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ABSTRACT 

This thesis presents a study of the coordination chemistry, chemical reactivity, 

spectroscopy, structure and bonding of the hybrid polydentate ligand 

2-( diphenylphosphino )-N-[2-( diphenylphosphino )benzy lidene] benzeneamine (PN CP) with 

copper(!), silver(!) and sulfur. The hybrid polydentate (PNCP) ligand contains two 

inequivalent phosphorus (soft) and one nitrogen (hard) donor atoms, 

Chapter One is a brief overview of tertiary phosphines used as monodentate, bidentate, 

tridentate and polydentate ligands with transition metals. 

In Chapter Two, the preparation strucnrre and characterisation of PNCP have been 

studied. Reactions of PNCP with sulphur have been investigated and a small site 

selectivity for one of the P atoms noted. Experiments have also included selective 

synthesis of the unsymmetrical mono-sulphide tertiary phosphine ligands SPNCP, PNCPS 

and of the di-sulfide SPNCPS ligand, as well as a study on the molecular structure of the 

3-coordinate complex, [Cu(SPNCPS)]Cl04 • 

In Chapter Three the preparation of a series of copper(!) complexes of the general 

formula [Cu(PNCP)Cl04] and [Cu(PNCP)L]Cl04 (L- ligands containing S, N donor atoms) 

have been reported. The crystal structure of [Cu(PNCP)Cl04 ] has been determined, and 

shows PNCP acts as a tridentate ligand coordinated to copper(!) via two phosphorus and 

one nitrogen donor atoms. The copper(I) atom has a distorted tetrahedral environment with 

two short Cu-P bonds and a slightly long Cu-N bond. 

In Chapter Four, studies on the preparation of the mononuclear complex 

[Ag(PNCP)Cl04] and the dinuclear complex [Ag(PNCP)(SCN)Ji are presented. Both 

complexes were characterized by a variety of physicochemical techniques. The tridentate 

behaviour of PNCP in the complex [Ag(PNCP)Cl04] was established but the Ag-N bond 

was long and weak. In the complex [Ag(PNCP)(SCN)h the Ag-N bond not exist and 

PNCP acts as a bidentate ligand. 
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CHAPTER ONE 

GENERAL INTRODUCTION 

Tertiary phosp~ines are excepent ligating agents to metal ions and transition metals in a 

variety of oxidation states and are important constituents of compounds for application as 

catalysts (e.g. Wilkinson's catalyst), structure bonding relationships, spectroscopic studies, 

and chemical bonding with the chalcogenides and halogens. Since additional functional 

groups can enhance this coordination ability great scope exists for the development of 

metal extraction chemistry and catalysts [I]. 

1-1 THE CHEMISTRY OF PHOSPHINES 

A characteristic of all PR3 compounds is the presence of a lone pair of electrons on P. 

These compounds therefore can be both bases and nucleophiles. The P is of greater size 

and lower electronegativity than nitrogen, hence its higher polarizability and nucleophilic 

reactivity in comparison with analogous nitrogen containing compounds. In addition P has 

the ability to expand its valence shell to ten electrons and thus trivalent phosphorus 

compounds can also behave as electrophitJes. However, electrophilic reactivity is generally 

found only for PR3 compounds containing electron-withdrawing substituents (e.g. Cl, F) 

[2]. 

The high nucleophilic reactivity of tertiary phosphines, which form strong bonds with C, 

N, 0 or S has led to their becoming a widely used class of reagents in organic synthesis 

(Table 1-1) [3]. 

1-2 MET AL PHOSPHINE COMPLEXES 

Tertiary phosphines are the most commonly encountered ligands in transition metal 

complexes. The PR3 ligand forms complexes with nearly every transition metal [4]. 

The metal-phosphorus bond distance is reported to vary from 2.15A to 2.55A [5]. The 

bonding is thought to include back-donation of electron density from a metal d orbital to 

an unoccupied ligand orbital of appropriate symmetry [6]. However, it has been argued 

that, although there is little role for back-bonding in aliphatic or aromatic phosphine 

complexes, such bonding is important for complexes of PF3 and phosphites [6-8]. Orpen 

and Connelly [9] examined the metal-phosphorus and the phosphorus-substituent atom 
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bond lengths in the crystal structure of a series of transition metal complexes. They 

reasoned that if the back-bonding was occurring into cr* orbitals, then the bonds to the 

phosphorus substituents would be weakened. They found that indeed there was a 

correlation between M-P bond strengthening and P-X bond weak<?ning as measured by 

bond length. The issue of 1t-bonding is still not resolved but it has been suggested that 

bonding falls into two groups: 

(1) Metals in oxidation state Il or higher form essentially pure cr bonds with PR3 

ligands. 

(2) Metals in oxidation state O or below form combined cr and 7t bonds to PF3, PC13 

and P(OPh)3• 

For other complexes the tendency for 1t-bonding to occur will be greatest for metals in 

low oxidation states. The ability of phosphines to stabilise low oxidation states is an 

important feature of their chemistry [2]. 

Table 1-1 Phosphorus bonds energies (kJ mo1·1
) 

Bonding E Bonding E 

P-H 323 P-F 529 

P-C 273 P-Cl 332 

P-N 231 P-Br 265 

P-O 361 P-1 185 

P=O 546 

P=S 378 

1-3 TERTIARY PHOSPHINE REACTIVITY WITH SULPHUR AND OXYGEN 

Tertiary phosphines PR3, can be considered as derivatives of the phosphine molecule, 

PH3, and these molecules can add oxygen and sulphur to give the tetrahedral phosphine 

oxides (R3PO) and phosphine sulfides (R3PS) respectively. These phosphine sulfides and 

oxides have high P=S and P=O bond energies [Table 1-1]. 
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1-3-1 Tertiary Phosphine Oxides 

The tertiary oxides form the most stable class of all organophosphorus compounds. 

Those oxides with no B hydrogen atom are particularly stable; M~PO and Ph3PO ·do not 

decompose below 700°C [3]. In some instances the reactants interact to give the oxides 

directly, whereas in other instances the phosphine oxides may be prepared by the thermal 

decomposition of quaternary phosphonium hydroxides or alkoxides [equations (1), (2)] [3]. 

R3PO + RH 

---• R3PO + RR' 

(1) 

(2) 

Nickel (II) halides form complexes [NiXi{Ph2PCH2PPh2)] with diphosphines, which are 

stable in the solid state but decompose slowly when they are heated above 220°C, 

undergoing air oxidation to yield the diphosphine dioxides [10]. 

1-3-2 Tertiary Phosphine Sulfides 

The tertiary phosphine sulfides, R3PS, contain a P=S linkage. Usually phosphine sulfides 

are produced more easily than their oxide analogues, and the reaction, normally 

exothermic, can be carried out in benzene or carbon disulphide with moderate warming. 

These phosphine sulfides are known to be oxidized to the corresponding oxides through 

the photo chemical transfer of oxygen heterocyclic N-oxides [11]. Tertiary phosphine 

sulfides are not easily oxidized by air to the oxides, but oxidation can be carried out with 

dilute nitric acid, hydrogen peroxide, alkali-bromine and other oxidising agents [3]. 

The formation of the monoxides and monosulfides (12] of tertiary diphosphines needs 

careful control of the reaction conditions, and selective monooxidation or 

monosulphurization of ditertiary phosphines are only possible if the two phosphorus atoms 

differ in their basicities as for example in MeiPCH2PPh2 [13] as shown below. 

Ph3P=X --• Ph2P=XCH2Li --• Ph2P=XCH2PR1R2 
--• Ph2PCH2P=SR1R2 

(R1 and R2 are alkyl groups) 
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1-4 PHOSPHINE COMPLEXES OF TRANSITION METALS 

1-4-1 Complexes with Monotertiary Phosphines 

The most popular ligands remain triphenylphosphine and phenylalkylphosphin_es, but 

recently much interest has been shown in trimethylphosphine and in bulky ligands such as 

tricyclohexylphosphine and tri-tert-butylphosphine. 

In general the monomeric phosphine ligands only coordinate as single ligand donors and 

do not involve any bridging role. In polynuclear structures the bridging ligands are 

generally halide ions with the phosphine in a terminal ligand capacity [14]. For example, 

in the complex [Cu{P(cyclohexyl)3}Cl]2 each copper(I) ion adopts a three fold 

coordination geometry, with two bridging chlorides and two terminal tricyclohexyl­

phosphine molecules (Figure 1-1) [ 15]. 

Cl · 
/SJ·~-32 

P~u-•••Cu-P 
~/ 

(Figure 1-1) 

X PR 3 

I"/ Cu 

Cu-1--x PR 
R3P/"' I'--/ 3 

X I Cu 

(Figure 1-2) 

R3P-Cu I 
°"x 

Copper(!) and silver(I) ions form the phosphine complexes [M(PR3)X]4 (X= Br, I; R= Et 

or Ph) which are known with both cubane and step structures. The metals adopt the 

tetrahedral geometry in cubane-like structures and trigonal geometry in step formation 

(Figure 1-2) [16-19]. The halides are always bridging with terminal sites characteristic for 

the phosphines. 

1-4-2 Complexes with Ditertiary Phosphines 

The most widely used diphosphines are probably 1,2-bis(diphenylphosphino)ethane 

(dppe) and bis(diphenylphosphino)methane (dppm) i.e. P-C
0
-P where n=2 or 1 

respectively. The chelating tendency increases as the chain length increases, so that for 
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these two ligands, the tendency to chelate is greater for n=2 [20]. 

l'~I' p ~ I' 

I /Cl \/·1 
Mo==Mo 

j/co,/co 
NC-Rh Rh-CN 

c/\ c(\ oc/l oc/l 
r I' 
'--..../ 

I' I' 
'--..../ 

(Figure 1-3) 

The ligand properties of bidentate phosphines are strongly dependent on the nature of the 

½ bridging units. The dppm ligand prefers to form bridged dinuclear complexes, rather 

than a strained four-membered chelate ring. When dppm forms dinuclear complexes, the 

metal phosphorus bonds are strong and the bridging diphosphine ligand can lock together 

two metal atoms in close proximity and hence promote organometallic reactions involving 

two metal centres (Figure I-3) [21]. 

(Figure 1-4) 

The diphosphine ligands P-C0-P (n= 2, 3) such as dppe, dmpe (1,2-bis(dimethyl­

phosphino)ethane) and dppp (1,3-bis(diphenylphosphino)propane) are excellent chelate 

ligands which form-_-'. : five-membered ring complexes, as found in [ThMei(Me5C5) 2 

(dmpe)] [22] and [NbiC~(R2PCH2CH2PRJ:J (R=Me, Et, Ph) [23,24] (Figure 1-4). In the 

dinuclear complex [Cr(dmpe)uC13], dmpe acts both as a chelating and a bridging ligand 

(Figure 1-5) [25]. 
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a -form r-form 

(Figure 1-5) (Figure 1-6) 

Similarly in [Mo2Clidppe)i) and [W2Clidppe)i), dppe displays bridging behaviour in the 

J3-form and chelating behaviour in the a-form (Figure 1-6) [26]. 

There are also many examples in the literature showing the capability of the bidentate 

ligand Ph2P(CH2) 3PPh2 (n=2, 3) for stabilizing cluster compounds by the formation of 

bridges between adjacent transition metal atoms. Two examples are shown in (Figure I-7) 

[27-29]. 

\-i~hJ 2+ 

P-Au---Au- -P 

\ '-----A~ ""-/'-p p 

(Figure 1-7) 

1-4-3 Complexes with Polytertiary Phosphines 

The polyphosphine-metal complexes are thermodynamically more stable than their 

comparable monophosphine analogues. The former exhibit several advantages over the 

latter including [1, 30]: 
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(1) Excellent bonding ability to metal 

(2) Strong 'trans influence' (i.e. lone pair orientation) 

(3) Increasing basicity (or nucleophilicity) at metal 

(4) Control on the stereochemistry and stoichiometry 

1) Excellent bonding ability to metal 

The bonding ability of these ligands arises from their thermodynamic stability. 

2) Strong 'trans influence' (i.e. lone pair orientation) 

The major types of polydentate phosphine ligands are shown in Table 1-2 [31]. The most 

common tripodal polyphosphine ligand HC(PPh2) 3 [1,1,1-(trisdiphenylphosphino)-

methane] (tdpm) shows that the free molecule has the phosphorus atom lone pairs in a 

trans orientation (Figure 1-8) [30, 32, 33]. This means that two of the lone pairs are cis to 

each other but the third one is trans to each of the others. This influence favours the 

ligand to bind through two of the cis P atoms to a single metal but leaves the third P atom 

unbound or bound to another metal. 

3) Increasing basicity at the metal 

In the complex Rh(tdpme)Cl3 [34] the tdpme [tdpme= (tris(diphenylphosphino)methyl)­

ethane] ligand promotes the concentration of electron density on the metal atom since its 

reaction with the silver(!) ion and dihydrogen facilitates cluster and H bridge formation in 

the complex ion [Rh3Ag3~(tdpme)3]3+ (Figure 1-9) cluster which are worthy of note [34]. 

4) Control on the stereochemistry and stoichiometry 

The above tripodal ligand can stereochemically control the isolation of the Jae isomer of 

the complex RhHitdpme) [34] which can be used to promote cluster growth on the 

addition of Ph3PAuCl [35]. 

The stoichiometric incorporation of certain metal fragments into a cluster may not only 

change the size of the cluster but also influence its subsequent physical and chemical 

properties. Three distinct sets of compounds can be formed by treatment of MHitripod) 

(M= Rh or Ir; tripod= tdpme and triars) with different amounts of the cations 

[Au(TIIF)Lt (L= tertiary phosphine or arsine; THF= tetrahydrofuran). 
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Table 1-2 Major types of polydentate phosphine ligands 

Tridcnlalc : 

Tctr.idcntalc: 

Pcn1ac.lcnlale: 

Hexac.lcnlalc: 

or 

(Figure 1-8) 

Linear Tripodal Branched Macrocyclic 

,,---... ,,---... 
,,..- p ,,---... ,,..-P 

~ 
p p 

p p p c-P p C ·\_ / '-- p '--P 
p 

Linear (or facuh:llivc) Tripodal 

,,---... ,,---... ,,---... .,,-- p 

p p p p p-p 

'-- p 

Spimcyclic Br.inchcc.l Macmcyclic 

p ------
.,,-- p 

p ------
,,-p P-P - ( ) C C C 

p_,/ '--P p_,/ '--P p - p 

Linear 

,,---... ,,---... ,,---... ,,---... 

Br • .mchec.l 

p---...__ - -r r P P r p p p 
p _,/ 

Nonlinear 

,,- r ~ 
C C 

( ' (' p p p p 

Branchcc.l 

p ------ - ,,- p 
p p 

p _,/ '--P 

(Figure 1-9) 
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Their composition differs depending on the M:Au molar ratios. Type A has the 1: 1 ratio 

[(tripod)MHiAuL)]+, type B the 1:2 ratio [(tripod)MHiAuL):J2
+ and type C 1:3 

[(tripod)MHi(AuL)3]
2+. As the M:Au ratio increases structural changes occur and this is 

clearly reflected in the 31P and 1H NMR spectra. 

The results of the X-ray structure analysis of [(tdpme)Rh(µ-H)2 (Au(PPh3) 3)](CF3SO3) 2 the . 

stoichiometry of which contains one less hydrogen than does type A above can best be 

described as a metallotetrahedrane cluster made up of a triangle of gold atoms capped by 

the rhodium tdpme fragment. In addition each gold is coordinated to one PPh3 ligand. The 

cation lies on a crystallographic 3-fold axis which goes through the CH3-C bond of tdpme, 

the rhodium atom and the centre of Au3 triangle face. The triphosphine ligand is thus 

excellent for stereochemical control. 

The ligand tdpme as a polydentate ligand forms complexes with almost all transition 

metals, especially those with the d8 configuration. The [M(tdpme)] fragment (M= Rh, Ir) is 

able to coordinate other important reactive ligands such as acyl groups, alkyls, aryls, 

carbon monoxide, hydrides and olefins in a stable way and in a large variety of different 

arrangements and bonding modes. Excellent reviews of polyphosphine ligands currently 

exist [ 1, 14,31]. 

1-4-4 Complexes with Hybrid Polyphosphine Ligand Containing N and P 

Donor Atoms 

Studies on polyphosphine-stabilized metal complexes as catalysts have been performed 

for many years. However, the non-dissociative character of the chelating polyphosphines 

may be a disadvantage in some catalytic processes. The hybrid polydentate ligands 

containing phosphorus and nitrogen donor atoms offer the possibility of supplying vacant 

coordination sites at the metal by dissociation of either P or N donors. For example, the 

cyclooctenyl iridium complexes [(PNP)Ir-(cr,r)2-C8H13)] (1) and [(P2NJir(cr,r]2-C8H13)] (2) 

(PNP= MePPh2NPPh2; P2N2= NEtiPPh2NPPh2 ) are efficient catalyst precursors for the 

stereoselective hydrogen transfer reduction of a, B-unsaturated ketenes to allylic alcohols 

[equation, (1)]. 

o,. 
H C-R' Cat 
)={ + R"2CHOH --

R' H 

9 

H 
0 H 
I/ R' H C->=< + R"1C=O 

R H 

(1) 



rx 
rn_o_L_ \p·->t 

\ I 

~~ 
>-OH 

Scheme I 

The proposed catalysis cycle is illustrated in scheme I [36). 

(a) The ketone approaches the metal and displaces one olefinic end of cod 

( cod=eycloocta-1,5-diene). 

(b) The selective transfer of hydride to the carbonyl group occurs to give an 

alkoxy complex, a path that may be promoted by intramolecular coordination of 

the nitrogen donor to metal. 

(c) A new alkoxy complex and allylic alcohol is formed with the secondary alcohol 

in excess. 
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(d) Finally, the hydrido catalyst is restored via a 8-H elimination process. 

A crucial point to explain the effectiveness of (1) and (2) in the catalytic reaction is 

believed to be the ability of the hybrid polydentate PNP and P2N2 ligands to readily 

fasten/unfasten a nitrogen donor to and from the metal at different steps of the catalytic 

cycle. Indeed the substitution of phosphorus for nitrogen as it occurs in the reacted cr,Tf­

cyclooctenyl complex of tdpme generates a species, [(tdpme)Ir(a,Tf-C8H13)], which is 

totally inactive for the stereoselective reduction of benzylideneacetone [1,36]. 

The hybrid polydentate ligand containing P-N-P donor atoms has exhibited [53-55] better 

flexibility of its back-bone compared with P-O-P donors and better thermal stability than 

the P-C-P donor framework ligands. When the diphosphineamine ligands X2P-NR-PX2 (X 

= F, Cl, Me, Ph; R= Me,) coordinate to transition metals they show the 'best fit' geometry 

in e.g. Cr(0) octahedral [56,57], Fe(0) trigonal bipyramidal [58,59), Ni(0) tetrahedral 

complexes [60, 61]. The possible modes of coordination of a diphosphineamine ligand are 

varied and these are shown in (Figure 1-10) [50-52] . 
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However the ligand X2P-NR-PX2 coordinates only in a monodentate or bridging bidentate 

fashion as chelation produces an unstable four-membered ring. 

The longer chain polydentate ligands a.,a.'-bis(2-(diphenylphosphino)ethyl)amino) ethane 

(BDPE) and a., a.'-bis(2-(diphenylphosphino)ethyl)amino)-m-xylene (BDPX) (Figure 1-11) 

[62] formed the copper(!) complexes [CuiBDPE)ClJ, [CuiBDPX)ClJ, 

[CuiBDPE)](ClO4) 2 and [CuiBDPX)](ClO4h (Scheme 3). The ligands are dinucleating 

and two phosphorus atoms and a nitrogen atom bind to each metal with a different 

geometry for the chloro and perchlorate complexes (Figure 1-11). 

Scheme 3 

3( BDPEl 
J.(BDPXl 

(Figure 1-11) 

BDPE 

BDPX 

1-5 TWO, THREE AND FOUR COORDINATE COMPLEXES OF COPPER(I) 

AND SIL VER(I) WITH TERTIARY .PHOSPHINE LIGANDS 

The electronic configuration of copper(!) and silver(!) involves a filled 3d shell and 

hence the Cu+ and Ag+ ions are diamagnetic and of spherical symmetry. A extensive range 
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of coordination complexes has been observed for both copper(!) and silver(n, with bi­

[37], tri- [38], tetra- [39,40], penta- [41], hexa- [42] and octa- [43] nuclear species as well 

as infinite chain and ribbon structures. In the solid state the stereochemistry of copper(O 

complexes with phosphine ligands is dominated by four coordination but significant 

numbers of three coordinate species [44] are also known. However for silver(n complexes 

with phosphine ligands, four coordination number is dominant, but two [ 45,46] and five 

[see Chapter Four] coordination modes are also observed. Both copper(n and silver(I) 

complexes with six coordination are unknown. 

The four coordinate complexes of copper(I) and silver(n are generally tetrahedral, 

especially, when four equivalent ligands are involved as in [Cu(PPh3) 4]Cl04 [47] and 

[Ag(PPh3) 4]N03 [47,48]. But many complexes show distorted tetrahedral geometry, which 

may be attributed to steric and electronic effects; two are given in Figure 1-12 for the 

species [Ag(PPh3)Cl]4 and [Ag(PPh3)1]4• 

X = I X = Cl 

(Figure 1-12) 

Three coordinate copper(!) and silver(!) complexes are unusual and these occur where 

polydentate, macrocyclic or acyclic ligands impose geometrical constraints on the metal 

centre [44]. For example in the complex [Cuidppm)30H](BF4) 2 (dppm=bis(diphenyl­

phosphino )methane) the coppers are arranged in a triangle capped by an OH ligand. Each 

dppm bridges two copper atoms to give each copper a trigonal planar geometry 

(Figure 1-13) [44]. Silver(!) displays a trigonal planar structure in the complex ion 
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[Ag( diphos) t ( diphos=2, 11-bis(diphenylphosphino )methane )benzo[C]phenanthrene) [ 17 4, 

Figure N-4]. The complex cation [(t-Bu)3P-Ag-(P(t-Bu)3t contains a linear arrangement 

of the phosphorus atoms about the silver(I) ion (45]. A distorted trigonal-bipyramidal 

geometry about silver has been observed in the complex [Ag(PPh3)i{terpy)]ClO4 

(terpy=2,2':6',2"-terpyridine) (Figure 1-14) (186]. 

2+ 

Tnmnal ellipsoid diagram for [Ag(PPh,),(tcrpy))CIO, 

(Figure 1-13) (Figure 1-14) 

1-6 THE PRESENT STUDY 

The ligand 2-(diphenylphosphono )-N-(2-( diphenylphosphino )benzylidene] benzeneamine 

(PNCP) (Figure 1-15) was first synthesized in our laboratory a few years ago. 

QQ 0-p HC=N P-0 

bb 
PNCP 

(Figure 1-15) 
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As well as containing two soft P atoms and one 'intermediate' hard N atom, the 

phosphorus atoms are inequivalent which is a rare feature in a ligand. In principle PNCP 

may bind to metal ions in a variety of coordination modes as shown in Figure 1-16. 
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I I N/ I "-- P p p 
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la lh le le.I 
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I I 
M M 

le If 

(Figure 1-16) 

The present work was undertaken to investigate the steric configuration of the PNCP 

ligand and to establish its mode(s) of coordination when bound to silver(!) and copper(!) 

salts and to determine whether PNCP binds in an equivalent way. This will be determined 

by X-ray crystallography. The ability of PNCP to form mono- and bi- metallic complexes 

will be studied. 

The relative reactivity of the two phosphorus donor atoms towards oxidation with 

sulphur will be undertaken as well as the selected syntheses of the unsymmetrical 

monosulfide isomers SPNCP (2-( diphenylphosphinothioyl)-N-[2-( diphenylphosphino )­

benzylidene ]benzeneamine ), PNCPS (2-( diphenylphosphino )-N-[2-(diphenylphosphino­

thioyl)benzylidene ]benzeneamine) and SPNCPS (2-(diphenylphosphinothioyl)-N-[2-

(diphenylphosphinothioyl)benzylidene]benzeneamine) (Figure I-17). 
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(Figure 1-17) 

16 




