
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

ON THE AUTOMATION OF
DEPENDENCY-BREAKING
REFACTORINGS IN JAVA

A thesis presented in partial fulfilment of the requirements for the degree of
Doctor of Philosophy

in

Computer Science
atMassey University, Palmerston North,

New Zealand.

SYED MUHAMMAD ALI SHAH

2013

ii

Abstract

Over a period of time software systems grow large and become complex due to un-
systematic changes that create a high level of interconnection among software arte-
facts. Consequently, maintenance becomes expensive and even making small changes
may require considerable resources due to change propagation in the system, a phe-
nomenon known as ripple effects. Industrial evidence suggests that more resources are
spent on the maintenance phase than on the initial development. It is evident that
companies make huge investments to maintain legacy systems until a point comes
where a complete restructuring of the system is required. In most cases, it becomes
very expensive to refurbish legacy systems manually due to their inherent complexity.
Several semi-automated solutions have been proposed to restructure simplified mod-
els of existing systems. It is still expensive, in terms of resources, to translate those
model level transformations into source code transformations or refactorings. The
question that arises here is whether we can automate the application of model level
changes on the source code of programs.

In this thesis, we have developed novel algorithms to automate the application of
a class of architectural transformations related to improving modularity of existing
programs. In order to evaluate our approach, we have analysed a large dataset of open
source programs to determine whether the manipulation of models can be translated
into source code refactorings, whether we can define constraints on those refactorings
to preserve program correctness, and to which extent the automation of the whole
process is possible. The results indicate that this automation process can be achieved
to a significant level, which implies that certain economic benefits can be gained from
the process.

iii

iv

Acknowledgements

I would like to express my profound gratitude to my supervisor Dr. Jens Dietrich for
his advice, guidance, and endless support through every step of the way. He has a
great passion for his work and he knows how to get the best out of his students. He
has been a source of learning throughout these years. I also thank him for the Guery
tool he had developed. This tool was very helpful in my research.

I extend my sincere gratitude to my co-supervisor Dr. Catherine McCartin for her
valuable feedback during the entire time. She has been very kind and helped me
polish my work. This work would have not been possible without the help and
support of my supervisors.

A special thanks to my family. Words cannot express how grateful I am to my mother
(late), and father for all of the sacrifices that they have made on my behalf. Their prayer
for me was what sustained me thus far. Thanks to all of my siblings for their support
and wishes during these years. I would like to thank my sisters Farhat, Yasmin, and
Najma for looking after me so well, whenever I visited home. A word of thanks to my
younger brother Taskeen, who helped me in many different ways during my research.

My years at Massey were very enjoyable, thanks for the friendship of Abrar (for all
the enjoyable distractions), Shujat (for the jokes and laughs), Ezanee (for stimulating
useful discussions), Saleem (for being a good flatmate and friend), and Tariq (for the
friendship and discussions on every aspect of life). I would also like to thank my
friends in Pakistan especially Irfan, Bhatti, Ainan, and Naseer. Many thanks to the
Pakistani community in New Zealand. They have been very kind and never made me
miss the exotic Pakistani cuisine. They all made me feel at home.

I take this opportunity to thank Massey University and the School of Engineering and
Advanced Technology (SEAT) for providing a conducive working environment for
research. I would also like to thank the SEAT staff, in particular, Christina Bond, Fiona,
Michelle Wagner, Linda Lowe, and Dilantha Punchihewa for never complicating the
administrative tasks.

v

Last but not least, I would like to thank the Higher Education Commission for provid-
ing the financial support granted through Overseas Scholarship Program to complete
my PhD degree.

vi

This thesis is dedicated to my late mum ...

vii

viii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Problem Definition . 1

1.2 Research Questions . 7

1.3 Approach . 8

1.3.1 Critical Dependency Detection . 8

1.3.2 Tools . 9

1.3.3 The Dataset . 9

1.4 Thesis Contribution . 10

1.4.1 Algorithms . 10

1.4.2 Implementation . 10

1.4.3 Validation . 10

1.5 Thesis Structure and Outline . 11

2 Research Methodology 13

2.1 Architectural Model - The Dependency Graph 13

2.1.1 Extracting the Model . 14

2.2 Architectural Antipatterns . 14

ix

2.2.1 Antipattern Detection Tools . 15

2.2.2 Evaluation of Tools . 15

2.2.3 Representing Antipatterns . 17

2.3 Antipattern Set . 19

2.3.1 Overview . 19

2.3.2 Circular Dependencies between Packages 20

2.3.3 Subtype Knowledge . 23

2.3.4 Abstraction Without Decoupling 26

2.3.5 Degenerated Inheritance . 28

2.4 Detecting Opportunities - Scoring Edges 31

2.5 Dependency Classification . 33

2.6 The Dataset . 34

3 Dependency-Breaking Refactorings 37

3.1 Overview . 37

3.2 Package Level Refactorings . 39

3.2.1 Move Class . 39

3.2.2 Split Packages . 40

3.2.3 Merge Packages . 41

3.3 Class Level Refactorings . 42

3.3.1 Adapt Parameter . 42

3.3.2 Extract Interface . 45

3.3.3 Dependency Injection . 46

3.3.4 Service Locator . 50

3.3.5 Type Generalisation . 51

3.3.6 Static Members Inlining . 52

3.4 Evaluation of Refactorings . 56

x

4 Applying Package Level Refactorings 61

4.1 Overview . 61

4.2 Background . 63

4.3 Algorithm . 64

4.3.1 Building the Dependency Graph 66

4.3.2 Computing Antipattern Instances 66

4.3.3 Computing Edge Scoring . 67

4.4 Implementation: CARE - The Eclipse Plugin 67

4.4.1 Implementing Dependency Classification 68

4.4.2 Implementing Refactoring Constraints 68

4.4.3 Implementing Refactorings . 72

4.5 Strongly Connected Component Metrics Definition 75

4.6 Experiment . 78

4.6.1 Case Study: JMoney-0.4.4 . 78

4.6.2 Case Study: JGraph-5.13.0 . 79

4.6.3 Impact of Move Class Refactoring 81

4.6.4 Refactoring Simulation on Model vs Refactoring Application on
Code . 82

4.6.5 Impact of Program Size on Number of Refactorings 83

4.6.6 Package Merging . 84

4.6.7 Distribution of Move Refactorings 85

4.6.8 Refactorability . 85

4.6.9 Success Estimation of Model to Code Refactorings 86

4.6.10 Strongly Connected Components Metrics 87

4.6.11 Limitations of the Experiment . 88

4.6.12 Scalability . 93

4.6.13 Test Results . 93

xi

4.7 Summary . 95

5 Applying Composite Refactorings 97

5.1 Overview . 97

5.2 Background . 98

5.2.1 Type Generalisation . 98

5.2.2 Service Locators . 100

5.2.3 Static Members Inlining . 100

5.3 Algorithm . 101

5.3.1 The Dependency Graph . 102

5.3.2 Computing Antipattern Instances 103

5.3.3 Computing Edge Scoring . 103

5.3.4 Parsing Source Code . 103

5.4 Implementation: CARE - The Eclipse Plugin 103

5.4.1 Implementing Dependency Classification 103

5.4.2 Implementing Refactoring Constraints 105

5.4.3 Implementing Refactorings . 108

5.5 Experiment . 112

5.5.1 Examples . 112

5.5.2 Impact of Refactorings on Instance Count Metric 114

5.5.3 Refactoring Simulation on Model vs Refactoring Application on
Code . 114

5.5.4 Refactoring Types Applied . 115

5.5.5 Strongly Connected Components Metrics 115

5.5.6 Test Results . 117

5.6 Summary . 117

6 Conclusions and Future Work 123

xii

6.1 Research Questions . 123

6.1.1 Can model level dependency-breaking refactorings be automat-
ically translated into source code refactorings? 124

6.1.2 How can we define and evaluate constraints on refactorings to
preserve the correctness of the program being refactored? 124

6.1.3 To what extent can these dependency-breaking refactorings be
automated? . 125

6.2 Threats to Validity . 126

6.2.1 Dataset Selection . 126

6.2.2 Correctness of Refactored Programs 126

6.2.3 Developers Feedback . 127

6.2.4 Influence of Tools . 128

6.2.5 Java Specific Refactorings . 128

6.2.6 Scalability . 129

6.3 Research Contributions . 129

6.4 Future Work . 130

Bibliography 131

A Declaration of Previous Work 141

B CARE Plugin: Installation and Instructions 143

B.1 Installation . 143

B.1.1 Configuration . 143

B.2 Usage Instructions . 144

B.2.1 User Interface . 144

B.2.2 Preferences . 144

B.2.3 Importing Projects . 144

B.2.4 Refactoring Output . 145

xiii

C List of Acronyms 153

xiv

List of Tables

2.1 Tool Features in terms of Architectural Antipatterns Detection 16

2.2 Comparison of Different Scoring Mechanisms 32

2.3 The Dataset . 36

3.1 Refactoring Attributes in terms of Breaking Dependencies 58

4.1 Instance Count Before and After Refactoring 72

4.2 Metric Values of Three SCCs . 77

4.3 The Resultant Move Refactorings for JMoney-0.4.4 78

4.4 Metrics Values for JMoney-0.4.4 . 80

4.5 Metrics Values for JGraph-5.13.0 . 80

4.6 Result for Merged Packages . 85

4.7 Refactorability Example . 86

4.8 Top 5 Programs with Highest Execution Time 94

4.9 Test Results of 5 Programs Before and After Refactorings 95

5.1 Dependency Categories and their Default Respective Refactorings 105

5.2 Test Results of 5 Programs Before and After Refactorings 117

B.1 Eclipse Project Structure . 145

B.2 Dataset Files . 145

B.3 Output Description . 146

xv

xvi

List of Figures

1.1 Evolution of Packages and Classes in JRE 4

1.2 Evolution of Package Relationships and Class Relationships in JRE . . . 4

1.3 Evolution of Package and Class level Tangles in JRE 5

1.4 Evolution of Relationships of Package and Class level Tangles in JRE . . 5

1.5 JRE 1.7.0 Package Level Dependency Graph 6

1.6 JRE 1.7.0 Class Level Dependency Graph 6

2.1 User Interface/Database Dependency Antipattern 17

2.2 Dependency Cycle Between the AWT and Swing Packages 22

2.3 Circular Dependency between Packages 22

2.4 Weak Circular Dependency between Packages 22

2.5 Abstraction Example . 23

2.6 Example of Subtype Knowledge Antipattern 24

2.7 Subtype Knowledge . 26

2.8 Example of Abstraction Without Decoupling Antipattern 27

2.9 Abstraction Without Decoupling . 29

2.10 Example of Degenerated Inheritance Antipattern 30

2.11 Degenerated Inheritance . 31

2.12 Example Program’s Dependency Graph 32

3.1 Move Class Example . 40

xvii

3.2 Move Class Example . 41

3.3 Split Packages Example . 42

3.4 The Adapt Parameter Refactoring . 44

3.5 Extract Interface Refactoring . 46

3.6 Example of Dependency Injection . 48

4.1 Class Diagram of Dependency Classification for Move Refactoring . . . 68

4.2 Class Diagram of Pre and Postconditions 69

4.3 Example of Increase in the Instance Count Metric 73

4.4 Example of Decrease in the Instance Count Metric 74

4.5 Class Diagram of Refactorings . 75

4.7 Package Dependency Graph of JMoney-0.4.4 79

4.8 Decrease in SCD Instances After Move Refactorings 81

4.9 Decrease in no. of Instances: Comparison between SCD and WCD . . . 82

4.10 Decrease in no. of Instances: Comparison on Model and Code Levels . . 83

4.11 Impact of Program Size on Number of Refactorings 84

4.12 Refactorability . 87

5.1 Automated Refactoring Process . 102

5.2 Class Diagram of Dependency Categories 104

5.3 Class Diagram of Composite Refactorings 109

5.4 Decrease in Instance Count Metric After Refactorings 115

5.5 Decrease in no. of Instances: Comparison on Model (graph) and Code
levels . 116

5.6 Refactoring Types Applied . 117

B.1 CARE Installation . 147

B.3 CARE Preferences . 149

B.4 Import Existing Projects . 150

xviii

B.5 Select Projects to Import . 151

xix

xx

Chapter 1

Introduction

1.1 Problem Definition

Software is prevalent in every sphere of life, whether it is government, banking, health-
care, communication, transportation, or retail sectors, the use of software is increasing
by the day. In 2010, the volume of the global software industry was 265 billion US dol-
lars (an increase of 7.1% from the previous year) and it is forecast to reach an estimated
357 billion US dollars by 2015 (Research and Markets, 2011). These figures indicate
that the software industry will continue to grow over the coming years.

According to Lehman, software that is used in the real-world environment must change
or it becomes ineffective progressively (Lehman, 1979). We notice changes happening
around us on regular basis, including new government regulations, tax law modifi-
cations, growth in businesses, and manufacturing of new hardware. These changes
must be reflected in our software too. In addition, faults are revealed in software after
its deployment, which leads to changes in order to fix those faults, also known as bug
fixes. These factors are the driving forces that put software under continued change
pressure during its entire life cycle.

The increasing role of software in our everyday lives and businesses puts constant
pressure on software developers to perform. They have to deliver new applications
or new releases of existing applications on strict deadlines. Compounding this, devel-
opment teams are often outsourced or distributed geographically. This can result in
uncoordinated work that leads to unsystematic changes and workarounds, creating a
high level of interconnection among software artefacts, such as models, subsystems,
and libraries. This interconnectivity often increases to a point where it becomes diffi-
cult to understand a part of the system without understanding other parts, introducing

1

CHAPTER 1. INTRODUCTION

accidental complexity1. The situation gets worse when new developers join teams. It
becomes harder for them to understand the existing system to make changes and even-
tually when more changes are introduced, the quality declines even further. Therefore,
such systems end up in an accelerating loop where the quality declines over a period of
time and it becomes very difficult and expensive to maintain them, as a small change
may propagate to other parts of the system. Ultimately, some systems may turn into a
Big Ball of Mud, a term which is defined by Foote and Yoder (1997) as follows:

”A big ball of mud is haphazardly structured, sprawling, sloppy, DuctTape and
bailing wire, SpaghettiCode jungle. ... These systems show unmistakable signs
of unregulated growth, and repeated, expedient repair. Information is shared
promiscuously among distant elements of the system, often to the point where
nearly all the important information becomes global or duplicated. The overall
structure of the system may never have been well defined. If it was, it may have
eroded beyond recognition.”

The software maintenance phase constitutes a significant part of the software devel-
opment life cycle. This includes adding new features, improving performance, fixing
problems, and migrating to a new technology or platform. Industrial evidence shows
that companies invest more resources on maintaining and evolving their software than
on the initial development (Coleman et al., 1994; Schach, 1996). According to Schach
(1996), 67% of total software development cost is spent on the maintenance phase.
The author calculated the maintenance cost from various sources by averaging data
from multiple projects between 1976 and 1981. Furthermore, in 1992 an analysis of 132
projects at Hewlett-Packard revealed that 40 to 60 percent of the total cost was spent
on maintenance (Grady, 1994). Some organisations even spent 80% of their resources
on maintaining their software (Yourdon, 1992). This data indicates that maintenance
is an expensive and extremely time-consuming phase in the software life cycle.

The question that arises is how to reduce maintenance costs and improve maintain-
ability of software so that it is easier to modify and evolve over its life cycle. One of
the solutions to improve software maintainability is to introduce modularity into the
system. Software modularity is an important principle in software engineering for
building large and complex systems2. It refers to a logical decomposition of software
design where a complex system is divided into independent modules so they become
manageable and maintainable (Parnas, 1972). In a modular system, every module

1Accidental complexity as opposed to essential complexity creeps into a system through unsystematic
changes and workarounds making the system harder to understand (Brooks, 1987).

2By complex here we mean essential complexity as defined by Brooks (1987), because software reflects
systems that are complex in nature, such as flight control systems.

2

CHAPTER 1. INTRODUCTION

works relatively independently from other modules. Therefore, when changes are re-
quired in a module, there is no need for the developer to understand the entire system.
The individual modules can be tested and deployed separately. The loose coupling
between modules is the key to reducing maintenance costs.

According to Knoernschild (2012), there are two facets of modularity. He calls those
the design time model and the runtime model. The design time model refers to efforts
made to design the software architecture in a modular way. This includes applying
design principles and patterns, decomposing modules at the right level of abstraction,
maintaining low coupling and high cohesion, managing dependencies and so on.
The advantage of design time modularity is that modules can be evolved and tested
separately. In addition, development teams can also work independently on different
parts of a project and once the development is complete, a build tool (maven, ant,
make, ivy) can be used to produce the final executable product such as a Java jar file
(Blewitt, 2009). However, it is important to correctly bundle different parts of a system
into their respective modules (jars). In this way, we not only achieve design time
modularity but also runtime modularity.

Runtime modularity, as opposed to design time modularity, focuses on managing
modular systems at runtime. There are several benefits of runtime modularity. This
includes the ability of an application to dynamically deploy modules, deploy dif-
ferent versions of modules together, resolve dependencies dynamically, and swap
components at runtime without restarting the application. Runtime modularity can
be supported by modular platforms, such as OSGi. We are interested in this kind of
modularity where the focus is on deployment rather than on development of software.
This means we aim to transform monolithic applications3 into modular architectures
so they can achieve the aforementioned benefits of runtime modularity. From this
point, by modularity we mean runtime modularity.

In recent years several techniques have been introduced to facilitate software modular-
isation (Johnson et al., 2005; Walls, 2009). In order to take advantage of modern modu-
larisation techniques many software vendors are refactoring their existing monolithic
products to modular architectures. For instance, the Jigsaw project has been initiated
to refactor the Java Development Kit (JDK) into a modular architecture (Project Jigsaw,
2008). One of the main objectives of this project is to introduce a module system in the
JDK, which would improve certain metrics such as download time, loading time and
memory footprints.

It is interesting to look into the current state of the JDK to be able to understand the
need for its modularisation. The JDK has grown extremely large since its initial release

3Applications that are built around a single core and are difficult to change due to change propagation.

3

CHAPTER 1. INTRODUCTION

jre1.1.6 jre1.2.2 jre1.3.0 jre1.4.2 jre1.5.0 jre1.6.0 jre1.7.0

JRE Versions

N
um

be
r o

f p
ac

ka
ge

s

0
20
0

40
0

60
0

80
0

jre1.1.6 jre1.2.2 jre1.3.0 jre1.4.2 jre1.5.0 jre1.6.0 jre1.7.0

JRE Versions
N

um
be

r o
f c

la
ss

es

0
50
00

10
00
0

15
00
0

20
00
0

Figure 1.1: Evolution of Packages and Classes in JRE

jre1.1.6 jre1.2.2 jre1.3.0 jre1.4.2 jre1.5.0 jre1.6.0 jre1.7.0

JRE Versions

N
um

be
r o

f r
el

at
io

ns
hi

ps
 b

et
w

ee
n

pa
ck

ag
es

0
20
00

40
00

60
00

80
00

10
00
0

jre1.1.6 jre1.2.2 jre1.3.0 jre1.4.2 jre1.5.0 jre1.6.0 jre1.7.0

JRE Versions

N
um

be
r o

f r
el

at
io

ns
hi

ps
 b

et
w

ee
n

cl
as

se
s

0
50
00
0

10
00
00

15
00
00

20
00
00

Figure 1.2: Evolution of Package Relationships and Class Relationships in JRE

and many classes and packages have been added to the standard library (Figure 1.1,
1.2). It is not only a large number of classes and relationships that make the JDK
complex, but also the presence of a large number of class and package level tangles.
A tangle is a strongly connected component in a graph where every node is either
directly or indirectly linked to every other node. According to established design
heuristics, the presence of tangles is a sign of degraded design (Parnas, 1972; Stevens
et al., 1979). The evolution of tangles and their relationships is shown in figures 1.3
and 1.4 respectively. The incremental increase in the number of tangles indicates how
the structure of a system erodes over the period of time.

As an example, let’s examine the structure of the JRE 1.7.0. Figure 1.5 shows the

4

CHAPTER 1. INTRODUCTION

jre1.1.6 jre1.2.2 jre1.3.0 jre1.4.2 jre1.5.0 jre1.6.0 jre1.7.0

JRE Versions

N
um

be
r o

f p
ac

ka
ge

 ta
ng

le
s

0
50

10
0

15
0

20
0

25
0

30
0

jre1.1.6 jre1.2.2 jre1.3.0 jre1.4.2 jre1.5.0 jre1.6.0 jre1.7.0

JRE Versions

N
um

be
r o

f c
la

ss
 ta

ng
le

s

0
20
00

40
00

60
00

80
00

10
00
0

Figure 1.3: Evolution of Package and Class level Tangles in JRE

jre1.1.6 jre1.2.2 jre1.3.0 jre1.4.2 jre1.5.0 jre1.6.0 jre1.7.0

JRE Versions

N
um

be
r o

f p
ac

ka
ge

 ta
ng

le
 re

la
tio

ns
hi

ps

0
20
0

40
0

60
0

80
0

jre1.1.6 jre1.2.2 jre1.3.0 jre1.4.2 jre1.5.0 jre1.6.0 jre1.7.0

JRE Versions

N
um

be
r o

f c
la

ss
 ta

ng
le

 re
la

tio
ns

hi
ps

0
10
00
0

20
00
0

30
00
0

40
00
0

Figure 1.4: Evolution of Relationships of Package and Class level Tangles in JRE

dependency graph4 of the JRE 1.7.0 packages (934) and their relationships (10072),
while figure 1.6 shows the dependency graph5 of classes (21638) and their relationships
(217973). JRE 1.7.0 has 10394 class level tangles with 41123 relationships between
tangles. In a similar way, there are 319 package level tangles with 811 relationships.
It is clear from these figures that the JRE has a complex architecture and it is a classic
example of what is known as a Big Ball of Mud. It turns out that this is a common issue.
A study by Melton and Tempero (2007b) has revealed that many real-world programs
have similar issues.

4Source: Massey Architecture Explorer http://goo.gl/hc38k
5Source: Massey Architecture Explorer http://goo.gl/hwkhT

5

http://goo.gl/hc38k
http://goo.gl/hwkhT

CHAPTER 1. INTRODUCTION

Figure 1.5: JRE 1.7.0 Package Level Dependency Graph

Figure 1.6: JRE 1.7.0 Class Level Dependency Graph

The project jigsaw started in August 2008 and is still under development due to the
complex monolithic architecture of the JDK. The JDK was built around a monolithic
architecture, therefore dependencies between different software artefacts became so
deep rooted that the modularisation process has turned out to be a challenging task.
This project was scheduled to complete with the release of Java SE 8, but now it has
been rescheduled until the release of Java 9. According to Mark Reinhold, the chief
architect of the Java platform group, one of the reasons for delay in the project is the
deep interconnectivity at the API and implementation levels of the JDK. This makes it
difficult to remove several dependencies that compromise the modularisation process
(Reinhold, 2012). This indicates that refactoring of complex legacy systems is a resource
demanding task and that solutions should be proposed to automate the whole process.

In this thesis, our approach is based on the assumption that modularity manifests

6

CHAPTER 1. INTRODUCTION

itself by the presence (or absence) of architectural antipatterns such as circular depen-
dencies between modules (Dietrich et al., 2010). The modularity of a system can be
measured by analysing a simplified architectural model of the system and by counting
the presence of architectural antipatterns. Empirical studies (Melton and Tempero,
2006; Dietrich et al., 2010) have shown that real-world systems are ripe with these
kinds of architectural antipatterns, indicating a lack of modularity.

For example, in OpenJDK 1.6.0 b-14, there is cyclic dependency between AWT and
Swing: java.awt.Component uses javax.swing.JComponent6 and javax.swing.-
JComponent extends java.awt.Container. The dependency from JComponent to Con-
tainer is necessary because this allows Swing to use some general UI functionality
defined in AWT. However, the reference from the older AWT toolkit to the newer
Swing toolkit points to a serious problem. This means an application that is developed
using AWT cannot be deployed without the resource-demanding Swing toolkit. AWT
components perform better because they use native APIs such as Direct X on Win-
dows whereas Swing components handle their own rendering, making them resource
demanding.

Moreover, It is interesting to see that the dependency from java.awt.Component to
javax.swing.JComponent is not present in the Apache Harmony (Harmony, 2010)
implementation of the JDK version 6.0, r917296-snapshot. This means that it is possible
to break dependency edges between these classes without compromising the external
behaviour of the system. We refer to such model refactoring7 as dependency-breaking
refactoring. The question arises how these critical dependencies can be found and
removed systematically.

1.2 Research Questions

In this thesis, we aim to develop novel algorithms that can provide an automated
solution to apply model level refactorings on the source code of programs. That is,
given a set of critical dependencies we remove or reorganise those dependencies on
the source code of programs. This leads to the first question:

1. Can model level dependency-breaking refactorings be automatically translated
into source code refactorings?

6Source: Massey Architecture Explorer: http://goo.gl/0U8Gz
7According to Fowler (1999), refactoring is an activity for improving the internal software structure

without affecting its external behaviour. It helps in achieving quality attributes, such as modularity, main-
tainability and evolvability of a software system. Model refactoring refers to transformations performed
on software models, such as dependency graphs, UML diagrams etc.

7

http://goo.gl/0U8Gz

CHAPTER 1. INTRODUCTION

Refactorings introduce changes in the existing system, which is a risky and expensive
task in the sense that it may break the system. In order to mitigate the risks associated
with the change and to ensure program correctness, we need a formalism to define
the correctness of a refactoring and tools that can verify refactorings against this. In
this thesis, we aim to develop appropriate constraints for refactorings that preserve
program correctness. This defines our second research question:

2. How can we define and evaluate constraints on code level refactorings to preserve
the correctness of the program being refactored?

It is possible that not all refactorings on the model level succeed on the source code
level. Therefore, we try to quantify this based on a dataset. This defines our last
question:

3. To what extent can model-to-code refactorings be automated?

1.3 Approach

Our approach is to develop novel algorithms and techniques to remove critical de-
pendencies from existing programs. We have focused on critical dependencies that
undermine the modularity of programs. These critical dependencies can be identified
from architectural antipatterns that compromise modularity (Dietrich et al., 2010). Our
proposed methodology is to analyse architectural antipatterns on the model level, to
detect critical dependencies between software artefacts that participate in a large num-
ber of antipattern instances, and to safely remove these critical dependencies from the
source code of programs.

1.3.1 Critical Dependency Detection

In this thesis, we have attempted to remove architectural antipatterns that are widely
accepted as designs problems (discussed in Section 2.3). These antipatterns are known
to compromise modularisation of programs. Hence, our approach is based on the
assumption that the removal of the chosen antipatterns will improve the modularity
of programs.

8

CHAPTER 1. INTRODUCTION

1.3.1.1 Metrics

We have used fitness functions in terms of metrics to ensure that our refactoring process
has achieved the intended improvements. We have analysed several metrics for this
purpose, which are discussed in section 4.5.

1.3.2 Tools

In order to implement our algorithms, we have developed an Eclipse plugin named
CARE (Code and Architectural Refactoring Environment). The purpose of this plugin
is to identify and execute refactorings on the source code level with a push of a
button. The plugin has the ability to analyse a single program or batch-script multiple
programs in the Eclipse workspace environment. We have chosen the Eclipse platform
because it provides a powerful Abstract Syntax Tree (AST) API, which can be used
to manipulate the source code of a program. This API is well documented and has
a good active community. This plugin uses the Guery (Dietrich and McCartin, 2012)
library for the analysis of architectural antipatterns on the model level.

The architectural model we have used is a dependency graph consisting of classes8 and
their relationships (Mancoridis et al., 1998). The dependency graph can be extracted
from the bytecode or source code of a program (discussed in Section 2.1). In the de-
pendency graph classes are represented as nodes, while edges represent relationships
between classes. Dependency graphs provide an abstract representation of (the design
of) a program, which is suitable in detecting architectural antipatterns.

1.3.3 The Dataset

In recent years corpora-based empirical investigations have become common due to
the availability of open source software (Melton and Tempero, 2006; Tempero, 2008; Di-
etrich et al., 2010; Taube-Schock et al., 2011). The use of a corpus makes it convenient to
benchmark different techniques against a set of data that is available to all researchers.
In this thesis, we have investigated research questions through an empirical study on
a large set of open source programs written in the Java language. Our dataset contains
a large variety of real-world programs which gives us the opportunity to apply our
techniques on a broad spectrum of programs (see further discussion in Section 2.6).

8We use the term classes to represent non-array Java reference types. In particular it includes interfaces
and enumerations

9

CHAPTER 1. INTRODUCTION

1.4 Thesis Contribution

1.4.1 Algorithms

The first contribution of this thesis lies in the development of novel algorithms that
automatically translate model level refactorings to source code refactorings. In par-
ticular, we apply our algorithms to solve software dependency problems related to
modularisation. Our approach aims to provide a complete solution, that is, we detect
architectural problems on the model level, identify appropriate refactorings and apply
them on the source code. Existing solutions focus mainly on the detection of architec-
tural problems. Our second contribution lies in the selection of refactoring constraints.
We aim for constraints that provide optimum results, that is, constraints that are fast
to evaluate, easy to implement and have a high success rate.

1.4.2 Implementation

We have developed an Eclipse plugin CARE to implement the algorithms. This plugin
makes use of standard Eclipse refactorings to perform the desired actions. Additional
refactorings have been implemented as required (see discussion in Section 5.4.3). The
plugin can identify and execute potentially high-impact refactorings on the source code
of programs. This tool is available online and can be downloaded from the project
website9.

1.4.3 Validation

In order to evaluate our approach, we have applied it to a large set of real-world
programs, which are part of the Qualitas Corpus (Tempero et al., 2010). The Qualitas
Corpus is a collection of open-source Java programs widely used in empirical studies
(discussed in Section 2.6). We have performed several experiments to answer the
research questions posed in section 1.2. We have used the CARE plugin to perform
experiments and find appropriate refactorings to remove architectural antipatterns.
Our study is unique as it is validated through an experiment on a large, independent
dataset.

9http://code.google.com/p/care/wiki/Documentation

10

http://code.google.com/p/care/wiki/Documentation

CHAPTER 1. INTRODUCTION

1.5 Thesis Structure and Outline

The rest of the thesis is structured as follows:

Chapter 2. This chapter provides an overview of the research methodology. Here
we discuss the architectural model and architectural antipatterns used for the
analysis. The mechanism for detecting critical dependencies in programs is
described. The chapter also includes discussion about different dependency
classifications and the design of our experimental setup.

Chapter 3. This chapter investigates different refactoring techniques used to break
dependencies between classes. The chapter concludes with the selection of ap-
propriate refactorings for decoupling classes.

Chapter 4. This chapter describes our work on package level refactorings, in partic-
ular the “move class” refactoring. Several metrics are defined in this chapter,
which are used as fitness functions. These metrics are used to asses the quality
of programs after refactorings. The chapter explains the algorithm used to break
dependencies between classes and packages. Pre and postconditions of refactor-
ings are also discussed. The results of our experiment are discussed, along with
the implementation details.

Chapter 5. This chapter presents our work on a combination of package and class level
refactorings. An algorithm for composite refactorings is also presented. Here
we discuss pre and postconditions related to class level refactorings. Finally, this
chapter concludes with a discussion about results obtained from experiments.

Chapter 6. This chapter brings to conclusion the research presented in this thesis.
Here we discuss threats to validity, research contribution, and directions for
future research.

11

CHAPTER 1. INTRODUCTION

12

Chapter 2

Research Methodology

In this chapter, we describe the methodology used to answer the research questions
developed in chapter 1. This chapter begins with an overview of the architectural
model used to perform the analysis of programs. This is followed by a detailed
description of architectural antipatterns. Here we also explain the selection process for
refactorings and describe tools used in experiments. These tools provide the ability
to detect refactoring opportunities and apply appropriate refactorings on the actual
programs. Finally, the dataset and the experimental setup are described.

2.1 Architectural Model - The Dependency Graph

A model is a simplified representation of a real system, which abstracts from unnec-
essary details and provides an overall picture of the system. According to Lethbridge
and Laganiere (2002), an architectural model is a simplified representation of software
architecture for the sake of expressing a viewpoint. For instance, an architectural
model can express a view of the logical decomposition of subsystems or modules of
the system. Its main purpose is to better understand the system and to be able to com-
municate the architecture with other stakeholders that are either directly or indirectly
related to the software system.

The architectural model we have used is a program dependency graph (a directed
graph) of classes and their relationships (Mancoridis et al., 1998). Dependency graphs
provide an abstract representation of a program. The idea of using the dependency
graph as a representation of the software architecture is not new. This has been widely
used in software architecture analysis tools such as ReStructure101 (2008), Sotograph
(Bischofberger et al., 2004), Restructure101 (ReStructure101, 2008), JDepend (Clark,

13

CHAPTER 2. RESEARCH METHODOLOGY

2003), and Guery (Dietrich and McCartin, 2012).

2.1.1 Extracting the Model

In the dependency graph, each reference type in a program (class, interface, enum etc)
is represented as a vertex (node). Additional properties such as namespace (package
name), visibility and abstractness are represented as labels on vertices. Edges represent
relationships between classes and are labelled with relationship types. The three
supported relationship types are uses, extends, and implements. The relationship types
extends and implements represent inheritance, while the relationship type uses represents
all other types of references between classes, such as type references in methods and
fields.

The dependency graph can be extracted from the bytecode or source code of a program.
Dependency graphs that are extracted from bytecode are slightly different from source
code, as references to constant primitive values declared as static and final are replaced
with their respective values by the Java compiler. This is also known as constant folding
(Muchnick, 1997). In our experiments, we have used bytecode to generate dependency
graphs. The reason for choosing bytecode over source code for generating dependency
graphs is mainly due to the availability of robust bytecode analysis tools. In addition,
the use of bytecode to build dependency graphs gives a wider scope to potentially
using other modern languages such as Scala, JRuby and Jython that compile to Java
bytecode1 and rely on the JVM as an execution platform (Da Vinci Machine, 2008).
We have used the Dependency Finder (Tessier, 2010) to extract the dependency graph
from bytecode of existing programs. This API has certain limitations. In particular, it
does not support generic types while building the dependency graph from bytecode.
We do not consider this as a problem since we are more interested in dependencies at
runtime rather than during compile time2. We have used the Java Universal Network
Graph (JUNG) API (Madadhain et al., 2005) to represent dependency graphs.

2.2 Architectural Antipatterns

During the code review phase, experienced developers often note weaknesses in code
and structure of a system. These weaknesses are commonly referred to as smells in the
system; as they point to potential design problems. The term “code smell”, introduced
by Fowler (1999), indicates symptoms of a deeper problem in the source code of a

1In our experiments, we have used programs written in Java language only.
2Generic type information is erased during compile time through a process called type erasure.

14

CHAPTER 2. RESEARCH METHODOLOGY

program, for example, duplicate code, long methods, large classes etc. In his book on
refactorings, Fowler (1999) identifies several code smells and provides a catalogue of
refactorings that can be used to deal with these code smells. Demeyer et al. (2009) use
code smells as an indicator to recognise that a legacy system needs to be re-engineered.
A closely related area to code smells is antipatterns. According to Brown et al. (1998),
“An antipattern is a literary form that describes a commonly occurring solution to a
problem that generates decidedly negative consequences”. The concept of antipatterns
is inspired by Gang of Four’s book on design patterns (Gamma et al., 1994), which are
a catalogue of good design whereas antipatterns represent a catalogue of bad design.
Antipatterns can exist at code, design, and architecture levels (Koenig, 1998).

There exists another class of smells that indicates problems in higher levels of ab-
stractions, such as cycles between namespaces. Lippert and Roock (2006) refer to
these smells as architecture smells, further discussed by Stal (2008). A code smell,
for instance, may point to a bad reference between individual classes, whereas an
architecture smell may indicate bad coupling between modules or subsystems. We
are interested in this class of smells and refer to these smells as architectural antipat-
terns, since they represent design flaws that negatively affect the quality of the overall
system.

2.2.1 Antipattern Detection Tools

There exist several tools, widely used in the software engineering community, to de-
tect code smells such as PMD (Copeland, 2005), Checkstyle(Burn, 2008), and Findbugs
(Hovemeyer and Pugh, 2004). These tools identify code smells within compilation
units of a Java program. On the other hand, a number of architectural analysis tools
have been developed to identify architecture smells across a whole program. These
tools include Sotograph (Bischofberger et al., 2004), Lattix (Sangal et al., 2005), ReStruc-
ture101 (ReStructure101, 2008), Crocopat (Beyer and Lewerentz, 2003), JDepend (Clark,
2003), Massey Architecture Explorer (MAE) (Dietrich, 2012), and Guery (Dietrich and
McCartin, 2012).

2.2.2 Evaluation of Tools

Requirements

In order to choose the right tool for the analysis of programs, we laid out the following
requirements:

15

CHAPTER 2. RESEARCH METHODOLOGY

1. The tool should have built-in declarative language support in order to define
custom architectural antipatterns.

2. It should provide scripting support to analyse a large set of programs.

3. It should be able to compute transitive closure of relationships in order to repre-
sent indirect dependencies.

4. Moreover, it should be scalable to allow analysis of large programs, as our dataset
contains relatively big programs.

5. Finally, it should provide insight into architectural metrics to asses the quality of
architecture.

Tool Script-
ability

Custom
Queries

Transitive
Closure

Architecture
Metrics

Scalable

Guery-1.4.0 YES YES YES YES YES
CrocoPat-2.1.4 YES YES YES NO NO
JDepend-2.9.1 YES NO NO YES N/A
Lattix-7.8 NO NO NO YES N/A
ReStructure101 NO NO NO YES N/A
Sotograph NO NO NO YES N/A

Table 2.1: Tool Features in terms of Architectural Antipatterns Detection

Final Selection

Table 2.1 shows a comparison of different tools based on requirements. On the basis
of our requirements and evaluation of several tools, the tool we have chosen to detect
architectural antipatterns instances is Guery (Dietrich and McCartin, 2012). This tool
has an easy-to-use query language and a scalable implementation of the query engine
that can detect antipattern instances in large graphs represented using JUNG library
(Madadhain et al., 2005). Guery provides scripting support to analyse a large set of
dependency graphs of programs. We conducted some experiments and found that this
tool scales better than Crocopat (Dietrich et al., 2010). Scalability tests were performed
on the basis of custom queries (antipattern definitions) that were executed against
dependency graphs of programs. We did not perform scalability tests on tools such
as JDepend, Lattix, ReStructure101, and Sotograph because these tools do not provide
support to define custom architectural antipatterns. This has made it impossible to
compare performance. The commercial architecture analysis tools including Lattix,
ReStructure101, and Sotograph are mainly UI centric, which makes them unsuitable
for scripting the analysis of a large set of programs.

16

CHAPTER 2. RESEARCH METHODOLOGY

2.2.3 Representing Antipatterns

Visual Notation

We use visual definitions to illustrate architectural antipatterns. Boxes inside packages
represent classes and arrows represent paths (sequence of edges). Paths can traverse
more than one package. Cardinality constraints such as (1:M) represent the minimum
and the maximum path length, where ”M” is unbound. The constraint (1:1) means
that this path has a single edge, while (0:M) means there could be a path of length
zero (an empty path). Paths are labelled with either uses relationship or inheritance
relationships (extends or implements).

!
!
!
!
!
!
!
!
!
!

"#$%&'($%! "#)'($%!

+,%&'-!./012!

#-%-!./012!

345467-8*+9!

::*+-*;%/<<!
=&>#$?4(>#'!

@A>B$>+%+'"$&*+9!

::*+-*;%C<<!
DA>B$>+%+'!

3454748'!

::>#'-*;%/<<!
E*B%+-*>+!

!

::>#'-*;%C<<!
A>B$>+%+'!

F>>GH*'!
!

#-%-!

#-%-!

#-%-!

#-%-!

!!3454748'!

IJ!KG4--!

!!345467-LG!!

EM!KG4--! EM!G4(%&!KG4--!

IJ!G4(%&!KG4--!#-%-!./0/2!

#-%-!./0/2!

#-%-!./012!

!

>&974$4K,%7G>9N37A4'%9>&(!
::-#)'($%<<!

>&974$4K,%7G>9N37O*%&4K,(!

::-#$%&'($%<<!
>&974$4K,%7G>9N37?>99%&P%$>-*'>&(!

#-%-!!

#-%-!!

*B$G%B%+'-!!

Figure 2.1: User Interface/Database Dependency Antipattern

Figure 2.1 shows a visual definition of an antipattern representing a layer violation.
This antipattern represents a well known design problem where a database layer
depends on a user interface layer, violating the 3-tier architecture principle. In the
presence of this antipattern it becomes difficult to replace the user interface layer. In
this example, layer membership is formalised as a direct reference to UI or DB classes
respectively, which exists in standard libararies such as AWT (for UI classes) or JDBC
(for DB classes). There should be a non-empty path connecting the DB layer class with
the UI layer class.

17

CHAPTER 2. RESEARCH METHODOLOGY

1 // no class should depend on UI and DB classes

2 //(and therefore the respective layers) at the same time

3 motif db2ui
4 select uiclass, uilayerclass , dbclass, dblayerclass
5 where "uiclass.namespace==’java.awt’
6 and "dbclass.namespace==’java.sql’"

7 connected by db2ui(dblayerclass >uilayerclass)[1,*]

8 and dblink(dblayerclass >dbclass)[1,1]

9 and uilink(uilayerclass >uiclass)[1,1]

10 group by dblayerclass.namespace , uilayerclass.namespace

Listing 2.1: User Interface Dependencies in Persistent Layer

Graph Queries

In Guery, a domain specific language is used to define an antipattern as a graph query
to be run on the dependency graph of a program. The Guery syntax borrows elements
from SQL and object-oriented expression languages. An antipattern corresponds to the
concept of a motif in network theory. The motif instance detection in the dependency
graph of large programs is a non-trivial task. It is an NP-complete problem (subgraph
isomorphism problem). The Guery solver uses several design heuristics and dynamic
programming techniques to achieve the best possible results (Dietrich et al., 2012).

Listing 2.1 shows the definition of an antipattern representing a layer violation. We
define this query in a directed graph of classes (vertices) and their relationships (edges).
Additional information, such as the namespace of a class, is represented as labels on
vertices. In the definition, single line comments (line 1,2) and naming of the antipattern
(line 3) are supported. The select keyword (line 4) binds vertex roles (like uiclass,
dbclass) to vertices in the graph. The where clause (line 5) defines a constraint on
the vertex roles, which is a boolean expression referring to a vertex. The constraints
are defined using string literals that are interpreted by MVEL (MVFLEX Expression
Language) (MVEL, 2009). The MVEL expression engine compiles these constraints
into bytecode for faster evaluation. Path roles (like dblink, uilink) represent sequences
of edges and constraints can also be defined on them. The keyword connected by is
used to define path roles. A path can also be constrained by cardinality constraints,
such as [1,*] meaning the minimum number of edges is 1 and the maximum number
is unbound (*). Similarly a constraint [0,*] means a path may be empty, that is, it has
zero edges. A cardinality constraint of [1,1] means that the path will have only a single
edge. The group by keyword is used to combine results based on a particular class or
namespace.

18

CHAPTER 2. RESEARCH METHODOLOGY

2.3 Antipattern Set

2.3.1 Overview

In this thesis, we have chosen architectural antipatterns based on the principles of
object-oriented design and by focusing on two meta-patterns related to modern mod-
ular platforms. Object-oriented design principles provide guidelines to be followed to
avoid “bad” design - design which is difficult to modify and expensive to maintain.
According to Martin (2003), there are several characteristics of bad design that should
be avoided:

• System Rigidity: Very hard to change because changing one part requires chang-
ing other parts of a system, also known as ripple effect.

• System Fragility: Making a change breaks unrelated parts of the system.

• Code Immobility: Difficult to reuse because it is hard to untangle from the current
system.

In order to avoid bad design, there exist a number of design principles. For exam-
ple, dependency inversion principle, acyclic dependency principle, stable abstractions
principle3 etc. In the next sections, we describe these design principles along with
their respective antipattern, which violates the design principle.

On another level, we are interested in a certain class of architectural antipatterns that
compromise modularisation. In particular, those antipatterns that hinder transforming
monolithic architectures to modular architectures. We are interested in this particular
class because many vendors are migrating their monolithic products to modern plat-
forms. For instance, recently leading commercial application servers Weblogic and
Websphere were modularised and refactored to adopt OSGi (Walls, 2009) platform.
The modularisation of the Java Development Kit is also in progress as discussed in
section 1.1 (Project Jigsaw, 2008). This clearly shows the trend towards modularization.

At the core of OSGi and related dynamic component platforms, there exist two meta-
patterns: namespace separability and interface separability (Dietrich et al., 2010). The
term namespace separability refers to how easy it is to separate namespaces from one
another. In modern modular platforms, it is important for an application to have loose
coupling between packages (namespaces) so that they may be separated in different
modules (bundles). As opposed to standard Java, packages play an important role
in the OSGi environment. In OSGi and similar frameworks, additional semantics are

3http://c2.com/cgi/wiki?PrinciplesOfObjectOrientedDesign

19

http://c2.com/cgi/wiki?PrinciplesOfObjectOrientedDesign

CHAPTER 2. RESEARCH METHODOLOGY

added to packages to control their visibility. These additional semantics contribute
to software encapsulation, which leads to decoupling of the life cycle of components
and their associated packages. The benefits of this decoupling include swapping of
components providing the same service at runtime, dynamic deployment of modules,
and parallel system upgrades.

The term interface separability refers to how easy it is to separate interfaces from their
implementations. The benefit of this includes swapping service implementations at
runtime without rebooting a system. Service implementations are rewired during
runtime through dependency injection frameworks (Fowler, 2001). This mechanism
is available in all dynamic component models, such as OSGi and its extensions, and
Spring Dynamic modules. In order to take advantage of these modern platforms,
dependencies between interfaces and their implementations should be avoided, and
this also violates the dependency inversion principle.

The reason for choosing a particular set of antipatterns is because we are interested in
refactoring monolithic applications into modular architectures. We are also interested
in finding out what hinders in achieving that (Dietrich et al., 2010). As mentioned be-
fore, there are two essential things that should be done in order to transform monolithic
applications into module systems, i.e., separate namespaces and separate interfaces
from their implementations. The antipattern set that we have chosen compromises the
separability property. There exist other antipatterns (Lippert and Roock, 2006; Stal,
2008) that compromise the quality of architecture, but we have limited the scope by
focusing on a set of four antipatterns that compromise modularity in modern modular-
isation platforms. However, the implementation of our tool allows adding new project
specific antipatterns or any other antipatterns without changing the source code of the
tool. These antipatterns can be formalised as graph queries that run against graphs to
detect antipattern instances. Here is the list of these antipatterns:

1. Circular Dependencies between Packages (CD) - affects namespace separability

2. Subtype Knowledge (STK) - affects interface separability

3. Abstraction Without Decoupling (AWD) - affects interface separability

4. Degenerated Inheritance (DEGINH) - affects interface separability

2.3.2 Circular Dependencies between Packages

In Java, packages are mainly used as namespaces to group classes with related func-
tionality. According to Martin (2000), classes should be grouped in a way which

20

CHAPTER 2. RESEARCH METHODOLOGY

facilitates an independent build, test and release cycle. He defines the Acyclic Depen-
dency Principle (ADP), which states that packages should not be involved in circular
dependencies. The dependency cycle between packages is a variation of “cycle be-
tween modules” discussed by Stevens et al. (1979). The circular dependency between
packages is regarded as a design flaw, which implies that packages involved in cycles
cannot be deployed and evolved independently. Such a situation arises when classes in
a package access classes in another package and vice versa. Packages that are involved
in circular dependencies become less maintainable and are difficult to reuse (Abdeen
et al., 2010). Empirical studies have shown that circular dependencies between classes
and packages are very common in open source Java programs (Melton and Tempero,
2006; Dietrich et al., 2010).

Example

In OpenJDK 1.6.0 b-14, there is cyclic dependency between AWT and Swing: java.-
awt.Componentusesjavax.swing.JComponentandjavax.swing.JComponent extends
java.awt.Container. This dependency is critical because applications developed us-
ing AWT cannot be deployed without the Swing toolkit. Listing 2.2 shows the source
code of one dependency, which creates this CD instance and figure 2.2 shows a visual
diagram of the dependency path.

1 package java.awt;
2 public abstract class Component ... {
3 ...

4 if (Component.isInstanceOf(this, "javax.swing.JComponent")) {
5 if (((javax.swing.JComponent) this).isOpaque()) {
6 ...

7 }

8 } ...

9 }

Listing 2.2: Reference from class Component to class JComponent in JDK 1.6.0 b-14

Definition

We have used a strong definition of circular dependency (SCD) where there is a single
path that creates a cycle between packages, as shown in figure 2.3. This definition is
different from the standard definition used in many places in the literature (Stevens
et al., 1979; Beyer and Lewerentz, 2003; ReStructure101, 2008) where there might not

21

CHAPTER 2. RESEARCH METHODOLOGY

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$%&'($%! "#)'($%!

+,%&'-!./012!

#-%-!./012!

345467-8*+9!

::*+-*;%/<<!
=&>#$?4(>#'!

@A>B$>+%+'"$&*+9!

::*+-*;%C<<!
DA>B$>+%+'!

3454748'!

::>#'-*;%/<<!
E*B%+-*>+!

!

::>#'-*;%C<<!
A>B$>+%+'!

F>>GH*'!
!

#-%-!

#-%-!

#-%-!

#-%-!

!!3454748'!

IJ!KG4--!

!!345467-LG!!

EM!KG4--! EM!G4(%&!KG4--!

IJ!G4(%&!KG4--!#-%-!./0/2!

#-%-!./0/2!

#-%-!./012!

!

>&974$4K,%7G>9N37A4'%9>&(!
::-#)'($%<<!

>&974$4K,%7G>9N37O*%&4K,(!

::-#$%&'($%<<!
>&974$4K,%7G>9N37?>99%&P%$>-*'>&(!

#-%-!!

#-%-!!

*B$G%B%+'-!!

345467-8*+9! 3454748'!

%6'%+;-!

#-%-!

::*+-*;%/Q!*+-*;%C<<!
DA>B$>+%+'!

::>#'-*;%/<<!
A>+'4*+%&!

!

::>#'-*;%C<<!
A>B$>+%+'!

!

%6'%+;-!

Figure 2.2: Dependency Cycle Between the AWT and Swing Packages

be a single dependency path that creates a dependency cycle between packages. We
refer to this kind as weak circular dependency, as shown in figure 2.4. On the other
hand, our SCD antipattern represents a strong coupling between packages and cannot
be easily refactored by splitting packages, whereas a weak circular dependency can be
removed by simply splitting packages. For example, in figure 2.4 if package2 is split
into two packages with classes C and D in different packages, we can get rid of the
dependency cycle.

!
"#$%#&'!

()*)+!,,-./-0')11!
2!
!

,,-./-0'311!
4!
!

,,567/-0')11!
8!
!

,,567/-0'311!
9!
!

()*)+!

(:*;+!

Figure 2.3: Circular Dependency between Packages

!
!
!

!!

!

!

!

"#$%&!

"#$%&!

!
'()*!

+,*,!

package1

--.+/01233!
4!

--.+/01233!
4!

"#$%&!

"#$%&!

package2

package1 package2

package1 package2

--5(56.+/01233!
7!

4!

7!

8!

9!

4!

7!

8!

Figure 2.4: Weak Circular Dependency between Packages

Listing 2.3 shows the definition of our SCD antipattern. This antipattern describes a
path that creates a dependency cycle. The path starts from a vertex in a package (in1),

22

CHAPTER 2. RESEARCH METHODOLOGY

1 // circular dependencies between packages

2 motif cd
3 select inside1,inside2,outside1,outside2
4 where "inside1.namespace==inside2.namespace"
5 and "inside1.namespace!=outside1.namespace"
6 and "inside1.namespace!=outside2.namespace"
7 connected by outgoing(inside1>outside1)[1,1]
8 and incoming(outside2 >inside2)[1,1]
9 and path(outside1 >outside2)[0,*]

10 group by "inside1.namespace"

Listing 2.3: Circular Dependencies between Packages (CD)

Bird

Duck Swan Eagle

Figure 2.5: Abstraction Example

passes through vertices in other packages (out1, out2), and finally returns back to a
vertex in the original package (in2). The vertices (in1, in2) and (out1, out2) may or
may not be the same. Package naming constraints are defined on vertices (line 4). The
cardinality constraints on outgoing and incoming paths are set to 1 so that those paths
contain a single edge. The cardinality constraint [0,*] means a path that may be empty,
for instance, where (out1, out2) are the same vertex.

2.3.3 Subtype Knowledge

In object-oriented design, supertypes represent relatively abstract concepts while sub-
types represent relatively concrete objects. For example, the UML class diagram as
shown in figure 2.5 has a supertype Bird, which has common characteristics of birds.
The subtypes Duck, Eagle, Swan inherit common features of birds and also contain
their specific characteristics. With regards to inheritance, Martin (1994) has defined the
Dependency Inversion Principle (DIP), which states, “abstractions should not depend
upon details. Details should depend upon abstractions”.

23

CHAPTER 2. RESEARCH METHODOLOGY

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!!
"#$%&'&()*%+"$,-%.&/*$"#0!11234/0'*55!

"#$%&'&()*%+"$,-%67*#&()0!

1123'*#/0'*55!
"#$%&'&()*%+"$,-%2'7%8"$$*#9*'"27/"#0!32*2!!

32*2!!

7:'+*:*;/2!!

"#$%&'&()*%+"$,-%!
<''*;=*#>?*+*/";!

"#$%&'&()*%+"$,-%!
<''*;=*#!

"#$%&'&()*%+"$,-%-=4(%!
@AB.<''*;=*#!

7:'+*:*;/2!!

C/;=2!!

7:'+*:*;/2!!

7:'+*:*;/2! 1123'/0'*55!
8"$$*#D&(/"#0!

"#$%&'&()*%+"$,-%2'7!

32*2!

11/0'*55!
A*E&3+/.&/*$"#0

D&(/"#0!

67*#&#()0!
!

8"$F&;&$*#!
!

8"$$*#!
!

"#$%&'&()*%+"$,-!

32*2!
32*2!

32*2!

Figure 2.6: Example of Subtype Knowledge Antipattern4

In the subtype knowledge (STK) antipattern (Riel, 1996) as shown in figure 2.7 a super-
type either directly or indirectly uses its subtype. This implies that we cannot use super
and subtypes in isolation. In the presence of STK, separating supertypes and subtypes
in different namespaces results in a circular dependency between namespaces. In ad-
dition, instability in subclasses (less abstract) causes instability in super classes that
tend to be more abstract. Instances of this antipattern violate the dependency inversion
principle.

Example

Figure 2.6 shows an instance of the STK antipattern in Log4J-1.2.15, where a super-
typeorg.apache.log4j.spi.LoggerFactory indirectly uses its subtypeorg.apache.-
log4j.DefaultCategoryFactory. Listing 2.4 shows the source code that creates this
antipattern instance. This antipattern instance also creates a circular dependency be-
tween org.apache.log4j and org.apache.log4j.spi packages.

Definition

Figure 2.7 shows the visual definition of the STK antipattern. In this definition, a
subtype inherits from a supertype either directly or indirectly. In a similar way, a
supertype has a uses relationship with its subtype either directly or indirectly. Both

4Massey Architecture Explorer: http://goo.gl/1cUHU

24

http://goo.gl/1cUHU

CHAPTER 2. RESEARCH METHODOLOGY

1 //A subtype inherits from its supertype

2 package org.apache.log4j;
3 import org.apache.log4j.spi.LoggerRepository;
4 ...

5 class DefaultCategoryFactory implements LoggerFactory {
6 ...

7 }

8 //A supertype uses another class (Logger),

9 //which uses the subtype

10 package org.apache.log4j.spi;
11 import org.apache.log4j.Logger;
12 ...

13 public interface LoggerRepository {
14 public Logger makeNewLoggerInstance(String name);
15 }

16 //Logger class uses LogManager

17 package org.apache.log4j;
18 ...

19 public class Logger extends Category {
20 ...

21 static public Logger getLogger(Class clazz) {
22 return LogManager.getLogger(clazz.getName());
23 }

24 ...

25 }

26 //LogManager class uses Hierarchy class

27 package org.apache.log4j;
28 ...

29 public class LogManager {
30 static {
31 ...

32 Hierarchy h=new Hierarchy(new RootLogger((Level)Level.DEBUG));
33 ...

34 } ...

35 }

36 //Hierarchy class uses DefaultCategoryFactory class

37 package org.apache.log4j;
38 ...

39 public class Hierarchy ... {
40 private LoggerFactory defaultFactory;
41 ...

42 public Hierarchy(Logger root) {
43 ...

44 defaultFactory = new DefaultCategoryFactory();
45 } ...

46 }

Listing 2.4: Source code of 5 types creating STK instance in Log4j-1.2.15

25

CHAPTER 2. RESEARCH METHODOLOGY

sub and supertype can be valid Java reference types. If sub and supertypes are in
different packages, we get two antipattern instances, i.e., SCD and STK.

!

"#$%&'($%! "#)'($%!*+,%&*'-!./012!

#-%-!./012!

Figure 2.7: Subtype Knowledge

Listing 2.5 shows the definition of the STK antipattern. This antipattern describes two
vertex roles type and supertype after select keyword (line 3). Path roles are defined with
connected by keyword (line 4,5). Path roles define source and target vertex role via “>”.
The cardinality constraints [1,*] on each path role restricts the minimum path length
to 1 and maximum path length to unbound. The default cardinality constraint is [1,*].

The path roles have several constraints (line 6, 7). These constraints are satisfied
when the path role instantiates a path with the respective type label. For example,
inherits.type == ‘extends′ evaluates to true only when all edges in the path role inherits
have a label extends. Finally, results are grouped by the supertype vertex role (line 8).

1 // subtype knowledge

2 motif stk
3 select type,supertype
4 connected by inherits(type>supertype) [1,*]
5 and uses(supertype >type) [1.*]
6 where "inherits.type==‘extends’ || inherits.type==‘implements’"
7 and "uses.type==‘uses’"
8 group by "supertype"

Listing 2.5: Subtype Knowledge (STK)

2.3.4 Abstraction Without Decoupling

The Dependency Inversion Principle (DIP) states that “high level modules should not
depend upon low level modules. Both should depend upon abstractions” (Martin,
1994). This means a class should depend on an abstract type rather than on a concrete
class. However, these abstract types still have to be instantiated using concrete classes.
In the abstraction without decoupling (AWD) antipattern (Figure 2.9), a client depends
on a service (supertype) and an implementation of the service (subtype) at the same
time, thus violating the dependency inversion principle. This situation could be
avoided, had the client only depended on the service and not on the implementation.

26

CHAPTER 2. RESEARCH METHODOLOGY

This antipattern has several problems, such as that the client code needs to be changed
whenever the service implementation changes. Test cases associated with that specific
service implementation also need to be changed. Finally, this antipattern hampers the
ability to dynamically swap different service implementations, which is an important
feature in modern modular platforms.

Example

Figure 2.8 shows an instance of the AWD antipattern in Log4J-1.2.15, where a client
class org.apache.log4j.jdbc.JDBCAppender uses an abstract class org.apache.-
log4j.Layout and its implementation class org.apache.log4j.PatternLayout at the
same time. Listing 2.6 shows the source code that creates this antipattern instance. This
hard-coded dependency on PatternLayoutmay lead to a runtime exception, if we pro-
vide JDBCAppender a different implementation of Layout. This particular dependency
also causes other design problems related to orthogonality (Dietrich, 2013).

!

"#$%&'"()#*+%)#*+%!
,-.(/0$1#-!

"#$%&'"()#*+%)#*+%(""2%!
,""2!

"#$%&'"()#*+%)#*+%(""2%!
,-.(3)0(04$,""2!

!

15-5!!

0672-6-4(5!!

15-5!!

"#$%*7*8'-%2"$9&%&):8%!
;<=>?77-4)-#!

"#$%*7*8'-%2"$9&%!
@*A"1(!

"#$%*7*8'-%2"$9&%!
B*((-#4@*A"1(!

15-5!!

0672-6-4(5!!

15-5!!

Figure 2.8: Example of Abstraction Without Decoupling Antipattern5

Definition

Figure 2.9 shows the visual definition of the AWD antipattern. In this figure, there is
a single edge that connects client and supertype, while there could be an indirect path
between the client and the subtype. Listing 2.7 shows the definition of the antipattern
as a graph query. In this definition, constraints are defined on vertex and path roles
(line 3,4 and 8,9 respectively). Path length constraints are omitted for some path roles.
In that case the default path length constrains [1,*] are used.

5Massey Architecture Explorer: http://goo.gl/JxAoW

27

http://goo.gl/JxAoW

CHAPTER 2. RESEARCH METHODOLOGY

1 package org.apache.log4j.jdbc;
2 ...

3 public class JDBCAppender
4 extends org.apache.log4j.AppenderSkeleton ... {
5 ...

6

7 public void setSql(String s) {
8 sqlStatement = s;

9 if (getLayout() == null) {
10 this.setLayout(new PatternLayout(s));
11 }

12 else {
13 ((PatternLayout)getLayout()).setConversionPattern(s);

14 }

15 }

16 }

17

18 package org.apache.log4j;
19 ...

20 public abstract class AppenderSkeleton ... {
21 ...

22 public void setLayout(Layout layout) {
23 this.layout = layout;
24 }

25 ...

26 }

Listing 2.6: Source Code Creating an AWD Instance in Log4J-1.2.15

2.3.5 Degenerated Inheritance

In software development, duplication is considered to be dangerous at all levels
whether it is in requirements, architecture, source code or documentation. When-
ever an artefact is changed, all copies of the artefact must be detected and changed.
This makes the maintenance of a system very expensive. To avoid duplication, it is
recommended to follow a principle called DRY (Don’t Repeat Yourself)6, which states,
“every piece of knowledge must have a single, unambiguous, authoritative representa-
tion within a system”. The degenerated inheritance (DEGINH) antipattern (Sakkinen,
1989) as shown in figure 2.11 appears in a program when there are multiple inheritance
paths from a subtype to its supertype. In Java programs, this can be introduced by
the use of multiple inheritance through interfaces. This antipattern creates duplica-
tion in the program structure and makes it difficult to separate subtypes from their
supertypes.

6http://c2.com/cgi/wiki?DontRepeatYourself

28

http://c2.com/cgi/wiki?DontRepeatYourself

CHAPTER 2. RESEARCH METHODOLOGY

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$%&'($%! "#)'($%!*+,%&*'-!./012!

#-%-!./012!

"#$%&'($%! "#)'($%!*+,%&*'-!./012!

+,%&'-!./012!

34*%+'!

"#)'($%!

"#$%&'($%!#-%-!./0/2!

+,%&'-!./012!

#-%-!./012!

Figure 2.9: Abstraction Without Decoupling

1 motif awd
2 select client, service, service_impl
3 where "!client.abstract" and "service.abstract"
4 and "!service_impl.abstract"
5 connected by inherits(service_impl >service)
6 and service_invocation(client>service)[1,1]
7 and implementation_dependency(client>service_impl)
8 where "inherits.type==’extends’ || inherits.type==’implements’"
9 and "service_invocation.type==’uses’"

10 and "implementation_dependency.type==’uses’"
11 group by "client" and "service"

Listing 2.7: Abstraction Without Decoupling (AWD)

Example

Figure 2.10 shows an instance of the DEGINH antipattern in Log4J-1.2.15, where a type
org.apache.log4j.jdbc.JDBCAppender has two paths to its supertype org.apache.-
log4j.Appender. Listing 2.8 shows the source code that creates this antipattern in-
stance.

Definition

Figure 2.11 shows the visual definition of the DEGINH antipattern. In this definition,
two paths originate from a subtype to a supertype. The length of both paths is lower
bound 1 and no upper bound (1:M). The definition of the graph query is shown in

7Massey Architecture Explorer: http://goo.gl/bCXOg

29

http://goo.gl/bCXOg

CHAPTER 2. RESEARCH METHODOLOGY

!
!
!

!
"#$%&'&()*%+"$,-%.&/*$"#0!11234/0'*55!

"#$%&'&()*%+"$,-%67*#&()0!

1123'*#/0'*55!
"#$%&'&()*%+"$,-%2'7%8"$$*#9*'"27/"#0!

32*2!!

32*2!!

7:'+*:*;/2!!

"#$%&'&()*%+"$,-%!
<''*;=*#>?*+*/";!

"#$%&'&()*%+"$,-%!
<''*;=*#!

"#$%&'&()*%+"$,-%-=4(%!
@AB.<''*;=*#!

7:'+*:*;/2!!

C/;=2!!

7:'+*:*;/2!!

Figure 2.10: Example of Degenerated Inheritance Antipattern7

1 package org.apache.log4j.jdbc;
2 ...

3 public class JDBCAppender
4 extends org.apache.log4j.AppenderSkeleton
5 implements org.apache.log4j.Appender {
6 ...

7 }

Listing 2.8: Source Code of JDBCAppender Creating DEGINH Instance in Log4j-
1.2.15

listing 2.9. In this query, there is a constraint on a vertex role, which states that the
supertype cannot be java.lang.Object (line 4), because in Java all classes inherit from
the Object class.

The find all flag (line 6) indicates that the Guery engine should find all mappings of the
respective path roles. By default, the engine finds all possible vertex bindings, that is,
vertex roles are mapped to vertices in the graph but for each vertex mapping only a
single path is initialised (path role to sequence of edges mapping). This restriction is
sometimes necessary for scalability reasons.

30

CHAPTER 2. RESEARCH METHODOLOGY

!

"#$%&'($%! "#)'($%!*+,%&*'-!./012!

#-%-!./012!

"#$%&'($%! "#)'($%!*+,%&*'-!./012!

+,%&'-!./012!

Figure 2.11: Degenerated Inheritance

1 //degenerated inheritance

2 motif deginh
3 select type,supertype
4 where "supertype.fullname!=’java.lang.Object’"
5 connected by inherits1(type>supertype)
6 and inherits2(type>supertype) find all
7 where "inherits1.type==’extends’||inherits1.type==’implements’"
8 and "inherits2.type==’extends’||inherits2.type==’implements’"
9 where "inherits1!=inherits2"

10 group by "supertype"

Listing 2.9: Degenerated Inheritance (DEGINH)

2.4 Detecting Opportunities - Scoring Edges

Scoring is a technique used to determine the relative importance of vertices or edges
in a graph. We have investigated several algorithms that use a scoring concept. These
include Google’s PageRank (Brin and Page, 1998), Betweenness Centrality (Freeman,
1977), Edge Betweenness (Girvan and Newman, 2002). A common pattern in scoring
algorithms is that they walk through the network and count how often a vertex or
edge is visited. Table 2.2 shows a summary of different scoring mechanisms.

In our approach, an antipattern instance corresponds to a subgraph in the depen-
dency graph. Due to the presence of large numbers of antipattern instances in the
dependency graph, it may become very difficult to remove all antipattern instances
individually from the graph. Therefore, we have used a scoring algorithm, which as-
signs a high weight to edges that participate in large numbers of antipattern instances.
The algorithm associates a number with each edge indicating in how many antipat-
tern instances this edge occurs. This means that the removal of a high-scored edge
would likely remove multiple antipattern instances. Thus, this scoring mechanism
allows us to identify high-impact refactoring opportunities, i.e., by performing a few
refactorings, a large number of antipattern instances can be removed (Dietrich et al.,
2012). In our scoring algorithm, edges are scored and traversal is performed on paths
in antipattern instances.

31

CHAPTER 2. RESEARCH METHODOLOGY

Score/Metric Scores what Paths visited
Google PageRank vertices random paths
Betweenness centrality vertices shortest paths
Edge Betweenness edges shortest paths
Antipattern Score edges paths in antipatterns

Table 2.2: Comparison of Different Scoring Mechanisms

Figure 2.12 shows an example of the dependency graph of a program. There are
five classes in the program namely A, B, C, D, E in four packages named as package1,
package2, package3 and package4. This program has two types of antipattern instances
i.e., SCD and STK. The following paths represent antipattern instances:

• An SCD antipattern instance is represented by the path A→extends B→uses D→uses

A.

• An SCD instance caused by B→uses D→uses E.

• An STK antipattern instance is represented by the path B→uses D→uses A→extends

B.

!
!
!
!
!
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
!
!

!
!
!
!

!
!
!

!
!
!
!
!
!
!
!
!

"#$%#&'(!

)!

"#$%#&'*!

+!

"#$%#&',!

-!

"#$%#&'.!

/!

'01'234!

'01'234!

54'4!

54'4!

678&82#9!
:7;&7#<!

='>#$1;7'3!
:7;&7#<!

?;3'9!
@017#$18;2!

)218"#11'72!
/'1'$18;2!

)51;<#1'3!
='>#$1;782&!
:7;$'44!
/'1'$18;2!

:7'$;23818;2!
-A'$%82&!

!

:;41$;23818;2!
-A'$%82&!

!

='>#$1;7'3!!
:7;&7#<!

=;99B#$%!

='"'#1!
='>#$1;782&!

-A;;4'!
-#2383#1'!
='>#$1;782&!

)""9C!
='>#$1;782&!

='D'$1!

@E#95#1'!
='>#$1;782&!

F"3#1'!
G;57$'!-;3'!

H2818#9!:7;&7#<!I4!
)GJ4!

='>#$1;7'3!
:7;&7#<!I4!)GJ4!

@!

Figure 2.12: Example Program’s Dependency Graph

In this example, the edge B →uses D gets a score of three. The rest of the edges either
get one or two. All of these antipattern instances can be removed either by redirecting
the edge B→uses D to B→uses C or by removing the edge B→uses D.

32

CHAPTER 2. RESEARCH METHODOLOGY

In our algorithm, we have computed those edges with the highest score. If multiple
edges get the same score, we sort them by the fully qualified name of the start and the
end vertex to make the process reproducible.

2.5 Dependency Classification

In this section, we define the meaning of a dependency in a Java program. This will later
be used in order to classify dependencies that our refactoring algorithm will remove.
A dependency has different types. Our classification of a dependency is derived from
earlier works on dependencies (Lakos, 1996; Melton and Tempero, 2007a). Listing
2.10 shows different types of dependencies in a Java program. In this listing class A
depends on other types B, C, D, E, F, G, H and System. In this context, we call the
dependent class A the source type, and the rest of dependency classes target types.

1 public class A extends B implements C {

2 private D object = new E();

3 public F m(G obj) throws H {

4 System.out.println(obj.toString());

5 ...

6 return obj.getF();

7 }

8 }

Listing 2.10: Java Source Code Creating Dependencies

We can broadly classify a dependency relationship between a source and a target type
into the following nine categories:

1. Variable Declaration (VD): The target type is used to declare a variable or a field,
for example, A→uses D.

2. Method Return Type (MRT): The target type is used as a return type of a method
in the source type, for example, A→uses F.

3. Method Parameter Type (MPT): In this case the target type is used as a method
parameter in the source type, for example, A→uses G.

4. Method Exception Type (MET): The target type is used as an exception type using
throws keyword, for example, A→uses H.

5. Constructor Invocation (CI): A target type constructor is invoked through new
keyword, for example, A→uses E.

33

CHAPTER 2. RESEARCH METHODOLOGY

6. Static Member Invocation (SMI): When a static member of a class (field or method)
is invoked on the target type, for example, A→uses System.

7. Superclass (SC): The target type is used as a supertype through the extends key-
word, for example, A→extends B.

8. Interface (IN): The target type is used as an interface through implements keyword,
for example, A→implements C.

9. Other: In this category, references to a class, such as B.class and object instanceof E
are included.

In the dependency graph, an edge can represent three types of relationships: uses,
extends and implements. Categories from 1-6 and 9 are represented as a uses edge. SC
relationship is represented by an extends edge, while an implements edge represents IN
relationships.

2.6 The Dataset

In our experiments, we have analysed a large dataset of programs. These programs
are collected from the Qualitas Corpus (Tempero et al., 2010) - a large collection of
open source programs. The main reason for choosing this particular dataset is that it
contains a large variety of real-world programs that gives us the opportunity to apply
our techniques on a broad spectrum of programs. Programs in the dataset include real-
world applications, end user libraries and tools. Furthermore, the dataset is readily
available and all programs in the corpus are written in Java language. There exist
other datasets for empirical studies, such as Software-artifact Infrastructure Repository
(Do et al., 2005), Sourcerer (Bajracharya et al., 2006), and Purdue Benchmark Suite
(Grothoff et al., 2007). Among these datasets the Qualitas Corpus turns out to be most
comprehensive and most widely used dataset.

We have used the Qualitas Corpus version 20101126. This version contains 106 pro-
grams. The corpus comes in “r” (recent) and “e” (evolution) editions. In the “e”
edition, many programs have multiple versions of the same program. This corpus is
useful for studies related to evolution of software systems. Our aim is not to study
software evolution, therefore we have used the “r” edition, which contains only the
most recent version of every program.

We have excluded 16 programs from the dataset based on two criteria: size and con-
figurability in Eclipse. The JRE-1.6 was skipped due to the large number of classes and

34

CHAPTER 2. RESEARCH METHODOLOGY

relationships (17253, 173911 respectively). Although Guery is scalable enough to find
antipatterns in JRE, we had to repeat this analysis multiple times to run simulations.
The other 15 skipped programs were plugin based, i.e., each program had multiple
plugins/modules that were difficult to normalise into a single Eclipse project8. Also,
these programs make use of custom class loading and the definition of dependencies
through configuration files, which is not reflected in the models we use. However, we
believe that the resulting dataset of 92 programs still has a wide variety of real-world
applications sufficient for the evaluation purpose.

The 92 programs from the dataset have been manually configured as Eclipse projects
and are loaded into a workspace. In order to normalise all projects, we created a folder
structure in each Eclipse project. This includes a src folder, which contains source
code of a program. The bin folder contains the compiled output files. The lib folder
includes all the required external library files. The test folder contains the source
code of tests, if included with the original source code of the program. We configured
all projects to use JRE 1.6. This created several problems for those programs that were
configured with JRE 1.4 or before. In particular, some of the existing programs used
enum as an identifier, whereas in JRE 1.6, enum is used as a keyword. For those projects,
we manually renamed all such identifiers, with the help of search and replace, to
remove compilation errors.

8The skipped programs are: eclipse- 3.6, netbeans-6.9.1, exoportal-v1.0.2, gt2-2.7-M3, ivatagroupware-
0.11.3, jboss-5.1.0, jtopen-7.1, maven-3.0, myfaces-core-2.0.2, roller-4.0.1, spring-framework-3.0.5, struts-
2.2.1, tapestry-5.1.0.5

35

CHAPTER 2. RESEARCH METHODOLOGY

ant-1.8.1 antlr-3.2 aoi-2.8.1
argouml-0.30.2 aspectj-1.6.9 axion-1.0-M2
azureus-4.5.0.4 c jdbc 2.0.2 castor-1.3.1
cayenne-3.0.1 checkstyle-5.1 cobertura-1.9.4.1
colt-1.2.0 columba-1.0 compiere-330
derby-10.6.1.0 displaytag-1.2 drawswf-1.2.9
drjava-stable-20100913-r5387 emma-2.0.5312 findbugs-1.3.9
fitjava-1.1 fitlibraryforfitnesse-20100806 freecol-0.9.4
freecs-1.3.20100406 galleon-2.3.0 ganttproject-2.0.9
heritrix-1.14.4 hibernate-3.6.0-beta4 hsqldb-2.0.0
htmlunit-2.8 informa-0.7.0-alpha2 ireport-3.7.5
itext-5.0.3 jag-6.1 james-2.2.0
jasml-0.10 jasperreports-3.7.3 javacc-5.0
jchempaint-3.0.1 jedit-4.3.2 jena-2.6.3
jext-5.0 jFin DateMath-R1.0.1 jfreechart-1.0.13
jgraph-5.13.0.0 jgraphpad-5.10.0.2 jgrapht-0.8.1
jgroups-2.10.0 jhotdraw-7.5.1 jmeter-2.4
jmoney-0.4.4 joggplayer-1.1.4s jparse-0.96
jpf-1.0.2 jrat-0.6 jrefactory-2.9.19
jruby-1.5.2 jspwiki-2.8.4 jsXe-04 beta
jung-2.0.1 junit-4.8.2 log4j-1.2.16
lucene-2.9.3 marauroa-3.8.1 megamek-0.35.18
mvnforum-1.2.2-ga nakedobjects-4.0.0 nekohtml-1.9.14
openjms-0.7.7-beta-1 oscache-2.4.1 picocontainer-2.10.2
pmd-4.2.5 poi-3.6 pooka-3.0-080505
proguard-4.5.1 quartz-1.8.3 quickserver-1.4.7
quilt-0.6-a-5 rssowl-2.0.5 sablecc-3.2
sandmark-3.4 squirrel sql-3.1.2 sunflow-0.07.2
tomcat-7.0.2 trove-2.1.0 velocity-1.6.4
webmail-0.7.10 weka-3.7.2 xalan-2.7.1
xerces-2.10.0 xmojo-5.0.0

Table 2.3: The Dataset

36

Chapter 3

Dependency-Breaking Refactorings

In the previous chapter, we have described several antipatterns that compromise mod-
ularity. We also discussed several kinds of dependencies between software artefacts.
We then discussed a scoring mechanism which identifies critical dependencies be-
tween classes that point to high-impact refactoring opportunities. In this chapter, we
embark upon investigating refactoring techniques that are widely used to decouple
classes. Each refactoring is described with an example and a discussion of its pros
and cons. Finally, we choose a set of refactorings to be used in experiments based on
several requirements. In the next chapters, we describe the process for applying these
refactorings to break unwanted dependencies between classes from programs.

3.1 Overview

Dependencies between classes represent relationships that occur because one class uses
services of another class. For example, a class A depends on a class B when A inherits
from B, has an attribute whose type is B, or has a method that calls methods declared
in B. In this case, A is called source while B is called target. This dependency means that
A cannot function without B, and A cannot be reused without B. In Java, if the target is
missing, a compile time error is generated. At runtime, the missing target type results
in the generation of ClassNotFoundException1 or NoClassDefFoundError2.

In the previous chapter, we divided dependencies between classes into nine categories.
Next, we look into several levels of a dependency. For instance, when a method of the
class A calls a method of the class B, this automatically creates a dependency between

1There are certain “weak” dependencies that cannot be verified by the compiler, in particular intro-
duced through reflection.

2An error is generated when JVM or class loader cannot find the definition of a class.

37

CHAPTER 3. DEPENDENCY-BREAKING REFACTORINGS

A and B. If A and B happen to be in different packages, this will create a dependency
between packages. Similarly, when two packages are deployed in different jar files
to improve maintainability, this will create a dependency between these two jars. In
this thesis, we restrict our focus to dependencies on the class and the package level
because the antipatterns we defined in the previous chapter focus on these two artefacts
of programs.

At times, it becomes necessary to decouple dependencies in programs to improve sev-
eral software quality characteristics such as modularity, reusability, and testability. For
example, external dependencies (such as file systems, threads, memory) must be bro-
ken in order to test the program in a controlled environment. Several techniques have
been used in the literature to break dependencies for achieving the aforementioned
quality attributes in programs. These techniques are basically refactorings that can be
used to break dependencies in programs. Notable works in this area include Martin
(1994); Fowler (2004); Feathers (2004); Stal (2008), and Osherove (2009). In the next
sections, we explain dependency-breaking refactorings on the class and the package
level. We follow a simple template where we describe a refactoring with an example
and in some cases we explain the example through a visual diagram before and after
refactoring. The list of refactorings is as follows:

Package Level Refactorings

• Move Class

• Split Package

• Merge Package

Class Level Refactorings

• Adapt Parameter

• Extract Interface

• Dependency Injection

• Service Locator

• Type Generalisation

• Static Members Inlining

38

CHAPTER 3. DEPENDENCY-BREAKING REFACTORINGS

3.2 Package Level Refactorings

3.2.1 Move Class

The move class refactoring is commonly used to break dependency cycles between
packages (RefactoringCatalog, 1999). This refactoring is rather simple and robust tool
support exists to automate it. Modern IDEs such as Eclipse, Netbeans, and IntelliJ
IDEA contain a built-in support for the move refactoring. These tools automatically
fix references in other classes affected by the move class refactoring.

Another advantage of move refactoring is that it can be completely simulated on the
model level. This provides the ability to evaluate the impact of refactoring without
changing the source code of programs. For example, on the dependency graph level,
where classes are represented as vertices and edges represent relationship between
classes, a move class refactoring can be performed by changing labels (namespace) on
respective vertices.

Example

Figure 3.1 shows an example of move class refactoring on the model level. In this
scenario, we assume that the dependency between class A and B represents a bad
dependency and should be removed. A trivial solution of moving the class B from
package2 to package1 would resolve the problem. However, in some cases there could
be side effects of the move class refactoring.

Consider figure 3.2 as an example where a move refactoring may have negative conse-
quences. In this example, when the class B is moved to package1, we created another
dependency from package2 to package1. This dependency occurred because classes C
and D depend on the class B. This situation has increased coupling between the pack-
ages and decreased cohesion inside package2. Another complication associated with
this example could be related to the visibility of elements of the class B. For instance,
suppose the class B has several methods that have package level visibility. Moving the
class B to package1 will result in compilation error, if there are any references to those
methods by class C or D in package2. In this case, we not only move the class B to
package1 but also change the visibility of the members affected by the move. We refer
to this as an additional refactoring. Renaming a class before moving could be another
additional refactoring. This refactoring is required if the package, where the class is
being moved, contains a class with the same name.

39

CHAPTER 3. DEPENDENCY-BREAKING REFACTORINGS

package1 package2

package1
package2

Before Refactoring

A B

After Refactoring

A B

Figure 3.1: Move Class Example

3.2.2 Split Packages

Packages should have high cohesion and low coupling. However, if there is loose
cohesion within a package, this reflects that the functionality needs to be split in
multiple packages. In order to resolve the problem, areas with loose cohesion within
a package should be identified and they become candidates for split refactoring. In a
similar way, if a package has too many responsibilities, it should be split. Dietrich et al.
(2008) suggested the use of clustering to detect opportunities for splitting packages.
The split package refactoring can also be used to break dependency cycles between
packages, although dependency cycles that are created through a single path cannot
be broken with this refactoring (see Section 2.3.2). This refactoring is also known as
split subsystems (Stal, 2008).

Example

Figure 3.3 shows an example of split packages. In this example, move class refactoring
is used to move the cohesive classes. This refactoring is useful when there is weak
circular dependency between packages, i.e., there are two individual paths that create
the dependency between packages.

40

CHAPTER 3. DEPENDENCY-BREAKING REFACTORINGS

package1

package2

package1

package2

Before Refactoring

A B

C

D

After Refactoring

A B

C

D

Figure 3.2: Move Class Example

3.2.3 Merge Packages

When there is high coupling between two packages, it is desirable to merge them
(Stal, 2008). In this technique, classes inside two packages are put together in a single
package. This refactoring eliminates the dependency cycles between the packages.
The resulting merged package might then need to be divided based on other criteria,
such as cohesion metrics. In figure 3.3, if all classes use each other, we could move
classes A and B to package2 and delete package1 to remove the dependency cycle.

41

CHAPTER 3. DEPENDENCY-BREAKING REFACTORINGS

package1 package2

package1 package2

package21

Before Refactoring

A

B

C D

E F

After Refactoring

A

B

C D

E F

Figure 3.3: Split Packages Example

3.3 Class Level Refactorings

3.3.1 Adapt Parameter

This refactoring applies to method parameters. In this refactoring, a dependency to
the target type3 is broken by removing the target type from the method parameter
and replacing it with a new interface, whose implementation provides the required
functionality (Feathers, 2004). This new interface does not have to be implemented by
the target type, instead an adapter is used. This is basically an indirection refactoring,
which can be used when it is difficult to extract an interface from the existing parameter

3A type refers to a non-array Java reference type.

42

CHAPTER 3. DEPENDENCY-BREAKING REFACTORINGS

type. This is an invasive refactoring4 as we need to introduce a new interface and also
need to change the parameter in the method signature and this could break the client
code.

Example

Listing 3.1 shows an example of the adapt parameter refactoring. In this example, there
is a dependency from MyServletRequester (source) to HttpServletRequest (target).
If we want to test the populate method, we need to provide an implementation of
HttpServletRequest, which has more than twenty methods. In this situation, it is
difficult to create a mock object for testing purposes. In order to avoid this situation,
a small interface ParameterSource is created to be used in the method parameter.
By using this interface, two different implementations can be created, i.e., each for
production and testing.

Figure 3.4 shows the class diagram before and after the refactoring. The solid arrow
represents the dependency relationship5. The dependency relationship is labelled as
a uses relationship. The triangular arrow head represents an inheritance relationship
and is labelled as extends or implements. There are two boxes in the diagram, which
represent before and after refactoring. In the diagram (After Refactoring), the adapter
pattern (Gamma et al., 1994) is used to break the dependency to HttpServletRe-
quest. The class ServletParameterSource serves as adapter or wrapper and the class
HttpServletRequest serves as adaptee.

1 //Before adapt parameter refactoring

2 public class MyServletRequester { ...

3 public void populate(HttpServletRequest request) {

4 String[] values = request.getParameterValues(pageStateName);

5 ...

6 } ...

7 }

8

9 //After adapt parameter refactoring

10 public class MyServletRequester { ...

11 public void populate(ParameterSource source) {

12 String[] values = source.getParameterValues(pageStateName);

13 ...

4We quantify the invasiveness property by the number of primitive refactorings required to perform
a composite refactoring.

5In the dependency relationship, the target class is used to declare fields, local variables, method
return types, method exception types and so on.

43

CHAPTER 3. DEPENDENCY-BREAKING REFACTORINGS

<<uses>>

<<uses>>

<<implements>>

<<uses>>

Before Refactoring

MyServletRequester HttpServletRequest

After Refactoring

MyServletRequester <<interface>>
ParameterSource

<<adapter>>
ServletParameterSource

<<adaptee>>
HttpServletRequest

Figure 3.4: The Adapt Parameter Refactoring

14 } ...

15 }

16

17 public interface ParameterSource {

18 public String[] getParameterValues(String name);

19 }

20

21 public class ServletParameterSource implements ParameterSource

22 {

23 private HttpServletRequest request;

24 public ServletParameterSource(HttpServletRequest request) {

25 this.request = request;

26 }

27 public String[] getParameterValue(String name) {

28 return request.getParameterValues(name);

29 }

30 }

Listing 3.1: The Adapt Parameter Refactoring

44

CHAPTER 3. DEPENDENCY-BREAKING REFACTORINGS

3.3.2 Extract Interface

This is a commonly used refactoring to break dependency from the source to the target
class. In order to perform this refactoring, we have to identify the minimum possible
interface (public methods) of the target class used in the source class. After that, a new
interface can be created from the public methods identified and this interface can be
used as the replacement for the target class. The target class should now implement the
new interface. The extract interface refactoring requires human intervention to assign
a name to the new interface and to create alternative implementations for testing
purposes (Fowler, 1999).

Example

Listing 3.2 shows an example where the extract interface refactoring is used to break
the dependency from the target class (Employee). In this example, the TaxCalcula-
tor class is used to calculate taxes of employees. This class needs the base tax rate
for an employee to calculate the tax. The calculateTax method uses only a single
method (getBaseTaxRate) from the Employee class. The Employee class has many
other features than getBaseTaxRate. Therefore, this method can be used to define a
new interface as shown in figure 3.5. Furthermore, the Employee class now imple-
ments the Taxable interface. Similarly, an alternative implementation of Taxable can
be created as a mock implementation for testing the calculateTaxmethod.

1 //Before extract interface refactoring

2 public class TaxCalculator { ...

3 public double calculateTax(Employee emp, int salary) {

4 int baseRate = emp.getBaseTaxRate();

5 return baseRate * salary;

6 } ...

7 }

8 //After extract interface refactoring

9 public class TaxCalculator { ...

10 public double calculateTax(Taxable emp, int salary) {

11 int baseRate = emp.getBaseTaxRate();

12 return baseRate * salary;

13 } ...

14 }

15 public interface Taxable {

16 public double getBaseTaxRate();

17 }

45

CHAPTER 3. DEPENDENCY-BREAKING REFACTORINGS

<<uses>>
<<implements>>

<<uses>>

Before Refactoring After Refactoring

TaxCalculator

Employee

getBaseTaxRate
getName
getDepartment

TaxCalculator
<<interface>>

Taxable

getBaseTaxRate

Employee

getBaseTaxRate
getName
getDepartment

Figure 3.5: Extract Interface Refactoring

18 public class Employee implements Taxable {

19 ...

20 }

Listing 3.2: Extract Interface Refactoring

3.3.3 Dependency Injection

Dependency injection or inversion of control is a powerful technique for decoupling the
dependency between classes. This technique is based on the dependency inversion
principle postulated by Martin (1994). The term dependency injection was coined
by Fowler (2004). In this technique, the client class does not know about a specific
implementation class at compile time. The implementation class is injected at runtime
by an assembler object as shown in figure 3.6 (After Refactoring). The assembler object
can use any of the existing dependency injection frameworks to inject dependencies
at runtime. These frameworks include Spring (Johnson et al., 2005), OSGi Declarative
Services (Walls, 2009), Google Guice (Vanbrabant, 2008), and PicoContainer (Hammant
and Hellesy, 2003). These frameworks can be used to define the configuration of
implementation types required by an application. A benefit of these frameworks is
that we can use alternative implementations of a service at runtime without restarting
or recompiling the application.

46

CHAPTER 3. DEPENDENCY-BREAKING REFACTORINGS

Example

In listing 3.3, the BankingApp class (client), depends on an interface ObjectStore (rep-
resenting a service) and its implementation type XMLObjectStore (service implemen-
tation) at the same time (figure 3.6 (Before Refactoring)). This has several problems.
For example, when the service implementation is changed then the client code needs to
be changed. Test cases associated with that specific service implementation also need
to be changed. This situation could be avoided, had the client depended only on the
service and not on the implementation. In this case, whatever service implementation
is used, there is no need to change the client code or the test cases. This dependency
from the client to the implementation class can be broken by using the dependency
injection. According to Fowler (2004), there are three types of dependency injection,
i.e., constructor injection, setter injection, and interface injection.

1 //Before refactoring

2 public class BankingApp { ...

3 private ObjectStore store;

4 public void backup() {

5 store = new XMLObjectStore () ;

6 ...

7 } ...

8 }

Listing 3.3: Source Code of Coupling Example

Constructor Injection

This refactoring is also known as parametrize constructor (Feathers, 2004). In this
technique, the reference to object creation inside a method is replaced with a param-
eter in the constructor of the client class. This parameter represents the type whose
implementation will be used by the client class. In this way, we are able to remove
the hard-coded dependency and now can inject any alternative dependency at run-
time. The class that will inject the dependency in the client class needs to use any
dependency injection framework to specify and configure the implementation types.

1 //After refactoring

2 public class BankingApp { ...

3 private ObjectStore store;

4 public BankingApp (ObjectStore s) {

47

CHAPTER 3. DEPENDENCY-BREAKING REFACTORINGS

<<implements>>

<<uses>>

<<uses>>

<<uses>>

<<injects>>

<<creates>>

<<uses>>

Before Refactoring

BankingApp <<interface>>
ObjectStore

XMLObjectStore

After Refactoring

BankingApp

Assembler

<<interface>>
ObjectStore

XMLObjectStore

Figure 3.6: Example of Dependency Injection

5 this.store = s;

6 }

7 public void backup() {

8 ...

9 } ...

10 }

Listing 3.4: Source Code After Constructor Injection

48

CHAPTER 3. DEPENDENCY-BREAKING REFACTORINGS

Setter Injection

This technique to inject dependencies is similar to constructor injection. However,
the difference lies in the declaration of setter methods inside the client class to inject
dependencies from outside. Listing 3.5 shows the code after introducing the setter
method in the client class to receive a dependency.

1 //After refactoring

2 public class BankingApp { ...

3 private ObjectStore store;

4 public void setObjectStore(ObjectStore s) {

5 this.store = s;

6 }

7 public void backup() {

8 ...

9 } ...

10 }

Listing 3.5: Source Code After Setter Injection

Interface Injection

In this technique, a new interface is defined and used to inject dependencies. First,
a new injector interface is defined for the purpose of injecting ObjectStore. This
interface is defined with a generic type parameter so that it can be used to inject
any object. After that, this new interface is implemented by any class that requires
ObjectStore, such as the BankingApp class as shown in listing 3.6.

1 public interface Injector <T> {

2 public void inject(T target);

3 }

4 public class BankingApp implements Injector <ObjectStore > { ...

5 private ObjectStore store;

6 public void inject(ObjectStore target) {

7 this.store = target;

8 }

9 public void backup() {

10 ... } ...

11 }

Listing 3.6: Source Code After Interface Injection

49

CHAPTER 3. DEPENDENCY-BREAKING REFACTORINGS

3.3.4 Service Locator

The service locator pattern can also be used to address the decoupling problem. In
this pattern, service implementation classes are decoupled from their client classes.
Fowler (2004) describes the service locator pattern as a registry that is used to look
up instances of implementation classes. This pattern is particularly useful when there
exist alternative service implementations and they need to be replaced or upgraded.

For example, Java Database Connectivity (JDBC) API has a Driver Manager, which
is used to establish JDBC connections. The JDBC drivers are supplied by different
parties. It is not desirable to rely on a specific driver implementation, instead a string
encoded URL is used, which provides a connection string that is then accepted by
a certain driver implementation. For instance, the abstract Connection type can be
instantiated as follows, avoiding references to particular implementation: Connection
c = DriverManager.getConnection(aURL). In this case, a specific driver implemen-
tation is not hard-coded by the client class, rather a dependency is established through
the JDBC driver manager. The DriverManager class uses name matching based on
the URL to locate the driver implementation. When the above method is called, it
iterates over all the registered drivers and finds an appropriate driver for the connec-
tion string aURL. This searching is performed by a method getDriver(aURL), which
further invokes a method acceptURL(aURL) to iterate through the registered drivers
and return the first driver implementation that could connect to the database. Service
Locators are also used in Common Object Request Broker Architecture (CORBA) and
Java Naming and Directory Interface (JNDI). Java Service Loader is a generic solution
for custom service loaders that is part of the JDK.

According to Fowler, both service locators and dependency injection can be used to
break dependencies from the client class, however, there is a subtle difference between
the two techniques. In the former, the client class pulls a required service from a
registry, while in the latter the required service is pushed (injected) into the client
class. The use of service locator to break a dependency is not invasive as compared to
the dependency injection, which often requires the generation of additional methods
(setters) and constructors in the client class and may conflict with encapsulation.

Example

Consider listing 3.7 as an example of the service locator pattern. In this exam-
ple, the XMLObjectStore object is instantiated through a Java service loader class
java.util.ServiceLoader. The implementation class nameXMLObjectStore is stored

50

CHAPTER 3. DEPENDENCY-BREAKING REFACTORINGS

in a configuration file. This file is stored under META-INF/services folder. The method
ServiceLoader.load(ObjectStore.class) looks for the implementation classes in-
side the configuration file and returns the list to the service loader. In our example,
we have only one implementation, therefore, we use the loader.iterator().next()
method to retrieve the only implementation and assign it to the store field. There are
several ways to register implementation classes with service locator such as a setter
method can be used to assign any implementation of type ObjectStore (setter in-
jection). Other ways to provide the implementation type include Java reflection and
service registry pattern.

1 public class BankingApp { ...

2 private ObjectStore store;

3 public void backup() {

4 ServiceLoader <ObjectStore > loader = ServiceLoader.load(

ObjectStore.class);

5 store = (ObjectStore) loader.iterator().next;

6 ...

7 } ...

8 }

Listing 3.7: Service Locator Example

A disadvantage of using the service locator is that it leaves the client application
unaware of new implementations registered with the service locator. For example, in
the above example if a new and improved ObjectStore implementation is added to
the service locator, the BankingApp class is not automatically notified about the new
implementation. The BankingApp class has to make an explicit request to the service
locator to obtain an implementation of ObjectStore as shown in listing 3.7. With
dependency injection the BankingApp class does not have to make an explicit request,
the service appears in the client class as shown in listing 3.6.

3.3.5 Type Generalisation

The declaration of variables with abstract types is considered good programming
practice (Fowler, 1999). However, we find that in practice abstract types are rarely
used to declare variables and fields in a class. For example, Steimann et al. (2006)
presented a study, which showed that in several large Java projects only 1 out of 4
variables was declared through its interface. The type generalisation refactoring can
be used along with the service locator pattern to decouple classes.

51

CHAPTER 3. DEPENDENCY-BREAKING REFACTORINGS

Example

Listing 3.8 shows an example where the declaration type of the variable list is abstracted
from ArrayList to List interface. The type generalisation refactoring is only possible
if the members invoked on that variable are part of the interface of the supertype.

1 //Before refactoring

2 public class A { ...

3 public void m(ArrayList list) {

4 Object item = list.get(0);

5 ...

6 } ...

7 }

8 //After refactoring

9 public class A { ...

10 public void m(List list) {

11 Object item = list.get(0);

12 ...

13 } ...

14 }

Listing 3.8: Type Generalisation Example

3.3.6 Static Members Inlining

In the source code of programs, some dependencies occur due to invocation of static
members6 of the target class. In some cases, static methods are used to declare utility
functions that are self-contained, i.e., they do not use a class’ data or methods. There-
fore, to break a critical dependency, a possible solution is to inline the target static
member into the source class. On the other hand, non-static inlining is much more
complicated because non-static methods tend to use a class’ data and methods.

Inlining can be performed in four different ways:

1. Copy Member: In this scenario, the target static member is copied to the source
class. This is not an invasive technique, however it would create redundancy in
the code, which violates the DRY principle.

6We refer to public methods and fields as members of the class.

52

CHAPTER 3. DEPENDENCY-BREAKING REFACTORINGS

Before Refactoring

S T

staticMethod()

After Refactoring

S

staticMethod()

T

staticMethod()

2. Copy and Extract Member to Superclass: To avoid duplication, a possible so-
lution is to extract the duplicated code in a superclass, which is then extended
by the source and the target class. However, this technique requires further
refactorings such as introducing a new class, pulling up methods, modifying the
source and the target class.

Before Refactoring

S T

staticMethod()

After Refactoring

Super

staticMethod()

S T

3. Move Member: In this case, the static member is moved from the target class to
the source class. This is invasive refactoring as all clients of the static member

53

CHAPTER 3. DEPENDENCY-BREAKING REFACTORINGS

must be updated to refer to the new method location (i.e., the source class). This
may potentially break code in libraries outside the scope of the program that is
being refactored.

Before Refactoring

S T

staticMethod()

After Refactoring

S

staticMethod()

T

This refactoring may potentially reverse the dependency if staticMethod() is
used by another method foo() in the target class.

Before Refactoring

S
T

foo()
staticMethod()

After Refactoring

S

staticMethod()

T

foo()

4. Proxy Method: In this case, the move refactoring is used to move the referenced
static member to the source class, but a delegate to the moved member is created
in the source class. This avoids copying of code and the dependency between
the source and the target class is inverted. This is not an invasive technique, as it

54

CHAPTER 3. DEPENDENCY-BREAKING REFACTORINGS

does not require updating clients of the static member. In the figure given below,
staticMethodProxy7 represents the delegate method.

Before Refactoring

S T

staticMethod()

After Refactoring

S

staticMethod()

T

staticMethodProxy()

Any of the above mentioned four types of refactorings can be recursive, i.e., when a
method is either moved or copied, all its dependent members inside the target class
must be moved or copied. Similarly, moving or copying a static field could also be
recursive due to initialisation of the field. For example, the following code requires
to move or copy the field and its dependencies: public static Factory instance
= createInstance(). While applying static members inlining refactoring, we use the
proxy method refactoring.

Example

Listing 3.9 shows a simple example of static method inlining. In this example the static
method printMessage is moved into the source class S and the invocation statement
is modified to refer to the new location. A delegate or proxy method is created in the
target class, which now calls the static method in the class S.

1 //Before refactoring

2 public class S { ...

3 public void m() {

4 T.printMessage(message);

5 ...

6 } ...

7The delegate or proxy method may have the original name.

55

CHAPTER 3. DEPENDENCY-BREAKING REFACTORINGS

7 }

8 pubic class T { ...

9 public static void printMessage(String m) {

10 System.out.println(m);

11 }

12 }

13 //After refactoring

14 public class S { ...

15 public void m() {

16 printMessage(message);

17 ...

18 }

19 public static void printMessage(String m) {

20 System.out.println(m);

21 } ...

22 }

23 pubic class T { ...

24 public static void printMessage(String m) {

25 S.printMessage(m);

26 }

27 }

Listing 3.9: Static Member Inlining Example

3.4 Evaluation of Refactorings

There are two levels of refactorings: low-level or primitive and high-level or compos-
ite. The primitive refactorings are atomic refactorings that are used to perform local
code level changes, for example, Fowler (1999) collected a catalogue of primitive refac-
torings: extract method, rename, move method, pull-up method, extract interface etc.
These refactorings are readily available as part of modern IDEs, such as Eclipse, IntelliJ
IDEA, and Netbeans. On the other hand, composite refactorings are a combination of
primitive refactorings performed together to achieve large and complex refactorings
(Opdyke, 1992). The dependency injection refactoring is an example of a composite
refactoring, where we need several primitive refactorings to complete the task.

In the previous sections, we discussed several refactorings that can be used to break
dependencies between classes. In our project, we aim to break critical dependencies
between classes, therefore, the question arises as to which refactorings should be used
for this purpose. In order to answer the question, we postulate several requirements

56

CHAPTER 3. DEPENDENCY-BREAKING REFACTORINGS

based on refactoring properties to help choose a suitable set of refactorings for experi-
ments.

Requirements

1. Tool Support: It is desirable to have existing tool support for a refactoring (such
as move refactoring), because this provides confidence in the safe execution of
the refactoring. We aim to fully automate the execution of these refactorings on
the source code level. Therefore, a refactoring that is already available as part of
an IDE would provide a solid foundation for the automation process.

2. Conservativeness: The primitive refactorings can be further divided into three
categories: create, modify and delete. The create category includes refactorings
that introduce new software artefacts, such as creating new methods, classes, or
packages in the existing system. The modify category contains refactorings that
alter existing artefacts. For example, renaming elements, changing accessibility
of elements, pull-up methods, push-down methods, moving fields, methods
or classes. The delete refactoring removes program artefacts, such as classes
and package etc. We refer to the modify category as conservative refactorings
because they do not remove or introduce new software artefacts whereas we
call create and delete categories non-conservative refactorings. We choose to be
conservative because we did not want to inflate an already inflated software.
The introduction of new software artefacts comes with its own problems, for
example, the name selection and placement of new artefacts. The removal or
deletion of artefacts may affect the understandability of underlying system from
developers perspective.

3. Invasiveness: The refactoring should not be invasive. We quantify the inva-
siveness property by the number of primitive refactorings required to perform a
composite refactoring, which includes renaming a class, introducing a package,
creating or moving a method etc. The number of refactorings do not provide an
accurate measure as these are general suggestion provided by different sources.
However, they give us an indication of the amount of change required in the
structure of an existing program by a refactoring.

4. Redundancy The refactoring should not create redundancy in the program. The
redundancy in software artefacts violates the DRY (Don’t Repeat Yourself) prin-
ciple and increases maintenance efforts. For instance, a refactoring should not
generate duplicated code by copying methods in the program.

57

CHAPTER 3. DEPENDENCY-BREAKING REFACTORINGS

5. Ripple Effects: A refactoring may have ripple effects. Although tool support
provides assistance in performing tasks across the whole program, it is desirable
to minimise the impact of change in programs.

Evaluation

In this section, we evaluate the previously mentioned refactoring techniques according
to the requirements. Our aim is to choose a refactoring set, which can be used to
remove most of the dependency categories as discussed in section 2.5. Table 3.1 shows
a comparison of different refactorings based on the requirements.

Refactoring Tool
Support

Conserv-
ative

No. of Re-
factorings

Avoids Re-
dundancy

Ripple
Effects

Adapt Parameter NO NO 6 YES NO
Extract Interface YES NO 4 YES YES
Constructor Injection NO NO 4 YES NO
Setter Injection NO NO 4 YES NO
Interface Injection NO NO 6 YES NO
Service Locator YES NO 4 YES NO
Type Generalisation YES YES 2 YES YES
Static Members Inlining YES YES 3 NO YES
Move Class YES YES 8 YES YES
Split Package NO NO 13 YES YES
Merge Package NO NO 13 YES YES

Table 3.1: Refactoring Attributes in terms of Breaking Dependencies

Evaluating Tool Support: The tool support for some of the refactorings is provided by
modern IDEs, such as Eclipse, Netbeans, and IntelliJ IDEA. The move class refactoring
is part of all three IDEs. The static members inlining refactoring can be applied via
the inline method or move method refactorings. These refactorings are also part of
the previously mentioned IDEs. The type generalisation refactoring is known as Use
super type where possible. This refactoring is available in Eclipse and Netbeans. The
introduce factory refactoring can be used to partially implement a service locator. This
refactoring replaces the object creation with a factory. This refactoring is provided by
Eclipse and Netbeans. Similarly, the extract interface refactoring is also provided by
all three IDEs.

Evaluating Conservativeness: The only refactorings that do not introduce new arte-
facts are: type generalisation, static members inlining and move class. These refactor-
ings make use of existing artefacts to perform the desired action, for instance, moving
methods or classes, and replacing types with their supertypes.

58

CHAPTER 3. DEPENDENCY-BREAKING REFACTORINGS

Evaluating Invasiveness: The information regarding the number of primitive refactor-
ings is extracted from the following sources: adapt parameter (Feathers, 2004), extract
interface (Fowler, 1999), the dependency injection and the service locator (Fowler,
2004), type generalisation; by counting basic steps required to apply the refactoring in
the Eclipse IDE, static members inlining (Feathers, 2004), move class and split package
(RefactoringCatalog, 1999), and merge package requires similar number of primitive
refactorings as that of split package refactoring.

As mentioned before, the number of primitive refactorings may not reflect a clear pic-
ture and therefore we need to apply a subjective judgement in choosing the refactoring
set. For example, Fowler (2004) defines the following base refactorings for introduc-
ing a setter injection: create a setter method, create the Assembler class, create the
configuration method to set the Assembler class and create a test method for verifi-
cation. Similarly, a service locator pattern is introduced by creating a global factory
class, creating a method that returns the required information, adding a call to the
new factory method, and creating a test method for verification. In both cases, four
primitive refactorings are required, however, if we further analyse, we find out that in
setter injection we need to introduce a new setter method in the source class for every
dependency we try to break, while this is not the case in service locator pattern, i.e.,
only a statement is modified in the source class.

Evaluating Redundancy: The static members inlining refactoring may cause redun-
dancy in the code. This happens when a static method is copied to the client class in
order to break the dependency, creating code duplication. In order to avoid duplica-
tion, we use the move method refactoring to move the static method to the client class
while leaving a delegate or proxy method in the original class.

Evaluating Ripple Effects: Some refactorings have ripple effects, for instance, when
a new interface is extracted from existing types, we need to replace existing variable
declarations with the new interface. The type generalisation refactoring also requires
recursive modification in method signatures of subtypes, if the return type of a method
in a supertype is generalised. In a similar way, the move refactoring may require
renaming a class or changing the accessibility of different elements. In the example
given below, we cannot move the class A outside the package p1 without changing the
visibility of the method m in both classes. Such refactorings are known as composite
refactorings, i.e., they are combination of smaller refactorings.

1 package p1;

2 public abstract class A {

3 abstract void m ();

59

CHAPTER 3. DEPENDENCY-BREAKING REFACTORINGS

4 }

5

6 package p1;

7 public class SubA {

8 ...

9 @Override

10 void m() {

11 ...

12 }

13 }

Listing 3.10: Example of recursive changes required before moving the class A

Final Selection

On the basis of our requirements and evaluation criteria, we have chosen the following
refactorings:

1. Service Locator

2. Type Generalisation

3. Static Member Inlining

4. Move Class

We use a combination of these refactorings to deal with nine dependency categories
discussed in section 2.5. For example, when we encounter implements, extends, or Other
dependency relationship, we apply the move class refactoring. Further discussion on
how these refactorings are applied can be found in section 5.4.1.

60

Chapter 4

Applying Package Level
Refactorings

In this and the next chapter, we aim to follow the methodology (Section 2.4) to iden-
tify critical dependencies and break those dependencies using package and class level
refactorings (Chapter 3). This chapter starts with applying the package level refac-
toring (move refactoring) to break dependency cycles between packages. The move
refactoring is used to break cycles between packages, therefore, we use the count of
SCD antipattern instances as the major fitness function for our analysis. In this chapter,
we discuss algorithms and tools used for the analysis of programs in the dataset. We
also define pre and postconditions for the move refactoring. In order to validate our
approach, we have developed an Eclipse plugin, which detects the move class refac-
toring on the model level and applies it to the source code. Finally, we discuss results
obtained from the analysis.

4.1 Overview

We have used the move class refactoring to break dependency cycles between packages.
This includes identifying misplaced classes in a system and moving them to more
appropriate packages. The move class refactoring can be completely simulated on the
model level (the dependency graph). The simulation provides the ability to evaluate
the impact of refactoring without changing the source code of programs.

While the move class refactoring itself is rather simple and robust tool support exists to
automate it, it is less clear how to find the right classes to be moved. We have developed
an algorithm to identify classes that could be moved to other packages. This algorithm

61

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

initially simulates a refactoring on the graph level and then applies it to the sources.
The algorithm computes all paths in the dependency graph of a program that cause
circular dependencies between packages. Once this is done, a scoring function ranks
edges according to their number of occurrences in those paths. This ranking provides
a good starting point to consider high-scoring edges as refactoring opportunities.

The algorithm starts with a high-scoring edge and checks pre and postconditions for
each of the two candidate vertices (classes) attached to the edge. We have defined
pre and postconditions on graph and code level. This means that we check graph
level conditions and then we check conditions on code level. That is, given a class
(vertex), all preconditions are checked and the move refactoring is simulated on the
graph level. Next, postconditions are checked to ensure that this refactoring is suitable
to be performed on the code level. If all graph level conditions pass for both candidate
vertices of the edge, the algorithm chooses a class to move based on a selection criteria.
The selection criteria requires that a move class refactoring should remove the highest
number of circular dependency instances. On the contrary, if none of the two can-
didate classes pass all conditions, the algorithm continues with the next high-scoring
edge. This is an iterative process, the algorithm keeps trying high-scoring edges in
descending order until it reaches an edge where all pre and postconditions are satisfied
for either of the candidate classes.

Once a refactoring is identified and simulated on the dependency graph level, this
refactoring is applied on the source code level, i.e., we change the package declara-
tion in the respective compilation units of the program. After performing the move
refactoring, postconditions on the code level are checked to ensure that the refactoring
didn’t introduce any errors. If this is the case, we proceed with the identification of
next refactoring. This process continues until all cycles are removed from the program
or a certain number of refactorings are performed. It turns out that our approach does
not, in general, result in a trivial solution where cycles disappear because packages are
merged. This is discussed in detail later in section 4.6.6.

The evaluation of the proposed methodology is performed on a set of 92 open source
systems collected from the Qualitas Corpus (Tempero et al., 2010). The key finding is
that all the programs having circular dependency instances were improved in terms
of a decrease in the total number of antipattern instances. Our approach improves
other standard metrics related to strongly connected components. The main strength
of our approach is that the analysis is initially performed on the dependency graph,
which reduces the chances of introducing errors in the programs, i.e., we can predict
to a certain extent that the refactoring would not break the system. In order to apply
identified refactorings on the source code level, we have developed an Eclipse plugin,

62

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

which is an extension of the standard move class refactoring built in to Eclipse, but it is
fully automated to perform batch operations on sets of programs. Further discussion
about the plugin can be found in section 4.4.

4.2 Background

The move class refactoring has been used to re-modularise programs, improve modu-
larisation existing programs, and remove antipatterns. For example, Seng et al. (2005)
have developed an algorithm to re-modularise programs by improving subsystem de-
composition. The authors have used a fitness function based on coupling, cohesion,
complexity, cycles and bottlenecks. They treated the subsystem decomposition as a
search problem and used a genetic algorithm to identify the move class refactoring op-
portunities. Their results show improvement in other metrics except the coupling and
cohesion of individual packages. Their work is related to software re-modularisation
as their solution generates new packages and suggests classes to move there. On the
other hand, we focus on improving the existing structure of programs.

Hautus (2002) has suggested PAckage STructure Analysis (PASTA) metric to measure
the degree of cycles between packages in a program dependency graph. This metric
can be used to identify undesirable dependencies between packages in a program.
When these dependencies are removed, the package structure would become acyclic.
The author has suggested the move class refactorings as a solution to get rid of package
cycles. However, his approach does not identify classes that should be moved to other
packages in order to remove cycles. O’Keeffe and O’Cinneide (2006) have developed
a metric suite to form a fitness function, which they use to identify refactoring oppor-
tunities and improve software quality. They use the QMOOD quality model (Bansiya
and Davis, 2002) to evaluate alternative solutions. The authors use search techniques
such as Hill Climbing and Simulated Annealing to explore alternative solutions in the
refactoring process. Refactorings supported by their methodology are limited to the
hierarchical structure of design, which include extracting and collapsing hierarchies,
moving features up and down the hierarchy.

Abdeen et al. (2009) have looked at the modularisation problem of existing systems
from the perspective of object-oriented design principles, such as acyclic dependency
principle, closure change principle, and closure reuse principle. They have used
simulated annealing techniques to optimise the package structure of a program by
suggesting move class refactorings across different packages. In their approach, they
allow maintainers to specify filters (package size, maximum number of classes to move)
before performing move refactorings. A drawback in the approach is that it doesn’t

63

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

bring class visibility into account, which can be an important factor while moving
classes on the source code level. In addition, the authors have performed experiments
on the dependency graphs of programs and they do not suggest how to translate their
algorithm on the source code level. Laval et al. (2009) have used an enriched depen-
dency structure matrix (eDSM) to visualise dependencies among software artefacts.
The visualisation highlights any cyclic dependencies between packages, and suggests
move class refactorings. However, there is no implementation of their approach to
automatically apply those refactorings on the code level.

In the literature, clustering techniques have been used to restructure legacy systems
(Maqbool and Babri, 2007; Mitchell and Mancoridis, 2006). Czibula and Serban (2007)
have proposed the use of a hierarchical agglomerative clustering algorithm to recon-
dition system classes. Their methodology includes: extracting data (classes, methods,
attributes and their relationships), re-grouping the extracted data using their cluster-
ing technique and extracting refactoring suggestions by comparing the old and the
modified software structures. The refactorings proposed by their algorithm are Move
Method, Move Attribute, Inline Class and Extract Class. A major disadvantage of their
technique is that it provides solutions in terms of aggregation of refactorings, which
means designers have to either accept or reject the solution in its entirety. On the other
hand, an iterative approach to refactoring leads to a gradual system change helping
designers to asses the impact of refactorings at each iteration.

4.3 Algorithm

We have developed a novel algorithm, which automates the refactoring process. This
process includes identifying move refactorings on the model level, checking refactoring
constraints, and applying those refactorings on the code level. The algorithm is greedy,
i.e., it does not perform backtracking. The reason we chose greedy algorithm over other
techniques is mainly due to performance. Table 4.8 in the results section shows the
execution time of some of the large programs in the dataset. The use of backtracking
would have dramatically increased the execution time. Algorithms 1, 2 and 3 show
the main steps of the algorithm.

64

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

Algorithm 1 executeMoveClass

Input: graph, pres, posts
Output: a list of refactorings

1: {Define a list, which holds objects of type move class refactoring}
2: refactoring list← new List
3: iteration← 1
4: MAX-ITERATIONS← 50
5: while iteration ≤MAX-ITERATIONS do
6: instances← computeSCDInstances(graph)
7: if |instances| = 0 then
8: return list
9: end if

10: highScoredEdges← getHighScoredEdges(insances)
11: for highScoredEdge in highScoredEdges do
12: succeeded← applyMove(graph, highScoredEdge, instances, pres, posts)
13: if succeeded then
14: list.add(refactoring)
15: graph← buildGraph()
16: iteration← iteration + 1
17: break
18: end if
19: end for
20: end while
21: return list

Algorithm 2 applyMove

Input: graph, highScoredEdge, pres, posts
Output: true or false

1: candidate← getMoveCandidate(graph, highScoredEdge, pres, posts)
2: if candidate , null then
3: succeeded← applyOnCode(candidate, pres, posts)
4: if not succeeded then
5: rollback(candidate)
6: {Try the reserved candidate}
7: if candidate.getReservedCandidate() , null then
8: succeeded ← applyOnCode(candidate.getReservedCandidate(), pres,

posts)
9: return succeeded

10: else
11: return false
12: end if
13: else
14: return true
15: end if
16: else
17: return false
18: end if

65

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

Algorithm 3 getMoveCandidate

Input: graph, highScoredEdge, pres, posts
Output: candidate or null

1: source← highScoredEdge.getStart()
2: target← highScoredEdge.getEnd()
3: candidate1← checkAllConditions(source, graph, pres, posts)
4: candidate2← checkAllConditions(target, graph, pres, posts)
5: if candidate1.isPassed() and candidate2.isPassed() then
6: {Choose the one which removes the most number of instances}
7: if candidate1.instanceCount() ≤ candidate2.instanceCount() then
8: candidate1.setReservedCandidate(candidate2)
9: return candidate1

10: else
11: candidate2.setReservedCandidate(candidate1)
12: return candidate2
13: end if
14: else if candidate1.isPassed() and not candidate2.isPassed() then
15: return candidate1
16: else if not candidate1.isPassed() and candidate2.isPassed() then
17: return candidate2
18: else
19: return null
20: end if

4.3.1 Building the Dependency Graph

We build the dependency graph of a program from the bytecode. The dependency
graph comprises of vertices (classes) and edges (relationships between classes). The
process of extracting the dependency graph is explained in section 2.1. Algorithm 1
uses this graph as an input to compute and perform refactorings.

4.3.2 Computing Antipattern Instances

In this step, we compute the total number of SCD instances. The Guery tool (version
1.3.5) is used to compute antipattern instances, as discussed in section 2.2.2. We
keep track of strong (SCD) and weak (WCD) circular dependencies between packages.
The detailed discussion about antipatterns can be found in section 2.3. The function
computeSCDInstances(graph) (Algorithm 1, Line 6) is used to compute the total
number of instances present in the program. We use the total number of SCD instances
as a metric to compute the impact of a move refactoring, i.e., a refactoring must decrease
the total number of instances.

66

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

4.3.3 Computing Edge Scoring

The next step involves the computation of high-scored edges representing potential
refactoring opportunities. The process of computing high-scored edges is explained
in section 2.4. The funtion getHighScoredEdges(instances) (Algorithm 1, Line 10)
returns a list of edges sorted in descending order by their score value.

We are only interested in edges with a score greater than zero and they must transition
between packages. We define this as follows. Let G = (V, E) be the dependency
graph where V be the set of all classes in a program and E be the set of all edges in
G. Let score(e) represent a natural number associated with an edge such that e ∈ E,
and let namespace(e.<end>) represent the package name of < end >, where < end > is
either source or target.

∀e ∈ E | score(e) > 0 ∧ namespace(e.source) , namespace(e.target)

The algorithm then iterates over all the top scored edges (Algorithm 1, Line 11) until it
finds an edge where all pre and postconditions for the move refactoring are satisfied.

The algorithm can be implemented as anytime algorithm (Zilberstein, 1996). The com-
putation of edge scoring could be interrupted so that it computes score under a certain
threshold instead of all antipattern instances. This would still give us approximate
bad edges (critical dependencies). This means we could get meaningful results even
if the algorithm does not hit the optimum.

4.4 Implementation: CARE - The Eclipse Plugin

The aforementioned algorithm is implemented as an Eclipse plugin called CARE (Code
and Architectural Refactoring Environment)1. This plugin is an extension to the move
refactoring built into Eclipse. The purpose of this plugin is to automate the process
of computing and executing move class refactorings in a program. The Eclipse IDE
provides support for an individual Move refactoring, but there is no support for
performing this refactoring in an automated way in a batch setting. We load all
programs as Eclipse projects in a workspace and with a push of a button, the plugin
iterates over all projects to perform refactorings.

1Appendix B describes how the plugin can be installed and used

67

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

<<abstract>>
Dependency

getName():String
getRefactoring():CareRefactoring

Uses Extends Implements

Figure 4.1: Class Diagram of Dependency Classification for Move Refactoring

4.4.1 Implementing Dependency Classification

We have discussed several categories of a dependency relationship in section 2.5. Three
major categories are as follows: uses, extends, and implements. The class diagram of
dependency classification is shown in figure 4.1. The abstract class Dependency has
two methods: getName() - returns the name of dependency and getRefactoring()
- returns the respective refactoring to be applied. In this experiment, the default
refactoring is the move class refactoring for all dependency categories.

4.4.2 Implementing Refactoring Constraints

Refactoring constraints refer to pre or postconditions that are checked before and after
a refactoring is performed. The constraints mechanism is part of a refactoring meta-
model which is implemented directly in Java as part of our tooling. The class diagram
of constraints is shown in figure 4.2. Each constraint has three methods: check,
getName, and isGraphLevel. The check method returns true if a preconditions is
fulfilled and false otherwise. The getNamemethod returns the name of a precondition
and isGraphLevel determines whether the precondition can be checked on the graph
or code level.

Preconditions

There are three preconditions that are checked before the move refactoring is per-
formed.

68

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

<<interface>>
Constraint

check(c: Candidate):boolean
getName():String
isGraphLevel():boolean

<<interface>>
Precondition

<<interface>>
Postcondition

InstanceCount CompilationRename Blacklist

Accessibility

Figure 4.2: Class Diagram of Pre and Postconditions

4.4.2.1 Rename Precondition

When we move a class from one package to another, it is important to check that the
target package should not contain a class with the same name as that of the class to
be moved. If a class with the same name exists, the move refactoring is skipped. This
precondition is checked on the graph level.

Let C be the set of all classes in a package P. Let name(classToMove) be the name of
class to be moved to the package P. Then we define the rename precondition as follows:

@ c ∈ C | name(classToMove) = name(c)

4.4.2.2 Blacklist Precondition

Our algorithm automatically performs the move refactoring in a program. However, in
some cases a developer may want that certain classes should not be moved. In that case,
we can manually specify a list of fully qualified class names in the Eclipse preferences
section of CARE plugin. This is a graph level precondition. This precondition checks
whether a class to be moved to another package is blacklisted or not. If a class’ name

69

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

exists in the blacklisted classes, the move refactoring is not performed.

Let B be the set of blacklisted classes and let name(classToMove) be the name of the
class to be moved to another package. The blacklist precondition is defined as follows:

@ b ∈ B | name(classToMove) = name(b)

4.4.2.3 Accessibility Precondition

Accessibility modifiers establish rules for information hiding within Java programs.
There are four types of accessibility modifiers in Java: public, private, protected, and
default (no modifier). These modifiers can be applied on two levels:

• Top level (classes): public or default.

• Member level (fields, methods, inner classes): public, private, protected, and
default.

The access level of a class’ artefacts determines whether other classes can access fields or
methods of this class or not. The purpose of these modifiers is to support encapsulation.

The accessibility precondition checks whether a class to be moved requires changes in
the accessibility level of this class or other classes. Consider the example in listing 4.1.
In this example, if we try to move the class A outside of the package a, we need five
change accessibility refactorings. This includes changing the access modifier of class
A and C to public. We also need to change the access modifiers of the field A.cObject,
the method A.m() and C.m() to public.

We used the Dependency Finder (Tessier, 2010) to extract the accessibility information
of a class. For every move candidate class, we compute all non-public incoming
and outgoing references of the class within the original package. In listing 4.1 the
class A has three incoming references (from class B) at the class, field and method
level. There are two outgoing references from the class A to the class C. If the move
class refactoring requires changing accessibility modifiers, we skip the refactoring to
preserve encapsulation.

Let X be the set of all move candidate classes and let countAccessabilityChanges(class)
determine the number of change accessibility refactorings required in order to move
the class. Then we define the accessibility precondition as follows:

∀ c ∈ X | countAccessabilityChanges(c) = 0

70

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

1 package a;

2 class A {

3 protected C cObject = new C();

4 void m() {

5 cObject.m()

6 }

7 }

8 package a;

9 class B {

10 void m() {

11 A a = new A ();

12 a.m();

13 a.cObject.m();

14 }

15 }

16 package a;

17 class C {

18 void m() { }

19 }

Listing 4.1: Change Accessibility Example

Postconditions

There are two postconditions for the move class refactoring.

4.4.2.4 Instance Count Postcondition

There could be a situation where a move class refactoring may increase the number of
instances as compared to the number of instances before performing the refactoring.
Figure 4.3 shows an example where the number of instances increase after a refactoring.
In this figure, two edges (C3→C1 and C1→C2) have the same score of one. When two
edges have the same score, they are sorted in ascending order according to the fully
qualified names of start and end vertex of each edge. Therefore, the edge C3→C1 is
picked as the first high-scored edge. In this case, C3 was moved from packagey to
packagez. There was only one SCD instance before refactoring, while after refactoring
the number of instances increased to two2. Table 4.1 shows paths that create circular
dependencies before and after the refactoring.

2We have used find all attipattern instances option of the Guery engine to compute the instances.

71

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

Instance Type Packages Paths
SCD Before packagey, packagez C3, C1, C2
SCD After packagey, packagez C5, C3, C4

packagey, packagez C5, C3, C1, C2

Table 4.1: Instance Count Before and After Refactoring

If a situation arises where the number of instances increase after a refactoring, we
avoid the move refactoring. This postcondition can be easily checked on the graph
level, where we compare the instance count before and after the refactoring. Let g be
the graph before the move refactoring and let g′ be the graph after refactoring. Then
we define the instance count postcondition as:

instanceCount(g) ≥ instanceCount(g′)

In the postcondition we perform a refactoring even if it doesn’t remove any instances.
In dense dependency graphs it is possible that one edge removal is rerouted through
a different path to create another instance. Therefore, the total number of instances do
not decrease, however it is possible that the newly created cycle is removed in the next
iterations, which would eventually decrease the number of instances. Figure 4.4 shows
an example of instance count postcondition. In this figure the total number of SCD
instances is 1 before refactoring. After the first refactoring the number of instances
remain the same. However, after the second refactoring the number of instances
decrease to zero.

4.4.2.5 Compilation Postcondition

The move class refactoring should be safe, i.e. it should not introduce any compilation
errors. However, there are some cases where the program compilation fails after
performing the move refactoring. These situations are listed in the section 4.6.11.
Therefore, once all other pre and postconditions are passed, this last postcondition (on
code level) is checked to ensure that the move refactoring executed successfully.

4.4.3 Implementing Refactorings

In order to implement refactorings, we have used the Eclipse Language Toolkit (LTK).
This toolkit is a refactoring framework and it provides access to the Eclipse IDE’s code
level refactorings, such as move refactoring, pull up / push down methods. The base

72

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

packagez

packagey

packagez packagey

Before Refactoring

C1

C3 C5

C2 C4

After Refactoring

C3

C1

C5

C2 C4

Figure 4.3: Example of Increase in the Instance Count Metric

class for all refactorings is org.eclipse.ltk.core.refactoring.Refactoring. This is
an abstract class and all refactorings inherit methods from this class. The Refactoring
class performs two actions: checks several conditions to make sure that the refactoring
can be safely executed and creates a Change object which represents the source code
modifications.

In our approach, we have extended the base Refactoring class and created another
abstract class CareRefactoring as shown in figure 4.5. This class performs three major
actions:

1. It checks a set of preconditions before applying a refactoring. It calls checkAll-
Conditions()method from the superclass Refactoring.

2. If the preconditions succeed, refactorings are performed tentatively on the source

73

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

package1 package2

package1
package2

package1
package2

Before Refactoring

D

A

C

B

F

E

After Refactoring 1

A B

D C F

E

After Refactoring 2

A B

CD F

E

Figure 4.4: Example of Decrease in the Instance Count Metric

74

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

<<abstract>>
Refactoring

getName():String
checkAllConditions(...):RefactoringStatus
createChange(...):Change

<<abstract>>
CareRefactoring

checkPreconditions():Result
perform():void
checkPostconditions():Result
rollback():void

Move

Figure 4.5: Class Diagram of Refactorings

code. This step involves executing the createChange() method of the Refac-
toring class.

3. Postconditions are checked to determine whether or not refactorings were per-
formed successfully. If postconditions pass, the refactoring process is considered
successful, otherwise the code level modifications are reversed using the roll-
back()method.

The Move refactoring is built on top of the standard Eclipse refactoring MoveRefac-
toring. In this refactoring a class is moved from one package to another. First, the
algorithm performs move refactoring on the dependency graph to evaluate its impact.
Next, it is executed on the code level, if all pre and postconditions succeed.

4.5 Strongly Connected Component Metrics Definition

We have used the instance count of strong circular dependency between packages as
the major metric to compute the impact of refactorings on programs. However, there
are several other metrics - related to the package structure - that can be used to gauge
the improvement in the program structure. For example, package cycles can be looked

75

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

at as strongly connected components (SCC). Within a SCC a vertex has a path to every
other vertex. We have used different metrics to compute the impact of refactorings on
strongly connected components in the dependency graph. By using these metrics we
have tried to asses the complexity of SCCs before and after refactorings.

First, SCD and WCD counts are recomputed. Next, we look into various metrics
related to strongly connected components (SCCs). Note that we are not considering
the SCCs in the original dependency graph, but in the derived package dependency
graph. In this graph packages are vertices and edges are the inferred relationships
between packages as defined by (Falleri et al., 2011). In this package dependency
graph, the first metric computed is the size of the largest SCC (MAX SCC).

The minimum feedback arc (edge) set size is a measure indicating how many edges
have to be removed in order to make the SCC acyclic. Unfortunately, computing the
minimum feedback arc set size is a NP-hard problem and scalable algorithms are only
available for approximations (Eades et al., 1993). We therefore decided to use two
alternative metrics to measure the thickness of SCCs.

Let G = (V, E) be a directed graph of packages and their relationships and let {SCCi}

be the enumerated set of all strongly connected components in G. We only considered
components with at least two vertices to exclude trivial SCCs. For a component SCCi;
let Vi be the set of vertices in SCCi and Ei be the set of edges in SCCi.

The minimum possible number of edges minEi in SCCi is |Vi|. This is exactly the case
when the component consists of one simple cycle. The maximum possible number of
edges maxEi in SCCi is |Vi| ∗ (|Vi| − 1). This is the case when the component forms a
clique.

Density

Density measures the density of edges within a component. We define the density of
a SCC as a relative distance from the minimum possible number of edges scaled to the
maximum possible number of edges within the component. In other terms, we use
a simple min-max normalisation. The minimum value (0) means that the component
has minimum possible number of edges and hence easy to break the tangle. On the
flip side, the maximum value (1) means that the component has maximum possible
edges making it difficult to break the tangle. The extreme value represents a clique
and a cycle, as shown in figure 4.6.

D(SCCi) :=
|Ei| −minEi

maxEi −minEi
=
|Ei| − |Vi|

|Vi|
2
− 2 |Vi|

76

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

Figure 4.6: SCC-A (Left), SSC-B (Middle), SCC-C (Right)

Metric SCC-A SCC-B SCC-C
Density 0 1 0.25
Tangledness 0 1 1

Table 4.2: Metric Values of Three SCCs

Tangledness

Tangledness measures the length of cycles within a component. Falleri et al. (2011)
proposed a measurement to calculate the tangledness of a component. The idea is to
measure the length of the shortest path representing a back reference for each edge
in the SCC. i.e., for each edge e connecting vertices s and t, we are interested in the
shortest path from t to s. By definition of a SCC such a path must exist within the SCC.
The value of this metric is scaled between 0 and 1.

The maximum possible average length maxSPLi of the shortest paths is |Vi| − 1. This
is exactly the case when a component consists of one simple cycle. The minimum
possible average length minSPLi is one. This is the case when for each edge there exists
a reverse edge in the SCC. Let SPLi be the average length of the shortest path for all
edges in SCCi. In analogy to the density metric, we define tangledness as :

T(SCCi) := 1 −
SPLi −minSPLi

maxSPLi −minSPLi
= 1 −

SPLi − 1
|Vi| − 2

Figure 4.6 shows examples of three different SCCs and their values are shown in table
4.2. In these SCC metrics smaller values are considered to be better.

77

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

No. move type to package
1 net.sf.jmoney.Start net.sf.jmoney.gui
2 net.sf.jmoney.SortedTreeNode net.sf.jmoney.model
3 net.sf.jmoney.Currency net.sf.jmoney.model
4 net.sf.jmoney.Constants net.sf.jmoney.model
5 net.sf.jmoney.io.QIF net.sf.jmoney.gui
6 net.sf.jmoney.io.MT940 net.sf.jmoney.gui
7 net.sf.jmoney.SortedTreeModel net.sf.jmoney.model

Table 4.3: The Resultant Move Refactorings for JMoney-0.4.4

4.6 Experiment

In order to validate our approach, we applied it to 92 open source Java programs.
First, we discuss two case studies and then we explain the results obtained over 92
programs.

4.6.1 Case Study: JMoney-0.4.4

JMoney is a personal accounting software built using Eclipse RCP. The dependency
graph of this program has 193 vertices and 548 edges. Our algorithm implementation
computed and performed move refactorings for this program in 27 seconds3. After 7
move refactorings the total number of SCD and WCD instances dropped to zero. The
suggested refactorings are shown in table 4.3.

In order to examine whether the proposed refactorings make sense to a developer, we
have manually investigated the source code of the classes to be moved. For example,
the class net.sf.jmoney.Start is an entry point to run the application. This class
invokes net.sf.jmoney.gui.MainFrame to load the application’s GUI. Therefore, this
class is a good candidate for moving to the gui package. The class net.sf.jmoney.-
Currency is a simple model to represent currencies. This is used by a class net.sf.-
jmoney.model.Account, which is a data model for an account. In order to keep
domain classes together, the Currency class should be moved to net.sf.jmoney.model
package. Similarly, the other two classes SortedTreeNode and SortedTreeModel are
also required by data model classes in the net.sf.jmoney.model package. Therefore,
these two classes also moved to the model package.

The two classes in net.sf.jmoney.io.QIF and net.sf.jmoney.io.MT940 provide the

3Macbook Pro Intel Core i7, 4GB RAM, JRE 6

78

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

net.sf.jmoney.io

net.sf.jmoney.model

net.sf.jmoney.gui

net.sf.jmoney

(a) Before Refactoring

net.sf.jmoney.io

net.sf.jmoney.model

net.sf.jmoney

net.sf.jmoney.gui

(b) After Refactoring

Figure 4.7: Package Dependency Graph of JMoney-0.4.4

facility of importing and exporting files through JMoney GUI. These two classes
have cyclic relationship with net.sf.jmoney.gui.MainFrame, which builds the ap-
plication’s GUI. Our algorithm recommended to move QIF and MT940 classes into
net.sf.jmoney.gui package. Another solution could be to break the MainFrame de-
pendency from QIF and MT940 classes. This involves a program’s source code analysis
and modification. Since our algorithm does not modify the program’s structure, the
first solution was suggested.

We have extracted a package dependency graph (PDG) from the original class depen-
dency graph to visualise the package level tangles. Figure 4.7a shows the PDG before
performing move refactorings, while figure 4.7b represents the PDG after performing
the refactorings as shown in Table 4.3. Table 4.4 shows before and after values of
different metrics defined in section 4.5. The results show a significant improvement
in all metrics. Note that these refactorings do not result in a trivial solution where
packages are emptied (see discussion in Section 4.6.6).

4.6.2 Case Study: JGraph-5.13.0

JGraph is an open source graph visualisation and layout library. The dependency
graph of JGraph consists of 187 vertices and 797 edges. The algorithm computed 10
refactorings to completely untangle the program. It took 58 seconds4 to compute and

4Macbook Pro Intel Core i7, 4GB RAM, JRE 6

79

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

Metric Before After
SCD Count 117 0
WCD Count 12 0
Package Count 4 4
Max SCC Size 4 1
Average Density (G) 0.64 0
Average Tangledness (T) 0.79 0

Table 4.4: Metrics Values for JMoney-0.4.4

Metric Before After
SCD Count 3475 0
WCD Count 30 0
Package Count 20 18
Max SCC Size 6 1
Average Density (G) 0.05 0
Average Tangledness (T) 0.08 0

Table 4.5: Metrics Values for JGraph-5.13.0

execute these 10 refactorings. Table 4.5 shows the impact of refactorings on different
metrics values.

An important point to note here is that the total number of packages in the program re-
duced from 20 to 18. Two packages that merged with other packages were org.jgraph
and org.jgraph.plaf. Each of these two packages contained only a single top level
Java class namely JGraph and GraphUI respectively. These two classes are related to
a graph’s display area and its look and feel. References to these classes mainly come
from the org.jgraph.graph package. The algorithm suggested to move these classes
to org.jgraph.graph package. In this way, the total number of remaining packages
was reduced by two.

One of the other identified refactorings suggested to move a class org.jgraph.plaf.-
basic.BasicGraphUI to org.jgraph.graph package. This class is an extension of
the GraphUI class and provides a graph’s data structure. This class is clearly a good
candidate for moving into the relevant package org.jgraph.graph, which has classes
related to the graph model, graph cells, controllers and drivers.

80

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

0
20

40
60

80
10
0

iterations

pe
rc
en
ta
ge

Figure 4.8: Decrease in SCD Instances After Move Refactorings

4.6.3 Impact of Move Class Refactoring

We have analysed 92 programs in the dataset. Out of those 92, 88 programs had
SCD instances, for which we computed refactorings5. Figure 4.8 shows the decrease
in SCD instances after every move refactoring. This is a boxplot chart where the
box represents 50% of the observations. The horizontal line in the box represents
the median. In this chart, we scale each observation by the number of original SCD
instances for its corresponding program. The value on the x-axis represents the number
of refactorings executed on the code level. Our experiment performs 50 refactorings
on each program. We chose this number of refactoring because the decline in median
value after 50 iterations flattens out to less than 1 percent. However, in the CARE
plugin this value can be customised for individual projects.

It is notable that after 26 iterations the median value over all observations drops below
50%. This means, for more or less half of the programs, only 26 move refactorings are
required to remove 50% of SCD instances. Similarly, only 7 refactorings are required
to remove the first 20% of instances. The boxplot also shows some outliers. These are
programs where the total number of SCD instances dropped to zero in a few initial
steps.

In our experiment we kept a record of both SCD and WCD instances. Figure 4.9 shows
the comparison of median values of SCD and WCD instances. This figure indicates that

5Programs with zero SCD instances are: fitjava-1.1, jfin-date-math-r1.0.1, jasml-0.10, javacc-5.0

81

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

the algorithm not only removes SCD instances, but as a by-product, it also removes
WCD instances.

0 10 20 30 40 50

0
20

40
60

80
10
0

number of iterations

m
ed

ia
n

pe
rc

en
ta

ge
s

strong circular dependency
weak circular dependency

Figure 4.9: Decrease in no. of Instances: Comparison between SCD and WCD

4.6.4 Refactoring Simulation on Model vs Refactoring Application on Code

In this section, we compare the refactoring simulation on the graph level and the
refactoring application on the code level. Figure 4.10 shows the comparison between
the scenarios. The two lines represent the median value for each refactoring type.

There are 50 iterations and for every iteration, the simulation on the graph level
is performed by removing the highest scored edge without checking any pre and
postconditions as laid out in section 4.4.2. This is why we get a very steep curve
representing the decline in the number of instances. However, not every edge can
be removed on the code level as some pre or postconditions may fail. Consequently,
our algorithm iterates over a list of high-scored edges until it reaches the one which
passes all conditions. Therefore, the curve generated by the refactorings on the code
level is less steep than on the graph level. The gap between the two scenarios can
be further reduced by weakening the preconditions. For example, we may allow
those refactorings that require further refactorings, such as changing accessibility and
allowing rename. In that case the curve of code level refactorings will become closer
to the one generated on the graph level.

82

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

0 10 20 30 40 50

0
20

40
60

80
10
0

number of refactorings

m
ed

ia
n

pe
rc

en
ta

ge
refactoring simulation on model
refactoring application on code

Figure 4.10: Decrease in no. of Instances: Comparison on Model and Code Levels

4.6.5 Impact of Program Size on Number of Refactorings

Figure 4.11 shows the number of refactorings that are necessary to remove 25% of
antipattern instances, depending on program size measured by the number of vertices
in the dependency graph. This figure shows that, for most programs, only few edge
removals are necessary to achieve the removal of top 25% instances. However, there
are a few programs that require a large number of edge removals. Programs with 50
refactorings were censored implying that 50 refactorings were not enough to remove
25% instances.

To quantify the relantionship between program size (vertex count) and number of
refactorings, we applied a simple linear regression model on the number of refactorings
to remove top 25% of instances in terms of vertex count. The fitted model is:

f itted number o f re f actorings = 8.98 + 0.0098 ∗ vertexcount

For each unit increase in vertex count the number of refactorings required increases
by 0.0098. The small P value (2.75e-09) for the slop indicates that there is a significant
linear relationship between the program size and number of refactorings required to
remove top 25% of antipattern instances. In general, this indicates that as the size and
complexity of a program increases, it becomes harder to refactor those programs.

83

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

0 2000 4000 6000 8000

10
20

30
40

50

DG vertex count - number of types in program

N
um

be
r o

f r
ef

ac
to

rin
gs

 re
qu

ire
d

to
 re

m
ov

e
25

%
 in

st
an

ce
s

Figure 4.11: Impact of Program Size on Number of Refactorings

4.6.6 Package Merging

Merging all packages into a single package would resolve the problem of circular
dependencies between packages. However, this is a trivial solution. On the other
hand, merging some of the small-sized packages may reduce coupling. In order to
ensure that our move refactorings do not over-merge packages, we counted the total
number of packages in programs before and after performing refactorings. We refer
to this as package merge ratio. This data is collected for the maximum 50 move
refactorings performed across all programs in the dataset.

In 88 programs only 25 programs had packages merged. For 22 programs the ratio
of merged packages to total packages ranged between 0.81% and 10%. This small

84

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

Program Total Packages Merged Ratio Classes in Merged
Packages

jag-6.1 16 2 12.50 1, 2
sunflow-0.07.2 22 3 13.64 3, 4, 4
freecs-1.3.20100406 12 4 33.34 1, 2, 3, 9

Table 4.6: Result for Merged Packages

proportion of merged packages indicates that our proposed methodology does not
over-merge packages and does not compute a trivial solution.

However, there were 3 programs where the ratio of merged packages to total packages
was more than 10%. Examples of such ratios include jag-6.1 (12.5%), sunflow-0.07.2
(13.64%) andfreecs-1.3.20100406 (33.3%). Table 4.6 shows the three programs where
the total to merged packages ratio was more than 10%. We can see from the table that
all the packages merged had relatively small number of classes.

4.6.7 Distribution of Move Refactorings

In 88 programs from the dataset, we identified classes that were involved in SCD
instances. We performed refactorings in two ways: either move the source class to the
target class’ package or vice versa. Our selection algorithm chose the best available
move refactoring based on the selection criteria. In 49% of the cases the source class
was moved to the target class’ package, while in 51% cases the target class was moved
to the source classes’ package.

4.6.8 Refactorability

We define refactorability as the percentage of successfully completed refactoring to
attempted refactorings. Given a high-scored edge, there could be four possible out-
comes:

1. Both candidates pass graph level pre and postconditions and suppose candidate1
is better than candidate2, so candidate1 is attempted and and it passes the final
code level postconditions. Therefore candidate2 is not attempted on the code
level.

2. Candidate1 fails graph level pre or postconditions and candidate2 passes all
conditions.

85

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

Edge Move Candidate Result Refactorability

e1
c1 passed

40%

c2 not attempted

e2
c3 failed
c4 passed

e3
c5 failed
c6 failed

Table 4.7: Refactorability Example

3. Candidate2 fails graph level pre or postconditions and candidate1 passes all
conditions.

4. Both candidates fail graph level pre or postconditions.

Consider table 4.7 as an example of a program, which has three critical edges. The
result column shows that out of 6 possible candidates one is not attempted on the code
level. Therefore, the refactorability of this program would be passed∗100

attempted . In this example
the refactorability is 40%.

Figure 4.12 shows the histogram of refacatorability of programs. This figure shows that
approximately 50% programs have refactorability range of 10 - 30%. In the figure, there
is one program with 100% refactorability. This program required only one refactoring
to remove all instances and one candidate of the critical edge passed all conditions and
the other candidate was not attempted on the code level.

4.6.9 Success Estimation of Model to Code Refactorings

In the move refactoring experiment, at first we compute a refactoring on the model
level and if it passes preconditions, we perform it on the code level. Some of the
refactorings that are successful on the model level may not be successfully applied on
the code level. In order to check the success rate of model to code refactorings, for
every successful refactoring on the model level, we checked whether the refactoring
was successful on the code level or not. The results show that, across 88 programs
only 7.7 % refactorings failed on source code level postconditions. This means that in
approximately 93% cases the predicted refactorings were successfully applied on the
code level. The total number of refactoring performed on all programs was 3384 with
the average of 33 refactorings per program. The number of failed refactorings was 262.
In section 4.6.11, we discuss reasons due to which some refactorings failed on the code
level.

86

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

percentage of movable classes to total attempted classes

nu
m

be
r o

f p
ro

gr
am

s

0 20 40 60 80 100

0
5

10
15

20
25

Figure 4.12: Refactorability

4.6.10 Strongly Connected Components Metrics

This section shows how move refactorings have affected strongly connected com-
ponents across all programs in the dataset. We have computed strongly connected
components from the dependency graph of packages in programs. For each program,
we have computed SCC metrics before and after performing the top 50 refactorings.
Figure 4.13 shows the before and after values of the largest SCC (MAX SCC) in each
program. On average across all programs the before value is 25.33 and the after value
is 22.36. This decrease indicates improvement in the SCC structure.

Figure 4.14 shows the average density metric of all refactored programs. Values closer
to 1 represent highly dense SCCs. In many programs we can see the drop in the
density of SCCs. However, there are several programs where the density has slightly
increased. The reason for the increase in density is that when a component is broken

87

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

into two sub-components, the density of individual components may increase. This
does not necessarily mean that the quality of the program decreased. On the contrary,
these dense components may represent cohesive clusters of packages that could be
merged.

For all refactored programs, the average density value before refactoring is 0.08 with
standard deviation 0.116 and after refactoring it is 0.04 with standard deviation 0.046.
After refactoring the average density values are more consistent across all programs.
We chose arithmetic mean (average) over geometric mean because the latter is appro-
priate for describing proportional growth, such as, return on investment over a period
of time (Anson et al., 2010). It should also be used when data are interrelated. Whereas
the arithmetic mean should be used when the data points are not interrelated, i.e.,
they do not depend on each other (Matuszak, 2010). The programs in the dataset are
independent of each other. Therefore, we have used the arithmetic mean.

Figure 4.15 shows the average tangledness of SCCs in programs. A tightly tangled
program has a value closer to 1. For many programs the tangledness of programs
decreased. For all refactored programs, the average tangledness value before refactor-
ing is 0.16 with standard deviation 0.195 and after refactoring it is 0.08 with standard
deviation 0.079. This means that the average tangledness values after refactoring are
more consistent across the dataset.

4.6.11 Limitations of the Experiment

There are several limitations in the Eclipse refactoring engine. These limitations are
discussed below. If a class cannot be moved due to one of these limitations, we
manually put its name in the blacklisted classes (Section 4.4.2.2). We have done this
on trial-and-error basis as this does not happen very often.

Constant Folding

The dependency graph is built from the bytecode of programs. In the bytecode, refer-
ences to static, final primitives and strings are inlined by the compiler after a process
called constant folding (Muchnick, 1997). Due to this reason we cannot compute the
incoming references to these fields. If such a field is declared protected or private,
moving the class to another package would require the field to change the accessibility
to public so that it can be accessed by classes from the original package. Consider the
following example:

88

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

0100200300400

Largest SCC Size

ant−1.8.1
antlr−3.2
aoi−2.8.1 argouml−0.30.2

aspectj−1.6.9
axion−1.0−m2

azureus−4.5.0.4 c_jdbc_2.0.2
castor−1.3.1 cayenne−3.0.1

checkstyle−5.1
cobertura−1.9.4.1

colt−1.2.0
columba−1.0 compiere−330

derby−10.6.1.0
displaytag−1.2
drawswf−1.2.9 drjava−stable−20100913−r5387

emma−2.0.5312 findbugs−1.3.9
fitlibraryforfitnesse−20100806

freecol−0.9.4
freecs−1.3.20100406 galleon−2.3.0

ganttproject−2.0.9
heritrix−1.14.4

hibernate−3.6.0−beta4 hsqldb−2.0.0
htmlunit−2.8 informa−0.7.0−alpha2
ireport−3.7.5

itext−5.0.3 jag−6.1
james−2.2.0

jasperreports−3.7.3
jchempaint−3.0.1

jedit−4.3.2
jena−2.6.3

jext−5.0
jfreechart−1.0.13

jgraph−5.13.0.0
jgraphpad−5.10.0.2

jgrapht−0.8.1
jgroups−2.10.0
jhotdraw−7.5.1

jmeter−2.4
jmoney−0.4.4

joggplayer−1.1.4s
jparse−0.96

jpf−1.0.2
jrat−0.6

jrefactory−2.9.19
jruby−1.5.2

jspwiki−2.8.4
jsxe−04_beta

jung−2.0.1
junit−4.8.2

log4j−1.2.16
lucene−2.9.3

marauroa−3.8.1 megamek−0.35.18
mvnforum−1.2.2−ga
nakedobjects−4.0.0

nekohtml−1.9.14 openjms−0.7.7−beta−1
oscache−2.4.1 picocontainer−2.10.2

pmd−4.2.5
poi−3.6

pooka−3.0−080505
proguard−4.5.1

quartz−1.8.3
quickserver−1.4.7

quilt−0.6−a−5
rssowl−2.0.5
sablecc−3.2

sandmark−3.4 squirrel_sql−3.1.2
sunflow−0.07.2

tomcat−7.0.2
trove−2.1.0 velocity−1.6.4

webmail−0.7.10
weka−3.7.2
xalan−2.7.1

xerces−2.10.0 xmojo−5.0.0

be
fo

re
af

te
r

Fi
gu

re
4.

13
:

La
rg

es
tS

C
C

in
P

ro
gr

am
s

89

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

0.00.10.20.30.40.50.60.7

Average Density

ant−1.8.1
antlr−3.2
aoi−2.8.1 argouml−0.30.2

aspectj−1.6.9
axion−1.0−m2

azureus−4.5.0.4 c_jdbc_2.0.2
castor−1.3.1 cayenne−3.0.1

checkstyle−5.1
cobertura−1.9.4.1

colt−1.2.0
columba−1.0 compiere−330

derby−10.6.1.0
displaytag−1.2
drawswf−1.2.9 drjava−stable−20100913−r5387

emma−2.0.5312 findbugs−1.3.9
fitlibraryforfitnesse−20100806

freecol−0.9.4
freecs−1.3.20100406 galleon−2.3.0

ganttproject−2.0.9
heritrix−1.14.4

hibernate−3.6.0−beta4 hsqldb−2.0.0
htmlunit−2.8 informa−0.7.0−alpha2
ireport−3.7.5

itext−5.0.3 jag−6.1
james−2.2.0

jasperreports−3.7.3
jchempaint−3.0.1

jedit−4.3.2
jena−2.6.3

jext−5.0
jfreechart−1.0.13

jgraph−5.13.0.0
jgraphpad−5.10.0.2

jgrapht−0.8.1
jgroups−2.10.0
jhotdraw−7.5.1

jmeter−2.4
jmoney−0.4.4

joggplayer−1.1.4s
jparse−0.96

jpf−1.0.2
jrat−0.6

jrefactory−2.9.19
jruby−1.5.2

jspwiki−2.8.4
jsxe−04_beta

jung−2.0.1
junit−4.8.2

log4j−1.2.16
lucene−2.9.3

marauroa−3.8.1 megamek−0.35.18
mvnforum−1.2.2−ga
nakedobjects−4.0.0

nekohtml−1.9.14 openjms−0.7.7−beta−1
oscache−2.4.1 picocontainer−2.10.2

pmd−4.2.5
poi−3.6

pooka−3.0−080505
proguard−4.5.1

quartz−1.8.3
quickserver−1.4.7

quilt−0.6−a−5
rssowl−2.0.5
sablecc−3.2

sandmark−3.4 squirrel_sql−3.1.2
sunflow−0.07.2

tomcat−7.0.2
trove−2.1.0 velocity−1.6.4

webmail−0.7.10
weka−3.7.2
xalan−2.7.1

xerces−2.10.0 xmojo−5.0.0

be
fo

re
af

te
r

Fi
gu

re
4.

14
:

A
ve

ra
ge

D
en

si
ty

(D
)o

fP
ro

gr
am

s
B

ef
or

e
an

d
A

fte
rR

ef
ac

to
rin

g

90

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

0.00.20.40.60.8

Average Tangledness

ant−1.8.1
antlr−3.2
aoi−2.8.1 argouml−0.30.2

aspectj−1.6.9
axion−1.0−m2

azureus−4.5.0.4 c_jdbc_2.0.2
castor−1.3.1 cayenne−3.0.1

checkstyle−5.1
cobertura−1.9.4.1

colt−1.2.0
columba−1.0 compiere−330

derby−10.6.1.0
displaytag−1.2
drawswf−1.2.9 drjava−stable−20100913−r5387

emma−2.0.5312 findbugs−1.3.9
fitlibraryforfitnesse−20100806

freecol−0.9.4
freecs−1.3.20100406 galleon−2.3.0

ganttproject−2.0.9
heritrix−1.14.4

hibernate−3.6.0−beta4 hsqldb−2.0.0
htmlunit−2.8 informa−0.7.0−alpha2
ireport−3.7.5

itext−5.0.3 jag−6.1
james−2.2.0

jasperreports−3.7.3
jchempaint−3.0.1

jedit−4.3.2
jena−2.6.3

jext−5.0
jfreechart−1.0.13

jgraph−5.13.0.0
jgraphpad−5.10.0.2

jgrapht−0.8.1
jgroups−2.10.0
jhotdraw−7.5.1

jmeter−2.4
jmoney−0.4.4

joggplayer−1.1.4s
jparse−0.96

jpf−1.0.2
jrat−0.6

jrefactory−2.9.19
jruby−1.5.2

jspwiki−2.8.4
jsxe−04_beta

jung−2.0.1
junit−4.8.2

log4j−1.2.16
lucene−2.9.3

marauroa−3.8.1 megamek−0.35.18
mvnforum−1.2.2−ga
nakedobjects−4.0.0

nekohtml−1.9.14 openjms−0.7.7−beta−1
oscache−2.4.1 picocontainer−2.10.2

pmd−4.2.5
poi−3.6

pooka−3.0−080505
proguard−4.5.1

quartz−1.8.3
quickserver−1.4.7

quilt−0.6−a−5
rssowl−2.0.5
sablecc−3.2

sandmark−3.4 squirrel_sql−3.1.2
sunflow−0.07.2

tomcat−7.0.2
trove−2.1.0 velocity−1.6.4

webmail−0.7.10
weka−3.7.2
xalan−2.7.1

xerces−2.10.0 xmojo−5.0.0

be
fo

re
af

te
r

Fi
gu

re
4.

15
:

A
ve

ra
ge

Ta
ng

le
dn

es
s

(T
)o

fP
ro

gr
am

s
B

ef
or

e
an

d
A

fte
rR

ef
ac

to
rin

g

91

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

1 package a;

2 public class A { protected static final MAX_NUM = 100; }

3 package a;

4 public class A1 {

5 void m() {

6 int n = A.MAX_NUM; ... }

7 }

Moving the class A from package a to b would require an additional refactoring i.e.
change the accessibility of the field MAX NUM to public. Since we rely on the Move
refactoring provided Eclipse IDE, the compiler generates an error after performing the
refactoring.

Name Resolution

In preconditions, before moving a class to another package we check whether a class
with the same name exists in the target package. If this is the case, we do not move
the class. However, the name resolution error is generated when a class in the target
package uses a class with the same name, which is to be moved in the target package.
The following example explains the situation:

1 package a;

2 public class X {

3 ...

4 Object o = list.iterator.next();

5 ...

6 }

If we move the class X to package b, which has a class named b.Object, then the
standard move refactoring considers java.lang.Object as b.Object and generates a
compilation error. This is a limitation in the Eclipse move refactoring.

Invalid Imports

This is an error in the standard Eclipse move refactoring where moving a class removes
import reference to an inner class in the moved class. This error is reported on Eclipse
bugs website6. The error scenario is given below:

6https://bugs.eclipse.org/bugs/show_bug.cgi?id=350205

92

https://bugs.eclipse.org/bugs/show_bug.cgi?id=350205

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

1 package a;

2 import b.Outer.Inner;

3 public class ToMove { Inner i; }

4 package b;

5 public class Outer {

6 public static class Inner {}

7 }

Now, moving the class a.ToMove to the b package results in the missing import state-
ment for the Inner class. This generates a compile time error. If we rollback this
refactoring, i.e., move the class ToMove back to the original package a, we also get
an invalid import statement which only imports b.Outer rather than b.Outer.Inner.
Therefore a situation like this results in compile time error even after performing the
rollback. In order to avoid this situation, we recorded a list of such cases and put
those class names in a separate file for their respective projects. While checking the
preconditions for the move refactoring these blacklisted classes are skipped, if they are
the candidate for move.

4.6.12 Scalability

We have distributed our dataset across 5 computers to expedite the completion time.
All computers had Java Runtime 6 installed. Two computer have Intel Core i5 and 4GB
RAM, and three computers with Intel Core i7 and 4GB RAM. The average execution
time for all 88 programs is 239 minutes. In order to check the impact of program
size, we have divided the dataset into two halves based on program size measured by
vertex count. The small set has vertex count range of 74 - 570. For this set the average
execution time was 16 minutes per program. The large dataset, which ranges from 577
- 7696 vertices, the average execution time of 462 minutes. The big difference of the
execution time is due to excessive re-computation of antipattern instances, as this is
part of postconditions. Table 4.8 shows 5 programs which took the most of time. For
these 5 programs the average execution time was 2531 minutes or 42 hours.

4.6.13 Test Results

Test cases are an important part of a program. They reflect semantics of programs
from a developer’s point of view. Testing plays a vital role in the refactoring process
(Fowler, 1999). Successful tests can be used as postconditions after each refactoring.
If a refactoring introduces an abnormal behaviour in the program, testing should

93

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

Program Vertex Count Edge Count Execution Time (mins)
azureus-4.5.0.4 7696 44057 4063
compiere-330 2712 16369 3373
aspectj-1.6.9 2607 25019 2147
derby-10.6.1.0 1895 15416 1912
jruby-1.5.2 2134 16375 1161

Table 4.8: Top 5 Programs with Highest Execution Time

uncover that problem. In our framework, test cases were not added to create standard
postconditions because not many programs used them7. Similarly, different testing
frameworks were used, such as JUnit 3, JUnit 4, mock objects, custom tests using the
main method of a class. This made it difficult to integrate this concept as a generic
postcondition into our framework. However, in order to verify our approach, we have
manually executed test cases of 5 programs before and after performing the move
refactorings. In the refactoring process we have also refactored test cases. That is, if
a class was moved from one package to another, the import declarations of test cases
were also updated (where required).

Not all programs in the corpus have test cases. Therefore we manually selected those
programs which have high test coverage. Test coverage or code coverage reflects the
extent to which a program’s source code has been tested (Miller and Maloney, 1963).
We used EclEmma8 tool to compute the statement level test coverage. We expected that
test cases with high test coverage are likely to uncover more problems as compared
to programs with low test coverage. The successful execution of test cases does not
guarantee that the program has no semantic errors. However, it is an indication that
what a developer thought to be true is still true after refactoring.

The result of tests execution on 5 programs are shown in table 4.9. In some programs
tests generated errors and failures when executed on the original program before refac-
toring. We did not try to fix those erroneous test cases because a test case which fails
before the refactoring should also fail after the refactoring. The results of these 5 pro-
grams show that there were no semantic changes caused by move refactorings except
in pmd-4.2.5 where the errors after refactorings increased from 31 to 40. In this case the
class net.sourceforge.pmd.MockRule was moved to the package net.sourceforge-
.pmd.rules. The MockRule class was referred by nine test cases as a string literal. As
the standard move refactoring cannot update string literals, therefore these test cases
could not be updated and we got “class not found” error. These errors were fixed by

7Test cases were available for only 28 programs in the dataset
8http://www.eclemma.org/

94

http://www.eclemma.org/

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

Program Test Cov-
erage

Errors -
Before

Errors -
After

Failed -
Before

Failed -
After

Total
Tests

lucene-2.9.3 82.7 19 19 22 22 1292
jgrapht-0.8.1 73.7 0 0 0 0 371
jfreechart-1.0.13 72.6 0 0 0 0 6375
nekohtml-1.9.14 53.5 0 0 5 5 13
pmd-4.2.5 48.9 31 31 52 52 884

Table 4.9: Test Results of 5 Programs Before and After Refactorings

manually updating the class names9. After this manual change, the test results were
the same as before.

4.7 Summary

In this chapter, we have presented an algorithm that identifies potential refactoring op-
portunities and executes them on the code level to remove cycles or tangles between
packages. We have used the move class refactoring to break cycles. We have also
defined pre and postconditions for the move refactoring. This set of pre and postcon-
ditions can be further enhanced. For example, the accessibility precondition may be
weakened by allowing types and members to change the accessibility to public.

We have evaluated our approach on a set of 92 programs to detect and perform
move refactorings in order to break circular dependencies. The results show that our
algorithm detects high-impact refactorings that considerably improve the structure of
programs. Programs are not only improved in terms of antipattern count metric, but
also in terms of other metrics such as those related to strongly connected components.
In addition, test results show that refactorings performed by our tool do not change
the behaviour of programs.

In order to automatically execute the identified refactorings on the source code level,
we have developed an Eclipse plugin - CARE. In CARE, we can safely execute the
move class refactoring(s) on a set of programs with a push of a button. In the next
chapter, we experiment with alternative strategies to break critical dependencies.

9The test results were recomputed after the manual refactoring

95

CHAPTER 4. APPLYING PACKAGE LEVEL REFACTORINGS

96

Chapter 5

Applying Composite Refactorings

In this chapter, we use composite refactorings to break critical dependencies between
classes. We use the count of four antipattern instances as the major fitness function
for the analysis of programs. We present an algorithm and a proof-of-concept imple-
mentation of the refactoring engine. We also discuss pre and postconditions required
to perform refactorings. Our approach uses several refactorings: move class, type
generalisation, introduce service locator, and static members inlining and is validated
on the Qualitas Corpus set of Java programs.

5.1 Overview

In the previous chapter, we have used package level refactoring to remove critical
dependencies between classes. In this chapter, we extend our refactoring framework
to include class level refactorings to remove or reorganise dependencies. This means
we adopt a composite refactoring strategy, which includes both class and package level
refactorings. We also discuss how these refactorings are applied during the refactoring
process. We use four class and package level refactorings as discussed in section 3.4.
These refactorings are move class, type generalisation, introduce service locators, and
static members inlining.

For each program in the dataset, our refactoring algorithm identifies critical depen-
dencies between classes and breaks those dependencies by using the aforementioned
refactorings. The critical dependencies are identified by a scoring function, which
ranks edges of the dependency graph according to their participation in instances of
four antipatterns. As opposed to the previous chapter where instances of only one
antipattern were removed, we try to remove instances of four antipatterns (discussed

97

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

in Section 2.3). These antipatterns are strong circular dependency between packages
(SCD), subtype knowledge, (STK), abstraction without decoupling (AWD), and de-
generated inheritance (DEGINH).

We do not expect that removing or reorganising dependencies will always succeed.
Therefore, refactorings must be safeguarded with a set of pre and postconditions. Our
algorithm picks a high-scored edge and checks preconditions for each of the two types
involved in the dependency, i.e., the source and the target class. If all preconditions
pass, the respective refactoring is tentatively performed on the abstract syntax tree
(AST) of the program. Next, postconditions are checked to verify that the refactoring
was performed successfully. If postconditions fail, the refactoring is rolled back and
the next high-scored edge is picked. Conversely, if postconditions pass, the refactoring
is executed on the program’s source code and the analysis is repeated until all instances
are removed or a certain number of refactorings are performed.

The refactoring algorithm is implemented as an Eclipse plugin, which analyses the
source code of programs before applying any refactoring. For this purpose, we build
the AST of classes where refactorings are required. We have used the Eclipse Java
development tool (JDT) to construct ASTs. In order to perform refactorings on the
source code, we have used the Eclipse refactoring toolkit (LTK) API. This API provides
the facility of rolling back a refactoring (UNDO Manager) in those cases where the
refactoring is not applied successfully. Our approach is validated against the Qualitas
Corpus set of programs.

5.2 Background

5.2.1 Type Generalisation

In the literature, several tools and techniques exist that aid developers to use more
abstract types. For example, Mayer et al. (2007) have developed a refactoring tool
that detects code smells and executes refactorings to remove those smells. In this tool,
the supertype hierarchy is displayed to the user in the form of a lattice. The user can
choose a relevant refactoring among multiple refactoring suggestions. This process
involves human interaction and cannot be fully automated.

Streckenbach and Snelting (2004) have used the KABA refactoring tool, which proposes
split classes and move members refactorings. The drawback of this tool is that it cannot
modify a program’s source code. However, it can be used to modify the bytecode of the
program. This makes it difficult to integrate this tool into the software development

98

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

life cycle. Bach et al. (2007) have developed an Eclipse plugin, which finds better fitting
types in programs. This plugin looks for all variable declarations, field declarations,
method parameter types and method return types to compute valid supertypes. Once
valid supertypes are computed, this plugin generates warnings in the Problem View
of Eclipse. Quick fixes are associated with each variable declaration to automatically
re-declare a variable with an abstract type. The selection of an abstract type for re-
declaring a variable must be done manually. This plugin is not scalable for large
programs. For example, the authors reported that for JHotDraw-6.0b1 with 7788
declaration elements, it took 42 minutes to compute generalised types on a 2GHz IBM
thinkpad.

There are several approaches based on a metrics suite to determine the refactoring
opportunities for types generalisation. Mayer (2003) has analysed the use of interfaces
in large object-oriented programs. This study reveals that interfaces are not very
popular among programmers. The author defined a metric suite to identify source
code places where the use of interfaces should be applied. For this purpose, the author
developed an Eclipse plugin, which assists programmers to make use of interfaces for
variable and field declarations rather than using concrete classes. In our study, we try
to generalise to any compatible supertype and we do not restrict ourself to interfaces.
In addition, we perform other refactorings such as introduction of service locators and
static methods inlining to break dependencies.

Gossner et al. (2004) has investigated the use of interfaces in the Java Development Kit.
They advocate that there is a big opportunity for replacing existing types with their
supertypes. The authors have validated the results with the help of several metrics
that are related to the use of interfaces within the project. This study doesn’t consider
abstract classes but only focuses on interface utilisation. In a similar way, Steimann
et al. (2003) have presented a study showing that in several large Java projects one
out of four variables was declared through its interface. The authors have defined
a metric suite related to interface utilisation in object orient programs and proposed
refactorings for a better utilisation of interfaces in programs. The metrics definition is
very vague and no implementation exists to validate the effectiveness of the approach.

Opdyke and Johnson (1993) have proposed refactorings for creating abstract super
classes from concrete classes. The authors identified refactoring steps and provided
techniques on how to automate these steps. Tip et al. (2003) have proposed a con-
straint satisfaction mechanism to verify preconditions for type generalisation refactor-
ings such as extract interface, use super type where possible and generalize declared types.
These refactorings have been implemented in the standard distribution of Eclipse.
Steimann et al. (2006) have followed a similar approach by developing a tool that can

99

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

automatically infer types from concrete classes. By selecting a variable the infer type
refactoring allows programmers to generate a new minimal interface that can be used
to declare that variable. A disadvantage of their approach is that the excessive use of
this approach may result in many similar interfaces.

5.2.2 Service Locators

Martin has defined the Dependency Inversion Principle (DIP) (Martin, 1994), which
states that “high level modules should not depend upon low level modules. Both
should depend upon abstractions”. This means a class should depend on an abstract
type rather than on a concrete class. However, these abstract types still have to be
instantiated using concrete classes. There are several ways to instantiate a concrete
class and pass it to the client class exhibiting DIP. One possible solution to locate and
utilise implementation classes is a J2EE pattern called service locator1. Fowler (2004)
has discussed the benefits of using service locators to avoid instantiation problems.
He suggests to create a service locator, which has knowledge about a service and
its implementations and use the service locator along with a registry to locate and
instantiate implementation types. In our previous work, we have used the service
locator pattern to achieve modularity in object-oriented programs (Shah et al., 2012).

5.2.3 Static Members Inlining

The inlining technique is primarily used by the Java compiler for the optimisation
of program execution, it is also known as constant folding (Muchnick, 1997). This
type of inlining is limited to static and final values and string constants, where calls
to constants are replaced with their values by the compiler. Inlining is also used as
a refactoring technique where fields, methods and classes are inlined into a client
class for the purpose of optimisation or for removing a dependency. For example,
in order to remove a dependency, Feathers (2004) has suggested a refactoring called
extract and override call in which the method signature of the invoked method (causing
a dependency relation) is copied into the client class and a subclass of the client
implements and returns a mock value for testing.

Tsantalis and Chatzigeorgiou (2009) have investigated classes to identify move method
refactorings. According to the authors, moving fields and methods within classes may
play an important role in achieving low coupling and high cohesion. They propose a
novel method for the identification of Feature Envy problems in programs. The Feature

1http://www.oracle.com/technetwork/java/servicelocator-137181.html

100

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

Envy problem occurs in programs where a method frequently accesses features of a
class other than the one in which it exits (Fowler, 1999). The authors introduce a
concept of distance between software artefacts, such as fields, methods and classes,
which identifies refactoring opportunities. In order to determine the impact of such
refactorings an Entity Placement metric is used to identify whether classes are placed
correctly in a system. The approach suggested is not fully automated and requires the
judgement of system developers to apply relevant refactorings.

Object inlining is a similar technique, where a dependency to an object is removed
by inlining its members (Dolby, 1997; Dolby and Chien, 2000). By using this tech-
nique calls to new object creations (constructor invocations) can be minimised. This
minimisation of new creations may improve the performance of a system (Ben Asher
et al., 2012). For example, we can inline some of the members (that a class X depends
on) of a class Y to class X. This would break the dependency from class X to Y. The
indirect access to fields and methods in class X would also be replaced by the direct
access. However, it is likely that we may create redundancy in the code if a class Z
also depended on the same members of class Y which were inlined to class X. Object
inlining may significantly change the meaning of classes. Similarly, when members of
two classes are merged into a single class, it may also negatively affect the understand-
ability of source code. Due to these reasons we restrict to inlining static members,
where we move the required static members of the target class to the source class and
leave a delegate method in the target class.

5.3 Algorithm

An overview of the refactoring algorithm is given below:

1. Build the dependency graph from the bytecode of a program.

2. Use the Guery engine (ver 1.3.5) to compute the set of SCD, STK, AWD and
DEGINH instances (Dietrich et al., 2012).

3. Compute a list of edges (class dependencies) sorted by score ranking based on
their participation in all types of antipattern instances.

4. Parse the program’s source code into ASTs.

5. Check preconditions to determine whether a dependency can be removed or not.

6. If the preconditions are satisfied, apply the refactoring on the program’s ASTs.
Otherwise try the next high-scored edge.

101

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

7. Evaluate postconditions to check whether the applied refactoring has introduced
any errors.

8. If postconditions are satisfied, update the program’s source code. Otherwise,
rollback the ASTs to their previous states.

9. Repeat the process until all antipatterns instances are removed or a certain num-
ber of iterations are performed (MAX is 50 in our case).

The detailed refactoring process is shown in figure 5.1.

!!
!
!
!
!
!

"#$%&'()*)&'!
+,$%-)'.!

!
"&/*%&'()*)&'!
+,$%-)'.!

!

0$12%*&#$(!!
"#&.#23!

0&4452%-!

0$6$2*!7'*)4!
!"#!!

")%-!8$9*!:).,;
<%&#$(!+2'()(2*$!

=664>!
0$12%*&#)'./!

0$?$%*!

@A2472*$!
0$12%*&#)'./!

+&33)*!*&!
<&7#%$!+&($!"#&.#23B/!!

=<C/!

0$12%*&#$(!
<&7#%$!+&($!

='*)62**$#'!
D$*$%*)&'!

!

E#).)'24!!
"#&.#23!

F&#-)'.!+&6>!

Figure 5.1: Automated Refactoring Process

5.3.1 The Dependency Graph

The first step of the algorithm starts with building the dependency graph of a program.
The process of building the dependency graph is explained in section 2.1.

102

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

5.3.2 Computing Antipattern Instances

In the second step, the algorithm computes instances of all four types of anitpatterns.
These antipatterns are strong circular dependency between packages (SCD), subtype
knowledge, (STK), abstraction without decoupling (AWD), and degenerated inheri-
tance (DEGINH).

5.3.3 Computing Edge Scoring

In this step, the algorithm computes score for edges that participate in antipattern
instances. The edge scores are sorted so that the highest scored edge is the first
candidate for removal. The process of computing edge scoring is discussed in section
2.4.

5.3.4 Parsing Source Code

After the identification of critical edges (class dependencies), we need to analyse the
source code to verify whether removing or reorganising these dependencies is possible
or not. For this purpose, we extract the Abstract Syntax Tree (AST) of the required
classes. We have used the JDeodorant (Tsantalis, 2007) API based on the Eclipse Java
Development Tool (JDT) to parse a program’s source code. This API provides utility
methods that assist in performing static code analysis such as obtaining incoming and
outgoing references of a method. The remaining steps of the algorithm are discussed
in the implementation section.

5.4 Implementation: CARE - The Eclipse Plugin

We have implemented the above mentioned algorithm as an Eclipse plugin. In this
plugin, we have extended the refactoring framework (discussed in section 4.4) to
perform composite refactorings.

5.4.1 Implementing Dependency Classification

In order to perform composite refactorings, we have extended the dependency classi-
fication mechanism explained in section 4.4.1. The extended class diagram of depen-
dency classification is shown in figure 5.2. As there could be multiple dependency
categories in a single class, therefore we have used the composite design pattern for

103

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

1

0..*

<<abstract>>
Dependency

getName():String
getRefactoring():CareRefactoring

Extends

Uses

Implements

SMI VD MPT MRT MET CI Composite

add()

Figure 5.2: Class Diagram of Dependency Categories

the Uses class (Gamma et al., 1994). This design pattern allows us to deal with single
objects, or a composition of objects, uniformly. When multiple dependency categories
exist in the source code, an instance of the Composite class is returned.

Given the source and the target class, we check source code of the source class to extract
dependency categories. This means we count the occurrences of the target class in the
source class and categorise these. In order to extract dependency categories, we have
extended the ASTVistor class - provided by Eclipse JDT Core. Our DependencyFinder
class takes the compilation unit of the source class and examines all parts of it to extract
different dependency categories.

Table 5.1 shows the default refactoring for each dependency category. This classifica-
tion can be altered while performing a refactoring. For example, the move refactoring
will be attempted when each of the three other refactorings has failed.

Dependency relationships caused by implements, extends, or Other category require
change in the logic of a program. Therefore we do not apply class level refactorings,
instead we use the move class refactoring to break the respective dependencies.

104

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

Dependency Category Refactoring
Variable Declaration (VD)

Type generalisation
Method Parameter Type (MPT)
Method Return Type (MRT)
Method Exception Type (MET)
Constructor Invocation (CI) Service Locators
Static Member Invocation (SMI) Static Members Inlining
Extends (EX)

Move ClassImplements (IM)
Other

Table 5.1: Dependency Categories and their Default Respective Refactorings

5.4.2 Implementing Refactoring Constraints

There are several refactoring specific preconditions, which are described below.

5.4.2.1 Generalize Refactoring Preconditions

These preconditions are checked on the code level (AST of the respective class).

No Valid Supertype: The first precondition is related to type generalisation. The type
of a variable, field, method parameter or return type cannot be generalised if the class
members invoked on that variable or field are not part of any supertype’s interface.
Consider the following example where a method parameter type is generalised. In
this case, class A can invoke the method size() on both types: java.util.Vector and
java.util.Collection.

1 //Before refactoring

2 class A {

3 public int foo(java.util.Vector nums) {

4 int size = nums.size(); ...

5 }

6 }

7 //After refactoring

8 class A {

9 public int foo(java.util.Collection nums) {

10 int size = nums.size(); ...

11 }

12 }

105

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

The above refactoring would fail if the class A invoked nums.get(i) in the method body
of foo(). In this case, replacing java.util.Vector with its supertype java.util.-
Collection is not possible because the methodget(int i) is not a part ofjava.util.-
Collection interface.

Leaking Reference: The second precondition states that a type cannot be generalised
when a reference to the the target type is leaked. For example, in the following
code the vector object nums is passed to a method of another class. Therefore we
cannot determine which part of the interface on the vector object reference is used
by the process method of the class B. While it is possible to follow this references
in principle, the existing Generalize Declared Type Eclipse refactoring does not support
this.

1 class A {

2 public void foo(java.util.Vector nums) {

3 new B().process(nums);

4 }

5 }

6

7 class B {

8 public void process(java.util.Vector v) {

9 ...

10 }

11 }

Generalise Non-Public Artefacts: The third precondition states that if a target type
is used as the declaration type of a public field or used as a return type of a public
method, we cannot generalise that target type. Doing so may break the external client
code that is not visible during refactoring. This refactoring is bound to the type of
program being refactored. If we are trying to refactor a program which is used (e.g.,
as a library) in different contexts, this precondition should be enabled. Stand alone
applications that are not used programmatically by other programs do not require
this precondition. In the context our work, we apply refactorings on a large dataset
where it is hard to differentiate between the two types of programs due to lack of meta
data in the corpus. Therefore, we ignore this precondition and apply the generalize
refactoring on all modifiers.

106

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

5.4.2.2 Inline Refactoring Preconditions

Self Instance Creation: This precondition checks the method body of the target method
and confirms that there does not exist a new instance creation of the target type. For
instance, this is the case when the singleton design pattern is used. The following
example explains the situation. In this example, even if we move staticMethod()
to the class A, the dependency on the class B would still exist in the class A. This
precondition is also checked on the code level.

1 //Before Refactoring

2 class A {

3 ...

4 void m() {

5 B.staticMethod();

6 }

7 ...

8 }

9 class B {

10 ...

11 public static void staticMethod() {

12 B b = new B();

13 }

14 ...

15 }

16 //After Refactoring. The dependency on B still exists after inlining

17 class A {

18 ...

19 void m() {

20 B b = new B();

21 }

22 ...

23 }

Class Boundary: This precondition states that a static member cannot be inlined if it
accesses any member of its super class.

5.4.2.3 Move Class Preconditions

A class is not moved if its visibility is restricted to the package level and it is referenced
by other classes within the original package. The move refactoring is not performed
where the target package contains a class with the same name. If the class to be moved

107

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

is an inner class, its compilation unit (all types within the outer class) is moved. A
detailed discussion on the move class refactoring preconditions is given in section
4.4.2.

5.4.2.4 Postconditions

We have used the same postconditions as described in section 4.4.2.4. The first post-
condition states that the program should compile successfully after the refactoring. For
example, moving a non-public class to another package results in compilation error,
if the class is referenced in the original package. The second postcondition is related
to the instance count before and after refactoring. The instance count after refactoring
should be less than or equal to the instance count before refactoring. A refactoring is
only considered successful when it passes these two postconditions. If either of the
postconditions fails, the whole refactoring is rolled back.

5.4.3 Implementing Refactorings

We have extended the refactoring mechanism described in section 4.4.3 to accommo-
date composite refactorings. This is because we use four refactorings to deal with
dependency categories: introduce service locators, type generalisation, static meme-
bers inlining, and move class. The class diagram of refactorings is shown in figure
5.3.

5.4.3.1 Generalize Refactoring

The Generalize refactoring is built on top of the standard Eclipse refactoring Gen-
eralize Declared Type, implemented via the ChangeTypeRefactoring class. In the
Generalize Declared Type refactoring, we have to manually select a declaration type and
see whether this can be replaced with one of its supertypes. The Generalize refac-
toring automatically replaces all target type declaration elements within a class with a
specific compatible supertype.

The ChangeTypeRefactoring class computes a list of all possible supertypes with
which a declaration type can be replaced. This class supports type generalisation on
declaration of fields and variables (VD), method parameters (MPT) and method return
types (MRT), but not on method exception types (MET). The MET type of dependency
is currently not supported.

In a source class, a dependency to the target type T may occur as VD, MPT and MRT

108

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

1

0..*

<<abstract>>
Refactoring

getName():String
checkAllConditions(...):RefactoringStatus
createChange(...):Change

<<abstract>>
CareRefactoring

checkPreconditions():Result
perform():void
checkPostconditions():Result
rollback():void

<<interface>>
IElementChangedListener

elementChanged(EventObject e)

Move Generalize Locator Inline Composite

Figure 5.3: Class Diagram of Composite Refactorings

simultaneously. The generalize refactoring must be applied to all such dependency
categories in order to remove the dependency to T. If any of the three dependencies
(VD, MPT, or MRT) cannot be generalised, the whole refactoring fails. In our approach,
we choose a common supertype and replace the target type T with that supertype for
each dependency category. The following steps describe the process through which a
specific supertype is selected for the target type T.

1. For each VD, MPT, and MRT dependency to T, compute the most general possible
type and add it to a set of PossibleSuperTypes in no particular order. This is done
using the standard Eclipse refactoring class ChangeTypeRefactoring.

2. Next, a common supertype is selected from the set PossibleSuperTypes. This
supertype must be the least general one among the set to avoid API access
problems. Due to multiple interface inheritance, a least general supertype does
not always exist. In this case, the refactoring is abandoned. For the purpose
of choosing a least common type, the original supertype hierarchy is extracted
(AllSuperTypes) using Eclipse JDT Core API ITypeHierarchy. This API returns
an array of all supertypes of the current type in bottom-up order. This means
java.lang.Objectwould be the last element in the list.

3. Iterate over AllSuperTypes from the first type to the last. If the type exists in the

109

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

set PossibleSuperTypes, choose this type as a supertype to replace the old type in
all identified places of the source class and stop the iteration. This would select
the least general type among the set of PossibleSuperTypes.

5.4.3.2 Locator Refactoring

The Locator refactoring is built on top of the standard Eclipse refactoring Introduce
Factory. The Locator refactoring replaces all constructor invocations of the target type
in the source class with the factory pattern. This refactoring creates a factory method
in the factory class, which returns an instance of the target type. In this experiment,
registry.ServiceLocator class is created for each program. This class serves as a
global factory class for the instantiation purpose. Consider the following example:

1 //Before Locator Refactoring

2 public class A {

3 private B bObject = null;

4 public void m() {

5 bObject = new BImpl();

6 ...

7 } ...

8 }

9 //After Locator Refactoring

10 public class A {

11 private B bObject = null;

12 public void m() {

13 bObject = registry.ServiceLocator.createBImpl();

14 ...

15 } ...

16 }

The implementation of the service locator refactoring can be further improved by
using other APIs such as Java service loader or Java reflection. This will remove any
explicit dependency from the target class and the service locator class. Therefore, when
antipattern instances are recomputed to measure the impact of refactoring, these types
are ignored.

110

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

5.4.3.3 Inline Refactoring

The Inline refactoring is built on top of the standard Eclipse move refactoring. The
Inline refactoring determines all static members of the target class and moves those
members to the source class. Delegate methods are created in the target class for
moved static methods. Inlining is recursive, e.g., a static method calls another static
method within the same class. In that case both methods will be inlined. However, the
Inline refactoring does not follow references beyond the class boundary, e.g., methods
invoked on supertypes.

5.4.3.4 Move Class Refactoring

The Move refactoring is built on top of the standard Eclipse refactoring MoveRefac-
toring. In this refactoring a class is moved from one package to another. First, the
algorithm performs move refactoring on the dependency graph to evaluate its impact.
Next, it is executed on the code level.

5.4.3.5 Composite Refactoring

A composite refactoring is a combination of individual refactorings. The standard
Eclipse refactoring framework doesn’t support the composite refactoring. Occasion-
ally, it is essential to use a composite refactoring to perform a task, e.g. to remove a
dependency to a type, it may be required to use several individual refactorings such as
generalize, locator, and inlining. For example, ArrayList list = new ArrayList()
can be refactored as List list = ServiceLocator.createList(). This refactoring
required the combination of type generalisation and service locator.

Since our individual refactorings are built on top of standard eclipse refactorings, each
refactoring executes changes on its own working copy of the compilation unit. This
makes it difficult to perform composite refactorings. The AST modifications overlap
when changes in multiple working copies are committed to the original source code.
In order to deal with the synchronization problem of multiple working copies of the
ASTs, we attached an interface IElementChangedListener to the CareRefactoring
class. This listener interface receives notification about any changes made to Java
elements and informs other refactorings in the queue to synchronize their working
copies of the ASTs.

111

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

5.5 Experiment

We have evaluated our approach on 92 programs in the dataset. First, we discuss a
couple of examples from results and then we explain overall results obtained from 92
programs.

5.5.1 Examples

The first critical dependency identified in Findbugs-1.3.9 is the reference from edu.-
umd.cs.findbugs.ShowHelp to edu.umd.cs.findbugs.gui.FindBugsFrame. This de-
pendency is caused because the ShowHelp class invokes a static method showSyn-
opsis() on the target type FindBugsFrame, as shown in listing 5.1. This particular
dependency is also a reference from a core package edu.umd.cs.findbugs to a presen-
tation package edu.umd.cs.findbugs.gui and therefore violates the design principle
that logic should not depend upon presentation. This dependency was involved in
113579 SCD instances, 185 STK instances and 1811 AWD instances. Therefore, re-
moving this dependency reduced the total number of instances from 277091 (100%) to
161517 (58%).

1 //Before Refactoring

2 public class ShowHelp {

3 ...

4 public static void main(String[] args) {

5 ...

6 FindBugsFrame.showSynopsis();

7 ...

8 }

9 ...

10 }

Listing 5.1: Source Code of ShowHelp Class

The refactored version of the old code causing the dependency is shown in listing 5.2.
A delegate method is created in the target type FindBugsFrame, which invokes the
showSynopsis()method in the source class.

1 //After Inline Refactoring

2 public class ShowHelp {

3 ...

4 public static void main(String[] args) {

112

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

5 ...

6 showSynopsis();

7 ...

8 }

9 public static void showSynopsis() {

10 System.out.println("Usage: findbugs [general options] [gui

options]");

11 }

12 }

Listing 5.2: Source Code of ShowHelp After Refactoring

Another example of a critical dependency identified in JHotDraw is a reference from
org.jhotdraw.draw.TextFigure toorg.jhotdraw.draw.tool.TextEditingTool. This
dependency was involved in 18 SCD instances and 7 AWD instances. The listing 5.3
shows the variable declaration reference in TextFigure that causes this dependency.

This particular dependency is a clear violation of the Dependency Inversion Principle
because TextFigure is using an abstract type Tool (an interface) as well as a concrete
type TextEditingTool (an implementation class of Tool). This dependency is safely
removed by abstracting the old variable declaration type to Tool and by replacing the
constructor invocation call with a call to ServiceLocator to obtain the implementation
class of the interface Tool (see Listing 5.4).

1 //Before composite refactoring (generalize and locator)

2 public TextFigure ... {

3 ...

4 public Tool getTool(Point2D.Double p) {

5 if (isEditable() && contains(p)) {

6 TextEditingTool t = new TextEditingTool();

7 return t;

8 }

9 return null;

10 } ...

11 }

Listing 5.3: Source Code of TextFigure Before Refactoring

1 //After composite refactoring (generalize and locator)

2 public TextFigure ... { ...

3 public Tool getTool(Point2D.Double p) {

4 if (isEditable() && contains(p)) {

113

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

5 Tool t = ServiceLocator.createTextEditingTool();

6 return t;

7 }

8 return null;

9 } ...

10 }

Listing 5.4: Source Code of TextFigure After Refactoring

5.5.2 Impact of Refactorings on Instance Count Metric

In order to evaluate our approach, we have used the Qualitas Corpus version 20101126r
(Tempero et al., 2010). Figure 5.4 shows the decrease in antipattern instances over 92
programs after increasing numbers of refactoring are performed2. We have used the
same plotting mechanism as described in section 4.8.

It can be noticed from the figure that after 20 refactorings the median value over all
observations drops below 70%. This means that for more or less half of the programs,
only 20 refactorings are required to remove 30% of instances. Similarly, only 8 refac-
torings are required to remove the first 20% of instances. The boxplot has several
outliers. These outliers include programs where the total number of antipattern in-
stances dropped close to zero with a few initial refactorings, such as, jag-6.1, jsXe-04,
freecs-1.3.20100406. In some programs the instance count remained unchanged, for
example, jFin-DateMath-R1.0.1, fit java-1.1, and javacc-5.0.

5.5.3 Refactoring Simulation on Model vs Refactoring Application on Code

Figure 5.5 shows the comparison between the refactoring simulation on the graph level
and the refactoring application on the code level. The two lines represent the median
value. This figure allows us to assess the extent to which high impact refactorings can
be automated.

There are 50 iterations and for each iteration, the refactoring on the graph level is
performed by removing the highest-scored edge without checking any pre and post-
conditions. This is why we get a very steep curve representing the decline in the
number of instances. However, not every edge can be removed on the code level, as
some pre or postconditions may fail. Consequently, our algorithm iterates over a list
of high-scored edges until it reaches one which passes all conditions. Therefore, the

2Out of those 92, one program (jasml-0.10) had zero instances of all four antipatterns.

114

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

0
20

40
60

80
10
0

iterations

pe
rc
en
ta
ge

Figure 5.4: Decrease in Instance Count Metric After Refactorings

curve generated by the refactorings on the code level is less steep than graph level
simulation. This defines a lower bound of what is possible. The gap between the two
lines can be further reduced by weakening the preconditions. For example, we may
allow those refactorings that require further refactorings such as change accessibility.
In that case the gap between the two lines will be minimised.

5.5.4 Refactoring Types Applied

Figure 5.6 shows different types of refactorings that were successfully applied across
all programs. On top is the move refactoring, which is applied in 31% cases. The
composite refactorings constitute to 14% of the total refactorings applied.

5.5.5 Strongly Connected Components Metrics

This section shows how the composite refactorings have affected strongly connected
components across all programs in the dataset. These metrics are defined in section
4.5. For each program, we have computed SCC metrics before and after performing
the top 50 refactorings. Figure 5.7 shows the before and after values of the largest SCC
(MAX SCC) in each program. On average across all programs the before value is 24.07
and the after value is 22.50. This decrease indicates improvement in the SCC structure.

115

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

0 10 20 30 40 50

0
20

40
60

80
10
0

number of refactorings

m
ed

ia
n

pe
rc

en
ta

ge

refactoring simulation on model
refactoring application on code

Figure 5.5: Decrease in no. of Instances: Comparison on Model (graph) and Code
levels

Figure 5.8 shows the average density metric for all refactored programs in the dataset.
Values closer to 1 represent highly dense SCCs. In many programs we can see the drop
in the density of SCCs. However, there are several programs where the density has
slightly increased, such as marauroa3.8.1 and quickserver1.4.7. This occurs because
when a component is divided into sub-components, the density of individual compo-
nents may go up. This does not necessarily indicate that the quality of the program has
decreased. On the contrary, these dense components may represent cohesive clusters
of packages that could be merged. For all refactored programs, the average density
value before refactoring is 0.07 with standard deviation 0.014 and after refactoring it
is 0.04 with standard deviation 0.035. This indicates that after refactoring the average
density values are more consistent across all programs.

Figure 5.9 shows the average tangledness of SCCs in programs. A tightly tangled
program has a value closer to 1. For many programs the tangledness of programs de-
creased. For all refactored programs, the average tangledness value before refactoring
is 0.16 with standard deviation 0.194 and after refactoring it is 0.08 with standard de-
viation 0.068. After refactoring average tangledness values are more consistent across
the dataset.

116

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

M L I G GL IG IGL IL

Refactoring Techniques

P
er
ce
nt
ag
e

0
5

10
15

20
25

30 M
L
I
G

Move
Locator
Inlining
Generalize

Figure 5.6: Refactoring Types Applied

5.5.6 Test Results

We have manually executed testcases of five programs, as explained in section 4.6.13.
Table 5.2 shows the result of tests execution on these programs. The results show that
there were no semantic changes caused by composite refactorings.

Program Test Cov-
erage

Errors -
Before

Errors -
After

Failed -
Before

Failed -
After

Total

lucene-2.9.3 82.7 19 19 22 22 1292
jgrapht-0.8.1 73.7 0 0 0 0 371
jfreechart-1.0.13 72.6 0 0 0 0 6375
nekohtml-1.9.14 53.5 0 0 5 5 13
pmd-4.2.5 48.9 31 31 52 52 884

Table 5.2: Test Results of 5 Programs Before and After Refactorings

5.6 Summary

In this chapter, we have presented an algorithm which removes critical dependencies
from Java programs. We have developed an Eclipse plugin, which automates the
refactoring process. This plugin is able to perform composite refactorings. In general,

117

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

0100200300

Largest SCC Size

ant−1.8.1
antlr−3.2
aoi−2.8.1

argouml−0.30.2
aspectj−1.6.9

axion−1.0−M2
azureus−4.5.0.4

c_jdbc_2.0.2
castor−1.3.1

cayenne−3.0.1
checkstyle−5.1

cobertura−1.9.4.1
colt−1.2.0

columba−1.0
compiere−330

derby−10.6.1.0
displaytag−1.2
drawswf−1.2.9

drjava−stable−20100913−r5387
emma−2.0.5312

findbugs−1.3.9
fitjava−1.1

fitlibraryforfitnesse−20100806
freecol−0.9.4

freecs−1.3.20100406
galleon−2.3.0

ganttproject−2.0.9
heritrix−1.14.4

hibernate−3.6.0−beta4
hsqldb−2.0.0
htmlunit−2.8

informa−0.7.0−alpha2
ireport−3.7.5

itext−5.0.3
jag−6.1

james−2.2.0
jasperreports−3.7.3

javacc−5.0
jchempaint−3.0.1

jedit−4.3.2
jena−2.6.3

jext−5.0
jFin_DateMath−R1.0.1

jfreechart−1.0.13
jgraph−5.13.0.0

jgraphpad−5.10.0.2
jgrapht−0.8.1

jgroups−2.10.0
jhotdraw−7.5.1

jmeter−2.4
jmoney−0.4.4

joggplayer−1.1.4s
jparse−0.96

jpf−1.0.2
jrat−0.6

jrefactory−2.9.19
jruby−1.5.2

jspwiki−2.8.4
jsXe−04_beta

jung−2.0.1
junit−4.8.2

log4j−1.2.16
lucene−2.9.3

marauroa−3.8.1
megamek−0.35.18

mvnforum−1.2.2−ga
nakedobjects−4.0.0

nekohtml−1.9.14
openjms−0.7.7−beta−1

oscache−2.4.1
picocontainer−2.10.2

pmd−4.2.5
poi−3.6

pooka−3.0−080505
proguard−4.5.1

quartz−1.8.3
quickserver−1.4.7

quilt−0.6−a−5
rssowl−2.0.5
sablecc−3.2

sandmark−3.4
squirrel_sql−3.1.2

sunflow−0.07.2
tomcat−7.0.2

trove−2.1.0
velocity−1.6.4

webmail−0.7.10
weka−3.7.2
xalan−2.7.1

xerces−2.10.0
xmojo−5.0.0

be
fo

re
af

te
r

Fi
gu

re
5.

7:
La

rg
es

tS
C

C
in

P
ro

gr
am

s

118

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

0.00.10.20.30.40.50.60.7

Average Density

ant−1.8.1
antlr−3.2
aoi−2.8.1

argouml−0.30.2
aspectj−1.6.9

axion−1.0−M2
azureus−4.5.0.4

c_jdbc_2.0.2
castor−1.3.1

cayenne−3.0.1
checkstyle−5.1

cobertura−1.9.4.1
colt−1.2.0

columba−1.0
compiere−330

derby−10.6.1.0
displaytag−1.2
drawswf−1.2.9

drjava−stable−20100913−r5387
emma−2.0.5312

findbugs−1.3.9
fitjava−1.1

fitlibraryforfitnesse−20100806
freecol−0.9.4

freecs−1.3.20100406
galleon−2.3.0

ganttproject−2.0.9
heritrix−1.14.4

hibernate−3.6.0−beta4
hsqldb−2.0.0
htmlunit−2.8

informa−0.7.0−alpha2
ireport−3.7.5

itext−5.0.3
jag−6.1

james−2.2.0
jasperreports−3.7.3

javacc−5.0
jchempaint−3.0.1

jedit−4.3.2
jena−2.6.3

jext−5.0
jFin_DateMath−R1.0.1

jfreechart−1.0.13
jgraph−5.13.0.0

jgraphpad−5.10.0.2
jgrapht−0.8.1

jgroups−2.10.0
jhotdraw−7.5.1

jmeter−2.4
jmoney−0.4.4

joggplayer−1.1.4s
jparse−0.96

jpf−1.0.2
jrat−0.6

jrefactory−2.9.19
jruby−1.5.2

jspwiki−2.8.4
jsXe−04_beta

jung−2.0.1
junit−4.8.2

log4j−1.2.16
lucene−2.9.3

marauroa−3.8.1
megamek−0.35.18

mvnforum−1.2.2−ga
nakedobjects−4.0.0

nekohtml−1.9.14
openjms−0.7.7−beta−1

oscache−2.4.1
picocontainer−2.10.2

pmd−4.2.5
poi−3.6

pooka−3.0−080505
proguard−4.5.1

quartz−1.8.3
quickserver−1.4.7

quilt−0.6−a−5
rssowl−2.0.5
sablecc−3.2

sandmark−3.4
squirrel_sql−3.1.2

sunflow−0.07.2
tomcat−7.0.2

trove−2.1.0
velocity−1.6.4

webmail−0.7.10
weka−3.7.2
xalan−2.7.1

xerces−2.10.0
xmojo−5.0.0

be
fo

re
af

te
r

Fi
gu

re
5.

8:
A

ve
ra

ge
D

en
si

ty
(D

)o
fP

ro
gr

am
s

B
ef

or
e

an
d

A
fte

rR
ef

ac
to

rin
g

119

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

0.00.20.40.60.8

Average Tangledness

ant−1.8.1
antlr−3.2
aoi−2.8.1

argouml−0.30.2
aspectj−1.6.9

axion−1.0−M2
azureus−4.5.0.4

c_jdbc_2.0.2
castor−1.3.1

cayenne−3.0.1
checkstyle−5.1

cobertura−1.9.4.1
colt−1.2.0

columba−1.0
compiere−330

derby−10.6.1.0
displaytag−1.2
drawswf−1.2.9

drjava−stable−20100913−r5387
emma−2.0.5312

findbugs−1.3.9
fitjava−1.1

fitlibraryforfitnesse−20100806
freecol−0.9.4

freecs−1.3.20100406
galleon−2.3.0

ganttproject−2.0.9
heritrix−1.14.4

hibernate−3.6.0−beta4
hsqldb−2.0.0
htmlunit−2.8

informa−0.7.0−alpha2
ireport−3.7.5

itext−5.0.3
jag−6.1

james−2.2.0
jasperreports−3.7.3

javacc−5.0
jchempaint−3.0.1

jedit−4.3.2
jena−2.6.3

jext−5.0
jFin_DateMath−R1.0.1

jfreechart−1.0.13
jgraph−5.13.0.0

jgraphpad−5.10.0.2
jgrapht−0.8.1

jgroups−2.10.0
jhotdraw−7.5.1

jmeter−2.4
jmoney−0.4.4

joggplayer−1.1.4s
jparse−0.96

jpf−1.0.2
jrat−0.6

jrefactory−2.9.19
jruby−1.5.2

jspwiki−2.8.4
jsXe−04_beta

jung−2.0.1
junit−4.8.2

log4j−1.2.16
lucene−2.9.3

marauroa−3.8.1
megamek−0.35.18

mvnforum−1.2.2−ga
nakedobjects−4.0.0

nekohtml−1.9.14
openjms−0.7.7−beta−1

oscache−2.4.1
picocontainer−2.10.2

pmd−4.2.5
poi−3.6

pooka−3.0−080505
proguard−4.5.1

quartz−1.8.3
quickserver−1.4.7

quilt−0.6−a−5
rssowl−2.0.5
sablecc−3.2

sandmark−3.4
squirrel_sql−3.1.2

sunflow−0.07.2
tomcat−7.0.2

trove−2.1.0
velocity−1.6.4

webmail−0.7.10
weka−3.7.2
xalan−2.7.1

xerces−2.10.0
xmojo−5.0.0

be
fo

re
af

te
r

Fi
gu

re
5.

9:
A

ve
ra

ge
Ta

ng
le

dn
es

s
(T

)o
fP

ro
gr

am
s

B
ef

or
e

an
d

A
fte

rR
ef

ac
to

rin
g

120

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

it is not possible to remove all types of dependencies automatically. However, there
are certain cases where it is possible to safely remove undesired dependencies. All the
code level changes performed by the plugin are recorded to be reviewed by a developer
of the program. The results indicate that automation of refactoring is possible when
all pre and postconditions are satisfied.

The experimental results presented in this chapter are not as good as for Chapter 4.
This is because the space of possible application of refactorings is much wider. In
this experiment, we tried to remove four types antipatterns by using a set of four
refactoring techniques. The results presented can be further improved by weakening
preconditions, such as following leaking references, and by strengthening the im-
plementation of the basic code level refactorings such as move refactoring. Further
postconditions can be added to improve the safety of refactorings. For example, the
successful execution of testcases can be added as a postcondition after each refactor-
ing. Similarly, standard design metrics can be used to check software quality after
refactoring. We suggest using this tool in conjunction with a code repository, such as
Subversion, in case the developer wants to rollback a particular refactoring after the
automated refactoring process is completed.

121

CHAPTER 5. APPLYING COMPOSITE REFACTORINGS

122

Chapter 6

Conclusions and Future Work

In this work, we have presented methods, tools and techniques providing a concrete
solution for restructuring critical dependencies in object-oriented systems. The major
contribution of our work is that it automatically improves the structure of Java pro-
grams by identifying and applying dependency-breaking architectural refactorings.
These refactorings remove software design problems represented as antipatterns in
programs. Our approach not only detects antipatterns, but can resolve them using
appropriate refactorings, thus providing a complete refactoring solution. In this chap-
ter we discuss the research questions and the limitations of our work. Here we also
provide an overview of the research contributions and directions for future work.

6.1 Research Questions

The thesis has investigated the following three questions:

1. Can model level dependency-breaking refactorings be automatically translated
into source code refactorings?

2. How can we define and evaluate constraints on refactorings to preserve the
correctness of the program being refactored?

3. To what extent can these dependency-breaking refactorings be automated?

123

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1.1 Can model level dependency-breaking refactorings be automatically
translated into source code refactorings?

The goal of the first research question was to determine whether the automation of
dependency-breaking refactorings is possible or not. To address this question, we
investigated different refactoring techniques. There are several techniques of break-
ing dependencies. We investigated the use of the following: introduction of service
locators, type generalisation, static members inlining, and move class. When these
techniques can be applied, automation is possible. However, these techniques cannot
always be applied. To refactor, the model of a program has to be built from its source
code and has to be reasoned about. This may fail in the following ways:

1. the models are so complex that reasoning is computationally too expensive. For
example, this occurs when we try to compute the used APIs recursively.

2. the models do not completely and correctly represent the semantics of the pro-
gram. For instance, this is the case when reflection and other late binding tech-
niques are used used in programs.

We have developed several algorithms for our study. Section 4.3 presents the algo-
rithm for the move class refactoring, where critical dependencies were identified on
the model level and then removed on the source code level. We have evaluated our
approach on 92 open source programs. The results indicate that the automation is
possible in many cases (see quantification in 1.1.3). Similarly, in section 5.3 the algo-
rithm for composite refactorings is presented, where all aforementioned refactoring
techniques are used to break dependencies between classes. The proof-of-concept
implementation of the algorithm was applied to the same dataset and it proved again
that the automation of architectural refactoring is possible to some extent.

6.1.2 How can we define and evaluate constraints on refactorings to pre-
serve the correctness of the program being refactored?

The next question is how to safeguard the investigated refactorings. We have chosen
pre and postconditions for this purpose. We have defined refactoring specific pre and
postconditions that ensured the safe execution of the refactoring. An important part
of refactoring is that it doesn’t change the behaviour of the program. Our refactoring
tool ensured that not only preconditions are checked, but postconditions are also
checked to ensure the behaviour preservation. Refactorings were implemented to run
as transactions. This enabled us to safely roll back refactorings when postconditions

124

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

failed. In section 4.4.2 a set of pre and postconditions related to the move class
refactoring are presented. Similarly, preconditions for other refactoring techniques are
presented in section 5.4.2.

6.1.3 To what extent can these dependency-breaking refactorings be auto-
mated?

We have evaluated our approach on a large set of open source programs to determine
the extent to which model to code refactorings can be automated. We have not inves-
tigated all dependencies, but only critical dependencies according to our definition.
Therefore, this question has been answered with respect to a particular model that is
used to select dependencies to be removed. The model we have used is based on the
edge-scoring algorithm (see Section 2.4). This allowed us to simulate the best case
scenario and to benchmark the refactorings against this. The simulation provided us
a lower-bound to be compared with the application of refactorings on the code level.

We have conducted several experiments to determine the difference between simula-
tion on the model level and application on the code level. The comparison between the
two scenarios is presented in section 4.6. This experiment was conducted to remove
circular dependencies between packages antipattern by using the move class refactor-
ing. The results of this experiment indicate that a significant fraction of dependencies
can be removed. In this case, 30% of antipattern instances were removed in 5 refactor-
ings on the model level, while it took 14 refactorings to remove the same number of
antipatterns on the code level.

Another experiment was conducted to remove four types of anitpatterns (Section
2.3) by using a combination of aforementioned refactoring techniques. The result of
simulation and application of refactorings is presented in section 5.5. To remove top
30% of antipattern instances, it took 5 refactorings on the model level, whereas it took
20 refactorings to remove the same number of instances on the code level. We believe
that this gap between actual refactorings and the lower-bound can be further narrowed
down by weakening preconditions and by adding new refactoring types for breaking
dependencies.

125

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.2 Threats to Validity

6.2.1 Dataset Selection

We have evaluated our approach on the Qualitus Corpus (ver. 20101126). This dataset
has a wide range of real-world programs. We chose this dataset because all programs
in this dataset are written in Java programming language and are readily available.
Java is one of the most popular object-oriented programming languages. It has been
widely used for academic studies. However, there are other software repositories and
datasets that have been used for empirical investigations (Pek and Lämmel, 2013).
For example, Software-artifact Infrastructure Repository (SIR) contains Java, C, C#,
and C++ software system along with testing data (Do et al., 2005). There are some
common Java programs in our dataset and SIR, such as ant, derby, jboss, jmeter, and
log4j. We do not expect a major difference in results for SIR repository (Java programs),
but it would be interesting to test our approach on other repositories and programs in
different programming languages.

6.2.2 Correctness of Refactored Programs

There exist several models or constraints against which the program correctness can be
verified. These constraints can be checked with the help of different tools. We discuss
three such models as follows:

1. Java Type System: The type system of a programming language defines rules,
which are used to enforce that a program is written correctly (Pierce, 2002).
In order to ensure the correctness of programs, types should be checked for
consistency with the help of a tool. In the Java type system, the Java specification
language imposes constraints, which are enforced by the Java compiler. This
process happens statically, i.e, during compile time.

2. JUnit Testing: Software testing is an activity to evaluate a program with respect
to its specifications (Beck, 2002). It is used to verify the correctness of programs
and uncover bugs. Test cases represent the expected behaviour of the program
from developers perspective. From the verification point of view, test cases can
be considered as constraints and a tool is required to check them. For example,
in Java programs JUnit test cases can be executed with a JUnit test runner.

3. Formal Models: Several formal models have been proposed to add semantic
specification directly to the programming language, usually following a variant

126

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

of the “design by contract” approach (Mitchell et al., 2002). One such formal
model to define the behavioural specification is the Java Modelling Language
(JML) (Burdy et al., 2003). In JML, behaviour specifications are added as com-
ments to the source code and can be verified with the aid of several existing tools
such as extended specification checker for Java (ESC/Java) (Flanagan et al., 2002).
Programs can be verified against JML specifications using static and behavioural
techniques.

In the context of these verification methods, we cannot completely asses the correctness
of programs due to lack of formal models and tests for all programs in the dataset.
None of the programs had JML style annotations. Test cases were available for 28 pro-
grams. We have manually tested 5 programs before and after refactoring because these
programs have the highest test coverage among other programs. The test coverage for
the selected programs ranged between 45 - 85%.

On the other hand, the only model we always have is the type system usage by the
program, verified by the Java compiler. The type system checking cannot always prove
correctness. There can be situations where our models do not correctly represent the
code. For example, the move class refactoring requires that all references to the move
class must be updated. In some cases, class names may be hard-coded in external
configuration files and then loaded via reflection at runtime. In case of the move class
refactoring, the refactored program will compile successfully, however we may get a
runtime exception if the class name in the external configuration file is not updated.
This may influence the outcome in a way that some of the refactorings could not be
successful due to the postcondition failure. These cases require different models to
check postconditions such as behavioural analysis using test cases or static analysis
that includes these configuration files. For instance, using framework specific profiles
that include standard configuration files like J2EE deployment descriptors.

6.2.3 Developers Feedback

There are other models to verify the correctness of programs that are not technical but
rather subjective. For example, organisations develop coding styles for their projects.
It is possible that refactorings may violate those guidelines. Similarly, there are other
quality attributes and metrics that are specifically designed and developed for projects.
The only way to find out about those is the developer feedback. In our study, we have
focused on a large number of open source systems that were produced by many
developers around the globe. We didn’t involve developers in the process because it
is a time consuming activity and the response to surveys and questionnaires is usually

127

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

very low. Instead, we focused on the improvement of fitness functions as a criterion to
the improved quality. However, it would be interesting to involve developers in the
process and get their feedback on the suggested refactorings. This would provide us
with another notion of correctness of refactored programs, similar to section 6.2.2.

6.2.4 Influence of Tools

Eclipse Juno 4.2 has been used for the proof-of-concept implementation. We have used
several Eclipse APIs to develop refactorings, such as Java Development Tool (JDT)
and Refactoring Language Toolkit (LTK). We also used some of the standard Eclipse
refactorings including move refactoring, introduce factory refactoring and generalize
declared type refactoring. We chose Eclipse because it has well documented APIs and
a very active community. However, some of the refactorings we used have known
bugs and limitations, which are discussed in section 4.6.11. There are several other
tools that provide Abstract Syntax Tree (AST) APIs to manipulate the source code of
programs. These tools include IntelliJ IDEA, NetBeans, and RECODER1. We believe
that the implementation tools may have had some influence on the outcome of results.
We expect the impact to be minor since other tools might have their own flaws, which
are unknown to us.

6.2.5 Java Specific Refactorings

In this research, we have investigated the automation of architectural refactorings of
Java programs. Our approach is heavily based on static analysis, and therefore depends
on static typing. We expect that these results can be generalised to other languages
with a similar type system. It is not clear how it can be used with dynamically typed
languages, such as Smalltalk. Further investigation is required in the area of language
independent refactorings. For example, Tichelaar et al. (2000) developed a language-
independent meta-model called FAMIX, which represents programs written in Java,
Smalltalk, and other object-oriented languages on an abstract level. This representa-
tion is based on an entity relationship model. The core of this model has three main
entities: Class, Method, and Attribute and relationships between them. The FAMIX
model is implemented through Moose refactoring engine, which contains several lan-
guage independent primitive refactorings including move and rename refactorings.
With the help of such tools, it is possible to write language-independent refactorings,
such as move classes and move methods to remove some of the antipatterns discussed
in this work. The other types of refactorings such as type generalisation and service

1http://sourceforge.net/projects/recoder/

128

http://sourceforge.net/projects/recoder/

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

locators may not be required in dynamically typed languages because these refactor-
ings try to resolve problems created due to static typing constraints. This implies that
certain architectural antipatterns disappear from programs. For example, Smalltalk
doesn’t support multiple inheritance through interfaces. Therefore, the degenerated
inheritance antipattern would not be present in programs written in this language.

6.2.6 Scalability

Since we apply refactorings on a large set of programs, scalability becomes a big
challenge when dealing with large programs. For example, keeping the AST of all
classes of a program in the memory is a computationally intensive task and may cause
heap problems. To deal with that problem, we loaded only the ASTs of required classes
(source and target classes of a dependency) in a program. The scalability issues may
arise if we weaken our preconditions. For example, if we allow type generalisation
refactoring to follow leaking references (Section 5.4.2.1), ASTs of referenced classes
must be loaded into the memory recursively. However, this may influence the results
so that more type generalisation refactorings might be successful.

6.3 Research Contributions

The thesis makes three contributions. First, it demonstrates with an empirical study,
using a large corpus of real-world programs that certain architectural refactorings can
be safely automated to some extent. To our knowledge, this is a unique study where
the source code of such a large number of programs was refactored automatically.

Second, several novel algorithms have been developed that automatically translate
the model refactorings to code refactorings. The existing approaches identified refac-
torings on the model level while our approach provides a complete solution, i.e.,
detecting critical dependencies on the model level, selecting appropriate refactorings,
and applying refactorings safely on the source code level.

Third, we have implemented our algorithms as Eclipse plugins. We have designed
our refactoring framework to allow the execution of composite refactorings, whereas
the existing tools do not allow the execution of composite refactorings. The composite
refactoring is a combination of several primitive refactorings. Due to the complexity
of code, sometimes we need several refactorings to break a dependency from source to
target. We have developed a transactional mechanism for refactorings. This allowed
us to roll back a composite refactoring in the event of postcondition failure. Moreover,

129

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

our plugins perform the complete refactoring cycle with a push of a button. All the
refactoring related information is recorded for the review purpose. In addition, the
plugin implementation can analyse and refactor programs in a batch-mode.

6.4 Future Work

Our research is an initial step towards the automation of architectural refactorings. This
is a complex task, which requires further research to explore the benefits of automation.
The current work comprises of a particular set of antipatterns that can be extended to
include project specific antipatterns or any other design violations. Similarly, we have
a specific number of refactoring techniques to break dependencies between classes.
Other refactoring techniques such as the introduction of dependency injection can be
added to the current set of refactorings to narrow down the gap between refactoring
simulation and refactoring application.

In addition, the results can be improved by the development of robust primitive code
level refactorings. Our architectural refactoring framework is built on the standard
code level refactorings. For composite refactorings to be successful, it is important
to have robust and safe primitive refactorings. For example, in section 4.6.11, several
limitations of the move refactoring have been described, which prevent the successful
execution of the relevant refactoring.

Further improvements can be made in the area of pre and postconditions for refac-
torings. We had several relatively strong preconditions, which can be weakened to
achieve better success rates. For example, while performing type generalisation refac-
toring, we didn’t generalise a variable type when it was passed to another class via a
method invocation (see Section 5.4.2.1). This can be allowed by recursively following
the leaked references. Similarly, a move refactoring was not performed where the
change visibility refactoring was required.

Moreover, refactoring postconditions had basic safeguard conditions, i.e., after a refac-
toring, the instance count metric should not increase and the program compilation
should succeed. Although, we manually executed test cases of a few programs to
check the correctness of the program before and after refactoring, it is also important
to check testcases and other design quality metrics after each refactoring. Postcondi-
tions can be improved by adding the successful execution of build script after each
refactoring. This would allow the refactoring tool to check several postconditions such
as successful compilation, test cases, coupling and cohesion metrics and so on.

130

Bibliography

Abdeen, H., Ducasse, S., Pollet, D., and Alloui, I. (2010). “Package Fingerprints: A
visual summary of package interface usage.” Inf. Softw. Technol., 52: 1312–1330.

Abdeen, H., Ducasse, S., Sahraoui, H. A., and Alloui, I. (2009). “Automatic Package
Coupling and Cycle Minimization.” In “WCRE’09,” pages 103–112.

Anson, M., Fabozzi, F., and Jones, F. (2010). The Handbook of Traditional and Alternative
Investment Vehicles: Investment Characteristics and Strategies. Frank J. Fabozzi Series.
Wiley. Retrieved from http://books.google.co.nz/books?id=LKj39XK-ufsC.

Bach, M., Forster, F., and Steimann, F. (2007). “Declared Type Generalization Checker:
An Eclipse Plug-In for Systematic Programming with More General Types.” In M. B.
Dwyer and A. Lopes, editors, “FASE 2007,” volume 4422 of LNCS, pages 117–120.
Springer.

Bajracharya, S., Ngo, T., Linstead, E., Rigor, P., Dou, Y., Baldi, P., and Lopes, C.
(2006). “Sourcerer: A search engine for open source code supporting structure-based
search.” In “In Proc. Intl Conf. Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA06,” pages 25–26.

Bansiya, J. and Davis, C. G. (2002). “A Hierarchical Model for Object-Oriented Design
Quality Assessment.” IEEE Trans. Softw. Eng., 28: 4–17.

Beck (2002). Test Driven Development: By Example. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA.

Ben Asher, Y., Gal, T., Haber, G., and Zalmanovici, M. (2012). “Refactoring techniques
for aggressive object inlining in Java applications.” Automated Software Engineering,
19: 97–136. doi:10.1007/s10515-011-0096-x.

Beyer, D. and Lewerentz, C. (2003). “CrocoPat: A Tool for Efficient Pattern Recognition
in Large Object-Oriented Programs.” Technical report, -.

131

http://books.google.co.nz/books?id=LKj39XK-ufsC

BIBLIOGRAPHY

Bischofberger, W. R., Khl, J., and Lffler, S. (2004). “Sotograph - A Pragmatic Approach
to Source Code Architecture Conformance Checking.” In “EWSA,” volume 3047 of
LNCS, pages 1–9. Springer.

Blewitt, A. (2009). “Modular Java: What Is It?” Retrieved from http://www.infoq.
com/articles/modular-java-what-is-it.

Brin, S. and Page, L. (1998). “The anatomy of a large-scale hypertextual Web search
engine.” Comput. Netw. ISDN Syst., 30(1-7): 107–117.

Brooks, F. P., Jr. (1987). “No Silver Bullet Essence and Accidents of Software Engineer-
ing.” Computer, 20(4): 10–19. doi:10.1109/MC.1987.1663532.

Brown, W. J., Malveau, R. C., McCormick, H. W., III, and Mowbray, T. J. (1998).
AntiPatterns: refactoring software, architectures, and projects in crisis. John Wiley &
Sons, Inc., New York, NY, USA.

Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G., Leino, K., and
Poll, E. (2003). “An overview of JML tools and applications.” Retrieved from
citeseer.ist.psu.edu/burdy03overview.html.

Burn, O. (2008). “Checkstyle.” Retrieved from http://checkstyle.sourceforge.
net/.

Clark, M. (2003). “JDepend Dependency Analyser.” Retrieved from http://

clarkware.com/software/JDepend.html.

Coleman, D., Ash, D., Lowther, B., and Oman, P. (1994). “Using Metrics to Evaluate
Software System Maintainability.” Computer, 27(8): 44–49. doi:10.1109/2.303623.

Copeland, T. (2005). PMD Applied. Centennial Books.

Czibula, I. and Serban, G. (2007). “Hierarchical Clustering for Software Systems
Restructuring.” INFOCOMP, Journal of Computer Science, 6(4): 43 – 51.

Da Vinci Machine (2008). “the Da Vinci Machine Project Homepage.” Retrieved from
http://openjdk.java.net/projects/mlvm/.

Demeyer, S., Ducasse, S., and Nierstrasz, O. (2009). Object-Oriented Reengineering
Patterns. Square Bracket Associates.

Dietrich, J. (2012). “Upload your program, share your model.” In “Proceed-
ings of the 3rd annual conference on Systems, programming, and applications:
software for humanity,” SPLASH ’12, pages 21–22. ACM, New York, NY, USA.
doi:10.1145/2384716.2384727.

132

http://www.infoq.com/articles/modular-java-what-is-it
http://www.infoq.com/articles/modular-java-what-is-it
citeseer.ist.psu.edu/burdy03overview.html
http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/
http://clarkware.com/software/JDepend.html
http://clarkware.com/software/JDepend.html
http://openjdk.java.net/projects/mlvm/

BIBLIOGRAPHY

Dietrich, J. (2013). “Orthogonality by example: The principles of modular and main-
tainable design in Log4j.” Retrieved from http://www.javaworld.com/javaworld/
jw-05-2013/130501-jtip-orthogonality-by-example.html.

Dietrich, J. and McCartin, C. (2012). “Scalable Motif Detection and Aggregation.” In
“Australasian Database Conference (ADC 2012),” volume 124 of CRPIT, pages 31–
40. ACS, Melbourne, Australia. Retrieved from http://crpit.com/confpapers/
CRPITV124Dietrich.pdf.

Dietrich, J., McCartin, C., Tempero, E., and Shah, S. M. A. (2010). “Barriers to mod-
ularity: an empirical study to assess the potential for modularisation of java pro-
grams.” In “Proceedings of the 6th international conference on Quality of Software
Architectures: research into Practice - Reality and Gaps,” QoSA’10, pages 135–150.
Springer-Verlag, Berlin, Heidelberg.

Dietrich, J., McCartin, C., Tempero, E., and Shah, S. M. A. (2012). “On the existence of
high-impact refactoring opportunities in programs.” In “Proceedings of the Thirty-
fifth Australasian Computer Science Conference - Volume 122,” ACSC ’12, pages 37–
48. Australian Computer Society, Inc., Darlinghurst, Australia, Australia. Retrieved
from http://dl.acm.org/citation.cfm?id=2483654.2483659.

Dietrich, J., Yakovlev, V., McCartin, C., Jenson, G., and Duchrow, M. (2008). “Clus-
ter analysis of Java dependency graphs.” In R. Koschke, C. D. Hundhausen, and
A. Telea, editors, “Proceedings of the ACM 2008 Symposium on Software Visualiza-
tion, Ammersee, Germany, September 16-17, 2008,” pages 91–94. ACM.

Do, H., Elbaum, S., and Rothermel, G. (2005). “Supporting Controlled Experimen-
tation with Testing Techniques: An Infrastructure and its Potential Impact.” In “-,”
volume 10, pages 405–435. Kluwer Academic Publishers, Hingham, MA, USA.

Dolby, J. (1997). “Automatic inline allocation of objects.” In “Proceedings of the ACM
SIGPLAN 1997 conference on PLDI’97,” PLDI ’97, pages 7–17. ACM, New York, NY,
USA.

Dolby, J. and Chien, A. A. (2000). “An Automatic Object Inlining Optimization and
its Evaluation.” In “In PLDI 2000,” pages 345–357. ACM Press.

Eades, P., Lin, X., and Smyth, W. (1993). “A fast and effective heuristic for the feedback
arc set problem.” Information Processing Letters, 47(6): 319 – 323.

Falleri, J.-R., Denier, S., Laval, J., Vismara, P., and Ducasse, S. (2011). “Efficient
Retrieval and Ranking of Undesired Package Cycles in Large Software Systems.” In
“TOOLS,” Zurich, Suisse.

133

http://www.javaworld.com/javaworld/jw-05-2013/130501-jtip-orthogonality-by-example.html
http://www.javaworld.com/javaworld/jw-05-2013/130501-jtip-orthogonality-by-example.html
http://crpit.com/confpapers/CRPITV124Dietrich.pdf
http://crpit.com/confpapers/CRPITV124Dietrich.pdf
http://dl.acm.org/citation.cfm?id=2483654.2483659

BIBLIOGRAPHY

Feathers, M. (2004). Working Effectively with Legacy Code. Prentice Hall PTR, Upper
Saddle River, NJ, USA.

Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson, G., Saxe, J. B., and Stata, R.
(2002). “Extended static checking for Java.” In “Proceedings of the ACM SIGPLAN
2002 Conference on Programming language design and implementation,” PLDI ’02,
pages 234–245. ACM, New York, NY, USA. doi:10.1145/512529.512558.

Foote, B. and Yoder, J. (1997). “Big Ball of Mud.” In “Pattern Languages of Program
Design,” pages 653–692. Addison-Wesley.

Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston, MA, USA.

Fowler, M. (2001). “Reducing Coupling.” Retrieved from http://martinfowler.com/
ieeeSoftware/coupling.pdf.

Fowler, M. (2004). “Inversion of Control Containers and the Dependency Injection
pattern.” Retrieved from http://martinfowler.com/articles/injection.html#
InversionOfControl.

Freeman, L. C. (1977). “A set of measures of centrality based on betweenness.” So-
ciometry, 40(1): 35–41.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Boston, MA.

Girvan, M. and Newman, M. E. J. (2002). “Community structure in social and biolog-
ical networks.” Proceedings of the National Academy of Sciences, 99(12): 7821–7826.

Gossner, J., Mayer, P., and Steimann, F. (2004). “Interface utilization in the Java Devel-
opment Kit.” In “Proceedings of the 2004 ACM symposium on Applied computing,”
SAC ’04, pages 1310–1315. ACM, New York, NY, USA.

Grady, R. (1994). “Successfully applying software metrics.” Computer, 27(9): 18 –25.

Grothoff, C., Palsberg, J., and Vitek, J. (2007). “Encapsulating objects with confined
types.” ACM Trans. Program. Lang. Syst., 29(6). doi:10.1145/1286821.1286823.

Hammant, P. and Hellesy, A. (2003). “Pico Container.” Retrieved from http://www.
picocontainer.org/.

Harmony (2010). “Apache Harmony.” Retrieved from http://harmony.apache.org/.

Hautus, E. (2002). “Improving java software through package structure analysis.” In
“IASTED International Conference Software Engineering and Applications,” .

134

http://martinfowler.com/ieeeSoftware/coupling.pdf
http://martinfowler.com/ieeeSoftware/coupling.pdf
http://martinfowler.com/articles/injection.html#InversionOfControl
http://martinfowler.com/articles/injection.html#InversionOfControl
http://www.picocontainer.org/
http://www.picocontainer.org/
http://harmony.apache.org/

BIBLIOGRAPHY

Hovemeyer, D. and Pugh, W. (2004). “Finding bugs is easy.” In “OOPSLA ’04:
Companion to the 19th annual ACM SIGPLAN conference on Object-oriented pro-
gramming systems, languages, and applications,” pages 132–136. ACM, New York,
NY, USA.

Johnson, R., Hoeller, J., Arendsen, A., Risberg, T., and Kopylenko, D. (2005). Pro-
fessional Java Development with the Spring Framework. Wrox Press Ltd., Birmingham,
UK, UK.

Knoernschild, K. (2012). Java Application Architecture: Modularity Patterns With Exam-
ples Using Osgi. Agile Software Development Series. Prentice Hall. Retrieved from
http://books.google.co.nz/books?id=iOtwFoU1Dt4C.

Koenig, A. (1998). “The patterns handbooks.” chapter Patterns and antipatterns,
pages 383–389. Cambridge University Press, New York, NY, USA. Retrieved from
http://dl.acm.org/citation.cfm?id=301570.301985.

Lakos, J. (1996). Large-scale C++ software design. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA.

Laval, J., Denier, S., Ducasse, S., and Bergel, A. (2009). “Identifying Cycle Causes with
Enriched Dependency Structural Matrix.” In “Reverse Engineering, 2009. WCRE ’09.
16th Working Conference on,” pages 113 –122.

Lehman, M. (1979). “On understanding laws, evolution, and conservation in the large-
program life cycle.” Journal of Systems and Software, 1(0): 213 – 221. doi:10.1016/0164-
1212(79)90022-0.

Lethbridge, T. and Laganiere, R. (2002). Object-Oriented Software Engineering: Practical
Software Development using UML and Java. McGraw-Hill, Inc., New York, NY, USA,
1 edition.

Lippert, M. and Roock, S. (2006). Refactoring in Large Software Projects: Performing
Complex Restructurings Successfully. Wiley.

Madadhain, J., Fisher, D., Smyth, P., White, S., and Boey, Y. (2005). “Analysis and
visualization of network data using JUNG.” Journal of Statistical Software, 10: 1–35.

Mancoridis, S., Mitchell, B., Rorres, C., Chen, Y., and Gansner, E. (1998). “Using
automatic clustering to produce high-level system organizations of source code.” In
“Program Comprehension, 1998. IWPC ’98. Proceedings., 6th International Work-
shop on,” pages 45 –52.

135

http://books.google.co.nz/books?id=iOtwFoU1Dt4C
http://dl.acm.org/citation.cfm?id=301570.301985

BIBLIOGRAPHY

Maqbool, O. and Babri, H. (2007). “Hierarchical Clustering for Software Architecture
Recovery.” Software Engineering, IEEE Transactions on, 33(11): 759 –780.

Martin, R. (1994). “Object oriented design quality metrics: An analysis of depen-
dencies.” Report on object analysis and design. Retrieved from http://www.

objectmentor.com/resources/articles/oodmetrc.pdf.

Martin, R. (2000). “Design Principles and Design Patterns.” Retrieved from http:
//www.objectmentor.com.

Martin, R. C. (2003). Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall PTR, Upper Saddle River, NJ, USA.

Matuszak, A. (2010). “Differences between Arithmetic, Geometric, and Har-
monic Means.” Retrieved from http://economistatlarge.com/finance/

applied-finance/differences-arithmetic-geometric-harmonic-means.

Mayer, P. (2003). “Analyzing the use of interfaces in large OO projects.” In “Companion
of the 18th annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications,” OOPSLA ’03, pages 382–383. ACM, New
York, NY, USA.

Mayer, P., Meissner, A., and Steimann, F. (2007). “A visual interface for type-related
refactorings.” In “WRT’07,” pages 5–6.

Melton, H. and Tempero, E. (2006). “Identifying refactoring opportunities by identify-
ing dependency cycles.” In “Proceedings of the 29th Australasian Computer Science
Conference - Volume 48,” ACSC ’06, pages 35–41. Australian Computer Society, Inc.,
Darlinghurst, Australia, Australia.

Melton, H. and Tempero, E. (2007a). “An empirical study of cycles among classes in
Java.” Empirical Softw. Engg., 12: 389–415.

Melton, H. and Tempero, E. D. (2007b). “An empirical study of cycles among classes
in Java.” Empirical Software Engineering, 12(4): 389–415.

Miller, J. C. and Maloney, C. J. (1963). “Systematic mistake analysis of digital computer
programs.” Commun. ACM, 6(2): 58–63. doi:10.1145/366246.366248.

Mitchell, B. and Mancoridis, S. (2006). “On the automatic modularization of software
systems using the Bunch tool.” Software Engineering, IEEE Transactions on, 32(3): 193
– 208.

Mitchell, R., McKim, J., and Meyer, B. (2002). Design by contract, by example. Addison
Wesley Longman Publishing Co., Inc., Redwood City, CA, USA.

136

http://www.objectmentor.com/resources/articles/oodmetrc.pdf
http://www.objectmentor.com/resources/articles/oodmetrc.pdf
http://www.objectmentor.com
http://www.objectmentor.com
http://economistatlarge.com/finance/applied-finance/differences-arithmetic-geometric-harmonic-means
http://economistatlarge.com/finance/applied-finance/differences-arithmetic-geometric-harmonic-means

BIBLIOGRAPHY

Muchnick, S. S. (1997). Advanced compiler design and implementation. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

MVEL (2009). “MVEL Expression Language.” Retrieved from http://mvel.

codehaus.org/.

O’Keeffe, M. and O’Cinneide, M. (2006). “Search-Based Software Maintenance.”
Software Maintenance and Reengineering, European Conference on, 0: 249–260.

Opdyke, W. (1992). Refactoring object-oriented frameworks. Ph.D. thesis, University of
Illinois at Urbana-Champaign, USA.

Opdyke, W. F. and Johnson, R. E. (1993). “Creating abstract superclasses by refactor-
ing.” In “Proceedings of the 1993 ACM conference on Computer science,” CSC ’93,
pages 66–73. ACM, New York, NY, USA.

Osherove, R. (2009). The Art of Unit Testing: With Examples in .Net. Manning Publica-
tions Co., Greenwich, CT, USA, 1st edition.

Parnas, D. L. (1972). “On the criteria to be used in decomposing systems into modules.”
Commun. ACM, 15(12): 1053–1058.

Pek, E. and Lämmel, R. (2013). “A Literature Survey on Empirical Software Engineer-
ing Research.”

Pierce, B. C. (2002). Types and programming languages. MIT Press, Cambridge, MA,
USA.

Project Jigsaw (2008). “The Project Jigsaw Homepage.” Retrieved from http://

openjdk.java.net/projects/jigsaw/.

RefactoringCatalog (1999). “Move Class Refactoring.” Retrieved from http://

refactoring.com/catalog/index.html.

Reinhold, M. (2012). “Project Jigsaw: Late for the train: The Q&A.” Retrieved from
http://mreinhold.org/blog/late-for-the-train-qa.

Research and Markets (2011). “Software: Global Industry Guide (Abstract).” Re-
trieved from http://www.researchandmarkets.com/reports/2064382/software_
global_industry_guide.

ReStructure101 (2008). “ReStructure101, Headway Software Technologies.” Retrieved
from http://www.headwaysoftware.com/products/?code=Restructure101.

Riel, A. J. (1996). Object-Oriented Design Heuristics. Addison-Wesley, Boston, MA, USA.

137

http://mvel.codehaus.org/
http://mvel.codehaus.org/
http://openjdk.java.net/projects/jigsaw/
http://openjdk.java.net/projects/jigsaw/
http://refactoring.com/catalog/index.html
http://refactoring.com/catalog/index.html
http://mreinhold.org/blog/late-for-the-train-qa
http://www.researchandmarkets.com/reports/2064382/software_global_industry_guide
http://www.researchandmarkets.com/reports/2064382/software_global_industry_guide
http://www.headwaysoftware.com/products/?code=Restructure101

BIBLIOGRAPHY

Sakkinen, M. (1989). “Disciplined Inheritance.” ECOOP’89: Proceedings of the 1989
European Conference on Object-Oriented Programming, -: 39–56.

Sangal, N., Jordan, E., Sinha, V., and Jackson, D. (2005). “Using dependency models
to manage software architecture.” In “OOPSLA ’05,” pages 164–165. ACM, New
York, NY, USA.

Schach, S. R. (1996). Software Engineering with Java. McGraw-Hill Professional.

Seng, O., Bauer, M., Biehl, M., and Pache, G. (2005). “Search-based improvement of
subsystem decompositions.” In “Proceedings of the 2005 conference on Genetic and
evolutionary computation,” GECCO ’05, pages 1045–1051. ACM, New York, NY,
USA.

Shah, S. M. A., Dietrich, J., and McCartin, C. (2012). “On the automated mod-
ularisation of java programs using service locators.” In “Proceedings of the
11th international conference on Software Composition,” SC’12, pages 132–147.
Springer-Verlag, Berlin, Heidelberg. Retrieved from http://dx.doi.org/10.1007/
978-3-642-30564-1_9.

Stal, M. (2008). “Refactoring of Software Architecture.” OOPSLA 2008. Retrieved
from http://www.oopsla.org/oopsla2008/tutorials.html.

Steimann, F., Mayer, P., and MeiBner, A. (2006). “Decoupling classes with inferred
interfaces.” In “Proceedings of the 2006 ACM symposium on Applied computing,”
SAC ’06, pages 1404–1408. ACM, New York, NY, USA.

Steimann, F., Siberski, W., and Kuhne, T. (2003). “Towards the systematic use of
interfaces in JAVA programming.” In “Proceedings of the 2nd international con-
ference on Principles and practice of programming in Java,” PPPJ ’03, pages 13–17.
Computer Science Press, Inc., New York, NY, USA.

Stevens, W., Myers, G., and Constantine, L. (1979). Structured design, pages 205–232.
Yourdon Press, Upper Saddle River, NJ, USA.

Streckenbach, M. and Snelting, G. (2004). “Refactoring class hierarchies with KABA.”
In “Proceedings of the 19th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,” OOPSLA ’04, pages 315–330.
ACM, New York, NY, USA.

Taube-Schock, C., Walker, R. J., and Witten, I. H. (2011). “Can We Avoid High
Coupling?” In “ECOOP,” pages 204–228.

138

http://dx.doi.org/10.1007/978-3-642-30564-1_9
http://dx.doi.org/10.1007/978-3-642-30564-1_9
http://www.oopsla.org/oopsla2008/tutorials.html

BIBLIOGRAPHY

Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H., and
Noble, J. (2010). “The Qualitas Corpus: A Curated Collection of Java Code for
Empirical Studies.” Proc. APSEC, -: –.

Tempero, E. D. (2008). “An Empirical Study of Unused Design Decisions in Open
Source Java Software.” In “APSEC,” pages 33–40. IEEE.

Tessier, J. (2010). “Dependency Finder.” Retrieved from http://depfind.

sourceforge.net/.

Tichelaar, S., Ducasse, S., Demeyer, S., and Nierstrasz, O. (2000). “A meta-model
for language-independent refactoring.” In “Principles of Software Evolution, 2000.
Proceedings. International Symposium on,” pages 154–164.

Tip, F., Kiezun, A., and Bäumer, D. (2003). “Refactoring for generalization using type
constraints.” In “Proceedings of the 18th annual ACM SIGPLAN conference on
Object-oriented programing, systems, languages, and applications,” OOPSLA ’03,
pages 13–26. ACM, New York, NY, USA.

Tsantalis, N. (2007). “Bad Smell Identification for Software Refactoring.” Retrieved
from http://www.jdeodorant.org.

Tsantalis, N. and Chatzigeorgiou, A. (2009). “Identification of Move Method Refac-
toring Opportunities.” IEEE Transactions on Software Engineering, 99(RapidPosts):
347–367.

Vanbrabant, R. (2008). Google Guice: Agile Lightweight Dependency Injection Framework
(Firstpress). APress.

Walls, C. (2009). Modular Java: Creating Flexible Applications with Osgi and Spring.
Pragmatic Bookshelf.

Yourdon, E. (1992). Decline and fall of the American programmer. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA.

Zilberstein, S. (1996). “Using Anytime Algorithms in Intelligent Systems.” AI Mag-
azine, 17(3): 73–83. Retrieved from http://rbr.cs.umass.edu/shlomo/papers/
Zaimag96.html.

139

http://depfind.sourceforge.net/
http://depfind.sourceforge.net/
http://www.jdeodorant.org
http://rbr.cs.umass.edu/shlomo/papers/Zaimag96.html
http://rbr.cs.umass.edu/shlomo/papers/Zaimag96.html

BIBLIOGRAPHY

140

Appendix A

Declaration of Previous Work

Parts of this thesis are based on our previously published work as follows:

• Dietrich, J., McCartin, C., Tempero, E., and Shah, S. M. A. (2010). “Barriers
to modularity: an empirical study to assess the potential for modularisation of
Java programs.” In “Proceedings of the 6th international conference on Quality
of Software Architectures: research into Practice - Reality and Gaps,” QoSA ‘10,
pages 135-150. Springer-Verlag, Berlin, Heidelberg.

• Dietrich, J., McCartin, C., Tempero, E., and Shah, S. M. A. (2012). “On the exis-
tence of high-impact refactoring opportunities in programs.” In “Proceedings of
the Thirty fifth Australasian Computer Science Conference - Volume 122,” ACSC
‘12, pages 37-48. Australian Computer Society, Inc., Darlinghurst, Australia.

• Shah, S. M. A., Dietrich, J., and McCartin, C. (2012). “Making smart moves
to untangle programs.” In “Proceedings of the 2012 16th European Conference
on Software Maintenance and Reengineering,” CSMR ‘12, pages 359-364. IEEE
Computer Society, Washington, DC, USA.

• Shah, S. M. A., Dietrich, J., and McCartin, C. (2012). “On the automated
modularisation of Java programs using service locators.” In “Proceedings of the
11th international conference on Software Composition,” SC ‘12, pages 132-147.
Springer-Verlag, Berlin, Heidelberg.

• Shah, S. M. A., Dietrich, J., and McCartin, C. (2013). “On the automation of
dependency-breaking refactorings in Java.” In “Proceedings of the 29th IEEE
International Conference on Software Maintenance,” ICSM ‘13, pages 160-169.
IEEE Computer Society, Washington, DC, USA.

141

APPENDIX A. DECLARATION OF PREVIOUS WORK

142

Appendix B

CARE Plugin: Installation and
Instructions

B.1 Installation

The CARE plugin can be installed via Eclipse IDE using Help→ Install New Software
option, as shown in figure B.1. The following update site can be used to install the
plugin for Eclipse 4.0.x to Eclipse 4.2.x.

CARE update site: http://care.googlecode.com/svn/trunk/care-update-site/

B.1.1 Configuration

Some large projects may cause Heap size OutOfMemoryError. In order to avoid the
Heap size problem, update the eclipse.ini file with the following parameters:

-vmargs

-Xms512m

-Xmx2048m

-XX:PermSize=256m

The eclipse.ini file on Mac OS X can be accessed by right-clicking the Eclipse appli-
cation icon and then clicking Show Package Contents. This will open a new Finder
window with the Contents folder. In this folder, open MacOS folder. The eclipse.ini
file can be found here.

143

http://care.googlecode.com/svn/trunk/care-update-site/

APPENDIX B. CARE PLUGIN: INSTALLATION AND INSTRUCTIONS

B.2 Usage Instructions

B.2.1 User Interface

Once the plugin is installed, it can be accessed through CARE menu (added to the
Eclipse workbench) where we can select different refactoring options. Currently, pro-
grams can be restructured in two different ways.

1. Restructure using Move Class Refactoring.

2. Restructure using Composite Refactoring.

The composite refactoring technique comprises of four types of refactorings including
move class, type generalization, introduction of service locators, and static members
inlining.

The user interface of the CARE plugin is shown in figure B.2. In order to start the refac-
toring process, programs must be loaded into the Eclipse workspace. The refactoring
process of a single project can be started by clicking on the left button of the selection at
the top right hand side of the refactoring view panel, as shown in the figure. This will
open a dialog box. Next, we can select a project from the dialog box and the refactoring
process will begin. To analyse all opened projects in the workspace, click on the right
button (Analyse All Projects).

B.2.2 Preferences

Some options can be configured in the CARE plugin. For example, we can edit the
maximum number of refactoring steps for a program. The default value is 10. In a
similar way, we can pre load certain class names that should not be moved during the
automated refactoring process, as shown in figure B.3.

B.2.3 Importing Projects

As described in section 2.6, we had manually configured programs in the Qualitas Cor-
pus as Eclipse projects. These projects can be downloaded from the project website1.
All programs are configured to the folder structure as shown in table B.1.

Table B.2 shows two files that can be download from the project website. These are zip
files and contain pre-configured Eclipse projects.

1https://code.google.com/p/care/wiki/Documentation

144

https://code.google.com/p/care/wiki/Documentation

APPENDIX B. CARE PLUGIN: INSTALLATION AND INSTRUCTIONS

Folder Description
src Source code contained in .java files goes to this folder.
bin The compiled output files (.class) are placed here.
lib This folder contains external libraries required by a project. Note that

external libraries are excluded from the refactoring process.
tests Source code of test cases is placed under this folder, if provided.

Table B.1: Eclipse Project Structure

File Name No. of Programs File Size
sample-programs.zip 5 15 MB
corpus-20101126r.zip 92 1 GB

Table B.2: Dataset Files

After downloading the dataset file, use the File → Import option in the Eclipse IDE
to load these programs in a workspace. Before importing projects, the following
requirements must be fulfilled:

1. JDK 1.6.x must be installed on the system because all projects were configured
and compiled using this JDK. Choosing a different JDK version (1.5 or 1.7) may
require a clean build for all projects.

2. Under Eclipse Preferences, click on Java→Compiler→ Errors/Warnings. In the
section Deprecated and Restricted APIs, choose Ignore for Forbidden Refer-
ence (access rule). For example, in JMoney-0.4.4, the class net.sf.jmoney.gui.-
DateComboBoxusescom.sun.java.swing.plaf.motif.WindowsComboBoxUI. The
WindowsComboBoxUI class is part of classes.jar (JDK on MacOS), whose access
is restricted by default. Therefore, a compilation error is generated. Choosing
Ignore for Forbidden Reference would resolve the problem.

Using the File→ Import option, projects can be loaded into the workspace, as shown
in the figures B.4 and B.5. After the import process if some projects show compilation
errors, select those projects and clean them using the Project→ Clean option.

B.2.4 Refactoring Output

After the refactoring process is completed, we can view the refactoring related in-
formation in the output folder of each project. The output is generated as comma
separated (CSV) files. The description of these files for the move class refactoring is
shown in table B.3.

145

APPENDIX B. CARE PLUGIN: INSTALLATION AND INSTRUCTIONS

File name Description
instances Keeps track of antipattern instance count after each refactoring.
metrics All other metrics are stored in this file, such as strongly connected

components metrics.
g2c-success Graph-to-Code success rate. This data is used to compute the

refactorability metric.
constraints Information related to pre and postconditions is stored here.
details This file contains detailed information about the removed depen-

dency, such as how many patterns were removed.
error-edge Due to limitations of Eclipse refactorings, some refactorings may

not be rolled back properly, thus resulting in the program com-
pilation failure. This file contains the name of class that created
the problem. We can put this class name in the list of black-
listed classes in Eclipse Preferences. For example, we found
that in JHotdraw-7.5.1, when the class org.jhotdraw.draw.io.-
InputFormat is attempted to move into a different package, this
results in compilation errors due to invalid imports (described
in Section 4.6.11). Therefore, in order to avoid the compilation
problem, we can add this class name to blacklist.

package-metrics Here all the package related metrics are stored including before
and after values.

Table B.3: Output Description

The output files for the composite refactoring are generated under the folder named
output-composite-refactoring. Here, a sub-folder refactored-code exists, which con-
tains source code before and after refactoring for each successful refactoring (excluding
the move class refactoring).

146

APPENDIX B. CARE PLUGIN: INSTALLATION AND INSTRUCTIONS

Figure B.1: CARE Installation

147

APPENDIX B. CARE PLUGIN: INSTALLATION AND INSTRUCTIONS

Fi
gu

re
B

.2
:

C
A

R
E

U
se

rI
nt

er
fa

ce

148

APPENDIX B. CARE PLUGIN: INSTALLATION AND INSTRUCTIONS

Figure B.3: CARE Preferences

149

APPENDIX B. CARE PLUGIN: INSTALLATION AND INSTRUCTIONS

Figure B.4: Import Existing Projects

150

APPENDIX B. CARE PLUGIN: INSTALLATION AND INSTRUCTIONS

Figure B.5: Select Projects to Import

151

APPENDIX B. CARE PLUGIN: INSTALLATION AND INSTRUCTIONS

152

Appendix C

List of Acronyms

API Application program interface
AST Abstract syntax tree
AWD Abstraction without decoupling
CI Constructor invocation dependency
DEGINH Degenerated inheritance
DG Dependency graph
IN Interface dependency
JDT Java development tool
LTK Eclipse refactoring language toolkit
MET Method exception type dependency
MPT Method parameter type dependency
MRT Method return type dependency
QC Qualitas Corpus
SC Superclass dependency
SCC Strongly connected components
SCD Strong cyclic dependency
SMI Static method invocation dependency
STK Subtype knowledge
VD Variable declaration dependency
WCD Weak cyclic dependency

153

	Abstract
	Acknowledgements
	Introduction
	Problem Definition
	Research Questions
	Approach
	Critical Dependency Detection
	Tools
	The Dataset

	Thesis Contribution
	Algorithms
	Implementation
	Validation

	Thesis Structure and Outline

	Research Methodology
	Architectural Model - The Dependency Graph
	Extracting the Model

	Architectural Antipatterns
	Antipattern Detection Tools
	Evaluation of Tools
	Representing Antipatterns

	Antipattern Set
	Overview
	Circular Dependencies between Packages
	Subtype Knowledge
	Abstraction Without Decoupling
	Degenerated Inheritance

	Detecting Opportunities - Scoring Edges
	Dependency Classification
	The Dataset

	Dependency-Breaking Refactorings
	Overview
	Package Level Refactorings
	Move Class
	Split Packages
	Merge Packages

	Class Level Refactorings
	Adapt Parameter
	Extract Interface
	Dependency Injection
	Service Locator
	Type Generalisation
	Static Members Inlining

	Evaluation of Refactorings

	Applying Package Level Refactorings
	Overview
	Background
	Algorithm
	Building the Dependency Graph
	Computing Antipattern Instances
	Computing Edge Scoring

	Implementation: CARE - The Eclipse Plugin
	Implementing Dependency Classification
	Implementing Refactoring Constraints
	Implementing Refactorings

	Strongly Connected Component Metrics Definition
	Experiment
	Case Study: JMoney-0.4.4
	Case Study: JGraph-5.13.0
	Impact of Move Class Refactoring
	Refactoring Simulation on Model vs Refactoring Application on Code
	Impact of Program Size on Number of Refactorings
	Package Merging
	Distribution of Move Refactorings
	Refactorability
	Success Estimation of Model to Code Refactorings
	Strongly Connected Components Metrics
	Limitations of the Experiment
	Scalability
	Test Results

	Summary

	Applying Composite Refactorings
	Overview
	Background
	Type Generalisation
	Service Locators
	Static Members Inlining

	Algorithm
	The Dependency Graph
	Computing Antipattern Instances
	Computing Edge Scoring
	Parsing Source Code

	Implementation: CARE - The Eclipse Plugin
	Implementing Dependency Classification
	Implementing Refactoring Constraints
	Implementing Refactorings

	Experiment
	Examples
	Impact of Refactorings on Instance Count Metric
	Refactoring Simulation on Model vs Refactoring Application on Code
	Refactoring Types Applied
	Strongly Connected Components Metrics
	Test Results

	Summary

	Conclusions and Future Work
	Research Questions
	Can model level dependency-breaking refactorings be automatically translated into source code refactorings?
	How can we define and evaluate constraints on refactorings to preserve the correctness of the program being refactored?
	To what extent can these dependency-breaking refactorings be automated?

	Threats to Validity
	Dataset Selection
	Correctness of Refactored Programs
	Developers Feedback
	Influence of Tools
	Java Specific Refactorings
	Scalability

	Research Contributions
	Future Work

	Bibliography
	Declaration of Previous Work
	CARE Plugin: Installation and Instructions
	Installation
	Configuration

	Usage Instructions
	User Interface
	Preferences
	Importing Projects
	Refactoring Output

	List of Acronyms

