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Abstract 

Debugging is a major area of software d evelopment that has 

r eceived little attent ion. This thesis starts by looking a t work done 

in the a r ea of bug prevention, bug detection, bug location and bug 

correc tion. 

A debugging system, BIAS, is proposed to help in detecting, 

locating and correc ting b ugs . Three major design goals are established. 

Fi rs tly, the system should be simple and easy to understand as this 

will encourage use. Secondly, the system s h ou ld be general so tha t 

it will be available to a large number of us e rs. Finally, it should 

be incremental as this will save users' time. An incremental 

l anguage , STILL, is de signe d to show how BIAS applies to struc tur e d 

l anguages. 

The cons truction of the system is shown. Each da ta structure , 

and how it is used, is descr ib ed . BIAS use s a n int e rpretive 

system and runs threaded code on a pse udo-machine: How the threads 

are interpreted and how they are set up is shown next. 

The use of BIAS is shown by following through an example s ess ion 

with the system. This consists of e ntering a program, editing it, and 

running it. As bugs show themselves, various debugging commands are 

used to locate the bugs. The program is then edited, and the corrections 

linke d into the code so that it will run correctly. This cycle is 

r e p eated until no bugs remain, without at any time recompiling the 

whole program. 

It turns out that the best way of achieving the design goals is 

to extend an incremental compiler host to include debugging commands. 

This gives a clear emphasis to the power of incremental compilers. 
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Chapter 1 

DEBUGGING AN INTRODUCTION 

"Bloody instructions which~ being l earned~ 

Return to plague the inventor . " 

Macbeth in Macbeth I (vii) 

1 

Wh e n Macbeth was plotting the murder of Duncan, he r ea lised that 

his plans would eventually turn against him. He decided not to go 

ahead, but, being easily led, he did the d eed and his original thoughts 

were proved correct. What he needed was a good debugging system so 

that he could correct his mistakes before they became fatal. 

Debugging has been around since Whirlwind I [Schw 71, VanT 74], 

yet it is one of the most neglec t e d areas in software development 

[Bern 68, Gris 70, Pier 74]. This is certainly due in pa rt to 

'debugg ing' being a dirty word. No-one likes to admit that they make 

mistakes, so when the time comes to correct them, people tend to hide 

the fact. Consequently, each programmer thinks that he is the only 

one who takes such a long time to do the job, and that there is little 

general need for debugging aids. 

What is debugging? Testing and debugging are often confused with 

each other as they usually overlap. When a program compiles correctly, 

the programmer enters data in a testing phase in which errors are 

detected. The prograrrnner then tries to locate and correct these errors 

in a debugging phase, and the cycle is repeated. As time passes, the 

testing phases get longer until there appears to be no bugs (although 

this is often not the case). Of course, the debugging phases 

generally do not get shorter, and may well get longer as the errors 

become more obscure. 

So here we arrive at a major point. Debugging takes more time 

than any other aspect of programming. Estimates vary from 30% to 90% 



[Gain 69, Gaul 75, VanT 74], so it is clear that to improve software 

production time, debugging is a good, if not the best, area to 

attack. This thesis will show the development of BIAS (Batch and 

interActive System), a de?ugging system which collates, clarifies and 

simplifies existing systems. 

1.1 Bug Prevention 

2 

Prevention is better than cur~ is a proverb well suited to de­

bugging. While it is unlikely that all bugs can be prevented, any 

technique that can reduce their number or their complexity is welcome. 

Every program should be well designed. This is best achieved 

using a top-down technique such as step-wise refinement [Wirt 71]. 

The modules produced should be of limited size [Your 75] and be able 

to stand on their own as far as possible. Interfacing is thus kept 

to a minimum which not only reduces the chance of having bugs, but 

also reduces the scope of any that do appear. This is known as 

bulkheading [VanT 74]. Debugging is made easier as bugs are isolated 

and much less likely to interact. 

Style is a mark of individuality that pretends to excuse many 

faults, but like any writer, the programmer must use style as a beacon 

not a smokescreen. Good style not only reduces the number of bugs 

but also makes debugging much easier. One major technique is the 

selection of identifiers. This is the most important principle in 

program readability [VanT 74], although comments saying why something 

is done rather than what it is doing are still essential. Structuring 

and indentation are also valuable aids [Dora 72]. Ultimately, what­

ever features of style are used, they must be used consistently. 

Compile-time errors are much easier to prevent than run-time errors. 

The prevention of compile-time errors can be done with interactive 

systems. There are two methods currently in use. Incremental compilers 

get the user to correct his syntax line by line [Ryan 66]. Interactive 

text editors such as EMILY [Hans 71] and GENISYS [Barr 75] actually 

prevent the user from making errors. EMILY works from any BNF grammar 

and so prevents only syntax errors, GENISYS and the system described 

by Lasker [Lask 74] perform static semantic checks as well. 



3 

These text e ditors all work by building a parse tree from the BNF 

grammar. All possible productions for each non-terminal are displayed 

~nd the programmers selects which production he wants by sending its 

associated number [Barr 75] or by pointing a light-pen to it [Hans 71, 

Lask 74]. The syntax of a program must consequently be correct. 

Unfortunately programs require a long time to enter by this method. 

Entry of identifiers (all the syst ems mentioned) and expressions 

(GENISYS) by typing them directly in does help. This heads the idea 

back towards incr emental compilation. 

1.2 Bug Detection 

Bug detection is finding out if there are bugs. The usual tool 

for this is testing. As the number of possible data sets is usually 

astronomical, exhaustive testing is impractical, but one can improve 

reliability and shorten production time by using carefully selected 

test-cases [Buxt 69, VanT 74]. Tes ting should first show that the 

general case works. Extreme data, exploring the fringes of what is 

acceptable, are then tried to make sure no overflows occur. Finally, 

exception conditions for data that is blatantly or marginally wrong 

are tested to make sure errors are reported. Each type of data (general, 

extreme and exception) will cause its own type of error which should 

help to pin-point bugs. Whatever type of data is used, it must be 

easy to predict what output will result. If not, it will be hard to 

locate the bug, which may even be in the prediction of the output. 

Modular test-beds allow modules to be tested individually. All 

globals are set by some device, and all calls from the module will be 

dummies. With an interactive system, the programmer can perform the 

action of dummy subroutines himself. He can also change parameters 

while the program is running and probe the boundary conditions more 

effectively. Bate describes such a system which resembles a breakpoint 

debugging system [Bate 74]. With this system, variables can be 

examined and altered, and breakpoints set to give the tester control 

anywhere in the program. A design goal for BIAS was to facilitate 

module testing (see section 2.5). 

Two novel methods of finding bugs in systems software have been 
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developed by Rain [Rain 73]. The 'Bug Farm' randomly alters correct 

data, often providing unthought of combinations. The 'Bug Cont es t' 

offers an incentive to users to find bugs. This leaves the programmer 

free to repair bugs without having to spend hime time on testing. 

It also has a useful side-effect in that user reluctance to try the 

new software is overcome, and the n ew system is used to its fullest 

extent. 

Unfortunately, testing shows the presence, not the absence of 

bugs. A formal proof of correctness, however, can show that a program 

is error-free, and if it is not, it can help pin-point the error(s). 

A bug in the F-level PL/I compiler was found by such a proof where 

testing had failed to detect it [Buxt 69]. Formals proofs can 

eliminate testing and simplify debugging while ensuring correctness. 

Because of this, correctness is an important area of study and is 

receiving much attention [Elsp 72, Lond 70]. 

Lowny commented that "ANY significant advance in the programming 

art is sure to involve very extensive automated analyses of program." 

[Buxt 69]. The verifying compiler described by King is an example 

of this [King 71]. Predicates are submitted to the compiler with the 

program, and the compiler does the proof. If the program is not 

correct, the likely source of error is pointed out. The main drawback 

is that as with all predicate proofs, the predicates are difficult to 

formulate. If the program is written with the proof in mind, the 

predicates will be easier to produce [Dijk 69], but even then the proof 

may well explode with program size. 

There are compromises between formal proofs and the classical 

methods of debugging and testing. Less than rigorous formal proofs, 

amounting to a kind of disciplined desk-checking will often yield many 

bugs [Schw 71]. Stepwise refinement is a very informal method of proof 

that tends towards prevention rather than detection [Wirt 71]. Proving 

that critical parts of a program are correct will prevent many bugs 

without excessive overhead. The same will be true for proving that 

certain anomalies are not present in a program. Such a system is DAVE 

[Oste 76]. DAVE detects two types of anomalies: reference before 

assignment and assignment followed by no reference. This picks up 

uninitialised variable errors and also helps to find spelling mistakes. 



All the methods of proo f mentio ne d so far do not execute the 

pr ogram. Howev er, p r e di c at e s c a n b e u sed at run- time to check for 
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data anoma li e s. 'ON' sta t ements in PL/I a nd Burroughs Ex tended Algol 

cause only l ow-level f a ul(s to b e trap ped, but are still v e ry useful 

in dete cting errors. Algol W ' asserts' are at a much higher level 

a nd ca n be a s sophistica ted as f o rma l pre dicat e s [Satt 72]. 

1.3 Bug Location 

Once a bug is known to exist, th e n e xt step is to find out exactly 

whe re and what it is. The commo n e st me thod of locating bugs is to pore 

ove r a pro gr am listing, doing a me nta l d e sk-check with the data that 

made the pro g r a m go wrong. This is partic ularly true of small routines 

whic h the d ebugger did not write [Goul 75]. However, with larger 

progra ms, some bugs ca n be very h a rd to find without more sophisticated 

tools. 

One of the o l d e st de bugg ing t o ols is the core dump, usua lly taken 

aft e r the progr am ha d made a n e rror t h a t up se t the ha rdware. The 

entire contents of memo ry and all the r e gisters would be printed in 

hex or octal, with very little to signify what was what. With the 

advent of high-level languages, the meaning of such dumps became more 

obscure, although they are still used [Blai 71, Gris 70, Kuls 71]; 

However the tr end is to format dumps so that they relate to the source 

program. Stack dumps on the Burroughs B6700 are e a sy to follow when 

used in conjunc tion with the compiler option STACK (which is available 

for all major compilers). The B6700 also has a dump analyser for 

core-dumps which makes them much easier to understand. Selective 

and snap dumps are more useful to the high-level language programmer. 

Dumping suspect variables at carefully chosen places in the program 

will give a lot of information with relatively little output. [Ferg 63, 

Gain 69, Satt 72]. 

Tracing is another old debugging tool. There are many kinds of 

trace, but they all show where some trace condition or trap has occurred. 

Typical traps are storing to a variable (store trace), change of flow 

of control (flow trace) or reaching a given line of code (line or 

source trace). Traces are very useful as they can give a full history 

of program execution. They can, however, generate a lot of superfluous 
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output if they are not controll e d [Grav 74]. Dynamically turning 

the trace on and off [Gris 70, Gris 73], tracing only when a dynamic 

condition is true [Blai 71, Ferg 63] or limiting the trace by a static 

condition or loop [Burr 74 A, Burr 74 F, Satt 72] will reduce output 

considerably. With interactive systems, the trace can even be turned 

on or off by the programmer [Bull 72, Kuls 71]. 

Program statistics are useful for d eubugging and increasing 

efficiency. The simplest statistic is the execution time for the 

program. This in itself can often help to locate errors . The 

execution summary of SNOBOL 4 [Gris 73] is an extension of this. 

Burroughs Algal has a compiler option to print the time spe nt on each 

procedure of a program. MUSSEL and Algal W go one step further and 

give the execution count for each statement [Grav 74, Satt 72]. A 

different kind of statistic is the cross-reference listing, [Brow 73, 

Burr 74 A], which is particularly useful when looking through large 

programs. 

All the tools mentioned so far are batch-oriented. With inter-

active systems a much greater range of tools can be ma<le available. 

The basis of most interactive debugging systems is breakpointing. A 

breakpoint is a device for giving control to the programmer at an inter­

active terminal. The programmer can then converse with his program, 

see exactly what it is doing, and even correct it if it is wrong (section 

1.4). 

Interactive debugging in the days of machine-code programming 

consisted of stepping through the program instruction by instruction 

until something looked wrong. By using console switches a correction 

would be made and the process of detecting and locating bugs would 

continue. Stepping statement by statement is the high-level language 

equivalent, and it is just as useful [Gain 69, Pier 74, Burr 76 A] . 

This method can be extended by stepping several statements at a time 

[Pier 74] or running the program at an observable speed [Bate 69]. 

Bugs are usually detected some time after they occur, which makes 

them hard to locate. This is especially true of evanescent bugs which 

by Murphy ' s Law never seem to occur when they are being looked for. 

If, however, the program can be backed up to the point of error, the 
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problem is solved. Reversible execution can be implemented in two ways. 

The simplest is by checkpoints [Bate 74, Gris 71]. This requires little 

effort, but a forward execution from· the checkpoint may differ from the 

original and evanescen t bugs might not appear again. The other method 

is to record each change in the program as it happens [Bate 69, Davi 75, 

Zelk 73]. This takes a lot of process time, but using the history file 

for forward execution when possible will guarantee the same execution 

path will be used. 

It is often useful to run a program again without changing its 

variables. This is an important feature of an incremental compiler called 

incremental execution [Bull 72, Rish 70]. Incremental compilers can 

also run the program from any point in the program, or even run an incomplete 

program. This greatly facilitates debugging as small sections of code 

can be tested independently of the rest of the program. 

There is a right way and a wrong way to use any tool, and debugging 

tools are no exception. The programmer should get an idea of what is 

wrong with his pro gram and carefully select his tools rather than apply 

battering-ram tactics. It will be cheaper, quicker and cause less head­

aches. Knowing what errors might occur is a start [Brow 73, VanT 74]; 

certain errors are best located with certain tools. For example, bad 

initialisation can be easily found by a store and/or fetch trace while 

looping errors can often be found by using execution counts. 

1.4 Bug Correction 

Once a bug has been located, it must be put right if the program is 

to work correctly. Bug correction usually consists of patching the 

source program and recompiling it, although only the offending subroutine 

may be recompiled and then bound or link-edited to the rest. In either 

case, the program must be run again from scratch. This approach is time 

consuming to the progranuner and to the machine. The alternative is to 

correct the error at run-time. 

When an exception condition occurs, the computer will detect it and 

terminate the program. However, if PL/1 or Burroughs Algol 'ON' statements 

are used, the program can retain control. This will enable the program to 

make some correction or output suitable for debugging information. At any 
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rate, the program can continue execution , which may lead to finding other 

bugs. 

Such interrupts are used for hardware and related errors, but software 

errors are not so easily detected or corrected. Recovery blocks are a 

solution whereby a section of code will ensure a c ondition, which is like 

a predicate in formal proofs [Rand 75]. If the main piece of code, the 

primary alternative,does not satisfy the condition, other alternatives are 

executed until the condition is satisfied or there are no more alternatives, 

which causes a fatal error. This allows the program to continue and give 

reasonable results even it if is not completely correct . 

Conversing interactively with a running program, inspecting and 

changing its variables is a powerful tool [Barr 69]. If a programmer can 

watch his variables change value, he can actually see his program go wrong and 

possibly see why it went wrong [Balz 69]. In any case, correcting wrong 

values will t emporar ily patch the program. The ability to do this is the 

basis of most breakpoint debugging systems [Appendix A] and is an important 

advantage of time-sharing. 

If the programmer has to correct the same error each time it is 

executed, debugging will take a long time. By making a run-time patch, he 

actually changes the program so that hopefully the error is fixed for that 

execution of the program. Unfortunately, run-time patches on most debugging 

s y stems often do not resemble the source language of the program and so are 

not permanent [Bate 74, Blai 71, Gris 70]. Also, they are usually very 

limited as to what they can do (assign only constants [Bate 74, Burr 74A], 

no conditional statements [Ashb 73]). 

Incremental compilers solve all these problems. Patches have the same 

status as any other part of the program. They are in the same source 

language and suffer no restrictions as the same compiler is used for patches 

as for the rest of the program [Bull 72, Ryan 66]. When an error is 

located ~t run-time, a patch can be made, linked into the rest of the program 

and the same run continued as if nothing had happened. Editing the program 

at run-time is an important aspect of incremental compilers [Rish 70]. 
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So far, the programme r sugges ts the correction, tries it and lets 

the computer find out if it works. Davis sugge sts that with inexperienced 

programmers , it is better for the computer to suggest the mistake as well 

lDavi 75]. When an error occurs, the computer backs up the program 

showing how the error was reached and what could have c a used it. When the 

user decid e s on the cause, the computer explains how it could fix the 

mistake, checks with the user and does the fix. 

MASSEY U 'IVERSITY 
.LI.BAARX 



Chapter 2 

DESIGNING THE SYSTEM 

"The best laid schemes of mice and men 

Gang aft a-gley " 

To a Mouse 

2.1 Some Possible Approaches 
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Burns .... 

A debugging system is a collection of debugging tools and a 

method of binding them to a program. The debugging tools vary greatly 

but they always interface to the program via some kind of trap (Sect. 

1.3). When a trap is executed, control is passed to the d~bugging 

system which evokes the required tools. 

Traps can be inserted by four basic methods. A precompiler 

can add source language traps to the source program before compilation 

[Balz 69, Ferg 63]. A source statement is inserted at every place a 

trap may be required. The statement transfers control to the debugging 

system, which must determine why the trap was caused. Each pre­

compilation needs computer time, and compilations are larger because of 

the extra source. However, fairly efficient object code can be produced. 

A major advantage of the precompiler approach is that no alteration of 

existing software is required, although obtaining symbol tables and such 

from a compiler makes the system easier to write. A major disadvantage 

is the necessity of reserving some identifiers for the debugging system 

which will make some programs unacceptable to the precompiler. 

A compiler can insert traps in a similar fashion to a precompiler, 

the main difference being that there is no intermediate source, so no 

reserved identifies are required, There is little extra overhead in 

computer time as compared with normal compilation. Efficiency is about 

the same as for a precompiler system as similar code is produced. The 

main drawback is that modifications would have to be made to an existing 

compiler if it was used [Burr 76, Pier 74, Satt 72]. 
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Traps can be inserted into normally compiled object code with 

physical br eakpoints [Ga in 69, Wolm 72]. The breakpoint physically 

replaces a portion of code which conse qu ently mus t be executed from 

the debugging system. The code produced is very efficient unless 

a large number of traps are inserted. Although code produced by 

an ordinary compiler is used it is usually necessary to t a mper with 

the compiler to obtain the relationship of the source to the object. 

Traps can be put into the machine r a ther than into the code. 

This is particularly true for the software pseudo-machine of an inter­

pretive system [Bate 74, Grav 74]. Special debugging instructions can 

be added to the pseudo-machine. Also any specific instruction can be 

trapped by modifying the pseudo-machine. Systems that rely solely on 

a software machine are slow, so some interpret machine-code, modified 

slightly to aid debugging. They can thus run any part of a program 

that has been debugged on the hardware machine [Blai 71, Gris 70, Kuls 71]. 

Of course, there is no r eason why instructions cannot be trapped by 

firmware or hardware. 

The method used to insert traps involves a trade-of f between 

efficiency, ease of implementation and the power of the debugging co11UUands. 

Many debugging systems were built with all of these as design goals 

[Asb 73, Balz 69, Gris 70, Satt 72]. This has to lead to compromises. 

With batch systems, the major cost of a run is the processor time, so 

efficiency is more important than power. With interactive systems, log-

on costs will probably dominate, so having a powerful command language 

will be more important as it will reduce log-on time. 

Many debugging systems are written for interactive use (Appendix 

A). Since it has been claimed that users get sloppy [Buxt 69] and 

spend more time on a program [Carp 76] when working interactively, this 

could be a bad thing. With poor system response and a heavy demand for 

terminals, users do waste a lot of time. They will wait around for 

considerable periods for the system to respond or to get onto a terminal, 

and if the system is slow they will try to speed up and try things 

without thinking and thus make mistakes. 

arguments against interaction are valid. 

In this situation both 

It must be realised however that if response is good, and the user 

can leave the terminal for a short time and come back to find it availablE 

then interaction comes out in a much better light. A survey of batch/ 
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interactive comparisons by Sackman [Sack 68] has shown that interactive 

users can develop a program in less working time than batch users, 

although the cost is the same either way as batch users require less 

computer time. It also appears that programs subjectively prefer 

interaction, although more work needs to be done in this area, 

2.2 Design Goals 

Up to now, the design goals of most debugging systems have been 

aimed at getting an efficient system available quickly. They will try 

to make a system that is easy to use, but this is often incompatible with 

the other goals, and so is compromised. The result is that although 

the user can refer to his program at the source level, many of the command 

constructs are complicated and confusing. Unfortunately, this causes 

user resistance to the system as was found by Grishman [Gris 71] . The 

author has also experienced this difficulty with Burroughs Algol break­

point debugging. It tends to become a last resort because of restric­

tions and clumsiness. 

To prevent this happening, when d esigning a system the first 

consideration should be the user. The commands should be powerful, easy 

to understand, easy to use, and easy to learn [Evan 66, Pool 73]. Then 

and only then can implementation restrictions be considered. Since the 

command language will already be decided, and restrictions will not 

affect the simplicity of the commands, only their power. 

When designing BIAS, the implementation was only a secondary goal. 

Producing just another debugging system, though of immediate use, would 

merely solve the technique for one language on one machine. It was hoped 

that some software would be running on a limited scale, but the main aim 

was to design a system that was neither language or machine specific. 

The basic goals were to make the system: 

(1) Simple the command language should be simple and contain 

as little syntax as possible, while giving as much power as 

possible. It should be easy to learn and it should prevent 

small, typographical errors from causing the loss of control 

of the program, (Section 2.3). 
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(2) General - the basic design should be l a nguage independent, 

machine independent and program indep endent. The algorithms 

should readily be converted to differ en t programming 

l anguages. The system should be able to accept any 

program written in a host source language, and should run 

in both batch and interactive modes. (Section 2.4). The 

commands should apply in a consistent manner to every 

program construct, and not have any special cases or 

unusual restrictions. 

(3) Incremental patches should be made at runtime in the 

host language and the program should be automatically 

updated before the system relinquishes control. The 

program should also run incrementally under the debugging 

system. The means that the system can run as an 

incremental compiler and as a modular test-bed. (Sect. 2.5). 

Simplicity 

The command language of BIAS can be divided into three parts: 

those that affect the program, those that affect the data of the user's 

program and those that help the user control his program. These are 

called editing commands, immediate commands and trap commands respectively. 

(See Appendix B for syntax). They can all be used at any point that 

the command analyser has control as long as this is consistent with the 

program. This precludes absurdities like continuing the program when 

it is not even running. 

The editing commands are a bare bones and could easily be 

extended. The commands allow a user to retreive a program, or make a 

new one. He can insert new lines, delete o~d ones and list any part of 

the program. He can start the program running, or if it is stopped at a 

trap, continue execution at another part of the program. Finally he can 

either discard the program or save it, in which case the code and other 

data concerning the program will be saved in the same file as the source. 

Since this thesis is primarily concerned with debugging, this basic 

minimum is all that was provided, but on a larger system this would 

undoubtedly be extended to more powerful commands. 
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The "immediate commands" have the same format as statements of 

the host language. The statement is compiled as if it occurs at 

the place the program is stopped at. Most useful will be the write 

~tatement and the assignment statement which will enable the user 

to examine his program's data and modify it. The procedure call 

or invocation statement will also be useful for testing individual 

subroutines without setting up the whole environment for it. 

The host source format must make the command language easier 

to understand as special commands are not required. Also the full 

power of the host language can be used, including the built-in 

protection features; e.g. a programmer is syntactically prevented 

from storing a data value into a procedure identifier etc . [c.f. 

Gris 70, Kuls 71]. 

The most important commands are the trap commands. They enable 

the user to insert, suspend and delete traps. 

by using either the BREAK or TRACE command. 

Traps are inserted 

The only difference 

between the two is that if the trap is inserted by the BREAK command , 

the system returns control to the command analyser, whereas TRACE 

will continue execution. Both report where the trap occurred and 

the execution count for the statement if required. BREAK could have 

been done using a BREAK statement in the language, but extending the 

language was considered undesirable. 

Traps are set at all the places indicated by the trap-part. The 

line-num-seq-LIST gives a range of line-numbers so that only parts of 

the program may be affected. The default is the whole program. 

The statement-type-LIST defines which statements within that range 

should be trapped. Thus a general store-trace can occur by the command 

TRACE ASSIGN. Certain statements such as declarations cannot be 

trapped, as this has no real meaning and there might be no associated 

code. This will, of course, vary from language to language, so 

different options will be available to cope with this. ASSIGN, CALL, 

and IF should be nearly universal, whereas CASE and LOOP (any iterative 

statement) might not be quite as coimllon. Because it might well be 

impossible to trap a statement after it has been executed (e.g. GOTO, 
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RETURN), a trap is inserted before its associated statement. At 

times traps will be more useful after the statements, but since 

con, 1stency is essential for ease of understanding, this choice was 

made. 

The other form of trap-part uses a variable-list. This results 

in ihe named variables being store-trapped. Any variable can be 

trapped; in particular, array elements as well as whole arrays can 

be trapped. Whether the traps will last only while the scope lasts 

or for each time that scope is used is a semantic problem left to 

the implementation. 

Traps can be controlled by the control-part, which can consist 

of up to three parts. Firstly, the ON condition will prevent the 

trap from being reported unless the condition is true. The 

condition has to be semantically correct at every place it is used. 

The restrictions thus imposed will vary from language to language. 

BASIC will have none. With FORTRAN a trap with an ON control will 

have to be restricted to one subroutine as the symbol table is invalid 

elsewhere . With a structured language, the trap must lie in the 

scope of the identifier with the highest lexical level that is used 

in the condition. The BY-part of the control allows stepping through 

the program by a specifed number of traps. The FOR-part restricts 

the number of times the trap will stop. The expressions for each part 

of the control-part are any valid expression in the host language that 

derives the appropriate type of value (boolean for ON,integer, or, 

something coercible to integer, for BY and FOR). 

example 1. Algol 

100 BEGIN 

110 REAL A; 

120 A:= l; 

130 BEGIN 

140 INTEGER I; 

150 FOR I := 1 STEP 1 UNTIL 10 DO 

160 A:= A+ I; 

170 END; 

180 PRINT (A); 

190 END; 
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Assume the program has reached a breakpointat line 150. The 

command "BREAK ON I = 10" is valid only in the range 130-170. Since 

the whole program is the implied rangei a warning will be given. 

Bowever, had the program just been trapped at 120, there would be an 

error as I is not even declared at that point. The command "BREAK 

ON A MOD 2 = 0 BY 2 FOR 2" should not be valid for line 100, but is 

allowed as otherwise the whole program could n eve r be a valid range. 

The effect of this command is as follows: 

I 

A 

1 

2 

trapped? No 

2 

4 

Yes 

3 

7 

No 

4 

11 

No 

5 

16 

No 

6 

22 

Yes 

7 

29 

No 

8 

37 

No 

9 

48 

No 

10 

58 

No 

The program is thus trapped a total of two times (FOR 2) every second 

time (BY 2) that A is even (ON A MOD 2 = O) 

Each trap can have a statement attached to it. Selective snap 

dumps are taken by atta ching a write statement to the trap. This 

allows the user to have dumps made using his own formats if desired. 

At any rate all I/O is done with the same syntax as the host language 

so that the user does not have to learn any new syntax. A statement 

attached to an ON condition allows software recovery of data errors in 

a manner similar to recovery blocks [Rand 75]. 

All code generated by the BREAK and TRACE commands has one 

restriction no references to user subroutines are allowed because 

these subroutines may have traps set in them. When the code is 

executed, a trap may occur preventing proper execution of the command. 

From the user's point of view this means he cannot use subroutines in 

defining what action he wants at trap. Users of linear languages such 

as BASIC and FORTRAN will suffer from this as they have only one 

statement attached at a trap, whereas a subroutine would allow them 

more. A structured language user can have several statements by making 

the statement a compound statement or a block. 

Traps can be turned off by using the UNBREAK and UNTRACE commands. 

These will permanently remove all traps of the specified command type 

that are set by the trap-part following. Consider the effect of the 

following commands on Example 1. 



BREAK 

TRACE 

UNBREAK 

140 - 180 

120 - 150 

130 - 170 
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After the TRACE command, lines 140 and 150 will be trapped by 

tracing, not breaking, so when the UNBREAK command is e x ecuted, traps 

will be removed from lines 160 and 170. 

Traps may be suspended with the RESET command. Suspended traps 

are still present, but are not acted on. When the appropriate option 

is SET, traps that have been susp ended come into effect again. 

Suspended traps are affected by other trap commands. If traps are 

suspended. old traps can still be removed. and any new traps will also 

be suspended. This allows the user to make a production run without 

removing traps which he may have taken some time to insert. 

thus restore his traps for anothe r debugging run very easily. 

He can 

The last SET/RESET option, XCOUNT, allows the user to take 

e xecution counts if he wishes. Wh e n XCOUNT is s e t, the e xecution count 

of any statement which has been trapped is given when the trap is reported 

to the user. When XCOUNT is reset, all execution counts are also reset 

to zero. The user can access individual execution counts with a 

predeclared array called XCOUNT. This is a single-dimensioned array 

indexed by the line-number of some line of source, and it may be both 

read from and written to. 

2.4 Generality 

Language independence 

The main form of generality aimed for was language independence. 

Most conventional languages can run under the system with little or no 

modification to either language or BIAS. 

was designed with this in mind 

Certainly the command language 

In order that the statements of the source program can be uniquely 

distinguished , every line of source has a line-number. This is fairly 
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common: columns 73-80 of the card is reserved for such a purpose 

in most languages. However most languages allow more than one 

statement per line, and even though this is bad programming practice, 

programs will be written using this feature. However, BIAS requires 

at most one statement on a line. Since this merely enforces good 

programming t echnique, the price is a small one and the advantages 

outweigh the disadvantages. However, statements are not restricted 

to one line as this would make s ome statements almost impossible to 

write, especially if the program is well-structured with indentation. 

Note that this does not interfere with the syntax, as the ' only 

alteration required to any program will be to start each statement on 

a new line. 

Machine independence 

Writing large, machine independent programs is difficult in the 

extreme. The program would a lmost certainly have to be written in 

FORTRAN which would make it longer, harder to write and harder to under-

stand than if it was written in a structured language. To solve this, 

all programs are interpreted. 'Compilers' translate the s our ce into 

a pseudo-machine code which is interpreted on a pseudo-machine. The 

pseudo-machine is relatively short and very simple, and should probably 

be written quite fast for any machine. In fact, it is highly suited to 

being coded in assembler, which would greatly aid efficiency. The 

compilers can then be translated into a language available on the system 

and compiled with that language's compiler and actually run on the 

pseudo-machine. This would be fairly slow but does aid portability. 

Program independence 

After experience with Burroughs Extended Algol's breakpoint 

debugging system, it was clear that no restriction should be placed on 

the program by the system. (In the latest software release, the major 

restriction of the Burroughs system has been removed). In fact no 

noticeable flaw of this kind in BIAS have been found yet. The only 

restrictions have been on the commands where procedure calls are invalid 

in certain places (section 2.3). 

Generality of use - batch and interactive modes 

Although incremental systems are usually used only interactively, 
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it was decided to make the system available in batch as well. This 

turns out to be the major hazard to portability - all machines handle 

I/O differently. On the Burroughs B6700 all types of file can be 

easily interchanged, but this is not true of many machines. Since 

card and remote files are ·interchangeable on the B6700, BIAS can run 

easily in both modes, satisfying a major design goal. 

Running under batch produces interesting effects as the program 

does not have to be recompiled for a run. As with many . large compilers, 

patch statements can be merged, but under BIAS these are all that are 

compiled. The patches are linked into both code and source, thus 

saving some machine time. When the run is finished, if the program 

is saved, the updated version will be saved, not the old version, so 

the whole program will be up-to-date. Any debugging commands, however, 

will be acted on during the run, but neither they nor their effect will 

be saved. Debugging commands therefore, come in debugging packets and 

so are easy to separate from the program. 

2. S Incrementality 

This is a vital feature of BIAS which is of immense help in 

reducing debugging time and machine time. Any patch to the program is 

made at runtime and the source and code for the patch is linked into 

the rest of the program. As just mentioned, this saves machine-time as 

the program need not be completely recompiled. This also saves the 

user a lot of time as he can continue using the program with only minor 

modifications to the data. 

This is another reason why interpretive methods were used. It 

is not easy on most machines to fiddle with code in the required manner. 

However, by making a machine from scratch, this failing can be overcome. 

Incremental compilers require a threaded code system of some kind. The 

threads are embedded in the pseudo-machine itself, which increases 

efficiency considerably. Also, the machine deals with the traps, not 

the control program. This is explained in Section 3.1 and 3.2. 

Apart from these special requirements, the pseudo-machine is a stack 

machine based on the Burroughs B6700. This has the advantages of 

making code very easy to generate and requiring very little space for 

code as against a register to register machine. This is especially 

true for structured languages where the structure is not static. 
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Other languages adapt fairly easily to this system, but lose 

efficiency. Since efficiency is not a goal, the stack machine was 

deemed appropriate. 

An alternative method would have been to use mixed code -

machine code and interpretive code. It was hoped that this approach 

could be used, but although the code is much more efficient, it is 

extremely difficult to arrange the two sections of code and the control 

program in a workable configuration. The problem is made much worse 

with a structured language. With a mixed code set-up, the controller 

has to be a subroutine called by user's program. This gives it only 

one return point, thus making it impossible to return directly to 

another part of the program, which is, of course, essential if lines 

are to be deleted. The return can be made indirectly via go to 

statements, in which case a sort of threaded code method results, although 

a very tricky and untidy one. Accessing the data is not easy either, 

a special highly machine dependent intrinsic being required. The 

user's program must be a subroutine of a master program which declares 

the necessary globals, including the control program. The control 

program must still contain code to translate host source into pseudo­

code for patches, as well as a pseudo-machine to execute these. In 

spite of the gain in efficiency, the cost in effort is too great for 

the savings, and for these reasons, a mixed code approach was abandoned. 

As a result of the method used, BIAS is not only a debugging 

system but also an environment for incremental compilers and a modular 

test-bed. Any module (procedure) can be run with only its globals 

declared. Any procedures the module calls can be empty, in which case 

a trap is caused allowing the user to alter the data as the missing 

procedure would. The effect of the module on the globals can be 

checked at any point. 

2.6 STILL 

STILL is a STructured IncrementaL Language based on Algol 68, 

designed especially for the purpose of demonstrating BIAS in action on 

a structured language. The syntax can be found in Appendix C. Its 

most important feature is that a semicolon marks the end of scannable 
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text on that line - anything after it is considered to be commentary 

- and is equivalent to there being no more text on that line. It is 

this feature that makes the language distinctly incremental and suitable 

as a debugging host. If a continuation is required, it must be 

specifically requested by an ampersand. 

is considered to be commentary. 

Again, text after an ampersand 

An end of line or semicolon is required at every place that a 

trap may be required. As a result, statemen ts which contains statements 

such as CASE and BEGIN are not written on one line. Rather the 

controlling or id entifying part is written on one line and the statements 

within it are each written on a new line. For example: 

Example 2. STILL 

(2a) BEGIN A:= l; B := 2 END 

(2b) BEGIN (2c) BEGIN; 

A := 

B := 

END; 

1. , 

2· , 

A:= 1 

B .- 2; A COMMENT 

END 

(2a) is invalid as each new statement is not on a new line. 

(2b) and (2c) are both valid in STILL. 

Since the production of STILL was not a major goal, the power of 

the lan guage is currently only on a par with Algol 60. There are three 

basic types - int, real and bool. Identifiers can be made read only 

(constants) or initialised in declarations in a similar way to Algol 68. 

Arrays can contain up to 15 dimensions and it is the number of dimensions 

that determines the type for parameter passing (c.f. Pascal). 

Procedures are not initialised on declaration. A proc declaration 

declares the number and types of the parameters and the type of the 

procedure only. A proc variable can have a routine assigned to it 

during execution. Any formal parameters are declared at the head of 

the routine and must correspond in number and type to those of the 

variable it is assigned to. Parameters can be of any type except that 

a formal procedure may . not have a parameter of type proc. Parameters 

can be called by value or reference as in Algol 68, except arrays which 

must be called by reference and procedure which must be called by value. 



Example 3. 

(3a) 

(3b) 

( 3c) 

STILL 

REAL PI= 3.14159,A,B,ALPHA := "A"; 

[0:10, 7 : 8] INT ARRAY1,ARRAY2; 

PROC (REAL) VOID SUBROUTINE,P; 
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P := (REAL A) VOID (followed by the body of 

the procedure) 

The language contains no GO TO statement. A block may be exited 

using the RETURN statement. Several levels may be exited by labelling 

a block and using RETURN FROM label. A routine is also given a value 

by the RETURN statement. Loop statements are actually implicit blocks, 

with the iteration occurring within the block. If a control variable 

is used, it must be declared outside the loop so its value is available 

both inside the loop and after the loop is exited and can be changed 

within the loop. The increment and the bound (if present) are both 

fixed on entering the loop. 

statement. 

A loop may also be exited with a RETURN 

STILL I/O is fairly simple. Variables can be input and expressions 

output, but there is no list structure in I/O lists. To write out arrays, 

a loop statement must be used. The SAME option in both I/O statements 

allow the same record to be written to at the next I/O statement. 

Formats are attached to the list elements so .:there can be no confusion, 

matching long formats with lists. Several formats are available and 

although these are not extravagent, they should be sufficient for most 

needs. Only a field width is required for any of the formats making 

layouts easy; real numbers are printed in the most suitable form 

according to the field width. 

Expressions are handled by a simple priority mechanism as in Algol 

68, but are known to be evaluated from left to right where this does 

not conflict with priorities. The priorities of binary operators are: 

operator meaning priority 

exponentiation 8 

* multiplication 7 

I real divisioi:1 7 

DIV integer division 7 

MOD remaindering 7 

+ addition 6 

subtraction 6 
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op erator meaning priority 

< is less than 5 

<= is less than or equal to 5 

> is greater than 5 

>= is greater than or equal to 5 

is equals to 5 

<> is not equal to 5 

IS is the s ame as 4 

ISNT is not the same as 4 

AND logical end 3 

OR logical or 2 

All unary operators have a priority of 10. An operand can be 

preceeded by any number of unary operators which are performed on the 

operand from right to left. The operators are: 

- (negative),+ (positive), NOT (logical not), REAL, INT, BOOL, ENTIER 

(type conve rsion), SIN, COS,ARCTAN, (trig functions) and SIGN. 



24 

Chapter 3 

BUILDING THE SYSTEM 

"Vet d.;,c.ho a1. hec.ho h.a.y 911..an tfl..ec.ho" 

It's a far cry from speed to deed 

Don Quixote - Cervantes 

Once the syntax for BIAS and STILL was determined, the 

implementation had to be considered. The first code written was for 

the pseudomachine. This was initially a straightforward absolute 

addressed stack machine. Provision for code threading was not made 

until the requirements were clearer. 

The main data structures were designed in parallel, with frequent 

references to examples to make sure that they would work unambiguously. 

With a rough idea of the code and the structures, the STILL compiler 

and the BIAS interpreter were written and tested. These showed what 

was needed to thread the code and all the programming that had been 

done was modified accordingly. 

Finally, a method of linking the various parts together -

pseudomachine, compiler and interpreter - had to be worked out. Again 

small changes were made to previously written code, but at this stage 

program organisation was complete. This chapter will show exactly 

what organisation was used for each part in the final implementation. 

3.1 Data Structures 

There are three related sets of data structures. The most important 

are the statement information tables, as they provide the key to the 

operation of the debugging connnands. The symbol table, although structured, 

is designed so that all identifiers are stored permanently, even outside 

their scope. This is essential, as during execution any block may be 

entered and all identifiers valid there must be available to the user. 

The symbol table and statement information table are linked by the 

structure table. There are also structures for controlling traps. 

These are pointed to by the statement information table but not vice­

versa. 
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3.1.1 Statement Information 

Each statement of the source program has an entry in the statement 

information (STINFO) table. Each entry consists of several fi~lds, some 

-. of which are an integral part of the machine. These fields are the ones 

that control code-threading and traps. Fig. 3.1 shows all the fields 

for a sample program except the trap information. 

WORK.FILE: 

This is not actually a part of the STINFO tables, but it does 

contain information about the statement - the actual source of the 

program. This includes the line number of the statement. The workfile 

can be accessed randomly or sequentially. 

RECNUM: 

This is an index into the workfile and is the record number of the 
< 

first line of source for a statement. In fig. 3.1, it is always one less 

than the statement number, but this will not be true if some statements 

are continued or if certain patches are made. When access to the workfile 

is required, the RECNUM of a statement is used to put the correct record 

of the workfile into the file buffer. Reading or writing the record can 

then be done sequentially. This is useful for handling continuations as 

a continuation is always the record after the line it continues. 

LINENUM: 

Although the source (EBCDIC - coded value) of the line-number is 

stored in the workfile, for convenience and efficiency, it is also stored 

in the STINFO table in decimal form. Any command that requires line 

numbers can obtain them without accessing the workfile, which would be 

much slower and more awkward as the workfile source would need to be 

translated to decimal. 

NEXT ST: 

This gives the statement number of the next statement in the program. 

By using the linked list that this sets up, the source can be traversed in 

the correct order. It is not enough to assume that the next statement 

will be the one with a statement number one higher, as insertions and 

deletions will alter this pattern or require immediate reorganisation of 

the STINFO table. Using a linked-list enables changes to the source to 

be handled with the minimum of effort, but still makes access to the program 

relatively easy. The main problem with the linked-lists is that to find 
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a statement with a certain line-number, the whole list must be 

traversed until the line-number is passed. A linear search of this 

kind is inefficient, especially when it is considered that line-numbers 

are sequential along the list. 

LAST ST: 

This gives the statement number of the previous statement in the 

programs and makes the program linked both forwards and backwards. 

The NEXT ST of the LAST ST of a statement number is always that statement 

number. Although it is not strictly necessary, LAST ST makes the 

program much easier to write. 

BLOCK HEAD and GROUP: 

These fields are very similar. BLOCK HEAD is a pointer to the 

first statement of the block that the statement is in. It is mainly 

used to prevent a user from continuing a program into a block which has 

not been entered. For this reason, the closing statement of a block 

(e.g. END or OD) is considered to be part of the block as its trap will 

occur before the block ends. In STILL, the statement a BLOCK HEAD 

field points to must be a BEGIN, a loop statement or a procedure 

initialisation. 

The GROUP field has two differences from BLOCK HEAD because of 

different usage. GROUP is used mainly to prevent deletions which 

would leave a program syntactically invalid. In addition to the 

statement types BLOCK HEAD can point to, GROUP can also point to a CASE 

statement. Also, since the source rather than the code is used in 

deleting, the closing statement of a group is not considered as part 

of the group. 

CO-DELETE and PREV GUARD: 

The CO-DELETE field is another aid to prevent deletions from leaving 

a program syntactically incorrect. If a statement is to be deleted, 

then the statement pointed to by its CO-DELETE field must also be deleted. 

CO-DELETE fields are not active for all statements, and usually come in 

matching pairs. Thus a BEGIN and an END will have CO-DELETE pointing to 

each other as will CASE and ESAC and LOOP and OD. The exception to 

the pairing is when the body of a routine in a procedure assignment is 

a multiple statement. The last line of the routine and the procedure 

initialisation statement must have CO-DELETE fields pointing to each 

other, so the CO-DELETE of the first statement in a routine cannot point 

to that statement (lines 1400,1500 and 2000 of Fig 3.1). 



28 

No PREV GUARD fields are whown in Fig. 3.1. This field is active 

only for guards of CASE statements other than the first and points to 

the last guard of the CASE statement. Thus this field is always 

active for ELSE. A 'next guard' is not required as this information 

is available elsewhere (see FALSE field). PREV GUARD is used to aid 

the correct positioning of code threads after deletions within a CASE 

statement. It is clear that PREV GUARD and CO-DELETE can never be 

active simultaneously. As a result they occupy the same storage, 

and the statement type of the statement determines which field it 

actually is. 

NUM CONTS: 

This is the number of continuation lines there are for the 

statement. 

LEX LEVEL: 

The lexical level of the statement. This information can be 

obtained by other means, but it is easier to obtain it direct from the 

STINFO tables. It is used mainly by the TRAP command for checking the 

range of an ON condition. 

ST TYPE: 

This field indicates the type of the statement. The types used 

are language dependent, but adapting for different languages is simple. 

The statement types are those defined in the trap part of the BREAK 

and TRACE commands together with DECL (declaration), EMPTY (null 

statement), GUARD (guard in a CASE statement) and PROCINIT (assigning 

a routine to a procedure variable). 

STRUCT: 

This is an index to the structure table and defines the scope at 

the statement. When compilation is to be done at a particular line­

number (i.e. a patch), the structure for the compiLer is set up using 

the STRUCT field of the statement after the insertion. 

CODE: 

This field is used by the machine and it gives the address of the 

code for that statement. How the CODE field is used in the code 

threading is described in Section 3.2. 
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TRUE and FALSE: 

These field s are the threads of the threaded code system. They 

point to the next statement that should be executed, depending on the 

value the current statement returns. Most statements return true and 

just go to the next statement. Loop controls and guards, however, 

can dynamically return true or false. A guard returns the value 

resulting from executing the guard, and the loop control is similar, 

true indicating that the loop has not finished. With a loop control, 

the FALSE field allows the loop to be exited. The FALSE field of a 

guard points to the next guard or the end of the CASE statement. 

The statement before an OD has a static result, always returning 

true, but the TRUE field points to the loop control rather than the 

next statement. This is how loops are implemented. 

Statements innnediately before guards always return true, but their 

TRUE fields all point to the ESAC statement closing their CASE statement. 

The final special case static result statement is the procedure 

initialisation. The TRUE field for a statement of this type points 

to the first statement after the routine. This prevents the routine 

from being executed at initialisation. The last statement of a routine 

has no TRUE or FALSE field as before a value could be returned, the 

routine should return to its invocation point. 

SKIP: 

This allows the code to jump to somewhere other than the beginning 

of the next statement. At the moment, SKIP is only used for returning 

to a loop control after its initialisation. 

The next set of fields are the trap information fields not shown in 

Fig. 3.1. 

TRAP: 

This is a boolean field and indicates whether a trap has been set 

at the statement. The other fields are relevant only if this field 

is true. 

BREAK: 

This is another boolean field. It is true if the trap was set 

by the BREAK command and FALSE if it was set by the TRACE command. 
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CONTROLLED and CONINDEX: 

CONTROLLED is a boolean field, and if it is true, the trap is 

controlled and the value of CONINDEX is relevant. CONINDEX points to 

the control which controls the trap at the statement concerned. See 

Section 3.l.4for a description of controls. 

ONCONTROLLED and ONCODE: 

ONCONTROLLED is a boolean field which, if true, indicates that an 

ON condition is attached to the trap. If this is so, ONCODE contains 

the address of the code for the condition. 

HASST and STCODE: 

HASST is a boolean field which if true, indicates that the trap 

has a statement attached to it. If HASST is true, STCODE contains the 

address of the code for the statement. 

3.1.2 Symbol Table 

Most of the information in the symbol table is language dependent. 

Most of the information, however, is used only by the compiler. BIAS 

uses only the parts that link the symbol table to other data structures. 

The symbol table is structured, and has a display, TABLEDIS, to 

show the current environment (Fig. 3.2). For any environment, the first 

entry is a marker which contains special information for building the 

program structure. These fields are: 

ENVPTR: 

Whereas an ordinary entry would store the address for the variable, 

a block marker has no address, and this field can overwrite the address. 

ENVPTR contains an index to the structure table, so that the structure can 

be obtained from the symbol table if necessary. 

TOTALOFF: 

This is used to contain the next offset for the block. Addressing 

is done by address couples (see Section 3.2), and since the lexical level 

is fixed for any block, TOTALOFF effectively contains the next available 

address for the block. This is needed if declarations are to be 

inserted. 



1000 BEGIN 
1100 INT I ,J; 
1200 [1:10] REAL DATA; 
1300 PROC ( REF REAL,REF REAL) VOID SWAP; 
1400 SWAP := ( REF REAL A,B) VOID: 
1500 .. BEGIN 
1600 REAL C; 
1700 C := A; 
1800 B := C; 
1900 A := B; 
2000 END; 
2100 FOR I TO 10 DO 
2200 FOR J FROM I DOWNTO 1 DO 
2300 IF 
2400 
2500 
2600 
2700 
2800 OD; 
2900 END; 

DATA[J] > DATA[J+l] 
SWAP ( DATA[I],DATA[J+l]; 

FI; 
OD; 

WORKFILE 

0 0 '"""' I 
1 0 
2 1 
3 1 
4 1 
5 1 
6 2 
7 2 
8 2 
9 2 

10 2 
11 2 
12 2 
13 3 
14 4 
15 4 
16 4 
17 4 
18 4 
19 4 
20 3 
21 1 

(JJ C/l 
rt H 
OJ '.;rj 
rt c::: 
(1) (") 

8 H 
ro 
::, 
rt 

::, 
C: 

& 
ro 
'i 

STRUCTURE 

C/l '"d t"" H 
>-3 >' t"" > ' 
H ;;d tr:I b:l 
Zg)<r-' 
'"rj L, tr:I tr:I 
0 >-3 t"" 

t"" 
tr:I 
t:) 

SYMBOL TABLE ; 

~ 
VOIDI 1 
INT 
INT 
REAL 
VOID 

1 
1 
1 

1 811 1 
1 3 
1 4 

1 I 11 1 6 
2 0 1 7 

~-"'-----+-tt~VOIDI 1 
1 
1 6 2 2 

2 3 
2 4 
2 5 

1 
1 
1 l~; 

VOID' 1 
--------"---- VO I D 1 

1 
1 

612 3 
6' 3 4 

1st param. 
2nd param. 

~ 
'"d 
tr:I 

:t>tr:l;;d:::O Xr-'1-rj 
c-<:;o'"d>;tr:lt""O 

b:l '"rj O :;cl >-3 tr:I '"rj 

tr:I tr:I (") > C/l ~ < C/l 
t"" '.;rj ,< c::: tTl tTl 

to t"" H 
C/l H 

:;cl 

z 

ij ~ 
>> 

~~ 

tr:I z 
~ 
>-3 
:;cl 

1~1 Iii 111111 
EXTRAINFO 

id. l:':1 ~· 

It 
block ;:-::i 

I 2 
J ~ 
DATA 
SWAP 

C: 
'1 
ro 

'OJ 
block ll :i 
A a.. 

B ri 
C 1g' 
block II-' 
block...., 

Ol 

I[ 

Note: The displays are set up for a snapshot at line 2500. 

w ,_. 



32 

For this implementation, a binary tree system for storing and 

locating variables was used, as it is fairly fast for insertion and 

location. Scope rules are handled by first searching at the highest 

lexical levelled block, (innermost block), and then searching at each 

lower level until the identifier is found. Reserved words or keywords 

are in the outermost block, which is also the environment for the program. 

STILL and BIAS both use keywords and so search for these after checking 

to see if an identifier was declared. With a reserved word system, this 

level would be searched first. The fields required for the STILL 

compiler are: 

COUPLE: 

This has two parts - the lexical level tLEVEL and the offset OFFSET. 

This gives the address for the identifier. 

EXTRAPTR: 

This is a pointer to a special array of additional symbol table 

information, EXTRAINFO, which is used to describe parameter types. 

Entries in EXTRAINFO are similar to entries in the symbol table except 

that the COUPLE field is meaningless in EXTRAINFO. Parameters are fully 

checked for type at compile-time by using EXTRAINFO. 

NUMSUBS & NUMP ARAMS: 

Only one of these fields can occur at a time, so they are overlayed. 

If the variable is subscripted, NUMSUBS contains the number of subscripts. 

If the variable is a procedure, NUMPARAMS is the number of parameters. 

If NUMPARAMS is non-zero, then EXTRAPTR contains useful information. 

TYPE: 

TYPE reflects the type of the variable. Simple variables and 

arrays can be of type int, real or bool. Labels are of type void. 

Procedures can be either. 

PROC, ARRAY & LABEL: 

These are boolean fields. If PROC is true, the identifier is a 

procedure. If LABEL is also true the identifier is a block label or 

block marker. If ARRAY is true, the identifier is subscripted. PROC 

and ARRAY are mutually exclusive. 
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REFER: 

REFER is a boolean field. If it is true then the identifier is 

varidble and can be assigned values in assignment statements, read 

statements and loop controls. An attempt to assign to an identifier 

whose REFER field is false will give a compile-time error. 

3 . 1,3 Structure Table 

The structure table is used to recover the program structure. Each 

new block has an entry in the structure table which can be seen from 

Fig. 3.2. Like the symbol table, the structure table has a display 

(STRUCTDIS) associated with it to show the current environment. The 

fields of the structure table are: 

STINFO: 

This field points to the entry in the STINFO tables of the first 

statement of the block. It is used to check for scope violations in 

BREAK and CONTINUE commands. 

PARENT: 

This points to the entry on the structure table of the environment 

just prior to the new block being entered. By chaining down the PARENT 

fields, the entire environment for the block can be obtained. If the 

displays STRUCTDIS and TABLEDIS are to be altered at a breakpoint 

because the environment has changed, the correct environment is restored 

to them with these chains. The chains of PARENT fields resemble the 

dynamic ENV fields of the pseudomachine (Section 3.2). 

LLEVEL 

This is the lexical level of the block described. 

TABLE: 

This points to the block marker in the symbol table corresponding 

to the block described in the structure table. TABLE is used in setting 

up the TABLEDIS. If STRUCTDIS of level I exists, then TABLE of structure 

table [STRUCTDIS [I]] = TABLEDIS[I]. 

3.1.4 Controls 

The controls are accessed by the pseudomachine when a controlled 

trap is executed. Each control consists of four words. 
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CONTROLCNT: 

CONTROLCNT is a count of the number of statements controlled by 

a particular control~ Each time a statement that uses a control has 

its trap removed for some reason, this count is decremented by one. 

This enables controls to be freed for further use when no statements 

are attached to them, 

CONTROLBY: 

CONTROLBY contains the value of the BY-part of a control in a trap 

command. CONTROLBY is unaltered while the control remains in use. 

CONTROLBYLEFT: 

This is initially set to the value of CONTROLBY. A trap using 

this control which normally would pass control to the supervisor, 

instead decrements CONTROLBYLEFT by one. If the result is not zero, 

then the user's program continues running. If the result is zero, 

the supervisor gets control and the value is reset to the value of 

CONTROLBY again. 

CONTROLFORLEFT: 

This is initally set to the value of the FOR-part of a control in 

a trap command. Each time the supervisor is called at a trap using a 

control, the CONTROLFORLEFT is decremented by one. When this value 

reaches zero, all traps controlled by the control are reset, and the 

control is released for further use. 

3.2 Pseudo-machirie 

As mentioned previously, the pseudo-machine is a stack machine based 

on the Burroughs B6700 [Dora 73]. The main difference is that the 

pseudo-machine used here is a threaded code machine and the B6700 is 

conventional in its code-addressing. 

The basic architecture of the pseudo-machine can be seen in Fig. 3.3. 

The memory is a two dimensioned array M, consisting of 256 rows of up 

to 4096 words. The rows are allocated as they are needed, and de­

allocated when they are not. This gives the machine a lot of potential 

capacity without always requiring it. Overlaying is left to the B6700 

operating system. A program with less than 4K words of array storage 

will require only three rows of memory (12K). Row allocation is 

determined by the MEMUSED register, which points to the last occupied 

word of memory. 
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Two rows of Mare permanently allocated. The last row is XCOUNT 

and it contains the execution counts for the program. If a reference 

to this row is made, the index is assumed to be a line-number, so a sp-ecial 

decoding procedure is called to translate the line-number to a statement 

number. If no statement has the line-number, the statement after is 

used. XCOUNT can be considered as part of the STINFO tables, as well 

as part of the machine. 

The first row of Mis the run-time stack S. S contains all the 

structure of the program, particularly the procedure structure. The 

last occupied word of Sis pointed to by the T register (top-of-stack 

register). This word is called the A register and the one before it 

(S[T - l]) is called the B register, although their location changes as 

T does. 

The memory is tagged, enabling the machine to detect major errors in 

the code. When a machine error occurs, the type of error and the line 

it occurred at are displayed. The program is then exited to prevent 

further mistakes, and control is returned to the supervisor. Tags are 

also useful as they control indirect referencing. An indirect reference 

word IRW is a pointer to memory. IRWs can point to other IRW's, and, 

if a value is required from an IRW, the machine will automatically link 

down on IRW chain until a word with a different tag is found. 

are as follows: 

tag word type 

0 - 7 data word 

8 indirect reference word 

10 mark stack control word 

11 return control word 

12 array descriptor 

13 dope vector word 

14 procedure control word 

The tags 

IRW 

MSCW 

RCW 

DESC 

DVW 

PCW 

MSCWs and RCWs are used in pairs. The dynamic program links defined 

by the RCWs yield the display Das can be seen in Fig. 3.3. The lexical 

level register, L, points to the top of D. The last MSCW is pointed to 

by the F register. This is normally the same as D[L], but it is required 

for cases when a procedure is called as a parameter. This is because the 

MSCW for the parameter procedure will be laid down before the parametered 
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Fig 3.3 Example sho~ing the design of the pscudomachine. 

This is a snapshot of the example program iri fig 3.1, taken just 

before the assignment . 

Assume I = 7, J = 3', DATA[ 7J 9.3, DATA[4] 12.7. 

9.3 A register 
IRW B register 

C 0 
B IRW 
A IRW 

null 
RCW 

registers MSCW 
final value · 1 

T increment 1 
control var IRW from PCW of 

F 

MEMUSED 
I 
final 

L increment 
control var IRW 

null 
RCW 
MSCW 

SWAP PCW 
DATA DESC 

DVW 
J 

D I 
null 

RCW 
MSCW 

implicitly LASTRANDOM 
declared XCOUNT DESC 

DVW 
null 

RCW 
MSCW 

s XCOUNT 
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procedure is entered, so the environment will not be the parame tered 

procedure, but its environment. This mechanism is described by Doran 

[Dora 73]. The wo rd on top of a RCW is used to return the value of 

the procedure or block and is always present though not always used. 

All addressing from the code is done by address couples, consisting 

of the level and the offset. The offset is added to the display of the 

level to give the absolute address from the base of the stack. Only 

two instructions use address couples. NAMC pushes an IRW onto the 

stack, containing the absolute address obtained from the address couple. 

VALC obtains the word at the address , chaining down IRWs if necessary. 

Arrays are described using DVWs and DESCs. A DESC contains the 

number of dimensions thearrayhas, a pointer to the first DVW for the 

array and a pointer to the first word of the array. There is a DVW 

for each dimension the array has. Each DVW holds the upper bound, lower 

bound and a multiplier for that dimension. Although arrays are stored 

linearly as in FORTRAN, the last or rightmost subscript varies most, 

unlike FORTAN. However, a similar index ing algorithm is used. The 

INDX instruction performs the index ing, pushing an IRW to the appropriate 

word onto the stack. 

The key instruction to threading the code is TRAP. This uses two 

registers not mentioned so far the P register, or code pointer and 

the STAT register or statement-at. When a TRAP instruction is reached, 

the statement referred to by STAT will have finished. Depending on the 

value on the top of the stack, STAT will become the TRUE field or FALSE 

field of the STINFO table entry for STAT, and P will become the CODE 

field of the new statement modifed by the SKIP field of the statement 

that just finished. If the statement about to be started is trapped, 

then tl,is must be resolved. This puts the trap before the statement 

as was required by BIAS (Section 2.). 

If execution counts are required then the count for the new statement 

is incremented by the TRAP instruction. If the statement is trapped, any 

ON con dition is evaluated first. If there is no ON condition or the 

condition is true, then the control part is checked (Section 3.1.4). 

If the trap is still required, any associated statement i .s executed. 

Lastly, the trap calls a routine to show how and where the trap occurred, 

together with an execution count. If the trap was a trace, execution 
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continues. If it was a break, control passes to the supervisor 

and the machine is exited. It might be noticed that the pseudo-machine 

can call itself at the TRAP instruction. · Since code emitted by 

'trap commands cannot call procedures, this can only occur to a depth 

of two, making it safe. 

The rest of the instruction set is very straightforward and is 

described in Appendix D. 

3.3. Compiler 

Before looking at how BIAS acts on a program, the preparation of 

the program will be shown. STILL is compiled incrementally, so the 

user finds most of his syntax errors as soon as he has made them. 

To take advantage of this, the system must be able to back up one 

statement at a time. 

The STILL compiler was written using recursive descent. This is 

not an ideal choice for standard complers because of the difficulty 

of recovery; but with STILL, the major problem, that of finding where 

to start parsing from after an error, is not presen 4 as the incremental 

compiler backs up to a known point and starts afresh. 

With a structured language, it is essential that the structure 

cannot be left half finished. This makes it necessary to make editing 

impossible while a statement is incomplete. Unfortunately, if an 

identifier was not declared, the omission cannot immediately be rectified. 

However, since statements can always be inserted afterwards, a statement 

requiring an undeclared identifier can be omitted, until the declaration 

can be made. 

Most of the program structure is built up by the procedure NEWLINE. 

NEWLINE always assumes that the program flow will be simple. It links 

the new statement about to be compiled to the one after it with the TRUE 

field. NEWLINE also assumes that the new statement will have the same 

environment as the last and makes the GROUP and BLKHEAD the same. Where 

these assumptions are false, it is left to the semantic routines and 

the supervisor to sort the links out. These cases will be shown in 

detail. 
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3.3.1 CASE statement 

The CASE statement can itself contain several statements and guards. 

The GROUP field of these must be made to point to the CASE statement itself. 

After each call on NEWLINE to start a new statement, the GROUP is changed 

appropriately. At each guard, the PREV GUARD field is set, and the 

FALSE field of the previous guard is changed to point to the current 

one. When the ESAC or FI is reached, the TRUE field of each statement 

preceding a guard is changed to the statement number of the ESAC 

statement. The final step is to make sure that the CASE and the ESAC 

point their CO-DELETE fields at each other and their GROUP fields at 

the same place. 

3.3.2 Loop statements 

Loops are implicit blocks. Thus on starting a loop, the block 

entry routine is used to set up the data structure (Section 3.3.3). 

This automatically causes the GROUP and BLKHEAD fields for the statements 

within the loop to ,point to the loop control statement. If an explicit 

or implicit control variable is present, then the values for the control 

variable, the increment and the final value are pushed onto the stack as 

if they were parameters (see Fig. 3.3). The TOTALOFF field in the 

symbol table for a loop control is thus six rather than three as for a 

normal block without declarations. 

When the OD statement is reached, the CO-DELETE~s and GROUP field 

of the loop control and OD are settled as with CASE and ESAC. The 

FALSE field of the loop control is pointed to the OD statement, and the 

TRUE field of the statement before the OD statement is pointed to the 

loop control with a SKIP field of 2. This is all shown in Fig. 3.4. 

3.3.3 Blocks and Procedures 

Every block and routine has a new environment associated with it. 

When the compiler enters a new block, an entry is made in the structure 

table and the symbol table. Pointers to these entries are pushed onto 

the displays STRUCTDIS and TABLEDIS. The new structure only is set up 

as follows. The LLEVEL field is set to the new lexical level. The 

PARENT field becomes the STRUCTDIS entry under the new top value, which 

is the environment immediately prior to block entry. STINFO becomes the 
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FOR var FROM init BY inc TO final WHILE & 

cond DO 

OD; 

entry point after statement loop - 1 

entry point after statement endloop - 1 

enters block storing return address 

load address of control var ( NAMC) 

load value of initial value 

store initial value in control var 

load value of increment 

load value of final value 

value of control var 

skip incrementing code 

load address of control var 

load value of control var 

load value of increment 

or SUBT if DOWNTO rather than TO 

store, leaving the value on the stack 

load final value 

true while loop continues. GEQ for DOWNTO 

value of the condition 

both control and condition must be true 

to continue 

link to next statement 

exit block and go to next instruction 

first instruction after block, however 

it is exited. Clears value returned by block 

link to next statement 
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next entry in the STINFO tables, which will be the block start statement. 

TABLE will be the new entry in the symbol table. 

Because every block executed on the machine requires an MSCW, or RCW 

and a data value to return; the first offset available for use is three. 

The block mechanism must ensure that each of the fixed words is inserted. 

Blocks starting with BEGIN are handled differently from procedure body 

or routine blocks, the former using the BLCK instruction and the latter 

use MKST and ENTR. 

Unless a special case is made, if a typed procedure has a block as 

a body, no value can be returned to the procedure as two block entries 

would occur and there would be no way of referencing the outermost one. 

Thus if a block is a procedure body, a new environment is not created, 

and the environment within the block is the routine (see Fig. 3.1). 

In particular this means that declarationsmade in such a block and formal 

parameters of the routine are declared at the same level. 

When a routine is assigned to a procedure variable, the routine 

itself must not be executed. All that must be done is to assign a PCW 

describing the routine to the variable. the PCW is set up in the 

actual assignment statement, so the rest of the routine must be skipped 

over. This is done to make the TRUE field of the procedure initiali­

sation statement point to the statement after the last statement of the 

routine. The last statement of the routine has no TRUE field, as before 

its TRAP instruction can be reached, it should have returned to the 

calling point of the procedure. 

If a block is assigned as a routine, there are three statements 

which must be deleted at the same time the assignment, the BEGIN and 

the END. This sets up the CO-DELETE fields in a slightly different 

manner to usual. The assignment and END point to each other, but the 

BEGIN also points to the END (see Fig. 3.1). 

3.4 Command Analyser 

The command analyser is closely tied in with the data structures, 

It has already been mentioned how the data structures were designed to 

enable the commands to work easily. 

to write and understand. 

This has made the system simpler 
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3.4.1 Trap commands 

The parsing of the TRACE and BREAK commands are fairly straight-

forward. The only unusual part is that the expressions of the BY and 

FOR parts are evaluated immediately. All references to the prgram 

assumes the environment to be that of the position in the program where 

the program is trapped. 

Once the command has been parsed, the scope of the command is 

determined. If there is no ON-condition or the ON-condition uses 

globals only, the entire program is the scope. For any ON-condition 

the outermost scope referred to by the condition is the scope. For 

all statements in which the scope is valid, a boolean field, VALIDSCOPE, 

is set. 

If the traps are to be controlled, an available control is found. 

The CONTROLBY and CONTROLBYLEFT parts are set to the value of the BY­

part of the control which defaults to 1. The CONTROLFORLEFT is set 

to the value of the FOR-part and defaults to a large real number. 

number is large enough so that subracting one from it will leave it 

unaltered because of rounding. 

Each line-num-seq of the trap-part is then linked through using 

This 

the NEXTST field. No action is taken unless a statement reached by 

this linking has its VALIDSCOPE field set and is of a statement type 

included in the trap-part. If the statement is already trapped and not 

controlled, the CONTROLCNT of that control is decremented by one. The 

trap information fields can then be set. 

The UNBREAK and UNTRACE commands do not have to worry about scope. 

All they do is to link through the statements indicated, turning off all 

traps if the type of the statement was included in the trap-part. 

The SET and RESET commands flip the flags BREAKSET, TRACESET and 

XCOUNTSET which are used by the machine to determine if action should 

be taken at a trap. Resetting XCOUNT also sets all execution counts 

to zero. Each of these flags defaults to the set state when the system 

is run. 

3.4.2 CONTINUE command 

If there is no line-number mentioned by the command, the program 

just carries on where it left off by entering the pseudo-machine. If 

a line-number is used, then before execution can continue, the statement 
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at the line-number must have its environment checked to make sure that 

its scope is the same as scope of the statement that the program has 

stopped at, or least global to it. If the scope is the same, the 

structure on the pseudo-machine can be left unchanged. However, if the 

scope is global, the run-time stack has to be cut back to the global 

level. This is why other scopes are not valid; they would require 

stack building to be done without knowledge of the type of word being 

placed on the stack or where the calling point for the block or routine 

is. 

3.4.3 DELETE command 

The first phase of analysing a DELETE command is to make sure that 

every line-num-seq is valid. This ensures that deletion is not done if 

there is any mistake in the syntax as an accidental mistake might other­

wise cause much irreparable damage. 

The changes to the STINFO tables occur at four statements. These 

are the first statement to be deleted, FIRSTST, the statement preceding 

this, STBEFORE, the last statement to be deleted, LASTST, and the 

statement after this, STAFTER. However, before any changes can be made, 

a check must be made to ensure that the program will be syntactically 

valid after the deletion has occurred. 

satisfied for this: 

Three conditions must be 

1) The group fields of FIRSTST and LASTST must be the same. 

This prevents most cases of deleting only one end of a compound 

statement. The exception, i.e. when the first or last statement 

of a compound statement is LASTST or FIRSTST respectively, is 

handledby the second condition. This condition does prevent 

certain deletions which may corrupt the code, although leaving 

the program syntactically correct. In example 3.1, if lines 

7600-7900 were deleted, the program would be syntactically correct, 

but would cause a pseudo-machine fault at line 8000 as the address 

couple for B would be invalid. Again in example 3.2, if lines 

3800-4000 were deleted, the program would be syntactically 

correct, but the changes to the STINFO table would be many and 

similar deletions (e.g. 3900-4200, 3900-4100) would require 

greatly differing changes, making such deletions very context 

sensitive. 
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Example 3.1 STILL 

7400 BEGIN 

7500 REAL B· , 

7600 B := 2· , 

7700 END 

7800 BEGIN 

7900 REAL A,B; 

8000 B := 3; 

8100 END 

Example 3.2 STILL 

3500 A := 1 

3600 IF 

3700 B = 2 

3800 C := 3; 

3900 FI; 

4000 IF 

4100 D = 4 

4200 E := 5 

4300 FI; 

2) If STARTST or LASTST has a non-empty CO-DELETE field, then 

the statement referred to by that CO-DELETE must be between FIRSTST 

and LASTST. This can be easily checked using the line-number of 

the statements involved. This condition completes the check 

that if one end of a compound statement is deleted, then the whole 

statement is deleted. This takes care of such deletions as 

3900-4000 in example 3.2. Lines 3900 and 4000 will have the same 

GROUP field, but the problems mentioned above will still arise. 

This second condition makes this event illegal. 

3) If STBEFORE is a CASE statement, then STAFTER must be a guard. 

This prevents the deletion of line 5200 and lines 5200-5500 in 

example 3.3. Both of these would leave the syntax invalid. 



45 

Example 3.3 STILL 

5100 CASE 

5200 A= 1 

5300 B := 2 --. 
5400 C = 3 

5500 D := 4 

5600 ELSE 

5700 E := 5 

5800 ESAC 

One semantic condirion also applies - declarations cannot be deleted 

unless their whole scope is too (i.e. the block they are in is also deleted) . 

Checking FIRSTST is all that is required. Since declarations precede 

statements and immediately follow a BEGIN, if any declarations are deleted, 

FIRSTST must be a declaration as the syntax conditions prevent it from being 

anything else. 

If the deletion occurs within a CASE statement, which means that the 

GROUP of FIRSTST refers to a CASE statement it may be necessary to link around 

the guards. If a guard is deleted, then the last guard before the deletion 

is found using the PREV GUARD field, and the guard after is found using the 

FALSE field. These statements then point to each other (see Fig. 3.5 (a)). 

All statements to be deleted are the scanned, decrementing the CONTROLCNTs 

of controls which have traps removed. The TRUE and SKIP fields of STBEFORE 

become the TRUE and SKIP fields of LASTST. The LAST ST arid NEXT ST fields 

of STBEFORE and STAFTER are changed so that they are logically successive 

statements (see Fig. 3.5 (b))~ 

If the CO-DELETE of STBEFORE is a procedure initialisation, then the 

TRUE field of that statement will point to FIRSTST. A check is made, and if 

this occurs, the TRUE field of the procedure initialisation is changed to 

point to STAFTER (see Fig. 3.5 (c)). 

3.4.4 Patching 

A patch is detected by the line-number which starts it. Most frequently 

a patch means entry of a statement to overwrite an existing statement or the 

insert.ion of a statement between two other statements. It is also possible 

to overwrite a loop control or a guard with a new loop control or guard. 



a) DEL 5400 
-------------

~ 5100 CASE 28 27 
5200 A = 1 29 28 guard before 
5300 B := 2; @ (34) 29 STBEFORE 

rr:1 
5400 : C = 3 31 30 FIRSTST = LASTST X 

D := 4; (30) 34 
Ol 

5500 31 STAFTER El 

5600 ELSE 33 32 guard after f-' 
ro 

5700 E := 5; 34 33 C/l 

5800 ESAC; 27 34 0 
H, 

b) DEL 2300-2600 ----.. lg, 
f-' 
ro 
rt 

2200 FOR J FROM I DOWNTO 1 DO 19 19 (0,15) 14 STBEFORE Ii 2300 IF 18 15 FIRSTST 
2400 : DATA[J] > DATA[J+l] 18 17 16 
2500 S~AP(DATA[I],DATA[J+l]); 18 17 
2600 . FI; 15 2 14 18 LASTST 
2700 OD; 14 2 13 19 STAFTER 

c) DEL 8500-8600 

8300 FUNCT := ( REAL PAR) REAL: 46 @ (4 7) 45 
8400 RETURN PAR*SIN(PAR); 45 46 STBEFORE 
8500 A:= 1; 47 FIRSTST 
8600 B := 2; 48 LASTST 
8700 C := 3; 49 STAFTER 

,-... "d C") 

~ 
z 'rj (") C/) t-3 C/l 

8~ :,::, trj ~ 0 ;,,:: :,::, rt 

Note: Values before deletions are 0 ><: t:J H C: Ol 
I<: ~ t-3 t-3 C/) trj "d trj rt 

shown in parentheses at side. t:J trj ro 
trj C") C/) C/) El .Po-
t""' C: t-3 t-3 ro °' trj > ~ 

All changes are marked by circles. ~El rt 

'"" ~ 
C: a 
o' 
ro 
ti 
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In all c~ses, the first thing that must be done is to set up the 

compiler displays so that the structure is correct for where the patch will 

be made. If the new line is an overwrite-, the type of the statement 

it is overwriting is checked. If it is a guard or a loop control, the 

new line is considered to be the same. The source is entered at the 

end of the workfile and the code is emitted at the end of the code array. 

The RECNUM and CODE fields are the only fields for the line that are 

altered (Fig. 3.6 (a)). For all other overwrites, the statement must 

be a simple statement, and the patch is similar to an insertion. 

Insertions start by noting the statements before and after the 

insertion STBEFORE and STAFTER. The new statement is compiled as if it 

directly followed STBEFORE, and the first line of the patch is set up as 

if NEWLINE had been called. If the line-number of the last line of the 

patch exceeds the line-number of STAFTER, it is an error, even though this 

may have been desired. To overwrite more than one line, the lines must 

be explicitly deleted first. 

So far, the patch links back to STBEFORE. The logical links, LAST 

ST and NEXT ST are then completed so that the sequence of the lines is 

correct. The code links are harder to fill in, and differ for overwrites 

and insertions. The TRUE and SKIP fields of the last line in the patch 

are set to those of STBEFORE if the patch is an insertion or those of the 

line that was overwritten if the patch is an overwrite. The TRUE field 

of STBEFORE is pointed to the first line of the patch. No FALSE fields 

can be affected by insertion. If the CO-DELETE of STBEFORE is a 

procedure initialisation, the TRUE field of that statement is pointed 

to the first line of the patch and the TRUE field of STBEFORE is made 

null. This makes sure that the patch will be executed immediately after 

the procedure assignment. Examples of an overwrite and an insertion can 

be found in Fig. 3.6 (b) and (c) respectively. 

3.4.5 Otlier Editing commands 

The file handling commands, GET, MAKE, SAVE arid REMOVE, are mostly 

devoted to ensuring that B6700 I/O subsystem requirements are met. 

These conditions of the workfile are used and may be set: there is a 

workfile, the workfile is empty and the workfile is saved. 



a) line 2100 overwritten 

2000 END; 
2100 FOR I TO 10 DO 
2200 FOR J FROM I DOWNTO 1 DO 

b) line 7400 overwritten 

7500 FOR I TO 10 DO 
7600 S := S + A[I]; 
7700 OD; _ 

7600 52 := S2 + A[I]*A[I]; 

c) line 5350 inserted 

5100 CASE 
5200 : A = 1 
5300 B := 2; 
5400 : C = 3 
5500 D := 4; 
5600 ESAC; 

5350 E := 5; 

Note: Values before insertion 
are shown in parentheses 
st side 

All changes are marked 
by circles 
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The LIST command is set up to link through the line-num-seqs 

given by using the NEXT ST links in the STINFO table. At each statement 

linked through, the record at RECNUM for that statement is listed, the 

workfile being randomly accessed. If NUMCONTS is not zero, then· that 

number of consecutive records are then listed before linking to the 

next statement. To prevent interactive users getting caught watching 

long listings go by, only enough lines for a page will be listed before 

listing will suspend and the user is asked for input. If he enters 

a null line, listing continues. 

as a command. 

If the line is not null, it is treated 

The RUN command clears the pseudo-machine and sets the registers to 

the correct values for running the program from the start. It then calls 

up the pseudo-machine, which runs until the program finishes or a break­

point is reached, 

3.4.6 Immediate commands 

Immediate commands are source language statements which are compiled 

and executed immediately. When the compiler is called, a flag is set 

to indicate that code generated will not be permanent. 

source of the command from being written to the workfile. 

This prevents the 

Irrnnediate commands require special pseudo-machine instructions to 

start and finish the code. The code generated is treated as a block. 

but unlike other blocks which return to the statement after the block, 

immediate commands have no statement after them. The STRT instruction 

sets up the code so that it thinks it was called from the position where 

the program has stopped running. The FNSH instruction is like an END 

but it also causes the pseudo-machine to pass control to the supervisor. 

3.5 Linkage 

It is usual for the debugging routines to be part of a procedure 

which the machine calls whenever it reaches a breakpoint. However, if 

procedures of the user's program can be called successively without 

waiting for them to be exited, this can cause problems to the user when 

he finally does start backing out of them. He will find it difficult to 

know which routine he is currently in. For this reason, BIAS does the 

opposite. The supervisor calls the pseudo-machine. This has the added 
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advantage of requiring much less memory, because the system can only 

nest itself to a level of two. 

However, the supervisor does not know when the pseudo-machine has run, 

This means that the supervisor and the user's program are run more as 

co-routines than as calling routine and procedure. In fact, this 

could have been done very easily on the B6700, but although this would 

have provided a more realistic model of the actual structure, a much 

larger amount of real resources would have been required. 
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Chapter 4 

USING THE SYSTEM 

"He J./2 veJtlj fiond ofi malu_ng thing.6 he doe.6n 't u.unt, 

and then giving them to people who have no U/2 e 001t them." 

The Dolly Dialogues Anthony Hope 

The best way to show how a system is used, is to show it in action. 

For this reason, an example program which contains deliberate bugs is 

followed through its various stages until it runs correctly. The program 

used is the program of Fig. 3.1 which has already been used through-

out Chapter three. 

4.1 Entering the Program 

When a user starts running BIAS, he will receive a prompt from the 

system which will be a hash-mark, "II". This signals that the system is 

ready to receive input. All commands given by the user are in response 

to some prompt. Throughout this chapter, all text written by the system 

will be underlined. 

The first command given by a user will normally be a GET or MAKE. 

In example 4.1 the user makes a STILL file called SORT. At this stage 

this file does not actually exist and any attempt to use it for anything 

except source insertion will cause an error. 

After the make commands, a hash-mark is prompted again. This time 

the user enters the first line of text in the program. BIAS now 

recognises that a statement has been started and calls the STILL compiler. 

Until the statement is finished, all prompts for text will be colons. 

When the user enters the final line of the program, the next prompt will 

be a hash-mark. This helps him know that the compiler has recognised the 

line just entered as the last line to be entered and that a command is 

expected. 



Example 4.1 

I/MAKE SORT 

// 1000 BEGIN 

: 1100 INT I,J; 

:1200 [1:10] REAL DATA; 

:2700 OD; 

:2800 OD; 

:2900 END; 

/12020 WRITE SAME "?":Al; 

JL2030 READ DATA[l] : I3; 

/12040 FOR I FROM 2 TO 10 DO 

} as for Fig. 3.1 

:2050 READ SAME:T I*3,DAYA[I]:I3; 

52 

*<<<< UNDECLARED IDENTIFIER 

I/LAST CORRECT STATEMENT AT 2040 

:2050 READ SAME :T I*3-2,DATA[ I]:I3; 

:2060 OD; 

/1 2840 FOR I BY 2 TO 10 DO 

:2850 WRITE DATA I :I5,DATA[I+l]:I5; 

:2860 OD; 

Although BIAS and the STILL compiler prompt the user for input, the 

pseudo-machine does not. However, the user can easily arrange for 

prompts by using a statement like line 2020. Note that the string"?" 

having four or less characters is treated as an integer, as so needs to 

be formatted to give the required result. 

When the user first entered line 2050, he made a small typographical 

error. When the compiler discoverd this it informed him of both the nature 

of the error and where the compiler has backed up to. 

he should continue entering his patch at line 2050. 

4.2 Run-time Errors 

He now knows that 

Having entered the program and thus compiled it, the next stage is 

to run the program. This is done with the RUN command. At first the 

program runs correctly; the user is prompted by his program and he 

enters his data (Example 4.2). Unfortunately, before his program can 
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provide any output, an array subscript exceeds the upper bound of the 

array. This causes the pseudo-machine to give a run-time error. 

Example 4.2 

#RUN 

? 42 67 41 29 02 92 23 88 42 19 

SUBSCRIPT OVERFLOW AT 2400 (*7) 

#WRITE I,J 

10 10 

#2100 FOR I TO 9 00 -

/fJ := 9· 
' 

#CONT 

42 67 

67 67 

67 92 -~-- - -
92 92 

92 92 

#WRITE XCOUNT[2500] 

7 

Subscript overflow does not cause the program to be aborted. The 

code is backed up to the start of the statement, and the user can then 

change values which will prevent the error. As far as the user is 

concerned, a breakpoint has just occurred. In example 4.2, he checks 

the values of I and J and realises that there is a mistake in the final 

value of the outer loop. He then inserts the patch to correct this. J, 

however, is still 10, so he changes this value with an innnediate command, 

and the new loop control will prevent it from becoming 10 again. The user 

then continues his program at the point it left off. The code that caused 

the fault will be executed again, but should not cause a fault this time. 

Instead of changing J and continuing from the point of error, the 

user could have skipped over the false code with the command CONT 2700. 

This would cause the inner loop to be exited, which is what should have 

happened anyway. 

4.3 Module Testing 

After the program resumes execution, the user gets some output 

but the values are completely wrong (Example 4.2). He looks at the 
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execution count for the invocation of the procedure SWAP (line 2500). 

This shows that the number of values which were erased is the same as the 

number of times SWAP was called, and leads him to suspect SWAP as the cause 

-· of the error. 

The best way of testing SWAP is to call it using known values as 

input. To be able to do this, the program must be stopped at some point 

that contains SWAP in its scope at a time when the routine has been assigned. 

The user inserts a breakpoint at line 2100, limiting it to the one 

occurrence with a control (Example 4.3). He then runs the program, re­

entering the data. 

Example 4.3 

#BREAK 2100 FOR 1 

#RUN 

? 42 67 41 29 02 92 23 88 42 19 

BREAK@ 2100 (* 1) 

jLWRITE DATA[l]:I3,DATA[2]:I3; 

42 67 

jLSWAP (DATA[l],DATA[2]) 

#WRITE DATA[l]:I3,DATAL2]:I3; 

42 42 

#DATA[2] := 67 

When the breakpoint is reached, the user is told what line he is stopped 

at and given the execution count for the statement. Since SWAP requires 

ref real parameters, declared variables will have to be given, so the values 

of these, DATA[l] and DATA [2], are checked first. The procedure SWAP 

can then be called. This method allows a user to call any procedure 

in his program without having written any other parts of the program except 

for inserting the globals required by that procedure. If a procedure which 

has not had a routine assigned to it is called, a breakpoint occurs. The 

user can then cause all the effects that the missing procedure could do if 

it were present and correct. 

After SWAP has been executed, the user checks the values returned by 

the parameters. It is now plain that there is a bug in SWAP, but before 

he discovers what it is, he repairs the damage to the data. 
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4.4. Editing 

The cause of the bug is soon apparent; statements 1800 and 

1900 are back to front. This is fixed by deleting one of these lines 

and then inserting that line at the correct place (Example 4.4 (a)). 

The program is then continued from the breakpoint (at 2100). If, 

however, the user had decided to completely rewrite the routine and 

its assignment to SWAP, then SWAP would still have the incorrect routine, 

as the new, correct source would not have been executed and the new 

routine assigned (Example 4.4 (b)). This method would require the 

assignment to be done by some means. By continuing at line 1400, 

the procedure initialisation, this problem is solved, but the data must 

be re-entered. 

Example 4.4. 

(a) #DEL 1900 (b) #DEL 1400-2000 

#1750 A:= B; #1400 SWAP := (REF REAL A,B) VOID: 

#CONT :1500 BEGIN 

:1600 REAL C = A; 

:1700 A := B· ' 
:1800 B := C· ' 
:1900 END; 

#CONT 1400 

? 42 67 41 29 02 92 23 88 42 19 

The SWAP routine is now correct, and the program produces output again, 

and again the output is wrong (Example 4.5). By this stage, the source 

text of the program will probably have been lost off the top of the 

terminal screen, so the user lists the main part of the program. 



Example 4.5 

42 

41 

88 

42 

29 

#LIST 

02 

67 

23 

19 

92 

2100-2800 

2100 FOR I to 9 DO 

2200 FOR J FROM I DOWN TO 1 

2300 IF 

2400 DATA[J] > DATA[J+l] 

56 

2500 SWAP (DATA [I], DATA [J+l ]) ; 

2600 FI; 

2700 OD; 

2800 OD; 

4. S Breakpoints 

The user now has to find out where his program is going wrong. 

He decides to dump the values of some of his variables at a suitable point 

in the program. Since he will want to stop the program when he sees 

something go wrong, he uses a BREAK command rather than a TRACE connnand 

(Example 4.6(a)). The dump is done by attaching a WRITE statement 

to the trap. If all the elements of the array had been required, then 

the command of Example 4.6 (b) would be used. Note that in this case, 

an indexing variable has to be declared as there are no variables in the 

program that could be used in the loop control. Example 4.6 (b) also 

shows how the name of the variable can be made to appear with the output. 

Naturally the more information displayed, the more lines of output used, 

and this may obliterate information that is still wanted. For this 

reason, BIAS keeps the number of lines it outputs to a minimum, and a 

user will often do this as well. 
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Example 4.6 

(a) JLBREAK 2600:WRITE I,J,DATA[l],DATA[2],DATA[3],DATA[4] 

IIRUN 

? 42 67 41 29 02 92 88 42 19 

1 1 42 67 41 

BREAK @ 2600 (* 1 · ) 

II note: this is a null line 

2 2 42 41 67 

BREAK @ 2600 (* 2) 

II 

2 1 42 41 67 

BREAK @ 2600 (* 3 ) 

112400 SWAP ( DATA [J], DATA[J+l]) 

#UNBREAK 

#SWAP ( DATA[l], DATA[2] ) -
/IC 

2 19 

23 29 

41 42 

42 67 

88 92 

(b) #BREAK 2600:BEGIN 

..:_INT K; 

:WRITE "I II I' II J 

:FORK BY 2 TO 10 DO 

II J· 
' 

WRITE K,DATA[K]:I5,K+l,DATA[K+l]:I5 

:OD 

:END 

29 

29 

20 

The program is run again and the data re-entered (Example 4.6 (a)). 

The first and second breakpoints reached show nothing amiss, so the user 

continues his program by entering a null line, i.e. one with no 

characters in it. This is only allowed as a continuation symbol at the 

first reponse to a breakpoint. If a null line is entered at any other 

time, it is treated as a blank line. 

The next time the breakpoint is reached the user notices that no 

elements of DATA bave been interchanged when the first and second elements 
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should have been. He looks at the call on SWAP and realises that 

he has used DATA [I], instead of DATA [JJ. He then inserts the patch 

to correct the error. The breakpoint is removed, the data is restored ­

'to the way it should be and the program is continued. The program 

outputs the results which are now correct. 

4.6 Finishing Up 

The final stage in a session will involve manipulating the workfile. 

If the program is not required, the user may just remove it by the 

conunand REMOVE. He can also save it, changing its title if he wants to. 

This is often useful if the workfile was obtained by a GET command, but 

the original version is required for back-up. Since a SAVE command 

without a file-title would cause the original to be overwritten, an 

alternative must be available. Saving with a file-title will create a 

file of that title and save the workfile in it. 

In example 4.7, the user tries to save his program under a different 

title. However, he already has a file with that title, and to prevent 

users from overwriting any file except the workfile, BIAS reports an 

error. The user decides that he does not want the old file, so he 

removes it and does his SAVE command again. Finally he leaves BIAS by 

using the QUIT command. Since his workfile is saved, the system will be 

exited. This is not the case if the user has an unsaved workfile, and 

an error will result if he tries to exit the system while this is so. 

Example 4.7 

#SAVE SORTING/PROGRAM 

*<<<< FILE ALREADY EXISTS 

#COMMAND IGNORED 

iREMOVE SORTING/PROGRAM 

#SAVE SORTING/PROGRAM 

.f!_QUIT . 

4.7 Running under Batch 

Although incremental compilers are made primarily for 

interactive use, they can also be used in batch. When running in batch, 

it is best to start by just compiling the program and not to execute it · 
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until it compiles correctly. However, BIAS does not require 

this and can run every program as syntactically incorrect statements 

will just be ignored. A preliminary run on BIAS in batch would 

normally consist of a MAKE command, the program text, a SAVE command 

and a ~UIT command. Subsequently a GET would be used to retrieve the 

program, and patches would be merged. As stated earlier (Section 

2.4), this does not entail a complete recompilation; only the 

patches would be compiled just as they would if they were entered 

interactively. 

After the new source for a run of the system has been entered, 

various cormnands to control the running of the program will be 

entered. Dumps and traces will be entered as they would be from a 

terminal and the program would be run. These may well be followed 

by contingency commands to handle machine faults. If the program 

ends normally, these may be ignored or they may be in error, but this 

will not affect the actual running of the program. 

It can be seen that running BIAS under batch is not very 

different from running it interactively, and the same tools are 

available for both. The main difference between the two methods will 

be the debugging strategy. Batch users will depend heavily on the . 

TRACE command and will use large-scale dumps so that they can be sure 

of having the right information to track down any bugs. Interactive 

users will mostly use the BREAK command, and dump only the minimum 

required to find any bugs. 
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Chapter 5 

CONCLUSIONS 

" he. WM no.t ·quJ.;te. 1.>Ufl.e. wh.a...t .to do ne.u. 

Bu;t, he. would .think o 6 1.>ome..thing." 

2001, A Space Odyssey Arthur C. Clarke 

Before making any conclusions about BIAS, it will be useful to see 

how well it fulfils its three major design goals (Chapter 2). Simplicity 

was certainly achieved. The only noticeable defect was that the commands 

to display the values of variables were quite long-winded. This, however, 

is basically a problem with STILL, and although BIAS could have contained 

a command for this purpose, language independence would have been lost. 

Four types of generality were required. Program independence was 

achieved as BIAS imposed no restrictions on programs except in its format 

requirements. These do not restrict the source of the program only the 

way it is set out. Alth ough BIAS is primarily interactive, it requires 

no changes to run under batch, and the same debugging tools were available 

for both. 

Language independence has not been proven as only one language has so 

far been implemented for BIAS. However, there seems to be no reason why 

other languages could not be used under the system. BASIC would be 

particularly easy to implement as it is designed to be incremental. 

FORTRAN could b e used as a host language without much trouble. The main 

difficulty would be a way of relating the FORTRAN statement labels to the 

line-numbers of the source. There would also be very little difficulty 

in fitting COBOL onto such a system, although it would take a lot of work 

because of the size of the language. The case of structured languages 

such as Algol and PL/I has been demonstrated with STILL. Only formatting 

restrictions would be imposed as they were for STILL, but the basic method 

of handling structured programs still applies. 

Machine independence has been mentioned before (Section 2.4). Since 

the pseudo-machine can be a program in its own right, it would be possible 

to run BIAS on it. This only requires a host language on BIAS suitable 

for writing the software and an implementation of the pseudo-machine. As 
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mentioned earlier, the pseudo-machine is short enough and simple enough 

to be written wherever BIAS is to be used. 

The last design goal was to make the system incremental . This is 

achieved by using threaded code and requiring one statement per line. 

It can be seen that the cost of making the system incremental is 

restrictions on the format of user programs. However, it is felt 

that the power and case of use obtained by having a fully increment system 

far outweights restrictions which good programming style would enforce 

anyway. 

Implementation of BIAS is not complete as yet. There are still 

several bugs in the trap commands which are only revealing themelves 

as the system is tested extensively . There is no garbage collection 

routine as yet, and store tracing has not been implemented, although 

these are in the planning stage. All of the other BIAS commands appear 

to work correctly, although with breakpoints not working corr ectly it 

is impossible to tell whether all immediate commands will work correctly 

when applied to data in a program. However, they are known to work 

outside the scope of the program. 

Several extensions have been planned. It is hoped to extend STILL 

to include string handling, data structures and more powerful I/O . 

This would involve adding instructions to the pseudo-machine, taking care 

that any instruction will not be too STILL specific. 

There is a lack of editing facilities in BIAS. There could be at least 

a fix command which would change a part of a line and resubmit it to 

compilation . An automatic sequence made would also be of great use as 

it can be tediousto have to enter all the line numbers. The ability 

to resequence the source would also be useful for cases where a patch 

is required between two lines with consecutive numbers. 

analyser would also be useful . 

A cross reference 

Another useful debugging feature would be the ability to reverse 

the execution of a program to see how it reached a certain state. 

However, this would be extremely difficult to implement, although the 

benefit would be great. 

As it stands, BIAS has not had sufficient use to guage its usefulness. 

To evaluate its merit properly would require its being used by users of 
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different types and experience running programs of varying size and 

complexi ty. Since BIAS has not been completely t es ted yet, only 

the author has had experience with it, but its advantages have still 

come through, and interest has been expressed by several other 

programmer s . 

BIAS is of particular use at Massey as until very recently there 

was no incremental compiler available for use. It certainly has a 

big advantage against conventional compilers for t esting small 

algorithms as BIAS only ever requires to be run once, whereas other 

systems r equire a run for each comp.fla tio n and another to execute the 

program each time a correction is made. When t es ting the program of 

Fig. 3.1, the B6 700 Algal v ersion underwent the same debugging 

procedures. One of the three bugs in the program was unknown when the 

program was ente r ed. This was found, and other bugs correc ted in l ess 

than half the elapsed time and much l ess machine time using BIAS than 

jus t correcting all the bugs with forknowledge of them using B6700 

Algal. This was done without using traps. Of course, the B6700 

Algal version will run a lot faster than the BIAS version, al though 

this difference is significantly reduced if B6700 Al gol breakpoints are 

used . Progr ams under BIAS run a t the same speed regardless o f 

whether any breakpoints a r e set. 

Comparing the breakpoint facilities of BIAS and B6700 Algal puts 

BIAS ahead for the most part. The patching and immediate mode facilities 

of BIAS are almost compl etely lacking in B6700 Algol, a lthough displaying 

variables i s easier with B6700 Algol. A B6700 Algal capability which 

is long winded in BIAS is the ability to continue until a given line 

is reached . BIAS has to do this by 

BREAK line FOR 1 

CONTINUE 

whereas B6700 Algol uses the much simpler one-line command 

/CONTINUE line 

Considering that "CONTINUE line" has a diffe r ent meaning in BIAS, it 

cannot use just one line. However, if "FOR 1" was the de fault, the 

difference between the two would be minimal . Whether or not any of 

the defaults are the right ones can only be found out from experience. 
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BIAS was originally conceived as a debugging system which included 

the ability to make permanent patches to the program at run-time. It has 

however, shifted its stance to being more of an incremental compiler host 

containing debugging commands. This tends to show that the two are really 

different manifestations of the same beast. It has long been known that 

iucremental compilers aid debugging, but surprising little has been done 

to extend them to contain complete debugging systems. Likewise, most 

debugging systems do not have the ability to make permanent patches to the 

source program. Of course, this is extremely difficult to do without 

completely rewriting much existing software, but there are great benefits 

to be gained. 

This does show the advantages of a threaded-code machine. If such a 

machine were implemented in hardware, it would greatly aid the development 

and use of debugging systems. The increase in machine-time for running a 

program on such a machine as against conventional machines is very small. 

Also, as it is used in conjunction with the stack machine as was done in 

BIAS, the size of the code is much shorter than for conventional machines. 
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Appendix A 

Comparison of Debugging Systems 

System How implemented Patching Language 

1 interactive assignments and 
MANTIS standard code I/O cannot patch FORTRAN 
Ashb 73 patches 

2 interactive 
EXDAMS precompiler none any 
Balz 69 

3 interactive 
interprets pseudocode none -

Bate 74 

4 batch/interactive 
PEBUG compiles executes none -
Blai 71 or interprets code 

5 interactive full language as 
incremental compiler incremental compiler BASIC 

Bull 72 threaded code is used 

6 interactive Burroughs 
compiler inserted none Extended Algol 

Burr 76 breakpoints 

7 batch 
BUGTRAN precompiler none FORTRAN 
Ferg 63 

8 interactive FORTRAN 
CONTROL compiles none (and others? ) 

Gain 69 physical breakpoints 

9 interactive IFs,assignments,PRINT FORTRAN 
AIDS compiles executes and GOTOs. cannot assembler 
Gris 70 or interprets code patch patches 

10 batch 
interprets traps none MUSSEL 

Grov 74 built into machine 

11 interactive IFs,GOTOs,assignments FORTRAN 
HELPER compiles executes cannot patch patches assembler 
Kuls 71 or interprets code and others 

12 interactive large language subset 
DDS compiles cannot patch patches Coral 
Pier 74 

13 interactive full language as Algol 60 
incremental compiler incremental compiler FORTRAN 

Ryan 66 is used 

14 batch 
compiles none Algol W 

Satt 72 

15 interactive 
MULTICS compiles bind in procedure PL/I 
Wolm 72 physical breakpoints 

16 ~atch/interactive full language STILL 
BIAS interprets threaded incremental compiler (and others) 

code is used 
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dumps traps and traces controls variables 

1 selective store,call,return examine 
using PRINTS line GO TO store consts 
with ATs 

2 
not as such not as such none examine only 

3 line and store simple examine 
none can be suspended conditional jumps store consts 

4 selective overlay,store,call simple conditions examine 
at trap At flow,error,every go to anywhere store consts 
machine level instr,any instr or vars 

5 indirectly using line trace implicit with examine and 
incremental (every line) incremental store full 
compiler compiler expressions 

6 selective if store,label examine most 
compiled in if compiled in none store consts 
permanent permanent to simple var 

7 flow, call and full expressions 
selective store in range DO loops no 

8 examine 
selective line only none store consts 

9 snap of registers opcodes,line IF expression examine and 
selective using load,store,call without calls store (no proc 
PRINT with TRAP GOTO anywhere calls) 

10 selective and store,fetch, 
post-mortem flow,call,source asserts no 

11 registers,core line,store,load, IFs,GOTOs and examine and 
single vars opcode,flow expressions store 

12 examine 
none line only none store consts 

13 indirectly using immediate mode examine and 
incremental none language store full 
compiler expressions 

14 selective and store,call, 
post-mortem conditions, asserts no 

statements 

15 examine and 
- - - store 

16 selective line,store, loop controls and examine and 
format table statement type conditions at trap store full 

immediate mode expressions 
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stepping reversing remarks 

1 At source level 
no no Allows user to cross scope 

No abbreviations 

2 yes Very unconventional 
yes to any Shows complete execution of program dynamically 

degree 

3 At source level. No abbreviations 
no yes Can cross scope. Can back up through procedure 

calls 

4 yes, by Unnatural abbreviations 
indirect checkpoints · Drops to machine level in places 

5 No abbreviations 
no no Very natural and easy to understand 

6 basic Very restriced 
mode no Requires control characters for different modes 

7 Very clear and easy to understand 
no no 

8 yes by Requires a specific type of terminal 
yes checkpoints Very machine oriented 

9 Very wordy and occasionally confusing 
yes yes Has machine level constructs 

10 Has execution counts 
no no Good control of debugging facilities 

11 Wordy and occasionally confusing 
yes yes Has machine level constructs 

Compiles commands 

12 Abbreviations only (one letter) 
yes no Mainly for editing on a mini. 

13 Good abbreviations 
yes no At source level 

14 Program profiles 
no no Limited control 

-
15 At source level 

- no 

16 Execution counts 
yes no Allows some abbreviations for most commands 

Good trap control 



Appendix B 

Syntax of BIAS 

Metalanguage 

: := and are used as in standard BNF 

Non-terminals are in lower-case using as a connector 

( and ) are used for grouping within the meta-language 

OPT-notion ::= notion empty 

notion-LIST ::= notion notion, notion-LIST 

{notion} : := notion notion {notion} 

Language 

command 

immediate-command 

trap-command 

editing-command 

··= innnediate-command 

trap-command 

editing-command 

: : = statement 

::= break-command 

trace-command 

unbreak-command 

untrace-command 

option-command 

continue-command 

· · = insertion 

delete-command 

list-command 

make-command 

get-command 

save-command 

remove-command 

run-command 

67 



break-command 

trace-command 

unbreak-command 

untrace-command 

option-command 

continue-command 

insertion 

delete-command 

list-command 

make-command 

get-command 

save-command 

remove-command 

trap-part 

control-part 

line-num-seq 

option 
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::= ( BREAK I B) OPT-trap-part OPT-control-part 

OPT-( : statement) 

· · = ( . TRACE I T J OPT-trap-part OPT-control-part 

OPT-( : statement) 

··= ( UNBREAK J UNB) OPT-trap-part 

··= ( UNTRACE J UNT) OPT-trap-part 

::= ( SET I RESET) option-LIST 

::= ( CONTINUE J CONT J CJ OPT-line-num 

::= line-num statement 

::= ( DELETE J DEL) line-num-seq-LIST 

··= ( LIST J L J line-num-seq-LIST 

::= ( MAKE I M) file-name 

::= ( GET I G) file-name 

··= ( SAVE I S J OPT-file-name 

::= ( REMOVE J REM J OPT-file-name 

··= OPT-line-num-seq-LIST OPT-statement-type-LIST 

( identifier I variable )-LIST 

::= OPT-( ON condition) OPT-( BY expression) 

OPT-( FOR expression) 

::= line-num OPT-( - line-num) 

• ·= BREAK B 

TRACE T 

XCOUNT 
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The following definitions are language or operating-system dependent. 

The statement-types described are for STILL 

file-name ::= any valid file title 

statement ··= any valid statement in the host language (STILL) 

line-num ::= any positive integer with 8 or less digits 

statement-type : := BEGIN 

END 

CASE 

ESAC 

LOOP 

OD 

ASSIGN 

READ 

WRITE 

CALL 

RETURN 

variable : := any valid variable in the host language that 

has been declared 

identifier •. = any valid identifier in the host language that 

has been declared 

expression . ·= any valid expression yielding an arithmetic value 

condition . ·= any valid expression yielding a boolean value 
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Appendix C 

Syntax of STILL 

Metalanguage as for Appendix B 

program : : = statement 

statement . ·= simple-statement 

compound-statement 

simple-statement . ·= assignment-statement 

procedure-assignment 

return-statement 

read-statement 

write-statement 

invocation-statement 

empty 

compound-statement . ·= block 

case-statement 

loop-statement 

proc-initialisation 

assignment-statement variable. := expression 

procedure-assignment : := proc-id := proc-id 

return-statement : : = RETURN OPT-express ion OPT-( FROM label ) 

read-statement : := READ OPT-SAME OPT-( variable I format I 
variable format )-LIST 

write-statement . ·= WRITE OPT-SAME OPT-( expression format I 
expression format )-LIST 

invocation-statement ::= proc-id OPI'-( (actual-parameter-LIST) ) 



block 

case-statement 

loop-statement 

proc-initialisation 

declaration 

type 

proc-type 

formal-type 

formal-proc-ptype 

formal-parameter 
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: := BEGIN OPT-label + OPT._{ declaration + } 

{ statement + } END 

: := ( CASE I IF) + { guard + { statement + } } 

OPT-( ELSE + { statement + } )( ESAC I FI) 

· ·= OPT-( FOR 

OPT-( BY 

identifier J 

expression) 

OPT-( FROM expression) 

OPT-( ( TO I DOWN'TO) 

expression) OPT-( WHILE expression) DO + 

OPT._{ statement +} OD 

··= proc-id := OPT-( ( formal-parameter-LIST ) J 

proc-type + statement 

::= type ( identifier OPT-( ( = 

expression) )-LIST 

:=) 

[ ( expression 

identifier-LIST 

expression )-LIST ] type 

PROC OPT-( ( formal-type-LIST ) J proc-type 

identifier-LIST 

::= REAL 

INT 

BOOL 

. ·= type 

VOID 

: := type 

REF OPT-( [ empty-LIST ] ) type 

PROC OPT-( ( formal-proc-ptype-LIST ) ) 

proc-type 

: := type 

REF OPT-( [ empty-LIST ] ) type 

··= formal-type identifier-LIST 



actual-parameter 

guard 

expression 

primary 

operand 

variable 

proc-id 

label 

format 

literal 

empty 

: := identifier 

variable 

expression 

: := expression 
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::= primary OPT~{ binary-operator primary} 

::= OPT~{ unary-operat~r} operand 

::= literal 

variable 

I ( expression ) 

I proc-id OPT-( ( actual-parameter-LIST ) ) 

· ·= identifier OPT-( [ expression-LIST J) 

: := identifier 

: := identifier 

: := ( A I H I I I L I R I T I X) expression 

I 

::= TRUE I FALSE 

string 

number 

: := 

The non-terminals number and identifier are as for most languages, and 

are not detailed here. 

The symbol + denotes an end-of-line 

The binary~operators and unary-operators are detailed in section 2.6 



Appendix D 

1 Memory Access 

STOD 

STON 

NAMC 

VALC 

INDX 

LOAD 

MPCW 

MDVW 

MDSC 

couple 

couple 

numsubs 

address 
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Pseudo-machine Instructions 

store destructive: B register must be an IRW 

store non-destructive: leaves value in A register 

name call: load absolute address given by couple 

value call: load value derived from couple 

index: load address described by descriptor and 

subscripts 

load value at IRW on top of stack 

make PCW: with return address 

make DVW: bounds at top of stack 

make DESC: and allocate storage 

2 Procedures and Branches 

MKST mark stack: load MSCW 

ENTR enter procedure using PCW for return address 

RETN level return: to the level indicated 

BLCK address enter block using address for return address 

ENDB end block: will not require return address 

JUMP inc jump: over the next inc bytes 

JMPT inc jump over next inc bytes if top of stack is true 

JMPF inc jump over next inc bytes if top of stack is false 

3 Stack Manipulation 

STAG tag set tag: of top of stack to tag 

ZERO load zero into top of stack ( false ) 

ONE load one into top of stack (true) 

LIT8 value load literal one byte 

LT16 value load literal two bytes 

LT48 value load literal one word 

POP decrement top of stack register 



PUSH 

DUPL 

XCHN 

4 Binary Operators 

increment top of stack register 

duplicate: push top of stack onto stack 

exchange: A and B registers 

For all these, B :=Bop A; T := T - 1 

ADD, SUBT, MULT, DIVD, IDIV, MOD, POWR 

LAND, LOR 

(arithmetic) 

(logical) 

(relational) LEQ, LSS, GEQ, GTR, EQL, NEQ, IS, ISNT 

5 Unary Operators 

For all these except RAND, A := op A; 

NEG 

L~!OT 

SIN, COS, ATAN 

SIGN 

RAND 

NTGR 

NTIA 

LOG 

SQRT 

6 I/O 

logical not 

generate random number on top of stack 

integerize rounded 

integerize truncated 

clear input buffer 

clear output nuffer 

read from file to input buffer 

write from output buffer to file 

reset input buffer for rereading 

write to the same record as last write 
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CLIN 

CLOT 

RDIN 

WROT 

RSIN 

WROS 

ITOS 

OTOS 

OSTR len,string 

input top -of stack: from input buffer, formatted 

output top of stack: to output buffer, formatted 

output string: given with length first 



7 Trap Handling 

TRAP 

STRT 

FNSH 

END 
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link threaded code, check for trap (section 3.2) 

enter block using current address as return address 

exit procedure, returning to supervisor 

return to the supervisor 
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