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ABSTRACT 

A series of in vitro, in sacco and in vivo indoor and grazing experiments were conducted at 

Massey University and AgResearch Grasslands, Palmerston North, New Zealand to study the 

effect of condensed tannins (CT) in Lotus corniculatus (Birdfoot trefoil; CV. Grasslands 

Goldie) upon protein digestion in the rumen and on animal production. Aspects studied 

included effects of CT upon proteolytic bacterial activity, protein solubilization and 

degradation in the rumen and wool production and reproduction in grazing sheep. The studies 

also investigated the potential of L. corniculatus compared with perennial ryegrass/white 

clover pasture (hence referred as to pasture). 

The nutritional effects of CT in L. corniculatus were assessed by administrating 

polyethylene glycol (PEG; MW 3500) into the rumen of one group of sheep (PEG sheep; CT­

inactivated), whilst a separate group of sheep received water (control sheep; CT -acting). PEG 

selectively binds with CT, preventing the CT from binding plant proteins in the rumen, so that 

effects of CT can be determined by comparing CT -acting sheep with PEG sheep. The 

productivity of mixed age ewes in grazing trials was measured in two experiments in the 

summer of 1 9951 1 996 (Chapter 2) and the summer/autumn of 1 997 (Chapter 3), to evaluate 

the effects of CT in L. corniculatus upon efficiency of animal production. A rotational grazing 

system with restricted feed allowance was used in both experiments. 

1 .  During 1 9951 1 996 (Chapter 2), a grazing trial was conducted to evaluate the effect of CT 

in L. corniculatus on wool growth and on wool processing characteristics in sheep fed close to 

maintenance for 1 25 days during summer and autumn (20 December 1 995 until 25 April 

1 996). Half the ewes received twice daily supplements of PEG. The Lotus corniculatus 

contained 32 g total nitrogen (N) and 28  g total CTlkg dry matter (DM) and had an in vitro 

organic matter digestibility of 0.70. Action of CT reduced rumen ammonia concentration (P < 

0.05) and reduced blood plasma urea concentration (P < 0.0 1 )  but increased blood plasma 

cysteine concentration (P < 0.05) compared to their counterparts receiving PEG 

supplementation. The concentration of blood plasma methionine was unaffected by CT. The 

CT had no effect on voluntary feed intake (VFI) and average liveweight gain (P> 0.05) but 

increased both clean fleece weight (P < 0.05) and staple length (P < 0.00 1 ). The CT also 

reduced dag percentage (P < 0.05) and tended to reduce wool yellowness (P = 0.07) relative 

to sheep receiving PEG. There were no significant effects of CT on fib er diameter (/-Lm) , 
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staple breaking force (Newtons), bulk density (cm3/g) or wool resilience (cm3/g). It was 

concluded that the action of CT in sheep fed L. corniculatus increased the efficiency of wool 

production, with more wool being produced at the same feed intake. 

2. Another grazmg trial (Chapter 3) was conducted to study the effects of CT in L. 

corniculatus upon VFI, concentration of plasma metabolites, reproductive efficiency and 

wool production in ewes during two synchronised oestrous cycles in autumn 1997. The ewes 

were restricted to maintenance feeding for the first 1 2  days of each oestrous cycle and then 

increased to ad-libitum for the last five days before ovulation. The experiment was of 2 x 2 

factorial design, using two types of forage (L. corniculatus vs. pasture), with half the ewes 

grazing each forage being given twice daily oral PEG supplementation. A rotational grazing 

system with 200 mixed aged dry ewes (52±0.88  kg/ewe) was used. The Lotus corniculatus 

contained 17 g total CT/kg DM in the diet selected, with only trace amounts of total CT 

present in pasture. Ewes grazing L. corniculatus had higher plasma concentrations of 

branched chain amino acids (BCAA; 57 %) and essential amino acids (EAA; 52 %) than 

sheep grazing pasture. Again CT in L. corniculatus had no effect on mean VFI. The PEG 

supplementation had no effect upon ovulation rate (OR; 1.33 vs. 1.35) and lambing 

percentage (1.36 vs. 1.36 %) of the ewes grazing pasture. The CT increased both OR ( 1 .78 vs. 

1 .56) and lambing percentage (1.70 vs. 1.42 %) in the ewes grazing L. corniculatus relative to 

sheep supplemented with PEG. Increases in OR and lambing % of ewes grazing L. 

corniculatus were due to increases in fecundity (more multiple ovulations and less single 

ovulations), with no effect on ewes cycling/ewes mated. Compared to ewes grazing pasture, 

ewes grazing L. corniculatus had increased clean fleece weight (19 %). It was concluded that 

action of CT in the lotus diet was partly responsible for the increased efficiency of 

reproduction, with more lambs being produced at the same VFI. 

3. In situ and in vitro rumen incubations (Chapter 4) were used to determine the effect of 

CT on both the solubilization and degradation of Rubisco (ribulose- l ,5-bisphosphate 

carboxylase/oxygenase; EC 4.1.1.39; fraction 1 leaf protein) from white clover (Trifolium 

repens; 0.3 g CT/kg DM) and Lotus corniculatus (22. 1 g CT/kg DM). The sheep used for the 

experiments were fed either white clover or L. corniculatus. The loss of DM and neutral 

detergent fibre (NDF), total N and Rubisco from polyester bags suspended in the rumen of 

sheep was used as a measurement of solubilisation. The effect of CT extracted from L. 

corniculatus on the degradation of Rubisco from white clover was measured by in vitro 

v 



incubations with rumen fluid obtained from the same fistulated sheep fed either white clover or 

L. corniculatus. 

In the absence of PEG, the solubilisation of Rubisco from L. corniculatus was less rapid 

than the solubilisation of this protein from white clover when each forage was incubated in the 

rumen of sheep fed the same diet. Addition of PEG tended to increase the solubilisation of 

Rubisco from L. corniculatus, suggesting that CT slowed the rates of solubilization of Rubisco 

from this forage. The action of CT did not inhibit the in situ loss of NDF from either white 

clover or L. corniculatus. In the absence of PEG, the in vitro degradation of Rubisco from L. 

corniculatus was slower when compared to the degradation of this protein from white clover; 

PEG addition increased the degradation of Rubisco from L. corniculatus, but not from white 

clover, showing that CT was the causal agent. The addition of CT extracted from L. 

corniculatus markedly depressed the degradation of Rubisco from white clover, with the effect 

being completely reversible by PEG. The large subunit (LSU) of Rubisco was consistently 

degraded at a faster rate than the small subunit (SSU) and added CT had a greater effect in 

slowing the degradation of the LSU compared to the SSU. It was concluded that the action of 

CT from L. corniculatus reduces the digestion of protein in the rumen of sheep through a minor 

effect on solubilization and a major effect on degradation. The main effects of CT on protein 

solubilization and degradation seemed to be produced locally by CT present in plant tissue. 

4. Eleven strains of proteolytic rumen bacteria (Chapter 5) were used to determine the 

effect of CT extracted from Lotus corniculatus on the in vitro proteolysis of Rubisco protein, 

bacterial specific growth rate and maximum optical density (ODmax). Effects of CT on the 

rate of Rubisco proteolysis (%/h) were determined through making measurements in the 

presence and absence of PEG. Streptococcus bovis strain NCFB 2476 and B3 1 5, Butyrivibrio 

fibrisolvens strain WV 1 and C2 1 1  a, Prevotella ruminicola strain 23 and C2 1 a, Clostridium 

proteoclasticum B3 1 6T, Ruminococcus albus 8, Fibrobacter succinogenes S-85,  Eubacterium 

sp. strain C l 2b and C 1 24b were tested against 1 .5 mg CT/ml for Rubisco proteolysis and 

were examined with 0, 50, 1 00, 200, 400, and 600 Ilg CT/ml for bacterial growth 

measurements. 

In general, the presence of CT markedly depressed the degradation of both the LSU 

and SSU of Rubisco, with the effect being completely reversible by PEG. However, the rates 

of proteolysis per hour for both sub-units of Rubisco varied considerably between individual 

bacterial species and subunits of Rubisco. In the absence of CT, S. bovis strain NCFB 2476 

and B3 1 5  and P. ruminicola like-strain C2 1 a appeared to be most active in both LSU and 
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SSU degradation, while P. ruminicola 23, Eubacterium sp. strain C 1 2b and C 1 24b, C 
proteoclasticum B3 1 6  T, B. fibrisolvens strain WV 1 and C2 1 1  a had moderate to lower rates of 

LSU and SSU degradation. In the presence of CT, S bovis strain NCFB 2476 and B3 1 5  and 

P. ruminicola-like strain C2 1 a  appeared to be most active in both LSU and SSU breakdown. 

Most bacterial strains showed significantly (P < 0.05-0.0 1 )  decreased specific growth rate 

and ODmax with increasing CT concentrations. However, some of the strains, C 
proteoclasticum B3 1 6  T and R. albus 8 showed transient increases in specific growth rate at 

low concentrations of CT (between 50 to 1 00 Ilg CT/ml), but not at high concentrations of 

CT. In terms of specific growth rate, addition of CT at low concentrations (50-200 I-lg CT Iml), 

S bovis NCFB 2476, Eubacterium sp. C 1 24b and F. succinogenes S-85 were most affected 

compared to the minus CT controls, while P. ruminicola sp. C2 1 a  and C proteoclasticum 

B3 1 6  T were not greatly inhibited at the highest concentrations of CT. The degree of inhibition 

of both bacterial growth and Rubisco degradation in the presence of CT varied considerably 

between individual bacterial species and will be discussed in Chapter 5. It was concluded that 

action of CT from L. corniculatus reduces both the rate of Rubisco proteolysis and the groWth 

rate of proteolytic rumen bacteria, but the magnitude of the CT effect differed between strains 

used. 

5 .  Twelve six month old Rornney sheep were fistulated in the rumen and abomasum and 

fed Lotus corniculatus (32 g CT/kg DM), to examine the effects of eT on proteolytic rumen 

bacterial populations and on quantitative N digestion in the rumen. Half the animals were 

given continuous intraruminal infusions of PEG. In the first part of the experiment, the 

populations of four proteolytic rumen bacteria were enumerated directly from rumen samples 

using a competitive polymerase chain reaction (cPCR) technique. During pre-feeding on a 

perennial ryegrasslwhite clover pasture diet, populations of C proteoclasticum B3 1 6, 

Eubacterium sp. C 1 2b, S bovis B3 l 5  and B. fibrisolvens C2 l l a were 1 .6 x 1 08, 2 .7 X 1 08, 7. 1 

x 1 06 and 1 .2 x 1 06 per ml respectively. When the diet was changed from pasture to L. 

corniculatus (average of 8 h to 1 20 h), the average populations of C proteoclasticum B3 1 6, 

Eubacterium sp. C l 2b, S bovis B3 1 5  and B. fibrisolvens C2 1 1  a from the same animals were 

decreased significantly (P < 0.00 1 )  to 5 . 1 x 1 07, 1 .5 X 1 08, 2 .6  X 1 06 and 1 .0 x 1 06 per ml, 

respectively. When the PEG was infused into the rumen of sheep fed L. corniculatus, the 

populations of proteolytic bacteria were significantly increased (P < 0.01 -0.00 1 )  compared to 

the CT -acting group. Rumen proteinase activity, concentrations of rumen ammonia and 
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soluble N were decreased significantly (P < 0.05-0.001 )  in the eT-acting compared to the 

PEG treatment group. 

In the quantitative N studies, the principal effects of CT were to reduce rumen N 

digestibility (P < 0.05) and ammonia pool size, and to increase the flow of non-ammonia 

nitrogen (NAN) to the abomasum. Dry matter intake and DM digestibility were unaffected. 

The N intake, rumen NAN and microbial NAN pool sizes were similar in both eT -acting and 

PEG sheep. Non-microbial NAN fluxes to the abomasum were significantly higher (P < 

0.0 1 )  in the CT-acting sheep than in the PEG sheep, but microbial NAN flux to the abomasum 

was unaffected by treatment. It was concluded that L. corniculatus eT reduced forage protein 

degradation in the rumen, and increased the flow of undegraded feed NAN to the abomasum. 

Proteolytic bacterial populations seemed to be reduced by eT, but these changes did not effect 

the total rumen microbial NAN pool or abomasal microbial NAN flux. Therefore, more 

protein was potentially available for absorption from the small intestine. 

6. This study is the first to report that action of eT increased reproductive efficiency in 

grazing ewes. It is also the first study to show that action of eT decreased proteolytic bacterial 

populations measured directly from rumen samples using cPCR techniques. Feeding forages 

containing CT such as L. corniculatus has been shown to reduce proteolysis in the rumen, 

with the mechanisms being to slightly reduce protein solubilization, to markedly reduce 

protein degradation and to reduce the populations of proteolytic bacteria. CT increased NAN 

flux into the abomasum (in indoor studies) and increased animal production in grazing ewes 

without affecting VFI, thus improving the efficiency of animal production. It is concluded 

that forage CT can be used to increase the efficiency and sustainability of livestock 

production from grazed forages. 
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