 | 0.00095 | 0.00400 | 0.00696 | 0.00293
29 0.02326 | 0.01826 | 0.02800 | 0.04561 | 0.03024
30 0.00000 | 0.00121 | 0.00000 | -0.00156 | -0.00096
31 0.05174 | 0.03419 | 0.02800 | 0.04563 | 0.04877




66 Chapter 4. Experimental methods

in such a chart in Figure 4.3
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Figure 4.3: Spectra of edge lengths for an example tree

In the above chart are shown the true edge lengths (q, in black) of the generating
tree shown in Figure 4.1, the expected bipartition frequencies (s, in white), the
observed bipartition frequencies (s’, mid grey), and the edge lengths inferred from
s’ and from D (q’, dark grey, and g’, light grey, respectively). The pendant edges
are omitted, and the edges are sorted in decreasing size of s;. Note the close
values of g5, and g3, (in fact g5, is slightly larger) and that gj; is substantially
larger than ¢5,. These cause some of the methods to choose the tree shown in

Figure 4.2.

4.5 Large n

With larger values of n, the above approach is not feasible, so we have to go back
to the procedure in which the sequences are “grown” from an ancestral sequence.

The general procedure is as follows:

1. Specify the number n of taxa (pendant vertices) to use, the methods to
include, and overall parameters describing the properties of the generating

tree Tg. The structure of the transition matrix is fized, that is, one matrix
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M gives the instantaneous relative rates of change for each of the character
states, for every point on the tree. M is taken to be a symmetric matrix for
these investigations, so the probability of a character state change from state

1 to state j is the same as from state j to state z.
2. Randomly choose a generating tree T for the given n.

3. Assign random edge lengths for the tree, in terms of times between bifurcation

events.
4. Initialize the ancestral sequence of length c.
5. Generate the descendent sequences.

6. After all sequences have been generated, use the data as inputs to the various

NPMs under study.

The details of each of these main parts are described in the next few sections.
The descriptions below are for four character states, corresponding to the four
nucleotides adenosine (A), cytosine (C), guanine (G) and thymine (T), of DNA

sequences.

4.5.1 Choosing a random tree

With large values of n, as has been mentioned, the number of distinct tree topologies
is too large to enable study of each separately. I have therefore adopted the practise
of choosing a random tree topology at the start, and include the assumption that all
trees are equally likely in the choice mechanism for these trees. We find later (see
Section 5.5) that there is only slight dependence of most methods on the topology
of the generating tree. This also means that choosing trees with random topologies
1s an acceptible practice.

The following technique of deriving a tree from a (random) permutation is
described by Harding [36], and has been made into an algorithm here.

The tree T will eventually be described by an array t = (t4,...,tn—1) of point-
ers, where t; = 7 <= vertex ¢ is an immediate descendent of vertex j. This
implicitly imposes a direction on all the edges of the tree, so that all edges are

directed towards the root vertex.
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We first form a permutation of the numbers 1, 2, ...,n—1; call this permutation
P=(p1s---»Pn1)-

We form an array e = (e, ..., e2n-2), so that for each 7, e; is the label of the
‘earliest’ vertex which has been chosen as an ancestor of vertex :. Earliest in this
sense means closest to the root. Initially e; =7 for 1 <: < n and e; = 0 otherwise,
but eventually we will have e; = 2n — 1 for all : (2n — 1 is the label of the root).

Beginning with : = 1, we let vertices p; and p;;; be descendent vertices of vertex
enti- Let T =€, and y = ep,,,, l.e., T and y are the earliest ancestors chosen thus
far of vertices p; and p;,;, respectively.

Each vertex 7 whose earliest ancestor was z or y now has earliest ancestor n +1.

The vertices z and y are immediate descendants of vertex n + z; hence we set
t; and £, to n + 1.

The above procedure is repeated until all of t is defined. It finds a random
rooted tree on n pendant vertices, with all such trees equally likely.

An example of this technique is shown in 4.4.

11

1 2 3 4 5 6

Figure 4.4: Choosing a rooted binary tree from a given permutation.
Given n = 6 and the permutation (5,4,3,1,2) we find that pendant vertices 5
and 6 have a common ancestor, which we label 7. Then e « (1,2,3,4,7,7) and
t « (0,0,0,0,7,7,0,0,0,0). Next we find that pendant vertices 4 and 5 have a
common ancestor, so e — (1,2,3,8,8,8) and t ~ (0,0,0,8,7,7,8,0,0,0). Pro-
ceeding the same way we find pendant vertices 3 and 4 have a common ancestor,
so e « (1,2,9,9,9,9)and t ~ (0,0,9,8,7,7,8,9,0,0); then 1 and 2 have a com-
mon ancestor, so e — (10,10,9,9,9,9) and t ~ (10,10,9,8,7,7,8,9, 0,0); finally
we have e — (11,11,11,11,11,11) and t ~ (10, 10,9, 8,7,7,8,9,11,11).

Note that in this procedure the branching order within trees is important: the
two trees shown in Figure 4.5, which correspond to the permutations (1,3,2) and

(2,3,1), are distinct under this scheme, as in the first tree the taxa labelled 1 and 2
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bifurcate before taxa 3 and 4, while in the second tree they bifurcate after taxa 3
and 4. The two trees in Figure 4.5 do have the same topology and would correspond

to the same phylogeny, when regarded as unrooted trees.

1 2 3 4 1 2 3 4

Figure 4.5: Two rooted binary trees on three pendant vertices

The above trees, corresponding to permutations (1,3,2) and (2,3,1),have the same
topology, but are considered to be different by the scheme deriving rooted binary
trees from permutations.

(Harding [36] provided exact probabilities of each unrooted binary tree topology,
derived from the method described above, for up to 20 pendant vertices, and an

asymptotic formula for larger n.)

4.5.2 Deriving the ancestral sequence

Recall that in all of these studies I have adopted the common practise of having the
probabilities of character state change independently and identically distributed
on the sites of the sequences [10]. Hence, given the distribution of frequencies
of character states at the root (the root distribution w,) we can arbitrarily set the
positions in the sequence at which these states occur. Hence, for a root distribution
7. = {fa, fc, fc, fr} where fa+ fc+ fc+ fr = 1 and sequence length ¢ we put the
first ¢ x f 4 root characters in state A, the next ¢ x fc root characters in state C, and
so on. (We may have to round these numbers to the nearest integer.) The sequence
at the root is then of the form (A4,...,A4,C,...,C,G,...,G,T,...,T), though in

the computer these states are stored as the numbers 1, 2, 4 and 8, respectively.
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4.5.3 Growing the data

When “growing” sequences along the edges of a tree, it is necessary to check each
character, at each edge, for possible character state change. Whether a given char-
acter changes state is determined by comparison with a pseudo-random number,
generated for each character and edge of the tree. With two character states, there
are just two possibilities for state change: either the character remains in the same
state, or it changes to the other state. Therefore only one comparison need be
made, to see if each character changes. With four character states, there are four
possibilities for state change, and up to three comparisons may be made.

This does not imply that using four character states requires three times as
many operations as using two. In these studies, each character on each sequence
has only a small probability of change. Hence in most cases only one comparison
must be made, to determine whether the character changes state or not, and if a
change occurs, either one or two further comparisons must be made to determine
the next state of the character. Thus using four character states is not, in this case,
substantially slower than using two.

For each internal vertex v whose sequence is known, we find the vertices of
Tc which are immediate descendants of v. Let these vertices be z and y. We
must determine the transition matrix which will give each of the 16 probabilities
of character state change for the two edges (z,v) and (y,v). Since we have chosen
M for the whole tree, we use the lengths of these edges, say (> and [, respectively,
to get the transition matrices M** and M, which contain the probabilities of
character state change for the length of (relative) time given by the edge lengths.

In order to obtain M' we diagonalise M by

M = A71DA,
where
1 0 0 0
D= 0 e 0 0 ‘
0 0 e+ 0
0 0 0 ek

e ¥ ,e7* and e~* are eigenvalues of M and the columns of A are the eigenvectors

of M.
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By the above relation,

1 0 0 0
o R [0 0
M = ATIDRA = A7 | € A.
0 0 e 0
0 0 0 e hals
The diagonalization of M is possible if M is symmetric: hence symmetric

transition matrices have always been used for this “large n” case.

For each initial character state, the probabilities of the new state are arranged
so that the most likely new character state is examined first, to save time. (For
further detail, see Appendix C, Algorithms C.37 - C.40.)

Thus far the investigation into the performance of phylogenetic methods with
large n has used only the simple 1-parameter model of Jukes and Cantor [51], where
the probability of character state change is independent of the states.

The matrix used for the above diagonalization in my experiments was
(1 0 0 0

0 095 O 0
0 0 095 0
D 10 0 0.9 |

This gives the Jukes-Cantor type transition matrices for the edges of the generating

tree T, with the steady-state relative frequenciesof each character state being 0.25.

0.25, 0.25, 0.25. The distribution of character states at the root was also uniform.

4.5.4 Parameters

As with the “small n” case, I have chosen operating parameters to maintain a sensi-
ble balance between biological experience, phylogenetic interest, and computational
practicality.

The maximum path length is once again restricted, but not explicitly as it
was before. In a further effort to mimic biological experience, the mean, over all
lineages in the tree, of the expected time between bifurcation (speciation) events
on a single lineage, is constant, so that there is the same probability per lineage of
a bifurcation event occurring, per unit time.

This means that the mean number of bifurcation events per unit time increases
as time progresses, so there are more bifurcations per unit time near the pendant

vertices of the tree than there are near the root.
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t = overall_time
x bif_time_factor

——1 = overall_time

Figure 4.6: An example of a rooted tree used in big.c.

In this figure the mean edge lengths, from which the actual edge lengths were
sampled, are shown by dotted lines, and the actual edge lengths are shown by
solid lines. The lengths are proportional to the vertical displacement of the ends
of the edges; they are not proportional to the lengths of the lines themselves.
The horizontal dotted lines represent the time at the “origin” (¢ = 0), the time
at which the last bifurcation event is expected to happen (¢ = overalltime X
bif_time_factor), and the “present” time (¢t = overall_time), from top to bottom.
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The normalisation of the edge lengths, and the sampling by which pseudo-

random edge lengths were chosen, are described in Appendix C, Algorithms C.35
and C.37.
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Chapter 5

Results 1: “Small »”

5.1 Introduction

In this chapter I shall describe several experiments carried out with unrooted gen-
erating trees with from four to ten pendant vertices, corresponding to extant taxa.
The model of evolution used is as described in Chapter 4, Section 4.1.

Section 5.2 describes how the results from these experiments are represented.
Section 5.3 describes the agreement between methods which was observed for a
particular set of input data. This agreement was observed for all the experiments.

The subsequent sections describe the effects of the following parameters:

Sampling error;

Tree topology;

Edge length probability distribution;

Number of taxa,;

Use of the distance spectrum;

White noise;
e Pink noise.

Recall that in all the ezxperiments comparing the performance of phylogenetic
methods, the same observed data were used for each method. This imposes a corre-
lation between the methods, which is most obvious for the tests with short sequences

and small numbers of trials.
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5.2 Representation of findings

I have sought to represent my findings in an easily interpretable way, and also so
the data can, with reasonable ease, be analysed to establish statistical properties
of the performance of the methods.

For this reason I have chosen most often to represent the accuracy of the meth-
ods under investigation in two ways. The method most frequently used is the mean
number of edges wrongly inferred. This is equivalent to half the partition distance
between the inferred trees T; and the generating tree T [82]. The expected dis-
tribution of the partition distance, which is a metric, is known for n < 16 [§],
(82].

The other predominant method of representing the accuracy of tree-building
and tree-finding methods is the frequency at which the correct tree is inferred, i.e.,
where no edges are wrongly inferred.

Both ignore the matter of the accuracy of inferred edge lengths, which is not
being studied here, for two reasons. Firstly, not all methods provide comparable
estimates of edge lengths (e.g., MP usually infers minimum numbers of character
state changes — a discrete measure over the whole tree, whereas NJ returns es-
timates of edge lengths which are continuous variables, and ST in its basic form
does not provide estimates of edge lengths at all). Secondly, there is the pragmatic
reason of keeping the size of the study to a reasonable level.

Other methods of representing the performance of the phylogenetic methods
are occasionally used in this study, and they are explained in the context in which

they are used.

5.3 Agreement between methods

The agreement between methods can be measured by recording the mean partition
distance between the inferred trees, in a matrix.

This was carried out for the all the tree topologies with 8 pendant vertices,
over a range of sequence lengths ¢. An indication of the agreement between all
the methods is shown in Figure 5.1, with ¢ = 100 and 250 trials. In this figure
the reciprocal of half the average partition distance between the inferred trees is
shown; thus those methods which consistently infer trees which are close to each

other show a high value on the figure.
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Figure 5.1: The agreement of phylogenetic methods

In this figure is shown the reciprocal of half the average partition distance between
the trees inferred by all the phylogenetic methods under study. The generating
trees, on 8 pendant vertices, had topology UB6, and the sequence length ¢ was 100.
250 trials were carried out. The highest value on this graph is = 10, between CoSO
and CTSO, indicating that on average the distance between the trees inferred by
these two methods was = 0.1.
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In this figure we see that CoSO and CTSO are the most highly correlated. The
second most highly correlated methods are CTDH and NJ.

Also highly correlated are the pairs of methods CoDH and CTDH, CoDH and
NJ, CoDH and ST, CoSH and CTSH, CTDH and MPDH, CTDH and ST, MPSH
and NJ, NJ and ST.

The mean number of edges different between the inferred trees for the more

highly correlated methods mentioned above are shown in Table 5.1, below.

Table 5.1: Half the mean partition distance between inferred trees of differ-
ent methods

Note that while in the Figure 5.1 a high agreement is shown by tall columns, high

agreement is shown here by numbers close to zero. Numbers less than 0.5 are in

bold type, and those between 0.5 and 1.0 are underlined.

CoSH CoSO CTDH CTSH CTSO MPDH MPSH MPSO NJ ST

CoDH [1.5062 1.3951 0.2881 1.4938 1.3786 0.7202 1.1564 1.0823 0.3621 0.4691
CoSH| 0 1.3210 1.3704 0.4486 1.3251 1.4033 1.3292 1.4403 1.3951 1.4403
CoSO 0 1.2675 1.3210 0.0988 1.3868 1.4444 1.4074 1.2840 1.2881
CTDH 0 1.3621 1.2510 0.4815 0.9794 0.9300 0.1687 0.3045
CTSH 0 1.2757 1.3951 1.2798 1.4280 1.3704 1.4321
CTSO 0 1.3786 1.4321 1.3992 1.2593 1.2716
MPDH 0 0.7160 0.7078 0.6255 0.7037
MPSH 0 0.5309 0.9959 1.0700
MPSO 0 0.9588 1.0041

NJ 0 0.2675

Let the net disagreement of a phylogenetic method M with the other phyloge-
netic methods be the sum of the mean distances between the tree inferred by A
and those inferred by the other methods. Hence for example the net disagreement
of CoDH with the other methods shown in Table 5.1 is the sum of the numbers in
the first row of that table.

Table 5.2 shows the net disagreements of all the methods shown in Table 5.1.
Note that CTDH, which in this case has the lowest net disagreement, is not the

most accurate method in this trial.

5.4 Sampling error

The effect of sampling error on the performance of the phylogenetic methods is
investigated by varying the sequence length c used. I have used a range of sequence

lengths both in the “small n” and the “large n” cases. For the “small n” case I have
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Table 5.2: The net disagreement of some phylogenetic methods

The second column of this table shows the net disagreement of several methods
with each other. In the third column is shown the mean number of edges wrongly
chosen by each method, which is equal to half the partition distance between the
inferred tree and the generating tree. The generating tree had topology UBG, the
sequence length was ¢ = 100 and 250 trials were carried out.

net disagreement | mean number of edges wrongly chosen

CoDH 9.8519 1.387
CoSH 12.9795 1.679
CoSO 12.2141 1.601
CTDH 8.4032 1.267
CTSH 12.8066 1.642
CTSO 12.0700 1.609
MPDH 9.5185 1.082
MPSH 10.9341 0.963
MPSO 10.8888 0.753

NJ 8.6873 1.267

ST 9.2510 1.300

used a minimum of 10 characters, and a maximum of 10° characters: in practical
terms, from the ridiculous to the sublime. The number of trials carried out for
each sequence length and each tree topology was 1000. The amount of data this
generated is too large to be included in entirety here: rather, I have selected those
results which best illustrate the overall behaviour of the phylogenetic methods used.

Also, in the “small n” case, it is possible to generate data with zero sampling
error, something impossible to achieve when using the “evolutionary” method of
data generation, as used in the “large n” case. This data generation is uses the
ezpected bipartition spectrum s as the “observed” spectrum s’, since, when ¢ — oo,
s’ — s [41]. This is useful in determining whether phylogenetic methods are con-
sistent with a model, for in the absence of sampling error, consistent methods will
correctly deduce the generating tree T with probability 1. This technique demon-
strates the inconsistency of UPGMA with the additive model used (see Figure
5.2).

In Figures 5.2 to 5.4 are shown the proportions of 1000 trials in which the esti-
mated tree T differs from the generating tree T by 0,1,...,7 edges, for sequence
lengths c ranging from 100 to 10*. These figures show the strong dependence of the
performance of UPGMA, TD and NJ (which is also seen for the other methods;
data not shown) on sequence length.

Also worthy of note is the clear indication of the inconsistency of UPGMA with
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Proportion of trials

Number of edges
wrongly inferred

Figure 5.2: UPGMA vs. ¢ with n = 10 and all trees equally likely

The mean proportion of trials in which UPGMA infers 0,1,...,n — 3 = 7 edges
incorrectly is shown. Sequence length ¢ ranges from 100 to 10%. Maximum path
length o is 0.35 and the ratio r between maximum internal and maximum pendant
edge lengths is 0.5.
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the model used: as c gets large, the most likely number of edges wrongly inferred
tends to 4.

In Figure 5.3 we see the improvement in accuracy of TD over UPGMA, but note
that the probability of inferring T does not tend to unity. This demonstrates the
importance of accuracy and consistency: UPGMA is both inaccurate and incon-

sistent, and TD is much more accurate, though still inconsistent, with the model

used.
e
P T
: |
= .
£
£
&
&
=
Number of edges
wrongly inferred
Sequence length
Figure 5.3: TD vs. ¢ with n = 10 and all trees equally likely
The mean proportion of trials in which TD infers 0,1,...,n — 3 = 7 edges incor-

rectly is shown. Sequence length c ranges from 10 to 10°. Maximum path length
o is 0.35 and the ratio r between maximum internal and maximum pendant edge
lengths is 0.5.

—

Figure 5.4 shows the mean proportion of trials in which NJ infers 0,1,...,7
edges wrongly. The probability that more than zero edges will wrongly be inferred
tends to zero when the sequence length ¢ reaches =~ 5000 for this experiment (this
will not necessarily be true in other cases). This figure shows the importance of
consistency with the model: NJ is both accurate and consistent in this case.

The inconsistency of MPSO does not become apparent in this part of the in-
vestigation (data not shown).

Unfortunately, the distance methods which attempt to “correct” for multiple
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Proportion of trials
o
s

44
o " Number of edges
L wrongly inferred

Figure 5.4: NJ vs. ¢ with n = 10 and all trees equally likely

The mean proportion of trials in which NJ infers 0,1,...,n — 3 = 7 edges incor-
rectly is shown. Sequence length ¢ ranges from 10 to 10°. Maximum path length
0 is 0.35 and the ratio r between maximum internal and maximum pendant edge
lengths is 0.5.
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changes, and the Hadamard conjugation process (the HlnHs calculation), can
give undefined values for the inferred distances when some of the components of
Hs are non-positive. This problem occurs most often with small sequence lengths,
to wit, 10 < ¢ <100, and with very long path lengths between taxa, i.e., greater
than about 1.2 character-state changes expected per site. If this happened for a
particular observed s’, I chose to reject such data sets for all methods, as it was
not possible to compare all methods under these circumstances.

In order to reduce the overall running time of the simulations, I have not at-
tempted to obtain the same number of trials with these short sequences. Rather,
I have borne in mind that the statistical significance of such trials is markedly
reduced: there is still useful information to obtained from such trials, but it is
imprecise.

In Figure 5.5 below, the mean number of trials in which 0 edges were incorrectly
inferred (i.e., the generating tree T was inferred) is shown for CoDH, CoSH,
CTDH, CTSH, MPSH, MPSO, NJ, SL, ST and TD. Data for UPGMA is not
shown, as in this experiment the proportion of trials for which T was found by
UPGMA never exceeded 0.05. This shows the inconsistency of TD in that as
¢ — 00, the probability of inferring Tg /4 1.
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Figure 5.5: Mean proportion of trials in which the correct tree is inferred

The proportion of trials averaged with all trees considered equally likely in which
several methods correctly infer the generating tree T is shown. Maximum path
length o is 0.35 and the ratio r between maximum internal and maximum pendant
edge lengths is 0.5. The number of taxa n is 10.
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The good performance of MPSH and MPSO is clear in Figure 5.5, and de-
spite MPSO being inconsistent with the model, it is the most accurate in this
case. The inconsistency of MPSO is not evident, probably due to the small edge
lengths making multiple changes of character state unlikely on each edge: the
overall maximum path length is bounded above by o = 0.35, but the expected
maximum path length is approximately half this value, and the expected internal
edge lengths are 0.023215, calculated using the a.t.e.l. assumption. Hence the ex-
pected number of multiple changes of character state on an internal edge is small,
0.000263 + 0.000002 + ... = 0.000265 (this is calculated using the Poisson model,
as detailed in [39]). The expected number of multiple changes of character state

on pendant edges is 0.001045, calculated as above.

5.5 Tree topology

There have been many simulation studies of phylogenetic methods, which have
been conducted for specific tree topologies [92], [93], etc. These have not generally
addressed the question of whether the tree topology in itselfis a major contributing
factor to the performance of the phylogenetic methods concerned, but rather, have
usually taken certain fixed combinations of edge lengths in conjunction with a given
tree topology.

I have tried therefore to eradicate all other possible influencing factors and
establish whether topology is intrinsically important. Though it is not possible to
completely counteract all influences other than tree topology from these simulation
tests, it is possible to reduce them to a large extent.

It is not obvious that the tree topology really affects the performance of the
phylogenetic methods, as closely linked with tree topology is the edge-length prob-
ability distribution. For example, trees with larger diameters will have shorter
internal edges, so the expected number of multiple character-state changes will
be lower. The joint effect of different tree topologies and edge-length probability
distributions for the generating tree T is shown in Figure 5.6, below. (The 11
topologies of unrooted binary trees on 10 pendant vertices are listed in Appendix
A. Of these, one topology has diameter d(T') = 9, three have d(T') = 8, five have
d(T) =17, and two have d(T') = 6.)

Figure 5.6 shows the slightly different accuracy NJ for those generating trees
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Figure 5.6: Performance of NJ with all tree topologies of the same diameter,
with 10 taxa

In the above graph the mean number of edges wrongly inferred is shown, for

sequence length ¢ in the range [100,500]. For each topology, 1000 trials were

carried out, and the mean accuracy was obtained for each diameter using the

a.t.e.l. assumption. Those tree topologies with the same diameter had the same

probability distribution of edge lengths.
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with different diameters. One explanation for this might be that the effect of
different tree topologies may be mainly due to the different edge length probability
distributions.

If the edge-length probability distributions were made independent of tree topol-
ogy in these simulations, the “caterpillar” topologies UB(n — 2) would have much
larger expected distance between the most distant pendant vertices than would the
more “star-like” topologies, like UBS, 23 (see Appendix A).

A compromise can be reached by using a value of n which is small enough
that the range of diameters of trees over all topologies is small (so the same edge-
length probability distributions can be used for all trees without the maximum
expected distance between pendant vertices being markedly different for different
topologies), but with at least two different topologies for that n.

I have used n = 6 with the two topologies UB4 and UB3, 1,, and have used
the same edge-length probability distributions for all the trees, in an experiment
to estimate the dependence of accuracy of phylogenetic inference on tree topology.
Results from the experiment, in which 10° trials were conducted, are given in Table
5.3.

From this table the following trends are apparent:

e The sequence-spectrum based methods all show small but highly statistically
significant effects, of tree topology on their performance. The most significant
difference in performance for the two topologies UB4 and UB3, 1, is shown
by CoSO. In each case the methods are more accurate when the generating

tree had topology UB3,1,, and the level of significance was less than 0.01%.

e The distance-spectrum based methods all show very low dependence of tree
topology on their performance, with CoDH and CTDH significant at approx-
imately 4.5% and MPDH significant at approximately 18%.

e The clustering methods show much more variability in the effect of generating
tree topology, with UPGMA the most affected, followed by NJa and SL, then
ST, TD, and NJ the least affected. These methods do not show the same uni-
formly better performance when the generating tree T had topology U B3, 1.
as do the sequence-spectrum based methods. However it is noteworthy that

UPGMA shows a much higher accuracy when T has topology U B3, 1.

In summary, though the effect of tree topology under this model is statistically
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Table 5.3: Effect of tree topology on performance of phylogenetic methods

p(X) is the proportion of the 105 trials in which the topology of the generating
tree was X and the correct tree was found. The two tree topologies used were
UB4 and UB3, 1,. p = (p(UB4) + p(UB3,1;))/2. Under the null hypothesis that
p(X) follows a binomial distribution, independent of tree topology, z gives the
standard error of p(UB4) — p(UB3, 1;), equal to

_ _ P(UB4) — p(UB3, 1)
~ V(p(1=p)/(5 x 10%)

The percentage probabilities of these values of p(UB4) — p(UB3, 12) occurring
by chance, and hence the level of significance at which we can reject the null
hypothesis, are shown in the last row of the table. Note that the edge length
probability distribution was the precisely the same for both topologies.

Sequence-spectrum based methods:

CoSH CoSO CTSH CTSO MPSH MPSO
p(UB4) | 0.95436 0.93357 0.95614 0.94901 0.98620 0.97157
p(UB3,1,) | 0.95893 0.96337 0.95934 0.96777 0.98787 0.98343
D 0.95664 0.94847 0.95774 0.95839 0.98703 0.97750
z -5.0177 -30.1411 -3.5567 -21.0062 -3.3010 -17.8822
% prob. = 0% ~ 0% ~0% =0% = 0% ~ 0%
Distance-spectrum based methods:
CoDH CTDH MPDH
p(UB4) | 0.95452 0.95471 0.97477
p(UB3,12) | 0.95293 0.95312 0.97541
D 0.95372 0.95391 0.97509
z 1.6924 1.6957 -0.9182
% prob. 4.53% 4.49% 17.94%
Clustering methods:
NJ NJa SL S TD UPGMA
p(UB4) [ 0.95475 0.93908 0.92305 0.95442 0.89563 0.28586
p(UB3,13) | 0.95316 0.92374 0.92995 0.95201 0.89881  0.49809
P 0.95395 0.93141 0.92650 0.95321 0.89722 0.39197
z 1.6964 13.5709 -5.9125 2.5518 -2.3416 -97.2080
% prob. | 449% =0% =<0% 096% 054% =0%
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significant, except for the distance-spectrum methods and NJ, it is in general small.
The performance of any of these methods is not greatly affected by tree topology
except for UPGMA.

Hence for most studies it is reasonable to use just one tree topology or randomly
chosen topologies for Tg, to get an impression of the performance of a method for
all topologies with that number of pendant vertices. In subsequent studies in this
thesis I have therefore either used a single fixed topology or have randomly chosen

tree topologies for 7.

5.6 Edge length distribution

In this part of the study, the following parameters were allowed to vary:
e ratio r between maximum internal and maximum pendant edge length;
e overall maximum path length o.

The generating tree had topology UB5,2; (n = 9) for all these trials; using
n > 9 would have been infeasible with the large number of trials required for a
statistically meaningful experiment.

In this section of the study the overall maximum path length o ranged over
the set {0.112,0.14,0.175,0.224,0.28,0.35,0.4375,0.56,0.7,0.875,1.12}. For each
of these values of o the ratio r between maximum internal and maximum pendant
edge lengths ranged over the set {0.16,0.2,0.25,0.32,0.4,0.5,0.64,0.8,1,1.25,1.6}
Hence these ranges include the values of ¢ and r usually used, i.e., 0.35 and 0.5
respectively.

The sequence lengths ¢ used ranged from 40 to 2500, in the usual exponential

expression described previously, though only data using ¢ = 1000 is shown here.
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Figure 5.7: Effect of varying r with maximum path length ¢ = 0.112

The mean number of edges wrongly chosen by all methods with ¢ = 0.112 and
allowed to vary. The sequence length ¢ is 1000.
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Figure 5.8: Effect of varying r with maximum path length o = 0.35

The mean number of edges wrongly chosen by all methods with ¢ = 0.35 and
allowed to vary. The sequence length ¢ is 1000.
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Figure 5.9: Effect of varying r with maximum path length o = 1.12

The mean number of edges wrongly chosen by all methods with ¢ = 1.12 and r
allowed to vary. The sequence length ¢ is 1000.
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In Figures 5.7, 5.8 and 5.9 we see the high dependence of the performance of
the phylogenetic methods on r for fixed values of 0. Also, the effect on the different
methods of varying o is evident.

The following points are noteworthy:

e The apparent parallel variation between phylogenetic methods is caused by

using the same data sets for each method, and would disappear with larger

sample sizes.

e All the methods become more accurate as r increases. This is to be expected
because the internal edge lengths become longer with increasing r and fixed

0, and are therefore more likely to have a character state change than shorter

edges.

e MPSO, which does not use any information about the pendant edges (i.e., the
“singletons” in the set of bipartitions, in which only one taxon has a different
character state), does not appear to show a strong dependence on r above

r = 0.64. This is, however, not a strong indication as MPSO is accurate at

this level anyway.
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Figure 5.10: Effect of varying maximum path length o with r = 0.16

The mean number of edges wrongly chosen by all methods with r = 0.16, ¢ = 1000,
Te = UBS5, 23 and varying o.
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Figure 5.11: Effect of varying maximum path length o with r = 0.5

The mean number of edges wrongly chosen by all methods with » = 0.5, ¢ = 1000,
T = UB)5,23 and varying o.
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Figure 5.12: Effect of varying maximum path length o with r =1

The mean number of edges wrongly chosen by all methods with » = 1, ¢ = 1000,
Tc = UBS5,23 and varying o.
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Varying o while keeping r fixed (see Figures 5.10, 5.11 and 5.12) allows more

conclusions about the effect of overall maximum path length:

e Maximum parsimony performs the most reliably, though the MPSO variant
becomes less accurate than MPSH when o = 0.35, and remains so for larger
o. This is to be expected because with large o the internal edges are longer, so
allowing for more multiple character state changes, which are not corrected
for in MPSO (recall that MPSO is not consistent with the model used to

generate the data here).

e All methods initially either improve their accuracy or remain at the same
accuracy as path lengths start to increase. This is to be expected due to the
higher probability that character state changes will occur on each edge. How-
ever when o increases further, we find that the accuracies of these methods
decrease, as the observed bipartition spectra approach randomization (data

not shown).

e The three variants MPDH, MPSH and MPSO do not show any great effect
on their performance with varying o, for r € {0.16,0.5,1}, and neither do

CoDH or CTDH.

e The accuracies of CoSH, CoSO, CTSH and CTSO improve more slowly than
do those of the other methods, with CoSO the slowest, followed by CTSO.
The slow improvement in CoSO and CTSO is to be expected because they

are non consistent with the model used to generate the data.

With ¢ > 1.4 the number of changes of character state between taxa is so
large that the sequences approach randomness with respect to each other. This
means that without impractically long sequences, there is not enough signal in
the data to infer any internal edges of the generating tree, hence the accuracy of
all methods decreases. Also with these large values of o the distance ‘correction’
formula for inferring inter-taxon distances is frequently undefined, so these data
sets are rejected, with the consequence that statistically significant experiments
rapidly become infeasible.

For example, in one experiment with ¢ = 3.5, ¢ = 2000 and the generating tree
with topology UB6, every observed data set in 1000 trials had to be rejected due
to the inferred edge lengths being undefined. (Data not shown.)
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5.7 Number of taxa

T'his section details two questions which have been addressed using results from a
broad set of experiments, in which all tree topologies with from four to ten pendant
vertices were used for the generating trees, and the sequence length ¢ ranged from
10 to 10°. For each generating tree topology and each sequence length, 1000 trials

were carried out.

5.7.1 Required growth in sequence length with number
of taxa

Suppose we wish to have a certain confidence level in the inferred tree, with data
generated according to our idealised model, and we have access to sequences of
uanlimited length. It would be useful to know how long the sequences must be
to have the desired confidence level in the inferred tree. Though the number of
possible trees increases exponentially with n, it has been shown that the rate at
which the sequence length ¢ must grow with n to retain a fixed probability P that
a given method will reconstruct T need not be exponential. In fact, the minimal
rate of growth in ¢ with n for fixed P is no more than O(n?1n(n)) [84].

This growth rate has been estimated for the evolutionary model used in this
study, by interpolation from data like those in Figure 5.5. A graph showing the

required growth rate in ¢ with n for an 85% confidence in the inferred tree is shown

in Figure 5.13, below.
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Figure 5.13 shows that in this case, the required minimum growth in c is ap-
proximately linear with n, which is less than the O(n?In(n)) which has been proved
to be an upper bound on the growth rate. This may be counterintuitive, as the
number of trees between which a choice must be made rises exponentially with n.
However, it must be remembered that the number of parameters which are being
estimated (e.g., clusters, internal edges) rises linearly with n, so finding an approx-
imately linear increase in required sequence length i1s perhaps not so surprising.

This indicates that to obtain reliable trees for large numbers of taxa we must
expect to need proportionally long sequences. Note that with real data the growth

in ¢ may well be more than linear with n.

5.7.2 Optimal number of taxa for inferring a given edge

Another question related to the number of taxa used is the following: ‘What is the
optimal number of taxa to include from a set of n taxa, to obtain the best estimate
of the existence or non-existence of a specific internal edge of the phylogeny relating
the n taxa?’ Putting this another way, it can be regarded as the problem of how
many taxa to add to an inferred tree to obtain the highest confidence in an edge
of Tg.

As the simulations carried out in this study used different data sets for each
value of n, the above question cannot be answered directly. However, by considering
the mean number of edges wrongly inferred by an NPM when increasing n and
keeping c fixed, we can get some idea of whether we should add more taxa or not.
If the increase in the mean number of edges wrongly inferred rises proportionally
less than the number of internal edges, then the probability of each internal edge
begin correctly inferred is increasing with added taxa. This would mean that the
reliability of the existence of a particular edge is improved by adding taxa. If on
the other hand the mean number of edges wrongly inferred rises proportionally
faster than the number of internal edges, adding taxa is positively unfavourable.

Considering Figure 5.14, we can see that the increase in mean number of edges
wrongly inferred increases at least linearly with n, for all methods other than MPSH
and MPSO. (Data for CoSO, CTSO and MPDH are not available for this figure.)

From the results in this section we can conclude that for these methods it is
not helpful to include more taxa, in attempting to increase the confidence with

which a given internal edge is inferred. The curves for MPSH and MPSO are too
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Figure 5.14: The mean number of edges wrongly inferred with increasing n
The above graph shows the mean number of edges wrongly inferred by several
methods. The sequence length used was 500, and 1000 trials were carried out for
each value of n. The means were calculated using the a.t.e.l. assumption.
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Figure 5.14: The mean number of edges wrongly inferred with increasing n
The above graph shows the mean number of edges wrongly inferred by several
methods. The sequence length used was 500, and 1000 trials were carried out for
each value of n. The means were calculated using the a.t.e.l. assumption.
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irregular to infer that including more taxa is helpful or not. (Astolfi et al in 1981
showed that the number of errors — in a well-defined sense — in reconstructing
trees, using several methods, increases approximately linearly with n for a much

simpler case, with n € {6,10,15} [3].)

5.8 Use of the Distance Spectrum

In the results seen so far, and in subsequent results, it is apparent that using the
distance spectrum g’ as input to the spectrum-based methods is more eftective than
using the bipartition spectrum s’. This is counterintuitive in that there is a huge
loss of information in using the 2"~! —1 observed bipartition frequencies as opposed
to the (’2‘) distance measures, on a set of n taxa [87].

This effect may be due to the relative sizes of the variances of the edge lengths
inferred from g’ and the variances of the edge lengths inferred from s’.

To estimate these variances the program sim.c was modified as outlined below:
Algorithm 5.1 : variance.c

{ The length of edge j as inferred from the distance spectrum is here written 95
that inferred from the sequence spectrum is g;. }

for each tree topology X
choose a vector q of edge lengths
calculate the vector s of expected bipartition frequencies
for each sequence length c
for : =1 to 100 do
sample from s to get observed bipartition vector s’
calculate matrix D of pair-wise distances between taxa
calculate observed distance spectrum g’ from D
calculate inferred edge lengths q’ and w’ from s’ and g’, respectively
for each edge j calculate var(q;) and var(w})

] B _1,_ var(3))
print Ly =327 In W—r(w-;,—)

end.

If on average the ratio of var(q?) to var(w}) were greater than one, the quantity

Lx . would be positive, whereas if the ratio were on average less than one, Lx
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would be negative. If the two variances were on average approximately the same,
Lx,. would be close to zero. (The geometric mean of the ratios var(q;) to var(w})
ts equal to exp(Lx,.), for tree topology X and sequence length c.)

Some results from an investigation into the variance of the inferred edge lengths
are shown in Table 5.4, below. In Table 5.4 are shown values of Lx . for the tree
topology X = UB3 and for sequence lengths ¢ = 100, 160, 250, 400, 640, 1000.

The most obvious feature of the data in Table 5.4 is that they are all positive.

This means that on average the ¢! values inferred from s’ have a higher variance

than the w! values inferred from g'.

Table 5.4: Variance of edge lengths as inferred from the distance and bipar-
tition spectra

In this table areshown the results of the experiment described above. The number
of trials was 100, the sequence length ¢ € {100,160, 250,400, 640,1000}, and the
upper bound o on the maximum path length was 0.35. The generating tree had
topology X = UB3. Note that the same set of edge lengths was used for all the
trials, but data sampled from the expected bipartition frequencies for each trial
and each value of c.

sequence length c
100 160 250 400 640 1000
Lx.|0588 0.557 0.573 0.548 0.519 0.515

The values of Lx . were obtained for several other topology of generating tree,
with 4 < n < 9 and the same set of sequence lengths. In these experiments too
Lx . was always positive (data not shown).

My conclusion from these results is that the distance-spectrum based methods
perform more accurately than the sequence-spectrum based methods because the
variances of the inferred edge lengths in the former group of methods are in general
less than those in the latter group. This is in agreement with the results of Waddell
et al [97).

The results from this section help explain the unexpected result that, despite
the large information loss with conversion from bipartition frequencies to distances,
methods using edge lengths inferred from distances frequently perform more accu-

rately than those using edge lengths inferred from bipartition frequencies.
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5.9 White noise

The technique of DNA sequencing is very accurate, but is not absolutely so [15].
There is a finite (non-zero) probability that each character on a sequencing gel will
be mis-read. I have modelled this possibility by modifying the sampling process,
so that at each site in the aligned 2-state character sequences, there is the same
probability e that a character selected at random from the set of taxa will be
“flipped” from one state to the other. This probability ranged exponentially from
0.001 to 0.1.

The model I have used to mimic sequencing errors can also be regarded in the
more general setting of white noise: the random flipping of one character state
to the other is unbiassed, essentially random, noise which may have other sources
than sequencing errors. The simulations were carried out on the ‘caterpillar’ tree
with n =9 (UBT7), and 100 trials were conducted for each value of e and c.

The values of e used were {0.001,0.0016,0.0025,0.004, ...,0.1} and the values of
¢ used were {25, 40, 64,100, ...,1000}. UPGMA was not used here; its behaviour is
so poor for this model that it is not of interest.

The simulations show the expected gradual decrease in accuracy when the error
rate e is small (less than about 0.01). The overall effect on the accuracy of the
phylogenetic methods is not great in this experiment for e < 0.01, though it is
detectable: for example, the mean number of edges wrongly inferred by CoDH
with ¢ = 400 increased from = 0.35 to =~ 0.5 when e increased from 0.001 to 0.01
(data not shown). The accuracy of the other methods behaved similarly to the
above example with e < 0.01.

However, when e increases beyond 0.01, several features become apparent:

- 1. Above e = 0.016, CoDH, previously the most accurate of the Co family,
loses accuracy faster than do CoSH and CoSO. At ¢ > 400 and e = 0.025,
the accuracy of CoDH is not significantly different from that of CoSH, with
CoSO still the least accurate (recall that CoSO is not consistent with the
model) (see Figure 5.15). When e reaches 0.1, CoDH is much less accurate
than CoSH and CoSH; with ¢ = 10000, the mean number of edges wrongly
inferred by CoDH is =~ 1, whereas with CoSH and CoSO this number is
~ 0.75 (see Figure 5.16).

2. For e < 0.04 and ¢ < 640 the relative accuracies of CTDH, CTSH and CTSO
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remain the same; CTDH being more accurate than CTSH and CTSO, these
latter two having approximately the same accuracy (see Figure 5.17). With
e < 0.04 and ¢ > 640, CTDH performs similarly to CTSH and CTSO. With
e = 0.064 CTDH begins to become significantly less accurate than CTSH and
CTSO when c reaches 640, and this continues with e = 0.1, the disagreement

beginning at ¢ = 400 (see Figure 5.18).

3. Maximum parsimony exhibits similar behaviour for all three variants (MPDH,
MPSH and MPSO) over 0.001 < e < 0.1, as far as can be determined from
the relatively small number of trials. It appears however that MPDH gains
accuracy, relative to MPSH, when the error rate e becomes very large (see

Figure 5.19).

4. In general, the relative accuracies of the Distance-Hadamard methods (CoDH,
CTDH and MPDH) are maintained over 0.001 < e < 0.1. In this case MPDH
is more accurate than CTDH, in turn more accurate than CoDH (see Figure

5.20).

5. The Sequence Hadamard methods (CoSH, CTSH and MPSH) also preserve
this ranking (MPSH the most accurate, then CTSH, then CoSH), though
when e exceeds 0.025 and for c less than about 250, the difference between
CTSH and MPSH is small (see Figure 5.21). For e = 0.064 and e = 0.1
CTSH becomes the most accurate method for ¢ > 1000 as the accuracy of
MPSH in this range of ¢ decreases more rapidly than does that of CoSH and
CTSH (see Figure 5.22).

6. The Sequence Observed methods (CoSO, CTSO, MPSO) exhibit the same

relative behaviour as the Sequence Hadamard methods, outlined above (fig-

ures not shown).

7. The constructive methods (NJ, NJa, SL, ST and TD) have similar accuracies
to each other throughout, but NJ and ST are slightly more accurate than the
others, whereas SL and NJa are slightly less accurate, and TD lies somewhere
in between. This distinction between the relative accuracies becomes more

apparent as e increases (see Figure 5.23).

To summarise, it appears that white noise of this type affects the performance of

the phylogenetic methods gradually, as the error rate increases. Above e = 0.025,
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Figure 5.15: Compatibility methods with sequencing error rate e = 0.025

This figure shows the accuracy of CoDH, CoSH and CoSO with sequencing error
rate e = 0.025.
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Figure 5.16: Compatibility methods with sequencing error rate e = 0.1

This figure shows the accuracy of CoDH, CoSH and CoSO with sequencing error
rate e = 0.1.
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Figure 5.17: Closest tree methods with sequencing error rate e = 0.04

This figure shows the accuracy of CTDH, CTSH and CTSO with sequencing error
rate e = 0.04.



120 Chapter 5. Results 1: “Smalln”
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Figure 5.18: Closest tree methods with sequencing error rate e = 0.064

This figure shows the accuracy of CTDH, CTSH and CTSO with sequencing error
rate e = 0.064.
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Figure 5.19: Maximum parsimony methods with sequencing error rate e =
0.1

This figure shows the accuracy of MPDH, MPSH and MPSO with sequencing
error rate e = 0.1.
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Figure 5.20: Distance Hadamard methods with sequencing error rate e =
0.064

This figure shows the accuracy of CoDH, CTDH and MPDH with sequencing
error rate e = 0.064.
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Figure 5.21: Sequence Hadamard methods with sequencing error rate e =
0.025

This figure shows the accuracy of CoSH, CTSH and MPSH with sequencing error
rate e = 0.025.
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Figure 5.22: Sequence Hadamard methods with sequencing error rate e =

0.1

This figure shows the accuracy of CoSH, CTSH and MPSH with sequencing error
rate e = 0.1.
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which is very high in real terms [15], the accuracy of all the methods is such that
the inferred tree is unreliable, particularly for the Distance Hadamard methods,
followed by Sequence Observed methods and Sequence Hadamard methods. This
indicates that the Sequence Hadamard methods are more robust than the Distance
Hadamard and Sequence Observed methods.

The constructive methods also fared badly, with the mean number of edges
wrongly inferred tending towards =~ 1 with e > 0.064 and high ¢. The inconsistency
of CoSO had a significant effect unless e was very high (0.064 or 0.1), though the

inconsistency of TD was in sense eclipsed by the sequencing errors when e rose to

0.064.

5.10 Pink Noise

The introduction of positive bias in the data towards a specific tree, different from
the “true” tree, i1s introducing pink noise into the data. The effect of this can be
investigated by amalgamating data generated from two different phylogenies and
testing the methods to see how well they perform.

It is important to determine then, (1) if data from two distinct phylogenies
are amalgamated, whether our method will give some indication of this (which is
a measure of falsifiability — see Section 2.2.4), and (2) how such amalgamation
affects the confidence we can place in the inferred tree.

In order to answer these questions, I have chosen to use two randomly chosen
(but distinct) trees.

The relevant portion of the simulation program was modified as follows:

1. Choose sequence length ¢, number of taxa n, and proportion « € [0.05, 1] of

data to come from each tree Tg; and Tg,.
2. Randomly choose a tree TG, with topology X (in practise, X; = UBS).

3. Randomly choose a tree topology X; on n pendant vertices and a tree Tg,

with this topology, which has at least one edge different from Tg;.
4. Generate observed sequence data s’ with TG, and sequence length ¢; = a x c.
5. Generate observed sequence data s” with Tg, and sequence length ¢; = c—¢;.

6. For each i € {0,...,2""! —1},s; «— as! + (1 — a)s!.
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7. Use the amalgamated data as input to the NPMs, comparing the inferred

tree with Tg;.

The simulations were carried out for all methods and the topology of the gen-
erating tree Tg; was UBS. «a ranged from 1.0 down to 0.05, in steps of 0.05. The
maximum path length was bounded by ¢ = 0.35 and r, the ratio of maximum
internal edge length to maximum pendant edge length, was 0.5. 100 trials were
carried out for each sequence length c used, and c ranged from 100 to 2000 char-
acters. Only the data from using ¢ = 2000 are shown: the effect is most clear with
this value of c.

Ideally, we would like methods to correctly infer Tg; with a < 0.5 and to infer
the ‘contaminant’ tree Tg, when a > 0.5: this would look like a step-function on
the graph of mean number of edges wrongly inferred.

Note that the expected number of edges different between these trees is approx-
imately 6.756 [42]. (Hendy et al provide mean partition distances between any two
randomly chosen unrooted trees on n = 10, but in this case I have fixed one tree
with topology UBS.)

In Figure 5.24 we see that CoSH and CTSH are much more ‘step-like’ than
the other methods, and that of the other methods, all but CoDH, NJa, SL and
UPGMA group together. This effect is also visible for lower values of ¢, down to
¢ = 500, but is not as obvious.

This shows the higher robustness of CoSH and CTSH to interference in the

sequence data in the form of pink noise.
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Figure 5.24: Effect of amalgamating data from two trees

In this figure is shown the effect of amalgamating data from two different trees,
Tc1 and Ts2. The topology of Ty was UB8, and Tz, was chosen randomly, to
be at least one edge different from T;. The sequence length used was ¢ = 2000
and the number of trials was 100.
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The original questions can now be answered:

1 If data from two distinct phylogenies are accidentally amalgamated, will our
method will give some indication of this?

This is a question of falsifiability, in that we wish to know whether the phylogenetic
method can reject the assumed model of data generation (in this case, the model

of a single tree generating the data). The answer to this question has to be “no,

not as yet”.

2 How does such amalgamation affect the confidence we can place in the inferred
tree?

If we know the proportion a of “true” data and (1 — ) of “false” data (from T,
and T2 respectively), we can estimate the effect this has on the reliability of the
inferred tree T. For example, with ¢ = 500, the effect of introducing 35% “noise”
in the form of data from an unknown tree is to increase the expected number of
edges wrongly inferred by MP methods by about 1.5, whereas the expected number
of edges wrongly inferred by CTSH increases by about 0.7 (data not shown). With
¢ = 2000 and the same o the difference is more marked: MP is expected to get
around 1.5 more edges wrong than if the data were pure, while CTSH is expected
to get around 0.5 more edges wrong (see Figure 5.24).

In general the results show that, though CT does not perform as well as MP
with pure data, it is considerably more robust with regard to contamination of the
data.

It is an open question as to the conditions of amalgamating data as described

above under which CTSH and CoSH remain consistent.

5.11 Summary

The results from this chapter show several basic trends, itemised below:

e Table 5.1 shows that CoDH, CTDH, MPDH, NJ and ST infer similar trees
in the examples used, though the agreements between CoDH and MPDH
and between MPDH and NJ are not as high as the others. Thus as NJ is
reasonably accurate in the above tests, and is of a lower complexity than the

others in this group, it seems a good method to use in this case.
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e The performances of the methods in this chapter are predominantly affected

by sampling error, which i1s dependent on the sequence length. We see this
as, whatever the model used to generate the data (with no white noise or
pink noise), when sufficiently large sequences were used (above about 2000
characters), the consistent methods all performed well, and when very short

sequences were used (below about 100 characters), none performed well.

The effect of tree topology was not significant over 100,000 trials in NJ, TD,
and the Distance Hadamard methods (CoDH, CTDH and MPDH). MPDH
exhibited the least dependence on tree topology, and UPGMA showed the
highest dependence.

Up to a point, as the edge lengths increase, the accuracies of the phylogenetic
methods also increase. (Recall that the accuracy of a phylogenetic method
is the probability that it will infer the generating tree.) This is due to the
increased probability that sufficient numbers of each of the most likely bi-
partitions will be sampled, so that the observed bipartition spectrum will
accurately reflect the expected bipartition spectrum. Conversely, when the

edge lengths are very small the accuracy of the methods decreases, for the

same reasoin.

However, when the edge lengths become very large, the sequences approach
randomness with respect to each other, and the informative signals of the
most likely bipartitions become swamped in the multiple character-state
changes along paths of the generating tree Tg. Hence the accuracies of
the phylogenetic methods decrease once more when the path lengths exceed
~ 1.25 expected character state changes per site, and tend to zero as the

path lengths increase further.

With each of the methods, the sequence length ¢ must grow at least in propor-
tion to n, to retain a certain probability of correctly inferring the generating
tree. This is a promising result when considering that the growth in the num-
ber of potential trees is exponential, and the best known theoretical upper
bound for this growth in ¢ is O(n?1In(n)) [84]. Also the correct inference of
a specific internal edge is not helped by the addition of more taxa, for this
model. Kidd and Cavalli-Svorza in 1971 (53] studied related problems, and

found that the probability of correctly inferring 7c increased monotonically
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with n, but they did not discuss the shape of the growth function.

The use of the observed distance spectrum g’ as input data reduces the vari-
ance in the inferred edge lengths of the tree. This gives the unexpected result
that although much information is lost in converting from a bipartition spec-
trum s’ to g’, evidently more misinformation is lost, causing the edge lengths
inferred from the g’ to be more reliable than those estimated from s’, and

rendering more accurate inference of the generating tree.

The effect of sequencing errors and similar sources of white noise is not large

when the error rate e is less than about 0.01, but becomes important for

e > 0.04.

Amalgamation of data sets from two trees is less of a hindrance to the per-
formance of CTSH and CoSH than it is to the other methods. CTSH and

CoSH are therefore more robust to this form of pink noise than are the other

methods.

If confidence levels can be found for trees inferred by CoSH and CTSH and
compared with confidence levels obtained for other phylogenetic methods,
then the relatively high accuracy of CoSH and CTSH can indicate that the
data used were not generated from a single tree. Thus with a priori knowledge
of the reliability of the inferred trees, CoSH and CTSH have the property of
falsifiability (see Section 2.2.4). Such confidence levels could be obtained
using the bootstrap resampling technique [20], but this has not been tested

yet.
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Chapter 6
Results 2: “Large n”

Throw big enough things at anything, and it will fall over.
[Shane Dye, 1993

Determining large phylogenies is certainly of interest. Hughes and Nei investi-
gated sets of 29 and 12 taxa using histocompatibility data [49]; Hedges et allooked
for MP trees on 136 human mitochondrial DNA sequences [38]; Chase sought MP
trees with 499 land plant taxa [14].

Establishing how well it is possible to estimate the true phylogeny of big data
sets like these can in part be achieved by computer simulation, as I have endeav-
oured to do in this part of the study.

The next section outlines some restrictions placed by the available comput-
ing power. The subsequent sections describe the effects of the following, on the

performance of the clustering methods:

e Sampling error;

Number of taxa;

Overall time;

Proportional time to last bifurcation event;

Edge length probability distribution (type and spread);

Depth of edges in the tree.
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The last item in the above list, depth of edges, is considered with regard to the
probability of correctly inferring individual edges, rather than with regard to cor-

rectly inferring the complete tree.

6.1 Computational considerations

Due to the large number of operations which are required to conduct a simulation
trial with n > 10, the number of trials per set of parameters is limited. In some
of the experiments in this part of the study no more than 100 trials for each
parameter set were performed. However, such studies with large numbers of taxa
have been limited in the past, so even this relatively small sample size provides new
information. (The performance of UPGMA and some other methods not discussed
here were studied by Tateno et al with 32 pendant vertices [93]).

The number of possible tree topologies is too large to admit testing each in-
dependently; rather, they must be chosen at random for a given value of n. The
method of choice is as outlined in Chapter 4, Section 4.5.1. This is acceptable
because the effect of topology on the performance is now known to be small (see
Chapter 5, Section 5.5).

It should be noted that the ST method, requiring O(n®) operations to construct
a tree, is not feasible for these values of n. The exhaustive search methods are not
feasible either, due to the exponential number of potential trees to search and
the large computational overhead of the Hadamard conjugation for inferring edge
lengths. As has been mentioned (in Section 2.5), this study is not concerned with
the performance of heuristic search methods, which consider only a subset of the
potential trees, and therefore cannot guarantee to find a globally optimal tree.

Also NJa has been shown to perform badly, hence for n > 10 the only methods
I have used are NJ, SL, TD and UPGMA.

6.2 Sampling error

As before, the effect of sampling error has been investigated using differing sequence
lengths ¢. The maximum value of c is restricted for large n to no more than 1000.
Sampling error remains a strong influence on the performance of these construc-

tive methods. The behaviour of the phylogenetic methods follows the same trends
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Figure 6.1: Effect of sequence length with n = 30

This graph shows the mean number of edges wrongly inferred by NJ, SL, TD and
UPGMA with 30 pendant vertices and 100 < ¢ < 1000.
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pparent for small n, though the their relative behaviour is different: NJ is the
nost accurate, followed by UPGMA, TD and SL. The good behaviour of UPGMA
nay be accounted for by the model of data generation used, i.e., the rooted tree,
vith edge lengths satisfying the molecular clock model. The molecular clock model
s equivalent to having equal expected amounts of change between the root and the
rendant vertices, for all lineages.

With more variable rates of evolution on different lineages, I show later that
JPGMA behaves less well, as expected by its inconsistency with data which are

ot generated according to a molecular clock.

3.3 Number of taxa

Jne obvious problem in phylogenetic inference lies in having a large number of
axa; when n increases we must expect the accuracy of phylogenetic methods to
lecrease, and this is shown in Figure 6.2 below. There is a strong dependence on
1 of the accuracy of constructive methods.

In Figure 6.3 is shown the number of trials in which 0,1,...,15 internal edges
wre wrongly inferred, for a sequence length of ¢ = 1000 and for n = 30. In this
:xperiment no more than 15 edges were incorrectly inferred.

It has been suggested that generating an initial tree with a clustering method
such as NJ, and then searching nearby trees (either one or two edges different from
’he initial tree) will be a useful heuristic search of tree-space to find “significantly
better” trees according to some optimality criterion [59], [74]. Figure 6.3 shows
that the distribution of numbers of edges wrongly inferred for large values of n is
potentially more than two edges removed from the generating tree: the most likely
number of edges wrongly inferred ranges from two with NJ, through four with TD
and UPGMA, to five with SL, even with this simple model.

Hence, I contend that the use of most constructive methods to obtain a starting
point for search methods based on hill-climbing is not necessarily sufficient, though
of the methods tested here, the tree inferred by NJ is the most likely to be within
two edges of the true tree.

The other obvious feature of Figure 6.3 is that for each of the clustering methods
the probability of reconstructing T is very small with even this moderate value of

n. When considering trees built by clustering methods with 100 or more taxa, the
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Figure 6.2: Effect of number of taxa on the accuracy of constructive methods

The mean number of edges wrongly chosen is shown, with varying n and ¢ = 1000.
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Figure 6.3: Distance from T of inferred trees
This graph shows the proportion of trials in which each of the constructive meth-
ods infer 0,1,...,15 edges incorrectly, with n = 30 and ¢ = 1000. In this ex-
periment 500 trials were carried out, and no more than 14 edges were incorrectly
inferred by any of the methods used.
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probability of inferring T¢ must therefore be vanishingly small: extrapolating from
Figure 6.2 would suggest that for a generating tree with 100 taxa, the expected

number of edges wrongly inferred by, for example, NJ, would be at least 10.

6.4 Overall evolutionary time

The principle of varying the overall evolutionary time for these large rooted trees
is similar to that of varying the maximum path length of the small unrooted trees
(see Section 5.6. Note that the overall time is now expressed in terms of the mean
number of character state changes to have taken place between the root and the

pendant vertices.
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Figure 6.4: Effect of time from the first bifurcation to the present

The mean number of internal edges wrongly inferred by NJ, SL, TD and UPGMA
is shown. The number of taxa is 26, and the sequence length is 1000.

Figure 6.4 shows the mean number of edges wrongly inferred by NJ, SL, TD and
UPGMA with sequence length ¢ = 1000 and overall time ot € {0.25,0.5,0.75,1.00}.
(These times are of course relative; the overall amount of change expected between

the root and the present is also a function of the transition matrix M.) The figure
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shows that the accuracies of NJ, SL and TD all decrease slightly with increasing
verall time, but UPGMA becomes more accurate. We shall see in the following

iections that UPGMA is highly dependent on the “molecular-clockness” of the tree.

The effect of overall time can be further investigated by considering the di-
vergence of just two sequences through time. (This experiment was discussed by
2enny et al [63).) In the following experiment, two initially identical sequences of
our character states were allowed to “evolve” for the same amount of time ¢, and
heir dissimilarity used to infer the overall time, using the Jukes-Cantor formula.
['he sequence length ¢ was 1000 characters. For each character the probability that
t changed state was set to 0.01 (1 %) in 1 million years, and the transition matrix
soverning the probabilities of character state change over ¢ calculated as described
n Section 4.5.3.

The overall time ¢ ranged exponentially from 0.01 to 1000 million years. For each
;ime t, 100 trials were carried out, so the probability distribution of the inferred
;ime t' could be estimated.

With small values of ¢ (< 0.1 million years) the probabilities of change were
50 low that often there was no .difference between the two sequences, so t' would
5e 0. For very large values of ¢ (> 100 million years) there was often so much
change that infinite distances would be inferred with the Jukes-Cantor formula. If
the sequences were identical, in which case t' = 0, or so dissimilar that ¢ — oo,
the sequences were abandoned.

In Figure 6.5 below, the mean standard error of ¢’ is shown. Also shown are
the proportion of trials which provided meaningful results (where t' ¢ {0,00}), and
the mean value of t'/t, for each value of ¢.

Note that the mean standard error of ¢’ is lowest for 10 million years <t < 100
million years, and that when ¢ gets larger or smaller than these values, the inferred
overall time rapidly becomes more unreliable. Hence the most useful range of ¢ is
such that the expected number of character state changes between pairs of taxa is

between approximately 0.1 and 1.0, per character.

6.5 Time to last bifurcation event

This section examines the effect of varying the relative time until the last bifurcation

event. Such variation is equivalent to varying the ratio r between maximum internal
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Figure 6.5: Inferred time of divergence of two sequences

The above figure shows the behaviour of estimated divergence times of two se-
quences which were allowed to changed stochastically from being originally iden-
tical. Given the actual time ¢, the inferred time for any given trial is t’. The
horizontal scale is logarithmic. The proportion of trials in which ¢’ & {0, 00} is

shown, as-are-the-mean—values—oft~/¢+ and the mean standard error ¢(t')/t when

for ¢’ & {0,00}.
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and maximum pendant edge lengths. This helps explain the effect of the ‘depth’ of
edges within T¢ has upon the probability that they will be correctly inferred, but
this is discussed more fully later.

When assigning edge lengths to the generating tree T, the proportion of timein
which bifurcation events can take place is the divergence time factor f (see Section
4.5.4). In this part of the investigation f was allowed to range over {0.2, 0.325,
0.45, 0.575, 0.7, 0.825, 0.95}. The number n of taxa ranged over {10, 15, 20,25, 30}.
With f small, the internal edge lengths are shorter than the pendant edge lengths,
and with f — 1, theinternal edge lengths are longer than the pendant edge lengths.

The results shown in Figure 6.6, below, show trends which were common to all

the values of n used (data not shown).

20 -

Mean number of edges wrongly chosen

0.2 0.33 0.45 0.58 0.7 0.83 0.95
Divergence time factor

Figure 6.6: Effect of divergence time factor f

The graph shows the mean number of edges wrongly inferred by NJ, SL, TD and
UPGMA, for n = 30, ¢ = 1000, and varying divergence time factor f. 100 trials
were carried out for each value of f.

Figure 6.6 and similar figures for n € {10,15,20,25} show that

e All of the methods improve their accuracy with increasing f (and therefore

increasing internal edge lengths). This is similar behaviour to the “small n”
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case.

e NJ performs the most accurately of the methods used, always more accurate

than TD, in turn more accurate than SL.

e UPGMA, while the least accurate method with f < 0.33, becomes at least

as accurate as SL when f = 0.45, and becomes more accurate than TD when

f =0.83.
e UPGMA is approximately as accurate as NJ when f = 0.95.

The proportional time until the last bifurcation event is clearly a major factor
affecting the performance of these constructive methods. When f is small, none
of the methods perform well, getting from approximately half to two-thirds of the
internal edges wrong. When f becomes close to the overall time from the root to
the pendant vertices, all the methods perform well. This effect is almost certainly
due to the relatively large size of the internal edges when f is larger.

Once again, the main factor here is the length of the internal edges, and hence,
the sample size: with small internal edges, there is lower probability that any
character state change will occur on the edges, so longer sequences are necessary

to obtain enough ‘signal’ in the data to infer a tree.

6.6 Edge length distribution

The effect of the edge length probability distribution has been indirectly observed
in previous sections (6.4 and 6.5). Now the question of how the type and spread
of the edge length probability distribution affects the performance of the clusterinf

methods is addressed explicitly.

6.6.1 Type of distribution

The three types of probability distribution I have used are uniform, normal and
log-normal. In one experiment with varying n, each of these three distributions
was used, with the other parameters constant.

The behaviour of the clustering methods was not greatly affected by using

different forms of probability distribution (see Table 6.1).
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Table 6.1: Effect of edge length probability distribution

The mean number of edges wrongly inferred is shown, for n € {10, 20,30} and
the clustering methods NJ, SL, ST, TD and UPGMA. The sequence length ¢ was
640 and 500 trials were carried out for each value of n.

n=10 NJ Sl SIlt TD UPGMA

uniform 1.918 2.086 1.920 2.046 1.966

normal 1.836 2.070 1.846 2.020 1.916
log-normal | 1.830 1.992 1.818 1.950 1.850

n =20 NJ S TD UPGMA

uniform 2.204 3.870 3.130 2.320

normal 2.274 3.916 3.106 2.824
log-normal | 2.226 3.930 3.082 2.404

n =30 NJ Sl TD UPGMA

uniform 3.558 6.730 5.158 3.970

normal 3.714 6.888 5.436 4.954
log-normal | 3.716 6.778 5.348 4.236

I conclude that the type of distribution is not as important as its spread, as
outlined in the next section. With the small number of trials, only 100 for each
experiment, the differences in performance are usually not significant with spread
of the distribution, the one obvious exception being UPGMA with n = 30, this
method being significantly less accurate when the spread of the edge length prob-

ability distribution increased.

6.6.2 Variance of the distribution

Making the variance of the probability distribution of the lengths of the edges of
these rooted trees large will force the trees away from the molecular clock model.
By letting this variance range from zero (corresponding to a perfect molecular
clock) to the mean edge length from which each edge length is sampled, we are
able to investigate the robustness to violation of the molecular clock hypothesis of
each of the clustering methods used.

In Figure 6.7 we see the much higher dependence of UPGMA on the variance
of the edge length probability distribution. This is of course to be expected as
UPGMA is not consistent with distance data which do not satisfy the molecular
clock model. Note that the other methods (NJ, SL and TD) also become less

accurate as this variance increases.
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Figure 6.7: Effect of variance of edge length probability distribution

The mean number of edges wrongly chosen is shown, with n = 26, ¢ = 1000, and
overall time = 1.0.
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6.7 Depth of edges

Define the depth of an internal edge e to be the minimum of the two numbers of
>endant vertices which are partitioned by that edge. Then 2 < depth(e) < n/2.
The question of how the depth of an edge in T affects the probability that it will
be inferred correctly can be addressed by measuring the depth of each correctly
nferred edge when comparing the inferred tree T' with T5.

The number of possible edges with a given depth k # n/2 is h(n, k) = (2)
bkbn_k, where bi is the number of rooted binary trees on k pendant vertices, equal
o (2k — 3)!! = (2k — 3)(2k — 5)...(3)(1). This is because there are (:) ways
to choose k pendant vertices from {1,...,n}, b; possible rooted binary trees with
those k pendant vertices, and b,_, possible rooted binary trees with the remaining
{n — k) pendant vertices.

For k = n/2, h(n, k) = (:) b%. The division by 2 is because (:) b% counts the
rooted trees with k pendant vertices twice.

The numbers of edges with depth k for n = 26 are shown in Table 6.2, below.

Hence the count of number of trials in which edges of each possible depth & are

correctly inferred must be normalised by dividing by h(n, k).

Table 6.2: Number of edges with depth k over all binary trees on 26 pendant
vertices

depth k of edge h(26,k)/10%°
2 8.2464821840

3 4.3981238315

4 2.9406060501

5 2.2090406425

6

0

8

1.7842251344
1.5155580292
1.3369386900

9 1.2153988091
10 1.1330653414
11 1.0797864069
12 1.0497923400
13 0.5200509746

The normalised values are depicted in Figure 6.8, below.
In Figure 6.8 we see the influence of edge depth(e) on the probability of four
clustering methods correctly choosing edge e as being in the generating tree 7.

(Note that the numbers in the figure are relative frequencies at which edges of each
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Figure 6.8: Effect of edge depth on the probability of its correct inference
The graph shows the relative frequency at which edges of depth k, for k£ =
2,...,13, were correctly inferred by NJ, SL, TD and UPGMA. These values have

been adjusted to take into account the relative frequency of edges of each depth
k.
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lepth k were correctly inferred. These relative frequencies estimate the actual
srobabilities up to multiplication by a constant.)

These probabilities decay approximately exponentially, which indicates that the
orobability of inferring edge e may follow a Poisson distribution in the depth of e.

If the probability of correctly inferring an internal edge at each clustering stage
is, say, some constant w, then the probability of inferring an edge of depth 3 will
be approximately w?, and the probability of inferring an edge of depth 4 will be
approximately w3. In general the probability of inferring an edge of depth p would
be approximately w?~! for n > 2p. (Note that the depth of the edge is the minimum
of the numbers of taxa which are bipartitioned by that edge. Each internal edge
could also be inferred by correctly deducing the monophyly of the larger of the two
sets, which introduces some higher order terms in the probability.)

If then the above were true, we would expect that the graph in Figure 6.8 would
be an exponential decay. In Table 6.3 are shown the correlation coeflicients of the

natural log of the relative frequency of inferring edge e correctly, against the depth

of e.

Table 6.3: Effect of depth of edges on their correct inference

This table shows the correlation coefficient of In(relative frequency of correctly
inferring edge e) with depth(e). Here n = 26 and ¢ = 1000.

NJ SL TD UPGMA
r | —0.9581 -0.9403 -0.9648 —0.9427

From this table it is clear that there is a strong negative correlation between the
log of these relative frequencies and the depth of the edges, but this is not strong

enough to imply the process closely follows a Poisson distribution.

6.8 Summary

From the work described in this chapter the following general results are obtained:

e It has been demonstrated that with larger numbers of taxa all the clustering
methods perform less accurately. This is to be expected for two reasons: that
as n increases, (1) there are more clustering steps which must be correctly
made to infer the generating tree T, and (2) the internal edge lengths are

shorter, with consequently lower expected numbers of character state change

on them.
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e The overall time from the root to the pendant vertices has a large effect on the
performance of these clustering methods. As it increases, the internal edge
lengths increase and the accuracy of all the methods increases. This trend
reverses when the lineages are all so long that they approach randomization
with respect to the root. The same conclusion was reached in the “small n”

case.

e Varying the relative time to the last bifurcation event shows that with inter-
nal edges which are relatively short with respect to the pendant edges, the
accuracy of the clustering methods is again reduced. This is in accordance

with the result obtained in the “Small n” case.

e The general type of the edge length probability distribution does not in this
case have a significant effect on the performance of the clustering methods.
However, the spread of the distribution, which is a measure of the “molecular-
clockness” of the generating tree, does have a strong effect. The spread of this
distribution is highly negatively correlated with the accuracy of the clustering

methods.

e The ability of these methods to correctly infer the internal edges of T is
reduced approximately exponentially with the depth of these edges. This
indicates that for large n the probability that the whole of T will be recon-
structed must tend to zero, while there is still a reasonable probability that

the ‘shallower’ edges will be correctly inferred.

This suggests that an appropriate strategy when dealing with large data sets
may be to use only a subset of the data set to infer the deeper edges of the

tree.
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Chapter 7
Discussion

Once a method proves to be superior to others, we can use it for all

data sets.
[Tateno et al [93]]

7.1 Introduction

This thesis was not intended as a comparison of the performance of phylogenetic
methods. Rather, it was to study the effects of several factors on the performance
of some phylogenetic methods.

Comparisons of the performance of methods are abundant in the literature
already; for example, see 48], [50], [54], [56], [58], [75], [80], and [93]. These studies
have used specific models of evolution to generate the data: the type of transition
matrix, the tree topology, the sequence length, and the edge lengths have all been
taken from a small set of possibilities, and the performance of the methods assessed.
One danger in such studies is of assuming that because in some set of circumstances,
method ‘A’ works more accurately than method ‘B’, it will be the better method
to use in some other circumstances. This may indeed be true, but is not definite,
and the results described in this thesis do not support a single ‘best’ method. I
therefore have to disagree with the statement of Tateno et al quoted above.

Hence throughout Chapters 5 and 6 (“Small n” and “Large n”, respectively) I
have avoided making any overall judgement of the superiority of any one method

over the others. In differing sets of circumstances, each method has its own merits.
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But such an investigation as this is bound to reveal trends in the relative per-
rrmances of these methods, and of course these trends must be considered with
>gard to other simulation and theoretical studies which have been carried out.
lence in this chapter an overall view is provided of the results presented so far,
nd how they relate to the results of some other experiments.

This study has been inspired in part by previous work, because of necessity
ach work was limited by computational costs and theoretical and empirical un-
erstanding. It would be folly to suppose that, just because this study has used
zlatively large simulations with variation of many parameters, it is in some way
onclusive, and that no more need be done. For this reason I include an indication

f the direction in which further research into this problem may be headed.

.2 Summary of results

'he investigations I have carried out investigating factors affecting the performance
f phylogenetic methods have involved a large amount of computer processing. The
ssults from the two programs “sim.c” and “big.c” have been summarized, to find
hose which are the most informative and interesting for inclusion in this thesis.
lence some conclusions have been made with reference to data not shown. This
mission of data has been made purely in the interests of saving space and not
aterrupting the flow of the discussion with countless figures and tables.

The investigation has provided several conclusions about the effects on the
rerformance of phylogenetic methods of sampling error, tree topology, number of
axa, edge length probability distribution, treatment of observed data, white noise
.nd pink noise. It has also enabled the desirable properties (accuracy, consistency,
fliciency, falsifiability, and robustness) of the phylogenetic methods used to be
ested both empirically and theoretically.

7.2.1 Sampling error

My results support the expected conclusion that sampling error has a strong effect
m the accuracy of the phylogenetic methods used: all perform poorly when the
iequence length c is less than about 100 characters, and all the methods consistent
vith the model by which the data were generated perform well when c is large, in

;he order of 1000 or 2000 characters. This is of course to be expected, but the rate



7.2. Summary of results ' 155

at which the accuracy changes with varying c is now easily observed, with the large
set of sequence lengths used.

With the “large n” case, the same effect of sampling error was seen with respect
to the clustering methods NJ, SL, TD and UPGMA.

When the internal edges were very short, there was often no change of state
of any characters across that edge (in the “small n” case, this would mean the
bipartition corresponding to that edge was not sampled). In such cases there was
not enough information in the data set for phylogenetic methods to reconstruct the
generating tree T, unless the sequences were very long.

When the internal edge lengths, or indeed the pendant edge lengths, grew very
large, the sequences effectively grew more and more dissimilar, until once again
there was not enough information in the observed data to reconstruct T unless
the sequences were very long. In the “small n” case, this took place when the
upper bound ¢ on the maximum path length exceeded 1.4. With the “large n”
case an experiment was carried out to find the variance of the inferred divergence
time between two sequences, given a known rate of evolutionary change. This
highlighted the difficulty of inferring edge lengths from sequences in which there is
not enough change to be reliable, or when the data become too dissimilar.

By using the Hadamard conjugation technique to calculate the expected bipar-
tition frequencies and effectively eradicate sampling error [41], and by using very
long sequences, it was possible to see easily which of the methods is consistent with
the model of evolution used to generate the data.

It was also possible to prove theoretically that the neighbour-joining method
(NJ) uses the only possible weighting scheme for net divergence which is consistent

with the model (see Appendix B, Theorem 5).

7.2.2 'Tree topology

It has been found that, with the models used, tree topology has little effect on the
performance of the tree reconstruction methods used, other than UPGMA. The
other methods which are the most affected are NJa, SL, UPGMA, and the sequence-
spectrum based methods. Those least affected are the distance-spectrum based
methods (CoDH, CTDH, MPDH), NJ, ST and TD. I have shown the accuracy of
UPGMA to be strongly dependent on tree topology. This means simulation studies
on UPGMA need to explicitly take tree topology into account.
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Knowing that, apart from UPGMA, tree topology for small n makes little dif-
ference to the performance of these phylogenetic methods, it is then reasonable to
use one tree topology for the generating tree T, or choose the topology of T at
random, in simulation studies such as this. Therefore with the “large n” case Tg
could be selected at random, without unnecessary concern about the affect of the
topology of Tg on the accuracy of NJ, SL, ST or TD, but bearing in mind that
tree topology may have a large effect on the accuracy of UPGMA in this case also.

This allowed the extension of the simulation experiments to 30 taxa.

7.2.3 Number of taxa

The number of taxa (n) greatly affects performance of phylogenetic methods. The
number of unrooted binary trees with n pendant vertices is (2o — 5)!!, and that
of rooted binary trees is (2n — 3)!!: these numbers grow exponentially with n, so
with increasing n, we predict that the accuracy of the methods must decrease.

Also, as the maximum distance between any two sequences in a given trial was
bounded above (usually by 0.25 — see Section 4.4.1), when n was increased, the

-edge lengths decreased. Hence, with the problems known to be caused by short
internal edges, this was another reason to expect the accuracy of the reconstruction
methods to decrease markedly with increasing n.

Sections 5.7 and 6.3 discuss this problem, and the degree to which n affects the
mean number of edges wrongly inferred and the probability of reconstructing Tg.

It was possible to estimate the rate at which the sequence length must increase
(which is related to the rate at which sampling error must decrease) with increasing
number of taxa, for a particular phylogenetic method to retain a given confidence
in the inferred tree. This rate has been shown to be close to linear for the cases
studied, which is a promising result, but it still suggests that for 100 or more taxa,
proportionally long sequences must be obtained (in the order of 10* characters),
which may be infeasible.

The model used for data generation was ‘ideal’, in the sense that it was known,
and the methods used for tree reconstruction were (in this experiment) consistent
with that model. ‘Real’ data cannot be assumed to be so well behaved, and it may
well be that with real DNA sequences the required growth rate in ¢ is much faster
than a linear function of n, if a fixed confidence level is sought.

Adding taxa to increase the confidence in a particular internal edge was not
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supported by these experiments: the mean number of edges wrongly inferred by
each method increased at least linearly with n, indicating that the probability of
wrongly inferring a particular edge is at least increasing. This leaves aside the
position of the edge in the tree: edges which are ‘deeper’ than others (see Section
6.7) may have a lower probability of being inferred than those which are ‘shallower‘.

A study of the above effect would be rather involved, and complicated by the
relative lengths of the internal edges and the position of the edge(s) in question:

this may be a fruitful avenue for further study.

7.2.4 Edge length probability distribution

The edge length probability distribution experiments highlighted once again the
influence of sampling error: with short internal edges, there was frequently not
enough information in the data to recover the generating tree, while with very
long edges (whether internal or pendant) there was so much character state change
between sequences that the relevant information was hidden.

In fact all the experiments in which the lengths of the internal edges were
varied revealed the dependence of accuracy on edges which are neither ‘too long’
nor ‘too short’. Section 6.4 highlightedthis problem explicitly with Figure 6.5, which
demonstrated the limits to the amount of information which can be gleaned from
sequence data: ‘too short’ was in this experiment less than about 0.1 expected
change of state per character, per site, between sequences, and ‘too long’ was more

than about 1.0 expected changes of character state.

7.2.5 Treatment of observed data

It is known that no tree selection criterion using the observed data directly, without
some compensation for multiple changes, can be consistent [88]. Hence it was
expected that CoSO, CTSO and MPSO would behave relatively poorly with long
sequences and when multiple character state changes were likely. This was indeed
the case, as described in Sections 5.6 and 6.4.

However, the result that using the distance spectrum g’ for Co, CT and MP
would actually improve their performance over using the sequence spectrum s’ was
unexpected. This led to the independent discovery in my experiments and by

Waddell et al [97] that edge lengths inferred from g’ had a smaller variance than
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those inferred from s’, and hence were often more reliable in this study. Further
investigation into this area is certainly warranted by these new results.

The order in which data are presented to the clustering algorithms can affect
their performance, as was discovered in early simulations when the same labels
were used for the pendant vertices of a given T for all trials. It was decided to

permute the labels of the pendant vertices for each trial, to remove this effect.

7.2.6 Relationship between phylogenetic methods

Section 5.3 showed some of the relationships between the phylogenetic methods
used in this study. Some of these relationships are in the treatment of the input
data as mentioned above, and some were theoretical.

The close relationships between CTDH and NJ, and between NJ and ST, were
first seen experimentally, and then investigated mathematically: this is one of the
great advantages of computer simulation, that answers can be obtained to questions
not even asked [11], and can give indications of the directions in which theroetical
study can be fruitful.

The close agreement between CTDH and NJ continued for many of the exper-
iments, and led to the proof that CTDH and N|] are.equivalent when n = 4 (see
Appendix B, Theorem 6). o

In attempting to improve the performance of ST, to be more sensitive, it was
discovered that the modified method ST+ (see Section 2.4.3) was identical to NJ
(up to rounding error). This led to the proof that ST+ was mathematically equiv-

alent to NJ (see Appendix B, Theorem 7).
Other close agreements were between the performances of CoDH and CTDH,

CoDH and ST, CoSH and CTSH, CTDH and MPDH, CTDH and ST, MPSH and
finally NJ. This should not be overemphasized though, as the phylogenetic methods
were of course estimating the generating tree 7, and when accurately determining

T they will naturally agree with each other.

7.2.7 White noise

With the introduction of white noise, in the form of random sequencing error, the
robustness of the phylogenetic methods was investigated. It appears that while us-

ing the distance spectrum g’ from which to infer edge lengths of T is preferable in
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the earlier experiments, these inferred edge lengths are less robust to sequencing er-
ror than are edge lengths inferred from the sequence spectrum s’. The constructive
methods were also shown not to be robust to this kind of error.

If the sequencing error rate is below about 2.5%, the relative accuracies of the
methods is not affected, though the accuracies of all the methods decrease with

increasing error rate.

7.2.8 Pink noise

Pink noise, which is biassed random error, was introduced into the data by amal-
gamating observed bipartition frequencies from two independent generating trees.

Several tests were carried out, for sequence lengths ranging from 100 to 2000
characters, but the effect of this amalgamation of data was most obvious with the
longer sequences.

With large amounts of ‘contaminant’ data, i.e., from 10% to 45%, it was dis-
covered that CoSH and CTSH are much more accurate than the other methods.
This may provide some falsifiability for these methods: If the confidence in the
inferred tree can be estimated, perhaps by the bootstrap resampling technique, the
relatively high accuracy of CoDH and CoSH could indicate that the data come
from two or more independent phylogenies.

This may also be useful in determining whether two data sets, known to be
from different sources, come from independent generating phylogenies. Further

investigation into this question is warranted.

7.3 Comparison with some other studies

This section discusses some of the many previous simulation studies referred to
above, in connection with the investigations in this thesis. It is not possible to
cover all such studies, and a good overall impression of the current work being
carried out in this area can be obtained from a selection of these studies.

All the experiments carried out by other researchers and discussed here have
‘grown’ the data, rather than sampled it (see Chapter 4). This is not, in the case
of two character states, effectively different from using the sampling process as
described in Chapter 4. However, in the case of four character states growing the

data does allow more general transition matrices to be used. This was the case in
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most previous studies. In general, different models of evolution were used, with
few tree topologies and sets of edge lengths. Often, the method of judging the
performance of the methods was based on the frequency at which T was inferred,
whereas in my study the accuracy was based on the mean number of edges wrongly
inferred. Many of the implementations of MPSO — the only of MPDH, MPSH and
MPSO previously studied — were in earlier experiments not exhaustive searches,
but were restricted to trees “close to” T. For all these reasons, the results obtained
here are not readily comparable with those obtained elsewhere, though they do
require consideration as part of the whole area of research.

The following discusses four previous studies which are similar in approach to

this one, and their relationships to this thesis.

In 1981 Li [54] described his method for dealing with unequal rates of molec-
ular evolution on different lineages of a generating tree. In fact, he described two
methods, which he labelled versions 1 and 2 (version 1 shall here be labelled Lil,
and version 2 is the transformed distance method, TD). In his paper he showed
that TD performed better than Lil, and it is TD that I have used in this study.
He used two rooted tree topologies for his Tg’s: RB3 and RB7, on 4 and 8 pendant
vertices (i.e., taxa) respectively. His study compared several other methods also:
the Modified Farris method (MF), Farris’ method (Fr), Fitch-Margoliash’s method
(F-M) and UPGMA. The study was limited to 20 trials on each run, with sequence
length ¢ = 300.

Li found that with the model used, the accuracy of MF was the highest, followed
by TD, then Lil (though these two behaved very similarly), then Fr, F-M and
UPGMA, in decreasing order of accuracy.

Sourdis and Nei’s 1988 study [80] was more extensive: it compared MPSO,
NJ, the Distance Wagner method (DW), MF, Faith’s method (Ft) and TD. The
number of trials was increased to 300, and ¢ was 300, 600 or 1200. Four character
states were used. The tree topologies used for T¢ were RB5 and RB3,2; on 6
pendant vertices; RB7 and RB3,(2,1;),,1, on 8 pendant vertices (RB3,(2,1,);, 12
is the rooted “star tree” on 8 pendant vertices). The study concluded that when
the evolutionary rates are low and ¢ is small, MPSO is not as good as the other
methods. With larger ¢, MPSO did improve relatively, but was still not as accurate
as DW and NJ. This result was independent of constancy of substitution rate, and

any transition rate bias.
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This result may seem to conflict with the general behaviour exhibited in this
thesis by MP, which is that MP is usually the most accurate method. Of course
the models used are different: Sourdis and Nei used a more general model of
molecular evolution, in that they took four character states and allowed different
rates of character state change, depending on the initial state. Also, their study
used rooted trees for T¢ (though the inferred trees were unrooted), whereas I have
used unrooted trees. Another important reason may well be in the method used
to find most parsimonious trees.

I have glibly been speaking of “the maximum parsimony tree”, as in my sim-
ulations I have used a branch and bound method to effectively search all possible
trees. But Sourdis and Neli, to save computing time, used a localsearch to find the
“maximum parsimony” trees: with statistical justification, they only considered
trees which were at most one edge different from T, so could not guarantee that
the tree found in this way would be the most parsimonious. Hence this type of
search gives a slight underestimate of the accuracy of MPSO. (Note that the assess-
ment of the accuracy of methods was, in the above study, based on the probability
of inferring T¢, rather than the mean number of edges wrongly inferred.)

They also noted that when the comparing the set, say S, of most parsimonious
trees with the trees inferred by other methods, MPSO performed much better, in
that it had a high probability that S contained 7.

My simulations have not kept track of this set S, an omission made consciously
to reduce computing time and memory requirements, so the above conclusion is
not directly comparable with my results. The MP implementation used here found
a single minimal-length tree for each data set.

Another example of this misleading use of the term “maximum parsimony tree”
is in Czelusniak et al [16], where such a tree is proposed for a set of 116 taxa. For
such a large data set it is impossible to test all trees; therefore a more appropriate

term might be “highly parsimonious”.

In 1991 Jin and Nei [50] investigated the relative accuracies (though the term
used was “efficiencies” — see Section 2.2.3) of NJ, MPSO and UPGMA, with
restriction site data. The generating tree 7 had topology RB3, 2;, being the rooted
“star tree” on 6 pendant vertices. The sequence lengths used were 500, 1000 and
16000, and 300 trials were carried out for each. Once again four character states

were used.
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They found that when the substitution rate was constant (i.e., obeying the
molecular clock hypothesis), the probability that NJ correctly inferred T was
greater than that of MPSO “generally”, but the average topological distance [72]
between the inferred trees and Tz was about equal for these two methods. When
the evolutionary rates varied with lineage, NJ was more accurate than MPSO,
whichever measure was used.

The above conclusions do not necessarily conflict with those made in this thesis:
as with the study of Li [54] and Sourdis and Nei [80], the model used had four
character states, and the data were generated (for the most part) according to the
molecular clock hypothesis. Also the comparison between NJ and MPSO was only
made, in this thesis, with unequal rates of evolution (the “Small n” case), so no
conclusions are available as to the relative performance of NJ and MPSO when the
data satisfy the molecular clock hypothesis. However, the higher accuracy of NJ
with respect to MPSO does invite further investigation.

They also found that UPGMA only performed well when T satisfied the molec-
ular clock hypothesis and when the edge lengths were large. This is a similar con-
clusion to that which has been reached in this thesis: UPGMA does not perform
well with unequal rates of evolution, and no methods perform well with small edge

lengths.

Nei, in 1991 [58], conducted an extensive comparison of DW, NJ, MF, MPSO,
ST, TD and UPGMA, and also Evolutionary Parsimony (EP) and Minimum Evo-
lution (ME). The generating trees used had the same topologies as Sourdis and
Nei’s 1988 study, discussed above. The sequence length ¢ took several different
values, ranging from 300 to 2000 characters.

With T satisfying a molecular clock, he found, as I have, that NJ and ST
performed very similarly, the reason for which I believe is the close relationship
these two methods have (see Section 2.4.3, and Appendix B, Theorem 7). NJ and
ST were found to be more accurate than DW, TD, MF and UPGMA, for several
different values of overall time (see Chapter 6).

MPSO was found to be slightly less accurate than DW, TD, NJ and ST, though
with low overall time and high ¢, MPSO was slightly more accurate than these.

With varying rates of evolution (i.e., not satisfying a molecular clock) Nei found
that UPGMA performed the least accurately of all the methods. He also found
that NJ, ST and ME were more accurate than the other distance methods (DW,



7.4. That which may be 163

TD and MF). With varying rates the same sorts of conclusions were reached as for
Jin and Nei’s 1991 study.

Nei made several useful recommendations, regarding phylogenetic inference
with real data and simulation studies. With regard to the latter, he made the
point that further simulation work should be done, and made particular reference

to the need for simulations with large n.

7.4 That which may be

This section describes some possible directions in which research in this area could
continue. These directions are (1) toward a greater statistical understanding of
the sources of error in finite data sets, (2) investigation of the properties of the
selection criteria of phylogenetic methods, and (3) toward improved strategies for

the search of potential trees (the “tree space”).

7.4.1 Sources of error in finite data sets

As was discussed in Section 6.4, the true amount of evolutionary change since the
divergence of two sequences has a great effect on the inferred amount of evolutionary
change between the sequences. Note that the inference of evolutionary change
between two sequences proceeds in two steps: the first is the calculation of the
number of observed differences (or some other measure of distance between the
sequences), and the second is the adjustment for multiple changes of character
state on the lineages separating the two sequences, to estimate the number of
character state changes which took place.

When the amount of evolutionary change is small, the distance between the two
sequences is highly susceptible to sampling error, as the expected number of dif-
ferences between the sequences is low. Though the correction for multiple changes
of character state has very little effect when the number of observed differences is
low, the sampling error just mentioned means that the inference of evolutionary
change between these two sequences is made unreliable.

With high evolutionary change, the distance between the two sequences is less
susceptible to sampling error, as the expected number of differences is larger. How-
ever the correction for multiple changes of character state is in this case very

sensitive to any sampling error in the observed differences, once again leading to
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unreliablility in the estimate amount of evolutionary change between the sequences.

This concept can be visualised as shown in Figure 7.1.
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Figure 7.1: Possible visualisation of the sources of error in inference of
amount of evolutionary change

The figure above shows the two sources of sampling error which can arise in the
inference of amount of evolutionary change, in terms of number of character state
changes, between two character sequences. This is plotted against the expected
number of character state changes. Also shown is an indication of how the accu-
racy of inferred number of character state changes might behave.

The problem of determining how much information can be obtained from a given
finite data set comprising two or more character sequences is clearly of importance.
Simulation studies and theoretical analysis with two or more taxa and more com-
plex models of evolutionary change should throw some light on this area, and lead

to better estimates of the reliability of this aspect of phylogenetic inference.

7.4.2 Properties of selection criteria

The performance of the compatibility (Co), closest tree (CT) and maximum par-
simony (MP) methods has been discussed at length in this thesis, but little has
been made of the fundamental properties of the tree selection criteria used by these

methods, and in what way selection criteria affect performance.
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Consider the way in which each tree selection method assigns a ‘score’ to in-
ferred edge lengths. These edge lengths can be simply the observed relative fre-
quencies of bipartitions of the taxon set into different character states, as with the
‘Sequence Observed’ variants, or could be inferred with some adjustment made for
multiple character state changes, from either distances or sequences (the ‘Distance
Hadamard’ and the ‘Sequence Hadamard’ variants, respectively). Once these edge
lengths have been estimated, potential trees, consisting of sets of compatible edges,
are assessed for the optimality criteria of the methods.

As in Section 2.5 let the function to be optimized be M (T"), for each potential
tree T'. With Co, M(T") is just the sum of the inferred edge lengths q, while CT
maximises a quadratic function of the q values. Hence, Co can be considered to
penalise each edge not included in T”, in proportion to its inferred length, and CT
can be considered to penalise each edge not in T’ according to the square of its
inferred length. This penalty assigned by CT to edges not in T’ is dependent on
the edges in T"'.

MP methods, on the other hand, penalise each edge excluded from T’ by the
number of additional character state changes that must occur to account for the
observed or inferred frequency of bipartitions corresponding to that edge. This
number can vary from 1 up to [n/2] with 2 character states and n taxa (“|n/2]”
means the integral part of n/2), and is also dependent on the other edges in the
tree.

We therefore might suppose that since the penalty for non-inclusion of an edge
in a potential tree T’ is dependent on those edges in T’ for CT and for MP that
thse two tree selection methods would be more accurate than Co, but this has not
always been the case.

To understand the reasons these methods perform as they do, we must therefore
seek deeper understanding of the theoretical properties of the tree selection criteria,
and this is a promising avenue for future research. These theoretical properties
are often counter-intuitive: some surprising properties of the maximum parsimony

method are discussed in [81].

7.4.3 Search strategies

The problem remains of inference of very large generating trees, with in the order

of hundreds of taxa. While the advisability of attempting reconstruction of such
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large trees is questionable, the performance of clustering methods with such data
sets is not well understood. This can be investigated with computer simulation.

As the number of taxa increases the number of replications must be limited (the
generation of distance data must require O(n?c) operations), but with massively
parallel supercomputers available, this generation could take only O(nc) time with
a sufficient number of processors.

Future work will almost certainly be directed towards such large simulations.

Unfortunately, this leaves aside the search methods. The exponential number
of potential trees means that with large n exhaustive search is impossible, and
heuristic search strategies must be used.

One method which has been used with some success is the Great Deluge algo-
rithm 18], [68], which was able to find several significantly shorter parsimony trees
on a subset of the “Out of Africa” mitochondrial DNA data set [38], [96], than were
originally found using the program PAUP [90]. The best parsimony tree found by
the Great Deluge method was 20 steps shorter than the best found previously.

The ability of this method to search the tree-space for parsimonious trees should
be further investigated, and also for the other search methods (CT, Co). This
too can be accomplished using massively parallel computers, by running several
solution trees at once.

A new strategy for conducting heuristic searches of tree space [68] I am calling
“Hitch-hiking”. The basic premise under which Hitch-hiking works is that good
solutions (for example, highly parsimonious trees) have common characteristics.

Under Hitch-hiking there are a number of driver solutions, with each of which
is associated a number of hitcher solutions, which are its passenger solutions. At
each search step, each driver solution will be perturbed, according to some other
search strategy, for example Great Deluge [68], Hill-Climbing, Tabu Search [32],
Simulated Annealing [95]. Each passenger solution for which this perturbation is
possible is also perturbed in the same way.

Properties for perturbation of the solution trees must be common to as many
trees as possible for Hitch-hiking to work. Thus a particular non-trivial bipartition
of the taxon set (i.e., an internal edge of the tree) is not a good choice for alteration,
since the probability that two randomly chosen trees have one or more internal
edges in common approaches zero with increasing n and hence in almost all cases

the perturbation of the driver solution would not be possible for the passenger
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solutions.

One property might be to consider the paths between three taxa: every three
pendant vertices, say t, j, k, have a point z at which the three paths between them
(7 j,mik and 7;k) intersect. Changing the point at which the path 7, intersects

75k is a change which can be carried out for all trees (see Figure 7.2, below).

J

Figure 7.2: Possible move in the Hitch-hiking heuristic search strategy

In this figure is shown a hypothetical move which could be undertaken by a driver
or passenger solution in a Hitch-hiking search. In the left-hand graph is shown
only the pendant vertices ¢, j, k, the paths =;;, 7;x and 7;x, and the point 2
at which these paths intersect. The path =; ., is then moved along 7;k, to now
intersect it at vertex 2. This is shown in the right-hand graph.

Hitch-hiking is a quite general strategy, and many details can be varied, for
example the ratio of drivers to hitchers, the capacity of each driver (i.e., the number
of passengers it can take), and the method of choosing the driver solutions and of
assignment of their passenger solutions.

Hitch-hiking has not as yet been tested, but it is ideally suited to parallel
computers, as each solution can be stored and processed on one processor.

I believe that this sort of investigation will be a fruitful direction for further

investigation.
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Algorithm 7.1 : Example of Hitch-hiking

{ This description is using the Great Deluge method with maximum parsimony }

Choose running parameters:

n
S
d
c

w

{ number of taxa }

{ number of solutions, < S }

{ number of drivers, < D }

{ capacity of each driver solution, < C }

{ increment in waterlevel, ~ 0.01 }

Generate data set

Generate root sequence

G

row other sequences

Pick s random start solutions tree;
Find parsimony lengths of these treez’s with Fitch’s algorithm

Fix

parsimony bounds b; for each candidate solution z (these are upper bounds)

Repeat

Choose d driver solutions e.g.,

from the top d current solutions,
from the bottom d current solutions, or

at random from the whole set of solutions, etc. (depending on implementa-

tion)

For each driver solution z

Choose three pendant vertices 1, j, k from tree

Find the point z at the intersection of =; ;, m;x and =«

Repeat
Remove the subtree rooted at z containing iz but not j or k
Choose r from a random probability distribution with spread parameter v
and mean m
Insert internal vertex 2/, r places along the path 7 from z
Add the subtree removed above to vertex 2/, to get tree’,
Find parsimony length !’ of tree

until (I2 < bz) or (can’t improve after several tries)

if (I, < b;) then
tree; « tree.,

For each passenger solution p associated with driver solution z
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Perform the same perturbation as above if the parsimony length [}, of
the resultant tree is shorter than b,
bp by — (bp— 1) X w
l, — l;,
else if (v < Vmqz) then
increase the probability distribution spread parameter v to give larger pos-
sible moves and get out of local optimum

abandon current iteration
if (v = ver) then break

end.
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Appendix A

Tree Topology Description

Notation

N P
SRR RR AR RARRRRRRRRRRRRRRRRRRED
(UB40)

A notation is described here which can be used to characterise the distinct
topologies of trees. The notation for a tree (called its “TTDN’ for brevity) can
be applied to any tree, but it is most succinct when binary trees only are used.
The notation follows the spirit of the IUPAC naming convention for the naming of
organic molecules [2].

A notation has been proposed by Harding [36], but I believe my notation to be
more intuitive.

Note that the topology of a given tree is used throughout this thesis to indicate
the underlying structure of the tree, that is, with no edge or vertez labels. Thus,
the three unrooted binary trees on four pendant vertices all have the same topology
(see Figure A.1).

The mapping from tree topology to description is onto, but not one-to-one, i.e.,
there may be more than one notation to describe the topology of a given tree, but

a given notation describes just one topology.

Rooted Binary trees

To characterise the topology of a rooted binary tree the following rules are used:
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4 3

Figure A.1: The three binary unrooted trees on 4 pendant vertices.

The first letters in the notation tell us what general type the tree is: we
write ‘UB’ for ‘Unrooted Binary’, and ‘RB’ for ‘Rooted Binary’. If the tree
is non-binary we write ‘UN’ and ‘RN’ to indicate unrooted non-binary and

rooted non-binary trees, respectively.

Except for the root, which we label 1, delete all the pendant vertices and

edges, leaving a skeleton of the original tree.

In this skeleton, find a path = of maximal length which includes the root, and
count the number of vertices this path contains; this is the first number in the
notation of the topology. The choice of # may be arbitrary if there is more
than one path of maximal length which includes the root, but in general = is
chosen to minimise the number of subtrees which branch off it. This serves

to simplify the notation as much as possible.

Proceeding from the root towards the other end of 7, we treat each subtree in
turn, and determine its notation by considering it to be a rooted tree, rooted

at the vertex adjacent to «.

The notation for a single path, with no subtrees branching from it, is simply

the number of vertices which are contained in the path.

The position of each subtree branching off a particular path is given by the

subscript which follows the notation describing that subtree.
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For example, consider the binary tree shown in Figure A.2, rooted at R. In

this tree we can take as our maximal path the one along the ten vertices in the

T TS

Figure A.2: Example tree T for which the TTDN is sought

horizontal path.

We form the skeleton by deleting pendant vertices and edges, other than vertex
R and the edge incident on it (Figure A.3).

R A
N

Figure A.3: Skeleton of tree T in the previous figure.

The next term in the notation is 10, as there are 10 vertices remaining in 7.
Starting at the root, we find the first subtree branching off = has only one vertex
and is adjacent to the fourth vertex of . Hence the next term in the notation is
14. The next term is found by first finding the notation for the subtree branching
off m at vertex 6. It has a path 7’ of length 2, and another vertex branching off =’
at position 1. The description of this subtree is then 2,1,, and we write (2,1;)e to
indicate that it branches off = at position 6. The last term in the notation is 1g.
Hence for this topology the TTDN characterisation is RB10, 14, (2, 11)s, ls-
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Unrooted Binary trees

For unrooted binary trees, we first delete all the pendant vertices and the edges
‘ncident on them. We then choose a path 7 of maximal length, if possible to
minimise the number of subtrees branching from it. The first part of the notation
is then ‘UB’ followed by the number of vertices in =.

We choose one end of 7, to minimise the sum of the indices of the subtrees
branching off = (once again, to simplify as much as possible the characterisation of

the tree). We then proceed in the same way as we did with the rooted tree.

Reconstructing a tree from its TTDN

To construct an unlabelled tree from its TTDN, we use the reverse procedure.

Consider a rooted tree first, as before.

Suppose we are presented with the following TTDN characterisation:
RBka (X2)21 (‘Y3)31 ey (Xk—l )k—ll

where each (X;); may or may not be present.

We first construct the path = with k vertices, and beginning at one end, label
the vertices 1,2,...,k. We determine the rooted topologies described by each of
X2, X3,...,Xk_1 In turn, and join them to = at vertices 2, 3,..., k — 1 respectively.
Then to each vertex of degree 2 we attach another edge and pendant vertex, and
to the others we attach two edges and pendant vertices.

For example, suppose we have the notation RB7,15,(2,1,)3,24. We first con-
struct the path = with seven vertices, one end vertex of which is the root (Figure
A.4). Adding subtrees in turn we get the tree shown in Figure A.5. Finally, by
adding pendant vertices to this skeleton we get the complete rooted binary tree

shown in Figure A.6.

& - o -

R

> &

Figure A.4: The first stage in reconstructing a tree from its TTDN.
In this figure only the initial maximal path 7 is shown.

For unrooted trees we proceed as above, but in the last stage we add new
pendant vertices to every vertex of degree one or two.
We note some useful properties of this notation. For an unrooted binary tree

T whose TTDN description is UBk, (X3;)2, (X3)3, - - -, (Xk=1)k-1, the diameter d(T)
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Figure A.5: The second stage in reconstructing a tree from its TTDN.
In this figure the subtrees branching off the initial maximal path = have been added, to
give the skeleton shown.

Figure A.6: The third stage in reconstructing a tree from its TTDN.
In this figure the pendant edges and vertices have been added to the skeleton in Figure
A.5 above, to give the complete tree.
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f T is k + 1. Also, the number, say a, of internal vertices of T is the sum of the

in-subscripted numbers, so the number of pendant vertices is a + 2.

Non-binary trees

Che notation can be generalised to include non-binary trees, but by doing so much
f 1its conciseness is lost: since in binary trees all vertices have either degree 1 or
' (apart from the root, which may have degree 2), it is possible to simplify the
‘haracterisation of the topology of such a tree by forming its skeleton, as outlined
.bove. However, with non-binary trees we can make -no such simplification, and

1ence when describing the topology of a non-binary tree, rule number 2 is omitted.

Jist of topologies

A list of all the tree topologies of unrooted binary trees with from 4 to 10 pendant

sertices is provided below.
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Appendix B
Proofs of theorems

Theorem 1 UPGMA is consistent with distances which are additive and which

satisfy the “molecular clock” model.

Proof: The theorem is proved by induction on the clustering process. Consider
the base case first. Suppose we have a set S of taxa labelled {1,...,n}, corre-
sponding to the pendant vertices of a given rooted phylogenetic tree and satisfying
the above hypotheses. Let the root of the phylogenetic tree on S be r.

Then by the molecular clock hypothesis, d;, = d;, for all :,7 € S. For each
,) € S, let the nearest common relative of z and j be ncr(z,7). Then d;; =
dir + djr — 2dncr(i ),

Since d;, is constant for : € S, this means the minimum value of d; ; occurs for
the pair {¢,7} of taxa which have most recently diverged.

Hence UPGMA, which at the first stage amalgamates taxa ¢ and j if and only
if d; ; is minimal, will correctly deduce the first cluster if the distances satisfy the
above hypotheses.

Now suppose the clustering process has reached step k, and correctly deduced
the first k clusters. If we can show that UPGMA correctly deduces the next pair
of clusters to amalgamate, then the proof is complete.

Recall that the distance matrix D = [d; ;] is replaced by D’ = [d; ] at each
clustering stage as follows: If clusters z and y are amalgamated into a new cluster,
say z, then for each other cluster a,
axdi, Ha,ly,

az + oy

»

’
dz,a =

where ¢; is the number of taxa in cluster :.
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Now since the distances satisfy the molecular clock hypothesis, we have

dr,a = dy,a-.'

SO

deg =dpo =d, .

i)

Hence the only difference between the distance matrices D and D’ is that D’ has
one row and one column removed, corresponding either to z or to y.
The minimal d; , entry in D having been removed, the next most closely related

pair of clusters will have the smallest entry in D’.

Hence UPGMA will correctly determine the next clusters to amalgamate, which

completes the proof.
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Theorem 2 TD is inconsistent with additive data

Proof: The proof is by counterexample.

Consider the tree T shown in Figure B.1, with edge lengths shown in italics.

Under the additive distances hypothesis, the distance matrix D is

0 8 14 22 15
8 0 10 18 15
D=|14 10 0 14 21
22 18 14 0 29
115 18 21 2¢ o

We proceed with TD:

Step 1:

Step 2:

Put the two most distant taxa, here 4 and 5, into L and R respectively.

Find dp; for all ¢ € L and dgr; for all j € R (recall that dp; =

Y jer dii/|L| and dr; = ¥jer d;i/|R|):

dr
dra

drs

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

= dy1 =22 dpy = ds1=15;
= dy2=18; dr2 = ds2=15;
= dy3=14; dpz = ds3=2L

dr3 is minimal in the above, so L «— {3,4}.

dp, — st 8, dp; = 15
dp, — 23tda -4 dp, = 15

dr» is minimal in the above, so put L = {2, 3,4}.

d
dpy = %atdatds =42 dp, = 15

dr, is minimal in the above, so put L = {1,2,3,4}.

n = d],s — da,s;
T = d2'5 = d4,5;
3 = d3s— dsgs;
ra = 05

rs 7= 0.
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Step 9: This gives the adjusted distance matrix

[0 36 36 36 29 |
3 0 32 32 29
36 32 0 22 29
36 32 22 0 29
129 29 29 29 0 |

D= [d:,J] = [d,‘,j - Ty — rj] =

v WD -

Step 10: Now using UPGMA with D’ as its input data, the first pair of taxa to

amalgamate to form a new cluster is {3,4}.

Step 11: The distance matrix is reduced to

1: [ 0 36 36 29|
, 2: |36 0 32 29
T {3,4): [ 36 32 0 29
5: 129 29 20 0 |

Step 12: There are now three possible pairings to make, {1,5}, {2,5}, and
{{3,4},5}, all of which have the same entry in Dj.

Since UPGMA must now choose arbitrarily between three possible pairings,
each of which give different final trees, it is not possible to guarantee to pick the

correct tree. Hence TD is inconsistent with additive data.

4

Figure B.1: Tree T used in the proof that TD is inconsistent.
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Theorem 3 Co is consistent with the same models of evolution with which CT is

consistent.

Proof: Suppose we have a data set which was generated according to a model
with which CT is consistent. As has been shown by Hendy [45], the edge length
spectrum q’ inferred from observed bipartition frequencies will converge to the
true edge lengths (in expected numbers of change of character state, for a Poisson
process) as sampling error tends to zero.

As the entries of q’ which do not correspond to the true tree (barring g;)
approach zero in this case, the objective function

Yo g

e;e€T

is maximised only when T is the generating tree.
Hence Co is consistent.
Note that Co being consistent with a given model does not imply that CT is

consistent with the model: we have shown the converse.
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Theorem 4 SL is consistent with additive data.

Proof: Consider a tree T on n pendant vertices labelled {1,...,n}, with dis-
tances D = d;; which are additive, i.e., the distance between any two vertices :
and 7 in T is equal to the sum of the lengths ¢« of the edges e, which are in the
path m; ;. Suppose also that g« > 0 V &k and that there are no vertices of degree 2.

Because UPGMA is known to be consistent with additive distances which, in
addition, satisfy the molecular clock hypothesis, it is sufficient to prove that the
modification to D made by SL yields distances which satisfy the molecular clock
hypothesis, and do not conflict with the topology of T¢.

The first step in SL finds the two most distant taxa, say z and y, and puts them
into sets L and R, respectively. (The order is not important in the implementation,
but we will use it for convenience here.)

Let

L={ie{l,...,n}:diz < diy}

and

R = {ie {1,...,n} 2d,',x>d,',y}.

(This automatically includes z and y in L and R, respectively.)

Choose an internal vertex r such that d,, = d, ,, and if there isn’t such a vertex
already in T, insert one (it will be deleted later).

For each : € L, find v;, the residue of vertex :, given by v; = d, ,—d; ,. Similarly,
find v; = d;, — d,, for each i € R.

Now for each ¢ € L and each j € R, put d;; = d;; + vi + v; = d;y. This is
equivalent to adding v; to the length of the pendant edge incident on vertex ¢, for
each i. Call the tree with these new edge lengths T'. Clearly 7" has exactly the
same branching pattern as T": the branching order has not been changed by the
above process.

Foralli,j € Lletd;; =d;;andforallz,j € Rlet d;; = d; ;. The new distances
D' = [d;;] define an additive tree metric, as did the original distances D = [d; ],
but with the added constraint that all pendant vertices are equidistant from one
point, which we have labelled r (the molecular clock hypothesis). We now remove
the vertex r from 7T".

Due to a theorem of Buneman (7], which states that an additive tree metric

specifies a unique tree, the distances D’ can only correspond to 7', which has the
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same branching pattern as T

UPGMA is known to correctly construct T’ from D’, hence SL constructs T'.
(Note that the edge lengths are not correctly inferred by the above method.)

This completes the proof.
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Theorem 5 NJ uses the optimal weight for net divergence.

Proof: Consider a tree T on n > 4 pendant vertices, with distances between all

pairs of vertices of T satisfying the constraints
1. d,"j>0 — i#j;
2, daan=10z

3. dij = Leen, 1(e), where p(e) is the length of edge e and ;; is the path

between vertices ¢ and j.

Note that this requires the length of each edge to be positive.
Recall that at each clustering stage, NJ chooses clusters z and y to amalgamate

into cluster z if and only if

d.’r,y - Uz + vy)

3
is minimal, where v,, the net divergence of cluster z, is the sum over all other
clusters k of d s, and n’ is the number of clusters currently available for clustering.

We show that the weighting —= for the net divergence is the only one which
yields a method consistent with additive data.

Let m;, = d;, — w(v; + vy), and suppose that {z,y} is a neighbouring pair.
Let u be another vertex of T', which is not adjacent to either of z or y. Let the
edge adjacent to z be e;, and that adjacent to y be e,. Let e, be some edge on the
path 7., other than e;.

Since a proof of the consistency of NJ is known [89], it is sufficient to show that

Mgy — Mg, < 0 for all possible u.

Now
Mzy—Mzy = dpy— w(vr+vy) — dru + wW(vz + Vy)
= T - X we-wy ( > u(e)> fuy ( ) #(e))~
eEmz,y e€EMz u 1y \ETiy iFu \€EMu
Let [u(e)] be the coefficient of u(e) in (mz,y — m. ). Then
[(e)] = 1-1-w+w=0,
[u(ez)] = 1—w(n' —1)+w=1-w(n"—2), and

[u(ez)] = —1—w(g: = k),
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where g, is the number of vertices ¢ such that e, is in the path =y, and A, is the
number of vertices 7 such that e, is in the path =, ,.

Note that 1 < g, <n'—2,2<h,<n'-1,and g, + h, =n'.

Since we require m,, — m,, < 0 for all positive edge lengths p;, we must

have [u(e)] < 0 for all edges, and [u(e)] < O for some edge e. We already have
[1(e1)] = 0, so consider [g(e2)].

n' —2
Now
[u(e:)] €0 <= ~w(g. —h:) <1
-1 1
— <w<
n—4 - T n-=2
sow = ﬁ is the only weight function that will guarantee NJ does not choose

{z,u} as a neighbouring pair.
We also require that [g(e€)] < 0 for some edge e. Let the edge adjacent to e; and

1

e; be e3. Then g., = n' — 2 and h., = 2, so |p(e3)| = —1 — =5 < 0 and therefore

we have m; y — mz, < 0.
Since u was chosen arbitrarily, NJ will only choose a neighbouring pair of ver-
tices of T' to amalgamate into a new cluster.

This completes the proof.
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T'heorem 6 NJ and CTDH are identical for the case n = 4.

2roof: Let az = dy2 + d34, s = d1 3+ da 4, and ag = d1,4 + d3,3, corresponding
o the minimal path sets of trees T3, Ts, and T respectively, as shown in Figure
3.2. (The internal edges of these trees are 3, 5, and 6 respectively.)

Suppose the generating tree is T3, as in Figure B.2. Suppose also that a3 < aj
mnd az < ag, so in the distance spectrum entry g; = di234 = a3. (Recall that
n the calculation of the distance spectrum, dx is the minimum sum of distances
etween all pairs of elements in X.)

1 3 1 2]

4 3

Figure B.2: The three unrooted binary trees on four pendant vertices

Let the square of the Euclidean distance between the observed distance spec-
rum g and the expected distance spectrum if the generating tree were T% be
Xz(Tk).

Then we have

1
A} T3) = E(as - ag)?,
1 1 1
A (Ts) = R(Ots —ae)’ + E(—203 + as + as)’ + 1—2(05 — a3)?.
Therefore
1
AMTE) — AT = i (3(as + as — 203)* — 3(as — a6)? + 4(cs — a3)?)
1
= —(05 — 03) (12(&6 - 03) + 4(05 = 03)) s

48

nd similarly,

AQ(TG) L Az(Tg) = Zlg(as = 03) (12(&’5 == 0:3) + 4((}5 = 053)) 4
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The quantities A?(Ts) — A*(T3) and A%(Ts) — A%(T3) are both strictly positive
by the hypothesis, so CTDH selects T5.

Likewise if dy 234 = as (respectively as), then CTDH selects Ts (respectively
Ts) by the same argument.

We have supposed that d; 234 = a3, i.e., that a3 < as and a3 < a¢. Recall that
in NJ, the initial distance matrix D = [d; j] is replaced by a modified matrix M =
[mi ;], where m; ; = d; ; — =55 (vi + v;). The smallest value, say m, , of M is found

and the pair {z,y} amalgamated to form cluster. With n = 4, only one clustering

decision is necessary, and my2 = — (d13+dia+daz+daa) /2 = maq, miz =
—(di2+ dia+dayz+dsy) /2 = may, and myy = —(d12+dizg+day+d3s) /2 =
ma 3.

Hence NJ selects T35 <= m;,; < my3 and m;, < my4.

mia<mi3z < dig+digat+dyzt+deg>diz+dig+doz+dag
— diz+dyg>dia+dss

<~ a5 > a3,

and

mia<myy <= dizg+digt+des+dag>dipg+diz+daatdsg
< dig+dy3>di2+dsg

— Q> Q3.

If the minimum of {as,as,ae} is not unique, then neither CTDH nor NJ can

resolve the tree.

Hence NJ and CTDH select T3 if and only if a3 is minimal in {a3,as,as}, so

the two methods are identical in this case.
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Cheorem 7 A simple modification of ST yields NJ.

’roof: Let 5,"1',;“1 =1 1 iif d,"j + dk,l < d,"k + dj,l and d,"j + ko < d,',1 + dj.k, and 0

therwise. Let

S{a,b} = Z 6i,j_a,b

i,j#a,b
shere the sum is taken over all quartets {a,b,7,;}.
The ST algorithm chooses {a,b} as a neighbouring pair <= {a,b} maximises

"{a,b}- _
Now let pabij = dai + dbj + dayj + doi — 2Adap + dij)-
Let .

Vo =L dal;.
i=1
and

Q= DL Jb. 7

1,JEA
We will choose {z, y} as a neighbouring pair <= Q{s,,) is maximal.
Let A= {1,2,...,n} — {a,b}. Note that this is particular to a given {a, b}.
Then
Sr) = D Sijas

i,jEA

For some p; ;,

D Papii = DD Pabi — D Papivi — 2D Pabai — 2D Pabpi — 2Papab-
i=1

1,JEA i=1j3=1 1€EA 1€EA

So

Qo) = 2n(va + vo) — 2n%dap —2) vi — 2D (2ds; + 2dp; — 2(dayp + di))
1=1 i=1

=2 " (daa + dbyi + dayi + dba — 2(dap + dayi))
i€A

=2 " (dap + dbi + doi +dbp —2(dap + dbi)) + 4dap-
i€

This is .
2n(ve + vp) — 2n’dyp — 2 Z v; — 2(ve + vp) + 2ndgp

=1

—2(‘05 - da,b + Vg — da‘b = (Tl - 2)(1{,,@ — 2(va - da,b))
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—2(vp — dap + Vo —dap — (n — 2)db,a — 2(vs — dap)) + 4dsp.

Further manipulation yields

2n(va + v8) — 2n’dapy — 2D vi — 2(va + v8) + 2ndayp

=1

—2(vb = va) + 2(12 - 2)da.b —3 2(va - Ub) + 2(71 = 2)da,b + 4da,b

=2(n —1)(va+ ) — 2> vi +dap(—2n* +2n + 4(n — 2) +4)

i=1

=2(n—1)(ve + ) — in; —2(n —1)(n— 2)dap.

1=1
This is maximal <= 2(n — 1)(n — 2)(ve + v» — (n — 2)d, ) is maximal

<> va+ v — (n — 2)dy is maximal <= dop — —25(va + ) is minimal.

The second part of the proof shows that the modification of the distance matrix
D used by ST could equally well be made in the same way as it is in NJ.

We have just shown that at the beginning of the clustering process, maximising
Q(z,y) is equivalent to minimising d;, — =15 (vz + v,), as with NJ.

Suppose we choose some {z,y} as a neighbouring pair, and amalgamate clusters

z and y to form the new cluster z.
Let D’ be defined by

L d:,] = di,j if 7‘1] 76 I,Y;

dy j+d, ;—d
Od;j=—‘-'-—5'-‘-7—"-’+2 =

Let D” be defined by
o di;=di;ifi,] #1,y;

n o _ 4z +dy,
® dza - 2 :

If
Papij =doi+dy; +dy;+dy; —2(dyy +d; ;)

and
Papij =dai +dy; +dy 4+ dy; —2(dy, + d;),
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we need to prove that pj ;= p,; ;-

Clearly this is true for all a, b,%,7 # z, as the relevant distances have not been
changed.

If one of a,b,?,7 is z, we can without loss of generality suppose that a = z,
which gives

Popij=do;+dy; +d,;+dy; —2(d,, +d;;)

doy + dyi — ds o+ dys — do o(de & dus — ds
= S S —fag e At W R et e oy 8
2 2 2
d i d i d:x: ] dy,; d‘t d
_ %, + 4y, +dy; + Gz, t 8y +dp; — Q(M + d; ;)
2 2 2
=plzl,b,i.j'

Hence we could equally well calculate the new distances from D in the manner
used in NJ.
This concludes the proof.
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Appendix C

Pseudocode

C.1

Introduction

This appendix lists and describes the fundamental components of the simulations

programs used in this study. Such a description, free of the requirement of prior

computer programming knowledge, and accessible to the intelligent layman, is nec-

essary when comparing algorithms and heuristics in a systematic way, and is useful

for those who wish to implement such methods in a programming language of their

choice.

There are a few conventions used here, which require explanation:

The hierarchy of instructions is indicated by their indentation, so loops and
other repeated structures (“for”, “do (...) while (...)”, “while (...) do (...)”

and “case (...) of (...)") are indented.

The assignment operator “—” is used so that a «— b means the value of a is

set to the value of b.
Swapping the values of two variables, say a and b, is indicated by “a « b”.

A variable quantity inside a bracket, e.g. “(z)” serves as a logical operator,
true if z # 0 and false if z = 0.

A “break” indicates that the program leaves the current repeat structure (as

listed above).

“random” is a short-hand for the “drand48()” pseudo-random number gen-

erator, which returns a value from a uniform distribution on the interval
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[0,1).

e The “AND?” operator returns the logical AND of two numbers, say = and y,
so that each bit of z « z AND y is ‘1’ if and only if the corresponding bits

of z and y are both ‘1.

e Arrays of variables are indicated by square brackets after their name, enclos-

ing the number of elements in the array. A vector v with 4 components is

thus indicated by “v[4]”. k-dimensional arrays have k such pairs of brackets.

e Sets are stored as arrays, so for a set A = [aj,...,ax], z € A if a; # 0. The

union of two sets A = [ay,...ax] and B = [by,...,bs] is C = [e1,...ck], where

ci=11if a; #0 or b; # 0.

The two main programs used are sim.c and big.c.

C.2 General functions

Algorithm C.1 : comparesets(A, B, maz)

{ Returns the number of elements in A which are notin B. A and B are assumed

to be the same size, maz. }

local variables:

dif ferences, { number of elements of A which are different

from all the elements in B }
7, { counters }
same; { flag }
dif ferences «— 0

for : = 1 to maz do
same « 0

for 7 =1 to maz do
if (A; = B;) then
same « 1

break
if (same = 0) then

dif ferences — dif ferences + 1
return (dif ferences)

end.
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Algorithm C.2 : Hadamard(v,w)

{ This function multiplies the vector v by the Hadamard matrix H, and puts
the result into vector w. This uses the “fast-Hadamard method” devised by
Hendy [45]. }

local variables:

1,7, k, 1, a, jump, steps, { counters }
Y

fori=0tomdo w; —v; {m=2"1}

jump « 1

steps — m/2

while (jump < m) do
a0
for : = 1 to steps do

for 7 =0 to jump—1do
k—a+j
l — k+ jump
T — W+ Wy
Y — wk — wy
Wk — T
w =y
a—a+2x jump
jump « 2 X jump
steps — steps/2

end.
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Algorithm C.3 : HexpH(inv,outv)

{ This function calculates L H(exp(H(inv))) and puts the result into outv. }

local variables:

t { counter }
p[M]; { intermediate vector }
invg — 0

fori=1tom—1do invy « tnvyy — iny;
Hadamard(inv, p)
fori=0tom—1do p; — exp(p;)

Hadamard(p, outv)
for i =0to m—1do outy; «— outv;/m

end.

Algorithm C.4 : HinH

{ This function calculates #H(ln(H(inv))) and puts the result into outv. }

local variables:

f, { counter }
err, { err = 1 a non-positive edge length is in-
ferred }
P; { intermediate vector }
Hadamard(inv,p)
err «— 0

fori=0tom-1do
if (pi > 0) then p; — In(p;)

else
err « 1

break
if (err = 0) then

Hadamard(p,outv)
fort=0tom—1do outv; — outv;/m

return (err)

end.



C.2. General functions 199

Algorithm C.5 : permute(z, perm)

{ This returns a pseudo-random permutation of {1,...,z}. }

local variables: 1, j; { counters }
for: =1 to z do perm; « 1

for:=1to z do
jerandomx (z—1)+i+1

{ when converting type double to type int, the number is truncated }

perm; «— perm;

end.

Algorithm C.6 : rough_exp(?)

{ This function returns = 100 x 10°/10. }

local variable: j

7«0

if (i > —10) then

case 1 of

-10: j ~ 10
-9: j «~ 13
-8: 7« 16
-7: 7«20
—6: 7 — 25
-5: 7 « 32
—4: 7« 40
-3: 5«50
—-2: 7 — 64
-1: 7~ 80
0: 7 « 100
1. 7~ 125
default: j « 10 x rough_exp(t — 10)

return (j)

end.
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Algorithm C.7 : permutation_to_tree(perm, output_tree)
{ perm is an array, a permutation of the integers 1,...,n— 1. }

local variables:

ea[N], { ea[N] is the array of earliest ancestors chosen
thus far }
z,y,new,t,j; { counters }

fori=1tondo

ea; — 1

output_tree; — 0
fori=n+1to 2n do

ea; — 0

output_tree; — 0
fori:=1ton-1do

new «— n+1

T — €Qperm,

Y < €CGperm,+1

output_treer «— new

output_tree, — new

ear — new

eay — new

€lney — NEW

for j =1to new—1do

if ((eaj = z) or (ea; = y)) then ea; — new

end.



C.2. General functions 201

Algorithm C.8 : sample_uniform(mean, range)
{ Here, range is maz_value — min_value }

local variable: temp; { interim floating-point number }
temp — ((random — 0.5) x range) + mean
return (temp)

end.

Algorithm C.9 : sample_normal(mean, std_dev)
{ This uses the Box-Muller method of generating normally distributed random
numbers from uniformly distributed random numbers [70]. }

local variables:
z1, T2, Y, fac, rsq, bm;

iset — 0; { iset is initially set to 0. }
gset

if (iset = 0) then
do

1 — 2 X random — 1
Tg9 — 2 X random — 1
TSq +— z'f + x%
while (rsq¢ > 1) or (rsq < 0)
fac — /=2In(rsq)/rsq
gset — zyfac
1set «— 1
bm « z;,fac
else
1set +— 0
bm ~ gset
bm — bm x std_dev + mean
return (bm)

end.
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Algorithm C.10 : samplelognormal(mean, std_dev)
iocal variable: temp
temp — sample_normal(ln(mean), std-dev)
temp — exp(temp)
return (temp)

end.

C.3 Functions used In sim.c

Algorithm C.11 : compat(z, f, A)
{ Checks to see if the number z is compatible with the numbers which are indexed
by the first f elements of the set A. }

local variables:
t,com, tempt; { counters }

{ First assume j is compatible with the first f edges indexed by A. }

com «— 1
if (f > 0) then
if (z = 0) then com < 0

else
fori=1to f do

tempi — z AND opos(A;)
if (tempi ¢ {0, z, 0pos( 4;)}) then
com <0

break
if (opos(A;) = z) then
com « 0 { A bipartition is not compatible with itself }

break
return (com)

end.
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Algorithm C.12 : choose_topology(topnumber, edge_set)

local variables:

i, 3,2, { counters }
C[N][N], { array of clusters, each a subset of {1,...,n}. }
r[N]; { array of permuted integers, {ry,...,7n}. }

fori=1tondo C; «0
permute(n, r)

case topnumber of

1:
Cy « {r1,72} {UB2}
2:
C1 < {r1,r2} {UB3}
C2 — {r3, 14}
3:
Ci1 « {r1,r2} {UB4}
Ca « {r1,r2, 73}
Cs — {re,7s}
..... { The other cases, 4 to 26, have been omitted for
brevity. }
27:
Ci « {r1,7r2} {UB5,15,23 }

Cay « {r3,r4}
C3 «— {r1,72,73, 74}
Cq— {rs,re}
Cs «— {rs,76,77}
Ce — {rs,79}
C7 «— {rs, 79,710}
default: break
edge_set — @
fori=1ton-3do
if (n € C;) then
z—m-1
forj=1ton-1do
if (j € Ci) then z — z—2/"!
else
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z<0
forj=1ton-1do
if(j€Ci)then z — z + 9i-1
edge_set; —

end.
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Algorithm C.13 : bipartitions_to_distances(v)
{ This calculates the distance matrix D from v. }

local variables:

1,7, k, { counters }

ok, { flag }

{(N], { the numbers 1,2,4,...,2" }

do; { = 1if a zero pair-wise distance is observed. }

for i = 1to ndo
forj=1tondo D;; « 0

t; «— 1

fori=2tondo t — 2 Xxt;_

{ D;; is the sum of the observed proportions of the bipartitions for which the
characters in the i-th and j-th places differ. }

fork=1tom—-1do
fori=1ton—1do

forj=i+1tondo
ok — 0
if ((k AND t;) =t;) and ((k AND t;) =0))) then ok < 1
if (((k AND t;) =0) and ((k AND ¢;) =t;)) then ok « 1
if (ok) then D;; « D;; + w
d0 —~ 0
fori=1ton-1do
for j=i+1tondo
Dji < Di;
if (D;j « 0) then d0 « 1
return (d0)

end.
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Algorithm C.14 : choose_tree(z, edge_set)
{ Chooses a tree with z pendant vertices, from the uniform distribution on all

trees equally likely, and puts the edge set describing that tree into edge_set. }

local variables: k, t; { counters }

case x of
4 te<1

S te2

6:
if (random < 3/4) then t « 3
elset — 4

7:
if (random < 2/3) then t « 5
elset « 6

8:
k — random x 33
if (k < 16) then t « 7
else if (k < 24) then t « 8
else if (k <32)then t « 9

elset — 10

k — random x 143
if (k < 48) then ¢t « 11
else if (kK < 96) then t « 13
else if (k < 120) then t « 12
else if (k < 132) then t « 14
else if (k < 140) then t — 16
elset « 15

10:
k — random x 143
if (k < 32) then t « 17
else if (k < 64) then t — 19
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else if (k < 80) then t — 18
else if (k < 96) then t — 20
else if (k < 112) then t «— 26
else if (k < 120) then t « 21
else if (k < 128) then t « 22
else if (k < 136) then t « 24
else if (k < 140) then t « 27
else if (k < 142) then t « 23
else t — 25
default: break
choose_topology(t, edge_set)

end.

Algorithm C.15 : correct_distances
{ This function uses the Jukes-Cantor distance adjustment to account for multi-
ple changes of character state along lineages. The input distances are in matrix
D and the adjusted values are returned to D. The model is the simplest pos-

sible, with 2 states and symmetric i.i.d. rates of change. }

local variables:

7, { counters }
d_inf; { returns 1 <= the inferred distance is infinite }
diinf <0

fori=1ton-1do
forj=i+1tondo
if (D;,; > 0.5) then
D; ; + 1000000
dinf «— dinf +1
else D; ; — —log(1-2x D;;)/2
Dj; « D;;
return (d-inf)

end.
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Algorithm C.16 : get_pathsets(D)

local variables:

i,75,k,0,b, { counters }

i2, j2, {i2=21, j2= 21 )

parity,

dji,

sum; { total of all pairwise distances }
sum « 0

fori=1ton-1do
forj=i¢+1tondo sum « sum+ D;;
fori=1tom—-1do ¢g; — sum
go — 0
fori=1ton-1do
parity « 1
i2 « 21
for j = 2-! to 2¢ do
if (parity) then
temp — Din+ g;_2i-1
if (temp < g;) then g; — temp
by
while (b = 1(mod2)) do
b~ b/2
parity — 1 — parity
parity «— 1 — parity
forj=1toi—-1do
k — 2i—l
j2 — 271
dji — D; ;
while (k < 2%) do
k — k421
for I = k to k+2'~1 do
temp — djt + gi_zi-1_2s-1
if (temp < g;) then g; — temp
ke k+271

end.
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Algorithm C.17 : number_of_bipartitions
{ This function returns the number of parsimony sites (i.e., those which are used

by MPSO) of the data set. }

local variables:

t,7, num, { counters }
fIM]); { temporary vector }
num « 0

fori=1tom-1do f; — freg;

fori=1ton-1do

i g

fi <0

fm-1 <0

fori=1tom—1do if(f;>0)then num « num+1
return (num)

end.
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Algorithm C.18 : random_edge lengths(edge_set,outv)
{ Assigns random edge lengths to the edges in edge_set, and puts them in the

vector outv. }

local variable: ; { counter }
fori=1tom-1do outv; — 0

{ assign lengths to internal edges: }

fori=1ton-3do
0UtVedge_set; — Tandom x (maz.intlength — min_edge length)

+ min_edgelength
outvg «— outvg — OUlVedge set,
{ assign lengths to pendant edges: }
t—1
while (i < m) do
outv; «— random X (maz_penlength — min_edgelength)
+ min_edgelength
outvg «— outyvg — outv;
t—2Xx1
outvy,—y «— random x (maz_pendength — min_edgelength)
+ min_edge_length
outvg «— outvg — outv,_y

end.
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Algorithm C.19 : sample_bipartitions(length, error_rate, inv, outv)
{ samples length times from the expected bi-partition spectrum inv, with pos-
sible reading errors given by error_rate, and puts the result into outv }

local variables:
y[M], { vector of cumulative probabilities }

1, J, gap,tempi, k,tazon, bit,temp,

{ counters }

ranked[M], { indices of the components of y in decreasing
order of size }

T, { interim floating-point number }

v[M]; { interim vector of floating-point numbers }

fori=0tom—-1do fregi <0
fori:=0tom—1do

v; — 1nY;

ranked; «— 1
{ Perform a ShellSort first for speed of sampling: }

gap «— m/2
while (gap > 0) do
for : = gaptom —1do
j < t—gap
while ((7 > 0) and (vj < v;4gqp)) do
k —j+gap
vj — v
ranked; «— rankedy
J < J—gap
gap — gap/2
Yo — iNVrankeds
fori=1tom—1do ¥y; « ¥i—1 + iNVranked;
if (error_rate > 0) then
for i = 1 to length do
r — random
je<0
while ((r > y;) and (j<m))do j e~ j+1

if (random < error_rate) then



212 Appendix C. Pseudocode

tazon «— random X n + 1
if (tazon = n) then k —« m—j5 -1

else

temp o 2taron—l

bit — ((ranked; AND temp) > 0)
k — ranked; + (1 — 2 = bit) X temp
fregranked, — fregranked, + 1
else fregranked, — fregranked,; + 1
else
for i = 1 to length do
T « random
j<0
while ((r > y;)and (j<m))do j «j+1
fregranked; < fregrankea, +1
for i =0tom—1do outv; — freg;/c
{ this normalises the frequencies }

end.
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Algorithm C.20 : sort_vector_descending(inv, outv)
{ Uses Shell’s method of sorting an array inv of real numbers. The ranks of the
components of inv are put into outv, which is a vector of integers [70]. }

local variables:
gap, 1, j, k, { counters }
h[M]; { temporary vector }
for:=0tom—-1do
hi — iny;
out; — 1
gap — m/2
while (gap > 0) do
for i = gapto m - 1 do
J —t—gap
while ((7 > 0) and (h; < hj}tgap)) do
k — 3+ g9ap
hj — hy
outv; «— outvg
Jj < J—gap
gap — gap/2

end.
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C.3.1 Clustering methods

Algorithm C.21 : NJ(averaging)

{ If averaging = 1, do the NJa method, otherwise do NJ. }

local variables:

Active[N],
edge,

7,
internals,
A

minr,
netdiv[N],
new,

ok,

sub[NJ;

tn,

wrong,

z,Y,

A[N][N];

Active — {1,2,...,n}

new — n+1

{ set of clusters which are available }

{ name of the new edge }

{ counters }

{ number of internal edges currently chosen }

{ mean over all k ¢ {z,y} of Dy — Dy« }

{ handy temporary real number }

{ the vector of net divergences }

{ label of the new cluster }

{ logical flag used in comparing sets of inferred

edges }
{ sub; =1 <= the cluster ¢ contains pendant

vertex n. }

{ current number of unattached clusters }

{ the number of edges in NJ_intedges and not in
intedges }

{ clusters chosen to form pair }

{ Aij = D; j — (netdiv; + netdivj)/(tn — 2) }

fori=0to2n—1do sub; — 0

sub, — 1

614—1

fori=2ton—-1do ¢; — 2xei

én — 2Xep—1 -1
internals « 1
while (internals < n — 2) do
for : =1 to new — 1 do
netdiv; — 0

for j =1 to new-1do

if (i € Active and j € Active and (i # j)) then

netdiv; — netdiv; + D; ;
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for j = new to N — 1 do netdiv; — 0
for: =1 to new — 1 do
for j =1 to new -1 do
if (1 € Active and j € Active) then
A;j « D;; — (netdiv; + netdiv;)/(tn — 2)
te—1
while ((i < 2n) and (i ¢ Active)) do @ — i+1
T —1
te—1+1
while ((i < 2n) and (i € Active))do ¢ — i+41
Y — 1
mint «— Az,
arbitrary — 0
fori =1 to new — 2 do
if (¢ € Active) then
for j=i+4+1 to new —1 do
if ((j € Active) and (A;; < minr)) then
if (Ai; = minr) then arbitrary — arbitrary+1
else arbitrary « 0
minr «— A;;
T 1
ye—3J
Active — Active — {z,y}
Active — Active U {new}
if ((z = n) or (y = n) or (sub: = 1) or (sub, = 1)) then subpew «— 1
if (Subnew) then edge — |ez — ¢y
else edge — ez + ¢y
€new — edge
if (averaging) then N Ja_intedgeSinternals — edge
else N J_intedgeSinternals — edge
if (averaging) then
A<0
for i = 1 to new — 1 do
if (Active;) then A — A+ Dz — Dy
A= A(tn-2)

for : = 1 to new do
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if (i € Active) then Dinew — Diz —(Dry +1A)/2
else D;new — 0
else
for i = 1 to new do
if (i € Active) then Dinew < (Diz+ Diy — Dzy)/2
else Dipew < 0
fori=1to new—-1do
for j =i+ 1to newdo Dj; « D;;
fori=1to newdo D;; — 0
in —tn-1
internals — internals + 1
new + new +1
wrong <« 0
if (averaging) then
fori:=1ton-3do
ok < 0
for j=1ton-3do
if (intedges; = NJa_intedges;) then
ok « 1
break
if (ok = 0) then wrong — wrong +1
NJa_scoreyrong — NJa-scoreyrong + 1
else
fori=1ton-3do
ok — 0
forj=1ton-3do
if (intedges; = NJ_intedges;) then
ok — 1

break
if (ok = 0) then wrong « wrong +1

N J_scoreyrong — NJ_scoreyrong +1

end.
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Algorithm C.22 : ST

local variables:

Active[N],
edge,

i, 7, k1,
internals,
mazSup;
new,

ok,
sub[M],

Sup[N][N]),

wrong,

Y,
wrong « 0
internals «— 1
Active — {1,2,...,n}
new —n+1
fori=0to N —1do sub; «
sub, « 1

e1<—1

{ set of clusters which are available }

{ name of the new edge }

{ counters }

{ number of internal edges currently chosen }

{ maximum support found for a pair {z,5} }

{ label of the new cluster }

{ sub; = 1 if cluster i includes pendant vertex n,

0 otherwise. }

{ support for neighbouring pair {i,5} }
{ number of edges wrongly chosen by ST }

{ clusters chosen to form pair }

0

fori=2ton—-1do e; — 2 xei_

en — 2Xepn-1-1
internals « 1
while (internals < n — 2) do

11

while ((i < 2n) and (i ¢ Active))do i~ i+1

T 1

te—1+1

while ((i < 2n) and (¢ ¢ Ac
ye—1

mazSup « 0
fort=1to2n-2do
Supii — 0
forj=it+1to2rn—-1do

tive))do 1 —1i1+1
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Supi; — 0
Supji « 0
arbitrary «— 0
for i =1 to new — 2 do
if (¢ € Active) then
for j=i¢+1to new—-1do
if (j € Active) then
{ Get support Sup; ; for the pair {i,7}: }

for k =1 to new — 2 do
if ((k # ©) and (k # j) and (k € Active)) then
for {=k+1to new—-1do
if (I # ¢) and (I # j) and (I € Active)) then
if (Di; + Dy < Dix+ D;;) and (D;j + Dxg < Diy+ Djk))
then
Supi,; « Supi;+1
if (Sup;,; > mazSup) then
if (Sup; ; = mazSup) then arbitrary — arbitrary+ 1
else arbitrary — 0
T —1
ye—1J
mazSup — Supi ;
Active — Active — {z,y}
Active «— Active U {new}

{ifz ory « n, orif sub; or suby « 1, then subpey, «— 1: }

if ((z = n) or (y = n) or (sub; = 1) or (suby = 1)) then
Stubpeyw — 1

if (SUubnew = 1) then edge «— |ez — €,

else edge — ez + ¢,

€new +— edge

ST -intedgeSinternals — edge

for : = 1 to new do
if (i € Active) then D; e — (Dig+ Diy)/2
else D; ey — 0

for: =1 to new — 1 do

for j=i+1to newdo D;; — D;;
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fori=1to new do D;; « 0
internals «— internals + 1
new — new + 1
wrong < 0
fort:=1ton-3do
ok — 0
forj=1ton—-3do
if (intedges; = ST _intedges;) then
ok — 1
break
if (ok = 0) then wrong — wrong +1
ST _scorewrong — ST -scoreyrong + 1

end.
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Algorithm C.23 : UPGMA(version)

{ version = 0 for UPGMA, 1 for SL and 2 for TD. }

local variables:
ANV,
Active[N],
cs[N],
edge,
1,7,
internals,
minr,
new,
ok,
sub[M];

wrong,

I, Y;

if (version > 0) then
for:=1to ndo
for j=1ton do
else

for:=1to n do

{ the distance matrix used as input }

{ set of clusters which are available }

{ the number of pendant vertices in each cluster }

{ name of the new edge }

{ counters }

{ number of internal edges currently chosen }

{ handy temporary real number }

{ label of the new cluster }

{ temporary flag }

{ sub; = 1 if cluster i includes pendant vertex n,
0 otherwise. }

{ the number of edges UPGMA gets wrong }

{ clusters chosen to form pair }

A;j « tranD; ;

for j=1tondo A;; « D;;

wrong «— 0

if (version = 1) then

{SL}

fort=0to N —1do SL_intedges; « 0

else if (version = 2) then

{TD}

fori=0to N —1do TD.intedges; — 0

else

{ UPGMA }

for:=0to N —1do UPGMA_intedges; — 0

Active «— {1,2,...,n}

fori=1tondo cs; «1
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new «— n+1
fori=1to N —-1do sub; — 0
sub, — 1
e; — 1
fori=1ton—1do ¢ — 27!
en — 2771 — 1
internals — 1
while (internals < n - 2) do
11
while ((¢ < N) and (¢ ¢ Active))do ¢« i+1
T — 1
te—1+1
while ((i < N) and (i € Active))do i« 1+1
Yy—1
arbitrary «— 0
minrt «— Azy
for : =1 to new—-2do
if (2 € Active) then
forj=14+1tonew-1do
if ((j € Active) and (A;; < minr)) then
if (A; j = minr) then arbitrary — arbitrary+ 1
else arbitrary — 0
minr — A;;
T —1
ye—7J
Active — Active — {z,y}
Active «— Active U {new}
if ((z = n) or (y = n) or (subz = 1) or (suby = 1)) then
Stubpey — 1
if (Subneyw = 1) then edge — |lez — ey
else edge — e; +¢,
€new — edge
CSpew — CSz + CSy
if (version = 1) then

SL_intedgesinternals — €dge
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else if (version = 2) then
T D _intedgesinternals — €dge
else U PGM A_intedgesinternals — edge
for : =1 to new do
if (Active;) then
Ainew — (€Sz X Ajz +¢sy X Aiy)/(csz + csy)
else Ajnew < 0
for 1 =1 to new — 1 do
for j=i+1tonewdo A;; «— A;;
fori=1to new do A;; — 0
internals «— internals + 1

new «— new+ 1

wrong « 0
if (version = 1) then
fori=1ton-3do
ok <0
for j=1ton-3do
if (intedges; = S L_intedges;) then
ok —~ 1
break
if (ok = 0) then wrong « wrong + 1
SL_scoTewrong «— SL-scoreyrong + 1
else if (version = 2) then
for:=1ton-3do
ok —~ 0
forj=1ton-3do
if (intedges; = T D _intedges;) then
ok —~ 1

break
if (ok = 0) then wrong « wrong +1

TD _scorewrong — T D-scoreyrong + 1
else
fori:=1ton-3do
ok —~ 0
for j=1ton-3do
if (intedges; = U PGM A_intedges;) then



C.3. Functions used in sim.c

223

ok —~ 1
break
if (ok = 0) then wrong — wrong+1
UPGM A_scoreyrong — UPGM A_scoTewyrong + 1

end.
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Algorithm C.24 : TD(version)

{ SL (version = 1) and TD (version = 2). }

local variables:

dr[N],dr[N],

dmaz,

dmin,

i’j,k,
L[N], R[N],

tempsum,

z,Y,

-~

<ty

r[N];

{set up R and L: }

L—90
R<0
{ find most distant taxa: }

dmazr — -1
fori=1ton-1do
forj=14+1tondo
if (D;,; > dmaz) then

T — 1
y—17J
dmaz « D;;

L — {y}

R — {z}

L04—1

Rg — 1

for i =1 to n do

{ average distances between elements in L (or R)
and the other taxa }

{ Dzy }

{ current shortest distance between R (or L) and
any other taxon }

{ counters }
{ sets of taxa to the left and right of the root (the

cardinality of each is in the zero-th place of the

array) }

{ the two most distant taxa }
{ the taxon to be added to R or L }
{ the residue of extra changes picked up by each

taxon, as estimated by differences in dr; and
dr,i }
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dpi « D,
dr; — Di-
if (version = 2) then
while ((Ro + Lo) < n) do
dmin «— dmaz + 1
fori=1to n do
if((t¢ R)and (: ¢ L)) then
if (dr,; < dmin) then
ze—1
dmin « dr;
k0
if (dr,i < dmin) then
ze—1
dmin « dp;
k<1
if (k > 0) then
R — RU{z}
Ry — Ro+1
for:=1to ndo
if (R;) then dp; — 0
else
tempsum — 0

for 7=1tondo
if (R;) then tempsum « tempsum + D, ;
dr; « tempsum/Rg
else
L—~Lu{z}
Lo~ Lo+1
forz=1to ndo
if (1 € L) then dp; — 0
else
tempsum < 0

for j=1tondo
if(j € L) then tempsum — tempsum + D, ;
dp; « tempsum/Lg
else

fori=1to n do
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if (D;,; < Dy,;) then
R — RU {s}
Ro — Ro +1
else
L — Lu{i}
Lo — Lo+1
fori=1tondo
if (1 € L) then r; — dr;i —dr,
elser; —dp;—drz
for i =1tondo
for j=1to ndo tranD;; « D;;—r;—r;
for i =1tondo tranD;; «— 0
UPGMA(version)

end.
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C.3.2 Search methods

Algorithm C.25 : CT(v, distances, use_H adamard)

{ distances = 1 if the input vector is inferred from the distance matrix D, 0

otherwise.

use.Hadamard = 1if the Hadamard conjugation method is used, 0 otherwise. }

local variables:

b, { the best possible value for A? with the current
edge set S }

bestS[N], { the set of edges which gives the best A? value }

bound, { the best value found for A? with a fully resolved
tree }

1,5, %, Y, { counters }

essentials, { the sum of the inferred edge lengths of the pen-

dant vertices }

fized, { number of “good” edges in S }
gen_bound, { the A? value for the generating tree }
ok, { flag for edge label comparison }
optimal, { flag }

sum_gs-in_S[N],

sum_g2s_in_S[N],

wrong; { number of edges CT gets wrong }
if (distances) then

fori=1ton —-3do CTDH _intedges; — 0
else if (use_Hadamard) then

fori=1ton -3do CTSH_intedges; — 0

else
fori=1ton -3do CTSO_intedges; — 0
vp—0
fori=1tom—-1do
h; « v;
Vo — Vo — V;
ho — =1
fori=1tom—1do h; « v;
te—1

while (1 < m) do
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hi — =1
i1e—2x1
hpmo1 — —1
sort_vector_descending(h, opos)
51 «~ 1
bestS; — 1
sum_gs_inSg — 0
sum_g2s_in_Sg «— 0
fori=1ton—-3do
sum_gs_in_S; «— sum_gs_in_Si—1 + Vintedges,
sum_g2s_in_S; — sum_g2s.in_Si—1 + (Vintedges; )°
essentials — 0
11
while (i < m) do
essentials — essentials + v;
t—2x1
essentials — essentials + vy,_1
essentials «— essentials + vg
gen_bound — sum_g2s_in_S, _3
— ((sum-_gs-in_Sn_3 + essentials)?)/(2n — 2)
{ get greedy tree: }

fori=2ton-3do
je—1
while (compat(opos(j),i—1,5)=0)do j— j+1
Si—13j
bestS; «— 3
sum_gs_in_Sqg «— 0
sum_g2s.in_Sg — 0
fori=1ton-3do
sum_gsin.S; — sum-gs_in_Si—1 + Vopos(S;)
sum_g2s_in_S; «— sum_g2san.Si_1 + (vopos(S.))2
bound — sum_g2s_in_S,_3 — ((sum-gsin_S,_3 + essentials)?)/(2n — 2)
bound «— gen_bound
optimal — 0
fized — n—4
while (optimal = 0) do
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k — fized+1
while ((k < n-3)and (k >0)) do
j—k
do
g —g + &
if (k = 0) then b — — (essentials?)/(2n — 2)
else
b — sum_g2sin_Sk_1 + (n — k — 2) X vgpos(j)
—(sum_gs_in_Si_1+ (n— k = 2) X vop05(j) + essentials)? /(2n — 2)
if (b > bound) then y — compat(opos(j),k—1,5)
elsey — 0
while (b > bound) and (j < m) and (y = 0) and (v,pos(j) > 0)
if ((b > bound) and (j < m)) then
Ske—13J

sum_gsin Sk — sum_gs_in_Sk_1 + Yopos(j)

2

sum_g2sin.S, — sum_g2sin_Sk_1 + Vopos()

if (k >n—3) then
bound «— b
forz =1ton—-3do bestS: — Sz
k—k+1
if ((b < bound) or (k > n—3)) then
fized — fized — 1
forz = fized+1to N —-1do Sz «~ 0

break
if (fized < 0) then optimal — 1

if (distances) then

fori=1ton—-3do CTDH _.intedges; — opos(bestS;)
else if (use_Hadamard) then

fori=1ton—3do CTSH_intedges; — opos(bestS;)
else

fori=1ton -3 do CTSO.ntedges; — opos(bestS;)
wrong «— 0
fori=1ton-3do

ok — 0

forj=1ton-3do

if (intedges; = opos(bestS;)) then
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ok — 1

break
if (ok = 0) then wrong — wrong + 1

if (distances) then

CTDH _scoreyrong — CTDH _scoreyrong + 1
else if (use_Hadamard) then

CTS H _scoreyrong — CTSH _scorewrong + 1
else

CTSO_scorewrong — CTSO scoreyrong + 1

end.
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Algorithm C.26 : Co(v,distances,use_Hadamard)
{ distances = 1 if the input vector is inferred from the distance matrix D, 0

otherwise.
use-Hadamard = 1 if the Hadamard conjugation method is used, 0 otherwise. }

local variables:

b, { the best possible value for Q with the current
edge set S }

bestS[N] { the set of edges which gives the best sum of
estimated edge lengths }

bound, { the best value found for Q with a fully resolved
tree }

L,k 2,9, { counters }

fized, { number of “good” edges in S }

gen_bound, { the Q value for the generating tree }

ok, { flag for edge label comparison }

optimal, { flag }

sum_gs-in_S[N],

wrong, { the number of edges Co gets wrong }

ho — — vg

fori=1tom—1do h; « v;
11
while (i < m) do
hi « =1
1e—2X1
hpmo1 —~ —1
sort_vector_descending(h,opos)
gen_bound — 0
fori=1ton—-3do genbound — gen.bound + Vintedges;
if (distances) then
forti=1ton—-3 do CoDH_intedges; — intedges;
else if (use_H adamard) then
fori=1ton -3 do CoSH_intedges; — intedges;
else

fori=1ton -3 do CoSO.intedges; — intedges;
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{ Get greedy tree in terms of positions in opos: }

S <1
j—2
fori:=2ton-3do
while (compat(opos(j),i—1,5)=0)do j— j+1
Si—1]
bestS; «— j
sum_gs_inSg — 0
fori=1ton—3do sum_gsin.S; «— sum_gsin_S;_1 + Vopos(S;)
bound — sum_gs.in_Sn_3
if (gen_bound < bound) then bound — gen_bound
optimal — 0
fized — n —4
while (optimal = 0) do
k — fized
arbitrary — 0
while (k > 0) do
j—k+1
do
jei+1
if (k=0) then b « Yopos(j)
else b — sum_gs.in_Sk_1 + (n — 3 — fized) X vopos(j)
if (b > bound) then y «— compat(opos(j),k—1,5)
elsey <0
while (b > bound) and (j < m) and (y =0)
if ((b > bound) and (j < m)) then
Sk =13
sum_gsin Sk «— Sum_gsin_Sk-1 + Vopos(;)
if ((k = n — 3) and (comparesets(lastS,S,n— 3) > 0)) then
fori=1ton—-3do lastS; — S;
b — sum_gsin_ Sy
bound « b
forz =1ton—-3do bestS: — S;
ke—k+1
if ((b < bound) or (k> n —3)) then
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fized — fized — 1
break
if (fized < 0) then optimal — 1

if (distances) then

for : =1 ton—-3do CoDH_intedges; — opos(bestS;)
else if (use_Hadamard) then

fort=1ton—-3do CoSH_intedges; — opos(bestS;)
else

for t=1ton -3 do CoSO_intedges; — opos(bestS;)
wrong « 0
fori:=1ton-3do

ok — 0

forj=1ton-3do

if (intedges; = opos(bestS;)) then
ok — 1

break
if (ok = 0) then wrong «— wrong + 1

if (distances) then

CoDH _scoreyrong — CoDH _scoreyrong + 1
else if (use_Hadamard) then

CoSH _scorewrong — C0S H-scoreyrong + 1
else

Co50 scoreyrong — CoSOScoTeyrong + 1

end.
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Algorithm C.27 : set_up first_tree(A)
{ A is the array into which we shall put the pointers describing the first tree.

The first tree is the tree on the three pendant vertices n — 2, n — 1 and n. }

local variable: i; { counter }
fori=1to2ndo A; — 0

A, —n+1

Apoy —n+1

An_ 3 —n+2

Any1 —n+2
Apy2 «— n

end.

Algorithm C.28 : add-taxon(tazon, position, A, new_node)

{ tazon is the label of the pendant vertex which we are adding to the tree de-
scribed by the array A. position is the insertion point of tazon, and the label
of the new internal vertex thus created is new_node. }

Atazon — new-node

Anew_node — Aposition

Aposition — new_node

end.

Algorithm C.29 : remove_taxon(tazon, position, A, node)

{ tazon is the label of the pendant vertex to be removed, and node is the internal
vertex which must be removed also. Vertex position is directed towards node
also. }

Aposition — Anode

Atazon — 0

Anode — 0

end.
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Algorithm C.30 : convert_edges_to_tree(edge_set,treearray)
{ edge_set is the set of internal edge labels of a tree T, and tree_array is the

array of pointers which will describe T'. }

local variables: 1, j; { counters }
fori=1ton-1do §; — 2!
fori=1ton—-3do Sn_i4+i — edge_set;

{ Sort the edge labels in S in ascending order: }

for :=nto 2n -5 do
forj=i+1to2n-4do
if (§; > S;) then §; — §;
Son-3 — m~—1
for i =1to 2n — 4 do tree.array; « 2n — 2
for j = 2n — 3 down to n do
for i=j—1down to 1 do
if ((S; AND S;) = S;) then tree_array; — j+1
tree_arrayzp—2 «— n
for i = 2n — 3 down to n+ 1 do tree.array; « tree_array;_i
tree_arrayn «— 0

end.
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Algorithm C.31 : convert_tree_to_edges(tree_array, edge_set)
{ tree-array is the array of pointers which describe as tree T, and edge_set is
the set of internal edge labels of T. }

local variables:

A[N][2], { matrix of pointers and edge labels }
edges_found, { number found so far }
4, J; { counters }

fori=1to N -1do
edge_set; — 0
A1 <0
Aio—0
fori=1to 2n—1do A;; < tree.array;
fori=1tondo Ajp« 2!
11
for edges_found =1 ton —3 do
while ((Adip=0)and (<2n—-1))do i—i+1
if (2 < 2n) then
je—1i1+1
while ((4j1 # Aij) and (j < 2n))do j« j+1
if (Ajo=0)then :—i+1
else
Api 0 — Aip+ Ajo
edge_setedges_found — Aio + Ajo
Aip — Ajo 0
edges_found « edges_found + 1
t—1
end.
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Algorithm C.32 : Fitch(A, nodes, v, bound)

{ This function returns the parsimony length of the input tree described by A,
up to the size of bound. As soon as the length exceeds bound then this length
is returned.

A is the array of pointers to vertices which describes the tree, and Ag is the
cardinality of A. All edges are directed to the root at taxon n.

nodes is the number of vertices in the tree described by A. v is the vector of
bipartition frequencies used. bound is the maximum desired parsimony length
of the tree described by A: if the length is larger than bound, we are not
interested in the tree anyway. }

local variables:
1, J, a, b, nodes.assigned, k,

{ counters }

assigned[N|[M], { the characters assigned to the internal nodes of
the tree }

Ftree[N], { internal storage of the tree described by A4 }

length; { the overall parsimony length of the tree }

for i =0to 2n-2do
for j = 1 to num_bips do assigned;; «— 0
Ftree; — A;
k<20
fori=1ton-1do
if (Ftree; > 0) then
for j = 1 to num_bips do
if (opos(j) AND 2(-1)) then assigned; ; — 2
else assigned; ; — 1
k—k+1
for j = 1 to num_bips do assignedn; « 1
length — 0
nodes_assigned «— 0
while ((nodes_assigned < k — 1) and (length < bound)) do
te—n+1l
while ((i < n+ 1) and (length < bound)) do
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a«—1
while ((a < nodes) and (Ftree, # t))do a — a+1
b—a+1
while ((b < nodes) and (Ftree, #i))do b —b+1
if ((b < nodes) and (Ftree, = 1) and (Ftree, = 1)
and (assigned,,;) and (assignedy;)) then
je1
while ((j < num_bips) and (length < bound)) do
assigned; ; — assigned, ; AND assigned, ;
if (assigned; ; = 0) then
assigned; ; — 3
length — length + v,p0(5)
Je—J+1
Ftree, < 0
Ftree, — 0
nodes_assigned — nodes_assigned + 1
te—14+1
11
while ((i < nodes) and (Ftree; # n))do ¢~ i+1
j <1
while ((length < bound) and (5 < num.bips)) do
if ((assigned;; AND assigned, ; = 0)) then
length «— length + v,p04(j)
return (length)

end.
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Algorithm C.33 : MP(v,distances, use_Hadamard)

{ v is the input vector of bipartition frequencies, with or without the Hadamard

conjugation, determined by use_H adamard.
Another branch and bound method for MP has been given by Penny and Hendy

(67]. }

local variables:
w[M],
bound,
length,
gen_length,

tazon,
new_node,

nodes,
optimal,
insert_pos[N],
4, J,

tree[N],

num_tied_trees,

best_tree[N];
bound «— n x c

num_tied_trees «— 1

{ temporary vector, used when sorting }

{ current shortest length of a tree }

{ current Fitch (minimum) length of the tree }

{ length of generating tree }

{ number of the taxon we’re adding, initially n —
4}

{ label of the new internal vertex we create by
inserting a taxon }

{ number of nodes in the current tree }

{ flag to tell when to stop }

{ current position of insertion of each taxon }

{ counters }

{ array of pointers to nodes }

{ number found so far with same smallest length:
redundant, should be removed }

{ best tree found so far, up to ties }

convert_edges_to_tree(intedges, tree)

for : =1to 2n — 2 do best_tree; «— tree;

for:=2n-1to N-1do
tree; — 0

best_tree; — 0

fori=0tom-1do w; « v

fori=1ton-1do
j‘—2i_1

wj — —1
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Wyp-1 & — 1
sort_vector_descending(w, opos)
num_bips — number_of_bipartitions

nodes — 2n — 2
new_node — 2n — 2 { = number of nodes in complete binary tree }

bound — Fitch(tree, nodes, v, bound)

gen_length — bound

set_up first_tree(tree)

tazon — n—3 { begin by including this taxon }
insert_poSgazon — N+ 1 { insert in positions in decreasing order }

nodes «— n + 2

new_node — n + 2 { the name of the new node we’ll create by the

insertion }
fori=1ton—4 do insert_pos; — 2n—2—1

optimal « 0
if (genlength < bound) then bound — gen_length
while (optimal = 0) do
length — Fitch(tree, nodes, v, bound)
if (length < bound) then
if ((tazon = 1) and (length < bound)) then
for i =1to 2n— 2 do best_tree; — tree;
bound ~ length

{ Now we need to get the next tree: }

if ((length > bound) or (tazon = 1)) then
while ((insert_posizon = tazon + 1) and (tazon < n - 2)) do
remove_taxon(tazon, insert_poSiaron, tTee, IT€€ta1on)
tazon « tazon + 1
if (tazon = n — 2) then optimal — 1

else
new_node +— 2n — 1 — tazon

if (insert_postazon > tazon + 1) then
remove_taxon(tazon, insert_posiazon,tree,treeazon)

do
tnSert_poSiaron — INSETL_POStaron — 1

while (tre€insert_posiazon = 0) and (insert_posiazon > tazon + 1)
add-taxon(tazon,insert_postazon, tTee, new_node)

else
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tazon «— tazon — 1
nodes — new_node — 2n — 1 — tazon
insert_posiaron — 2n — 2 — taron

do

INSert_poSiazon — INSETL_POStazon — 1
while (treeinsert_posiazon = tazon + 1) and (insert_posiazon > tazon)
add_taxon(tazon, insert_posizon, tree, new_node)
if (tazon = n - 2) then optimal — 1
if (distances) then
convert_tree_to_edges(best_tree, M PD H _inted ges)
i «— compare_sets(M PDH _intedges, intedges,n — 3)
MPDH _score; — MPDH _score; + 1
else if (use_Hadamard) then
convert_tree_to_edges(best_tree, M PS H _intedges)
t — compare_sets(M PS H _intedges, intedges,n — 3)
M PSH _score; — MPSH _score; + 1
else
convert_tree_to_edges(best_tree, M PSO_inted ges)
1 «— comparesets(M PSO_intedges, intedges,n — 3)
MPSO_score; — MPSO_score; + 1

end.
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C.4 DMain program structure of sim.c

Algorithm C.34 : sim.c

local variables:

topnum,

mpl,

mplmin, MPlmaz,
maz_path_length,

ratio,

ratiom,'n 5 T7ati0maz,
er,

€Tmins €Tmaxz

amal,

amalmin, amalnqr,
len,
lenmin, lenmes,

cl, c2,

Tun, i,
a, b,

ok_trials;

read in run-time arguments

{ denotes the topology number }

{ maximum path length descriptor }

{ range of mpl }

{ upper bound on maximum number of expected

character state changes between any two taxa }
{ descriptor for (max. internal edge

length)/(max. pendant edge length) }

{ range of ratio }

{ sequencing error rate descriptor }

{ range of er }

{ proportion of data to come from a second gen-
erating tree T3 }

{ range of amal }

{ sequence length descriptor }

{ range of len }

{ sequence lengths for generating trees 7} and
T; }

{ counters }

{ logical flags }

{ number of trials in which all methods could be

used }

for topnum = topnump;, to tOPNUMye, dO

for mpl = mplyin to mply,, do

maz_path_length — rough_exp(mpl) x 0.0035

for ratio = rationin to ratiom., do

a — rough_exp(ratio) x 0.05

for er = eTmin tO €Tmar do

if (reading_errors) then

reading_error_rate — rough_exp(er)/10000

else reading.error_rate — 0

for amal = amaly,;, to amaly,,, do
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for len = lenmin to lenmqez do
c2 — amal X ¢
cl —c—c2

for run = 1 to tests do
choose_topology(topnum, intedges)

random_.edge lengths(intedges, q1)
HexpH(ql,s)
sample_bipartitions(cl, reading_error_rate, s, obs)
if (amal > 0) then
do
choose_tree(n, inted ges2)
while compare_sets(intedges, intedges2,n — 3) = 0
random_edge_lengths(intedges2, q2)
HexpH(q2,s)
sample_bipartitions(c2, reading_error_rate, s, obs2)
fori=0tom —1do obs; « obs; + 0bs2;
num_bips — number_of_bipartitions()
a — HlnH(obs,g)
b — bipartitions_to_distances(obs)
if ((a > 0)or (b > 0) or (num_bips =0)) then
if (a > 0) then djegative — dnegetive + 1
if (b > 0) then d,.., — dsero + 1
else
if (Correctdistances() > 0) then dinfinite — dinfinite + 1
if ( using any Distance Hadamard methods ) then
get_distancespectrum
ok_trials — ok_trials +1

Do methods
print scores

Zero scores

end.
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C.5 Functions used in big.c

Algorithm C.35 : get_bif_times(output_bif_time)
{ output_bif_time is an array of the bifurcation times of each of the internal
vertices of Tg. }

local variables:
1,7, { counters }

random([N], { temporary array of random numbers }
for:=1to n—-1do random; «— random

fori=1ton—-1do
forj=:4+1tondo

if (random; > random;) then random; — random;

output_bif timeg,_1 « 0
randomg «— 0
fori=1ton-2do

output_bif_timesn—_1-i — output_bif_timea,_;

+ (random; — random;_;)/(i + 1)

for i =2n downton+1 do

output_bif_time; — output_bif_time; x dtf[output_bif_time,4,
for i =1 to n do output_bif_time; — 1

end.

Algorithm C.36 : ones_count(z)

local variables: i, ones { counters }
ones «— 0

for:=1 to n do
if (z[i{] AND (2-1)) then ones — ones + 1

if (2 X ones > n) then ones — n — ones
return (ones)

end.
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Algorithm C.37 : get_whole_tree

local variables:

7, { counters }

perm[N], { temporary array of (1,...,n — 1), permuted }
labels[N], { array of permuted taxon labels }
temp_tree[N2], { in pointer form }

bif_time[N2]; { bifurcation times of nodes 2n — 1,...,n+1 }

get_bif_times(bif_time)
permute(n — 1, perm)
permutation_to_tree(perm, tree)
permute(n, labels)
for : = 1to ndo temp-tree; « treegpeis(i
for : =1 to ndo tree; — temp_tree;
for i =1to 2n—-2do
forj=i+1to2n-1do
if (tree; = j) then
mean_edge_length; ; — (bif_time; — bif_time;) X ot
case sampling_method of
1: { uniform distribution }
for:=1to 2n — 2 do
forj=i14+1to2n-1do
if (tree; = j) then
do
edge_length;; — sample_uniform(mean_edgelength;;,
var X mean_-edge_length; ;)
while edgelength;; < 0
break
2t { normal distribution }
fori=1to 2n-2do
forj=t+1to2n-1do
if (tree; = j) then
do
edge_length;; — sample.normal(mean_edgelength;;,

var X mean_edge_length; ;)
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while edge_length; ; <0
break
3: { log-normal distribution }
fori=1 to 2n — 2 do
forj=14+1to2n-1do
if (tree; = j) then
do
edgelength; ; — samplelog-normal(mean_edge length,; ;,
var X mean_edgejength.-,j)
while edge length; ; < 0
break
default: break

end.
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Algorithm C.38 : grow_data

{ EV is the first matrix in the diagonalization of TM, and diag is the set of

four eigenvalues of TM. diag, is always 1. }

local variables:
5k,
T,
edge_prob[N2][N2],
Diag,

for:=1 to 4 do

{ counters }

{ temporary real number }

{ matrix of edge lengths }

{4 x 4 matrix whose diagonal entries are the
entries of diag and the off-diagonal entries of
which are zero. }

{ temporary 4 x 4 matrix }

{ transition matrix for an edge }

{ matrix of sorted components of M, to speed up

sampling. }

for j =1 to4do Diag;; «— 0

Diag1y < 1

for : = 2 to 4 do Diagi; — exp(—diag;)

{ fix the root distribution: }

je—2n-1
fori=1tocxmy do

character;; « 1

fori=cxmg4+1tocx(mq+7c)do

character;; « 2

fori=cX (rp+7c)+1tocX(mq+ nc+7g)do

character;; «— 4

fori=cx(mga+7mc+7g)+ 1 tocdo

character;; — 8

for k =2n—-1down to n+ 1 do

fori=k —1down to 1 do
if (tree; = k) then

{ i.e., there exists the edge {7, k} }

{ Find the product EV(Diag*)(invEV): this gives the transition matrix

for the edge. }

for j =2to4do

{ note that Diag;; =1}



248

Appendix C. Pseudocode

Diagj; — ezp(—diag; x edgelength; ;.cc(;))

tempM « Diag X invEV
M « EV x tempM

{ Rank the components of M into C to speed up the sampling process: }

Ci1 < My, Ci2 «— Ci1a + My 3;
Ca2 «— M3y, Cay «— Ca2+ May;
C33 « Ms3z3; C31 « C33+ Ma;;
Caq — Myg; Ca1 — Cyqa+ My,;

Ci3—Cia+ M3
Ca3 — Cynp+ M3
C3z2 +— C31+ M3,

Cia2 — Cqn + My

Ciq4 ¢ Cayq—Cz4—Cy31
for j=1tocdo

T «— random

case charactery ; of

1:

if (r < Cy,1) then character;; — 1

else if (r < Cy2) then character;; — 2
else if (r < Cy3) then character;; — 4
else character;; — 8

break

if (r < C32) then character;; — 2

else if (r < C;,1) then character;; — 1
else if (r < Cy3) then character;; — 4
else character;; — 8

break

if (r < C33) then character;; « 4

else if (r < C31) then character;; « 1
else if (r < C33) then character;; — 2
else character;; — 8

break

if (r < C44) then character;; « 8

else if (r < C4,1) then character;; « 1
else if (r < C42) then character;; « 2
else character;; « 4

break
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default: break

end.

Algorithm C.39 : generalJC
{ This is a generalised version of the Jukes-Cantor distance correction, allowing

for different character state frequencies between two taxa [91]. }

local variables:

i7j7 k’ { counters }
b, { temporary real number }
fIN][4], { observed frequency of each of the character

states in the sequences }

td(4]; { temporary array of real numbers }

{ Obtain observed frequencies: }

fori=1ton-1do
forj=1tod4do fij —0
for j=1tocdo
if (character;; = 1) then f;; « fi1+1
else if (character;; = 2) then fi; — fio+1
else if (character;; =4)then fi3« fiz+1
else fiq — fia+1
forj=1tod4do fi;« fij/c
fori=1ton-1do
for j=i¢4+1ton do
for k=1to 4 do tde — (fix+ fik)/2
b — 1-td?—td3—td3 - td?
if (D;,; < b) then
D;; — -bxlog(l—D;j;/b)
Dj;i « Di;
else
D;; — BIG
Dji — Di;

end.
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C.6 Main program structure of big.c

Algorithm C.40 : big.c

local variables:

n, { number of taxa }

Nmins Nmaz, { range of n }

ot, { expected overall ‘time’ from root of tree to pen-
dant vertices }

Olmin, Olmaz, { range of ot }

dtf { ‘divergence time factor’, the proportal time at

which the last bifurcation event is expected to

occur }
dt fmin, dtfmaz, { range of dtf }
var, { descriptor for variance of edge length probabil-

ity distribution }

VAT mins VATmaz, { range of var }

len, { sequence length descriptor }
lenmin, lenmaz, { range of len }

c, { sequence length }

run; { counter }

read in run-time arguments
invEV — EV~!
detEV «— det(EV)
for n = npip to Npgz in steps of niy, do
for ot = otp;n tO Olmaz in steps of otinc, do
for dtf = dtfmin t0 dtfmas in steps of dtfiner do
for var = var,,;, to varmg; in steps of varin, do
for len = len,;, t0 lénmq in steps of lenin.r do
¢ « rough_exp(len)

for run =1 to test do



C.6. Main program structure of big.c

get_whole_tree
convert_tree_to_edges(tree, intedges)
grow_data
sequences_to.distances
if (stdJC) then JukesCantor
else if (genJC) then generalJC
Do methods

print scores

zero scores

end.
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Appendix D

Dangers of Computer Simulation

Never worry about theory as long as the machinery does what it’s sup-

posed to do.
[Robert A. Heinlein|

It seems appropriate that some of the problems and caveats that I have en-
countered while conducting these experiments should be described. There are a
great many simulation studies in the literature, which have already been cited in
the body of this thesis, but little is said about the computations themselves; for
example, how ties were resolved, the eftect of rounding error, the amount of time
required, and so on.

Hence in this section I outline some of these potential problems, and some of

their remedies.

D.1 Tied Decisions

Problem: Consider a clustering method ‘A’, which works by clustering together
groups of taxa until there is just one cluster. It checks, at each clustering stage,
all the potential pairs of clusters to see which is the “best” in some sense. This
equates to evaluating some function on the pairs and maximising it.

However, if there is more than one pair that maximises the function, some
choice has to be made between them.

Most program loops to do this will take the form shown in Algorithm D.1,

below.
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Algorithm D.1 : Typical loop to find {z,;} to maximise f(z,)

fori=1ton-1do { n is the number of clusters }
forj=:4+1tondo
evaluate f(z,7)
if (f(7,7) is better than anything previously found) then
best_pair — {1,5}
best_function_value — f(z,7)

end.

So if we had decided to accept only those pairs {¢,;} for which f(z,j) was
strictly greater than our previous best, in the event of a tie we would keep the first
pair we found.

If on the other hand we accepted as our best option a pair {z,7} for which
f(Z,7) equals our previous best, in the event of a tie we would end up with the last
pair.

Another alternative might be that we choose arbitrarily between them using a
random number generator, but this has drawbacks too: it introduces indeterminacy
into the method.

One way around the problem for clustering methods may be to build up trees
in parallel, being abandoned if they are found to give ‘worse’ solutions than others.

This has not been implemented in this study.

The order in which the taxa are labelled obviously has a strong effect on the
resulting tree, particularly for those input data sets which can take only a small
number of values, and can give spurious results:

Consider the generating tree T in Figure D.1, in which the pendant vertices are
labelled 1,2,...,8. Suppose the loop used for the clustering methods was of the
form given above, taking the first pair {1,7} of taxa if subsequent pairs do not give
strictly greater values for f. Suppose also that the sequence lengths were small, so
that the number of possible distance values between any two taxa was also small.
In this case tied decisions would occur comparatively often. The first pair upon

which f would be evaluated is {1, 2}, which would have a finite probability of giving
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at least as high a value of f as any other subsequently considered pair, so there
would be a definite bias toward producing the correct initial cluster {1,2}.
This effect did give biassed results, as in the first implementation of the simu-

lation program sim.c the generating trees had fixed labelling schemes.

N -/
ERRE

2 T

Figure D.1: An example labelled tree

Remedy: The effect was countered by pseudo-randomly permuting the labels of

the pendant vertices before constructing the generating tree.

D.2 Rounding error

Problem: Computers do not know that two numbers are theoretically equal: if
the computational paths to two theoretically identical floating-point numbers are
different, rounding error is almost certain to render them different.

Suppose method M works by counting up the number of times d;; + di; is
strictly less than d;x + d;; and clusters together {7,;} if it maximises this count.
Whereas d,; + d,,; may equal d,, + d; ., in all likelihood they will be different,
thus spuriously affecting the count.

For example, having proved the two methods NJ and CTDH were identical
when n = 4, it was surprising to discover that they performed differently. This was
because of rounding error; the actual calculations were different (though theoreti-

cally equivalent), so came up with different numbers.

Remedy: One suggested stratagem for dealing with this problem is to use a
somewhat looser definition of equality, in the context of computer calculations.
This would have to take into account the maximum size, say 6 of the rounding
errors, and call two numbers ‘equal’ if their difference is less than 6.

In this study however the technique was simply to use the highest precision
available: 48-bit floating point numbers. Though memory requirements are con-

commitantly larger, this is not a major problem in most cases. (Note that using
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variables of this type, “double”, actually requires less computing time for basic
mathematical operations than is required for the 24-bit floating-point numbers of
type “float”. This is because the variables of type float are converted anyway

to type double before the operations are carried out.)

D.3 Programming errors

Problem: It is not always easy to detect program errors. One reason is that it is
easily possible for a program to perform “as expected”, and thus close inspection
of the operation of the program is not seen as necessary. This close inspection is
not easy either: when the programs are of the order of 100 kbytes long, detecting
‘bugs’ is difficult, and when the output data sets are of the order of 100 kbytes
to 1000 kbytes in size, closely investigating and checking them is in many cases
impossible.

Also, the results of simulation experiments like this one are published without
explicit descriptions of their implementation, which makes checking of published

results by other researchers impossible.

Remedy: One obvious remedy is to take ever more care when using computer
programs, checking their operation is correct, whether or not they are operating
‘as we expect’. This is of course time-consuming, but must be done, even when the
results seem ‘normal’.

Another way in which simulation experiments can be made more reliable is for
the programs to be explicitly described, in an algorithmic form, rather than, as I
have seen in more than one case, where the ‘algorithm’ is ‘described’ by a single
example [93]. For this reason the pseudocode for the algorithms used in this study

has been included.
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