
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

INTECoM:
An integrated conceptual data modelling framework.

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

III

Information Systems

at Massey University, Palmerston North

New Zealand

� .
Clare Frances Atkins

2000

INTECoM: An integrated conceptual data modelling framework 22/05100

Errata Sheet

Page Location Action Content
6 Para 3 - line 2 Insert Footnote Originally standing for Nijssen's Information Analysis

after word Method, it has been renamed at Nijssen' s own request and
NIAM this is now the accepted terminology (e.g. Sharp,1994)

121 Para 2 Replace last Such an attempt is the subject of the remainder of this study
sentence with which also includes in Chapter 12, the construction of an

appropriate quality framework based on the issues
discussed here.

175 Figure 20 Delete /
Replace with Diagram below

179 Para I line I Delete
sentence 2

180 Section 2.4.3.1 Delete/ double headed arrow
List point 3 Replace with crowsfoot

180 Section 2.4.3.1 Delete or arrowhead
List point 4

180 Section 2.4.3.1 Delete/ arrowheads
List�oint 5 RejJlace with barred crowsfeet

185 Para 3 line 6 Delete/ in practice
Replace with in this develo�ment

221 End of para 1 Insert The development of the INTECoM framework has also
raised a number of interesting issues for research, which are
discussed in more detail from page 236.

229 Para 2 line 3 Delete prescriptive
284 Fact Type 6 Delete last 3

Example sentences

has
Approved
Programme has

Research has
Enrolment has Offering � Enrolment

1 supervises

Staff
co-ordinates

Figure 20 One solution to the Research Supervisor Problem

"

Abstract

Conceptual data models, a fundamental component of infonnation systems
� �-

development, traditionally play two essential roles, as communication tools and

database design blueprints. However, despite their importance to the success of

infonnation systems, and a considerable amount of research effort, no definitive method

for constructing them has yet been described. Entity-Relationship (E-R) Modelling,

accepted as a de facto standard for a number of year�, has been increasingly criticised.

A number of alternatives have been proposed and some, such as Object-Oriented

modelling, have gradually been accepted by the practitioner community. Nevertheless,

effective conceptual data modelling continues to be recognised as a difficult activity,

both to teach and to practice.

This study investigates conceptual data modelling in the context of the relational

database development process. However, rather than specifying a new method or

exploring the efficacy of existing ones, it focuses on the nature of the activity itself. The

construction of a conceptual data model encompasses both the analysis and design

stages of systems development. Some fundamental differences in modeller behaviour,

required by these activities, are explored. The disparate purposes of a conceptual data

model are also investigated and the effectiveness of using the same modelling method in

both stages, and for both purposes, is questioned. To explore the suitability of current

methods to specific development activities, the procedures inherent in the use of two

conceptual data modelling approaches, E-R Modelling and the Natural Language

Infonnation Analysis Method (NIAM) are also investigated.

(The result of this exploration is the recognition that the methods have exclusive

strengths and that it is more productive to view them as complementary rather than

competing. '/ Consequently, a database design framework, lNTECoM, is constructed in

which the two methods are integrated and matched to the activities for which they are

most suited. The framework is supplemented by a new technique, NaLER, to facilitate

communication in the design stage. The soundness and viability of this theoretical

framework is examined through its use on a small development and the implications of

the adoption of INTECoM on both education and practice are considered.

Preface

"The inherent structure of the E-R approach can be easily explained using
natural language. For this reason, the 5 -10 year time frame will bring the
combining of the E-R approach with the linguistic approach. Future
mode ling scenarios will involve a natural language interface, where the E-R
model underlies with an interpreter and is invisible to the user.
(Hawryszkiewycz, 1987 p.47l)

v

Hirschheim et al. (1995) comment on the large amount of research that has been

amassed in the fields of "information systems development, in general, and data

modelling in particular". They continue,

"A wealth of research in these fields has produced an astonishing array of
empirical results and practical insights, conceptual and terminological
diversity and confusion and a large suite of tools and methods. But as many
researchers and practitioners alike feel, these form an isolated, disjoint and
often contradictory amalgam of knowledge" (p.xi).

This researcher concurs with this view and acknowledges their contribution in

highlighting the diversity and confusion, which undoubtedly exists. While this study

does not include significant discussion of their ideas, their informed analysis and

incisive comments underlie many of its observations. Via, a close analysis of the

literature and a synthesis of existing knowledge within the area of "fact-based data

modelling" (ibid. p.28), this study attempts to "to shed light on similarities where they

exist and to discuss possible directions for improvement" (ibid. p.xi).

This research is motivated by the belief that the nature of the conceptual data model has

changed fundamentally over the last twenty years and that both the nature of these

changes, and the purpose of the conceptual model, are not always clearly understood.

Practitioners and academics alike, provide many independent definitions relevant to

their specific viewpoint or purpose, with few attempts to provide a holistic description.

Indeed, the analogy of six blind individuals attempting to construct an accurate image of

an elephant by discretely describing its constituent parts may well be appropriate

(pletch, 1989). Additionally, the variety of research methods that has been, and

continues to be, used, result in research findings that are often perplexingly

vi

contradictory, untimely, and notable for their inability to inform practice. Rather than

adding more experimental work to this melange, this study focuses on, and attempts to

clarify, some of the issues arising from this fragmented understanding. The principles

underlying the conceptual data modelling process are exposed and existing tools,

techniques and methods are investigated. The purpose of this critical examination is to

explore whether integration can improve both the process of conceptual data modelling

and the appropriateness and quality of the outputs.

The philosophical basis for this research is thus broadly interpretivist. Interpretivism,

which has recently " . . . emerged as an important strand in information systems research"

(Klein & Myers, 1998 p.2), has been adopted by a number of IS researchers (e.g.

Walsham, 1993; Boland, 1991). Klein and Myers (1998) comment that,

"IS research can be classified as interpretive if it is assumed that our
knowledge of reality is gained only through social constructions such as
language, consciousness, shared meanings, documents, tools and other
artifacts. Interpretive research does not predefine dependant and
independent variables but focuses on the complexity of human sense
making"(p.5)

Likewise, Walsham (1993) describes interpretivism as "an epistemological position

concerned with approaches to the understanding of reality and asserting that all such

knowledge is necessarily a social construction and thus subjective" (p.5). In discussing

the use of interpretive methods for case study research, he later comments on the

interrelationship between epistemology and research methods,

"If one adopts a positivist epistemological stance, then statistical
generalisability is the key goal. However, from an interpretivist position, the
validity of an extrapolation from an individual case or cases depends not on
the representativeness of such cases in a statistical sense, but on the
plausibility and cogency of the logical reasoning used in describing the
results from the cases, and in drawing conclusions from them" (ibid. p.15)

Although this study does not involve the construction of case studies, it does rely on the

plausibility and cogency of its logical reasoning to make sense of a particular set of IS

development activities. It makes no claim to provide empirical evidence of the validity

of the conclusions that are drawn but lays down threads of discrete arguments that are

synthesised into a credible scenario. In so doing, this researcher has been influenced by,

and taken cognisance of the arguments of researchers such as Lyytinen and Klein

(1985), Galliers (1993), Ciborra (1997), Walsham (1995), and Klein and Myers (1999).

vii

Ciborra (1997), in particular, has identified a crisis in IS research which he suggests

stems from the general adoption of the "paradigm of the natural sciences and the

relevant methodologies of measurements, normalisation and calculation. "(p.1551). He

continues,

"What I am concerned with here is something subtly pervasive: it is for
example, that in order to show that structured methodologies are a failure or
plainly not used, one has to adopt a structured scientific method to
empirically measure the phenomenon, in order to be credible and legitimate;
and even then, being methodologies at the core of our discipline, these
empirically measured facts still get to be dismissed" (ibid. p.1552).

This, he argues, provides a disservice to the IS community as "we tend to forget the role

of human choice behind the technical artefacts, and study the user side of information

systems by adopting the methods of the natural sciences" (ibid. p.1552). In response to

this tendency, some researchers have looked instead to the social science disciplines for

more appropriate methods (e.g. Walsham 1995; Klein & Myers, 1999). Galliers (1993)

has suggested that the mode of subjective/argumentative research, which is the primary

form adopted in this thesis, is appropriate for investigating methodological issues and

categorises it as a post-positivist, interpretive approach.

Most of the more recent research effort, in the conceptual data modelling area, has

concentrated on positivist, empirical studies that either compare and refine various

qualities of different modelling formalisms or observe the behaviour exhibited by

modellers with differing levels of expertise. However, perhaps because of the difficulty

in designing pertinent experiments, little attention has been paid to the "ways of

working" (Bronts et aI. , 1995 p.214) inherent in the different formalisms. No studies

were discovered that investigated whether the different behaviour required of the

modeller by different formalisms had any effect on the quality of the final product.

Likewise, there has been little, if any, consideration given to the data modelling

requirements of the different stages of the information systems life cycle. Consequently,

the appropriateness, of different techniques for the various tasks required by these

stages, does not appear to have been adequately examined either.

This study then, is not interested in attempting to re-assess whether one formalism is

more expressive, useable or comprehensible than another. Instead, it explores the wide

range of functions ascribed to the conceptual data model, and focuses on the different

viii

working practices and behaviours inherent in different conceptual data modelling

formalisms. It then investigates the different 'ways of working' required by the

activities of analysis and design and explores the question of whether some formalisms

are inherently more suited to certain stages of information systems development than

others.

In order to establish a base from which a useful integration can be derived it is necessary

to also explore a number of related areas. Therefore, this study also examines various

issues including; the history of conceptual data modelling; pedagogical issues; and

methods that have previously been used to evaluate the quality and effectiveness of

conceptual data models. A more detailed look at the processes involved in developing a

conceptual data model with both Entity-Relationship (E-R) and NIAM (Natural

Language Information Analysis Method) techniques is also undertaken. The end result

of this critical and hermeneutic examination is the delineation of a framework within

which these particular techniques can be used to greater advantage than the use of either

of them alone.

The apparent contradiction in investigating the use of data modelling tools, classified as

objectivist by Klein and Hirschheim (1987), to undertake an activity, data modelling,

classified by them as subjectivist, is recognised. However, this study focuses on current

education and practice and it is useful to accept and work within this apparent paradox.

As Weber (1997) points out the ontological assumptions underlying the data modelling

activity comes from the modellers themselves rather than from the data modelling

grammars they choose to use. This study also broadly concurs with Kent's (1978)

observation that,

"[A]t bottom we come to this duality. In an absolute sense there is no
singular objective reality. But we can share a common enough view of it for
most of our working purposes so that reality does appear to be objective and
stable" (p.203).

Following a general introduction, and a working definition of some of the more

overloaded terms in the first two chapters, Chapter 3 provides a historical perspective on

the development of the data modelling activity. In so doing, the chapter explores the

alteration in the purposes and use of a conceptual data model and raises some

fundamental questions regarding the activity itself. Chapter 4 explores these issues in

ix

more detail and investigates their implications on both practice and education. The

process of constructing an E-R Model is discussed in Chapter 5 and the predominance

of the Chen (1976) E-R Model, widely assumed by many academic writers, is

challenged. In particular, the descriptive, creative nature of the process of E-R

modelling and its appropriateness for analytical activity is explored. An alternative

method, NIAM Conceptual Schema Design Procedure (NIAM-CSDP), is described in

Chapter 6, with a continuing investigative emphasis on the procedure by which a model

is created.

Having thus established a basis for such a discussion, Chapter 7 provides a comparison

of the 'ways of working' of the two techniques. There is no attempt to establish any

superiority of one method over another. Instead, the emphasis is on matching the

different approaches to appropriate stages of the information systems development life

cycle. In Chapter 8 the perspective of the analysis shifts slightly, to investigate the

means by which the quality of conceptual models has been evaluated. This investigation

confirms the existence of diverse definitions of a conceptual data model and highlights a

number of issues that spring from this lack of consensus. It also shows that much of the

previous research has sought to establish one modelling facility as the 'best', to the

exclusion of all others. This study takes the position that the search for a 'holy grail' of

data modelling, is inappropriate, wasteful and dangerous and has diverted attention

away from both an investigation of the nature of the activities required by database

development and on the construction of tools to match those needs.

Consequently, Chapter 9 proposes a framework, INTECoM in which elements of the

NIAM and E-R approaches are matched to appropriate needs and used productively

together. Chapter 10 provides a new technique, NaLER for extracting NIAM-like

sentences from E-R models. It justifies the need for such a technique primarily as a

means of constructing a formal, natural language view of the final design model and

facilitating the audit of the conceptual data modelling process, but also to assist in

model interpretation for both non-technical users and inexperienced modellers.

A small development to demonstrate the viability of the INTECoM framework was

undertaken and is described in Chapter 11, while the issues of quality evaluation related

to the use of the framework are discussed in Chapter 12. The final version of INTECoM

x

is defined in Chapter 13 and the study concludes, in Chapters 14 and 15, by looking at

the implications inherent in the adoption of the INTECoM framework, for both the

education of future data modellers and the practice of data modelling. The implications

of using the NaLER technique is also discussed and some potential criticisms are

addressed. A number of limitations of this work are highlighted and the possibilities for

future research are delineated.

This thesis then, focuses on theory building rather than theory testing, constructing a

new theory, in the fonn of an integrated framework, in which each element is justified

by reference to, or inference from, the relevant literature. By taking a holistic view of

the development of the data modelling process, it exposes and explores questions that

have been largely overlooked by previous researchers. A potential criticism of this work

could be that no empirical studies have been undertaken to assess the efficacy of the

proposed framework. Apart from the concentration on theory building, there are several

reasons for this. Firstly, the primary techniques within the framework, ER Modelling

and Object-Role Modelling, are already well tested, used in the database community and

considered to be effective. Secondly, the nature of the proposed framework is such that

for a case study to hold any real significance it would need to be tested on a medium to

large 'real-world' project. In addition, while such a test would undoubtedly be

profitable, the scale of such a test puts it beyond the scope of this research. Instead, a

small development undertaken by the researcher is described in detail, as a worked

example, to demonstrate the overall structure of the framework, the inter-relationships

that exist between the various elements and how the framework can be successfully

instantiated.

There is one very clear and deliberate omission from this work and that is a detailed

consideration of the object-oriented (0-0) approach to system development. While this

omission is intentional and stems from a number of factors, 0-0 techniques have not

been ignored. However, while the use of object-oriented techniques is undoubtedly

increasing, as yet no standard process, whether de facto or actual, exists. The Unified

Modelling Language (UML), currently supported commercially by Rational Software

Corporation, brings together the major 0-0 methods that have been developed over the

last ten years Booch (Booch, 1991, 1995), Object Modelling Technique (OMT) (Blaha

et al. 1988; Rumbaugh et al., 1991; Blaha & Premerlani, 1997) and Objectory (Jacobsen

et aI., 1992). UML provides a standard notation and development approach by bringing

together the design strengths of Booch, the analysis strengths of OMT and the strong

behavioural analysis of use cases (Quatrani, 1998). However, while the eventual

acceptance of UML, as a de facto standard is probable, it is not yet recognised as such.

A more important consideration is that neither UML nor its predecessors provide a

proven means of designing relational data structures. Textbooks describing the object­

oriented approach to system development tend to emphasise the process and software

aspects of development and either ignore the need for database design (e.g. Quatrani,

1998) or treat it as a required but additional technique (e.g. Larman, 1998). Indeed, as

Quatrani (1998) states, "the Rational Objectory Process [is 1 an extensive set of

guidelines that addresses the technical and organisational aspects of software!

development" (p.8). The issues considered here are very specifically related to the

development of relational databases and the detailed exploration of methods that do not

seek to provide a means to design such structures is thus not relevant. Of all the 0-0

methods, OMT had placed the greatest emphasis on relational database design and the

general approach to system development recommended in both UML and OMT is

considered in Chapter 5. However, it is argued that while both the notation and the

working language of these formalisms may differ, in terms of their approach to data

identification and structuring, their 'way or working
,2 is essentially no different from the

approach required by traditional E-R Modelling. Indeed, Eaglestone and Ridley (1998)

specifically state,

" Data analysis methods provide systematic processes by which conceptual
models are derived. One such method, more commonly associated with
relational database design, is entity-relationship analysis [Chen 76]. This is
not inherently linked to relational databases and is in fact the sort of process
we would wish to undertake to design an object database" (p.276).

This research takes the view that the requirement to build sound data structures is likely

to continue to be important for some time and that the need to formally analyse and

record user data needs and to then transform them to effective relational databases, will

thus remain. While the specific techniques that are used to meet these requirements may

1 Emphasis added

2 The meaning and importance of a method's 'way of working is considered fully in Chapter 5.

xii

well change, the fundamental principles that underlie them are likely to remain constant.

It is thus the adoption of the principles of the INTECoM framework that is advocated by

this thesis rather than any specific data modelling fonnalisms with which" it is

instantiated.

xiii

Acknowledgements

My initial thanks go to my ex-colleagues at the Statistics Division of the Inland Revenue

in the UK. In particular, Dr Ron James who first inspired me to a deep interest in data

modelling and Dave Boutwood, who not only taught me the value of constructive

argument but also gave me plenty of practice.

For more specific help, I must thank my two supervisors at Massey University: Dr

Daniela Mehandjiska-Stavreva, now of Bond University, Australia for her support and

encouragement io bleak times and Professor Joo Patrick, now of the University of

Sydney, for the challenging intellectual debate he provided and particularly for his

assistance in formally defining the NaLER language.

In addition, Wen van Kersbergen, from the Amsterdam School of Business, gave me his

invaluable guidance on the practical use of the NIAM-CSDP and InfoModeler™ and Dr

Steve Hitchman provided me with many useful insights and criticisms, from both his

academic and professional experience.

All my colleagues in the Department of Information Systems, particularly Chris

Freyberg, Mike Ryder and Peter Blakey have given me both practical and moral support.

Lastly, my heartfelt thanks to all the students on whom I have tested out my theories and

explored my ideas; for their feedback, their enthusiastic participation and their patience.

Publications
The following refereed papers have been directly based on work in this thesis.

Atkins, C.P.(l 996): Prescription or Description: Some Observations on the Conceptual
Modelling Process, in PURVIS, M.(ed.), Proceedings of Software Engineering:
Education and Practice Conference, Dunedin, New Zealand, January: 34-41.

Atkins, C.F. and Patrick, J.D.(1998): NaLER: A Natural Language Method for
Interpreting E-R Models, in PURVIS, M. (ed.), Proceedings of Software Engineering:
Education and Practice Conference, Dunedin New Zealand, January: 2-9.

Atkins, C.F. and Patrick, 1.D.(2000): NaLER: A Natural Language Method for
Interpreting E-R Models, Campus Wide Information Systems! (forthcoming).

xiv

Contents

Preface ... v

Acknowledgements ... xiii

Publications .. xiii

1 Introduction .. 5

2 Clearing the Confusion 11

3 Data Modelling 25

4 Conceptual Data Modelling: some underlying issues 39

5 E-R Modelling: observations .. 57

6 NIAM: observations 71

7 E-R and NIAM: a comparison of approach .. 83

8 Evaluating Data Models 103

9 INTECoM: an integrated framework123

10 NaLER: completing the circle143

11 INTECoM: in practice 157

12 INTECoM: quality matters 189

13 INTECoM: an instantiation 205

14 Implications 221

15 Conclusion .. 233

References . , .. 239

Glossary .. 257

Appendices 263
Appendix 1 - InfoModeler™ transformations 265
Appendix 2 - NaLER Definition Language 267
Appendix 3 - ISPG Context Diagram .. 271
Appendix 4 - Analysis Documentation 273
Appendix 5 - Initial Design 295
Appendix 6 - Design in Progress .. .301
Appendix 7 - Design Verification 305
Appendix 8 - Equivalence Tables 315
Appendix 9 - Design Documentation 321
Appendix 10 - Verified Design Model.. 325
Appendix 11 - Design Innovation .. .329
Appendix 12 - Task Checklists ... 331

List of Figures

Figure 1 ANSIJX3/SPARC Architecture - adapted from Avison (1992) 26

Figure 2 A revised view of the ANSI 3 level architecture32

Figure 3 Meta-Model Architecture .. 35

Figure 4 IS Development as a duality (de Carteret and Vidgen, 1995)45

Figure 5 Conceptual Modelling Activity Kim and March (1995) adapted . .. 54

Figure 6 The 7 steps of the NIAM-CSDP (Halpin, 1995) 73

Figure 7 A set of example sentences for two qualified fact types 74

Figure 8 A simple NIAM diagram .. 75

Figure 9 A framework for IS methodologies, (Bronts et al, 1995) 85

Figure 10 Example of 'verbalization' report' from InfoModeler™ 96

Figure 11 Natural language interpretation of E-R/R constructs 97

Figure 12 Lindland et al.'s (1994) Framework .. 112

Figure 13 Concepts in the framework of Krogstie et. al. (1995) 114

Figure 14 An integrated conceptual data modelling approach 133

Figure 15 Example of Feedback from SERFER (Batra and Sein,1994) 146

Figure 16 N aLER - An overview 148

Figure 17 NaLER sentences and examples 156

Figure 18 ISPG System - Context Diagram ... 159

Figure 19 Second draft design modeL ... 174

Figure 20 One solution to the Research Supervisor Problem 175

Figure 21 Final draft design model .. 177

Figure 22 Pre-Verification Design ModeL .. 180

Figure 23 INTECoM - Quality Framework .. 194

Figure 24 INTECoM - Instantiated Quality Framework 202

Figure 25 INTECoM Framework - Final Version 206

Figure 26 Create Analysis Model - Activities .. 208

Figure 27 Construct Design Model - Acitivities .. 212

List of Tables

Table 1 Some definitions of conceptual modelling 39

Table 2 Evaluation criteria used in conceptual modelling studies 1 04

Table 3 Definitions of 'conceptual model' in comparative studies ll0

Table 4 Approaches to quality in conceptual modelling 111

Table 5 Goals and Metrics of proposed quality frameworks 117

Table 6 Combined list of all entities from analysis model... 166

Table 7 List of all entities sorted by their primary key attributes 167

Table 8 List of entities after initial merging 171

Table 9 Two-way sentences for the final draft design model... 178

Table 10 Primary to foreign key links in final draft design modeL 178

Table 11 Initial quality criteria for INTECoM design modeL190

Table 12 Quality evaluation of analysis model 196

Table 13 Analysis Task Checklist197

Table 14 Quality evaluation of design modeL 200

Table 15 Design Task Checklist.. ... 201

5

1 Introduction

"A beginning is the time/or making sure that all the balances are correct" (Herbert. 1 972).

Analysing and describing the structure of data required by an organisation to support its

infonnation systems, is generally regarded as a fundamental activity in tnfonnation

system development (e.g. Hitchman, 1995; Kim & March, 1995; Nijssen & Halpin,

1989; Batra & Marakas, 1995; Hawryszkiewycz, 1997). This is particularly so where

the system is, primarily, database focussed (Avison, 1992; Avison & Fitzgerald, 1995;

Kroenke, 1992; Post, 1999). The growing recognition of the value of data to an

organisation (Shanks & Darke, 1997) has also resulted in increasing importance being

attached to its management and auditing (e.g. Amer, 1993; Kinn & Sullivan, 1994).

For these activities to be effective, an accurate, understandable, documented record of

the consensus view of the organisation's data is required. It would, therefore, seem

likely that the majority of organisations would produce some fonn of high level

representation or model of their data and then utilise this information in the design of its

infonnation systems. However, related research, while not explicitly addressing this

question, suggests that this may not be the case. In 1994 only 32% of surveyed

organisations in the UK reported always using data analysis on projects (Hitchrnan,

1995). In the same year, in New Zealand, only 30% of surveyed CASE (Computer

Aided Software! Engineering)/4GL (Fourth Generation Language) users reported the

use of data analysis techniques (MacDonell, 1994). While this research does not, in

itself, offer any substantive proof for the lack of high-level models, it does seem

reasonable to suggest that organisations, which do not make use of such techniques at

the project level, are unlikely to build an effective, corporate view of their data. Despite

I or Systems.

6

there being a number of perceived benefits to creating effective data models, (e.g. de

Carteret & Vidgen, 1995; Simsion, 1994), it would seem that almost 70% of

organisations are choosing not to do so. It seems unlikely that organisations would

choose to ignore obvious benefits, if the means of creating such useful models was

straightforward, well understood and cost-effective. As Simsion (1994 p.21) argues,

"data modelling is not optional" for implicit in the creation of a database is the design of

a data model. A database is by its very nature a data model and the only optional feature

is the level of formality that has been followed in its construction. Organisations that

choose not to undertake formal data modelling are, thus, not only unlikely to maximise

their investment in their data but also in danger of creating poorly designed,

undocumented databases.

There does not appear to be any obvious reason for this dichotomy, although Hitchman

(1995) has suggested that there may be a lack of understanding of data models and that

neither IS practitioners nor business clients find the current forms of data

representations intuitive in use. Since its introduction in 1976, the E-R (Entity­

Relationship) approach (Chen, 1976) or one of its many variations (e.g. Teorey et al. ,

1986) has reportedly become the most ubiquitous technique for creating data

representations (Batra et aI. , 1990; Loosely & Gane, 1990; Flynn, 1998;

Hawryszkiewycz, 1997; Moody & Shanks, 1998). However, although a number of early

studies commended the E-R model for its ease of use and intuitiveness (Brodie et aI.,

1984; Teorey et al. , 1986; Yao et al. , 1982), the findings of the more recent work quoted

above (Hitchman, 1995; MacDonell, 1994) would seem to undermine these views.

Indeed, Moody and Osianlis (1996 p.506) writing from a practitioner's perspective

argue that "while the Entity Relationship model is an excellent tool for designing

database schemas, it never was and never will be suitable for direct consumption by

business users." Additionally, some of the impetus behind the adoption of object­

oriented techniques and the development of the Unified Modelling Language (UML)

has been the desire to provide a more intuitive and natural view of reality (Martin and

Odell, 1992).

Object-Role Modelling (ORM) (Biller & Neuhold, 1977) is a recognised alternative to

the E-R approach. The technique is central to NIAM (Natural Language Information

Analysis Method); a method based on a formalised natural language representation of

7

data. NIAM also lays out a specific process, the Conceptual Schema Design Procedure

(CSDP), for the creation of data representations (Nijssen & Halpin, 1989; Halpin, 1995).

Widely used in Australia and Europe, the NIAM-CSDP is significantly more

prescriptive than any of the methods proposed for the creation of representations using

traditional Entity-RelationsQip modelling techniques. Unlike E-R Modelling, it utilises

a fonnal subset of natural language to detennine 'facts' from which the O-R model is

then built. The O-R is then transfonned into a nonnalised relational data model.

These two approaches have been generally regarded as alternative methods to modelling

and a number of studies have looked to compare their effectiveness both as

representational tools and as useable methods (e.g. Shoval & Even-Chaime, 1987; Kim

& March, 1995). None of the studies investigate the differences in the kind of cognitive

and practical behaviour that is required of the modeller (Sutcliffe & Maiden, 1992),

although one (Batra & Davies, 1992) does examine cognitive differences between

expert and novice modellers. In addition, these studies do not generally make a

distinction between the analysis and design activities that are an integral part of the data

modelling process. Consequently they do not address the differing requirements of the

different stages of the modelling process, the differing purposes that the resultant

models are required to serve nor the kind of modelling behaviour that is likely to be

most effective at which stage. Likewise there is no discussion on the suitability of the

various methods to the various purposes of the model, despite these having been clearly

set out in early research (Tsichritzis & Lochovsky, 1982).

However, there are significant differences in the processes commonly used to construct

either an E-R or an ORM conceptual model. This study seeks to explore these

procedural and behavioural differences and highlight their major strengths, weaknesses

and appropriateness to different aspects of the data modelling process. Therefore, how

the processes are generally taught and used and the implications of this, on both the ease

of learning and the reliability of the outputs, are also investigated. It is argued that the

facilities offered by the two methods are complementary rather than competing and that

each should be recognised and used in an appropriate way and for an appropriate

purpose. The study suggests that elements of the NIAM-CSDP are best suited to the
.

analysis stage of conceptual data modelling while the processes inherent in the creation

an E-R model are better suited to design activities.

8

Bringing together the various strands mentioned above, this study first proposes and

outlines a framework for data analysis and design that seeks to create a better match

between the procedures and techniques within the two methods and the activities they

are designed to support. This framework, termed INTECoM, (Integrated Conceptual

Modelling) is based in current practice and facilitates the integration of techniques taken

from both the NIAM-CSDP and E-R Modelling. In addition, a new technique is

developed to provide a formal, natural language representation of an E-R Model. It does

not suggest that these are the only techniques that can be used in this way, merely that

they are appropriate and conveniently highlight several significant and pertinent issues.

Thus, INTECoM does not claim to be a definitive conceptual data modelling method but

a framework that can, potentially, be instantiated with a variety of techniques.

The proposed framework, instantiated with these techniques, is then used to undertake a

small example development. The progress of this development is described in detail

and several observations are recorded. This practical application of the framework,

while confirming the validity of the underlying principles, necessitates the detailing of a

number of strategies and quality measures. These are finally consolidated into a

definitive description of the framework. Recognition, and acceptance, of the validity of

the principles on which INTECoM is built, would have a profound effect on the practice

of conceptual data modelling and, subsequently, on the education of future data

modellers. Therefore, the study concludes by considering some of these implications.

Before attempting to delineate any consequential arguments however, a very close

examination of some data modelling terminology is required. While almost any

intellectual activity can be improved by beginning with a clear basis for communication,

in this particular endeavour, such an undertaking is, not just desirable but essential.

Hirschheim et al. (1995) remark on the "terminological diversity and confusion" (p.xi)

that abounds in the data modelling community, despite �Ue's (1993) attempt to inject

some sense of order. Clearly, a full and definitive explanation of all such terminology is

not the focus of this research, which, has, to some extent, to work within this "disjoint

and often contradictory amalgam of knowledge" (Hirschheim et aI. , 1995, p.xi).

Nevertheless there are a number of terms and concepts that are used in specific ways in

the following discussions and which therefore require some careful consideration. In

9

addition, there are some interesting observations to be made through a close

examination of the various meanings that have been ascribed to certain tenns.

Consequently, the following chapter deals exclusively with some of the more

contentious expressions. These are summarised in the glossary on page 257, which also

contains working definitions of other words and tenns as they are used in the context of

this thesis. However, one tenn, 'conceptual data modelling', perhaps the most

contentious of all, is dealt with separately in Chapter 4.

10

2 Clearing the Confusion

" 'When I use a word, ' Humpty Dumpty said, in rather a scornful tone, 'it means just what
I choose it to mean - neither more nor less. '
'The question is, ' said Alice, 'whether you can make words mean so many different things. '
'The question is, ' said Humpty Dumpty, ' which is to be master -- that's all. ' " (Lewis
Carroll, 1871)

Introduction

11

Any discussion of the topics raised in this study immediately stumbles over the plethora

of meanings, synonyms, homonyms and misunderstandings, employed to describe the

fundamental elements of the subject area. Ironically, in a discipline concerned,

primarily, with attempting to extract exact and consensual meanings from ambiguous

and ill-defined natural language descriptions, there is no clearly defined vocabulary to

describe the nature of the techniques and concepts that are employed. A number of

terms are either contentious, overloaded with meaning, well defined but misused or

simply not clearly defined. To increase the confusion, practitioners and academics have

developed different terminologies and in any piece of writing it is not always clear

which is being used, as both, or a combination, may be used in either context. Some of

the more ubiquitous terms are discussed here, while others are investigated in detail in

subsequent chapters, as they become relevant to the developing arguments.

Data and Information

As early as 1966 clear definitions of 'data' and 'information', in respect of their use

within a computing context, were provided as,

"Data: A representation of facts or ideas in a formalised manner capable of

being communicated by some process. Note: The representation may be
more suitable either for human interpretation (e.g. printed text) or for
interpretation by equipment (e.g. punched cards or electrical signals) (IF1P
ICC, 1966, quoted in Olle, 1993)"

12

and

"Information: In data processing, the meaning that a human ascribes to data
by means of the known conventions used in its representation. Note: the
term has a sense wider than that of ordinary information theory and nearer to
that of common usage . . . " (ibid.)

However, early authoritative writers in this area such as Kent (1978) and Chen (19 76)

found no need to define data at all before discussing it. In the days of 'data processing' ,

i t was clear that data referred to small pieces of "information operated on by a computer

program" as the Collins dictionary (Hanks, 1979) defined it in 1979. Despite the IFIP
clarification quoted above, no clear distinction between data and information seemed

generally necessary. Data, defined as "a series of observations, measurements or facts"

in close association to its Latin root of dare - to give, was considered synonymous with

information, drawn from the Latin root informare - to give form to (Hanks, 1979). In

contradiction of its own definition, the Collins dictionary continues by saying that

information is also "the results derived from the processing of data according to

programmed instructions" (Hanks, 1979). Tsichritzis and Lochovsky (1982) were

among the earliest to find it necessary to provide a distinction between these terms, and

hence have provided the basis for most subsequent definitions. "Data correspond to

discrete, recorded facts about phenomena or ideas", that are "worth not only thinking

about, but also worth recording in a somewhat precise manner", while "information is

an increment of knowledge that can be inferred from data" (Tsichritzis & Lochovsky,

1982 p.3).

However, more recent writers (e.g. Fims, 1990; Avison, 1992; Ricardo, 1990; Kroenke,

1992) also begin with definitions of these same terms, perhaps in recognition of the

confusion that now appears to exist over their use in phrases such as data modelling and

information modelling. In general, these later definitions do not succeed in significantly

adding value to their earlier counterparts although Schenck & Wilson (1994), providing

echoes of the early IFIP definition, are an exception. They make an explicit and useful

connection between data as "symbols which represent information for processing

purposes" (p.xxvii) and the need for agreement on the meaning of those symbols. They

also bring a refreshing succinctness in quoting Mary Loomis' (1987) assertion that

information is data placed in context, (Schenck & Wilson, 1994). Boland (1987)

13

introduces an additional thread when he argues that infonnation is a skilled human

accomplishment rather than any fonn of commodity.

This study will accept Tsichritzis and Lochovsky's (1982) definitions while also

acknowledging the importance of Schenck and Wilson's (1994) observations. Finally,

while recognising the argument for the use of data as a plural, this thesis will accept

what has become the more common practice and use it as a singular noun.

Models

The numerous definitions of the word 'model' as a noun provided by the CoIlins

dictionary (Hanks, 1979), are testimony to the usefulness of this word and in many

contexts it is clear which meaning is intended. However, at least two distinct

interpretations are employed within the context of data representation in IS and

considerable confusion can arise when these distinctions are not explicitly discussed.

Loosely and Gane (1990) provide a clear, if infonnal, distinction, suggesting that, "a

'model' can describe two different levels of abstraction ... at the first level a model is the

thing you build to represent some aspect of your business ... at the second level, the set of

modelling constructs that you use when creating that model" (p.2).

The first meaning described by Loosely and Gane (1990) is perhaps the most common

and the most obvious. It refers to "a simplified representation or description of a system

or complex entity" (Hanks, 1979). Here the model is an individual instance of

representation, i.e. a specific map, rather than the building blocks that have been used to

construct it. These models are constructed primarily as an aid to understanding the

underlying slice of reality that they represent which may, or may not, have an actual

physical existence (Schenck & Wilson, 1994).

The second way in which 'model' is used is in the sense of a "representative fonn, style

or pattern" (Hanks, 1979). In other words, it is a set of commonly agreed conventions

for representing some aspect of the real world. Here the model is an abstraction device

that allows the building of artefacts that can be manipulated as if they were real. As

Kent (1978, p.93) points out, "A model is a basic system of constructs used in

describing reality". The fonn that the conventions take is less important than general

agreement concerning what they are intended to represent. The difficulties in arriving at

14

this consensus and the confusion that can arise when it is not achieved, or worse still,

when it appears, incorrectly, to have been achieved, is an area of interest to this study.

The problems inherent in working with an inconsistently defined model will be

discussed in various places but particularly in Chapter 5 . 1

Another issue pertinent to this discussion is a concern expressed by Kent (1 978) and

worth quoting in some detail.

and

" fA model] reflects a person's deepest assumptions regarding the
elementary essence of things. It may be called a "world view". It provides

the building blocks, the vocabulary that pervades all of a person's
descriptions" (p.93).

"A model is more than a passive medium for recording our view of reality.
It shapes that view and limits our perceptions. If a mind is committed to a
certain model then it will perform amazing feats of distortion to see things
structured that way and it will simply be blind to the things which do not fit
that structure" (ibid. p.93).

If correct, the notion that the constructs we use limit our perceptions and define the way

in which we view the world, is very significant particularly if the models in use are

"highly structured, rigid and simplistic" as Kent (ibid. p.94) contends. The discussion

of these constraints comes from researchers in linguistics and in support of his

arguments Kent quotes from Sapir (1931).

"fL]anguage defines experience for us . . . because of our unconscious
projection of its implicit expectations into the field of
experience . . . Categories such as number, gender, case, tense, mode, voice,
aspect and a host of others . . . are not so much discovered in experience as
imposed upon it" (ibid. p.94).

The possibility that constraints are implicitly imposed by the use of a particular

modelling convention is very pertinent to the issues under investigation here2•

Consequently, further discussion of this idea pervades much of this study and further

comments can be found in Chapters 4 and 5.

I The inconsistency referred to here is when an entity on an E-R diagram can be seen as either the
representation of a 'conceptual • entity or a fully normalised relation, depending either on the purpose
for which the model has been constructed or purely on the preference of the modeller.

2 Once again, it is the notion of an entity. It will be argued that if an entity is viewed as the representation
of a normalised relation, a number of constraints are introduced into the conceptual model.

15

The ubiquitous map analogy used by a number of authors (e.g. Kent, 1978; Loosely and

Gane, 1 990) is a useful one and demonstrates how both meanings of the word can be

combined in general use. Cartographic conventions provide . a widely used and useful

model Ca map), which although it may differ in its representational details, is

nevertheless generally understandable. These conventions can be employed to produce

a specific map Ca model in the first sense), which while it may be idiosyncratic in its use

of particular conventions, will none the less be useful, particularly with reference to its

specific legend. As an abstraction of reality, much detail is necessarily omitted from

such a model and this lack can itself be a barrier to the model's comprehensibility and it

is important to be aware of these limitations (Schenck & Wilson, 1994). As Tsichritzis

and Lochovsky (1982, p.6) remark, "models are used extensively in many disciplines for

enhancing understanding and abstracting detail". Some obvious examples are

mathematical, statistical and economic models that also take on additional

characteristics in that they are "designed to facilitate calculations and predictions"

(Hanks, 1979). However as many writers like to point out, the map is not the territory

(Korzybski, 194 1) no matter how real the model can be made to appear. The tendency

to treat models, particularly complex ones, as if they were the real, is neatly highlighted

by Kent (1978) in his 'message to mapmakers' although it would perhaps be more

appropriate to direct this message to the map-readers. The mapmakers or model makers

can be expected to be aware that the "highways are not painted red"(Kent, 1978, p .v).

Map-readers on the other hand, particularly inexperienced ones, may not be so clear.

This distinction, which reflects significantly on the users' view of models within the

development process of an information system, is one that will be revisited later.

Data Models and data models

The previous sections attempt to establish working definitions for the most commonly

used meanings of ' model', 'data' and 'information', within the information systems

context. Utilising these definitions, it is useful to investigate some terms which use

these concepts in combination, particularly, the ubiquitous 'data model'. As with the

term 'model' discussed previously, the phrase, 'data model' is used with two distinct

meanings; one to describe a set of conventions used to represent a simplified and highly

abstracted view of data, the second to describe the specific representation itself.

1 6

Simsion points out (1994, p.22) that when IS practitioners refer to a model, it is almost

always in the latter sense while in academic discussions a model will, generally, be

understood as the former.

This overloading of meaning is responsible not only for elements of misunderstanding

and miscommunication between the two groups but can also make it difficult to discuss

both meanings without introducing some form of distinction. Loosely and Gane (1990)

suggested a convention of capitalisation to distinguish between the two meanings. They

used Data Model (capitalised) to refer to a model of the first type, as in the Relational

Model, while, data model (lower case) referred to the second. This convention will be

adopted initially here until other possibilities are explored later in this section.

"Data Models are tools3" (Kent, 1978, p.194) or "abstraction devices that allows us to

see the forest (information content of the data) as opposed to the trees (individual values

of data)" (Tsichritzis & Lochovsky, 1982, p.5). The concept of a Data Model was

initially proposed by Codd (1970) and later defined by Date (1995), as consisting of

three components: a collection of object types, a collection of operators, and a collection

of general integrity rules. As a tool then, a Data Model is a set of constructs that used

together provide the facility to build representations of the data present in an area of

interest. The individual items of data represented by the allowed 'object types', the

relationships between them and constraints on them, represented by the allowed

'integrity rules' are fitted together in such a way that they can be manipulated by the

allowed operators. Since the introduction of the Relational Model (Codd, 1970) "the

data processing community has evolved a number of models in which to express

descriptions of reality" (Kent, 1978, p.94). The result being that there are now

numerous Data Models (Loosely & Gane, 1 990) each purporting to offer significant

advantages over its r ivals (Brodie et al. , 1984).

Brodie et al. (1984) provide an early taxonomy of four generations of Data M odels:

primitive, classical, semantic and special purpose. The first group, consisting of simple

file based structures and the last, for use with specialised applications such as
CAD/CAM (computer aided design/computer aided manufacturing) will not be

3 Capitalisation added

17

considered further here. The group of classic Data Models was seen as including "the

hierarchic (a direct extension of the file model), the network (a superset of the

hierarchic model) and the relational. . . (a significant departure from both the hierarchic

and the network models" (Brodie et al. , 1984, p. l O). These classifications appear to be

largely intuitive and certainly no explanation is given for inclusion of the three models

in the classical category. Unlike the formally defined and mathematically based

Relational Model, the Hierarchical and Network Models, pre-dating the concept of Data

Models as such, were "subsequently defined independently of the languages and systems

used to implement them. Before that they were collections of data structures and

languages without a defined underlying theory" (Brodie et aI. , 1 984, p. l 1). The primary

shared characteristic of the classical Models would seem to be the existence of

commercially available DBMSs (Database Management Systems) based on them. An

alternative, and perhaps more descriptive, name for this class might be Implementation

Models, i.e. consisting of Models which are commercially implemented as DBMSs.

The third category was semantic Data Models i.e., "Models that are ... designed to

provide richer, more expressive concepts with which to capture more meaning than was

possible when using classical data models" (Brodie et al. , 1984, p. l l). With the

exception of the E-R Model, a detailed look at the types of Models placed in this

category is not appropriate here. However, described in discussion of this class were

several features either later incorporated into the Extended-Relational Model or which

now form part of the object-oriented paradigm.

To avoid the confusion created by the two uses of 'data model' several other terms are

used as alternatives to describe a Data Model. Loosely and Gane (1990, p.2) suggest

that Data Models are really meta-models but then prefer the term 'modelling scheme or

method' when referring to a particular meta model. They also use the expression

'modelling approach or system' to differentiate between a specific modelling scheme

and the generalised characteristics of a type of Data Model. This allows them to refer,

for example to "the E-R modelling approach" (ibid. p.2). They justify this terminology

by the fact that "there are actually lots of flavors of ... E-R and sometimes we do not

want to refer to a particular flavor "(ibid. p.2). OBe (1 993) introduces another

possibility, attributed to the ISO Reference Model of Data Management (1993), in the

term 'data modelling facility' which is "the data structuring rules and data manipUlation

18

rules together." and which clearly "sets bounds around the concept. . . to data and the

associated processes" (p.46). Yet another alternative is provided by Kim and March

(1 995), who echoing (Kent, 1 978), prefer to use the term "data modelling

formalism"(Kim & March, 1 995 p. 1 03).

This study will use the last three terms. 'Modelling approach' will be used in the sense

intended by Loosely and Gane (1 990). However, it will generally be used when there is

an emphasis on the behaviours and procedures inherent in the development of an

instance of a particular Data Model. 'Modelling facility' will generally be used in

preference to Data Model except when referring to a specific Data Model, e.g. the

Relational Model. However, on occasions the terms 'Implementation Model(s)' or

'Paradigm Model(s)' will be used to refer to Models in Brodie et al. ' s (1 984) classical

category, extended to include other commercially implemented Models and their

hybrids. 'Data modelling formalism' will also be used as a synonym for data modelling

approach.

This adoption of an alternative wording for the first meaning of 'data model', allows the

use of the uncapitalised term 'data model' to refer to the individual instances that are

created for a specific purpose by the use of a data modelling facility. This is the current

practitioner practice and is becoming common in academic papers where these models

are also described as 'application data models ' (OIle, 1 993) or 'user models' (Loosely &
Gane, 1 990). There are a number of different kinds of such data models that may be

produced within the development life-cycle of an information system and others that are

produced as a strategic, rather than a specifically IS, tool. A fuller discussion of these

models4, what level of detail they may be expected to contain5, and which modelling

facility6 may be used to create them is presented in later chapters. However, Martin's

(1990) description of a data model, as "a logical map of data which represents the

inherent properties of the data" (p.457), can serve as a general working definition.

4 See Chapter 3

5 See Chapter 4

6 See Chapter 9

19

Information Models, Schemata and Database Designs

The term 'data model' has been in use, with one meaning or the other, for at least 25

years and remains an essential component of the Information Systems vocabulary.

However, perhaps mirroring the transition from data processing to information

technology, the term 'information model' is now not uncommon. The origin of the term

is not clear (Olle, 1 993) although it has been in use since at least 1 979 (Kent, 1 979). As

Olle (1 993) points out, it is not unreasonable to assume that "data modelling has

something to do with modelling the representations of the data and that information

modelling has something to do with modelling the meaning ascribed to the data"(p.47).

However, as it appears most frequently as a synonym for 'application data model' (Olle,

1993), it seems more likely to be an early attempt to differentiate between 'Data

Models' and 'data models' by renaming the latter.

Where the term 'information model' is explicitly defined as being something other than

an application data model, (Flavin, 198 1 ; Schenck & Wilson, 1 994; A vison, 1 992;

Finkelstein, 1989), the distinctions may differ. A vison (1 992) uses the expression to

describe an organisation-wide view combining "a process-oriented view of the

organisation ... with a data-oriented view" (p.62). This is quite clearly intended to

describe a model of much broader scope than an application data model and provides a

"largely pictorial representation of the organisation in outline" (A vison, 1 992, p.62).

Flavin's (1 9 8 1) use of the term is more limited in scope and bears a close resemblance

to an application data model, i.e. "a representation of some real-world system that

identifies the object types, relationships and operations of that real-world

system."(p. 1 1 6). The difference here is quite clearly the addition of 'operational'

information by the inclusion of state transition data, i .e. "pre- and post-conditions

attached to the operations" (ibid. p. 1 4).

Schenck and Wilson (1 994), having identified the importance of the reliable

communication of information, emphasise the need for explicit and formal interpretation

rules as a component of an information model. "An information model is a formal

description of types of ideas, facts and processes which together form a model of a

portion of interest of the real world and which provides an explicit set of interpretation

20

rnles7" (p. IO). For them "information modelling is an outgrowth of data modelling"

and they agree that defining a distinction between them can be "somewhat fuzzy" (ibid.

p. l 0). They themselves identify two areas of distinction. Firstly in the purpose of the

activity;

"Data modeling is concerned with specifying the appearance and structure
within a computer system of the data which represents particular types of
information. Information modeling ... has a goal of describing information so
that the representative data could be computer processed" (ibid. p. l O).

Schenck and Wilson (1 994) continue by making it quite clear that such a model only

needs the potential for implementation on a computer, while a data model is explicitly

targeted at computer processing. Inherent in these distinctions are the dual roles of a

data model as identified by Tsichritzis and Lochovsky (1 982) which are discussed

further in Chapter 4. Secondly, Schenck and Wilson (1 994) highlight their treatment of

the interpretation rules, which in a data model, unlike their own information model, are,

as they assert, "typically implicit; even if they are made explicit, they are informally

documented"(p. l l).

Finkelstein (1989) on the other hand uses the expression 'information model' to

describe a data model that captures more meaning than one developed using the

classical modelling facilities. He equates a model developed using any of the semantic

models e.g. E-R or 0-0, as representing an evolution from a data model to an

information model. In addition, he asserts that "the process of data analysis (used to

develop data models) has also evolved to information analysis (used to develop

information models)" (Finkelstein, 1 989, p.63).

Veryard (1992) provides a more persuasive case for adopting the term ' information

analysis' rather than 'data analysis' and hence, ' information model' rather than 'data

model' . He not only considers the term 'data' to be too restrictive but also highlights

the use of 'data analysis' by other disciplines, such as statistics. As he points out, ' data

analysis' has traditionally been used "to describe the analysis of data content, whereas

what we are here concerned with is the analysis of dataform" (p.24).

7Emphasis added.

21

Clearly, there is little agreement on the meaning of 'information model' and the term

has been appropriated by various authors to describe methodologies of their own

invention. Where it appears to be used synonymously with data model, it appears to

carry one of two additional meanings. It is either used to highlight the non­

implementation nature of the model and is thus similar to the use of 'conceptual model'

discussed in Chapter 4, or it is deliberately used to emphasise the inclusion of

operational or behavioural information. No definitive meaning will be attempted here

and use of the term will be avoided unless specifically referring to an author's work.

There have been other attempts to differentiate between 'Data Model' and 'data model'

by finding alternative terms for the latter, often adding to the general confusion that

pervades this area. Many of the early writers, particularly those who use 'data model' in

its first meaning, use the term 'schema' to refer to its individual instances (Tsichritzis &
Lochovsky, 1982; IS077 , 1 977; Brodie et aI. , 1 984; Smith & Smith, 1 977a). This,

often appearing as 'database schema' , was originally used to signify the actual

description of the data as it appeared to be stored on the computer and would seem to

relate to the dictionary definition of a plan or perhaps, more specifically, a diagram

(Hanks, 1979). A wider use of the word emerged with the publication of the

ANSIIX3/SPARC draft report in 1 975 (ANSI, 1 975). The references, in this report, to

conceptual, internal and external schemata8, extended the meaning away from a plan of

the physical data representation and into the realm of 'application' or 'user models',

with which it is now largely synonymous. Its most common usage is now in the term

'conceptual schema' where it is often, although not invariably, an alternative9 for

'conceptual model' (OIle, 1993; Hirschheim et ai., 1995). However, it is interesting to

note that in most instances where the term 'schema' is used in preference to 'model'

there is a tendency to emphasise the data structuring aspects of the representation rather

than its communicative role.

The term 'database design' would appear to be self-explanatory and indeed in most

contexts requires little explanation. However, it too can serve as a substitute for data

8 See Figure 1 on p\ge 27

9 A discussion of the differences between the two terms may be found in Chapter 4.

22

model, although when used in this sense it is almost always qualified in some way. Its

most usual use is in the expression 'physical database design' where it quite clearly

describes the data structures, as they will appear in a particular DBMS application. In
this sense it is synonymous with 'physical schema' and generally represents a

combination of the physical data structure diagram and the DBMS commands necessary

to create the required database objects. However, it is also occasionally used in the

expression 'logical database design ' (Kesh, 1 995; Shoval, 1 985; Storey & Goldstein,

1 988) or 'conceptual database design' (Batra & Antony, 1 994; Batra & Sein, 1 994;

Batra & Zanakis, 1 994). In these instances it appears to describe a data model which,

while implementable, in that it conforms to a Data Model, has not been tuned for

implementation with a specific DBMS, e.g. a model expressed in general relational

terms but not tailored for a specific database implementation, such as DB21O. To

complete the circle of confusion this has been called by some authors, often those

writing about the process of creating data models, a 'logical model' where the meaning

is similar to, but not synonymous, with the 'conceptual schema' of the

ANSIIX3/SP AR� architecture discussed in the next chapter.

Of the terms discussed above, 'conceptual schema', 'conceptual model' , 'logical

database design' and 'logical model' will all be used in this study. While the intended

meaning will generally follow those given above, further explanations and distinctions

will be made during the discussion of the data modelling architecture in the following

two chapters.

Subject area, problem domain and universe of discourse

Although not generally leading to confusion, a number of different terms have also

emerged to describe the area under consideration by the modelling process. A report by

an ISO committee introduced the expression, borrowed from Wittgenstein (Olle, 1 993),

'universe of discourse' to describe it (van Griethuyzen, 1 983) and this, with a usual

abbreviation to DoD, has become the standard terminology within NIAM . This is

referred to as the "object system" by Hirschheim et al., (1 995 p. 1 5). Olle (1 993) prefers

the "more down to earth term "subject area" (p.47) while Flavin (1 98 1), amongst others,

10 DB2 is a registered trademark of the IBM Corporation.

23

uses 'problem domain' . There appears to be no substantive differences between the

terms and this study, while favouring UoD will use them interchangeably.

Entities, Objects, Constructs and Things

In this study the term 'construct' will be used to refer to the building blocks provided by

a data modelling facility or Data Model, i.e. the elements from which a data model may

be constructed. Most of the individual constructs provided by the two modelling

facilities under consideration will be identified and discussed, as they become relevant,

in the main part of the study. Two however, entities and objects, require some initial

clarification.

In general, 'entity' and 'object' will be used interchangeably in this study in the sense of

"something having real or distinct existence" (Hanks, 1979), in preference to the vague

and rather unsatisfactory 'thing' . At times however, they will be used in a more specific

sense. An entity will sometimes refer to the specific construct provided in the E-R

Model, i.e. as an aggregation of properties. Similarly an object may sometimes refer to

the equivalent construct in either the NIAM-CSDP or the Object-Oriented approach.

The context will generally make it clear which meaning is intended.

This leaves two terms that require further discussion. 'Data modelling', referring to the

entire process of creating data models for a specific domain, and 'conceptual data

modelling', a subset of this activity, are treated separately, and in some depth, in the

following two chapters.

3 Data Modelling

"[am frequently asked by project leaders and managers • . . . "What are the benefits of data
modelling?" The simple answer is that data modelling is not optional; no database was
ever built without at least an implicit model. . . The choice is not whether or not to model. but
whether to do itformally " (Simsion. 1994 p.21).

A Three Level Data Architecture

In 1 975 the Standards Planning and Requirements Committee of the American National

Standards Institute Committee on Computers and Information Processing published an

interim report CANS I, 1 975) containing proposals that have shaped and guided the

development of database applications for the last twenty years. Most significant was the

observation that the data within a particular subject area could be usefully viewed as

having its own inherent structure. This structure was not necessarily identical to the

physical structure of the same data, as it was stored on a computer, nor the same as the

conceptual structure of the data as seen by any one individual user. This insight

provided the basis for the development of a three level architecture, which viewed data

at three different levels of abstraction (Figure 1) . It also enshrined a guiding principle of

subsequent database development; that users of the database should not need to be

concerned with any level of abstraction of the data other than their own external schema.

The three levels of abstraction identified in the American National Standard Institute

(1 975) report also highlighted the possibility and desirability of achieving a level of data

independence far greater than had been previously envisaged. The external schema,

which represented the individual user's view of the data, was not mapped directly to the

internal schema, the physical database structures in which the data was stored. Instead

both were mapped to an intermediate level, namely the conceptual schema. This,

created by the database designer, provided a global or community view of all the data in

the information system (Date, 1 995) and was actually the superset of all the external

26

user views. The benefits of this arrangement were numerous (Ricardo, 1 990) and

hinged on the idea that the conceptual schema acting as a buffer, could hide

modifications in the other two levels from each other. Protecting the external schema

from any changes to the physical data structures provided physical data independence.

Provided that the mapping between the internal and conceptual schema could be

maintained such alterations did not need to impact on the users' view of the database.

This principle also worked at the level of logical data independence. Here, changes in

the requirements of an individual user did not necessarily result in changes elsewhere.

Even where a new requirement entailed the need for additional data to be added to the

internal schema other users need not be impacted by the change. The adoption of this

architecture, particularly where much of the mapping could be maintained by the DBMS

itself, was crucial to the development of the database approach to information systems

and continues to play a fundamental role today (Avison. 1992).

Application
Program A

Application
Program B

Query
Language

Report
Generator

USERS

EXTERNAL
.......... __ SCI:IEMATA

CONCEPTUAL
.......... _ _ . . __ _. __________ .. __ .. __ $..9.I::ffg,Md __

INTERNAL
SCHEMA

Figure 1. ANSIIX3/SPARC Architecture - adapted from Avison (1992)

27

A Database Design Process

The three level architecture, however, not only provided a new framework in which to

create and view data representations but also provided implicitly, a template for a four­

stage database design process. Within this process the database designer should: -

1. seek to ascertain each user's view of the data, i.e. analyse each user's data
requirements,

2. amalgamate these views, i.e. design the conceptual schema,

3. create physical structures in which to store the relevant data, i.e. create the
physical database design or internal schema, and

4. reproduce the original views for each individual user; i.e. create the external
schema.

By implication, all the users were required to do was describe the information

requirements of their view. Eventually they would be provided with an interface to the

data that accurately matched their initial specification. This process, including the

distinction between data analysis (step 1) and database design (steps 2 - 4), was

formalised by Teorey and Fry (1 982) and has remained the general approach to database

development ever since. It can be found in many recent textbooks (e.g. Avison, 1 992;

Kroenke, 1 992; McFadden & Hoffer, 1 994; Ricardo, 1 990; Sanders, 1995; S imsion,

1 994) and systems development methodologies (Eva, 1994; Finkelstein, 1989; Page

Jones, 1 988).

This rather optimistic view of the users' role in the process was perhaps never a reality

and has certainly proved an elusive goal for database designers, although some

exponents of NIAM would argue that their approach comes very close to this ideal

(Sharp, 1 994). However, in the pre-relational environment in which the

ANSIIX3/SPARC (1975) report was produced, the 'users' were largely, either computer

programs or computer programmers. In neither case was it necessary to undertake

extensive validation of whether the representation of the data structure that the designer

had created, matched the users' own view of the data structure. The significant

communication was almost entirely one way, from the users to the designer. The

majority of the communication in the other direction was expressed within the success

or failure either of the programs to run, or of the programmers to write the programs to

the specifications they had been given. In a case where the data structures did not

successfully support these 'user' requirements, it may often have been easier to adjust

28

the requirements rather than to change the database structure. However, with the advent

of relational database management systems in the early 1 980' s, and the later addition of

personal computers, the situation changed quite dramatically. The programs and

programmers were increasingly overtaken in numbers by real 'users' of the data, i .e.

people with relatively few technical skills bur extensive enterprise knowledge who now

had both the opportunity and the desire to directly access the data of interest to them.

This alteration in the nature of the users also signified the need for a major change in the

database design process. For the first time database designers were required not only to

understand and record the data requirements of users for the benefit of other IS

practitioners, but also to explain to human users the data representations that they had

created. This aspect of the database design task became increasingly important. It

became necessary both to ensure that the sometimes conflicting requirements of a

number of users had been correctly understood and combined, and also to provide the

users with a documented structure that could inform their own navigation and use of the

eventual database. It was no longer sufficient for designers to express their decisions in

terms that required significant technical expertise to understand they now had to

produce documentation and explanations that were comprehensible to a wider non­

technical audience. In terms of the ANSI framework, some users needed to understand

enough of the conceptual schema, from which the internal schema would be

constructed, to be able to validate the structures it was representing.

This process of describing and analysing data, and designing the requisite data structures

is referred to in general terms as data modelling I , while the resultant outputs of the

process are known as data models. As Kent (1 978) observed all data models act as

bridges in the sense that they are "techniques for representing information and are at the

same time sufficiently structured and simplistic to fit well into computer

technology"(p.93). However, as Kent also recognised, "Most models describe data

processing activities not human enterprises. They pretend to describe entity types but

1 The same process may also be termed 'database design'. Although these terms are often treated as
synonyms, the specific choice made by an author often provides an insight into the perceived intention
of the process.

29

the vocabulary is from data processing" (Kent, 1 978, p.96). This tendency may also be

viewed in the light of the development of the practice of data modelling.

Instantiating the Architecture

At the time of the American National Standard Institute (1975) proposals, only limited

forms of recording the various levels of the framework existed. The external schemata

were represented by the paper forms, screens, reports or program file structures that the

system used or produced, while the conceptual schema had no tool other than natural

language to support it. Only the internal schema had any means of formal description.

These diagrammatic representations of network and hierarchical database structures2

(Bachman, 1 969), were the first 'data models' to see widespread use. By providing a

visual representation of complex physical data structures they assisted database

designers and database administrators to create mental maps of the data structures that

they were managing and manipUlating. Developed and designed for use by people

already familiar with the concepts and constraints of the Data Models that they were

reflecting, Bachman diagrams were neither intended for, nor suitable as, communication

tools between designers and non-technical users. In Kent's (1 978) terms, they did

provide a bridge but only between the highly technical understanding of the designer

and the complex physical structure that was being created.

As Hirschheim et al. (1 995) observe, although it was never entirely clear what the

ANSIISPARC report meant by the 'unified' conceptual level and by the conceptual

schema, the report created a great deal of momentum to the development of Data

Models that were by nature 'conceptual' or 'semantic' (e.g. Hull & King, 1 987). The

most influential of these, the E-R Model, defined by Peter Chen in 1 976, appeared to

provide a relatively simple and intuitive means to fill a gap in the ANSI framework and,

in so doing, revolutionised the database design process. The E-R Model provided a

representation of data which did not reflect the constraints of the physical (hierarchical

and network) database structures and which as a number of studies (Konsynski, 1 979;

Brodie et al. , 1984; Yao et al. , 1 984; Teorey et al., 1 986; Batra et al. , 1 990) later

2 Bachman's work also I�d to the fonnal definition of the network data model by the CODASYL Database
Task Group in 1971 (CODASYL, 1971).

30

demonstrated, appeared to provide a clear and intuitive way of communicating with

non-technical users. However, not only did Chen's (1976) paper describe a useful

abstraction tool it also provided a straightforward diagrammatic means of representing

the structures it was describing. Within a short time, E-R diagr�s became the most

commonly used means of representing the conceptual schema, and Date (1 995) goes so

far as to suggest that the E-R Model ' s lasting popularity is probably due more to the

existence of this diagramming method than to any other factor. However, the

construction of both Bachman and E-R diagrams remained a technical (i.e. data

processing) task and a considerable degree of skill was required to map the E-R

diagrams to the physical structures.

With the advent of commercially available relational database management systems

(RDBMS), E-R modelling appeared to have consolidated and justified its pre-eminence.

The E-R Model utilised some constructs that mapped naturally to relational objects, i.e.

entities to relational tables and attributes to columns. While other constructs, for

example relationships required more complex translations, in general, the process of

mapping between the conceptual (E�R) schema and the internal (relational) schema was

significantly more straightforward than before. No diagrammatic method was provided

for representing the Relational Model, which as some studies have suggested, reduced

both its accessibility and comprehensibility (Arner, 1 993; Batra et al. , 1 990; Batra &
Srinivasan, 1 992; Jarvenpaa & Machesky, 1989; Jih et al., 1 989; Juhn & Naumann,

1 985). Smith and Smith (1977b) found it necessary to create their own diagrammatic

notation but gradually a subset of the E-R notation was used to produce representations

of relational schemata or 'logical database designs' as they were termed.

Alongside these developments, relational technology also created a significant shift in

the perception of the internal schema. Database designers and administrators were

buffered from many of the actual physical structures by the DBMS itself. In many

situations, technical staff could, like the users, view the database as a collection of tables

rather than in terms of files, machine addresses and the like. As a result, both technical

and non-technical users came to utilise some form of the E-R diagrammatic notation as

a useful means of recording and understanding the physical database as well. These

pragmatic adaptations while effective in improving communication about relational data

structures nevertheless had some important implications.

31

The development of the E-RlRelational Hybrid

The apparent similarities between the technical and non-technical views, the use of E-R

diagramming conventions for both conceptual and internal representations of the data

and the tendency for data modelling to remain a task undertaken by technical staff, may

have been largely responsible3 for the development and widespread use of what can be

termed an E-RlRelational (E-R/R) hybrid (Atkins, 1 996). This hybrid, albeit

unacknowledged, is promoted by writers, such as Simsion (1994) and Benyon (1 997)

and utilised by a number of CASE tools. It uses E-R, or more commonly, extended E-R

constructs (Cattell, 1 994) and notation to provide a graphical representation of a

normalised relational structure, is generally characterised by being in third normal form,

having no relationship attributes and resolving all many-to-many relationships. Such a

model is often termed an E-R model, or sometimes an E-R diagram, but clearly does not

conform to Chen's (1976) original definition and it is this hybrid that should perhaps be

the target of many of the criticisms currently levelled at the E-R Model. The largely

unrecognised development of this hybrid certainly appears to have contributed to the

general confusion surrounding the purposes and format of the conceptual schema.

A Revised Architecture

As Shoval (1 985) recognised, these developments necessitate an updating of the original

ANSI 3-level architecture to reflect the following changes: -

• a greater distance now exists between the internal schema, as viewed by the

database administrators, and the machine level view,

• the conceptual schema plays two discrete roles, one as originally envisaged by

American National Standard Institute (1 975), the other required by the disparate

and non-technical nature of the new users who must interact with the database

(van Griethuyzen, 1 982), and

• the recognition that these two roles need not necessarily be fulfilled by the same

representation (Tsichritzis & Lochovsky, 1 982)

3 The use of CASE tools may also have played a part but is outside the scope of this study.

32

A redevelopment of the ANSI framework incorporating these changes is presented in

Figure 2. It differs from the '5-schema framework' outlined by Shoval (1985), which

seeks to integrate the ANSI framework with the recognised stages of database design, by

having "the original ANSIISPARC 3-schemata at the DBMS implementation level, and

on top of them .. .the . . . Conceptual Schema (at the semantic or analysis level) . . . and the

database schema (at the logical or design level)" (p.4l 7).

The framework illustrated here is intended to address a number of issues of which the

most significant is the separation of the conceptual schema into two views each intended

to serve a different purpose. These views have been termed the 'infological ' and the

'datalogical' , following terminology first used by Langefors (1963) and, later, applied to

the functions of data models, by Tsichritzis and Lochovsky (1982).

Conceptual
View ­

Datalogical

End-Users

Query
Languages

Conceptual
View ­

Infological

USERS · Human

USERS ·Machine

EXTERNAL
SCHEMA

CONCEPTUAL
SCHEMA

INTERNAL
SCHEMA

MACHINE
LEVEL

Figure 2. A revised view of the AN SI 3 level architecture

The 'datalogical' view refers to, the way in which the data, required by an information

system, is to be structured for efficient electronic processing. Thus, the internal view is

33

by definition, datalogical, in that it represents the actual or potential physical schema in

all its detail. For example, in a typical relational system, the internal view will contain

information such as the specific names and attributes of the files in which the tables,

indexes and integrity constraints reside together with the names, addresses and

properties of system files. In general, this information will only be used by the systems

and database administrators.

The datalogical conceptual view is also a representation of the physical structuring of

the data but at a higher level of abstraction. Where the physical database is existent, the

datalogical conceptual view may contain a number of constructs of use to system

developers and programmers, such as tablespaces and indexes but, in general, this view

will primarily reflect the tables in which the database users perceive the data to be held.

Both human and machine users (such as programs and query languages) will be able to

utilise this view of the database for almost all their needs and directly manipulate it as if

the data really was stored in these structures. However, in many cases a subset of the

complete datalogical view will be provided in the form of an external view, both to

protect the underlying data from breaches of security and also to reduce the complexity

of the 'problem space' that users need to comprehend.

While the datalogical conceptual view is concerned with the representation of the

structures by which a system's information needs may be met, the infological

conceptual view is concerned with the content or the semantics of those information

needs (Hirschheim et al., 1995) . Its primary function is to provide a representation of

the target information needs in a form that is as unconstrained as possible by physical

considerations and is easily accessible by non-technical users. It is essential that there is

a direct mapping between the two views (emphasised by the bold line that links them in

the diagram) that together make up the conceptual schema. Although the infological

view is less important once a physical database has been constructed, during the

development process, and any subsequent modification, it provides a representation

scheme whereby users can verify the validity of the information needs that are being

represented in the database without having to understand the structures by which those

needs are being met.

34

A Meta-Data Architecture

Data modelling, then, may be defined as the process of creating representations of data

within a specific problem domain in a formalised and organised way. It is an activity

considered by many (Hitchman, 1 995; Sanders, 1 995; Batra & Davies, 1 992; Simsion,

1 994, among others) as fundamental to the creation of any information system, no

matter of what size or what type. However, for many organisations the process has

developed and broadened significantly since 1 975. The number, the complexity, the

purposes and the perspectives of the models that are produced can vary considerably.

The scope of the modelling activity may also differ, ranging from a specific application

database schema, to a model of the entire organisation, a 'corporate' or 'enterprise

model', which will never be implemented electronically. Consequently, the data

modelling activity may be restricted to produce only a physical database design, or it

may use a variety of tools and techniques to produce a number of models, each serving a

different function. The original ANSI framework and the extensions to it explored

earlier, are concerned with characterising the architecture of a single data model and as

such are not able to describe the relationships between the various models that may now

be produced by a sophisticated data modelling exercise. Instead a framework for

categorising these models, termed here a meta-model architecture, is required. This is

partly to facilitate discussion about the purposes of the different types of models and

also to assist in clarifying the meaning of 'conceptual model' as it widely used within

the practitioner community and as it is used within this study.

There is little recognition of this need in the academic literature. McFadden and Hoffer

(1994) describe a similar architecture to that illustrated at Figure 3, although their

equivalent paradigm model is DBMS specific while their physical design is concerned

with "storing record formats, selecting access methods and deciding on physical factors

such as record blocking"(p.241). However, there are references to such an architecture

in the practitioner literature (Wong, 1995 ; Zachman, 1987) and it has also been

observed by the researcher in the course of her work with various organisations.4 This

proposed meta-model framework is intended to highlight the importance, the

4 Particularly, Statistics Division, Inland Revenue UK. 1 985 - 1992

35

perspective and the changed nature of the conceptual model and its potential position in

the data architecture of the post-relational era.

PARADIGM
M9DEL

"'g. NETWORK

, �HY;�CAL
MOQeJ.

e.'g. iDMS
SCHEMA

PARADIGM
MODEL

Conceptual Level

8.g. RELA110NAL

PARADIGM MqD�j.
e.g. OBJECT"()RIENTED .

PHVSI�
Mob_�L�
8:9.082

SCHEMA

PHYSICAL,
MODEL .

e.g. ORACIJ;
SCHEMA

Paradigm Level

Implementation Level

Figure 3. Meta-Model Architecture

- ANSl
�

iCJMaIa
(�)

The meta-model architecture includes a conceptual model, semantically close to the

subject area, and partly serving the infological function of the conceptual view of the

revised ANSI schema, presented in Figure 2. This model is intended to provide a high­

level, implementation independent view of the data, which can be understood by both

technical and non-technical users alike. While it is necessary to structure the data in

order to provide a useful view of it, there is a general consensus that this view should be

as unconstrained as possible by implementation considerations. The emphasis would

.appear to be on capturing and representing a comprehensive but comprehensible view of

the data, rather than moulding it to any specific form of electronic storage. It will be

argued later, in Chapters 3 and 4, that the primary activity in the construction of a model

at this level is thus one of analysis. It has been suggested, that some form of Semantic

Model (e.g. Peckham & Maryanski, 1 988) is the most appropriate tool and much

academic literature (e.g. Shoval, 1 997) and many textbooks (e.g. Avison & Fitzgerald,

1 995; Burch, 1992; Ricardo, 1990; ConnoUy et al., 1 995 ; Mannila & Raiha, 1 992)

36

presume that the E-R Model is the most widely used. However, if most E-R models are

actually E-R/R hybrids then they are clearly not independent of implementation

considerations and users will require some understanding of relational structuring rules,

particularly normalisation, in order to provide semantic verification.

From this conceptual model any number of different implementation or paradigm

models can then be derived. These models are broadly equivalent to the pre­

construction, datalogical conceptual view illustrated in Figure 2. The purpose of this

model is to design data structures that will accommodate the conceptual model in a form

that is generic to a Data Model. Thus if the target database is relational, the paradigm

model will be a relational model. If the conceptual model is implementation

independent it should be possible to transform it into any paradigmatic structure. There

may, indeed, be a need to transform part of the conceptual model to one paradigm and

part to another. The primary emphasis of this model is thus on design.

The relevant physical model, designed from the appropriate paradigm model, will

reflect the changes to the 'pure' paradigm model necessitated by the constraints of the

actual DBMS package that is used for implementation. It will include a description of

all the objects, such as indexes, recovery logs and triggers, resident in the physical

database. It thus covers both the internal schema and the machine level of the revised

ANSI architecture. However, if it is a relational database at least, it will, post­

construction, also provide the datalogical conceptual view of the tables (or virtual

tables) with which the users can interact.

Aside from the benefits that can arise from having a clearly delineated purpose for each

level of the meta-model architecture, it also provides a form of independence similar in

effect to that provided by the use of the ANSI 3-level schema. At the organisational

level, the use of such a meta-model architecture provides for several implementations of

the same data area in different paradigms or different versions of the same paradigm, a

useful consideration in terms of the data integration that may be required following

company take-overs or mergers. While the models at the lower levels may be very

different, they will be reconciled at a higher level, at the paradigmatic level for

implementation models of the same paradigm or at the conceptual level for models of

different paradigms. Quite aside from any technical benefits, many larger companies

37

have come to recognise that all data, whether stored electronically or not, is a valuable

organisational resource (Kroenke, 1 992). In order to both protect and manage this

resource effectively, it is necessary to have a clearly documented record of what data the

organisation owns. As a result 'corporate' or 'enterprise' models (CCTA, 1 994) are

sometimes created in an attempt to capture this information at the conceptual level. In

some cases, this view is integrated with the paradigm and/or implementation levels,

while in others it remains an isolated structure. There are also benefits to be gained at

the system leveL Here the existence of models at all three levels of the architecture can

ease the process and reduce the cost of migrating either from one paradigm to another,

e.g. from Relational to Object-Oriented or from one DBMS package to another, e.g.

from DB2 to Oracle.

Once again this meta-model structure partially reflects the historical development of

data modelling. Initially the need for understanding the data structure was engendered

by the need to create an effective database and this would result in the creation of a

physical database design (implementation level). This was followed by the requirement

to build a DBMS-independent view of the data structure in order either, that a number of

databases using different DBMS (of the same paradigm) could be created or integrated,

or to provide a less technical data view for verification by users (paradigm level).

Currently many organisations have a requirement to build some form of data framework

either to aid in the construction or integration of databases of the same data but different

types (e.g. Object-Oriented and Relational) or as described above as a mechanism for

managing the data resource (conceptual level). However, it is possible that the use of

the ubiquitous E-RlRelational hybrid to represent data at any or all of these levels, either

separately or in combination, has added greatly to the confusion surrounding the nature

and purpose of the different levels themselves.

Summary

It is evident that some of the objectives of data modelling have changed since the ANSI

architecture was first proposed. The design of structures suitable for storing data

relevant to a specific application or system, while still the primary purpose, has been

transcended by the need to understand, document and communicate about the data

resource in a broader arena. This secondary, infological purpose while recognised (e.g.

38

Campbell, 1 992; Kent, 1978; Tsichritzis & Lochovsky, 1 982) has too often been under­

emphasised both by academics and practitioners alike. Alongside these developments

there has also been a growing trend to use "data analysis . . . much earlier, in the planning

and requirements definition stages, as one of the techniques for defining the problem

domain itself'(Darke & Shanks, 1 995b pA-5).

Another interesting and relevant issue, which also serves to highlight the confusion that

seems to surround data modelling, is the nature of the activity itself. The discussion

here has hinted that the creation of the infological view of data is primarily an analysis

activity. However, Simsion (1994) argues forcefully that data modelling is primarily a

design activity and, therefore, inherently creative. He argues that it is misnamed under

the designation 'data analysis' . Many authors, particularly of textbooks, describe the

data modelling process as consisting of two distinct parts, data analysis and database

design, while they describe the same tools and techniques as being appropriate to both.

The nature of the modelling process and the concomitant issue of creativity are

discussed in the following chapter.

There are a number of other issues directly related to data modelling that have not been

emphasised5, if mentioned at all, in the preceding discussion. Although some of these

will be discussed at appropriate points others, such as the effect of CASE technology on

the modelling process, while recognised as important, are beyond the scope of the

present study.

5 e.g. the practical difficulties inherent in fonning a consensus view and in creating universal definitions
for context-dependant entities.

4 Conceptual Data Modelling:

some underlying issues

"Suddenly, you discover that the mop is not the territory, the menu is not the meal. The
word is not the thing. Words are only symbols. Concepts are models of reality built out of
words. We discover that we do not live in reality at all. We live only in a well constructed
model of reality - a model that we've been constructing since birth - a reality built out of
words . . We live in language .. . and our language shapes and colors our experience "
(Gerrold, 1988).

Introduction

39

While the importance of constructing a conceptual data model is generally accepted (e.g.

Batini et aI. , 1992; Laender & Flynn, 1994; Pavlia et al., 1 992), there are differing

opinions concerning its nature and purpose. Previous chapters have attempted to lay the

groundwork for a more detailed investigation of some of these differences.

Author Date DaIIl RealitY Ol!iective Subjective InfoiDl!ictzl DaIIliDl!ical
Shave 1981 ./ ./ ./
E1masri et al. 1985 ./ ./ ./
Shovai 1985 ./ ./
Storey & Go1dstein 1988 ./ ./
Bock & Ryan 1993 ./
Jarvenpaa & Machesky 1989 ./
Creasy& Mou1in 1992 ./ ./
Amer 1993 ./ ./ ./
Tjoa & Berger 1993 ./ ./
McFadden & Hoffer 1 994 ./ ./
Shoval & Frurnermann 1 994 ./ ./
Moody & Shanks 1994 ./ ./
Kim & March 1995 ./ ./ ./
Calway & Sykes 1995 ./
Siau et al. 1995 ./ ./ ./
Avison & Fitzgera1d 1 995 ./ ./ ./

Table 1. Some definitions of conceptual data modelling.

From the confused and often contradictory discussions in the literature, which often

display a lack of rigorous definition of the term 'conceptual data model ' , three major

themes, which are the subject of this chapter, seem to emerge. Two of those themes,

'reality vs. data ' i.e. what is being modelled and 'objectivity vs. subjectivity ' i.e. what

40

can be achieved by the modelling process, concern the nature of the representations.

The third issue, 'infological vs. datalogical, stems from the purpose or intention behind

the representation's construction. Many of the definitions provided or implied by

researchers in the area can be classified within these three themes and Table 1 provides

a summary. However, not all the definitions are clear or consistent and, consequently,

the table represents a necessarily crude and subjective analysis.

Reality vs. Data

The ANSI architecture clearly identifies the conceptual schema as a representation of

the stored data, free of the technical details of physical implementation (ANSI, 1975).

In this sense, the conceptual schema comes closest to the more generalised definition of

"an organiser. . . that shows how the parts and operations of a system fit together" (Mayer,

1 989 p.6 1) . However, the database design process, described earlier, which grew from

this architecture, together with the ready adoption of the E-R model as a useful tool for

building it, cast the conceptual schema into a somewhat different role. Instead, it

became a means of formalising the results of the 'requirements discovery' phase

(McFadden & Hoffer, 1 994). Thus, gradually, the conceptual schema came to be seen

as a representation not only of the data structures of the database but of the superset of

the users' views, of their 'reality' . This subtle shift in perspective had significant

implications for the ways in which conceptual schemas were both built and used. As

early as 1978, Kent was warning,

"One thing we ought to have clear in our minds at the outset of a modelling
endeavour is whether we are intent on describing a portion of reality (Le.
some human enterprise) or a data processing activity. Naming rules do not
reflect the conventions we use for naming people and things, they reflect
instead techniques for locating records in files. Failure to make the
distinction leads to confusion regarding the roles of symbols in the
representation of entities and some mixed ideas of domain." (p.96)

Nevertheless, the perception of the conceptual schema, in this new incarnation more

commonly called 'the conceptual model ' , as a formalised representation of the users'

'enterprise reality' (Kim & March, 1995) or the "user' s views of the wo�ld" (Jarvenpaa

& Machesky, 1 989 p.367), persisted and grew. The increased need for database

designers to communicate with non-technical users no doubt fostered this change.

Consequently, it is now unusual to find the conceptual model described as "a

representation of the entities, data items and the associations between entities stored in a

41

database" (Amer, 1993 p.2), or as the synthesis of "various user views . . .into a global

data base design" (McFadden & Hoffer, 1994 p.241). Most recent researchers have a

view more consistent with the description of "formalizing and representing the data

structures of reality" (Shoval & Frumermann, 1 994 p.28) or "the conceptual

representation of the enterprise" (Siau et al. , 1995 p.341) .

This latter group generally considers the E-R Model to be an appropriate tool for

conceptual data modelling, echoing Chen's (1 976) belief that "the entity-relationship

model adopts the more natural view that the real world consists of entities and

relationships"(p.9). Indeed, much of the current justification for the use of the Object­

Oriented Model also emphasises this apparent advantage. Martin and Odell (1992), for

example, summarise many of these arguments when they say,

" The models we build in 00 analysis reflect reality more naturally than the
models in traditional systems analysis. Reality, after all, consists of objects
and events that change the state of those objects. Using 00 techniques, we
build software that more closely models the real world" (p.67).

The distinction between these views of what is being built is clearly important both in

terms of modelling behaviour and in terms of model perception. If the model is

designed to reflect the form of data storage structures, whether actual or potential, there

is only one possible version, the map of the database itself. Modelling behaviour will

reflect this certainty, as creating the model will involve either a direct transformation of

the existing database structures into a higher level of abstraction (a form of reverse­

engineering) or will entail selecting potentially useful database structures from the

users' world. It is not surprising that those who subscribe to this view appear

comfortable with the use of the Relational Model as an appropriate means of recording a

conceptual model (Amer, 1 993; Avison, 1 992; Howe, 1983; McFadden & Hoffer,

1994). Indeed, Avison (1 992) i s able to entitle a chapter 'The Conceptual Schema: Data

Analysis and the Relational Model' with no acknowledgement of any possible

contradictions in his choice of words. However, if the model is viewed as a map of

reality, with no consideration of 'how data is stored on computerised files' (Jarvenpaa &
Machesky, 1989; Batra & Antony 1994; Bock & Ryan, 1 993; McFadden & Hoffer,

1 994; Navathe, 1992; Schenck & Wilson, 1994; Shave, 198 1 ; Shoval & Frumermann,

1 994; Siau et al. , 1�95; Storey & Goldstein, 1 993), then the modeller's own personal,

philosophical view of reality is a significant factor (Klein & Hirschheim, 1 987).

42

However, a number of authors avoid committing themselves clearly to either position,

preferring the more ambivalent term 'information requirements' (e.g. Batini et al. , 1 992;

Laender & Flynn, 1 994; Shanks, 1 997; Storey & Goldstein, 1 993). This term appears to

occupy the middle ground by acknowledging that what is being modelled is neither a

' true' portion of reality nor a direct copy of a database structure. Instead it is a means of

capturing a collection of data elements required by a user to fulfil certain functions, and

representing them in a manner that will facilitate their electronic storage. This middle

position also recognises that "although the data may have other meanings which are

hidden, unknown or even irrelevant, the meaning captured by the data model should be

adequate for the purpose required" (Tsichritzis & Lochovsky, 1 982 p.6).

Avison and Fitzgerald (1 995) succinctly summarise this middle ground and thus, not

only provide the viewpoint that is adopted in this study but also comment on the issue

discussed here in the following section. They write,

"The data model can only be a model and not the model of that part of the
real world being investigated. It cannot reflect reality completely and
accurately for all purposes. Even if data analysis has 'gone according to
plan' , the resultant data model cannot objectively represent the organisation.
It is a subjective view distorted by the perceptive process ... however, the data
model.. .usually proves in practice to be suitable for the purpose of building a
database" (ibid. pp.69-70)

Objective vs. Subjective

Inherent in the various views described in the previous section, are the data modelling

paradigms alluded to by Kent (1978) and clearly identified by Klein and Hirschheiml

(1 987). These paradigms, broadly falling into either the obj ectivist or the subjectivist

position, have "implications for the interpretation of the UoD and consequently for the

interpretation which one gives to data models" (Klein & Hirschheim, 1 987 p.9). In broad

terms, the objectivist view holds that entities exist in the real world and that a modeller's

task is to uncover those relevant to the VoD. On the other hand, the subjectivist position

holds that each person has their own individual view of reality and that the appropriate

activity is to recognise multiple realities and adopt an interpretivist stance (de Carteret &

J Burrell and Morgan (1979) developed the original framework. Klein and Hirschheim applied it to data
modelling.

.

43

Vidgen, 1 995). As Klein and Hirschheim (1987 p.9) observe, "the difference is whether

one believes that a data model 'reflects' reality or consists of subjective meanings and

thereby constructs reality". Shoval and Frumermann (1 994) are clearly objectivist in

stating that "the conceptual schema . . . portrays the data structure of the reality being

modelled"(p.28). Likewise Keuffel' s (1 996) comment that, " the process of creating a

model is an attempt to capture the essence of things both concrete and abstract, to make

order of the chaos inherent in the world around us"(p.83). MacEachren (1 995) on the

other hand clearly reflects the subjectivist position, when he states, "when we build these

abstract representations . . . we are not revealing knowledge as much as we are creating it"

(p.v). Tolis (1996) summarises these positions in terms of "the relation between the

model and the thing modelled" as follows,

• "An objective assumption is characterised by a focus on structures in the
world. Models are viewed as expression of facts, not capable of
influencing the thing modelled. They are valued in terms of
correspondence.

• A subjective assumption is characterised by a focus on structures in the
human mind. Models are viewed as expressions of values, capable of
influencing the thing modelled. They are valued in terms of beauty
(simplicity, elegance)" (p.74 1)

Moody (1 998) and Moody and Shanks (1 994) view data modelling not as a

"deterministic process of uncovering the 'correct data model ' , but a process of searching

for alternative solutions"(p.2) and this comes close to encapsulating the behavioural

differences implicit in these distinct positions2• The objectivist belief in one 'correct'

data model leads modellers to perceive any problems with a model as "a failure to

capture and specify the real requirements" (de Carteret & Vidgen, 1 995 p.368). The

solution then lies in improving "the engineering process such that the requirements

specification is accurate, complete, consistent and unambiguous" (ibid. p.368). From an

objectivist viewpoint, not only is a 'correct' data model the ultimate goal but also its

quality can be empirically tested by its correspondence to reality. Lakoff (1987) has

questioned the value of adopting this position in all situations, writing

"In objectivist semantics, the world simply is the way it is, and truth cannot
be affected by the way one understands a situation . . . Objectivist semantics
assumes that in any domain there is only one correct way to understand what

2 A much fuller discussion of the behaviour that can be expected from modellers working within each of
the four paradigms can be found in de Carteret and Vidgen (1995)

44

is going on. It is one thing to make such a claim for physical sciences. It is
quite a different matter to make such a claim for social or abstract domains,
where alternative models may be equally valid" (p.20 1).

If reality is viewed as being socially constructed then data modelling becomes a matter

of seeking consensus rather than uncovering 'truth' and is not so much an activity of

discovery but of negotiation (Veryard, 1994). De Carteret and Vidgen (1 995) describe

this subjectivist position as one in which,

"there is no single correct data model - an acceptable model will emerge
through the process of constructing a data model. The more people whose
interests are reflected in the model then the more likely it is that a shared
understanding will be reached and a successful implementation achieved. A
good data model is one which creates a shared understanding; the
appropriate way to go about creating such a model is through participation
and facilitation" (p.368).

Modelling behaviour in this instance will typically involve a number of 'stakeholders'

ranging from the business specialists, to the program designers and database

administrators whose views need to be integrated (Darke & Shanks, 1 994a) into a

workable design from which a useful database can be constructed. As Simsion (1994)

observes, " support for the model by all stakeholders .. .is critical" (p. 1 16). This position

then actively encourages and expects modellers to find alternative model solutions and

to have a reliable means of choosing between them. Thus, the suitability or quality of a

model can only be decided within the context for which it was built and is based on

necessarily subjective judgements.

De Carteret and Vidgen (1995) point out that by insisting that data modelling is either

objectivist or subjectivist we create a "binary opposition between (them) and cast them

as a dualism" (p.370). They suggest that the fuzzy approach (Kosko, 1993) of viewing

them as a duality rather than a dualism is more appropriate, and ultimately more useful.

Their interpretative scheme is illustrated at Figure 4.

In their view both objective and subjective aspects are seen to be present in all elements

of the IS development process at the same time. They argue that it is "not appropriate to

consider the process as objective (IS development mirrors organisational reality) or as

subjective (organisational reality is created through IS development)" but to recognise

that the potential for both exists (de Carteret & Vidgen, 1 995 p.372). In this view an

objectivist modeller will be likely to mirror and thus reinforce the existing

4S

organisational structures. A modeller operating from a subjectivist standpoint, on the

other hand, will tend to re-interpret and re-create these structures in different, and

possibly innovative, ways. Their 'interpretative scheme' can be viewed as a bridge

between the complex multi-realities of the 'real world' and the singular reality of the

electronic database?

organizational context

(.. _ .. ············ .. ���;
r

������ ..
;�

·
��

·
��

·············· .. ·····
, : : : :

� methodology IS development techniques !
: method e.g. data modelling : : : : :
l,,······------·---------··-······ .. ·r·-·--·····-·-···-.. -.. -.---.-----)

I IS development activity I
Figure 4. IS Development as a duality (de Carteret & Vidgen, 1995)

As so often, Kent (1 978) foreshadowed this argument, commenting that, "although it (a

conceptual model) is a single perception of reality it must be broad and universal enough

to be transfonnable into the perceptions of all the applications supported by the data

base" (p.28). It may be well that the tendency, noted earlier, to equate conceptual data

modelling with the modelling of users ' information requirements, is a pragmatic attempt

to describe this very phenomenon.

The interpretative scheme of de Carteret and Vidgen (1 995) also provides an interesting

framework in which to view the apparent inconsistencies and contradictions that emerge

in both academic and practitioner literature. A significant amount of academic research

has concentrated on providing richer, more complex and more formal Models with

which to better capture the 'objectivist' reality. Consequently, experimental research

3 Although even this could now be challenged. The data warehouse is hardly a singular electronic reality
bringing together as it does a vast collection of sometimes unrelated, sometimes redundant and
sometimes conflicting and inconsistent data and data structures (meta data) - it begins to have many of
the properties of the 'real world' .

46

results have often been assessed on participants' ability to reproduce the 'correct' model

as previously created by the researchers themselves. Educators too, whether through

textbooks or assessment measures, tend to behave, and exhort others to behave, as if

there is only one 'correct' representation. Practitioners, however, have adopted a far

more pragmatic approach. The existence of a number of acceptable solutions is both

acknowledged (Simsion, 1 994) and expected (Simsion & Shanks, 1 993). Motivated by

the recognition that their ultimate purpose is to design an implementable database,

practitioners often choose to largely ignore those aspects of the conceptual modelling

facilities which, while allowing them to be more expressive in their description of

reality, provide l ittle assistance in database creation (Hitchman, 1995).

Infological vs. datalogical

The various purposes ascribed to the conceptual model seem to fit quite comfortably with

de Carteret and Vidgen' s framework described above. The ISOrrC97/SC5/wG3 (1982)

report identified two principal purposes of the conceptual schema, firstly to describe the

DoD, i .e. to provide an 'abstraction of reality' (Tsichritzis & Lochovsky, 1982) and

secondly to control the descriptions in the data base; i.e. to prescribe the major data

structures that will be implemented (van Griethuyzen, 1 983). The first purpose implies

that the conceptual schema, formulated independently of DBMS considerations, should be

understandable to DoD experts. However, there is no clear indication as to whether this

abstraction is intended to represent a singular or a consensual reality. The second purpose

requires the representation to be a reflection of the potential database structures and

clearly acknowledges an element of knowledge construction. While recognising these

two distinct purposes the report does not recognise any tension between them nor any

specific difficulties in accommodating both within one representation. However, as

Shoval (1985) points out, there is a clear "distinction between (the) two levels in that

schema, each of which is dedicated to one of the purposes"(p.417).

Tsichritzis and Lochovsky (1 982) recognise that the first purpose, which they tenn

.:infological' , is primarily used as an aid to understanding and thus validation. The

second, 'datalogical ' purpose, on the other hand requires a very detailed and technically

oriented representation. Much research has sought to provide modelling facilities that

reconcile these very different purposes. However, as Tsichritzis and Lochovsky (1982)

47

observe, provided that there is a means of mapping from one form of the representation to

the other, then there is no reason why both purposes should be fulfilled by the same

formal representation. Later researchers such as Elmasri et al. (1 985) agree.

Nevertheless, the E-R Model continues to be generally used to satisfy both needs,

although not with equal success (Elmasri et aI. , 1 985) and consequently, despite the initial

euphoria, has been gaining an increasingly unsatisfactory reputation ever since. To extend

Simsion's (1 994) architect analogy, data modellers are attempting to describe both the

detailed design specifications and the artist 's impression with the same representation.

It would seem that, initially at least, the E-R Model fulfilled the datalogical role

adequately and in the infological role partly filled a difficult ,gap. However, even though

conceptual data models are still usually built only as a precursor to database design,

increasing levels of abstraction and an increased breadth of scope have made it

increasingly important that non-IS specialists are involved in their construction. , The users

and sponsors of the system must understand and be able to verify the data structures and

business rules (Veryard, 1994) while auditors may use the conceptual schema as an

indication of database integrity (Am er, 1 993). As Campbell (1 992) points out the data

modelling diagrams are being used for a number of purposes, which include "as a user

communication tool (. . . documenting the data needs of the business) and . . . as part of

Systems Documentation (the ultimate purpose of which is to communicate requirements

and design)" (p. 12). It is clear that because of this role as a communication tool, the

infological representation is becoming increasingly important (e.g. Shanks, 1 997; Shoval

& Frumermann, 1994; Siau et aI., 1995 ; Tjoa & Berger, 1993) and is often associated

with research focussed on either improving the E-R Model or finding a better alternative

(Blaha et al., 1 988; CampbeU, 1 992; Coad & Yourdon, 1 99 1 ; Elmasri et aI. , 1985 ;

Hammer & McLeod, 198 1 ; Moody & Osianlis, 1996; Schenck & Wilson, 1 994; Smith &
Smith, 1977a; Teorey et al., 1986).

In practice, however, this infological role is not always explicitly recognised. This allows

Campbell (1 992,p. 1 3) to accuse IS practitioners of "technological arrogance" in expecting

users to become familiar with, and think of their data in, the constrained structures that the

�se of any modelling formalism, based on datalogical requirements, must use (Kent,

1978). Campbell would appear to be justified in his comment that "there is a conflict

between the desire to address design issues and the need to create a form of data model

48

with which the busin�ss user is comfortable" (CampbeU, 1 992 p. 1 3) . As Olle (1 993)

observes, the conceptual schema must be represented in a fonn that is "assimilatable by

subject area experts who are not familiar with infonnatics oriented representation

fonns"(p.53).

There is some consensus in the literature that the conceptual model should be,

• understood by the subject area experts whose enterprise reality it is intended to

represent, (Kirn & March, 1995),

• a precise, formal and complete specification of the information requirements

(Tsichritzis & Lochovsky, 1982;Yunker, 1 993),

• free of architectural or implementation bias (Olle, 1993; Ram 1 995), and

• transformable into a logical design for a specific implementation (Elmasri et aI. ,

1 985;Teorey et al., 1986;Tsichritzis &.Lochovsky, 1982).

However, the datalogical function of the model almost always appears to be regarded as

paramount and most writers would agree with Pletch (1989) that the conceptual model

is the "focus of the database design4 process" (p.74). After all, conceptual data models

are rarely built unless there is an ultimate goal of creating some slice of virtual reality,

i .e. an electronic database (Tsichritzis & Lochovsky, 1982).

Despite the fact that the conceptual model is often defined in terms of its role as a

"communication medium between professional analysts/designers and users" (Shoval &

Frumermann, 1994 p.28), it seems that in practice it is almost always built to fulfil its

primary, datalogical role (de Carteret & Vidgen, 1995). In addition, there is "little

awareness of the disparity between the users' way of thinking and the analyst' s way of

modelling" (Eden, 1 996 p.42). Nevertheless, it seems generally agreed that a useful

infological model needs to reflect very closely the way users view data. However, users

may have their own idiosyncratic ways of viewing their data (Raymond et al., 1 989) and

these may differ from person to person and none of the views may be useful in terms of

building a database. , These considerations have led some researchers to investigate

using some form of controlled natural language as the basis for the infological

4 Emphasis added

. ,

49

representations. After all, as Tjoa and Berger (1 993) observe, "potential users of

information systems usually express their system requirements in natural language" (p.

206). Natural language also provides the only way in which the "connection between a

data base and the reality about which statements are to be represented, can be

established" (Biller & Ne old, 1978 p. l 1).

Analysis vs. Design

There is one further dichotomy, which it is useful to explore since it is directly related to

the previous discussions. This is the tension between modelling as an analysis or as a

design activity. Simsion (1 994), echoing the position of many practitioners, is of the

opinion that data modelling is very much a design activity and he highlights the

distinctions inherent in the use of phrases such as 'data analysis' and database design.

In professional practice, data modellers are often called data analysts but rarely data

designers; they may occasionally be called database analysts (although this is also used

to refer to those who analyse the data in the database rather than its structure) and more

commonly database designers. These terms, which usually cover very similar job

descriptions, would seem to indicate something of an identity crisis inadvertently

highlighted by Barden' s (1 994) description of 'design analysts' and 'database design

analysts' .

. /
Academics, on the other hand, almost always use the broad expression of data modeller

and thus side step any issues of behavioural difference, although Cerpa (1995) for

example, sees the process as entirely one of design. Even where the two activities are

clearly acknowledged, there is still a tendency to amalgamate their characteristics.

Shoval and Frumermann (1994) for example, state clearly that "data modeling is an

analysis and design activity"(p.28) but later refer to "the analyst/designer" who

"interacts with the user in order to understand the data structure of the reality being

modeled"(p.28). Benyon (1997), while always referring to the modeller as either an

analyst or a designer nevertheless uses the terms interchangeably and Burmeister (1 995)

5 Further discussion of the use of natural language within the database design process can be found in
Chapter 6.

50

describes "the design task [as consisting] of two main phases - analysis of (and

modelling) of the data and analysis (and modelling) the processes"(p.3). A cursory

study of current textbooks (Burch, 1992; Gibson & Hughes, 1994; Hawryszkiewycz,

1997) on information systems development reveals a similar ambiguity.

Hawryszkiewycz (1997), for example, guarantees confusion by explaining,

"Data modeling is part of the development process. In the linear
development cycle, it is used during the system requirements phase to
construct the data component of the analysis model. This model represents
the major data objects and the relationships between them. It should not be
confused with data analysis, which takes place in the systems design phase.

System design organizes data into good shape. Usually this means removing
redundancies, a process often called normalization .. . " (p. 182).

In case the situation is still not clear, he continues,

"Most designers develop only the high-level conceptual model in the system
specification phase. The more detailed analysis using normalization is
carried out during design6 (ibid. p. 182).

Burch (1992), too, while suggesting that analysis reports should include specific user

requirements defined in terms that everyone can understand, nevertheless defines the

difference between the data analysis and conceptual data design deliverables as being

the level of detail represented in the E-R model. There is an inherent contradiction in

this position that is never properly addressed, i.e. in order to be understandable to users

the E-R model has to be simplified or abstracted to a high level, but in order to be a

complete and specific statement of user requirements it needs to be detailed. Gibson

and Hughes (1994) present a similar scenario although they do address the

contradiction. They state that while user requirements are initially gathered during the

analysis phase, where they are documented with an E-R representation, they are "refined

as the logical design becomes more detailed" (p.347). They recognise that the data

requirements as specified at the end of the analysis phase are incomplete and are,

therefore, able to observe that "a set of satisfactory user requirements is derived through

long but critically important hours of presenting design7 documentation to users" (ibid.

p.347). In this way they acknowledge that users are expected to confirm not just that

6 Emphasis added.

1 Emphasis added

51

their requirements have been adequately recorded and understood but that the detailed

data structures that have been designed to maintain their information are also

appropriate. It seems little wonder that there is an increased perception that users have

difficulty in interacting with E-R models.

Avison and Fitzgerald (1 995) confirm the exemplary nature of the above texts by

equating data modelling with the analysis of "the structure and meaning of data in the

organisation" (p.67) and suggesting that "entity modelling is the main technique used to

achieve this in many methodologies" (p. 1 27). They perpetuate the contradiction by

describing data analysis as "an art or craft [and] not an exact science" and

acknowledging that "there can be a number of useful data models" (p. 128). Even in the

Multiview8 methodology, the data is analysed via the development of an entity model,

achieved by the problem-solver extracting and naming entities and establishing the

relationships between the entities (Avison & Wood-Harper, 1990). Halpin (1 995) also

views the analysis and design stages as overlapping and sees the NIAM-CSDP as useful

in both phases.

It is clear, as Larman (1998) comments, that the "division between analysis and design

is fuzzy; analysis and design work exists on a continuum and different practitioners of

'analysis and design' methods classify an activity at varying points on the continuum"

(p. 1 4). He concludes that "since different people and methods mean a variety of things

by these terms, debating the definition is not particularly constructive" (ibid. p 16) and it

is not helpful to be too "rigid about what constitutes an analysis versus a design step"

(ibid. p. 14). However, the issue is deeper than merely finding a convenient label. He

finally concedes that,

"[n]evertheless, some consistent distinction is useful in practice between

investigation (analysis) and solution (design) because it is advantageous to
have a well-defined step that emphasises an inquiry of what the problem is
before diving in to how create a solution. It is also sets [sic] an expectation
of suitable behaviour among the team members; for example, during analysis

members expect to emphasize understanding of the problem while deferring

issues which relate to the solution, performance and so on" (ibid. p. 1 6)

8 This methodology developed by Avison and Wood-Harper (1995), is a conscious attempt to meld 'hard'
and 'soft' approaches to system development by incorporating a number of techniques developed by
Checkland (e.g. Checkland & Scholes, 1990).

52

There is also a significant difference between the philosophical positions required of an

analyst and a designer that puts this discussion clearly back into the subjective/objective

context discussed above. As Simsion (1994) comments,

"in analysis, creativity suggests interference with the facts. No honest
accountant wants to be called creative. On the other hand, creativity in

design is highly valued" (Simsion, 1 994 p.7).

In other words analysts need to behave as if there is an objective reality awaiting their

discovery and their task is to uncover this pre-existent information; designers do not.

Analysis is thus best served by what Kepner (1996) refers to as the 'rational mode of

thinking' whereby a conclusion is reached based on observed facts using reason and

logic. This 'scientific thinking' , based on immediately experienced reality, is

considered the most reliable and valid. In this situation an auditable, prescriptive

approach may be very appropriate.

Conversely designers are rewarded for providing elegant re-interpretations and

combinations of 'realities' , particularly if their designs provide new insights into the

problem. It calls on two other modes of thinking, intuitive and creative. Kepner (1 996)

describes the former as,

"the thinking that occurs . . . when an idea simply wells up from the
unconscious mind in response to the perception of a problem or issue.

Information for intuitive thinking comes from the integration of stored
fragments, facts and impressions that have accumulated over the years"
(p.3).

and the latter as,

"thinking that reaches out beyond what is now known into what could be. It

puts known elements together to form new ideas and visions. It draws on
observation, experience knowledge and the indefinable ability each person

has to arrange common elements into new patterns" (ibid. p.3).

The less prescriptive the approach, the more likely it is that innovative and creative

solutions can be found. De Carteret and Vidgen (1995) clearly describe data modelling

as inherently creative, where a modeller "often needs to dream up several different

possibilities
,
,9 (p.334). They comment that "learning to be imaginative is probably

much harder for the average adult than learning data modelling techniques" (ibid. p.334)

�mphasis added

53

and suggest that the "tools of the trade should be used to capture creative thoughts and

not to suppress them" (ibid. p.335). Intuitive thought is also recognised as being an

important component of 'expert' modellers' behaviour, particularly in their propensity

to re-use previous, successful, patterns. (Batra & Davies, 1992, · Simsion & Shanks,

1993)

However, not everyone agrees with these characteristics. For example, Olle et al.

(1991) classify data modelling as an analysis activity, within a framework that

characterises analysis as descriptive and design as prescriptive. This would seem a

reflection of the characteristics of the general E-R approach itself rather than a

description of the properties required by analysis and design tools. The E-R approach

can be described as highly descriptive'O in its initial stages becomingly increasingly

more prescriptive as it moves towards the transformation of the conceptual model into a

relational implementation. Halpin (1 993a) however, considers that "E-R models can be

of use once the design process is finished" as they are "less suitable for formulating,

transforming or evolving a design"(p. l). Thus, it would seem that, within the

Information Systems community, there are some very different views on the nature of

analysis and design. For the purposes of this study, analysis will be defined as an

activity that seeks to determine the "elements or components of something complex"

and to discover the "general principles underlying [these] concrete phenomena"

(Brown, 1993). Design, in line with the Shorter Oxford English Dictionary, will be

considered to be the action of creating a plan or picture, "in accordance with appropriate

functional or aesthetic criteria . . . for the construction or production of a building, machine

etc" (Brown, 1993). In colloquial terms then, analysis will be considered to refer to the

'what' ; i .e., to the data requirements underlying the required system development, and

design to the 'how'; i .e . , to the development of possible storage structures suitable for

electronic implementation.

With these definitions in mind, de Carteret and Vidgen's (1 995) framework can be seen

to require elements of both analysis and design, as does the view of data modelling

activities, shown at Figure 5. Certain parts of the process, specifically the requirements

10 This issue is discussed further in Chapters 5 and O.

S4

elicitation phase, will require the data modeller to take on the 'analyst' role in order to

record accurately each element of the users' perceived reality, and thus create a faithful

map of the external territory. The result of this phase, the infological conceptual model,

is most useful when it is expressed in a form that the users can readily understand and

validate. It is also important that modellers are aware of their own perceptions of the

DoD and do not pollute the users' view with their own interpretations and assumptions.

Previous Experience

Conceptual
Modelling Language

Figure 5. Conceptual Modelling Activity Kim & March (1995) adapted.

However, in the next phase, the creation of the datalogical conceptual model, the data

modeller needs to behave as a designer, not an analyst, to create an elegant resolution of

the possibly conflicting viewpoints that have been uncovered. At this point, the modeller

is a designer, responsible for creating a data structure that will satisfy the diverse

requirements of the users of the eventual system, as well as providing for re-use and

flexibility. This is not likely to be attained by a mechanistic mapping of the various

viewpoints into a superview alone. It is likely to require some 'flair' that comes directly

from the data modeller's own experience and expertise. At this stage creativity is at a

premium and it is here that data modelling becomes very much an art. As Simsion and

Shanks (1 993) observe "implicit in the design view of modelling is the assumption that

most practical data modelling problems have many workable solutions"(p.3).

One further consideration is that there must be an auditable correspondence between the

documented results of the analysis phase and the data structures that are the result of the

design activity. This is represented on the diagram at Figure 5, by the bold line linking

the infological and datalogical models.

55

Summary

Olle (1 993) appears correct then in observing that "since the term 'conceptual schema'

was introduced, it has come to mean different things to different people" (p.49).

Conceptual data models may be considered as a reflection of reality, as a database map, as

a record of a portion of the one 'real' universe or as an agreed consolidatIon of a number

of subjective views of the world. Additionally, they may be intended to enhance

communication about the world or to facilitate the design of an electronic data storage

system and they may be seen to require, either or both, analysis or design skills and

behaviours. Almost any combination of these views may be held by researchers,

educators and practitioners and it is not unusual for the combination to appear

contradictory as de Carteret and Vidgen (1 995) point out.

One suggested view of conceptual data modelling is that it is part of an interpretative

scheme whereby a portion of the world, as it is perceived by any number of users, is

transformed into an appropriate datalogical design (de Carteret & Vidgen, 1995). The

process has two quite distinct functions, both of which may benefit from having their own

specific representational forms. The first, infological, function would be well served by

being "based on constructs as close as possible to the human way of perceiving

information" (Kent, 1 978 p. 1 95) and the second, datalogical, purpose could be filled by

the use of the relevant implementation model, e.g. the Relational Model (Elmasri et al. ,

1985). However, it must be possible to map directly and consistently between them

(Tsichritzis & Lochovsky, 1982). Modelling behaviour and the choice of an appropriate

modelling tool are undoubtedly affected by the standpoint from which all these aspects of

conceptual data modelling are considered. Some interesting and significant issues relate

to being able to clearly differentiate the purpose and outputs of the two stages and to the

question of whether it is appropriate to use the same tools, techniques and methods to

undertake both activities.

For the purposes of this study then, a conceptual model is considered to have two roles,

which, while generally viewed in combination, may be better, served by different

representations. The first role, as a communication tool, is to provide a "precise/formal
-

specification of the information which the user wishes to communicate to and from the

proposed information system . . . which should be free of architectural or implementation

56

bias" (Yunker, 1993 p.3). It is the result of an analysis of the users' UoD and

consequently must be easily understood by the users in order to enable accurate

verification. As Larman (1 998) points out, "raJ critical quality to appreciate about a

conceptual model is that is a representation of real-world things not of software

components" (p.87). However this model must also provide the basis for the data

design by being "transformable to both the required user views and to a variety of data

storage and access structures" (Sharp, 1 993 p.2). The more straightforward the

transformation, the more accurate the mapping of user requirements to the final design,

will be. This model will be referred to as the 'infological' or 'analysis' conceptual

model.

The second role is to provide a representation of data structures that would support the

users' information requirements in the paradigm of the eventual DBMS. As such it is a

product of a design activity, which proposes structures that could be constructed for a

specific implementation technology. Such a representation must be understood and

meaningful to other IS professionals such as systems analysts and database designers but

while it must be possible to verify that the users' requirements are still being supported,

it should not be necessary for a user to comprehend technical design structures. There is

thus a clear need to extract from this model a view of user requirements, which is

comprehensible to the users and which is preferably similar in form to their initial

verified view. This model will be referred to as the 'datalogical' or 'design' conceptual

model.

/
This study will argue that the infological and datalogical roles of the conceptual mc

{
del

can benefit not only from having different representational forms but also by

recognising the different behaviours required by modellers during the process of

constructing them. In addition, it will take the position described by Avison and

Fitzgerald, accepting that the infological model, as a partial reflection of reality, can

only ever be one, subjective view, neither "absolutely correct or wrong, but more or less

useful" (Larman, 1998 p.98). However, this study will also accept that the datalogical

model, as a map of potential or actual implemented data structures, can be viewed as an

objective representation of an electronic database. The process of modelling will thus

be viewed as an interpretivist ·activity, in line with the arguments put forward by de

Carteret and Vidgen (1 995).

5 E·R Modelling: observations

"Philosophers will always wonder what an entity is. Meanwhile there is some information
processing to do! " (Brodie et aI., J 984 p.3)

Introduction

57

Although the use of object-oriented techniques is increasing, some version of the original

E-R Model (Chen, 1976), using some variation of the methodology proposed by Teorey et

al. (1 986), is still a widely used conceptual data modelling technique (Avison &

Fitzgerald, 1995; Bock & Ryan, 1 993; Siau et al., 1996; Flynn, 1 998). It is a central part

of many system development methodologies, ranging from SSADM4 (Eva, 1 994) to

Information Engineering (Finkelstein, 1 989) and is widely supported by many CASE

- tools . There is evidence that in New Zealand the percentage of organisations employing

formal data analysis techniques for information systems development, while low, is

growing and that many of these organisations are using CASE tools which support some

variation of E-R modelling (MacDonell, 1 994). It also seems likely that the E-R Model

"is here to stay" (Loosely & Gane, 1990 p.7), at least for the immediate future.

Even the development of object-oriented modelling techniques does not always move us

very far from the E-R tradition. Yourdon's Object-Oriented models, for example, bear a

marked similarity to the conventions of E-R diagrams (Coad & Yourdon, 1 99 1) and

Benyon-Davies (1 992a) suggests that the inherent strengths of E-R modelling can be

extended in such a way as to provide a useful and effective object model. Blaha et al.

(1 988) go even further claiming that "[o]f the many approaches to relational database

design, the Object Modeling Technique is particularly effective"(p.414). A claim which

is perhaps partly explained by their insistence that, in OMT, "{t]he notion of an object is

synonymous with entity in the ER and LRDM methods" (ibid.p.41 6) and is further

illuminated by their observation that "{tJhird normal form is an intrinsic benefit of object

modelling" (ibid. p.41 8).

58

Criticisms of the E-R Model

Many of the earlier claims, that the E-R Model provides an easily conceptualised model

(Yao et al., 1 984) using constructs that are highly intuitive (Brodie et aI., 1984), and

useable as an effective communication tool (Teorey et al., 1 986), are now being

questioned (Goldstein & Storey, 1 990; Hitchman, 1995) . Yet despite the diverse

criticisms, it remains a common choice for both high level corporate modelling as well

as database design. Perhaps the answer lies in the fact that "higher levels of abstraction

such as E-R diagrams are conducive to creative thinking and effective communication"

(Blaha et al., 1 988 p.415) and that the production of E-R models is seen as an essential

component of the design strategy.' Nevertheless it is criticised for being difficult to use,

, , teach and understand. The reasons for this apparent contradiction may lie in three areas, '

• that the E-R Model is no longer used in the way and for the purpose for which
it was first proposed,

• that the E-R Model referred to by practitioners and some academics is not the
E-R Model at all, and

• the necessarily descriptive method employed to construct an E-R model.

The first of these areas has been investigated in previous chapters and will not be

discussed in detail here. However, it is worth re-iterating that E-R models were initially
.--

used to represent the conceptual schema and were thus essentially datalogical in nature.

Consequently, they were generally used by those professionals who had already acquired

a competent understanding of the physical structure of databases. As a diagrammatic

tool for representing this complex abstraction (the database) they were, no doubt,

'intuitive' to many of their early users. However, as an increasing number of non­

technical users have been required to validate their semantic content, E-R models have

not been found to be necessarily intuitive to those people who are used to thinking of

their data in some other form.

Kent (1978) h&S suggested that much of the difficulty that a user experiences in learning

to interpret E-R models has less to do with the complexity of the tool than with the

struggle, "to contrive some way of fitting his problem to the tool: changing the way he

thinks about his information, experimenting with different ways of representing it". He

continues, "much of this "learning" process is really a conditioning of his perceptions so

that he learns to accept as fact those assumptions needed to make the theory work, and

S9

to ignore or reject as trivial those cases where the theory fails" (Kent, 1 978, p. 1 94).

This is supported by Goldstein and Storey (1 990) who suggest that users need to have a

good understanding of the E-R Model before data models become useful to them.

Additionally, Kim and March (1 995) believe that the users in their experiment may have

scored more highly in discrepancy checking tasks with the E-R model than had been

anticipated because they had a "higher-than-expected degree of record-orientationl ..

(p. 1 l0) . This finding, while supporting Goldstein and Storey' s (1990) proposal, goes

further in suggesting that the greater the users' understanding of physical database

structures, the more able they are to interpret and validate the E-R model correctly. Kim

and March (1 995) conclude that as users become increasingly familiar with E-R models

and presumably as their 'record-orientation' increases, the quality of the conceptual data

models will improve. It seems likely that this problem has become more noticeable in

recent years, due in part to the large increase in the number of people involved.

However, it may also be due to a phenomenon that has crept insidiously into the practice

of data modelling but gone largely unremarked by either practitioners or academic

researchers ; the development of the E-RlRelational hybrid mentioned previously2.

The E-RlRelational Hybrid

When the E-R model was originally proposed, it was intended to express data

requirements in a way that was independent of the underlying implementations. Initially

then, it made little sense to incorporate any aspects of the classic Models into an E-R

model ; for example, it can be argued that normalising an E-R model is not necessarily

useful unless the target DBMS is relational. Some writers such as A vison and Fitzgerald

(1 995) who, despite relating nonnalisation to the Relational Model, still consider it to be

applicable in other data structuring contexts, challenge this view. However, it is

interesting that neither Chen in 1 976 nor Teorey et al. in 1 986 viewed nonnalisation as a

part of constructing an E-R Model . Indeed, in the LDMRD (Logical Design Methodology

for Relational Databases), Teorey et al. (1 986) specifically describe nonnalisation as a

step that follows the mapping of the E-R model to the candidate relations of the Relational

I This tenn appears to signify familiarity with physical data storage, possibly relational, structures

2 See Page 3 1

60

model. However, as relational DBMSs increasingly became the only target, so a number

of relational considerations found their way into the E-R conventions. The result is that

many so-called E-R models can be better described as relational models using E-R

graphical notation and certainly a number of CASE tools use a subset of E-R conventions3

to provide diagramming facilities for the construction of a normalised relational schema

(Ryder, 1993). Some practitioners even go so far as to dismiss the need for a conceptual

model at all. Huff (1 992), for example, suggests that,

"It is both unrealistic and unnecessary to design data structures independent
of the type of the target DBMS (unrealistic because of problems of physical
implementation, unnecessary because DBMSs in companies usually live
longer than conceptual data structures)"(p.33).

There is evidence in the literature that would seem to confirm the existence of this

unacknowledged hybrid. Marche (1993) refers to data models, especially normalised

entity relationship ones" (p.44). Cerpa (1 995) too, considers that "a conceptual model is

an entity-relationship model4 in 3NFs" (p.353), while Batra and Zanakis (1994)

specifically state that an "E-R diagram developed with the relational representation as the

target must obey the normalisation concepts" (p.228). Benyon (1997) goes further and

declares that "a completed E-R model consists of a diagram (the E-R diagram), a

corresponding set of fully normalised (i.e. in 5NF) relations and additional information"

(p. l 60).

However, if an E-R model has to conform to normalisation rules, it cannot claim to be a

user's view of the world "without any consideration of how data is stored on

computerised files" (Jarvenpaa & Machesky, 1 989 p.367). Normalisation is a property of

relations (Cerpa, 1 995) and is, therefore, a relational process that relies on the existence of

well defined, minimal primary keys, and the transformation of information bearing

relationships into entities, including the resolution of many to many relationships. These

latter considerations are appropriate to the design of relational databases but not

necessarily to those of other implementation paradigms and, with the exception of primary

keys, were not a part of the original E-R Model (Chen, 1 976).

�he relationship diamond is almost never used.

4 This is referenced to Chen1976.

5 This definition is constrained by the acknowledgment that it is "for the purpose of this study".

61

An E-R model that is fully normalised is thus not really an E-R model, as envisaged by

Chen, but a relational model represented by similar graphics. This distinction may go

some way to explaining some of the contradictory research. After all a relational model,

masquerading as an E-R model, may well be more difficult for users to understand,

providing, as it does, a much more constrained view of their data than a 'purer' E-R

model would require. Like Hitchman (1995), Kim and March (1995) make the interesting

comment that a possible explanation for the lack of understanding of some of the

semantic concepts that they observed, may be attributable to the lack of such constructs in

the Relational Model . They also go on to say that the findings do not necessarily show

that the respondents could not produce relational data structures (Kim & March, 1 995) .

As Simsion (1994) remarks, "from a practical perspective, there is not much value in

adopting a data modelling language that is not compatible with current database

management systems or CASE products"(p.22). Indeed, this would seem to reflect the

situation that Hitchman (1 995) found among practitioners in the UK, that "a significant

number. . . do not seem to understand some available semantic constructs of the entity­

relationship model" (p.39).

The existence of the hybrid is hinted at by Batra et al (1990) who observe that "in the

general database design literature and in the practice of professional data analysts6, the

Relational Model has been used to conceptualise data requirements" (p. 1 26) and also that

some form of E-R graphical notation is commonly used to depict these relational models.

There is little direct evidence of how widely the hybrid is used. However, personal

observation and the findings of some researchers suggest that practitioners are using the

E-R conventions and terming the products of this usage E-R models, although they are

actually constructing implementation-oriented, relational designs rather than

communication-oriented, conceptual models (Hitchman, 1 995; Kim & March, 1 995). ·

Simsion and Shanks (1993) for example discovered that among 39 practising data

modellers in Australia not one used the Chen diamond notation for relationships. This

may help to explain Kim and March' s (1995) conclusion that "users as well as IS analysts

should be trained in an appropriate conceptual modeling formalism" (p. l l l), as well as

explaining why the E-R Model would appear to be no longer seen as a particularly useful

6 Emphasis added

62

communication tool (Hitchman, 1 995). A clear expression of this confusion among

practitioners is highlighted by Chee-Pun Wong (1 995), in the practitioner magazine

'Database Programming and Design', where it is stated (incorrectly) that "E-R

modeling . . . does not support attributes within relationships" (p.42). The statement

however, would be quite legitimate if referring to relational modelling, which is of course

the actual formalism under discussion.

The merging of E-R graphical notation with the construction of logical, relational schemas

is common in textbooks and training manuals, many of which are adopting a pragmatic

attitude towards the hybrid, perhaps giving an indication of the extent of the current

practice. Simsion (1 994) in a chapter entitled 'The Entity Relationship Approach'

describes how to represent a previously normalised relational design as an E-R diagram;

while in a chapter entitled 'The Conceptual Schema' Avison (1 992) specifically details

the normalisation of the entities in an E-R model. Benyon (1997) is quite specific:

"there is a very close correspondence between the E-R model and the
relational model. Indeed, in the methodology provided in this text, together
they form the information model. . .The E-R model being the main user­
oriented part of the information model and the relational representation being
the computer oriented part" (p. 1 80).

De Carteret and Vidgen, on the other hand, make no reference to the E-R model and are

quite clear that they are writing about relational modelling. For them "another way of

representing an entity is as a relational table" and they are careful to refer to diagrammatic

representations as "Entity Diagrams" rather than the more common 'Entity-Relationship

diagrams' (de Carteret & Vidgen, 1 995 p. 1 2). However, this is unusual. Most texts either

describe clearly a purist E-R modelling exercise and then its transformation into a

'logical ' relational design (e.g. Ricardo, 1 990; Sanders, 1 995; Teorey & Fry, 1 982) or

compress the two phases into one data modelling activity where the E-RlRelational hybrid

is clearly evident (e.g. Benyon-Davies, 1 996; Simsion, 1 994; Veryard, 1 984; Veryard,

1 994; Watson, 1 996). The anonymous authors of the AURIS A Data Modelling

Workshop in 1 99 1 were quite clear about their rather contradictory position,

"The modelling techniques covered in this workshop are based on E-R
modelling . . . E-R models are . . . independent of the physical data model under
which the database will be implemented. The approach adopted by the

authors however, is to develop models from which relational structures are
directly derivable7 .. (p .9).

63

There may be another, very pragmatic, reason for the widespread adoption of this hybrid

model by practitioners and this relates to the actual process of creating a useful model.

A truly infological E-R model may not be directly or easily, transformable into a

relational schema. A lack of appropriate unique identifiers, the existence of one-to-one

or many-to-many relationships, the existence of derived data and relationships that carry

attributes, may accurately reflect the users' view of their domain. However, it may also

force the modeller to make decisions, based either on a personal interpretation of the

enterprise or on previous experience, at the point of transformation to a datalogical

representations. It may well be that the better a conceptual E-R representation is at

fulfilling its infological role, the less effective it is at its datalogical role and vice versa.

If conceptual models are mainly constructed by IS practitioners rather than users

(Hitchman, 1995), then it would not be surprising that the resultant models were

favouring the relational, datalogical representation. It may also be, for reasons that will

be explored later9, that the construction of a datalogical representation is significantly

easier, particularly for less experienced modellers who also have an understanding of

relational theory.

It is clear that the E-RJR hybrid models are being constructed and are commonly used in

professional practice and the benefits of this approach must seem attractive to

developers working within strict budget and time constraints. By combining the

infological and datalogical functions of the conceptual model into one representation,

there are apparent savings 10 in seeming to speed up the database design process and

facilitating the design of the logical data structures on which the functional analysis is

often based. However, there are a number of negative implications of this cost cutting.

As has been previously suggested, users are reportedly finding it difficult to understand

and thus validate these representations. This must reduce the models' effectiveness as

7 Emphasis added

8 Or even earlier. Benyon (1997) suggests that in the E-R model. M:M relationships should be
decomposed during the early stages of data analysis.

9 See Page 66

10 For example. it becomes unnecessary to build two models and to maintain a mapping between them.

64

strategic planning and communication tools, as well as being of little use in recording

enterprise rules. If even those users who have been closely involved with the

construction of the model find difficulty in interpreting it, it is unlikely to be of much

use in a wider arena or over a period of time. The models are unlikely to use elements

of the E-R Model, which, while providing rich semantics are not readily implementable

in a relational database. Finally, while organisations may believe that they are

constructing a 'conceptual' model for their applications or even for their enterprise, they

are unlikely to reap the future benefits implied by the meta-data architecture previously

described 1 1 .

Constructing an E-RlRelational hybrid model

There is another factor relevant to the development of the hybrid and this relates

specifically to the process by which it is constructed. While it is recognised that

conceptual modelling is a complex activity, particularly for non-expert designers, there

has been little research on the actual process of conceptual model construction (Batra &

Srinivasan, 1992; Yunker, 1993; Benyon-Davies, 1992b; Srinivasan & Te'eni, 1 995)

particularly on the activities within the discovery phase (Kim & March, 1 995). Batra and

Zanakis (1994) point out, that while most techniques provide methods to translate an E-R

diagram to a relational schema, "they do not detail a precise set of rules and heuristics to

develop the E-R diagram itself' (p.228). Eden (1996) too comments that "the literature

falls short of providing a definitive and comprehensive account of the process of data

analysis by the Entity-Relationship approach" (p.42). The guidance generally given is

summarised by Fims (1 993) thus,

"One approach is to develop the diagram first and then to define data
elements and assign these as attributes to the entities in the data model and
finally to specify key structures and other details. The second approach is to
define the data elements first, then develop the diagram and assign attributes
to entities as the diagram evolves. In practice a combination of the two
approaches provides the most intuitive basis" (p. 1 15) .

While these instructions are specifically related to the use of a CASE tool, the general

principles mirror those in most descriptions of the process. Some authors provide a case

study to illustrate the process or more commonly rely on simple straightforward examples.

J J See Page 35

· 6S

Eden (1 996) identifies that, with the exception of NIAM, none of the literature,

"succinctly addresses the problem of how to securely guide the novice from a

requirements statement in Natural Language to a conceptual schema" and few "recognise

the importance of linguistic analysis" (p.43). Instead, novices are directed to identify the

'important' entities and the relationships between them.

Beyond a broad definition of what an entity is, little direction is given in how to identify

them. Interviews with users, analysis of input and output documents are usually

recommended starting points but apart from pointing out that the nouns uncovered in

these studies are useful pointers to possible entities the modellers are left to determine

from their own intuition and experience which nouns will make useful entities.

Interestingly, one of the most succinct renditions of this advice comes from an object­

oriented textbook where Eaglestone and Ridley (1 998) observe,

"most design methods are informal in the way in which the task of
identifying candidate objects is achieved, and provide only heuristics, i.e.,
rules of thumb, to guide the designer. A common approach is to analyse
natural language descriptions of the organisation which the database is to
serve and select candidate objects on the basis of grammatical clues. In
general, an object is implied by a noun or noun phrase" (p.284).

Thus, 'experience is the best teacher' seems to be the maxim and the process remains a

necessarily subjective one. Simsion (1 994) summarises the situation by saying that

"entity identification is essentially a process of classifying data, and there is

considerable room for choice and creativity in selecting the most useful classification"

(p.82). It is, therefore, no surprise that 5 1 data modellers of varying experience, given

exactly the same problem description, will come up with 5 1 different data models

(Simsion & Shanks, 1 993), nor that Bubenko (1 986) views the quality of a conceptual

model as being totally dependant on the competence of the modeller. To the objectivist,

of course, there can only be one 'correct' way of categorising the data but practice

suggests that regardless of the validity, or not, of this view, it is not useful. Traditional

objectivist views of classification and categorisation have been challenged (Lakoff,

1 987; Way, 199 1) and this debate continues to inform research on the conceptual

modelling process. However, it has not yet resulted in any significant guidelines for the

apprentice modeller. In addition, it has been observed that as physical electronic

databases require ·strict typing the conceptual modelling facilities have tended to

incorporate them as well (Tsichritzis & Lochovsky, 1 982).

66

Entity identification, or the categorisation of data into useful sets, would appear initially to

be a fairly straightforward task and certainly the attention paid to the activity in most

textbooks would seem to confirm this impression. However, as Raymond et al. (1989)

point out, considering that, "there are more than 1 1 billion ways of choosing four

categories of five items from a set of 20" (p.239), the task is obviously not a trivial one,

particularly as many of these possible combinations will not be suitable for any task. A

number of writers comment on the difficulty of identifying entities (Benyon-Davies,

1 992b; Flavin, 198 1 ; Teorey et al., 1 986; Veryard, 1994) while others comment on the

even greater difficulty experienced by novice modellers in determining the relationships

between them (Batra & Sein, 1994; Shoval & Frumermann, 1 994). While novices could

easily gain the impression that a set of pre-existent entities and relationships are awaiting

their discovery, some writers make it clear that there is definitely "more than one

workable answer in most practical situations" (Simsion, 1 994 p.6) and that part of the

modelling task is to identify information structures that are 'useful ' to the enterprise.

The need to use the categories in some way; e.g. to retrieve members of the categories at

some point according to some criteria, is thus likely to determine the usefulness of the

categories that are chosen. Shoval and Frumermann (1 994) extend this observation to the

identification of objects, by saying, "there is no standard or "normal form" that can guide

an 00 designer to decide which representation is preferable and much depends on the

assumptions about the types of queries that will be posed at run time" (p.31) . Despite an

earlier report suggesting that the "organizations in which subjects chose to express

information are in large part a function of the relationships among the data, and only

secondarily a function of subjects' preferences" (Durding et al., 1 977 p.8), Raymond et al.

(1989) designed an experiment partly around the belief that the subjects' "effectiveness in

solving the retrieval task would reflect the effectiveness of their structuring" (p.241) .

Now, if the implicit target implementation for most conceptual models i s relational then it

is highly likely that the most useful categories in an E-R model will be perceived to be

partly normalised, candidate relations. After all, there would appear to be little to be

gained in undertaking the categorisation task twice. If a modeller knows that the

categories will have to obey the normalisation rules eventually, there must seem little

point in not doing so from the outset. However, to use this criterion for category creation

is immediately to move away from the language and structure of the users' perception of

67

their enterprise reality and into the realm of computer storage design. Thus, even with the

stated intention of creating an E-R model, it is easy for modellers to be seduced into

creating instead an essentially relational model in which the E-R is, very clearly, just a

thin layer on top of the basic relational model (Date, 1995).

Unfortunately without the assistance of the normal forms, entity identification becomes

even more difficult and SUbjective. Relying on vague definitions of an entity as

"something that exists and is distinguishable" (Blaha et al., 1988 p.415), or the slightly

more definitive "a thing or object, whether real or imagined, about which information

needs to be known or held" (Barker, 1990 p.GI-3), is not very productive, as data

modelling students soon discover. Not only does confusion arise as to whether an entity

is an entity at all but it is compounded by the realisation that an entity may be viewed as a

relationship or as an attribute depending on the context or the modeller's own preference

(Date, 1995). With no clear guidelines on these issues it certainly seems safer to equate

entities with relations, as Benyon (1997) specifically does, disallow relationships that

contain attributes and use normal forms to assist in determining the appropriateness of the

resulting structures . Expert practitioners may well exhibit this behaviour and certainly the

practically oriented books would seem to reflect such a situation (e.g. Benyon, 1997; de

Carteret & Vidgen, 1995; Simsion, 1994; Veryard, 1984).

This, then, would help to explain both the findings mentioned earlier (Goldstein & Storey,

1990; Hitchman, 1995 ; Kim & March, 1995) and why instruction in data modell ing is

often preceded by an overview of relational databases or a description of normalisation

(Avison, 1 992; Simsion, 1 994; AURISA, 1991). Indeed, de Carteret and Vidgen (1 995

p.xi) specifically state, "our experience of training data modellers has shown that it is

easier for a student to understand the idea of entities and relationships at the conceptual

level having first understood how they might be implemented." A modeller then seems to

need to have an understanding of relational databases in order to build a useful E-R

model. This is a clear indication that the model required is not only a datalogical one but

specifically a relational one. Teorey et al. (1986) appear to have implicitly recognised this

in providing "guidelines for classifying entities and attributes [that] will help the designer

converge to a normalised relationship [sic] design" (p.204), while Batra and Zanakis

(1 994) specifically use relational considerations in developing heuristics for their

conceptual database design approach.

68

Alternative Approaches

There have been some attempts to provide an alternative approach to the process of

requirements discovery and entity identification. As early as 1983, Kent (1 983 p.3)

claimed that "deferring problems of identification and representation until later in the

process" resulted in a method that was "at once more simpler and more powerful than

other methodologies." He claimed that his proposed method did not "describe procedures

for identifying the entities and relationships" although later he contradicts this assertion

suggesting that "records are chosen in an objective and systematic way based largely on

the pattern of . . . relationships in the facts to be maintained" (ibid. p.30). He highlights that

choosing the "major entities" in a system is not always obvious and that it can even,

"invert the design process: [as J users develop an ability to choose major entities that will

correspond to the records they want in the data design" (ibid. p.30). In the same year,

Chen (1 983) was also exploring ways of extracting entity relationship models more

directly from the natural language description of the DoD but the purpose was still

essentially datalogical and the ideas appear to have been largely ignored. More recently

Eden (1996 p.42) has proposed a method which he claims is a "step by step process for

developing a conceptual schema from natural language requirements" having recognised

the need for novices to have "a well defined process". However, his process still requires

the identification of "strong entities and attributes" as the first step and thus does nothing

to alleviate the problems of this initial stage.

CUrrently there appears to be increasing dissatisfaction with the E-R Model as a tool for

conceptualising data requirements. This has lead academic researchers, many of whom

persist in repeating uncritically that 'one of the most widespread conceptual data

modelling methods is the E-R model first proposed by Chen' , (e.g. A vison & Fitzgerald,

1995; Bock & Ryan, 1 993; Siau et al., 1995), to believe that it is the 'pure' E-R Model

that is under fire. However, it is more likely to be the E-RlRelational hybrid that is both

the most ubiquitous Model and the target of much of the more recent criticism.

Consequently, researchers continue to search for more rigorous Models or develop

richer semantic constructs for existing ones (e.g. Codd, 1 990).

Practitioners too, experiment with using other methods, currently object-oriented ones,

that are considered to reflect reality more naturally than the models in traditional

69

analysis (Martin & Odell, 1 992) despite the difficulties of mapping from such an object

model to a relational database design (Olds, 1 997). Nevertheless, the relational,

datalogical considerations are never far away, with practitioners 'nonnalising' object

models (Martindale, 1997) and Blaha et al. (1988 p.414) stating that "object modeling

promotes adherence to nonnal fonns". Meanwhile, both groups largely fail to

acknowledge that the practitioners' 'E-R Model' is fundamentally relational, and that

many of the criticisms might best be answered by complementing it with an additional,

appropriate infological representation rather than seeking to replace it.

Summary

Flavin remarked in 198 1 that "[c jurrent practices of analyzing business systems for the

construction of databases are largely intuitive and undisciplined" (p.9) and it seems that

little has changed. As Marche (1993) observes "the theoretical foundations upon which

data modelling rests are remarkably incomplete when considered critically. The

principles for building a data model as set out in the literature are contradictory, unclear,

unspecific and/or incomplete" (p.44); this observation has significant implications not

only for the education but also for the practice of Infonnation Systems professionals.

Additionally there is an expectation that the data models that are built by this ad hoc,

descriptive process should be able to adequately fulfil two important, complex and

essentially different functions. The failure of an E-R model to do this is seen as a failure

of the Model, the modellers or the users, depending on the critic's own perspective but

never as a indication that it is the expectation that is, at fault.

Returning once again to the architect analogy, it is as if the builders, the architect and

the prospective owners and users of a new building were asked to accept as adequate a

plan that was an uncomfortable mixture of building specifications and artist's

impression. No doubt the non-technical users would find it difficult to confinn whether

what they were being shown was what they wanted, the builders would have difficulty

in knowing exactly what to build and the architects would consequently find themselves

in the uncomfortable and pivotal role of attempting to assure both sides of the

satisfactory nature of this hybrid. Accepting the architect's word would require a

significant degree of trust in both his integrity and professional expertise. A vison and

Fitzgerald (1995) make exactly this point,

70

"In infonnation systems development there is no clear-cut distinction
between artist' s impressions and the engineer' s blueprints. There is not one
version of the model for the user and another version for the computer
programmer. Some may argue that this may be a valid goal, but furthering
our analogy, artist's impressions are notoriously optimistic and vague about
difficulties, and engineer's blueprints are very difficult to interpret by all but
the trained. It is not satisfactory for the untrained to have to accept the
statement 'trust us, we're the experts' .

This means that the users and the builder of the infonnation system must
both understand the conceptual model 12" (p. l 23).

However, A vison and Fitzgerald (1 995 p.33) note elsewhere, the unsatisfactory nature of

this arrangement, commenting that the documents which users are required to 'sign-off as

correct are "completed by computer-oriented people" and are not designed for users. It is

unlikely that this situation would be acceptable to any of the stakeholders in the process of

commissioning, designing or constructing a major building. Additional conceptual aids,

such as scale models or photographs of existing buildings of a similar nature, are used to

substantiate artists' impressions. With the appropriate adaptations, why should the

construction of a database be any different?

12 The term 'conceptual model' is used here in the context of Soft Systems Methodology and is not
intended to describe any form of data model. However. the sentiments seem to be equally valid for both
meanings.

. 6 NIAM: observations

"By focusing on the facts to be maintained in a data base, we obtain a methodology for
data analysis and design which is at once simpler and more powerful than other

methodologies. " (Kent, 1983 p.3)

Introduction

71

As the need for business users to participate in the construction of effective and useful

data models has become recognised, one area of research that has developed is the

exploration of the possibilities offered by natural language to provide this communication

bridge (Metais et al., 1 993; Sowa, 1984; Sowa, 1 99 1 ; Steinberg et al., 1 994; Tjoa &

Berger, 1 993; Vadera & Meziane, 1 994; Way, 1 99 1). However, Object-Role Modelling

(ORM), particularly as used within NIAM and as supported by the CASE tool,

InfoModeler™, I already provides a natural language interface between the user and the

modeller. ORM also fulfils Tsichritzis and Lochovsky's (1 982) mapping requirement, in

that the conceptual model it produces can be transformed by a straightforward algorithm

(Nijssen & Halpin, 1 989) into a normalised relational schema. NIAM is widely used in

Europe and Australia and is increasingly recognised as one of the major data modelling

approaches (Creasy, 1989; Kim & March, 1 995 ; Laender & Flynn, 1992; Song & Forbes,

1 99 1 ; Weber & Zhang, 1 991) .

Object-Role Modelling

Originating in the early 1 970's, ORM views the world as made up of objects playing roles

(Halpin, 1 995) and "traditionally expresses all information in terms of elementary facts,

constraints and derivation rules" (Halpin, 1993b p . l) . There have been several

I InfoModelerTM is the registered trademark of Asymetrix Corporation. All references in this study are to
InfoModeler™, 1 .5 Desktop version

72

methodologies developed for the creation of an ORM, of which NIAM (Natural Language

Information Analysis Method) is the best known. "The fundamental approach of building

a design by starting with specific examples and thereafter following a well-defined

procedure" (Nijssen & Halpin, 1989 p.3 1), was initially developed by Nijssen during his

work at Control Data in The Netherlands. Nijssen and Halpin (1989 p.3 1) attribute the

initial proposal "to base conceptual schema concepts on elementary natural language

sentences" to Falkenberg (1 976) whose approach was in turn influenced by the work of

the linguist Fillmore (1 968). NIAM has subsequently been independently developed by

both Nijssen (1994) and Halpin (1995).

Hitchman (1 995) reports that Nijssen has demonstrated that ORM and the E-R Model are

capable of expressing a similar level of meaning, a view supported by Laender and Flynn

(1 994). Bronts et al (1 995) too, conclude, "there is little difference in the way of

modelling of E-R and NIAM" although in their terms the "way of working" is

significantly different2(p.232). Apart from anecdotal evidence (e.g. Halpin & Orlowska,

1992), however, there is nothing to show whether the fact-oriented approach is more or

less effective. Recent comparative studies of E-R and NIAM are inconclusive (Laender &

Flynn, 1 994; Kim & March, 1995; Shoval & Even-Chaime, 1 987) although Weber and

Zhang (1991) conclude that the constructs provided by NIAM are more powerful than

those provided by the E-R Model . Halpin (1995) suggests that ORM and E-R modelling

may have a complementary use although his suggestion is limited to using E-R diagrams

as a convenient means of summarising complex ORM models. However, even this

limited suggestion is unusual with most advocates of ORM maintaining the method' s

superiority over the E-R Model with almost religious fervour. It i s not the intention of

this study to enter this debate.

NIAM-CSDP

The complete NIAM method (termed the NIAM-ISDM) is made up of three stages,

conceptual schema design (the NIAM-CSDP), conceptual schema transformations and

relational implementation. A summary of the seven steps that make up the CSDP is

2 This idea is discussed further in the following chapter.

73

shown in Figure 6 (Halpin, 1995 p.43). In essence, the steps provide a clear and well­

defined procedure for building the conceptual schema, by capturing information

requirements as natural language sentences, termed 'facts' , extracting sentence patterns or

'fact types' from these sentences and using 'real ' examples to validate the facts and assist

in identifying the required constraints. On completion of the CSDP, the resulting schema

can be adjusted in the conceptual schema transformation stage although any generated

alternatives must be equivalent in meaning to the original. This schema is then

transformed into a normalised, relational schema by a straightforward published algorithm

(Nijssen & Halpin, 1989).

1. Transform familiar information examples into elementary facts, and apply quality checks.

2. Draw the fact types and apply a population check.

3. Check for entity types that should be combined and note any arithmetic derivations.

4. Add uniqueness constraints for each fact type and check arity of fact types.

S. Add mandatory role constraints and check for logical derivations.

6. Add value, set comparison and subtyping constraints.

7. Add other constraints and perform final checks.

Figure 6. The 7 steps of the NIAM-CSDP (Halpin, 1995)

While some aspects of the process can be tedious and time-consuming when undertaken

manually, the use of a CASE tool such as InfoModeler™ not only speeds up but also

significantly simplifies the later stages of the process. With InfoModeler™, once the

'facts' have been added to the model, together with their constraints and example values,

the tool is able to determine and create the diagrammatic representation of the sentence,

including the basic constraints of uniqueness, cardinality and optionality. It is also able to

validate the model for syntactic correctness, transform the ORM model into a database

schema in "optimal normal form3" (Nijssen & Halpin, 1 989, p .254) and generate

appropriate SQL commands for a variety of DBMSs. It is, therefore, theoretically

possible to create a physical schema from an entered set of natural language sentences,

without further intervention, although in most cases some refinement is desirable.

3 Optimal Normal Form or ONF is described as basically equivalent to 5th Normal Form. although the
"number of SNF tables in the overall schema has been minimized" for efficiency. (Nijssen and Halpin.
1 989 p 254).

74

Details of all the phases of the NIAM-ISDM can be found in Nijssen and Halpin (1 989),

while Halpin (1995) has produced an extended version of NIAM, termed FORM (Formal

Object-Role Modelling) which provides the underlying paradigm for the InfoModeler™

CASE tool. This study is mainly interested in the first step of the CSDP process, i .e . the

collection of information examples and their transformation into elementary facts and fact

types. This step, identified by Halpin and Orlowska (1 992) as not only the most important

but also "the foundation of NIAM's design procedure" (p97), is procedurally equivalent to

the identification of entities and relationships in the E-R approach.

Natural Language

NIAM theory begins from the axiom that all information communicated can be expressed

as a set of elementary declarative natural language sentences from which general patterns

or 'fact types' , as shown in Figure 7, can be extracted (Nijssen, 1 994). NIAM has its

foundation in "linguistic theory and applies set theoretical concepts to induce formal

information grammars from (these) sets of natural language sentences" (Schouten, 1 993

p. t). Two further axioms state that all communication with the user is held in the user' s

language exclusively and that all communication with the user is illustrated with practical

examples. This is justified by the argument that users are most comfortable describing

their enterprise in their own natural language and that with a representative set of example

sentences they are able to assess the validity of the set, allowing even complex constrai�ts

to be determined (Nijssen, 1994). As Biller and Neuhold (1 978) remark, "it is very

important to rely on the users understanding of natural languages, since only in this

fashion can the connection between a data base and the reality about which statements are

to be represented, be established" (p. l 1).

Fl Department (number) employs staff member (id)

Department with number "57" employs staff member with id " 1 122"
Department with number "57" employs staff member with id "2233"
Department with number "59" employs staff member with id "3344"

F2 Department (number) has name (value)

Department with number "57" has the name "Information Systems"
Department with number "59" has the name ''Computer Science"

Figure 7. A set of example sentences for two qualified fact types

75

NIAM also provides a graphical notation for representing the objects, roles and

constraints identified by the elementary sentences and a simple example is provided at

Figure 8 . However, with the exception of some of the more complex constraints, which

are more easily shown on a diagram, the natural language 'elementary facts' and their

diagrammatic representation are equivalent in the sense that the graphical notation can be

automatically transformed into the 'elementary fact types' or vice versa. This

equivalence, sometimes termed 'semantic equivalence' is perhaps better described by the

expression 'data equivalence' utilised by Biller and Neuhold (1 978) who provide an

informal definition of it in asserting that, "two data bases are equivalent if they represent

equivalent facts about a certain slice of reality"(p . 12). However, they are clear that in

using this term they are assuming "that it is known, whether two sets of natural language

sentences are equivalent. Again we presuppose that the natural language is commonly

understood" (ibid. p. l 2) .

.-

works for employs has

1234 57 57 loCo Systems
1 122 57 59 Computer Science
1 1 12 59

Figure 8. A simple NIAM diagram

InfoModeler™ capitalises on this perceived 'data equivalence' by providing a

'Verbalizer' report which displays the graphical representation of each 'elementary fact

type' and its natural language equivalent together with the natural language examples

which have been entered. This report, illustrated in Figure l O on page 96, provides a

version of the conceptual schema considered suitable for user verification . .

The 'Elementary Fact' Concept

The most fundamental concept in NIAM is that of the 'elementary fact' , derived from

familiar, concrete examples within the UoD. An 'elementary fact' is defined as an

assertion that an object plays a role or that one or more objects participate in a relationship

(Nijssen & Halpin, 1989). In other words, it is an assertion about the Uo.D. The choice of

the term 'fact' is not incidental but indicates that the system is to treat the assertion as

7 6

being true of the UoD whether or not this is actually the case in the 'real' world (Halpin,

1 993a). However, as Halpin (1993b) concedes it is difficult to "define the notion (of an

elementary 'fact') precisely"(p.2) although the definition given above is a useful working

definition. Halpin also concedes that "expressing information as elementary facts is not

always easy" (ibid. p.3) but nevertheless feels that the benefits more than justify wrestling

with any difficulties. He expresses thos�benefits as follows: -

• "By dealing with information in simple units we stand a better chance of
getting a correct picture of the application being modeled;

• Constraints are easier to express and check (e.g. all functional
dependencies should appear as uniqueness constraints and because facts
types are shorter the number of possible constraint patterns in each one is
reduced);

• The conceptual schema is easier to modify, since fact types can be added
or deleted one at a time, rather than modifying compound fact types4;

• The same conceptual schema can be used to map to different data models
(if we group fact types together into compound fact types on the
conceptual schema, different groupings may actually be required in some
target data models)" (ibid. p.3).

Halpin (1 995) makes no mention here of the benefits of interacting with the users in their

own natural language, benefits which are seen as self-evident by the NIAM community.

S ome forms of ORM insist that all 'elementary facts' are binary, however, NIAM allows

elementary facts to be of any 'arity' , i .e. unary, binary, ternary or higher, although binary

facts are certainly the most common. Halpin (l993b) has demonstrated that all NIAM

elementary facts of whatever arity can be expressed in binary fonn but usually at the

expense of natural expressiveness. From the statement 'Hedgehogs hibernate ' for

example, NIAM would allow expression of the unary fact:

(1) 'The animal with type 'hedgehog', hibernates '

which, as a binary fact, would need to be expressed in a form such as:

(2) 'The animal with type 'hedgehog' has HibernationStatus of 'H' .

Both these sentences qualify within NIAM as legitimate 'elementary facts' but as a

major concern of NIAM is to "bridge the semantic gap between the informal user world

and the formal modelling world" (Yunker, 1 993 p. 1 5), Halpin (1 995) prefers to retain

4 He is referring here to an E-R type 'entity' as a compound fact type.

77

the first, more natural, form. Indeed, InfoModeler™, utilising the optimal normal form

transformation algorithm, will map both sentences into the same relational structure

(Appendix 1).

Determining whether or not a 'fact' is elementary, can be problematic. In general tenns, a

'fact' is elementary if it cannot be broken into two or more 'facts' without losing

information. For example, Hedgehogs live in England, rendered as : -

(3) The animal of type 'hedgehog' lives in the country with name 'England',

is a legitimate 'binary fact' . It cannot be expressed as two simpler sentences without

losing the infonnation that hedgehogs live in England. However, the sentence Hedgehogs

live in England and hibernate, rendered as: -

(4) The animal of type 'hedgehog' lives in the country with name 'England' and
hibernates,

can clearly be broken down into the two 'elementary facts' (1) and (3i . However, the

distinction is not always so obvious. It is possible to find some linguistic heuristics to

assist the modeller in judging when a 'fact' is elementary. The use of the conjunction

'and' , for example, can often provide a clue that two 'elementary facts' are within the one

sentence. However, this guideline is by no means foolproof as sentences (5) and (6)

illustrate. Sentence (5) has no 'and' but is clearly intended to convey the same semantics

as sentence (4). Sentence (6) on the other hand is a legitimate quartenary 'elementary

fact' , which despite the use of the conjunction cannot be further decomposed without

information loss.

(5) The hibernating animal of type 'hedgehog' lives in the country with the name
'England'.

(6) The student with the student identifier '9500001 2' enrolled in the Paper with
the code '57.366' and obtained a Grade of 'B' in the Year ' 1 997'.

In these circumstances, modellers are required to determine the 'elementarity' of a 'fact',

by reference to the known constraints provided by the concrete examples (Halpin, 1 993b)

although the final arbiter in unclear cases must always be the domain expert (Collingnon

& van der Weide, 1994).

5 Of course this does not follow if hedgehogs that live in England hibernate but those resident elsewhere,
do not!

78

The Construction of Elementary Facts

There are three clear stages in the construction of 'elementary facts' (van der Lek et al.,

1 992). The first is the collection of concrete examples from the VoD, which serve to

illustrate the relevant information. Within NIAM, it is recognised as being the users'

responsibility to provide these examples, which are usually taken from both the input and

output documents of the system and from interviews with the users themselves. It is

critically important to the entire CSDP that the set of examples is sufficiently rich to

describe all possible facts about the VoD (Calway & Sykes, 1 995). The assumption

underlying this, that the domain experts can and should provide a complete set of

significant examples (Collingnon & van der Weide, 1 994) has been criticised by some as

being very limiting (Darke & Shanks, 1 995c). Certainly the only guidelines that are given

to meet a situation where suitable examples are not available, e.g. for a new system, are

rather unsatisfactory. In this situation the analyst is advised to "begin by getting the user

to write down some examples, and then work from these" (Nijssen & Halpin, 1989 p.35).

As Darke and Shanks (1995c) also point out, there are other aspects of requirements

elicitation and definition that are not addressed adequately in this stage. These are the

social context in which the activity is taking place, and the resolution of potential conflict

that can arise over either the problem definition or alternative viewpoints of the

information requirements. These criticisms will be discussed further in the next chapter.

The second stage of the process is the verbalisation, or expression in natural language

sentences, of the examples. This verbalisation is comprised of a set of sentences

describing all the objects in the UoD and the roles that they play. For example, sentences

derived from an example listing of employee details could include verbalisations such as,

A. Adams has the employee number '71 5' and works in the Sales Department.
His office is in room 2.23 and his phone number is 4206 . . . C. Smith has the
employee number '71 6' and works in the Finance Department. His office is
room 3.21 and his phone number is '4242' . . .

This verbalisation is merely an intermediate step to provide a natural language basis from

which the 'elementary facts', such as

The Employee with the number '71 5' has the name 'A Adams'
The Employee with the number '71 5' works in the 'Sales Department'

can be derived. In practice, most experienced modellers will often move directly from the

examples to 'qualified facts' from which the fact types can be derived, in much the same

79

way as an experienced relational modeller will often instinctively create entities in third

normal form. 'Qualified elementary facts' have a formal structure depending on their

'arity' . Every 'qualified fact' must have a minimum of one object, reference mode, label

and predicate as this defmes a 'unary fact' , i.e.
,

<object>, <reference mode>, <label> ,<predicate>

For 'binary facts' the first three elements are repeated after the predicate, thus,

<object>, <reference mode>, <label> ,<predicate> <object>, <reference mode>, <label>.

The objects are the things of interest, the reference mode is the property of the object

which allows one to identify which instance of the object is being referred to, the label is

the actual value and the predicate is the role that the object(s) are participating in. Some

of the 'qualified facts' from the previous verbalisation could be expressed thus: -

The EMPLOYEE with employee # 715 ' has the NAME (with the value) of 'A dams A '
The EMPLOYEE with employee # 716' has the NAME (with the value) of 'Smith C'
The EMPLOYEE with employee # 715 ' works for

the DEPARTMENT with the name 'Sales '
The EMPLOYEE with employee # 716 ' works for

the DEPARTMENT with the name 'Marketing '

Here the objects are shown in upper case letters, the reference modes in bold, the labels

are italicised and the predicates are underlined6. These facts are often written in

abbreviated fonn with the superfluous words, such as 'with ' , 'the' and 'of , omitted and

the reference mode shown in parentheses e.g.

EMPLOYEE (employee #) 715 ' has NAME (value) 'Adarns A '
EMPLOYEE (employee #) '715 ' works for DEPARTMENT (name) 'Sales '

NIAM insists that each 'qualified fact' must include at least one object, which must

participate in at least one role7. Additionally the reference mode and label of each entity

type objectS must also be expressed. Thus the hibernating hedgehog of Sentence (1)

provides an example of the minimum expression allowable in NIAM, in the form,

ANIMAL (type) 'hedgehog ' hibernates.

6 The convention shown here differs slightly from Halpin's. He suggests that value types are not given a
reference mode, instead the name of the value type is followed directly by the label.

7However FORM allows for the inclusion of "lazy entities" i.e. an object (or more correctly entity) that
exists without participating in any fact, i.e. has no predicate (Halpin, 1 995 p. l 64)

8 Entity or entity type is used to differentiate between those objects which are 'described' by some
property, i.e. they are not just value objects.

80

Elementary Fact Types

The final stage is the extraction of the elementary 'fact types' themselves. Noticeable

patterns emerge in the 'facts' as illustrated above and the 'fact types' are the expressions

of these general patterns. By removing the label, a number of identical sentences are left

e.g.,

Fact 1 . EMPLOYEE (employee #) has NAME (value)
EMPLOYEE (employee #) has NAME (value)

Fact 2. EMPLOYEE (employee #) works for DEPARTMENT (name)
EMPLOYEE (employee #) works for DEPARTMENT (name).

With the redundant sentences removed, these are the generalised 'fact types' which

provide the structure of the conceptual schema and which can be graphically recorded.

The construction of these 'fact types' marks the end of the first step of the CSDP.

However, the use of the concrete examples, as depicted within the elementary 'facts' ,

does not end here. In Step 2 they are used to provide entries into the 'fact table' as

shown at Figure 8 on page 75. In Step 4 the user is asked to judge whether certain

examples are permitted or not in the information base. The results of these enquires are

used to identify the uniqueness constraints for each fact type which are then shown as a

double headed arrow over the column or columns in the fact table which are required to

have unique values.

Summary

The NIAM-CSDP process is thus significantly prescriptive, even in the discovery stage of

requirements analysis. The procedure sets out not only the steps that must be undertaken

in order to specify a fonnal model but also how to express the grammar using the specific

fact encoding constructs (Yunker, 1 993). This prescription is claimed as providing a

consistent, reproducible process and a verifiable resulting grammar (Schouten, 1 993;

Yunker, 1 993), both of which are considered by Yunker (1 993) to be essential pre­

requisites for a "true engineering discipline" and necessary goals for conceptual data

modelling (Yunker, 1 993 p.4). Interestingly it also appears to have been one of the goals

of Teorey et al. ' s (1 986) method for E-R construction, which is described as producing

"nearly reproducible designs from a given requirements specification." (p.220)

81

NIAM appears to display some balance between the infological and datalogical roles of

the conceptual model . The elementary sentences act as a natural way of expressing a

user's requirements, while the examples of those sentences provide both a straightforward

way of determining the basic constraints and an aid in minimising ambiguity. Although

the sentences can be represented diagrammatically it is not usually necessary for the user

to view them in graphical form. Even where this is required there will have been no

artificial structural constraint placed on the information by the modelling paradigm. The

model while directly transformable to a relational schema does not require any

specifically relational constructs and is th,us theoretically equally suitable for mapping to

any implementation paradigm.

The advocates of NIAM are very clear about both its perceived benefits and its superiority

to the E-R approach. For example, Schouten (1993) expresses the opinion that NIAM is

"unchallenged as a reliable information analysis method" (p. l). Leung and Nijssen (1988)

make the point that the use of natural language as the conceptual modelling tool

minimises the loss of semantic information in the earliest and most critical stage of

development. Yunker (1993) suggests that NIAM is inherently superior as a method as it

provides a prescriptive, auditable procedure, something, which, he argues, is precluded in

the E-R approach by the nature of the modelling constructs that are provided9• Although

many of these arguments are persuasive and well founded and while the shortcomings of

the E-R Model are well documented and generally agreed, nevertheless the E-R approach

remains the technique of choice for many of the organisations which choose to undertake

data modelling. This choice is possibly a reflection of the historical lack of commercial

CASE tool support, the preference of the data modellers themselves and perhaps also

reflects a certain resistance to the use of NIAM among practitioners who are already

skilled in the use of the E-R approach.

9 This argument is revisited in more detail in the following chapter.

82

7 E-R and NIAM:

a comparison of approach
Data modeling focuses primarily on linguistic phenomena. This is not to deny that it is also
concerned with finding efficient storage structures. This is still a significant design problem
in data modeling. All data modeling however. presumes either implicitly or explicitly some
form of modeling of data meaning. because it is only through the knowledge of data
meaning that an understanding of the design problem . . . is possible. " (Hirschheim et al.,
1995 p.28)

Introduction

83

Several comparisons have suggested that there is little fundamental difference between

the E-R Model and NIAM's OR Model (Bronts et ai, 1 995; Kim & March, 1 995;

Laender & Flynn, 1994). Laender and Flynn (1994), for example, conclude that,

"despite the fact the two models differ significantly in terms of the surface characteristic

of diagrammatic representation, they are very similar in their modelling capability"
-

(p.255). The BWW (Bunge-Wand-Weber) model developed by Wand and Weber

(1 993, 1 995) has been used to evaluate both NIAM (Weber & Zhang, 199 1) and E-R

modelling, as supported by the CASE tool, Excelerator V 1 .9, (Green, 1997). Weber and

Zbang concluded that NIAM, "provides a rich array of constructs " that "are more

powerful than those provided by the ERM (p.80) but suggest that, ''NJAM will tend to

be used with other methodologies that compensate for its semantic deficiencies" (ibid.

p.8 1). Green (1997) reaches a similar conclusion for E-R models and he successfully

predicted that users would have problems "with the recording and integrating of

business rules into their designs and that such users will combine tools and/or

grammars . . . to overcome the resulting ontological incompleteness" (p.9). Indeed, he

observed that 7 of the 10 participants interviewed used free text to represent business

rules.

84

A further comparison

If this were the complete picture there would seem little practical purpose in making yet

another comparison between the two techniques. Bronts et al. (1 995) however, have

suggested a framework of IS development methods which highlights an interesting

difference between NIAM and E-R. Their framework of IS development methods is

illustrated at Figure 9 and the six, boxed components are described as follows,

1) The way of thinking describes the assumptions and viewpoints of the
methodology and thus makes explicit the philosophical framework in which
the methodology is used.

2) The way of working both defines and orders the tasks and sub-tasks that are to
be perfonned and also provides guidelines and heuristics on how these tasks
should be carried out.

3) The way of modelling describes the constructs together with their properties
and the pennitted relationships between them. In other words it provides the
grammar and syntax of the 'language' in which the models are to be
expressed.

4) The way of controlling sets out how the use of the methodology should be
managed.

5) The way of supporting details how tools, particularly CASE tools, support the
methodology.

6) The way of communicating describes the fonn in which the models are to be
communicated to human beings, usually in some fonn of graphical notation.
Bronts et al. (1 995) note that different methods may be "based on the same
way of modelling, and yet use a different graphical notation" (p.2 1 4).

They suggest that the combination of the ways of modelling and communicating are

��; referred to as a �odelling technique" (ibid. p.2 1 4)� This chapter extends this

concept and defines the combination of the ways of modelling, communicating and

working as a definition for a data modelling approach. In doing so, it refines the

definition of a data modelling approach, provided by Loosely and Gane (1990) and

discussed in Chapter 3 . Bronts et al. (1 995) having studied both E-R and NIAM in the

context of their framework, concur with Laender and Flynn (1994) that there is little

difference between the two approaches in tenns of their way of modelling although their

way of communicating (e.g. their diagrammatic conventions) is significantly different.

However, the main difference that they identify "lies in their respective ways of

working" (Bronts et aI, 1 995, p.232), although they do not describe the details of that

difference.

managerial

operational

way of
thinking

way of controlling

- i
way of

.

modelling I"

product

.. " � '" 1-
way of .. working

process

- --

way of � way of
communicating supporting

philosophical

conceptual

concrete

Figure 9. A framework for IS methodologies, (Droots et ai, 1995)

ss

In a less rigorous analysis, Barden (1994) has suggested six major differences between

NIAM and what he terms the 'traditional approaches' . These differences) are that

NIAM,

1) provides a well defined procedure for undertaking the modelling process,

2) provides a way to model without requiring the modeller to classify
entities or attributes, too early in the modelling process,

3) provides a means of validating the model for 'correctness'2 as a
preparation for its mapping to a relational schema,

4) provides a formalised natural language means of communicating a model
as well as a graphical representation,

5) allows for the graphical representation to be populated with example
values to assist in the validation of the model, and

6) provides for a wide range of constraints that can be mapped directly either
to the relational model or even to the target DBMS.

I The ordering of these differences has been changed from the original to facilitate classification.

2 Although not explicitly stated, syntactic correctness is implied.

86

Interestingly these differences, drawn from practitioner experience, support Bronts et

aI. ' s (1995) findings by providing three differences in the way of working 0 -3), two

differences in the way of communicating (4-5) and one in the way of modelling (6). It is

these differences, particularly 1, 2, 4 and 5, that suggest that not only can the two

modelling techniques be complementary but also, as will be argued in Chapter 7, that

they are inherently suited to different stages within the Information Systems

development life-cycle. Accordingly these four differences will be discussed more

fully. Previous chapters have sought to show that there is a major difference between

the E-R approach3 and NIAM-ISDM in modelling procedure, particularly in the initial

stage of knowledge elicitation and discovery. The characteristics of this difference may

be discussed within the framework of descriptive and prescriptive approaches of which

the E-R approach may be generally described as the former and NIAM as the latter.

Differences in the way of working - procedure

A descriptive approach

A descriptive approach essentially lays out what to do but not how to do it. Examples

are given of possible inputs and outputs but little direction is provided as to the

appropriate process that is required, to either identify the 'usefulness' of the input or to

transform it into a 'useful' output. Such an approach obviously allows for considerable

individual choice and creativity and encourages intuition, innovation and the re-use of

previous experience. Idiosyncratic preferences will emerge in the work of experienced

practitioners while trial and error will be an inevitable element in the strategy of the less

experienced. It is unlikely that others can exactly reproduce the final output, as the use

of such a process is similar to the production of an art form. In essence, it is analogous

to giving someone a plate of spaghetti bolognaise, a cupboard of possible ingredients

and some rudimentary instruction on the use of saucepans and the effect of heat on

various foodstuffs. With no further guidance and little previous knowledge, a novice

cook, even after close scrutiny of both the inputs and desired output is likely to take

many attempts to reproduce an acceptable version of the initial dish. An experienced

>rhis encompasses the approach of constructing both an 'academic' E-R model and a 'practitioner' E­
R1Relational hybrid.

87

cook on the other hand will have little difficulty in drawing on previous experience to

create something, probably different in subtle ways, yet, possibly, superior to the

original. The descriptive approach delights in diversity and innovation and implicitly

acknowledges a subjective reality where alternative models may be equally valid

(Lakoff, 1 987) and are in fact actively encouraged (Shanks et al., 1 993).

Even a fairly cursory study of the guidelines given for the development of E-R models,

which here include the E-RlRelational hybrid, discussed earlier, reveals the essentially

descriptive nature of the E-R approach. This nature is highlighted by the method

traditionally adopted in teaching its early stages . In summary, the instructions given

require the modeller to identify the 'useful' entities, identify the relationships between

them and finally identify the properties or attributes of the entities4. These instructions

may be expanded by suggestions that nouns appearing in interview transcripts or

input/output documents may provide clues as to possible entities (e.g. Veryard, 1 984).

However, studying and working through examples is usually the only real substitute for

experience that is offered to novices. Simsion and Shanks (1993) also point out that, in

apparent contradiction to the essentially creative nature of a descriptive approach, "few

texts offer more than one viable solution to data modelling examples" thus helping to

perpetuate "the underlying assumption that there is a single 'right' answer" (p.2).

The descriptive nature of the E-R approach is also alluded to by Firns (1993) in describing

data modelling as an "inherently intellectual process . . . dependant upon the

individual . . . their thought processes, the methods by which they gather information . . . and

the sequence of events by which they acquire such information" (p. 1 1 4). Both Pletch

(1989) and Simsion (1 994) see data modelling as a creative process, being described by

them, respectively, as "a process of using one's imagination" (pletch, 1 989 p.76) and one

where the element of choice is fundamental. Simsion (1994) indeed, states quite

specifically that the responsibility for identifying entities rests "squarely on the data

modellers shoulders" (p. 1 24) and that there will be many different variations of possible

models.

4 Possibly relationships too, in a Chen based E-R model

88

There are a number of problematic implications of a descriptive approach, some of

which may well have a detrimental effect on the construction of E-R models. Such an

approach requires a significant experiential learning phase leading Shanks et al. (1993)

to conclude that novice modellers could benefit from a period of apprenticeship with an

experienced data modeller. This suggestion, of course, reflects an ancient and effective

pedagogical tradition for encouraging the development of talented artists and

craftspeople. However, unless or until, conceptual modelling becomes recognised either

as an art form or, at least, as a craft akin to haute cuisine, it seems unlikely that the

commercial world will be prepared to invest in such expensive training. It could be that

one of the reasons for the lack of data modelling activity noted by both Hitchman (1 995)

and MacDonell (1994) is that effective E-R modellers are long in the making. This

would make experienced data modellers fairly rare, relatively expensive and perceived,

perhaps, as something of a ' luxury' .

Another important implication of a descriptive approach is the variable quality of the

output. The earlier discussion of entity identification5 suggested that data categorisation

is individual, arbitrary and creative. It is thus not surprising that once a model is

expected to represent a domain of greater complexity than most textbook examples, a

number of variations are possible. Batra and Antony (1994) reported the number of

solutions produced by their subjects was "close to the number of subjects themselves"

(p.63). They also observed that "different subjects viewed the situation somewhat

differently" and that their models showed that their subjects understanding of the UoD

"was not usually identical to the semantics conveyed by the correct solution, but

overlapped to some extent" (p.63). Simsion and Shanks (1 993) also found that 51 data

modellers, of whom 39 were practitioners, created solutions to a complex problem with

a range of between 5 and 3 1 entity types and where "as far as reasonably could be

determined, no two models were the same or even very similar" (p.7). As Bubenko

(1986) observes, the quality of the conceptual model is thus completely dependent on

the competence of the modeller. With a descriptive approach it seems almost inevitable

that alternative solutions will be produced.

5 See Page 66

Despite the difficulties of evaluating the alternative representations, the need to choose

between them is real and necessary. Although semantic completeness would seem to be

an obvious measurement of quality, it is rarely the primary one6. Instead a conceptual

model will often be evaluated in terms of its effectiveness as a basis for physical design.

In other words, the datalogical function is again paramount, possibly at the expense of

understandability.

A reason for this may lie in another effect of the use of a descriptive approach, the need

for heuristics to aid the process. Batra and Antony (1994) identified that novice

modellers, faced with complexity, generally resorted to heuristics. They concluded that

the misapplication of heuristics, such as anchoring7 were the cause of a significant

number of errors in their subjects' models. They also concluded that anchoring is so

common because of the form of the usual training methods, which usually "focuses on

the strategy used to arrive at a correct answer but skirts around incorrect strategies and

the possible pitfalls"(p.67). They continue,

''The fault lies with the instruction method . . . The challenge is to find a set of
rules and heuristics that can be imparted in a limited time and can handle
most situations. It would be interesting to study how experts capture their
rules and heuristics . . . Experts frequently draw from past experiences, and
whether their approach can be applied to novices is a question that can only
be resolved by systematic research" (ibid. p.67).

It is interesting that at no point do Batra and Antony (1 994) question the efficacy of the

E-R approach itself or its suitability as a novice tool. Neither do they speculate on what

might constitute effective heuristics although they do hint that database theory might

play a useful, although not exclusive, role. Despite this hint however, they do not

suggest the use of a heuristic commonly found in texts, in research articles and in

practice - normalisation.

As previously discussed8 one clear way of assessing the 'usefulness' of entities is to

view them as candidate relations and once this step has been taken it is a much smaller

one to consider normalising them. By normalising entities, novices can lessen the

6 A full discussion of the evaluation of conceptual models appears in the next chapter.

7 Anchoring is defined as the formulation of an initial hypothesis, which the subject makes little or no
attempt to revise.

S See Page 64

90

impact of the 'outcome irrelevant learning effects' , identified by Batra and Antony

(1994) as a reason for the use of the anchoring heuristic. If an entity is a normalised,

candidate relation then a modeller can, by applying the principles of relational theory,

make a judgement as to the possible effectiveness of the structure. The conceptual

model thus becomes an unacknowledged E-RlRelational hybrid model. Thus,

implementation effectiveness becomes a measure of quality and users find it necessary

not only to understand basic relational concepts but also to be comfortable viewing

'their' data in relational form, in order to be able to validate its semantic correctness.

A prescriptive approach

A prescriptive approach however, lays out both what to do and how to do it.

Consequently, it is far less dependent either on subjective judgements of the modeller or

on heuristics. As this approach allows for little, or no, individual choice or creativity,

the results of the process tend to be consistent and reproducible, and the process itself is

auditable. Such an approach has no need to emphasise the output, as it is assumed that

the right inputs, subjected to a methodical and accurate application of the steps, will

always provide a sound and predictable output. Returning to the ' spaghetti bolognaise'

analogy, the subject is provided with a detailed recipe which describes not only the

required ingredients but the exact process for transforming the correct quantities into the

desired end product. It may not be necessary for the subject to study the end product at

all, or certainly not in any detail. At any stage it is possible to see which steps have been

completed and an acceptable outcome is guaranteed provided that the recipe itself is

proven and that the steps are followed with a high degree of accuracy. An acceptable

outcome is, therefore, no longer completely dependant on the modeller, in fact there is a

general assumption that most people will be capable of following the prescription, even

those with little expertise or previous knowledge of the process. However, unless the

subject develops an understanding and awareness of the reasons for and the effects of,

the steps in the recipe and learns to adapt the process and substitute ingredients, there is

no possibility of innovation or flexibility. It might be argued that such an approach is to

be commended in a grill chef at a fast food outlet but not in a master chef at a top

restaurant. In other words, a prescriptive approach followed, with no imaginative or

thoughtful input from the modeller, will be capable of creating adequate outputs but will

not facilitate innovative problem solving or produce new insights.

91

The steps of the NJAM-CSDP discussed in the previous chapter, are significantly more

prescriptive than the E-R approach. This characteristic is emphasised by its advocates

who claim, for example, that the, "prescriptiveness of the method guarantees that we

can always reproduce the analysis results (reproducability), that we can always verify

the results (accountability) and that we can teach the method to almost everybody

(teachability)" (Schouten, 1 994 p.E2). Likewise Yunker (1993) suggests that "in

contrast to the EAR9 Model it can be seen that the trajectory from initial mission

statement through to formal NIAM Model can be traced at every point. . .This makes

effective auditing of information models possible"lo (p. 1 6). Calway and Sykes (1 995),

identifying that NIAM offers no specific guidelines on the actual extraction of facts,

investigated the possibility of further increasing the level of prescription by successfully

applying discourse analysis to textual descriptions of the UoD. They concluded that it

would be possible to document a method that would further assist analysts in

undertaking the first step of the NIAM-CSDP.

However, the use of a prescriptive approach is not without its critics. Darke and Shanks

(1995b) criticise the NJAM-CSDP on two grounds. Firstly, they remark on the limited

sources of information that are used as the basis for requirements elicitation and

secondly, on the nature of its first step. They argue that Step 1 "assumes that there is

complete agreement as to the nature of the present situation, what problems exist, and

what the information requirements of the new system are . . . There is, therefore, no

consideration of how conflicting views could be resolved" (p.5). They continue "the set

of elementary facts defined as the basis for the conceptual schema is considered to

represent a neutral, objectively true description of a problem domain, expressed as a set

of true propositions about reality" (ibid. p.5). However, NIAM proponents would not

agree; van der Lek et al. (1 992) for example, are quite clear that,

"NJAM's central principle states that a database does not contain
representations of objects from the real world but facts containing references
(labels such as names, numbers, codes) to those objects (this is called a fact
oriented approach). In other words; information modelling does not intend

�(ntity) A(ttribute) R(e1ationship)
10 While auditability is

'
no guarantee of success, the ability to trace a model' s development provides a

means of highlighting erroneous assumptions and pinpointing significant decisions.

92

to model reality, but instead to model communication about reality; This
principle is contrary to the object oriented view which states that a database
constrains representations of real objects themselves" (p.2 (in translation)).

While it is correct that the NIAM-CSDP does not explicitly require the analyst to

recognise conflicts or to view requirements definition as "a process of negotiation and

interpretation" (Darke & Shanks, 1 994b p.8), neither does it preclude it. fudeed, Darke

and Shanks are commenting on the 'way of thinking ' from which NIAM has sprung

rather than a pre-defined restriction by which it is constrained.

Yunker (1993), a NIAM practitioner, for example, accepts that user requirements can be

informal, incomplete, indeterminate, inconsistent and redundant. While Yunker does

not provide any mechanisms for solving these problems, he clearly views NIAM as a

useful and well-established procedure for formalising the information requirements once

they have been agreed. Anecdotal evidence gathered from personal communication

with NIAM-CSDP users l l would suggest that they are well aware of the need for

conflict resolution and negotiation. Like Yunker (1 993), most of them viewed a

prescriptive approach as allowing the construction of it formalised definition of

requirements with no need of creative intervention by the analyst, once the set of

requirements had been established as valid and appropriate for the current version of the

DoD under consideration. Even Halpin (1995), while in no way accepting the

subjectivist view, has to allow for semantic equivalence in conceptual schemas. He

concedes that "given the informal nature of this initial step in modeling the DoD, it is

not surprising that humans often come up with different ways of describing the same

reality" (p.322).

Nevertheless it is clear that a prescriptive approach both stems from and encourages an

objectivist view. It is not concerned with designing alternative solutions but on

producing a single 'correct' solution. While this approach may be limiting (Darke and

Shanks, 1995c), it does have some positive aspects which are discussed further in

Chapter 7.

J J The basis for this claim comes from personal conversations between the researcher and users of the
NIAM-CSDP attending the NIAM-ISDM Conference in Albuquerque, New Mexico, USA in 1994.

93

Differences in the way of working · classification

The second difference identified by Barden (1 994) is that NIAM allows the analyst to

record fact types without having to make a specific judgement on whether something is an

entity, relationship or attribute. Indeed, the process of grouping or categorising data

elements is one of the later stages of the modelling process. Modellers already familiar

with the E-R approach will usually see an, apparently obvious, correspondence between

the data elements in NIAM and the constructs of the E-R Model. Thus value type objects

will often be construed as attributes, entity type objects as entities and predicates as
relationships. However, despite the apparent similarities, within the NIAM-ISDM12 these

decisions are not finally made until the CSDP is complete and the model moves to the

second stage of conceptual schema transformation.

Halpin (1 995) discusses the transformation algorithm in detail but in essence the initial

choice of constructs is revisited in the transformation stage and may well change. The

decision to represent any data element as a particular construct is not ultimately the choice

of the modeller but is the end result of an analytical process whereby the use of the

element within the specific conceptual schema is determined. For example, an object

Department with a reference mode of DeptCode may have been recorded as an entity type

in the conceptual schema. However, if Department participates in only one role within

the schema, perhaps as a property of the entity type object Employee then after

transformation it will appear as an attribute of an Employee relation rather than as an

independent relation in its own right.

Weber and Zhang's (1 99 1) evaluation of NIAM identifies the 'semantic overload' that

occurs through allowing the use of one construct to represent both things and their

properties. However, they not only point out that the BWW model which they are using

"does not indicate the predicted consequences of this" but also that, "NIAM advocates

would argue the advantages . . . [asJ . . . the overload allows users to avoid having to

distinguish between entities and attributes which is a well-known dilemma in the ERM"

(p.80).

12NIAM-I(nfonnation)S(yestems)D(esign)M(ethodology)

94

Most forms of the E-R 'way of working' , force the modeller to make an almost immediate

decision on the appropriate construct for a data element. Without making such a decision

a modeller is unable to begin recording the information requirement. Once a decision has

been made to include the concept Department within a model, the modeller is forced to

decide whether it is to be recorded as an entity or an attribute. There are two problems

with this early decision-making. Firstly while the modeller may change this decision at

any time and for any reason, there is no specific procedure that ensures that the decision

will be revisited. Secondly, for reasons outlined previously, the decision will often be

influenced by inherently datalogical, probably relational, considerations.

As discussed above, Batra and Antony (1 994) have observed that novice modellers are

often anchored to their initial solutions and while best practice guidelines might advise

them to question these decisions or to seek alternatives, there is no mechanism to

encourage them to do so. This is less likely to be a problem with experienced modellers

who have already induced their own rules for usefully classifying data elements although,

here, problems of a different kind may emerge. In Chapter 5 it was observed that there is

likely to be a bias towards equating useful entities with potential candidate relations. and

the re-use of patterns and previous solutions was noted in two studies (Batra & Davies,

1 992; Simsion & Shanks, 1 993) as being characteristic of 'expert' behaviour. It would

therefore, seem very unlikely that, even an inexperienced, E-R modeller would view

Department as anything other than an entity. Instructional material often includes

examples of Employee and Department in which both are 'useful ' entities, thus a re­

useable pattern is learnt and Department would also fit the only definition of an entity that

is usually offered, that an entity is something about which we wish to store information.

In the general sense then, the decision would seem valid but in the specific UoD it may

not be and an E-R modeller is unlikely to ever question this. In this way, a modeller is

introducing datalogical, or more specifically relational, considerations from the very

beginning of the modelling activity. If it was proven that information naturally possessed

an inherently relational structure, or that users intuitively thought about their information

in terms of relational structures, this might not be a problem and the search for the ideal

tool for conceptual data modelling would not still be active.

So it would seem that the descriptive nature of E-R modelling ensures that there is an

almost complete overlap between the analysis and design tasks of the conceptual

9S

modelling activity as it becomes difficult to record the results of analysis without

introducing a considerable element of design. It is difficult to see how such a model can

be free of implementation considerations.

Yunker (1993) goes further and suggests that "the concepts l3 used for representation of a

conceptual model fundamentally affect the nature of the procedures for requirements

analysis"(p. l). He argues that the use of the constructs of entities, attributes and

relationships preclude the possibility of creating a prescriptive method for the

construction of E-R models. His reasoning is that "the attribute concept .. .is in fact

determined by the com�ination of an information structure concept (which expresses an

elementary fact proposition) as well as a constraint (which expresses an information base

state or combination of permitted elementary facts)" (ibid. p.18). In other words to decide

whether or not Photocopier is an attribute of Department, it is necessary to ascertain the

constraints, e.g. whether a Department can have more than one Photocopier. However, in

order to ascertain the constraints we need to have established by what form of constructs

both Photocopier and Department are to be represented. In essence, in order to be able to

identify the correct construct, the modeller needs to know the relevant valid constraints

but in order to formulate the constraints, the construct must also be known. Thus, there is

an inherent circularity in the dependencies that exist between certain constructs that can

only be broken by taking an arbitrary decision and then testing out the hypotheses

consequent to that decision. 14 This, Yunker (1993 p. l 9) maintains, explains why "no

prescriptive procedures currently exist (or ever will) for the recording of initial

information requirements in an EAR-based conceptual model".

Differences in the way of communicating - natural language

Barden (1994) also identified the use of a formalised subset of natural language, as

another difference between NIAM and other methods. However, this is not strictly

accurate. Several E-R/R methods, such as Information Engineering (Finkelstein, 1989)

and the Oracle CASE*Method standard (Barker, 1990) have mechanisms for presenting

13 His meaning of the word 'concept' is synonymous with 'construct' as used in this study.

14 The approach of synthesising 3NF relations from a 'universal relation' consisting of all required data
elements could be seen as contradicting this view as it uses a highly prescriptive method. However, this
approach is clearly specific to relational data structures and not considered a practical means of
conceptual modelling (Kent, 1981).

model infonnation as natural language, referred to as 'purpose descriptions' and 'Two

Way Sentences' (TWS) respectively. What differentiates NIAM is partly the scale and

the formality of the usage and partly the level of correspondence between the natural

language sentences and the diagram. With the exception of a small number of constraints,

which are most easily described graphically, all the infonnation on the ORM diagram can

be rendered into natural language fonn.

employs I works for

Facts:
1 . Department employs EmployeelEmployee works for Department

Every Employee works for at least one Department
Each Employee works for at most one Department

Examples
Department '57' employs Employee ' 1 23'
Department '57' employs Employee '234'
Department '59' employs Employee '456'

Figure 10. Example of 'verbalization' report' from InfoModeler™

Indeed if the steps of the CSDP are correctly followed the sentences do not need to be

extracted from the model, they co-exist with it. Figure 10 provides a simple example of

part of a report taken from InfoModeler™. A report such as this is automatically

available from the tool at any point and is derived from the currently available information

that has been input as a result of following the CSDP. A more comprehensive report can

be produced including details of the data elements, such as data types, and more complex

constraints, such as compound identifiers.

This co-existence is not a part of the E-R methods. The graphical representation, while

supported by data dictionary information, can exist (and in some methodologies does

exist) with no formalised natural language translation. Where relationships have been

named in both directions, simple sentences can be derived as a process of interpretation of

the graphical symbols and the element names. The two methods named above certainly

encourage this and emphasise the benefits of doing so but many methods do not enforce it

as an essential part of the construction process. The scope of the sentences is limited to

97

the associations between entities, and makes no reference to the identifying attributes,

which often do not appear on the diagram either. Another disadvantage observed by

Sharp (1 993) is that, "these natural language business rules expressed as sentences must

be generated and maintained separately . . . the user is [thus] dependant on the modeler to

keep the business rule list synchronized with the graphical EAR model" (p.3).

DEPARTMENT 11
empLoys

/ 1 r-.L V"", EMPLOYEE

works/or

One DEPARTMENT employs 0,1 or more EMPLOYEEs

One EMPLOYEE works for 1 and only I DEPARTMENT

Figure 11. Natural language interpretation of E-R/R constructs

Figure 1 1 provides an example of a generic natural language interpretation of an E-RJR

graphical representation. Initially there may appear to be little significant difference

between the examples in Figure 10 and Figure 1 1 and certainly at this level of simplicity

they would both seem to serve the same purpose satisfactorily. However, a complete

description from the NIAM model would include the sentences for all data elements,

which would include attributes and the associations in any generalisation/specialisation

hierarchies thus providing a much richer description of the UoD. Additionally the NIAM
description provides examplesl5 with which to test out the hypotheses proposed by the

model.

However, the most significant difference, already mentioned briefly, is not immediately

obvious. The NIAM sentences, by their very nature, are an alternative view of the

diagram and contain "all of the model content and approving one is equivalent to

approving the other" (Sharp, 1993 p.6). On the other hand, the E-R sentences have to be

extracted from the diagram by a process of interpretation. This extraction process is open

to error and individual interpretation. As de Carteret and Vidgen (1 995 p.373) observe,

15 The use of examples is discussed later. See page 99

98

"the act of reading a data model is itself interpretative and subject to the same difficulties

experienced when the modeller interpreted the situation to produce a data model". Yet,

this problem is rarely, if ever, addressed in texts and is not included as a necessary step in

any common E-R approach. However, the process of interpretation is not clearly

understood (Nordbotten & Crosby, 1 996) and is too important to be left to intuition16•

Siau et al. (1 995, 1 996) for example, have hypothesised that expert modellers interpret a

model by reading the syntactical constraints with little reference to the underlying

semantics. They expect users, on the other hand, to interpret a model by referring to their

semantic understanding regardless of the syntax. Some initial studies are now underway

to test these theories.

Of course, NIAM's use of sentences goes further than providing a natural language view

of the schema. The identification of the elementary facts is firmly rooted in the

language of the UoD, while the second axiom of the NIAM-ISDM is that all

communication with the user is conducted in the users ' own language. Schouten (1994)

considers that this ensures that "the persons involved know precisely what they are

talking about" and that "the persons participating in the analysis, experience a sense of

familiarity with the object of analysis throughout the whole process" (p.E2). This may

be overstating the case but it seems reasonable to suggest that it is easier for users to

actively participate in the conceptual modelling process if they are able to use natural

language to do so (Leung & Nijssen, 1 988; Sharp, 1 994). It helps to minimise "users

and managers assuming that the model as presented is correct because of their faith in

the mode1er and not because they can independently understand and verify the complete

accuracy of the model" (Sharp, 1993 p.3). This, in turn, allows responsibility for the

final approval of the conceptual model to rest with the users and not with the modellers.

The use of natural language sentences also provides for long-term value, as they will

always be accessible to future users, regardless of the presence of the original modeller

or any graphical representations.

16 A method to assist in the interpretation of E-R diagrams is described in Chapter 1 0.

99

Differences in the way of communicating - familiar examples

The final difference identified by Barden (1994) that will be discussed here is the use of

familiar examples from the UoD. Examples have three purposes in the NIAM-CSDP.

Firstly they are used to fonnulate the initial example sentences, secondly they are used

to specify the correct constraints on the elementary facts and thirdly they can be used to

verify the final model and minimise ambiguity. There are obvious benefits of

understandability in employing examples for verification, and of accuracy in using them

to detennine the constraints. However, it is their use within the initial sentences that is

fundamentally different. NIAM begins with examples of real data formalised into

standard sentence structures and then uses these structures to discern groupings and

patterns within them. The examples are not collections of random data selected to test

out certain hypotheses but rather they are at the very heart of the hypothesis creation.

Indeed, without examples the NIAM-CSDP cannot begin. E-R methods, on the other

hand, require the modeller to create patterns from generalised statements, isolated

pockets of detail, acknowledged and unacknowledged assumptions and previous

experience. Structures are then created from these imagined patterns, which may or may

not be tested out against 'real ' examples, depending on the experience, competency and

confidence of the modeller.

An argument for integration?

While superficial differences between the NIAM-CSDP and the E-R/R approach such as

the different graphical representations are the most obvious, the comparisons discussed

here, could be considered to be the deeper and more significant ones. They assist in a

characterisation of the two approaches, which clearly suggests that they should be

viewed as complementary techniques rather than alternatives.

The NIAM-CSDP has been shown to be significantly prescriptive in its approach, which

may render it easier to learn and to follow even for those with little previous modelling

experience or understanding of database design. This prescriptiveness also ensures a

high degree of auditability, reproducibility and makes it possible to introduce quality

assurance at each step. The use of natural language and real examples, as a fundamental

basis of the method, allows for considerable user involvement and provides a natural

100

infological translation of the conceptual model that is straightforward to verify. Users

can be largely isolated from datalogical considerations partly by removing the need for

them to view the graphical representations and partly by allowing the modeller to

postpone many design decisions until a relatively late stage in development. It can be

criticised for being restrictive, non-creative, inflexible and working most effectively

from an objectivist view of the world, which denies the possibility of truly alternative

solutions.

The E-R approach exhibits very different characteristics. It is primarily a descriptive

method that requires a long learning curve and a successful model will reflect not only

the modeller' s modelling expertise but also their understanding of implementational

data structures. The method encourages production of a datalogical representation that

can be difficult for users to recognise and is open to misinterpretation. Its strengths

however, also lie in its descriptive nature. By relying on some element of trial and error

it encourages the exploration of alternative and possibly innovative solutions.

Arguably, then, the NJAM-CSDP can be seen as a suitable tool for "the accurate

recording of the user's information requirements [which} is or should be the main goal

of conceptual modelling" (Yunker, 1993 p.2). It encourages modellers to behave as if

there were an objective reality and to uncover and record existing information rather

than to create new knowledge. Thus, despite the insistence of its name, 17 it would seem

to exhibit properties more useful in an analysis rather than a design method. For

example, as Simsion and Shanks (1993) observe, "there is no way of reaching the best

design by proceeding mechanically from user requirements" (p.3), which of course is

exactly what the NJAM-ISDM does in its later stages. It may well be that there are

development situations where this non-creative, mechanical transformation may be

appropriate but there will be others in which the results of analysis need to be subjected

to a creative design process.

On the other hand, the E-RJR approach would seem much more suitable as a design

method. In fact, it can be argued that it is inherently so, the initial activity of identifying

entities being fundamentally one of design choice not of analytic discovery.

17 i.e. NIAM-Conceptual Schema Design Procedure

101

Consequently, it may be most effectively utilised after the initial analysis of user

requirements has been conducted.

Summary

This comparison has attempted to show that if a clear distinction is made between the

analysis and design stages of data modelling, then the two existing techniques of the

NIAM-CSDP and the E-R/R approach, working together in an integrated way promises

a tool significantly more useful than either of them in isolation. One alternative would

be to enhance either method by the addition of techniques to fill the perceived gaps.

However, it has been suggested that, "in general, any conceptual modelling language

which contains information structures which dictate a grouping of elementary facts is

not suitable for the capture of information requirements" (Yunker, 1993 p.2 1). Also, the

fact that, despite various efforts (e.g. Eden, 1996), no prescriptive method for E-R has

yet been accepted, suggests that it might represent something of a wild-goose chase.

Conversely, the addition of descriptive design elements to NIAM would seem to be

essentially the same as integrating the two approaches. An interesting precedent can be

found in Kent's (1983) description of a proposed "fact-based data analysis and design"

method which attempted to precede E-R design by an analysis of the facts in the UoD.

He argues that by "focusing on the facts to be maintained in a database, we obtain a

methodology . . . which is at once simpler and more powerful than other

methodologies"(ibid. p.3). However, before a possible integration is outlined, one

remaining thread requires investigation - the means whereby a conceptual data model

may be evaluated.

102

8 Evaluating Data Models

"We often fix on some set of [these] characteristics as "essential" to a model. with the rest
being cosmetic variations that do not really matter. The trouble is. each of us is likely to fix
on a slightly different set of essentials. Unless the underlying assumptions are very
carefully exposed. many debates about these models are in danger of comparing apples and
oranges. " (Kent. 1978. p.99)

Introduction

103

Despite the considerable level of interest in the creation and use of conceptual models,

there have been relatively few attempts (Krogstie et al., 1995 ; Lindland et al., 1994;

Pohl, 1 994) to define a systematic framework within which their quality can be

evaluated. There have also been few attempts to build such a framework for conceptual

data models (Kesh, 1995 ; Moody & Shanks, 1 994; Shanks & Darke, 1996, Moody &

Shanks, 1 998). However, without such frameworks, it is difficult not only to compare

and generalise the results of individual researchers but also to gain any holistic

appreciation for the issues of quality as they relate to data modelling. Batra and

Srinivasan (1 992) have highlighted some of the issues surrounding this, commenting

that "a number of studies do not mention the grading scheme and reliability of the

scoring method" (p.412) which has been used to detennine the outcome. They also

comment that researchers have generally "defined and examined small pieces of the

overall problem" (p.414). They omit to point out that not only do the studies often

examine different characteristics of conceptual models but also, that even when the

characteristics do overlap, there is no common evaluation approach. In addition, there

has also been a tendency to equate model quality with syntactic correctness and thus

much research misguidedly concentrates on the issue of 'building the product right'

rather than 'building the right product' (Krogstie et al., 1995).

104

Previous studies

Most researchers appear to have adopted an essentially ad hoc approach to selecting

evaluation criteria specific to their own particular experiment. Table 2 highlights the

quality characteristics that the studies examined and the measurement instruments that

were used to evaluate them.

Date Authors Tools Quality Measurement
1987 Shoval & Normalisation I) best results. 1) 'correct' solution

Even-Chaime NIAM 2) ease of use 2) how long
3) which preferred method 3) subjective survey

1989 Jarvenpaa & LDS, I) accuracy , 1) 'correct' solution
Machesky Relational 2) time 2) how long

3) notational understanding 3) comprehension questions
4) topdown! bottom up 4) protocol analysis

1 990 Batta, Hoffer & EE-R , I) accuracy in capturing 1) 'correct' solution
Bostrom Relational semantics, 2) subjective survey

2) ease of use
1 991 Batta & Davies user choice 1) process differences of expen v 1) protocol analysis

leading to novices
relational 2) correctness 2) 'correct solution' (implicit)

1 993 Marche Relational model stability Changes in relations and attributes
over versions

1 993 Amer E-R understandability by oversight discrepancy checking - no of mistakes
Relational users made in identi�ngerrors

1993 Bock & Ryan EER syntactic correctness 1) 'correct 'solution
00

1993 Shanks er al E-R 1) completeness 1) suppon for specific functions
2) innovation 2) no of new nouns used as entities
3) flexibility 3) level of generalisation

1 993 Sirnsion & E-R 1) completeness I) suppon for specific functions
Shanks 2) innovation 2) no of new nouns used as entities

1994 Batta & E-R reasons for errors in modelling protocol analysis
Antony relationships supponed by use of 'correct' solution

1994 Shoval & 00 and E-R user comprehension correct identification off true/false
Frumermann statements

1995 Hitchman E-R comprehension of semantic survey questionnaire
constructs in E-R 'correct' solution (implied)

1995 Kim & March EE-R 1) correct I , 2 and 3) 'correct' solution
ORM 2) consistent

3) complete 4a) no of correct answers
4) comprehensible 4b) no and type of identified errors

1 997 Shanks E-R 1) correctness. I) correct syntax
2) completeness. 2) 'correct' solution
3) innovation 3) new nouns as entities
4) flexibility 4) subjective assessment
5) understandability 5) subjective
6) overall qUality. 6) subiective

1997 Shoval EER I) understandability 1) No True/False statements answered
00 2) correctness of schemas correctly

3) time taken to complete 2) 'correct solution' As per Batta et al
4) designers preference 1 990

3) Time recorded
4) Designers subjective assessment on
7 point scale

Table 2 Evaluation criteria used in conceptual modelling studies.

It would seem from this table that there is one common element, the use of a 'correct'

solution, among the measurement instruments. All but two of the studies for which it

was appropriate (Shanks et aI., 1 993;Simsion & Shanks, 1 993), used a grading scheme

based on a benchmark 'correct' solution to test for such elements as "correctness" (Batra

105

& Davies, 1 992), "completeness" (Shanks, 1997), "consistency" (Kim & March, 1 995)

and "best results" (Shoval & Even-Chaime, 1987). A more detailed discussion of these

characteristics is postponed until later but it is important to recognise that these tenns

sometimes indicate semantic completeness, sometimes syntactic correctness and at other

times no distinction is made between them.

All but one of the studies used different scenarios or case studies 1 , nine of which

accompanied the published research, at least in part, (Batra & Antony, 1994; Batra &

Davies, 1 992; Batra et al., 1990; Bock & Ryan, 1 993; Jarvenpaa & Machesky, 1 989;

Kim & March, 1995; Shanks et al., 1993; Shoval & Frumennann, 1 994; Simsion &

Shanks, 1 993; Shoval, 1 997). However, only two included the 'correct' solutions in

their entirety (Batra et al., 1 990; Bock & Ryan, 1 993), and one in part (Batra
'
& Antony,

1 994). In addition, only three reproduced the grading schemes that had been used to

score errors (Batra et al., 1 990; Bock & Ryan, 1993; Kim & March, 1995). It is thus

difficult to judge how similar the use of a 'correct' solution really is. The level of

complexity of the task, the grading scheme used, the strictness with which the grading

scheme is applied, the inherent difficulty in creating a 'correct' solution and the issue of

semantic equivalence, are all factors which suggest that it is unlikely that the

measurement was applied in a consistent manner. Some of the issues pertinent to this

are discussed below.

Measuring correctness

Firstly, there is no consistency between the complexity of the scenarios that participants

are asked to model. Shoval and Even-Chaime (1987) used four scenarios, two of which

they described as 'simple' , involving a "relatively simple DFD, with a single data store

and a few dataflows and examples only" (p.36). The other two scenarios are "more

complicated" involving a "more detailed DFD which included two data stores, more

data flows and examples, more data elements and more complex

relationships/dependencies between them" (ibid. p.36). Despite this infonnation, Batra

and Srinivasan (1992) comment that there is no means of judging the relative

1 Bock and Ryan (1993) used the same scenario as Batra et. al. , (1990)

106

complexity of the scenarios2, nor of comparing them with other studies. Jarvenpaa and

Machesky (1989), report expecting 5 entities, 1 3 attributes and 8 relationships while

Batra et al. (1 990) required 9 entities, 2 sub-entities, 23 attributes and 8 relationships in

their relational solution. Batra and Antony (1994) have only 4 entities and 3

relationships in the solution that they provide while Simsion and Shanks (1 993) report

an average of 1 1 entities in their study with the range extending from 5 to 3 1 . Hitchman

(1 995), on the other hand, points out that his study used scenarios that were "designed to

be simple descriptions of recursion, entity sub-types, orthogonal entity sub-types and

exclusivity" (p.35). He also comments that in grading them "the interpretation of

'correct' was strict as "modellers could be expected to be precise in simple scenarios"

(ibid. p.37). There is no indication of how rigorous the interpretation of 'correct' was in

the other studies and only two specifically address the issue of consistency between the

graders and give inter-rater reliability scores3 (Batra et al. , 1990; Bock & Ryan, 1993).

Clearly there is no consistency in the level of complexity of the tasks that were

undertaken by the participants and for most of the studies there is no indication of how

correctness was scored or what degree of correctness was deemed acceptable.

Secondly, a number of the researchers themselves voice some general concern over this

means of judging qUality. Shoval and Even-Chaime (1 987), describing their use of what

they describe as the 'gold standard' approach, comment that with " . . . all the reservations

that can be made, we judge it as the most acceptable surrogate measure for quality that

could be applied in the experimental environment"(p.37). Other authors appear to agree

with the view that the "idea of a unique correct solution is generally central to domains

such as physics, (and) linear programming" but for conceptual modelling "it is more

realistic to think .. .in tenns of degree of correctness" (Batra & Davies, 1 992). Batra et

al. (1990 p.l 30) go further in explicitly stating that "there was no restriction on the

number of correct solutions if they translated to the same semantics." Unfortunately

they do not specify how they detennined semantic equivalence. Likewise, Batra and

Antony (1 994) are clear that "alternative solutions [to the 'correct ' one] were pennitted

2 The authors themselves remark that, "it turned out that of the two complex tasks, one was considerably
more complex, as it took much more time to do" (Shoval & Even-Chaime,1987)

3 Shanks (1997) also provides this but does not use a • gold standard' approach to assessing correctness.

107

so long as they captured the semantics" (p.61). In the light of Simsion 's observation

that there is no formula for creating "the 'best' classification scheme or even for

recognising it when we do" (Simsion, 1994 p. 1 24) and Moody and Shanks' (1994 p.7)

statement that it " is impossible to say in any absolute sense that one data model is better

than another, irrespective of context", it seems that the 'gold standard' method of

judging correctness may be less than satisfactory. This would seem particularly so when

it is the primary means of measurement and no indication is given of how semantic

equivalence has been determined or graded.

Alternative Approaches

An alternative approach to measuring semantic correctness or completeness is detailed

in two papers (Shanks et al., 1993 ; Simsion & Shanks, 1 993). In the first, the authors

focus on conceptual data modelling as primarily a design activity4 and state clearly that

there can be no 'correct' answer against which the data models can be evaluated. They

specifically reject the idea of the 'gold standard' solution as being inappropriate given

the notion of alternative solutions not only being possible but also highly desirable.

Having also defined completeness as the degree to which the model contains the

information needed to support the functionality of the required system, they propose and

use a measurement instrument based on how effectively each data model can support

four key business functions. This method is also used in the subsequent study (Simsion

& Shanks, 1 993) where each function is rated as zero, one or two reflecting "no support,

partial support or complete support" (p.7) for the key functions. Although no specific

problems are raised by the authors, they do note that it "was a time consuming process,

impeded by the lack of entity descriptions"(ibid. p.7) even though it was undertaken by

someone with "over ten years consulting experience as a specialist data modeller" (ibid.

p.7). It is interesting that in a more recent study, Shanks (1997) has abandoned this

method in favour of the 'correct solution' approach.

4 See the discussion in Chapter 4.

108

Evaluating comparative studies

Another frequently found common element in the reported studies5 is the presence of the

Relational Model as one of the Data Models under consideration and this leads Batra

and Srinivasan (1992) to remark that,

"Representations that are prepared using semantic data models may have to
be converted to ones using the relational data model. If a semantic da�
model is found to lead to better user performance, there is still the empirical
question of whether the quality of data representation obtained after the
designer converts it to the relational form is better than if the designer were
to directly prepare a relational representation" (PA1 2).

This concern, albeit in a different form, would also seem relevant to studies comparing

different semantic Models (Bock & Ryan, 1 993; Kim & March, 1 995; Shoval & Even,;

Chaime, 1 987; Shoval & Frumermann, 1 994), or to those where the choice of

representation is left to the modeller's discretion (e.g. Hitchman, 1995; Shanks et aI.,

1 993; Simsion & Shanks, 1 993). While a satisfactory solution may in part depend on

whether the study has a datalogical or infological emphasis, it is clear that some means

of comparison must be established. The tasks set by Shoval and Even-Chaime (1987)

required participants to create either a set of "normalised record types", for the

normalisation solutions or a set of the record types that resulted from applying a

grouping algorithm, for the Information Analysis solutions. While it is clear that all

solutions were graded against a 'correct' solution, it is not stated whether the same

solution was used for the different formalisms although this seems likely. Kim and

March (1995) on the other hand appear to have used the 'gold standard' approach

independently for each formalism and then compared the resulting scores. Hitchman

(1995) adopts yet another approach and reports that the "diagrams for the scenarios were

coded according to the author's understanding of the model presented by the respondent.

The model was 'registered' if the survey analyst could clearly recognise that the

semantic constructs in the diagram modelled the given scenario" (p.35).

5 See the previous chapter for a detailed discussion of the comparative studies from which these
observations have been made.

109

- Desirable characteristics of a conceptual data model

Correctness, whether judged to be syntactic correctness, semantic completeness

(Shanks, 1 997) or both, was by far the most common characteristic measured in these

studies. Even where it was not a major focus, it was understandably considered an

essential pre-requisite to measuring other factors. There is, after all, little point in

concluding that a modelling formalism is easy to use, for example, if the 'quality' of the

Qutputs is very low . However, it is not usually clear in the literature, whether the

responses from a participant whose model showed little quality was still recorded as

valid and neither do the studies generally report any correlation between these kinds of

fac�ors. Understanding, in some form, either in terms of semantics i.e. 'reading' a

model (Amer, 1993 ;Kim & March, 1995;Shoval & Frumermann, 1 994) or syntax, i .e.

using appropriate notation, also featured quite prominently. Other characteristics are

shown in Table 2 from which it can be seen that Shanks' (1 997) study alone attempted

to create a comprehensive list of characteristics and to measure each of them, including

"the 'transcendental' properties of the data models which are not included in the other

quality factors" (p.68).

It would seem then that there are three issues that have not been satisfactorily addressed

in evaluating the quality of data models. There appears to be no consensus on what

desirable characteristics are required of a conceptual data model, no agreement on how

those characteristics can be measured and no direct method of comparing the quality of

a data model constructed with one formalism with one constructed using another. The

situation is compounded, however, by yet another missing element.

Conceptual Data Model - definitions

In order to create a meaningful set of evaluation criteria it is essential to determine the

purpose, or purposes, the conceptual model is intended to serve. As noted earlier there

is a singular lack of consensus on these issues and nowhere is this more clearly

. demonstrated than in the studies that purport to examine it. All but two of the studies in

Table 2 ostensibly deal with the 'conceptual model' . However, their definitions,

sometimes only implicit in the general description of their research area, range from the

modelling of entities, attributes and relationships (Batra & Antony 1 994) to a non-

110

implementation representation of user infonnation (Shanks et al., 1 993) and a fonnal

representation of the "data structure of reality" (Shoval & Frumennann, 1 994 p.28).

While the differences may seem subtle, their impact of the choice of measurement

instruments and on the interpretation placed on any results can be significant. Table 3,

provides the definitions determined from each study and shows whether or not these

definitions were explicitly described.

Date Authors Stated Focus Definition of conceptual model Explicit

1987 Shoval & Even- database design N/A
Chaime

1989 Jarvenpaa & logical data model model must conform to user view with no Yes
Machesky consideration of computer storage

1990 Batra. Hoffer & conceptual data model abstraction of the real world data pertinent to an Yes
Bostrom enterprise

1991 Batra & Davies conceptual data model capture the data structure and semantic constraints Yes
with no implementation details. Use for
communication

1993 Marche logical relational schema N/A
1993 Amer conceptual database model representation of organisation' s database to help Yes

humans to understand contents of the database
1993 Bock & Ryan conceptual data model representation of data and data relationships in an Yes

implementation dependent manner
1993 Shanks et al conceptual schema non-implementation representation of user No

information "describe problem domain and
propose classification schemes for it.

1993 Simsion & Shanks conceptual schema a means of describing data to support a particular Yes
business area

1994 Shoval & conceptual schema formal means of representing the data structures of Yes
Frumermann reality.

1994 Batra & Antony conceptual database design modelling of entities. attributes and relationships - Yes
no strict differentiation between it and logical
design as both need to capture semantics of the
application

1995 Hitchman data modelling by implied as a part of the database design process No
practitioners

1995 !Gm & March conceptual model formal representation of the enterprise reality. Yes
Serves as a communication tool.

1997 Shanks conceptual data model precise. unambiguous representation of Yes
organisational information requirements

Table 3 Definitions of 'conceptual model ' in comparative studies

Implicit, in almost all of these definitions, is the division between the datalogical and

infological purposes of a conceptual data model but, with the exception of Kim and

March (1 995), a clear distinction between them in tenns of evaluation, i s rarely made.

The various quality frameworks that are discussed below undoubtedly do recognise the

importance of the infological properties of a conceptual model and consequently are

more likely to provide a well-balanced set of criteria.

111

Conceptual Model Frameworks

lindland et aL (1994)

Until the publication of Lindland et al. 's paper in 1994, research into detennining

quality in conceptual models had focused almost exclusively on the quality of the end

product and resulted in a number of lists of desirable features and properties. Shanks

and Darke (1 996) compiled a table of research in this area, a version of which is shown

at Table 4. Lindland et al. (1994) observe that previous lists of desirable properties for

conceptual models have not provided a "systematic structure for evaluating them" and

consequently propose a framework that not only "identifies major quality goals but

gives the means for achieving them" (p.43).

Date
1985

1992

1994

1 994

1994

1994

1995

1 9%

ADDroach Purpose
Roman Defining propenies of

requirement specifications
Batini et al Improving the quality of a

database schema

Lindland et al Undeflitanding qUality in
conceptual modelling

Moody & Evaluating the quality of
Shanks E-R models

Pohl Defining goals and
process dimensions for
requirements modelling

Simsion Defining quality features
in E-R models

Krogstie et al. Undeflitanding quality in
conceptual modelling

Shanks & Bring together theoretical
Darke and pragmatic qUality

factOfli

Features
Propenies linlced to their
use in the design process
Quality features of a
good schema. schema
transformations
Linguistic base,
separation goals from
means
Quality Factofli,
strategies and evaluation
methods
Specification,
representation and
agreement dimensions
Design and evaluation of
alternative models
Extends Lindland et al.
Using agreement goal
and social construction
theory
Amalgamates
frameworks of Krogstie
et al and Moody &
Shanks

1"iDe
List

List

Framework

Framework

Framework

List

Framework

Framework

Table 4 Approaches to quality in conceptual modelling
adapted from Shanks and Darke (1996)

Focus
Theory

Theory

Theory

Practice

Theory

Practice

Theory

Theory and
Practice

Lindland et aI's (1994) proposed framework is primarily based on the linguistic

concepts of syntax, semantics and pragmatics, in recognition that "modelling is

essentially making statements in some language" and it is thus able to subsume all the

characteristics they had listed from previous studies. In common with some of the

discussion above they also, " observed several significant trends:

.. Many definitions are vague, complicated, or in some cases, even lacking . . .

.. The list [of characteristics] is unstructured and the properties are partly
overlapping . . .

112

• Specification properties are mixed with language and method properties . . .

• Some properties presuppose the existence of a design and even an
implementation . . .

• Some goals are unrealistic, even impossible to reach" (ibid. p.43).

Their framework is intended to deal with those issues as well as making a clear

distinction between the goals and the means, i.e. "by separating what you are trying to

achieve . . . from how to achieve it" (ibid. p.42).

DOMAIN Semantics I LANGUAGE .�

MODEL Syntax . �';'" ,..;..;
(relevant knowledge) (alphabet, grammar)

Pragmatics

AUDIENCE
INTERPRETATION

Figure 12. Lindland et al.'s (1994) Framework

Each aspect of their framework, illustrated in Figure 1 2, is clearly defined and

sufficiently generalised to be applicable to any conceptual modelling activity not just

those related to data. Language is the statements that can be made according to the

specific syntax and is constructed using an alphabet (the set of modelling constructs)

and a grammar (the rules that govern the use of the constructs). In addition, the

language also has semantics, which define the meaning of the constructs and thus enable

meaning to be derived from them. The definition of Domain is closer to the relational

notion of a pool of allowable values than to its more generalised use as a description of

an application area. Thus the framework's domain consists of all the possible

statements that would be correct and relevant for solving the problem. The set of

statements actually made in the language or which can be derived from such statements

is the Model. The audience is defined as all those who need to understand the model

and Audience Interpretation is then the set of statements that the audience thinks the

model contains. The connections between these four "cornerstones" provide the

specific linguistic links that create the framework. The syntax link relates the model to

the modelling language by describing relations among language constructs without

considering their meaning. The semantics link relates the model to the domain by

J

1 13

considering not only syntax but also relations among statements and their meaning. The

pragmatics link relates the model to the audience by considering not only the syntax

and semantics but also how the audience will interpret them,

Having constructed this framework and given these definitions Lindland et al. (1994)

are able to specify a structured set of goals for the three linguistic dimensions that they

have identified. Syntactic quality has only one goal, that of syntactic correctness. In
other words, all statements made within the model are made according to the rules of the

syntax. The appropriate activity for measuring this quality is syntax checking, made

possible by the existence of formal syntax. Semantic quality on the other hand has two

goals, validity, whereby all statements contained in the model are correct and

appropriate to the domain and completeness, whereby "the model contains all the

statements about the domain that are correct and relevant" (ibid. p.46). Three proposed

activities for achieving these goals are consistency checking, statement insertion and

deletion. '. Comprehension is the one pragmatic goal, meaning that the audience, or at

least the relevant section of the audience, has understood the model , either in whole or

part, as appropriate. Comprehension is thus further defined as the situation where the

relevant part of the model has been understood by the appropriate sub-set of the

audience. These latter two qualities are further qualified by the notion of feasibility in

recognition of the fact that creating a 'perfect model' , even if it were possible to do so,

would require an unacceptable amount of resource. A trade-off is thus introduced

"between the benefits and drawbacks for achieving a given model quality" (ibid. p.45)

and is allowed for in the equations proposed for measuring the various qualities.

One final contribution that the authors make to this debate is the noting of three other

factors, which, although not measurable within their framework, may welt affect the

quality of the model that is produced. These are the notions of
,
appropriateness: between

the language and the domain, the language and the audience and the audience and the

domain. The extent to which the language itself is able to satisfactorily describe the

domain and the level of familiarity of the audience both with the domain and with the

language undoubtedly affects the overall quality of the modeling process. As they

observe their framework does not deal explicitly with these notions but assumes "that an

acceptable level of appropriateness has been achieved" (ibid. p.46).

114

Krogstie et al (1995)

Krogstie et al. ' s (1995) framework extends that of Lindland et al. (1994) by

incorporating one further concept, participant knowledge of the domain, and two further

dimensions, perceived semantics and social agreement as illustrated in Figure 1 3 .

Shanks and Darke (1 996) explain this last dimension as being derived from " social

construction theory in which reality is considered to be subjectively constructed via our

beliefs, values and perceptions. Thus each individual social actor perceives the world in

a way specific to him or her creating their own "local reality". Organisations consist of

social actors sharing a common pool of values, an inter-subjective reality" (p.5).

Participant knowledge then is the collection of all sub-sets of statements where each

sub-set contains all possible correct and relevant statements for a particular actor or

group of actors.

semantic
quality

perceived
semantic

quality

pragmatic
quality

syntactic
quality

social
quality

Figure 13. Concepts in the framework of Krogstie et al. (1995)

Semantic quality is seen by Krogstie et al. (1995) as impossible to establish or check

directly as it is an ideal solution that is inaccessible to the participants. Perceived

semantic quality is considered more relevant and is defined as that which is actually

observed and compares the participants' knowledge of the domain with their

interpretation of the model. It thus seeks to incorporate the audience-domain

appropriateness, identified by Lindland et al. (1994) as external to their framework. The

goals are perceived validity and perceived completeness while the activities for

achieving them are enabled not only by the formal semantics and modifiability of the

model but also by audience training in knowledge both about the domain and the model.

115

Social quality has the goal of feasible agreement between the actors, where

inconsistencies in the various actors' interpretations of the model are resolved. Relative

agreement, where audience interpretations may differ but remain consistent is seen as

more realistic than absolute agreement whereby all interpretations must be the same.

As Shanks and Darke (1996 p.5) observe this framework "organises quality in

conceptual modelling into components relating to the model as a linguistic artefact. . . and

components relating to the quality goals and means of achieving them." In addition it

recognises that particular participants see particular quality goals as relevant. Shanks

and Darke (1996 p.5) conclude that the framework "provides a sound theoretical base

for understanding the notion of quality in conceptual modelling." Kroenke (1992)

advises novice modellers to "learn to ask these questions: Does this model accurately

reflect the users' perceptions and mental models of their world? Will it help users

respond consistently and successfully with one another and with their clients?" (p . 1 1 8).

It would certainly seem that this framework could provide a structure within which these

questions might be answered.

While clearly providing a comprehensive theoretical base, Krogstie et al. ' s (1 995)

framework is deliberating uninstantiated and is not intended to provide a formal method

for evaluating any particular type of modelling tool or process. Moody and Shanks

(1994), on the other hand, developed a comprehensive framework specifically to

evaluate conceptual E-R, or more correctly E-RlRelational hybrid models and were clear

as to the need to develop a framework that was not only rigorous but also practical and

useable. Their framework was also targeted directly at the practice of conceptual

modelling, and was intended to provide "practitioners with a coherent approach to

evaluating the quality of data models and choosing between alternatives in place of the

ad hoc methods they currently use" (ibid. p.3).

Moody and Shanks (1994)

Moody and Shanks6 (1994) begin by defining quality in line with the IEEE standard as

the totality of features and characteristics of a product or service that bears on its ability

6 This paper has been
'
refined and published as Moody and Shanks (1998). However, the substantive

content, particularly as it relates to this discussion, is largely unchanged.

116

to satisfy given needs. With this in mind, they include four elements in their

framework: qualities seen as the desirable properties of a model, metrics to provide a

means of measuring each quality, weightings to determine the relevant importance of

any given quality to any specific context and strategies to improve the value of any

given quality. Unlike the previous frameworks, Moody and Shanks (1994) then proceed

to populate their framework by identifying six qualities together with appropriate

metrics7.

The first is simplicity, taken as a measure of the number of constructs required to

express the required semantics. It defines the appropriate metric as being the sum of the

number of entities in a model and the number of relationships with the objective of

achieving a minimum value. Simplicity is considered a valuable characteristic on the

basis that simpler models are generally more flexible, easier to implement and easier to

understand. Completeness, in the sense of semantic correctness is the second quality

and there are four proposed metrics ; subjective ratings from users and industry

specialists, the mapping of the required process to the data model and finally by

mapping the model to an existing software package that reflects the user requirements.

The third quality is flexibility, i.e. the ease with which the data model can be adapted to

changes in requirements. All the proposed metrics for this quality rely on subjective

assessment by experts, specifically, senior management, industry experts and expert data

modellers. Integration relates to how well the data model fits with other organisational

data models, such as a corporate data model. Suggested metrics include, comparing the

new model with existing ones to identify duplicate or overlapping entities, structural

conflicts and domain conflicts. Understandability and implementability complete the

list with the first being measured by the ease with which the users of the model

understand its concepts and �tructures. The latter specifically relating to the creation of

an effective database is measured in terms of the risks and costs of building it.

Shanks and Darke (1996)

Moody and Shanks (1994) framework is an important milestone in that practitioners are

offered, for the first time a means of resolving two key problems, the need to choose

7 Weightings and strategies are not instantiated.

117

between a number of alternative models and the need to understand and accommodate

the different views of the various stakeholders. Shanks and Darke (1996), recognised

that, while this framework provided "the components to support the evaluation of

models in practice", it also lacked a "sound basis in theory" (p. l), and so have proposed

a composite framework. This draws on the theoretical strengths of Krogstie et al.

(1995) while also incorporating some of the practical emphasis found in Moody and

Shanks (1 994). In defining this composite Shanks and Darke are addressing the need

highlighted by Batra and Marakas (1995) for a greater synergy between theory and

practice and the need for techniques based on sound theoretical principles but which are

still pragmatic and useable.

Date Author Quality Goais Metrics
1 994 Lindland I) Syntactic - correctness I) Syntax check

et a!. 2) Semantic - feasible validity 2) All statements correct and relevant for domaill
3) Semantic - feasible completeness 3) All correct and relevant statements are included
4) Pragmatic - comprehension 4) Each audience understands relevant sub-set of model

1 994 Moody I) Simplicity I) Entities + Relationships
& 2) Completeness 2) Subjective ratings and mapping to processes
Shanks 3) Aexibility 3) Subjective ratings

4) Integration 4) Subjective ratings and no of conflicts with other
5) Understandability models
6) Implementability 5) Subjective ratings

6) Analysis of costs and risks
1 995 Kesh I) Suitability I) Subjective ratings(a)

2) Soundness 2) Subjective ratings (b)
3) Consistency 3) Deducting points for each inconsistency (c)
4) Conciseness 4) No of relationships 'additional' to minimum
5) Completeness required.(d)
6) Cohesiveness 5) Data required by queries/reports not in model (e)
7) Validity 6) Size of primary identifier (i.e. Primary Key) (f)
8) Usability - user 7) No of required attributes placed in 'right' entities (g)
9) Usability - designer 8) = (a+b+d+e)l4
10) Maintainability 9) = (b+c+e+f+g)l5
1 1) Accuracy 10) = (b+d+f)f3
1 2) Performance -efficiency 1 1) = (c+e)/2

/ 1 2) = (d+e)/2
1 995 Krogstie I) Syntactic - correctness I) Syntax check

et al. 2) Semantic -perceived validity 2) All statements correct and relevant for perceived
3) Semantic - perceived completeness domain).
4) Pragmatic -feasible comprehension 3) All correct and relevant statements are included
5) Social - feasible �greement 4) Each audience understands relevant sub-set of model

5) No of conflicts between different actors'
interpretations

1996 Shanks I) Correctness
& Darke 2) Perceived validity Nothing further identified

3) Perceived completeness -completeness Assumed to be as detailed for individual frameworks.
4) Comprehension -simplicity,

understandabili ty
5) Feasible agreement - integration
6) Aexibility

1998 Moody I) Simplicity I) Entities + Relationships
& 2) Completeness 2) User reviews, process mapping, scenario analysis
Shanks 3) Aexibility 3) Subjective ratings by various reviewers

4) Integration 4) Comparison with other models, business area reviews
5) Understandability 5) User and developer reviews, scenario analysis
6) Implernentability 6) Analysis of costs and risks, developer review
7) Correctness 7) Check of syntax

Table 5 Goals and Metrics of proposed quality frameworks

118

Shanks and Darke (1996) identify a number of overlapping concepts between the two

frameworks and map them as shown in Table 5. However, they argue that although the

Moody and Shanks' (1994) quality factors could be subsumed by the generic goals or

properties of Krogstie et al. (1995), it is more beneficial to recognise them and their

mappings separately. In consequence the meta-model of the framework that they

include clearly shows that theoretical goals and properties map directly to practice-based

quality factors, which, in line with Moody and Shanks' (1994) view, may be assigned a

weighting factor relative to the model 's context.

Shanks and Darke (1996) also report on the use of a hypertext tool, the Data Model

Quality Advisor, to facilitate the evaluation and comparison of up to three alternative

models. This tool, which provides an explanation facility for all aspects of their

composite framework, also allows for the allocation of weightings to quality factors.

While not discussed in any detail, they report on the results of an empirical study to

examine the usability and usefulness of their framework. These seem to suggest that

while the "theory-based components were seen to be of less direct relevance to

practitioners", nevertheless, completeness, understandability and correctness were rated

by the participants as the three most important quality factors which, of course,

"correspond to the three goals of the theory-based framework components" (p. l l) .

Kesh (1995)

The framework provided by Kesh (1995) is comprehensive in that it seeks to measure

aspects of model structure, content and behaviour (e.g. usability and maintainability)

and his paper includes a worked example of a simple data model showing how the

calculated scores can highlight potentially problematic areas. While the twelve

characteristics, which he describes, are broadly similar to those in the other frameworks

his choices of measurement instruments are open to debate and refinement. The

underlying, and stated, assumption that all relationships are binary leads to a less than

satisfactory data representation in which a fairly common ternary relationship construct

between three entities appears as three binary relationships. The metrics relating to

conciseness ignore the situation where two or more relationships may be required

between two entities by insisting that the minimum number of relationships required by

a model will always be n- 1 . In. addition, those relating to cohesiveness when applied to

the example problem merely result in the creation of a surrogate key without addressing

119

the lack of referential integrity inherent in the constructed model. However, the

completeness with which this framework is described provides a significant and useful

contribution to the evaluation debate.

Testing the Frameworks

The generic frameworks of Lindland et al (1994) and Krogstie et al (1995) have not

been instantiated. The other three (Moody & Shanks, 1 994; Shanks & Darke, 1996;

Kesh, 1 995) do not appear to have been tested empirically, although Kesh (1995)

indicates that such a study is under way. However, Shanks (1 997) does report a study in

which a number of different quality factors were used to evaluate conceptual models.

The study was designed to study the differences in the quality of conceptual models

created by novice and expert practitioners and utilised six quality factors scored with a

combination of objective measures and subjective ratings. Utilising a combination of

the goals discussed above, Shanks identified the following components: -

• Correctness of syntactic representation, i.e. the degree to which the data model

conformed to the syntax rules of the particular notation used (Batra et al., 1 990;Kim

& March, 1995). This was evaluated as the number of major and minor errors found

in the models. The overall correctness was obtained by averaging the participant's

performance for each modelling construct.

• Completeness of the perceived semantic content (Krogstie et al., 1 995), i.e. the

extent to which the data model supported user requirements. The evaluation

instrument was based on comparison of the model to a 'correct' solution developed

by the author with semantically equivalent constructs allowed. The overall

completeness is obtained by averaging the participants' performances for each

modelling construct.

• Innovation was "the extent to which 'new concepts' which are relevant and valid

are introduced into the model" and is based on Shanks et al. (1993). It was measured

by developing a list of nouns from the case study narrative and then counting those

entity types in a model that did not correspond to any of the nouns on the list. The

ratio of 'innovative' entity types to the total number of entity types in each data

model was used as a measure of the level of innovation.

120

.. Flexibility was defined as the ease with which the data model can reflect changes in

requirement without changing the model itself. This was measured by experts using

a seven point likert scale .

.. Understandability or the ease with which concepts and structures of the model can

be understood was also measured using a seven point likert scale .

.. Overall Quality was another subjective rating applied to the whole model. It was

included as an attempt to account for those elements of a model that may not be

included under any of the specific quality factors.

An interesting result of the study was the low level of measured understandability.

Although confirming previous studies which had suggested that conceptual models wer�

not as easy to use as had been previously thought (Goldstein & Storey, 1990; Hitchman,

1 995), the measured level of understandability was very low, "below the mid-point of

the likert scale" for both novices and experts. There was also a poor consensus between

the reviewers on this measurement and not surprisingly a strong positive correlation

between understandability and correctness and a strong negative correlation between

understandability and innovation. While noteworthy in themselves these findings also

have implications for the evaluation process itself. If the models are demonstrably

difficult to understand, how solid are any measurements that rely on human

interpretation of them?

Moody and Shanks (1998) comment that their framework, initially set out in Moody and

Shanks (1994) has been used "both to evaluate individual models as part of application

development projects and to implement data model quality assurance procedures in

organisations" (Moody & Shanks, 1 998 p l 08). They do not provide details of these

evaluations although they do comment on a number of benefits the use of the framework

has brought. These include encouraging the development of alternative models, the

ability to determine productive areas for improvement and the means to make effective

choices between alternative structures.

121

Summary

The current literature contains a rich resource of comparisons. Some studies have

sought to compare the E-R or EER Model with other conceptual Models or with one of

the classical Models, usually the relational. Some have focussed on the builder' s

perspective, attempting to suggest which Model provides richer or more precise

schemata, others on the learner's perspective to discover whether any one Model is

superior in terms of ease of use or learning. A few have concentrated on the user' s

perspective, to ascertain which of the Models leads to best comprehension of a model ' s

contents. The results of these studies cannot be easily amalgamated because of their

differing research methodologies and evaluation criteria. Not surprisingly then the

results as Shoval and Frumermann (1994) remark, are "are not always clear-cut or

consistent, (although) there is a tendency to agree that EER is superior to other, record­

based and conceptual models"(p.29).

Finally, there are some interesting issues that arise from the body of research discussed

in this chapter. Almost all the comparative studies which deal with the E-R Model use

variations on the Chen notation despite the fact that this is poorly supported in current

CASE tools and not widely used outside of academia. Secondly, those studies that

evaluate the Relational Model use either a tabular or textual representation despite the

fact that it is very common practice in industry to use a simplified version of the Chen

notation to provide a graphical view of such a model. Consequently, much of the

research completely ignores the E-RlRelational hybrid which most practitioners use as a

matter of course to represent their conceptual models, which being normalised, with

primary keys and resolved many to many relationships, are often indistinguishable,

except perhaps in detail , from their logical (relational) models. It also ignores the

growing trend in database texts to teach students this hybrid, sometimes exclusively.

While the research may then provide some interesting, if idiosyncratic, results it is

unlikely to be of very much use to those interested in providing useful conclusions to the

Information Systems industry. Most importantly there do not appear to be any attempts

to match the differing fonnalisms to appropriate activities and to integrate them into a

more effective overall framework. Such an attempt is the subject of the remainder of

this study.

J22

I

9 INTECoM:

an integrated framework
"Thus the truth of things may be this: useful things get done by tools that are an amalgam
offragments of theories" (Kent, 1978 p. 194).

Introduction

123

Chapters 3 and 4 explored the need to recognise that there was a requirement for both

analysis and design as clearly separate activities within the conceptual data modelling

process. The roles of the infological and datalogical aspects of a conceptual model, and

their required properties, were clarified. The general approaches of E-R and NIAM
were described in Chapters 5 and 6, and Chapter 7 provided a comparison of the major

differences between the two. It was suggested that the NIAM-CSDP was essentially an

analysis tool while the E-R or E-R/R approach had a number of characteristics that lent

it to design activities. Finally, Chapter 8 demonstrated the confusion surrounding the

definition of a conceptual data model and the lack of consensus among researchers on

what should be considered desirable characteristics. In chapter 8 it was also observed

that the various modelling approaches are generally considered, and compared, as

alternative rather than complementary methods. Taking cognisance of these issues, a

framework based on an integration of elements of the NIAM-CSDP and E-RIR

approaches to conceptual modelling, is now proposed.

Previous Proposals

In 1 984 Bouzeghoub and Gardarin reportedly developed an expert system, SESCI, "to

support requirements collection in natural language followed by logical and physical

design of relational database applications" (Ram 1995 p.97). Kent (1 983) has also

explored along similar lines. With no apparent knowledge of NIAM or the early work

which led to its development, Kent (1983) proposed a method which suggested the

identification of facts, defined 'as connections between things' as a more effective

124

method of creating a datalogical structure. One perceived advantage of this method was

that no arbitrary decision was required early in the process to distinguish between

'entities' and 'attributes' . Thus both 'Employees have names' and 'Employees are

assigned to departments ' qualify as facts or more specifically 'fact types or fact

patterns', and there is no requirement to allocate any of the objects to a specific type of

construct. Having identified the facts that the database is required to maintain, the facts

are grouped together in a semi-intuitive way whereby all binary facts that have one

object in common are placed in 'pseudo-records' that eventually become relations.

Provision is also made to accommodate ternary facts and also for 'facts about facts' I .

Kent' s (1983) proposal does not appear to have influenced the most commonly used E­

R approaches; nevertheless it is significant for two reasons. Firstly, it highlights and

discusses a number of shortcomings of E-R modelling as an analysis tool and, secondly,

it suggests the use of natural language facts as a means of overcoming some of these

problems. However, the method is not "developed to the point of a detailed procedure"

and the article primarily "describes the concepts on which the methodology is based"

(ibid. p.4). One of the shortcomings of Kent's proposed method is that it does not

clearly delineate the activities of analysis and design. Kent himself seems rather unclear

as to where his proposal sits, saying, "we focus on the middle portion of the analysis and

design process" (ibid. p.3). Of course, as previously noted in Chapter 4, he is not alone

in failing to make any real distinction between the two stages in conceptual data

modelling.

It thus seems useful to explore the feasibility of integrating the two approaches of NIAM

and E-R/R modelling to determine whether all or any of the described problems can be

solved, or at least alleviated, by doing so. Rather than attempting to suggest

modifications to any particular system development method, a new approach, the

Integrated Conceptual Modelling framework, (INTECoM) is proposed which uses the

four-step generic framework of database development, outlined previously on page 27.

While the framework covers all four stages in outline, only the fITSt two stages, the

1 These are represented in NIAM as objectified fact types, i.e. fact types that themselves participate in
other facts

125

activities of which have been the focus of the preceding discussions. The discussion of

the framework also focuses solely on the design of relational databases.

INTECoM - An Overview

Step 1. The analysis of user requirements

It has already been suggested that analysis is concerned with determining and describing

the components of something complex. Regardless of the viewpoint of the analyst,

there is a significant element of discovery, or more specifically 'uncovering' , about the

activity. When dealing with a specific user, the analyst is required to behave in a largely

objectivist way to reveal the perceived information requirements of that particular user.

A record of those information requirements is required that it is comprehensible to, and

verifiable by, both the user and the analyst, and ideally to others, perhaps at some point

in the future. The documented account of the information requirements is the

infological or analysis model, referred to in some methodologies as the 'requirement

specification' . Ideally, the process followed to extract the user requirements should be

predictable and repeatable i .e. any analyst given the same task should arrive at the same

result. In other words, a prescriptive method is preferable and this also has the

advantage of being auditable. In addition, the analysis model needs to be consistent,

unambiguous and transformable into a data structuring representation with no loss of

validity and, thus, provide a solid foundation from which to begin design.

The NIAM-CSDP provides a procedure that largely meets these criteria. It has been

shown to provide a prescriptive method, which requires the active involvement of the

user in providing both the facts and the examples. The direct correspondence between

the ORM diagram that is constructed and the formalised natural language example fact

types from which it is derived, allow for different representations suitable for either the

technical or non-technical user with no information loss. Indeed, as Sharp (1994)

argues, non-technical users need never see, or even be aware of, the graphical

representation. However, the completed model is transformable, by application of a

published algorithm, into a normalised relational design. Most importantly, the

requirements can be documented with minimal design decisions having been made, as it

126

is not necessary to decide on the type of construct2 that will be used to represent an

object before the object, or any facts in which it participates, can be recorded.

The use of a CASE tool, such as InfoModeler™, simplifies the collection and

maintenance of the natural language facts and the appropriate example set and

automates much of the diagram construction. InfoModeler™ can utilise the entered

examples to determine many of the necessary constraints and will highlight situations

where the analyst has overridden the determined constraints such that they no longer

match the examples. In addition InfoModeler' sTM comprehensive 'Verbalizer' reports

provide all the fact types sentences together with detailed descriptions of all of the

objects, at any point during the analysis. InfoModeler™ also provides facilities for

checking syntax, constraints and examples and prevents the generation of a logical

model if syntactical problems exist. Finally, InfoModeler™ is able to automatically

apply the transformation algorithm and provides what it terms a 'logical model' in

IDEFIX3 notation.

Darke and Shanks' (l995c) legitimate criticisms of NIAM-CSDP as a tool for

requirements elicitation are not addressed by the above description and it is possible that

Step 1 of the CSDP could be enriched, as they suggest, by both extending the range

from which example sentences are derived and the construction and integration of

stakeholder viewpoints (Darke & Shanks, 1 994a; 1995a; 1 995b; 1 995c). There does not

seem to be any inherent reason why the NIAM-CSDP could not accommodate both of

these suggestions. Indeed, the "assumption that as only one interpretation exists, only

one user expert is necessary" (Darke & Shanks, 1994b p .5) is a result of the way in

which the method has been used rather than an essential prerequisite of the techniques.

Neither is there any inherent reason why the CSDP has to be confined to moving

"directly from input and output documents to verbalisation" (ibid p.4) nor why

conflicting views and alternative viewpoints cannot be explored. If the results of the

2 This point is arguably not as clear-cut as portrayed here. In most version of ORM it is necessary to
decide whether an object is an 'entity type object' or a 'value type object', sometimes called a LOT or a
NOLOT. However the important point is that no matter which is chosen by the analyst, the functionally
appropriate construct will be automatically chosen at the point of transformation.

3IDEFIX is a form of E-R modelling widely used in the US and particularly by the Department of
Defence.

127

NIAM-CSDP are seen as a precursor to design and not as the design itself, the pressure

to resolve these differences is largely removed. Darke and Shanks' (1995b) proposal to

input the integrated viewpoint, developed during the wide-ranging requirements

elicitation phase, to the fact type transformation process could in fact be postponed until

after the transformation. In this way, a record of each user' s requirement as determined

during analysis is preserved as discrete documentation. This could prove useful as a

basis for the construction of the external schemata, i.e. Step 4 of the database design

process . In addition, the resolution of conflicts becomes firmly a design issue, which is

where it more appropriately belongs.

The output of the INTECoM analysis phase is a record of users' data requirements,

represented as both a set of formalised natural language sentences enhanced with

examples and constraint information, and a diagrammatic representation. This final

record may be an integrated view or a collection of individual user views. However,

which ever it is, each discrete record should be internally consistent, unambiguous and

as complete as possible. It should also have been verified, by the users, as accurate and

understood. This model is the conceptual model of the meta-model discussed in

Chapter 3.

Step 2. The design of the conceptual schema or logical model

Design has been previously described as the combination of elements into a plan or

scheme that conforms to appropriate functional or aesthetic criteria. Thus the design

activity is one of creative, and possibly innovative, construction. It is an attempt to

bring together possibly conflicting and disparate elements into a harmonious, and

ultimately, useful whole. As such, the activity is difficult, if not impossible, to

prescribe, relying as it must on the individual flair and creativity of the designer, who

will almost certainly bring past experience and experimentation to the work. Attempts

to constrain this creativity by mechanistic prescription are likely to be counter­

productive. However, the designer needs to have clearly defined elements to work with.

An understanding of the required data structuring paradigm is an essential pre-requisite,

as is a clear idea of what is required, i .e. the user requirements. The final output of this

step will be a datalogical or design model of the data structured in a form that i s

appropriate to its target DBMS, e.g. a relational model. In other words, the design

128

model is a paradigm model within the meta-data architecture illustrated on page 35.

This output is likely to appear, to the users, to be significantly different from the

previous one and while it is impractical to insist that the method used to create it is

auditable, nevertheless there needs to be some means of verifying that the original

requirement specifications are still being supported.

The E-R/Relational hybrid approach, has been seen to provide techniques which are

appropriate to this kind of design activity, at least where the target DBMS is a relational

one. It is an inherently creative tool allowing for the development of alternative data

structures, which can embody different levels of business rules and constraints. Many

of the structures will be those suggested by the patterns identified within the

relationships of the data elements themselves but new patterns can be constructed or

existing ones enhanced to provide innovative solutions. Used specifically as a design

tool, the propensity for entities to be equated with relations is no longer problematic

while the need for the designer to make an informed choice of construct for any specific

element is no longer dangerous but to be positively encouraged. By the same measure,

the requirement for entities to be strictly typed is no longer a cause of difficult

communication between the user and the analyst/designer. Instead, it can become a

positive advantage to the designer who is now concerned with identifying entities that

can be transformed into their strictly typed counterparts within the relational model. In

design, there is no longer any expectation of one 'correct' answer but instead an

expectation of a number of useful solutions all of which will have their own advantages

and disadvantages . Likewise, decisions as to which part of the system will handle each

business requirement, can have a direct bearing on the form of the data model (Simsion,

1994), and belong more properly to the designer rather than to the analyst. After all,

understanding the compromises and trade-offs involved in the final choice is part of the

designer' s skill.

Many CASE tools support the use of the E-R/R hybrid techniques, which are promoted

here, and a review of these is beyond the scope of this discu�sion. Even InfoModeler™

provides some support. The logical model, which InfoModeler™ creates is an E-R/R

hybrid model and can be modified in keeping with the design activities suggested above.

As InfoModeler™ does not support any form of functional or behavioural modelling it

may be not be seen as sufficient by the wider development community. In that case the

129

logical model can be turned directly into a database schema which can be input into any

CASE tool which supports the reverse engineering of logical models from database

specifications.

The suggested input into the design stage is the output of the analysis phase, described

above, which is immediately transformed into a relational logical design. This may be

one integrated design or preferably a number of discrete designs, representing the

individual user views, for integration by the designer. Design thus begins with clear

statements of user requirements, represented in a form that is both familiar and

appropriate to the designer. The only requirements which may not have been included

in the analysis phase are those pertaining to the less concrete areas such as those which

arise from future expectations of the system. These requirements, being only

possibilities may not have been identified or fully captured during analysis. An essential

ingredient of the design model has to be the flexibility to adapt to future possibilities

and the designer needs to be aware of and prepared to incorporate these. Apart from

these unknowns, the designer is able to gain a holistic view of the system's requirements

relatively quickly and, if the analysis has been carried out competently, with an

assurance that no nasty surprises await discovery at a later stage in the process. Thus the

development of alternatives and possibly the creation of exploratory prototypes can

probably begin early in the design phase. The output of the design stage is a data model

conforming to the appropriate paradigm constraints (i.e. normalisation) and ready for

transformation to a physical database schema. Its form will thus conform to the usual

expectation of the E-R/R hybrid approach, that is an E-R/R diagram4 supported by the

usual data dictionary documentation.

This final design model may well be unrecognisable to the users who provided the

initial specifications, yet it is essential that they are able to judge that, despite the

resolution of conflicting requirements and incorporation of future possibilities, their

requirements can still be met. It appears that, once again, the situation requires users to

understand and verify design documentation. This is obviously not acceptable and any

proposal that leads to this endpoint is unlikely to hold any advantages over its

4 As supported by most CASE tools and practitioner methodologies. It is specifically not the Chen
standard.

130

predecessors. Fonnalised natural language has been advocated as the preferred user

representation for the analysis model and it is proposed that the design model follow a

similar course. Chapter 1 0 describes a method for extracting NIAM type sentences from

an E-R/R model to provide not only an understandable translation of the design

specification but also a means of linking the design model directly back to the original

user requirements.

Step 3. The design of the internal schema or physical database

This phase would seem to be much less problematic, with many textbooks and industrial

courses providing a standard approach (e.g. Connolly et al, 1 995 ; Date, 1 995; Ricardo,

1 990). While a detailed discussion of this step is outside the scope of this study it is

nevertheless interesting to note that it is generally recognised as having many of the

characteristics of a design activity, but one clearly bounded by certain parameters.

Many of those parameters are detennined by the technical and environmental constraints

imposed by the specific DBMS and implementation environment in which the design

must work. Thus there are clear functional criteria to which the design must conform.

However, it is also accepted, that beyond some possible denonnalisation decisions

required by specific performance considerations, the physical design should not deviate

in any fundamental way from the structure of the input logical or conceptual model.

This is in contrast to many of the previously quoted guidelines for the use of the E-R

and E-R/R approach, which begin with an almost clean slate and are guided by no

functional criteria apart from the need to produce a communication aid and to avoid any

implementation bias. Database designers are also expected to bring their past

experience to assist in solving current problems and are also rewarded for innovative

solutions, which nevertheless confonn to the constraints, placed on the design.

Step 4. The creation of the external schemata

This step addresses the need to reproduce the original views for each individual user and

is usually viewed as merely a task within the previous activity. It is recognised here as a

separate step partly for consistency with the generic framework and partly to highlight a

particular benefit of the proposed INTECoM framework. Once again, this step, a

responsibility of the database designer and generally based on the outcome of the

functional analysis that will have accompanied the system development, is largely

131

outside the scope of this study. However, it i s noted that if the individual user

requirements have been captured and recorded independently of the final integration,

they can provide an important input into this final step. A comparison, between the

sentences verified by each user during the creation of the analysis model and the user

views created by the database designer, could provide a more direct way of ensuring that

the users' views are complete and appropriate.

INTECoM - Details

Figure 1 4 provides a diagrammatic view of the INTECoM framework. The diagram

highlights the inputs from each agent in the process, the outputs produced in each stage

and the boundaries between the stages. It is recognised that the framework is not

freestanding, in that there are both inputs and outputs related to other aspects of the

system development life cycle, which have not been included. This omission is

deliberate in that these aspects have not been considered in this study.

The Agents

The human agents, denoted in the diagram by heavy round-cornered boxes, are,

superficially at least, self-explanatory. The intention is that these agencies are seen to

represent roles rather than particular individuals. It is thus possible for one person to

play more than one role in any given project. Where this is the case, the different roles

should be viewed as discrete and clear boundaries should be drawn between the

activities attached to each role. However, ideally, the roles will be played by different

people and the framework, as it is described here, seeks to draw a clear distinction

between the data analyst, the data designer and the database designer. It, therefore,

presupposes that they are different individuals, with different skills and different

responsibilities.

1 Data Analyst

The chief responsibility of the data analyst is to record as accurately and as completely

as possible the information requirements of the users of the proposed system in a form

that is both acceptable to the user and the data designer. It is not necessary, although it

is undoubtedly useful, for the analyst to have any deep system or enterprise knowledge,

132

nor is it necessary for the analyst to be familiar with any specific form of implementable

data structures, e.g. relational theory. In fact it is possible that such an understanding,

particularly if it stems from considerable experience, could be a hindrance, in that there

may be a natural inclination to look for relationally useful structures from the start. It is

thus envisaged that the data analyst may not have a background in the more technical

aspects of information systems but may instead come from an area such as business

analysis.

2 Data Designer

The chief responsibility of the data designer is to create a data structure that supports the

user requirements as documented by the analyst. The design should provide sufficient

flexibility to allow for possible future requirements and be transformable into a suitable

implementation. It is essential that the designer has a thorough understanding of the

implementation paradigm of the target DBMS although knowledge of the specific

DBMS is not required. It is envisaged that the data designer would be familiar with data

administration issues such as the organisation' s corporate data policies and strategic

plans as well as having expertise within the data design area.

3 Database Designer

The role of the database designer is well described in a number of standard texts (e.g.

Connolly et al., 1 995; Date, 1995 ; Kroenke, 1 992; Ricardo, 1990), and it is not

envisaged that the role within this framework will deviate from this.

4 User

The role of User or stakeholder will typically be taken by a number of individuals drawn

from all sections and levels of the organisation, including possibly the technical IS area

itself, which have an interest, or 'stake' in the database under development. These

sections may include managers, different end-user groups and systems development

professionals. Citing Robinson and Bannon (1991), Darke and Shanks describe how

"each of these groups may have their own viewpoints and perceptions reflecting their

particular organisational context, including their work objectives, work practices,

terminology and traditions, and their own set of meanings attached to these" (Darke &

Shanks, 1 995b p. l). The users' main responsibility lies in their provision of information

I DATA
ANALYST

enterorise knowledoe f
system exPeCtations

l USER

,�,. I
, ___ --'a::.:n.:;:a1""�Y"'!S.:;:iS _ _; ... wVcreate\ information requiremenu

L-----'aWlllnal�vsi·S�IlWI"nnw"".uw",,..� _ _4 ... � analysis r

Step 1

svntactic verification \. model i. semantic verification I_������------� ... �

(··-··-·-·········-·���LYSI;-;���L---·---·····l ! I : .J dataloglcal }- InfologlcaIJI-+; --"
\ view view j_ .. _ - ... __-'"

Analyse requirements

enterprise knowledge

DATA orevious
DESIGNER

future I L-............. �.Mure.J:eQUir.alrum1S......-,l�_ ... " I I paradigm knowledge ... V

Step 2

desiqnprocedure ... 7 create
desi-n lan-ua-e

... , design
,.y. .y • • y. �, model

sYntactic and 'n -t, . • �

semantic

Create logical model
(conceptual schema)

DATABASE ��nMv�i·n�lJlJs���-.
DES

I
IG�ER ""�'::�-m:: j:�

:
e

Step 3

DBMS knowledoe physical
svstem knowledoe

..
model

syntactic and structural verification �
... _____ ... 1 ___ ._ .. ______ .,., (PHYSICAL MODEL 1 l (machine) (dataloglcal].

i . View
.

view

Create internal schema \ _-----_._--1---_._._._._---_. __ ./

Step 4
Create external schema

system knowledge �reate

_

..... .. user
views

?'-_._----_ .. _--_.- --_._ _ _._._._-_ ! USER VIEWS I ! :
"_._._._-_._---------'

Figure 14. An integrated conceptual data modelling approach

133

)

134

requirements in a form suitable for the analysis process. This will include sufficient

knowledge to be able to provide the basis for the construction of facts and examples. It

is not necessary for the users to know or understand any form of implementable data

structures, nor to read diagrams or graphical representations.

The Processes

The processes, generalised to one for each step for the purpose of diagram clarity, are

denoted by circles. The inputs, required by the processes and provided by the human

agents, are denoted by annotated light arrows. The outputs, which may themselves act

as inputs to other processes, are denoted by heavy arrows. These inputs and outputs will

be described in relation to their associated process and instantiated where appropriate.

Process 1. Create analysis model

Process 1. - Activities

The activities pertinent to this process are those laid down in the seven steps of the

NIAM-CSDP discussed in Chapter 6 and are, therefore, not addressed again here.

However, it is important to re-iterate that it is envisaged that analysis is not restricted to

one user or to only pre-existing input and output documents.

Process 1. - Inputs

1.1 Enterprise Knowledge

The first process requires input from both the users and the data analyst. At the general

level both agents will bring to the process a level of knowledge and understanding of the

proposed system, the system it is replacing or the strategic need it is filling, and the

organisational context in which this is to occur. The level and breadth of knowledge

will differ both between different users and between the users and the analyst, possibly

ranging from the very detailed understanding of a specific area of the organisation's

operations to a high-level view of the organisation's plan for the future. The analyst

will also gradually develop a view of the internal coherence of the system under scrutiny

and possibly from previous systems, a view of how this system integrates with others.

135

1.2 Systems Expectations

Both the users and the analyst will also bring a number of expectations of the system to

the process. These expectations will include expectations of the process itself as well as

of the proposed system. The analyst will have a broad view of the intended scope of the

system from which the boundaries of the analysis can be drawn and is also likely to have

an understanding of what type of infonnation can be most effectively and appropriately

recorded. The user's expectations of the process may range from negative feelings of

hostility (Lyytinen and KJein, 1 985), or apprehension to positive feelings of enthusiasm.

1.3 Analysis Procedure

The intention of the integrated framework is that a procedure, having the major elements

of the NIAM-CSDP, will be followed in this process and consequently the knowledge

and skills relevant to it will be brought to the process by the data analyst. This will

include knowledge of suitable CASE tools that can be employed in support of the

method as well as techniques for assisting the user in identifying relevant requirements.

It is possible that a user too may have acquired some of this knowledge through having

participated in previous analysis activity but while this is valuable it is not a pre­

requisite. Beyond an understanding of what the analyst is attempting to achieve and

how that can be facilitated, the user need have no familiarity with the analysis

procedure.

1.4 Analysis lAnguage

If the procedure adopted is NIAM-CSDP then, the analysis language required by this

process will be the combination of ORM diagrams and NIAM example fact types. As

these two languages are two interchangeable views of the same analysis model, it is

unnecessary for the user to understand the ORM graphical notation. However, the

analyst needs to understand how to construct appropriate, well-fonned fact types as well

as how to transfonn these into the correct diagrammatic representation.
\

1.5 Information Requirements

Each user is responsible, assisted by the data analyst, for providing an account of their

information requirements to the process. These may be in the fonn of input and output

documents used by the current system but are just as likely to include verbal statements

136

of clarification about the system or a 'wish list' of currently unfulfilled requirements. It

is also essential that the users provide a set of valid examples of the required data.

Where possible these examples will be taken directly from the UoD but where not

available the user may be required to provide imaginary examples instead.

1.6 Syntactic Verification

The final model will be checked for syntactic correctness. The NIAM-CSDP contains a

number of quality checks, which are largely syntactic i.e. they ensure that the language

is being used correctly and unambiguously. As the 'expert' in the language, the analyst

needs to provide this input. For example, it is necessary to check that every role has a

uniqueness constraint and that the constraints, as stated in the set of examples, are

depicted accurately in the diagrammatic notation. Where a CASE tool is being used

much of this checking can be performed automatically either as the information is being

input or by activating the 'validate' function prior to relational transformation.

1.7 - Semantic Verification

The user is required to provide verification of the semantic content of the model, e.g.

that the fact types and example sentences recorded in the model are meaningfUl and

accurate within the problem domain appropriate to that user.

Process 1. - Output

The output from this process is the analysis model, which may also be termed the

requirement specification. Using NIAM-CSDP, this model is envisaged as a standard

NIAM deliverable consisting of both the fully annotated ORM diagram together with

the complete set of natural language fact types, object descriptions and examples. The

ORM diagram, while not at this stage containing any implementation data structures, is

termed the datalogical view as it will provide the basis for the relational transformation

and is intended as a step on the way to the creation of the database. The natural

language view is termed the infological, as its primary function is to be the

communication medium between the analyst and the user. It is this view that is verified

and 'signed off by the user.

The analysis model may either be an integrated collection of user views or may be, as

previously recommended, the set of all user views recorded separately. Whichever form

137

it is in, each user should only be required to verify their own set of requirements in line

with Krogstie et al. 's (1 995) proposal of 'audience-domain appropriateness' .

Process 2. Create design model

Process 2 • • Activities

There are a number of activities within this process, not all of them part of the usual E-R

approach discussed in Chapter 5. They can be broadly grouped into three main areas of

activity: preparing the first draft of the design, generating and evaluating alternative

solutions and creating and verifying the final model.

The preparation of the first draft of the design model will involve the transformation of

the analysis model (or models) into an equivalent relational representation. If not

previously integrated, the resulting individual models will need to be integrated and

conflicts resolved. The requirements embodied in this integrated model will need to be

checked with existing databases and models to see whether they can be met from other

sources and they may also need to be checked for conformance with elements such as a

corporate data model or the organisation's data policy. Finally, the developing model

needs to be checked against those of any existing systems with which the proposed

system will need to interface. Any necessary adjustments identified from this activity

need to be made. At this point the data designer has a holistic view of the user

requirements of the proposed system together with any additional constraints or

extensions necessitated by the data context in which the system will be finally

implemented. The model at this stage can be seen as the initial design model.

The second area of operation is very similar to the more usual activities of the E-RJR

approach and will not be discussed at length here. However, it includes the

incorporation of future possibilities and in general is concerned with generating and

evaluating alternative data structures, deciding on how business rules and constraints

can best be supported by the model and on producing suitably normalised

entity/relations.

The last set of activities is concerned with the creation of the final design model. Once

suitable structures have been designed they need to be checked for syntactic and

structural validity. All the data elements included in the model need to have accurate

138

descriptions and properties recorded and the datalogical view should be extended by the

addition of any infonnation required by the database designer, e.g. entity volumes. The

data designer also needs to create the infological representation of the final design and

assist the user in verifying that the necessary requirements have been met.

It is probable that much, if not all , of the datalogical view will be recorded in a suitable

CASE tool . However, at present, there does not appear to be any such tool that will

generate an infological view similar to that proposed here. It is thus likely that this will

need to be created and maintained as a separate document.

Process 2. - Inputs

2.1 Analysis Model - datalogical view

The datalogical view of the analysis model, algorithmically transfonned to a relational

data structure represented in E-RJR notation, is the base document for the design phase.

Once individual views are integrated, it provides a fonnalised and approved set of user

requirements, which must continue to be supported through any subsequent additions, or

restructuring of the model through the design process.

2.2 Enterprise Knowledge

Together with the general understanding of the organisational context shared with the

data analyst and users, the designer should also bring knowledge of the corporate

database to this process. This infonnation should include knowledge of the data designs

of previous systems, standards governing the use and recording of organisational meta­

data and areas of data overlap between the proposed system and other organisational

databases. In addition, the data designer should have a holistic view of the

organisation' s data strategy and future goals. While remaining faithful to the specified

requirements provided by the previous phase, this knowledge may well impact on the

final logical design of the model. For example, data may already exist in an

implemented database to satisfy some requirement identified during analysis. To avoid

redundancy the new data structure may be deleted from the design model and the

relevant data structures from the existing system incorporated instead.

139

2.3 Previous Experience

As has been discussed elsewhere in this study, the data designer will bring previous

experience to each new data model. This may include models of similar scenarios that

the designer has been involved with, patterns of commonly found data structures or

experience with structures that have not proved effective as physical databases.

2.4 Future Requirements

The data designer is probably best placed to incorporate data structures, or the flexibility

to include data structures, in support of possible future requirements. This designer will

thus bring to the process an understanding of the strategic direction of the organisation

and possibly future plans for the proposed system. In addition, previous experience may

provide insights into the future possibilities of the system, allowance for which can be

incorporated into the data design.

2.5 Paradigm Knowledge

It is important that the designer has a good knowledge of the data structure paradigm of

the target DBMS. Where this is a relational database, then an understanding of

relational theory and normalisation is an essential element in the design process. A

transformed ORM diagram, for example, will be in 5NF and its further development and

design must conform to relational rules if it is to be a useful input into the next phase.

2.6 Design Procedure

The design procedure in this phase is the descriptive E-R/R approach discussed in

Chapter 5. However, as the phase has a more formal starting point, it does not require

the early analytic elements. However, this is not to suggest that new data elements are

not identified, but to highlight that user input should not be required. The design

procedure is thus more concerned with the resolution of potentially conflicting

requirements, the manipulation of identified data elements into alternative designs and

the exploration of alternative solutions.

2. 7 Design Language

The design language has three components; at its heart is the textual relational schema

that is represented diagrammatically by use of the extended E-R/R graphical notation.

140

This framework introduces a further language element; the use of NIAM-like sentences

derived from the E-RJR diagram. The format of the sentences is identical to those

produced during the analysis phase and should include the use of examples taken where

possible from the user requirements. NaLER, a method for constructing these sentences

is described in Chapter 1 0.

2.8 Syntactic and Structural Verification

It is the data designers responsibility to verify that both the syntax of the various

representations is complete, correct and unambiguous and also that the structures that

have been designed, are functionally appropriate and support the requirements specified

in the analysis model.

2.9 Semantic Verification

As with the analysis model, it is important that the users provide semantic verification

of the design model. However, they should not be expected to confmn that the data

structures themselves are correct, only that their requirements are still able to be met. It

is, therefore, important that the design model is available to users in the same form as

the analysis model. Provided with the list of example sentences relevant to their view of

the domain, it is their responsibility to check that the requirements previously agreed are

still supported. The means by which they are met, i.e. the data structures that have been

designed to support their needs, should not be a necessary part of this validation.

Process 2. - Output

The output from this process is the design model. This is envisaged as a standard E-RJR

deliverable consisting of both the extended E-RJR diagram and data dictionary together

with the corresponding textual relational schema. This is the datalogical view of the

design model, which should be suitable for implementation as a relational database5

although it will not contain specifications of indexes and other physical considerations.

In addition to this standard representation, an infological view of the design model will

5 However, in line with common practice, it is likely that some non-implementable constructs, such as sub­
types will be included in the design model.

141

be provided to enable for the semantic verification discussed above. Once again, it is

the infological view that is verified and 'signed off by the user.

Process 3. Create Physical Model

This process is intended to follow the standard activities engaged in by a database

designer and described in detail in a number of texts (e.g. Connolly et al., 1 995 ;Elmasri

and Navathe, 1989;Ricardo, 1 990) and is, therefore, not discussed further here.

Process 4. Create User Views

In general, user views are created in response to the requirements of the concurrent

functional analysis and design and it is not anticipated that this will necessarily be

supplanted. However, the individual user views as identified and recorded in analysis

could be used either to determine the required views or to verify the views suggested by

other means. Given the database designer's knowledge of the system and the

implemented database, a comparison could be made between the NIAM sentences and

the information provided by the various SQL views.

Summary

This chapter has proposed a framework for the integrated use of elements of the existing

methods of NIAM and E-R/R modelling. It has suggested that not only could they be

used in a complementary way but that their joint use strengthens the overall database

development process by providing a much clearer boundary between both the activities

and the deliverables of the analysis and design stages. However, with the exception of

the techniques for the creation of NIAM sentences from an E-R/R model, detailed in the

following chapter, there are no new techniques in this framework. The skill-set required

to put the framework into practice is, therefore, accessible to many organisations and, in

combination with the one new technique, has a coherence, clarity and consistency

missing in many current methodologies. There are a number of implications for both

education and practice, inherent in the adoption of this framework and these are

discussed in Chapter 14.

142

10 NaLER: completing the circle

'" How old did you say you were? '
Alice made a short calculation, and said 'Seven years and six months. '
'Wrong! ' Humpty Dumpty exclaimed triumphantly. 'You never said a word like it! ' .
'/ thought you meant, "How old are you?" , Alice explained.
'If I'd meant that, I'd have said it, ' said Humpty Dumpty.
Alice didn 't want to begin another argument so she said nothing. " (Lewis Carroll, 1871)

Introduction

143

The INTECoM approach requires a means of translating the datalogical design model

into an infological form suitable for verification by users. The technique, tenned

NaLER, Natural Language for E-R/R, described in this chapter has been developed

primarily to meet this need. However, the ability to understand the information content

of E-R/R models, i.e. to 'read' them accurately, has a much wider application. It is a

fundamental skill required by any person involved with E-R/R models in almost any

capacity. Not only the modellers themselves and the users whose requirements have

been sought, but other end users, such as domain experts, auditors, systems analysts,

database designers and administrators, also have a need to 'read' a model. It is an

important skill for those undertaking teaching and research in data modelling. As Kent

(1 983 p.5 1) observes "keeping a record of how the data elements express facts, in terms

of the entities and relationships of the business, would constitute excellent

documentation of what data is being maintained and what it means." Despite the

increasing need, from an increasing range of people, little attention has been given to it.

Data models have been likened to maps (e.g. Kent, 1 978) and the ability to read a data

model can be seen to be similar to reading a geographically based map. A map may be

consulted by a variety of people for any one of a number of reasons. Each individual

user needs to have either a working knowledge of the map symbols or access to a

144

suitable annotated legend. With this knowledge, the user is able to extract useful

infonnation. It seems reasonable to suggest that a person will employ a familiar tool,

i .e. natural language, in order to mentally manipulate this new infonnation and will

certainly use natural language in order to share, compare or review it with others.

While there is a substantial body of research on map interpretation (MacEachren, 1 995),

there appears to be little research that investigates how the interpretation of a data model

is undertaken. However, it seems likely that a person, attempting to make sense of such

a model, will behave in a similar manner to a map user and transfonn at least some of

the semantics into natural language in order to access the new infonnation in the model.

Certainly several texts (Simsion, 1994; Veryard, 1 984) suggest that analysts may need to

occasionally phrase natural language descriptions of all or part of a model in order to

facilitate validation of the model by non-technical users. However, there is no

indication of how any such descriptions should be derived and certainly very little

encouragement to do so. Indeed, Veryard (1 984 p. 1 9) states, "most users can be shown

the model itself. . . (as) . . . there is very little notation to learn and the users need not be

bothered with conceptual niceties." There seems to be an unstated consensus that the

interpretation of a data model is straightforward and intuitive once the syntax of both the

diagram and the accompanying data dictionary are understood. It is certainly assumed

that learning how to build a data model leads directly to an understanding of how to

detennine what information one contains. This has lead some authors to suggest that

users may need to be trained more extensively in conceptual data modelling concepts

(Hitchrnan, 1 995 ; Metais et al., 1 993). This is analogous to suggesting that only

cartographers, or those non-cartographers with extensive cartographic training, can

'read' maps. The low level of data model usage, reported by both Hitchrnan (1 995) and

MacDonell (1 994), would suggest that there is a real problem of comprehension and that

data models need to be more accessible to a wider range of people, if their well

documented benefits are to be fully realised.

The need for semantic comprehension

Aside from the general desirability of understanding a conceptual data model to assist in

tasks such as decision-making and strategic planning, there are a number of specific

activities for which a clear and comprehensive understanding of its information content

is essential . Firstly, the 'domain experts' among the users need to verify that the model

145

represents an accurate and useful perspective of an organisation's "slice of reality"

(Biller & Neuhold, 1 978 p. l l). Secondly, auditors may use a conceptual data model to

confirm that the database that is derived from it processes data accurately and

completely (Am er, 1 993). The need is not confined to the user community however,

technical users of the data model also need this accurate understanding in order, for

example, to specify functions against the data, design appropriate physical data

structures or assess the impact of a new data model on existing data structures. Thus

systems analysts, database designers and administrators and data administrators make up

a third group for whom a clear semantic comprehension is essential.

Data modellers, themselves, need to be able to recognise the different semantic

implications inherent in alternative conceptual data structures and make informed

choices between them (Simsion, 1 994). The need for some mechanism of

understanding by modellers has also been highlighted by the work of Batra and Antony

(1 994) in their investigation of common errors made by novice (student) modellers.

Their findings suggested that their subjects tended to propose a solution that was based

on their initial perception of the problem and that once an initial solution was

formulated the basic structure of the model or representation was rarely changed. They

suggested that a significant reason for this lack of adjustment to the initial solution was

that "since there is no mechanism to inform the designer that the solution is incorrect,

there is little motivation to modify the initial solution" (p.64). Batra and Sein (1 994),

working on the basis of these findings and recognising that "logical database design

does not lend itself to self-monitoring by the designer" (p.653), have endeavoured to

provide feedback to novice modellers via a design aid called SERFER. SERFER

provides feedback by creating a series of structured natural language statements to the

data designer based on their input description of a relation. However, the natural

language sentences, illustrated in Figure 1 5, relate not to the information content of the

model but to the syntactical rules that are being invoked.

146

Relationship(s) found :

There is a relationship between : Employee. Skill and Project
The degree of the relationship is: 3 (Ternary)
The connectivity of the relationship is: One-Many-Many
The connectivity is one/many for : Project..
The connectivity is one/many for : Employee
The connectivity is �many for : Skill
An instance each of... Employee and Skillis associated with one/many instances of... Project
An instance each of.. Employee and Project..is associated with one/many instances of Sklll
An instance each of SkllI and Project is associated with one/many instances of Employee

Figure 15. Example of Feedback from SERFER (Batra & Sein, 1994)

While the notion of timely feedback is valid and seems to offer some fruitful avenues

for further research, the nature of the feedback proposed by Batra and Sein (1 994) seems

rather inappropriate. For novice modellers struggling to come to terms with the

differences implicit in various forms of representation, natural language sentences of

this form may be confusing and, therefore, less than helpful. While making clear

statements about the syntactical elements e.g. 'The connectivity is one for Skill', the

SERFER feedback does nothing to assist the modeller understand the semantic

implications of this syntax i.e. that while a Project may use many Skills, and an

Employee may have many Skills, only one Skill may be used on a Project by one

Employee. A natural language representation of an E-RJR model, which makes explicit

those implications by focusing on the semantics rather than the syntax, would offer a

more profitable tool to both modellers and users. The Natural Language for E-RJR

models (NaLER) technique, described in this chapter, provides a means for creating

such a representation.

Uses of the NaLER method

The creation of the NaLER technique presented here has two objectives. It is intended

as an aid to the modeller within the design process and, more importantly, as a means of

presenting the information content of the design model to users.

The first objective then, is to provide a self-monitoring mechanism whereby modellers

can create their own feedback in terms of the information content of their created

structures. Based on the premise that "modelling is essentially making statements in

147

some language" (Lindland et al., 1 994 p.43) and that "all representation is an act of

knowledge construction" (MacEachren, 1 995 p. vii), a useful form of feedback would be

to present a natural language translation of the information content of the data structure

to the modeller. In this way a designer, in the act of creating a data model, can judge

whether a statement created in the modelling language, says what it was intended to say.

It is interesting to note that while most texts provide simple translations of simple

modelling examples and also rich scenarios to be turned into data models by the

students, none provide a rich description of a complex model by way of comparison.

However, it is the ability to compare the information within the modelling

representation, to the description of the UoD that is most useful in assisting the modeller

to understand the implications of the structures that they have created.

The second objective is to provide a means of constructing a description of the modelled

world that can be compared with the 'real' world. The previous chapter suggested the

use of NIAM sentences for semantic verification of user requirements. NaLER provides

a means to create similar sentences for the verification of the semantics of the E-R/R

design model. In this way, it can be confirmed that user requirements are still being

supported.

NaLER also provides a helpful tool for teachers or researchers concerned with

evaluating the semantic quality of data models. Chapter 8 showed that almost all

researchers involved with data modelling judge the quality of a subjects data model by

comparing it with a previously worked 'correct' solution. However, this process of

comparison has several difficulties, one of which is determining semantic equivalence

between two different structural representations. In order to determine whether two

facts are equivalent there must be a commonly agreed method of extracting the facts

from the data schema as well as an agreed means of comparing them. While their paper

describes a fairly complex formal method for comparing the equivalence of different

representations, Biller and Neuhold (1 978) themselves conclude that comparing the data

representation to reality "must rely on a common understanding of natural language"

(p.29). As NaLER provides a means of extracting a complete set of natural language

sentences from an E-RJR model, any number of sets can be compared either with each

other or with an initial set extracted directly from the UoD. Such comparisons can

148

highlight incorrect or new semantics and provides a genuine basis for assessing

semantic equivalence between differing data structures.

The technique could also assist with another problem faced by evaluators of data

models ; their reportedly low level of understandability. Shanks (1 997) observes that

data models need to be better explained and he suggests exploring the use of various

natural language based techniques such as narrative scenario descriptions (ascribed to

Carroll, 1 995) and the argumentation-based design rationale (Buckingham et al., 1994).

The NaLER technique described here could be a useful addition to these.

1. Document the model conventions.

2. Check assumptions.

3. Simple entities.

3.1 Construct primary key sentences.

3.2 Construct attribute sentences.

3.3 Construct relationship sentences.

4. Construct super/sub-type sentences.

5. Complex entities

5.1 Construct relationship sentences

5.2 Construct primary key sentences

5.3 Construct attribute sentences.

6. Populate with examples

7. Produce NaLER description.

Figure 16. NaLER - An overview

Thus, there are a number of situations that would benefit from a natural language

interpretation of an E-R/R model and the creation of such an interpretation is a natural

and intuitive response to the need to make sense of such a model. The proposed

technique, an overview of which is illustrated at Figure 1 6, is designed to capture this

response in an organised way and to encourage data modellers to create a semi-formal

natural language description to elucidate the information that their models contain.

The NaLER Method

NaLER is designed for use with a relational data model, represented diagrammatically

by an E-R/R diagram and supported by a data dictionary, as produced by many

contemporary CASE tools. The more extensive the available documentation, the more

effective the translation will be.

149

It is envisaged that the data designer would use NaLER either to check the semantic

content of certain data structures under development or to present documentation to

users for verification. The NaLER user will thus have a good understanding of both the

relational paradigm and the syntax of E-R/R models. When used by practitioners it is

therefore reasonable to expect the fol lowing pre-requisites to be met.

P I - Entities are named.

P2 - Entities will have a unique identifier or primary key.

P3 - Lines between entities denote Primary Key/Foreign Key relationships.

P4 - Relationships are named in at least one direction.

P5 - Relationship cardinality is indicated on the diagram.

1.1 Assumptions

Although there are a number of additional desirable elements, it is recognised that not

all CASE tools provide the same level of documentation support and also, that when

used in support of the modelling process, not all the information may have been

recorded. Therefore, while full documentation is recommended, if the model is

incomplete in some way there are a number of assumptions that can be made. These

assumptions are that,

A l - Relationships are optional unless clearly annotated as mandatory) .

A2 - A I - I mandatory relationship is implicit in the position of an attribute in an
entit/ .

A3 - If an attribute is described as nullable, the 1 - 1 relationship is optional.

A4 - Two attributes with the same name placed in different entities relate to the same

'real world' concept3•

A5 - If any such attribute is a primary key in one entity then it is a foreign key in any

others in which it appears.

IThis assumption is based on the findings of Siau et al. (1 995) who suggest that experienced modellers
will almost always prefer to show relationships as optional unless there is very clear evidence to the
contrary.

1-his assumption only holds if the model is in I NF and assumes that the intention of the designer would
be, minimally, to create an E-RJR structure in first normal form.

3 While it is not a requirement that attribute names are unique within a model, it is generally good practice
to make them so. Thus if the same attribute name appears in more than one entity is can be assumed to
relate to the same 'real world' element. If it becomes clear that this is not the case, the attributes should
be renamed to remove ambiguity.

150

A6 - An entity whose primary key consists of two or more foreign keys is specifying

a many to many relationship between the entities of which those attributes are

primary keys.

These are the only assumptions that should be required where the data designer who is

using NaLER has constructed the model . However, when sentences are being extracted

from models created by other designers, particularly students or research subjects, it is

possible that a number of syntactic errors can impede the process. In this case some

additional assumptions are proposed which, while requiring more judicious use, can

assist in maximising the amount of useful information that can be extracted. These are,

A7 - For unnamed 1 -m relationships, the parenthesised name '(has)' can be used,

unless a more intuitive one is suggested by the names of the participating

entities.

A8 - For unnamed 1 - 1 relationships, the name '(has)' can be used unless the two

entities have an identical primary key in which case the name '(is)' can be

used.

A9 - If a foreign key attribute exists without an existing relationship line, then the

relationship should be treated as missing and unnamed. It may be useful to

create the relevant sentence using 'has' as the relationship name and a

cardinality of 1 -m.

It is suggested that any adjustments that are made on the basis of these assumptions are

clearly marked in the final description, either by the use of parentheses as here or by

some type of formatting such as bolding or italicising.

1.2 Procedure

The procedure is broken down into 6 steps. For reference, all the statements are

numbered as they are constructed, however, the ordering of the statements is not

significant.

Step 1 - Identify and document the diagram conventions

This purpose of this step is to record and clarify what notation has been used to

construct the diagram and data dictionary. Where a CASE tool has been used it may be

unnecessary although for future reference it is useful to record how the model is being

interpreted. Any inconsistent use of notation in the model should also be noted.

Step 2 - Check what assumptions need to be made

151

The purpose of this step is to identify any areas in the model where assumptions from

the above list will need to be made. Where this is a check of the designer' s own work, it

can be seen as a syntax check and it is expected that most of the ambiguities and

omissions that are discovered can be resolved. In other circumstances, 'corrections'

should not be incorporated. Any assumptions that are made should be recorded.

Step 3 - Identify each simple entity

This step is concerned with extracting the sentences that relate to the simple entities

within the model by completing the following 3 tasks.4

3.1 Construct a sentence for the primary key attribute(s) asS :-

Sn: Each <entity-name> is uniquely identified by <primary kep'�6
e.g.

SI : Each Zoo is uniquely identified by zoo-no.
S2: Each Zoo-Animal is uniquely identified by zoo-no, animal-no

This task is intended to focus on the appropriateness of the chosen primary key and the

entity name.

3.2. For each attribute, construct a sentence as :-.

Sn: Each <entity name> (<primary key » must have only one .

. <attribute name> . .

e.g.

S3 : Each Zoo (zoo-no) must7 have only one Zoo-name

During this task, a sentence should be constructed for all attributes except those that are

primary or foreign keys. This step works on the assumption that the model is in at least

First Normal Form. However, this step can also be valuable in checking the level of

4 A 'complex' entity is defined as one which is representing the resolution of a ternary (or higher degree)
relationship. All other entities are termed 'simple',

5 A formal description of the NaLER language can be found at Appendix 2 .

6 Italicised words are constants.

1 Note that if an attribute is described in the dictionary as nulIable the relationship is optional not
mandatory in which case 'must' should be changed to 'may',

152

normalisation by providing an intuitive means of thinking and talking about functional

dependencies.

3.3. For each binary relationship that the entity participates in, construct two

sentence as :-

Sn: Each <entity-name> (<primary key» <optionality> <Telationship-name>
<eardinalitp <entity-name> (<primary key» .

SnR: Each <entity-name> (<primary key» <optionality> <Telationship-name>
<eardinality> <entity-name>. « primary key» .

.

e.g.

84: Each Zoo (zoo-no) houses one or more Animal (zoo-no, animal-no)
84R: Each Animal (zoo-no, animal-no) is housed in one Zoo (zoo-no)

The form of these sentences may be familiar as a variation of the business rules used in

some methodologies. However, the inclusion of the key attribute(s) makes a significant

contribution to the general understanding of the model. For example, the sentence 84,

which clearly identifies that animal-no is not unique across zoos, can prompt the

designer to check that the functional analysis recognises that each zoo is responsible for

uniquely numbering their own animals. As an extension of this thinking it may also be

useful to check what happens if an animal is moved from one zoo to another, either

permanently or temporarily.

These sentences are sufficient for the translation of a significant proportion of E-R/R

models, however, there are two other types of relationships i .e. the relationships

between super and subtype entities and the complex relationships surrounding resolution

entities, that these steps handle less effectively. The following two steps are designed

for these.

Step 4 - Supenype/subtype sentences

For each subtype entity construct a sentence of the format:-

Sn: Each <sub-elitity-naine> « pHmary· key:» is a �super��ntity- .
'nam,:>: 6::primary �Y,:>.).

e.g.

85: Each Mammal (zoo-no, animal-no) is a Animal (zoo-no, animal-no)
86: Each Reptile (zoo-no, animal-no) is a Animal (zoo-no, animal-no)

153

These sentences should be straightforward to construct and may seem almost trivial .

However, it can prove useful to check that the primary key is being correctly inherited

and can also provide an insight into the nature of the relationships between the subtypes

themselves. For example, the sentences can help to identify overlapping sub types,

which, while not proscribed, may not be desirable (Simsion, 1 994).

Step S - Identify complex entities

This is the most difficult task as these entities are not always straightforward to identify.

If relationship sentences have already been created and the underlying semantics are

clear then they may be omitted. However, if the resulting sentences are not clear it may

be beneficial to rework them using the appropriate formats described in this step. For

completeness, all the potential sentences should be generated although this is not usually

necessary. In practice it is useful to generate only those that contribute to the overall

understanding. For convenience, certain abbreviations have been used here, i .e. e =

entity, pk = primary key, and r = relationship.

S.la. For entities with a composite name, e.g. 'Employee/Project/Skill'

5n: Each <e-name> (",pk» <optionality> <r-name> <cardinality> , '
<e-name> (<pk» and <optionality> <r-name><cardinality >
<e-name>(<p�» .

e.g.

" '

S7: Each Employee (emp-id) must be employed on one or more Project (proj­
code) and may use one or more Skill (skill-code).

OR

S.lh. For entities with a simple name, e.g. Invoice

Sn: Each <e-ni1me> (<pi<» <optionality> <r- name> <cardin�lity> ,
<e-name> (<pk» and <optionalit)'? <r-name> <car�inality>
<e-name> « pk» and '<optionality>'<r-name>,<cardinal�
<e-name> « pb).

'

e.g.

Given an entity 'Invoice' linking Salesperson, Customer and Order

S8: Each Invoice (invoice-no) must be made by only one
Salesperson (Salesperson-id) and may be for only one Customer
(customer-no) and may include one or more Order (order-no).

154

There are a number of issues surrounding the construction of these sentences. Firstly, it

is important to note that in the situation illustrated in step 5 . 1 a, the entities named are

those that participate in the relationship rather than the resolving entity itself and that

therefore, the primary keys are also those of the participating entities. However, they

will also appear as foreign keys (and possibly as part of the primary key) of the

resolving entity.

In the second case, shown at 5. 1 b, the first entity that is named i.e. <e-name> is the

resolving entity while the others are the entities that participate in the complex

relationship. Secondly, it is probable that other sentences relating to the resolution

entity have already been constructed, e.g. to allow for the relationship between

Employee and EmployeelProject/Skill, or Customer and Order. If this is the case the

original sentences should be deleted, as they will represent only a partial view of the

underlying semantics .

Finally it should be noted that i t might not be possible to use the relationship names

provided on the model for these types of sentences. While it is desirable to keep the

wording as close as possible to the model it may be necessary to make some adjustments

to keep the sense of the relationship.

5.2 For each complex entity, construct a sentence for the primary key attribute(s)

This task is the same as for Step 3 . 1

5.3 For each complex entity, construct a sentence for each of the other attributes

This task is the same as for Step 3 .2

Step 6 - Populate the sentences with valid examples

This step is a reversal of the technique within the NIAM-CSDP whereby 'fact types' are

derived from the elementary natural language 'facts' . Here example sentences are

generated from the fact-types and instantiated by relevant valid examples taken from the

DoD. Where NaLER is being used within a system development process8, the examples

should be taken from the analysis documentation wherever possible, rather than

8 If NaLER sentences are being generated for an existing database, the examples should be taken directly
from the database itself. (Ryder, 1996)

155

generated in isolation by the designer. Any examples that are created by the designer

should be verified by the user. Generally, there is little point in generating examples for

the primary key sentences as these are explicit in all the sentences related to the entity

holding that primary key

S2: Each Zoo (zoo-no) must have only one Zoo-Name
Zoo (1 1 1) has the name 'Regents Park'
Zoo (222) has the name 'Whipsnade'

S4: Each Zoo (zoo-no) houses one or more Animal (zoo-no, animal-no)
Zoo (1 1 1) houses animal (1 1 1 , 1 23)
Zoo (1 1 1) houses animal (1 1 1 ,345)
Zoo (222) houses animal (222, 1 23)

Step 7 - Produce a full NaLER description

Beyond checking for inadvertent duplication9, this step should not involve any

additional work. It brings together all the constructed sentences to create a standardised

description. The sentences can be listed numerically, grouped together in a way that is

likely to be meaningful to the user or arranged to match the order of the sentences in the

analysis model. Taking the latter option is particularly effective when the user is

required to confirm that the design model is supporting the original specifications, as

happens at the end of the design stage in INTECoM.

Any sentences that were adjusted by the use of the assumptions in Step 2 should be

annotated. For example, S4 and S5 in Figure 17 indicate by the bold type that the

relationships were optional by default and S4 also shows a missing relationship name.

All the examples used in the NaLER description should be valid ones and sufficient; in

other words, there should be a direct correspondence between the examples and the

constraints explicitly stated in the fact types. Where a discrepancy exists, it must be

investigated. Although it may be only an error in the collection of examples, it may be

highlighting an incorrect constraint that needs to be adjusted in the model . It is also

helpful, although not essential, if the examples are internally coherent and consistent. It

is much more understandable, particularly in a complex domain, if one valid example

'case' can be tracked though all relevant sentences.

9 This only applies to sentences that have been duplicated through some error in the NaLER process.
Sentences, which have been duplicated in the analysis stage, should not be removed until the necessary
changes have been made to the model itself.

156

S I : Each Zoo is uniquely identified by zoo-id

S2: Each Zoo (zoo-no) must have one location
Zoo (1 1 1) has location "London"
Zoo (333) has location "Sydney"
Zoo (222) has location "London"

S3 : Each Zoo (zoo-no) must have one Zoo_name
Zoo (1 1 1) has name "Regents Park"
Zoo (222) has name "Whipsnade"

S4: Each Zoo (zoo-no) may own one or more Animal (zoo-no, animal-no)
Zoo (1 1 1) owns Animal (1 1 1 , 1 23)
Zoo (222) owns Animal (222,1 23)
Zoo (1 1 1) owns Animal (1 1 1 ,345)

R Each Animal(zoo-no, animal-no) must be owned by one Zoo(zoo-id)
Animal (1 1 1 ,445) is owned by Zoo (1 1 1)
Animal (1 1 1 ,567) is owned by Zoo (1 1 1)
Animal (222, 1 23) is owned by Zoo (222)

S5: Each ZooAnimal (zoo-no, animal_no) may belong to one AnimalType
ZooAnimal (1 1 1 ,123) belong to AnimalType "Panther"
ZooAnimal (222, 123) belongs to AnimalType "Kangaroo"

Figure 17. NaLER sentences and examples.

Summary

The NaLER technique can be of benefit in a number of different situations. However, it

is primarily for use by data designers, as a means of 'proof-reading' their own work and

as an aid in gaining user verification for the design model. In the first case, it is

envisaged to be of most use to novice designers, by providing them with some

immediate feedback about their datalogical constructions. However, as Kent observes

"if a mind is committed to a certain model, then it will perfonn amazing feats of

distortion to see things structured that way" (Kent, 1978 p.93) and expert designers are

also susceptible to this. In the second case, it provides a way to communicate the

semantic content of a design model to users and removes the necessity for users to

understand the language, and the decisions, underlying the datalogical design model.

It is recognised that NaLER does not cover all possible constructs and variations in all

E-R methods. However, it is suitable for the extraction of sentences from the E-R/R

models most often used in practice, as described in various practitioner texts (e.g.

Simsion, 1 994).

1 1 INTECoM: in practice

"(Cjonceptual modeling is valuable and 1 believe that InfoModeler is by far the best
conceptual modeling tool. Perhaps a hybrid solution is in order for those who need and
can afford it: use InfoModeler for initial conceptual modeling and create a logical model
and forward engineer it into a database schema. Then reverse-engineer the schema into a
logical model with a better logical- and physical- modeling tool and use that tool to tune
your model" Grimes (1998)

IS7

Chapters 9 and 10 described a theoretical framework in which techniques for the

analysis and design of data can be integrated. Two well documented, widely used and

tested methods were chosen to instantiate the framework, although there is no reason

why other appropriate methods could not be substituted. Previous chapters developed a

clear case for the advantages offered by employing methods with particular 'ways of

working' at appropriate stages in a database development. Although, as previously

stated, there seemed little to be gained by conducting another comparative evaluation of

E-R and NIAM methods, neither the mapping of 'ways of working' to developmental

stages nor a comprehensive integration of two disparate techniques has been reported in

the literature. Clearly, the soundness of the arguments that lead to the development of

INTECoM, and the viability of the framework itself, would be strengthened by the

successful use of INTECoM in an actual development. INTECoM is primarily designed

to bring benefits to non-trivial developments involving a number of developers and

users. Therefore, a consequential evaluation of the framework would, ideally, require a

substantial development project by a small team of analysts and designers within a

medium to large organisation. The level of resources required for such an undertaking

places it beyond the scope of this research, which has theory building rather than theory

testing as its focus. Nevertheless, a small development, in the nature of a worked

example, is useful in demonstrating the feasibility of the framework, its practical

application and the validity of the arguments employed in its creation. Consequently

such a development was designed, with the researcher as both database developer and

158

one of the primary users of the intended system. The intention of this exercise was not

to observe or evaluate the efficacy of the framework, or its constituent parts, but to test

and refine the theoretical basis on which the framework was established. In addition,

the example was designed to focus exclusively on the development of the database

design and therefore did not attempt to integrate INTECoM with the analysis and design

of events and behaviour.

A description of the entire development, which follows the procedures laid out in

Chapter 9, is included here and the complete set of deliverables, as well as some

additional transitional documentation, is included in the appendices and referenced as

appropriate. The development work resulted in a number of useful observations and

refinements, which are also discussed here and consolidated into a revised framework in .

Chapter 1 3 . Quality evaluation of the development, utilising some useful concepts from

Chapter 8, was undertaken and this is discussed in Chapter 1 2.

System Development

The system that was chosen to provide a worked example was the re-development of a

database of postgraduate student infonnation (ISPG) required for internal use by the

Department of Infonnation Systems at Massey University. This system required the

creation and maintenance of an accurate, current record of departmental postgraduate

enrolments. The database would be used by the postgraduate co-ordinator to provide

timely infonnation to the Head of Department and also to ensure that individual

postgraduate programmes were correctly reported to the various College Administrators.

It would also provide a facility for ad hoc querying by paper co-ordinators and students.

The amount of data that would be stored in the system would be small and it was

envisaged that the database would be held on the local server with access restricted to

the three or four people who would regularly require infonnation from the system. It

was recognised that some of the data would duplicate that held by the University' s

central computer system. However, for a variety of reasons it was considered expedient

to carry the cost of this duplication. A similar system was already in place within the

Department. However, it had been developed infonnally and had grown in scope and

complexity since its inception. There was thus a genuine need to revisit the database

design. From the context diagram illustrated at Figure 1 8 it can be seen that the major

159

information users of the system would be the Head of Department and the College

Administrators. The details of the major dataflows are described at Appendix 3 .

Award recommendation

Student
Student details

Confirmation

Academic
Records

Postgraduate
Student

Database
System

Class lists

Staff
Member

College (Administrator

7��
/---__ Employment status

se agreements ,-----'------',
Head

of
Department

Figure 18 ISPG System - Context Diagram

1. The analysis of user requirements.

1.1 The Agents

INTECoM begins with the identification of the various agents, Data Analyst, Data

Designer, Database Designer and Users, within the system development process.

INTECoM encourages the identification of different individuals for these roles but

recognises that one person may play more than one role, and this was the case in this

development. The researcher played the first three roles and was also an expert user.

However, there had previously been significant input into the requirements by a variety

of users and other user input was solicited when appropriate and possible.

1.2 Inputs

A number of inputs are described as relevant to the analysis phase of INTECoM. In this

example, both users' and the data analyst's enterprise knowledge was extensive and

their system expectations realistic and informed. The analysis procedure of the NJAM­

CSDP and the analysis language of ORM and NIAM were well understood by both the

160

data analyst and some of the users. The remaining domain specific inputs are described

below.

Information requirements. The information requirements of the system were considered

from the following four viewpoints, students, staff members who are paper co­

ordinators, the Head of Department (HoD), and the College postgraduate administrators.

The requirements were derived from a number of sources including, the researcher' s

own experience of the current system, examination of current documentation and

interviews with users.

Students require confirmation that

• any specific decisions agreed with the HoD have been recorded accurately,
particularly the content of approved special topics,

• they have enrolled in a program of study which conforms to university,
college and departmental regulations, and

• that correct contact details have been recorded

Paper Co-ordinators require

• a list of people enrolled in the paper, and

• current contact details of each student.

The Head of Department requires

• a record of each student' s current programme,
• a record of each student's past programme including grades,

• a record of each student' s future study plans, if known,

• decisions agreed with the student,
• the student' s employment status, and
• a record of each student's research areas and their research supervisor.

College Postgraduate Administrators require

• notification from the department of a proposed course of study for formal
approval by the College board,

• notification from the department of completed study with a grade point
average score for the complete programme, and

• recommendation that an award is granted with a level, e.g. First Class
Honours.

Syntactic Verification. The qualified fact types and examples derived during the NIAM­

CSDP process were input to InfoModeler™ and all views were validated on completion.

This CASE tool will not allow the transformation of the initial ORM unless it is

syntactically correct hence syntactic verification was straightforward. However, there is

obviously no guarantee that a syntactically correct model is logically correct.

161

Semantic Verification. The developer, as an expert user of the system, conducted the

initial semantic verification of the model. However additional verification was also

obtained from appropriate users. These users were shown only the qualified fact types

relevant to their own view and the 'Verbalizer' report from InfoModeler™ showing the

examples 1 • At no time were the users shown the ORM diagram or any potential E-R

diagram although most users would have been able to interpret either.

1 .3 The Analysis Process

The process that was followed was largely that laid down by the NIAM-CSDP, adapted

to the effective use of InfoModeler™. Each view was considered separately and entered

into a discrete model within the CASE tool. The decision was made at the beginning of

the process to keep the user views separate during the analysis stage and not to integrate

them until the design stage. It was therefore necessary to open a new model for each

view because even while the ORM diagrams can be kept on separate pages within

InfoModelerTM, the validation of the models and the transformation to a relational

structure will always consider all pages together. As the facts were being constructed,

every effort was made to ignore relational considerations and to concentrate only on the

sentences that could be derived from the user view. Therefore the qualified fact 'Staff

(Staff_code) has name' which seems a very obvious and necessary fact to include, does

not appear in the analysis model, as it was never identified in the users' view. Neither

was there a conscious effort to create consistency between the user views. While the

College Administrator view requires a name for the supervisor, this was not equated by

the analyst with Staff_code. Another example lies in the apparently conflicting

identifying structure for a student' s enrolment in a paper, which is discussed on page

1 70. The conflict was noted but no attempt was made to resolve it until design.

1.3.1 Student View

Initial sentences were determined as required by the student view of the system through

discussion with current postgraduate students and examination of current

documentation. A complete list of these sentences is included at Appendix 4. 1 . 1 . The

student view is typically constrained to one year at a time and is mainly concerned with

IThe qualified fact types and the example sentences are included at Appendix 4.

162

ensuring that the chosen programme has approval and meets with all the necessary

regulations in force at the time of enrolment. Although there are other areas of

legitimate interest to the student view, e.g. the timetable for each paper, assignment and

examination dates, these were not considered to be of interest to the development. This

view was considered to have the least priority. It was recognised that students, in

general, operate from a position of trust in the department' s ability to counsel them into

a suitable and approvable programme. They tended to view the need to confirm their

details as a piece of bureaucracy but for those few students for whom it was relevant, the

knowledge that the content of any Special Topic was recorded and in line with their own

understanding was seen as important.

These sentences were converted to qualified fact types and input to InfoModeler™

together with appropriate examples using the Fact Assistant facility. Three sentences

were not included explicitly as facts. One was implied by the use of the studenC id as

the identifier of a student object and two others were shown as subtype constraints on

the ORM diagram rather than entered as fact types. The complete set of qualified fact

types, the associated examples and the ORM diagram are also included at Appendix 4.

1.3.2 Paper Co-ordinator View

A set of initial sentences was derived from discussion with some staff members who

were paper controllers, from existing reports and from the personal knowledge of the

developer (who was also a paper controller). A complete list of these sentences is

included at Appendix 4. 1 .2. While staff members sometimes required much more

detailed information about students, this was generally available from the University 's

academic record system. The information requirements represented here were thus

restricted to those that were currently produced by the departmental system. This view

was accorded third highest priority. The most common use for this view was to produce

an accurate list of students enrolling in a paper, as this was not always available from

the central university system at the very beginning of a semester. It was also used to

provide a list of students who had enrolled early for the next semester. However, it was

also used to report a list of students enrolled in Special Topics by the postgraduate co­

ordinator, as the staff member nominally responsible for these papers.

163

These sentences were also converted to qualified fact types and input to InfoModeler™

with appropriate examples. As InfoModeler™ is restricted to a maximum of a

quartenary fact, two nested fact types were created from these sentences,

PaperSemesterYear and StudentPaperSemesterYear. The first represented the offering

of a particular paper in a particular semester, which may have different characteristics

from another, e.g. it may be taught by a different staff member, or may have a different

points value. The second nested fact type represented the enrolment of a student in a

PaperSemesterYear. A decision2 was made which was to add a property of Type to the

object PaperSemesterYear to identify whether the paper was a research project, a special

topic or a taught course. This type was implied in sentences 1 2 and 1 3 although the

same information could have been represented as showing SpecialTopic and

ResearchProject as sub-types of the Paper object as it was in the Student View. Finally,

although not explicitly stated in the initial sentences, Supervisor was shown as a sub­

type of the Staff_member objece. The complete set of qualified fact types, examples

and the resulting ORM diagram are included at Appendix 4.

1.3.3 Head of Department View

A set of initial sentences was derived from discussion with the Head of the IS

Department, from existing reports and from the personal knowledge of the analyst. A

complete list of these sentences is included at Appendix 4. 1 .3 . The Head of Department

had three major areas of focus. One was the overall postgraduate programme of an

individual student, another was the allocation of staff and the third was the research

profile of the department. The original system was created in response to the

information needs of the Head of Department and this view was consequently given the

highest priority.

These sentences were converted to qualified fact types and input to InfoModeler™ with

appropriate examples, using the Fact Assistant. Three nested fact types were derived

from these sentences StudentProgramme, StudentProgrammePaper and

StudentEnrolment. The first represented the enrolment of a student in a particular

1-he inappropriateness of making a design decision at this early stage was not apparent until much later.

3 Again an inappropriate design decision was made which caused later problems. There was no indication
that a supervisor was a staff member except for the developer' s own presumption that this was the case.

164

programme, e.g. a PhD, which might last over an indefinite time period. The second

represented the inclusion of particular papers in a programme and the last represented

the enrolment of the student in a particular paper in a specified semester and year.

Supervisor is again shown as a sub-type of the StafCmember object. The complete set

of qualified fact types, examples and ORM diagram are included at Appendix 4.

1 .3.4 College Postgraduate Administrator View

The sentences for this view were derived exclusively from the existing documentation

that is sent to the various Colleges, several examples of which were available to the

developer. Further confinnation was not sought from the administrators as the

requirements were well known and had been stable for a number of years. Any change

in requirements would be notified to the department.

These sentences, included at Appendix 4. 1 .4, were also converted to qualified fact types

and input to InfoModeler™, together with appropriate examples. Two nested fact types,

CompletedPaper and StudentProgramme were derived from these sentences. The first

represented a paper taken by a student in a particular year that was to be credited

towards the completion of a particular programme. The second reflected the student' s

enrolment in a particular programme. Three sentences, 7, 1 1 and 1 2 appeared to be

derivative and were recorded as within the CASE tool.

1.4 Final Semantic Verification

The developer initially checked all the fact types and examples for semantic correctness

and completeness. This entailed ensuring that every sentence had been recorded within

the ORM, either as a qualified fact type or as a constraint (completeness). The example

sentences were then checked to see if they confonned to the analyst's understanding of

the problem domain (correctness).

A representative of the first three user groups were then shown both the initial sentences

and the example fact types and were asked to comment on them and confirm their

accuracy. A number of changes were made at this point. Although most were trivial the

student user commented that students would also want to know the points value of each

paper, the total points required by a programme and the name of the person who was

running a paper. These three additional facts were added to the Student view.

165

1.5 The Output

The successful completion of the process so far resulted in a set of documentation that

INTECoM ca11s the analysis model. The infological view, i.e. the complete set of

natural language fact types, object descriptions and examples, which have been verified

by the user, can be viewed as the complete requirement specification for the data aspects

of the system. In contrast the datalogical view, i .e. the ORM diagrams and repository

information that would provide the input for the relational transformation of the design

phase, had so far played almost no role in the process . However, because the datalogical

view was being created synchronously with the fact types and examples, the logical

relational schema, which would eventually be produced, could be taken as preserving

the necessary semantic equivalence between these two forms of the model.

2 The design of the logical model

2.1 Inputs

Once again, not all of these inputs will be discussed in detail . The comments on

enterprise knowledge made in the previous section are again relevant. The data designer

brought previous knowledge, paradigm knowledge and an understanding of the future

requirements of the system to the design process and was familiar with all aspects of the

design language for this stage, i .e. a textual relational schema, an E-RJR diagram and

NaLER sentences. The remaining inputs, the analysis model, the design procedure, and

the various verification requirements will be discussed as they become relevant.

2.2 The Process

2.2.1 Prepare the first draft of the design.

The initial activity in the design stage was the transformation of the dataIogical analysis

model into an equivalent relational representation. For each view, a logical model was

generated automatically by InfoModeler™ and a note made of the initial l ayout of the

ERIR representation. The awkward names of some of the generated relations and

attributes were changed but no alteration of any kind was made to the data structures

themselves. InfoModeler™ was then used to create a generic SQL schema for each

view. The most efficient means to create the initial E-R diagrams would have been to

reverse engineer the generated schemata. However, the researcher did not have easy

166

access to a suitable E-RIR based CASE tool and no means could be found of printing or

copying the logical diagrams created by InfoModeler™. Instead the relevant elements

from the InfoModeler™ logical model were input manually into Visible Analyst. This

enabled the creation of an ERIR diagrammatic representation for each view, together

with a simple data dictionary. These initial design models are included at Appendix 5.

2.2.2 Amalgamation of views

Although INTECoM had allowed for the possibility of leaving the amalgamation of

views until the design stage, no guidelines had been provided for undertaking this

activity. Therefore, it became necessary to devise a strategy to combine the various

ERIR models into an initial global design. It was decided that an examination of

apparently similar entities would be an appropriate starting point.

Entity Name Primary Key View
Student Student id Student
StudentProgramme Student id, Programme code, Year Student
StudentPaper Student id, Paper code, Year, Semester Student
SpecialTopic Student id, Paper code Student
Research Student id, P�r code, Year Student
Programme Programme code Student
ProgrammeApproval Student id, Programme code Student
Paper Paper code Student
Paper P� code Coord
Student Student id Coord
ResearchInterest Staff name, Research interest Coord
PaperSemester Y ear Paper code, Semester, Year Coord
Enrolment Student id, P�er code, Semester, Year Coord
Staff Allocation Paper code, Semester, Year, Staff name Coord
Supervisor Student id, Paper code, Semester, Year, Staff name Coord
Student Student id Adrnin
StudentProgramme Student id, Programme code Adrnin
ProposedProgramme Student id, Programme, Paper, Year Adrnin
CompletedPaper Student id, Programme, Paper, Year Adrnin
Student Student id HoD
StudentResearch Student id, Research interest HoD
Staff Allocation Pa�r code. Semester, Year. Staff name HoD
StudentQualification Student id, Qualification HoD
StudentEnrolment Student id, Programme code, Paper, Semester, Year HoD
StudentProgramme Student id. Programme code, Paper, Semester, Year, Staff name HoD
ResearchInterest Staff name, Research interest HoD

Table 6 Combined list of all entities from analysis model

While entities that had been given the same name should, theoretically, represent the

same objects, it was not sufficient to rely on this heuristic. Instead it was decided to

ignore the name of the entity and concentrate instead on an analysis of the composition

167

of the primary keys of each entity. This was based on the assumption that objects that

were identified by the same properties would have a high probability of representing the

same thing. If such objects also had attributes in common, it was considered that this

would increase the probability. Therefore the first activity was the creation of a table of

all 26 entities, their unique identifiers, and the view from which they came (Table 6).

This table was reorganised to allow sorting on the primary key columns. This brought

together those entities that appeared to share a common primary key (Table 7). Any

differences in the order of the columns in the primary key were not considered

significant. With one exception, all entities with duplicate primary keys were then

merged and a new entity, containing all the attributes of the originals, was created. The

exception concerned the existence of two entities with the same key structure from the

same view, ProposedProgramme and CompletedPaper from the College Administrator

view. Their names and the fact that they came from the same view, suggested that

might be an important difference between them that should be preserved until the

difference could be investigated further. They were thus left as separate entities.

Primary Key Entity Name View
PapeOl0 Paper Co<5id
Paper code P.aiier -Stfiaent
P�er code. Semester, Year PaperSemester Year Coord
PaPer code, Semester, Year, Staff"name Staff Allocation Coord
Paper 'code. S,emester, Year. Staff 'name Staff Allocation HoD
Programme code Programme Student
Staff ,cOde 'Research interest R�bIntel:est / COQId
staff code. Researcb.. interest ReseafChInterist lloD'
Student id Student Student
Student id Student Coord
Student id Student Admin
Student id Student HoD
Student id, Paper code SpecialTopic Student
Srudentjd. PaPer COde. Semester. Year &rolment ' COofd ,;
Sfudent id PaPer cOde. Year. Semester Sti1'de"iltp�r StUdent
Student id, Paper code, Semester, Year, Staff name Supervisor Coord
.studentjd, J'ro ' , PaPer, Year PrOpO�Pio \ " , " A'dmm
StUdtnt Id.'PIO�, faper, Year CoifiPfet8dPaper' . , Adnwi'
:StUdenUd, ProImllll� code ·.Pro " • • 'X' ., rov81 S1Udent
StUdent id, Pro� code Stiiden� �-:.. -,. Aliriiiri
Student id, Programme code, Paper, Semester, Year StudentEnrolment HoD
Student id, Programme code, Paper, Semester, Year, Staff name StudentPrognuTUne HoD
Student id, Programme code, Year StudentPrograrnme Student
Student id, Qualification StudentQualification HoD
Student id, Paper code, Year Research Student
Student id, Research interest StudentResearch HoD

Table 7 List of all entities sorted by their primary key attributes

f

168

Overall, this activity resulted in the merger of six entities, Paper, Student,

Staff Allocation, Enrolment, ProgrammeApproval and ResearchInterest. As the merger

was proceeding, it was noted that other entities had very similar key structures and these

were also considered and consolidated as follows.

2.2.2.1 Consolidation of Paper entity

The initial composition of this entity from the relevant two views was

Student View
*Paper30de

Points

Paper _ Coord
*Papecno

Title

In theory, these entities should not have been considered at this stage, as the names

given to the primary key columns was clearly different. However a close look at the

analysis documents, particularly the values given to the attributes in the example

sentences suggested that they were synonyms. Paper_code was adopted as the attribute

name and the merged entity was thus,

Paper *Papeccode

Title

Points_value.

2.2.2.2 Consolidation of Student entity

The initial composition of this entity from the four views was,

Student View Paper_Coord HoD
*StudenCid *StudenUd *StudenUd

Name Name Name

Address ContacCdetails Graduate_status

Email_address Enrolled_college Position

Phone_no

College Admin
*StudenCid

Full_name

Address

Full_name was taken as a more detailed version of name, while ContacCdetails was

taken as a generalised view of the addresses and Phone_no attributes. The combined

entity was thus,

Student *StudenUd

Full_name

Address

Email_address

Phone_no

Enrolled_college

Graduate':"'status

Position

169

2.2.2.3 Consolidation of ProgrammeApproval entity

StudentProgramme in the College Administrator view and PrograrnrneApproval in the

Student view had the same key structure. However the StudentProgramme entity in the

student view only differed in the use of Year as a constituent part of the key, and

Endorsement as an additional attribute.

College Admin
*Studencid
*Programme
HoD_approval
Recommended�ade

Student view
*StudenCid
* Programme30de
Approval

Student view
*Studencid
*Programme_code
* Year
Endorsement

Further investigation revealed that the Endorsement was not specific to the year of a

programme in that only one endorsement of a programme was of interest. If the

endorsement was changed at any time, only the current information was required. It was

concluded that the Year element was of interest to the students only because they needed

to renew their enrolment in the programme on an annual basis. The three entities were

thus combined without the Year attribute as follows,

ProgrammeApproval *StudenCid
*Programme30de
Endorsement
HoD_approval
Recommended�ade

2.2.2.4 Consolidation of StaffAUocation entity

There were two Staff Allocation entities with the same primary key and no attributes.

Paper Coord View
*Papecno
*Semester
*Year
* Staff_name

HoD view
*Paper_no
*Semester
*Year
* Staff_name

These were merged with no alteration into the new entity Staff Allocation.

170

2.2.2.5 Consolidation of Enrolment entity

Each view contained one or more entities that appeared to reflect the student' s

enrolment in papers, although they had been named differently and had minor

differences in the primary key. These were StudentPaper from Student view, Enrolment

from the Paper Co-ordinator view, StudentEnrolment from the Head of Department

View and ProposedProgramme and CompletedPaper from the College Administrator

view. The primary difference was that neither the student nor the paper co-ordinator

view had recognised the enrolments as being dependent on the programme as this was

implicitly understood. It was considered that adding the Programme30de to the

primary key of the entities of these two views would not have a significant effect on the

views. However the ProposedProgramme and CompletedPaper, which omitted .

Semester from the primary key, were clearly interested only in the year in which papers

were (to be) taken. Consequently these two entities were not considered suitable for

amalgamation at this point and were put aside for later consideration.

Student view
*StudenCid
*Papeccode
*Year
* Semester

Paper Coord
*StudenCid
*Papeccode

* Semester
*Year
Approved30ntent

Result

Projecctitle

HoD
*StudenCid
*Programme_code

*Papeccode
*Semester
*Year

Approved_content

Result

Projecctitle

However, the remaining three entities were merged to create a new entity Enrolment,

identical to the entity StudentEnrolment in the Head of Departments view.

2.2.2.6 Consolidation of ResearchInterest entity.

The entities named ResearchInterest in the Paper Co-ordinator view and the Head of

Department view were identical. The new entity was renamed StaftResearch.

1 8 entities had now been identified and these are shown at Table 8. Each of these

entities were examined and compared against the other entities. Similarities in key

structures and possible synonyms were specifically targeted to see if they provided an

opportunity to make further mergers. Three entities in particular seemed worth further

analysis, PaperSemesterYear, SpecialTopic and Research.

171

Primary Key Entity Name View
Paper code Paper Coord, Student
Paper code, Semester, Year PaQ<!fSemester Y ear Coord
Paper code, Semester, Year, StafCname Staff Allocation Coord, HoD
Programme code Programme Student
Staff code, Research interest ResearchInterest Coord, HoD
Student id Student All
Student id, Paper_code SpeciaITopic Student
Student id, Paper_code, Semester, Year Enrolment Coord, Student
StudenUd, Paper_code, Semester, Year, Supervisor Coord
Staff name
Student id, Programme, Paper, Year ProposedProgramme Admin
Student id, Pr<>gramme, Paper, Year Com�letedP� Admin
Student id, Programme code ProgrammeA�ovaI Student, Admin
StudenUd, Programme3ode, Paper, StudentEnrolment HoD
Semester, Year
StudenUd, Programme_code, Paper, StudentProgramme HoD
Semester, Year, Staff name
Student id, Programme code, Year StudentPr<>gramme Student
Student id, Qualification StudentQuaIification HoD
Student id, Paper code, Year Research Student
Student id, Research interest StudentResearch HoD, Student

Table 8 List of entities after initial merging

2.2.2.7 Consideration of potential mergers

PaperSemesterYear A merger was considered with Staff Allocation , as the key

structures were similar. However this entity had two attributes, Points_value and Type

neither of which required Staff_name to identify them, hence the entity was left as it

was.

SpecialTopic - A special topic had been identified as a subtype of Paper and appeared

to relate to the Type attribute of the PaperSemesterYear entity. It also appeared that its

attributes Contencapproval and Content were directly related to the Approved_content

attribute of the Enrolment entity. Although it did not include the semester and year

attributes as part of the primary key, it was determined that in fact they were required to

uniquely identify these attributes. Consequently this entity was removed but a note

added to the Enrolment entity that if the Type attribute of PaperType Year was set to a

value of 'Special Topic' then a value of Approved_content was required.

Research - A research paper has also been identified as a subtype of Paper. It looked

as though it too could be subsumed by Enrolment. It was also clear that the attribute

Title referred to the title of the research project undertaken by a student. This had been

omitted from the student view. Consequently this entity was removed but a note added

to the Enrolment entity that if the Type attribute of PaperSemesterYear was set to a

172

value of 'Research' then a value of Title was required. An additional rule was also

added that if the value of Type was 'Research' then there must be at least one matching

entry in the Supervisor entity.

At the end of this process 14 entities had been identified and an entity/attribute list is

shown at Appendix 5 .5 .

2.3 Generating and evaluating alternative solutions

This final draft design model served as the beginning point for the design of the actual

data structures that could be implemented in a relational database. Once this model was

scrutinised a number of 'improvements' were incorporated.

The first area of concern was the two entities with identical pnmary keys, i .e.

ProposedProgramme and CompletedPaper. It was also noted that apart from the

missing Semester attribute and the use of the Programme name rather Programme_code

these entities had the same key as Enrolment. It was detennined that these entities were

potentially derivable and the decision was made to delete both of these entities.

Examining these entities involved looking at the relationship between the Supervisor

and the StafCname, which the developer assumed to be synonyms. It was also noted

that Staff_name was used elsewhere in the model but was not a foreign key. The

creation of a Staff entity would allow the use of a Staff_code attribute and provide

referential integrity.

While considering these entities, it was also decided to place the College name and the

name and telephone number of the College Postgraduate Administrator as attributes of

Programme, thus providing infonnation on which person in which college needed to be

notified of both the proposed and completed programmes.

The second area for scrutiny was the use of the Qualification attribute as a part of the

primary key of StudentQualification. In order to utilise this attribute effectively, it

seemed necessary to create a qualification entity and use a qualification code as a

primary and foreign key. This would allow referential integrity and would provide

consistent entry of qualifications. After investigating the use of this attribute it was

decided that it was required only as occasional background infonnation by the Head of

Department and could be adequately stored as a textual comment. The entity

StudentQualification was thus deleted and a qualification attribute was added to the

173

Student entity. Following this decision it was decided that the previous work experience

of the student might also be useful and was accommodated in a similar way.

The third area for scrutiny was the use of the Research_interest attribute as part of the

primary key of two entities, StaffResearch and StudentResearch. The idea of having a

coded list of research interests was considered useful but beyond the scope of this

development. However, the initial indication of research interests of students intending

to enrol in postgraduate study could be easily captured and could also be usefully held as

a textual comment and likewise the general areas of the research projects that were

offered by staff. Consequently the entities StaffResearch and StudentResearch were

deleted and a Research_interest attribute added to both the Student and the Staff entities.

The fourth area concerned the recording of more than one supervisor for some research

projects. It was decided that it was only necessary to store an indication of the chief

supervisor. An optional relationship from Staff to Enrolment was added thus allowing

for the recording of a StafCcode for those papers that have a Type of 'Research' . In this

way, both the key-only entities StudentProgramme and Supervisor could be deleted with

no loss of additional infonnation.

The issue of the Year attribute, originally part of the primary key for the

ProgrammeApproval entity was re-visited. It was definitely not needed as part of the

key, however it would be useful to know in which year approval was first given for a

programme. The attribute Start-year was thus added to this entity. Additionally the

entity was renamed ApprovedProgramme to reflect the fact that this was also the

programme that the student could be expected to complete.

Staff Allocation was now the only entity with no attributes other than its primary key.

While acceptable, it seemed worth investigating particularly as it inherited 3 parts of its

key from PaperSemesterYear. As only one staff member was ever recorded as offering

a postgraduate paper there seemed no reason why the Staff Allocation entity could not be

replaced with a relationship from Staff to PaperSemesterYear. At the same time

PaperSemesterYear was renamed Offering.

The number of entities had now been reduced to seven and a new E-R diagram, tenned

the second draft design model and reflecting all these changes, is illustrated at Appendix

6. 1 and a diagrammatic representation is shown at Figure 19.

174

Student c...r',------U-.J Programme

C:Onlains

Figure 19 Second draft design model

The general design represented in this second draft appears to be much simpler and

'cleaner' than the initial design model. It has been adapted to take advantage of

relational data structures and is arguably easier to comprehend than its predecessor. The

concentration of attributes in the Student and Enrolment entities would seem to cleady

reflect the intended scope and emphasis that the development is intended to build. One

area of obvious concern remained: the two optional relationships from Staff to Offering

and Enrolment which seemed to provide a 'non-elegant' solution and which could

benefit from further work.

Several alternatives were considered for these relationships. Four possible solutions

seemed worth pursuing.

a) Create a mandatory relationship between Staff and Offering (Relationship 1) and

remove that between Staff and Enrolment (Relationship 2). It was determined that the

Head of Department took overall responsibility for all research papers and could

therefore be entered as the paper co-ordinator. However there were some negative

implications of this solution. The staff allocation information could not now be

completely satisfied, as the Offering relation would not provide complete information.

It would also not be possible to satisfy the College Administrator' s need to know the

name of the Supervisor of a research project.

175

b) Make Relationship 2 mandatory and remove Relationship 1 . This solution had none

of the disadvantages of the previous one. The complete staff allocation information was

available via the Enrolment relation and this included the research supervision of staff

members. This would be achieved at the expense of unnecessarily duplication of the

Staff_code; i.e. the Staff30de would now be recorded for every individual student

enrolment, rather than just once for the offering. Initially this seemed an acceptable

solution but a more significant problem was identified in that no staff member could be

shown as responsible for a paper unless students were enrolled in it. This restricted the

ability of the database to store future intentions, e.g. to record who would be co­

ordinating a paper in the second semester.

Approved

Programme

Research Offering � Enrolment

Enrolment

1
Staff

Figure 20 One solution to the Research Supervisor Problem

c) A third solution, illustrated at Figure 20 seemed to be to split the Offering relation

into two, one for research offerings and one for all the rest. Thus Relationship 1

would become mandatory in that all offerings would require a staff member, while a

similar relationship would be created between Staff and the new relation

ResearchEnrolment. Two additional relationships were then required, one between

ApprovedProgramme and ResearchEnrolment and another between Offering and

ResearchEnrolment. The primary key of the new relation would consist of

StudenCid, Programme_code, Papeccode, Year and Semester, identical to that of

176

Enrolment. The new relation would also require the attribute Result, and would take

the attribute ProjecCtitle from Enrolment.

This solution is interesting for a number of reasons. First of all it does little to alleviate

the original concern. A fully optional relationship still exists between Staff and

Offering and there is still an additional relationship emanating from Staff. fu addition a

new relation had been created and this necessitated another new relationship between

ApprovedProgramme and ResearchEnrolment. Despite the additional complexity of

this solution, it seemed, to the designer, to offer a more satisfactory and semantically

richer structure. Nevertheless, a number of the functional requirements would become

clumsier to accommodate. The requirement to identify the staff allocation could be

fulfilled but only by querying two relations as could the College Administrator's

requirement to know the name of the supervising staff member. Neither of these

problems was significant in themselves. However, the original design had provided for

all the information about which papers a student was enrolling in for a particular

programme, to be retrieved from one relation. The new solution would always require

both relations to be queried as there was now no way of knowing whether or not a

student was enrolled in all research papers, all non-research papers or a mixture of the

two. While again not an insurmountable problem as such, it contributed to a feeling of

unease with the proposed structures.

These three solutions were re-visited and the first and second were dismissed as creating

more problems than they solved. The third solution appeared to introduce complexity

into the structure for little gain and it seemed that the original structure should be

retained. However further thought prompted a much simpler alternative which appeared

to remove the objections to the original structure, support all the requirements (although

the staff allocation still required the querying of two relations) and could be achieved at

only a small cost.

177

enrols in Approved
Student Programme � Programme

pamcipates ID
contains

Offering has
Enrolment

(;
appear. as

runs-0+-
Staff

Paper

Figure 21 Final draft design model

This fourth solution entailed removing the relationship between Staff and Enrolment,

and returning the attribute Supervisor to the Enrolment relation. The implications of

this solution were that referential integrity was lost with the removal of the Staff_code

foreign key from Enrolment. On the other hand this also provided some flexibility in

allowing the recording of a supervisor from outside the department who would not

normally be recorded in the Staff relation. While this was considered unlikely, a

situation requiring precisely this flexibility occurred as the solution was being

developed. It was thus decided to adopt this solution and thus reverse one of the

untimely design decisions made earlier.

This completed the first major phase of the design activities and the model created at

this point was termed the final draft design model (Appendix 6.2) and a diagrammatic

representation is shown at Figure 2 1 .

2 . 4. Create and verify the final design model.

2.4.1 Syntactical check

The final draft model was now checked by the designer for syntactic and structural

errors. The first activity was to check that the primary key to foreign key relationship

links shown on th� diagram made sense in terms of the relation descriptions and

178

represented appropriate cardinality and optionality. A set of two-way sentences,

illustrated at Table 9 was created from the diagram to assist in this activity.

1 Each ApprovedProgramme must be enrolled in by only one Student
2 Each ApprovedProgramme must belong to only one Programme
3 Each ApprovedProgramme must contain one or more Enrolment(s)
4 Each Enrolment must belong to only one ApprovedProgramme
5 Each Enrolment must belong to only one Offering
6 Each Offering must have one or more Enrolment(s)
7 Each Offering must belong to only one Paper
8 Each Offering may be run by only one Staff
9 Each Paper may appear as one or more Offering(s)
1 0 Each Programme may participate in one or more ApprovedProgramme(s)
1 1 Each Staff may run one or more Offering(s)
1 2 Each Student must enrol in one or more ApprovedProgramme(s)

Table 9 Two-way sentences for the final draft design model

One error was corrected during the creation of the two-way sentences where the diagram

had shown a fully mandatory relationship between Offering and Enrolment. Clearly it

was possible for an offering to be available but for no enrolments to have been received.

The mandatory nature of the relationship between Student and ApprovedProgramme

was also questioned and it was decided that a student who was not enrolled in a

programme would not be entered on the system. The relationships had only been named

in one direction on the diagram. These names were used where possible but were

adapted or invented as necessary. There was no attempt to utilise the language of the

analysis documents.

No errors were detected in this phase and it was noted that with the exception of

Staff30de in the Offering relation all other foreign keys also participated in the primary

key of their host relation. A complete list of these l inks is shown at Table 10.

Relation 1 Primary Key Relation 2 Foreign Key
ApprovedProgramme StudenUd, Enrolment StudenUd,

Programme_code Programme_code
Offering Paper_code, Enrolment Paper3ode,

Semester, Semester,
Year Year

Paper Paper30de Offering Paper30de
Programme Programme30de ApprovedProgramme Programme3ode
Staff Staff_code Offering Staff30de
Student Student id ApprovedProgramme Student id

Table 10 Primary to foreign key links in final draft design model

179

2.4.2 Check Normalisation

A check was then made for nonnal fonn confonnity. It was decided to restrict this

check to Boyce Codd Nonnal Fonn. Scrutiny of the attributes detected three errors.

The Type attribute of the Offering table was not functionally dependent on the whole

key, as it did not require the semester and year. It was thus moved to the Paper entity. It

was also recognised that the Points_value attribute did not require the Semester attribute

to identify it. To confonn to 2NF it thus needed to be removed to a separate relation,

which should hold Paper_code and Year as the key with Points_value as the only

attribute, thus leaving the Offering relation as a (required) key-only relation. While

recognising the correctness of this approach it was considered trivial and a certain

candidate for denonnalisation in the physical design phase. It was thus left �nchanged.

The Points attribute in the Paper relation was also in error; it was recognised as being

the same attribute as Points_value and thus needed Year to identify it. It was removed

from the Paper relation.

This investigation of the points attribute also encompassed the Points_value of the

Programme relation. It was initially thought to be derivable, as the total number of

points undertaken by a student within a programme. However, further investigation,

again using the examples as a useful starting point, identified it as being the minimum

number of points required for a student to complete a program. It was therefore

renamed as Required_points. The relation Programme was also not in BCNF as the

attributes PG_admin_name and PG_admin_phone_no were functionally dependent on

College that was not a candidate key of the relation. A new relation, College, with

College_name as the primary key and these two attributes was created.

As a result of this investigation it was also realised that the Student relation contained an

attribute Enrolled3011ege. This attribute was considered redundant, as the infonnation

was derivable via the ApprovedProgramme relation. It was thus removed. It was noted

that the attributes, Previous_qualifications, Work_experience and Research_interest

were not likely to be logically atomic. However, following the previous discussion on

these issues, these attributes were left unchanged.

This completed the first round of verification and another version of the model, termed

the Pre-verification Design Model, was constructed and is included at Appendix 6.3.

ISO

The diagrammatic representation is also shown at Figure 22. This model was then used

as the basis of the semantic verification.

enrols in

Student I'pprovedProgramme p.-p . .
particIpate
in

contains

has
Offering Enrolment

(;
appear
as

-ot- Staff
runs

Paper

Figure 22 Pre-Verification Design Model

2.4.3 Initial Semantic Verification

2.4.3.1 Create NaLER Sentences

Programme

offer

College

In order to complete the semantic verification of the model a complete set of NaLER

sentences was now created according to the steps described in Chapter 10. The steps

were applied to the design model as follows.

a) Document the model conventions

The model conventions that had been used were documented as,

• entities were shown as rectangles enclosing their name,

• relationships were shown by connecting lines for the primary/foreign key links,

• cardinality of relationships was shown by a circle at the 'one' end and a double

headed arrow at the 'many' end,

• optionality was indicated by a clear circle or arrowhead,

• mandatory participation was shown by black circles or arrowheads,

• attributes participating in a primary key were designated by an asterisk,

• foreign key columns were italicised.

181

b) Check assumptions

All the assumptions were worked through, thus providing an additional syntactical

check. It was noted in line with Assumption 6 that both ApprovedProgramme and

Enrolment were entities that were resolving many to many relationships between 2

entities. Additionally it was noted that relationships had only been named in one

direction. However, the construction of the two-way sentences had created an ad hoc

complete set of such names which would be used initially but which would be adapted

when appropriate.

c). Simple entities

Construct primary key sentences

Each entity had a well-defined primary key and no difficulties were experienced in

constructing these sentences.

Construct attribute sentences

No problems were encountered in this phase.

Construct relationship sentences

No problems were encountered in this phase. A complete list of the sentences created in

these 3 stages is shown at Appendix 7. 1 .

Construct superlsubtype sentences

There were no superlsubtype constructs.

d) Complex entities

There were no problems with the complex entities.

e) Populate with examples.

In accordance with the NaLER guidelines examples were not constructed for the

primary key sentences and examples were taken primarily from the original analysis

documents. As it was necessary to work from these documents it was straightforward to

record the view or views and the number of the fact type sentences from which the

examples were being taken and note any differences. If an indirect translation was

required from the original fact this was recorded as 'related to' the fact and one apparent

conflict was also noted. This proved to be extremely useful in later stages. The full list

of the NaLER example sentences is included at Appendix 7.2.

182

f) Produce NaLER description.

The complete set of sentences and examples together make up the 'NaLER description'

and therefore, no further work was required.

2.4.4 Create Equivalence Table

The arguments for INTECoM had suggested that the NaLER sentences could be used

for verification by the users but had not described a method for doing so. It was decided

to draw up a table to correlate these sentences and the original fact types of the analysis

model. This activity was made significantly easier by the cross-referencing that had

already been done during the creation of the example sentences. In addition it provided

a useful opportunity for the developer to check that all the user requirements had been

considered. It was hoped that this should minimise any user dissatisfaction and ensured

that the developer would be familiar with any differences between the original user

views and their final relational form.

During the creation of this correlation table, various issues were noted as requiring

further investigation. One straightforward error of omission was discovered in the

model where the Endorsement attribute had been inadvertently lost from the

ApprovedProgramme relation. Additionally sentences had not been created for the

Required_points in the Programme relation and the Research_interest in the Staff

relation. These mistakes were rectified and the relevant example sentences created.

Three facts, all from the Head of Department's view did not appear to have been

supported in the final design and these were analysed more closely.

F14 StudentProgramme is for TimePeriod. Judging by the examples that had been

provided this fact appeared to be recording the time period in which a student was

expecting to complete a Programme. In theory, it would be derivable from the student

enrolments but only if the intended future enrolments were entered as well as the actual

current enrolments. The developer was aware that future intentions were sometimes

recorded but that many students did not have a specific plan for future years. Further

discussion with the user made it clear that on occasion, particularly when planning

programmes for international students, it was desirable to know when a student intended

to graduate. Consequently, the developer added the attribute Intended_finishJear, to

the ApprovedProgramme relation to satisfy this requirement.

183

F 16 StudentProgramme requires College_approval. The examples provided for this

fact to record a simple 'yes' or 'no' to show that final approval had been given to the

student's enrolment in the programme by the Graduate Studies Committee of the

relevant College. It was considered important to record this information although there

was some concern as to how accurately it could be collected. In addition, the recording

of the date on which College approval was granted was thought to be more useful and

less prone to error, than a simple 'Y' value. As a result the attribute

College_approval_date was added to the ApprovedProgramme relation. It was also

noted that this attribute would need to be optional as not all programmes received

explicit approval from the Colleges.

F17 StudentProgramme requires Departmencapproval. Although this attribute

appeared to hold a different set of values from the HoD3Pproval, which had come from

both the Student and the College Administrator' s view, it was clear that it was intended

to record similar information, namely that HoD approval had been granted. The primary

difference was seen as being one of scope in that within the proposed system there was

only an interest in recording whether the IS Head of Department had given approval to

the programme. There was no requirement for the system to establish whether students

from n�m-IS programmes who were enrolling in an IS postgraduate paper, had the

approval of their own Head of Department. It was therefore considered sufficient to

equate this fact with the existing sentence S9. However it was decided to be consistent

with the previous decision and record this information as the date on which approval

was granted. The attribute was thus renamed HoD_approval_date and recorded as

optional. A new sentence was then created to replace the original.

One final addition was made to the model. At the point at which the development had

begun, postgraduate papers in the IS department had only been offered to internal

students. However, during the course of the design phase the department made a

decision to offer some papers in 'block' mode for the following academic year. The

developer thus considered it might be prudent to record the mode in which a paper was

being offered and another new sentence was created to accommodate this.

2.5 User Semantic Verification

In order to facilitate the user verification of the design model, the NaLER sentences

were assembled into groups relevant to the original views. The correlation table was

184

used to facilitate the creation of the tables shown in Appendix 8. These 'equivalence'

tables, one for each view, hold the number of the original fact type, the number of the

corresponding NaLER sentence and the NaLER sentence itself. A set of verification

documentation was then assembled for each view. Each set consisted of the relevant

equivalence table, the original fact types and examples for the appropriate view and, the

list of all NaLER example sentences.

A representative of each user group, except the College Administrator was then

presented with this documentation. The purpose of the exercise, and of each of the

documents was also explained. Verification consisted of the developer talking though

each fact type and corresponding NaLER sentence. Where the connection was tenuous

or unclear, the various examples were used to provide confirmation that the need was

still being met. At no time were the users shown either the relational schema or the

ERJR diagrams, although all the users would have been capable of understanding them.

2.5 The Outputs

INTECoM envisages that the datalogical output of this phase, the design mod�l, consists

of a standard ERIR deliverable. Two of the three elements of this are included at

Appendix 9. A full data dictionary description was not maintained for this example but

much of the relevant information is to be found within the relational schema. The

infological model is regarded as being the set of NaLER example sentences derived

from the data structures. In addition, the NaLER sentences were used to create a new

ORM, which, in turn, required a new set of fact types, both of which are included at

Appendix 10. The fact types can be viewed as another aspect of the infological version

of the design model . To ensure their accuracy and as a final check for completeness, a

table was generated cross-referencing these final fact types to the NaLER sentences

(Appendix 1 1) . These fact types were also used to generate a new logical model and set

of related SQL statements from InfoModeler™ as a final check that the design model

was syntactically correct. The model generated by InfoModeler™ was identical to that

created by the design process.

3. Create the Physical Model

For the purposes of testing the process outlined in the INTECoM framework, the final

two steps of creating the physical model and the physical user views were not

185

considered relevant. Therefore no further discussion is included here. However, the

design model was fully implemented with only minor modifications necessitated by

physical considerations.

Observations

Following the working of this example, a number of observations can be made, some

related to the framework itself and others to issues that have already been raised in the

course of developing and justifying INTECoM.

The collection of examples. The opinion had been voiced in infonnal discussions with

colleagues that the collection of a complete set of examples would not be possible and

that this inability would reflect adversely on the outcome of the analysis. Indeed,

neither NIAM nor INTECoM can guarantee that a complete list of examples has been

gathered and this could impact on the specification of constraints and result in the non­

identification of roles. However, in practice this did not appear to be a significant

problem. In general, the request to provide examples resulted in a very full set and

initially did lead to the identification of new fact-types. The disciplined behaviour

required to collect and document a full set of examples may actually be seen as an

improvement on the more ad hoc methods used in the E-R tradition. No problems were

identified in the ISPG development that stemmed from an inability to collect sufficient

examples. While some fact types were added during the design phase they all resulted

from legitimate design activities and not from a deficiency in the analysis.

The use of examples. The possession of a detailed set of examples was extremely

useful in several situations. During the amalgamation of views, it became important to

identify synonyms and homonyms and reference to the values within the relevant

example sentences provided the developer with a sound basis for decision making in

these areas. For example, it required little effort to identify without doubt that

Paper _code and Paper _no were synonyms. While perhaps a trivial example, there is a

clear potential for identifying significantly less obvious connections. This technique

was also used in assisting in the identification of those relations that could be merged.

In addition, the existence of example sentences allowed the developer to ensure a

significant amount of semantic veracity as the development progressed. At both, the

end of the analysis phase, and particularly, at the point of creating the NaLER sentences,

186

the existence of the initial example sentences was invaluable. In the latter case it

provided the developer with an invaluable tool to identify whether all the analysis 'facts'

had been represented in an appropriate fonn. The users too, were enthusiastic in their

use of the examples. Although they were not asked to specifically comment on the

examples, observation during the user verification activities identified that on several

occasions users utilised the examples as an aid to understanding.

The use of analysis views. The original definition of INTECoM had suggested that the

amalgamation of the initial user views could either be undertaken as the analysis

progressed or as the first step in the design phase. The ISPG development clearly

demonstrated the benefits of preserving each unique user view throughout the analysis

phase. Firstly, as the eventual amalgamation activity showed, the process of

amalgamation requires decisions of a design nature to be made and that in areas of

conflict, some views should be afforded a higher priority than others. A major element

in the justification for the development of INTECoM rested on the principle that design

decisions should be avoided in the analysis stage wherever possible. In line with this

principle and these observations, INTECoM should be revised to recognise that the

amalgamation of the user views should occur as the first step in the design phase. In

addition to these observations, it was also noted that although completeness cannot be

guaranteed, nevertheless, retaining all aspects of all views throughout the analysis stage

minimises the loss of essential facts. In addition, it seem significantly safer to

consciously choose to omit a fact during the design phase than to decide, perhaps early

on in analysis, that a fact is either not important or can be accurately captured by an

alternative construct in a different user's view.

The amalgamation of user views. INTECoM does not provide any guidelines on how

this amalgamation could be achieved and it thus became necessary to develop a feasible

strategy while the development was underway. The steps within the amalgamation

phase can be summarised as follows

• Create an initial E-RJR model for each independent view.

• Create one combined list of all entities and their primary keys, from all the

views.

• Sort list on the names of the primary key attributes and identify those entities

with apparently identical primary keys.

187

• Use the examples to confmn which entities were essentially representing the

same object.

• Merge entities as appropriate.

• Create revised list of entities and critically examine to identify synonyms

among the entity names and primary key attributes and merge as appropriate.

In the example, this process alone reduced the number of entities from 26 to 14.

However, more complex decisions were required for the remaining stages of design. It

became clear that the merger process required skills, based on previous experience and

these could not be definitively prescribed but only generally described. This tended to

support the previous arguments that much of the work of the design stage would be

reliant on the experiential skills of the designer.

The need for auditability. The instantiation of the NaLER sentences, with examples

taken from the original analysis model, provided an obvious and natural opportunity to

identify which NaLER sentences corresponded to which analysis fact types. As the

examples were created, a close record was kept to document this correspondence and

this resulted in the 'equivalence' tables shown in Appendix 8. The construction of this

table produced significant benefits in the later, verification stages of the design phase as

it was used,

• to check that all fact types identified in the analysis has been appropriately

incorporated into the design model, and where this was not the case, allowing

remedial action to be taken before the presentation of the model to the users,

• to re-create the appropriate user views with the NaLER sentences, thus

eliminating the need for each user to comprehend the entire design model,

and

• to ensure that the developer could account for the all the 'facts' contained in

the design model, tracing their individual existence back to either a user

requirement, the recognition of a future or functional requirement or the

constraints of the database paradigm.

Recognition of the importance of these three functions led to the addition of

'auditability' as a quality goal and this is discussed together with other quality

considerations, in Chapter 1 2. It was also noted that the existence of this audit trail

188

provided an (unquantified) high level of confidence in both user and developer. The

developer had had to justify the connection between a certain analysis fact type and its

equivalent NaLER sentence and was very familiar with the situations where the

correspondence was not exact. The developer was thus able to predict likely questions

and prepare clear explanations. In addition, the users could quickly verify the 'facts'

that were clearly the same in both models and concentrate instead on those which

appeared to have changed. Both the developer and the users felt that this reduced the

time necessary for verification and increased their confidence that the verification was

accurate.

Summary

A database, which has been subsequently implemented and used, was successfully

designed using INTECoM. The framework was found to be useful, useable and

required little refinement. The exercise was not intended to be and cannot claim to be

an effective evaluation of the framework. The researcher, as developer, obviously had a

vested interest in the success of the exercise, the users were all experienced developers

themselves and the development itself was not large enough to generate the level of

complexity with which INTECoM is designed to assist. It was very difficult to extract

true 'user views' , as the users were too knowledgeable and adept at second guessing

what the developer needed to hear. Nonetheless, in all communication with users every

attempt was made to avoid reference to the final database and during the final

verification steps, none of the users asked to see the E-R diagram, seeming content to

accept the NaLER sentences as a true representation of the data structures. In addition,

the developer being an experienced 'traditional' data modeller had difficulty in avoiding

'relational thinking' during the analysis stage.

Nevertheless, the working of this example was a valuable means of providing an initial

test of the theory represented by the INTECoM framework. Apart from the additional

techniques that needed to be developed, there was no point at which the framework was

altered or not followed in the form in which it was originally described in Chapter 9.

The general principles behind the need to distinguish between the analysis and design

phases of a database design exercise and the benefits of matching appropriate tools to

appropriate activities were confirmed.

189

12 INTECoM: quality matters

"The proof of the pudding is in the eating " Proverb

Introduction

Although the literature examined in Chapter 8 did not provide a definitive set of quality

goals and measurements, it did highlight the importance of attempting to assess the

'quality' of the final product of a modelling exercise. However, none of the l iterature

considered assessing the quality of the modelling process itself nor measuring the

'fitness of purpose' of various modelling techniques to the activities that they were

being used to undertake. Likewise, the quality plan initially defined for the ISPG

INTECoM development focus sed exclusively on the quality of the final artefacts.

However, as the development proceeded, it became clear that this initial plan was not

adequate. Several aspects of the development would not be assessed and several

inherent strengths of INTECoM would not be fully realised. This chapter begins by

describing the initial quality plan and then discusses three significant issues that became

apparent as the plan was put into practice. As a result of these observations, the plan

was abandoned and a far more substantial quality framework, firmly rooted in both the

research literature and the theoretical considerations underpinning INTECoM, was

developed and used. This new quality framework and its instantiation are also detailed

in this chapter, as are a number of observations on the use of both INTECoM and the

quality framework. An interesting consequence of this focus on quality assessment was

the addition of certain refinements to IN1ECoM, which resulted in some minor

modifications to the inputs of the fIrst two stages. An amended diagram of INTECoM is

illustrated on page 206.

Initial Quality Plan

Based on the work of Krogstie et a/. (1995) and Moody and Shanks (1994), an initial set

of quality criteria was determined for assessing the final products of the INTECoM

development. An overview of these criteria, two for the infological analysis model and

three for the datalogical design model, is shown at Table 1 1 .

190

Model Quality Quality Goal Means

Analysis Perceived Semantic correctness Subjective ratings that all the statements made

Semantic a) perceived validity in the infological model are correct and
b) perceived completeness relevant, and that all such statements are

included.

Analysis Pragmatic Pragmatic correctness Subjective ratings that the infological model is
a) understandable understandable and has been understood.
b) understood

Design Syntactic Syntactic correctness Syntax. check of the datalogical design model.

Design Social Social agreement Subjective rating by the designer that any
apparent conflict between users of the model
are based in their individual perception of the
model rather than in its structure.

Design Structural a) Simple That the datalogical model contains the
minimum number of entities and attributes
necessary to represent the required statements.

b) Flexible That the datalogical model is at least in BCNF

Table 11 Initial quality criteria for INTECoM design model

These criteria combine four of the qualities described by Krogstie et al. (1995),

(perceived semantic, pragmatic, syntactic and social), with two goals identified by

Moody and Shanks (1994), (simplicity and flexibility). Krogstie et al. ' s 'qualities'

encompass all the identified requirements of an infological model and are represented b�

the first four quality criteria in Table 1 1 . The only aspect not included is the 'semantic

quality' , which, as Krogstie et al (1995) themselves observe, is an ideal, impossible to

establish or check directly. Instead the more relevant and accessible, 'perceived

semantic quality' is substituted.

A reconsideration of the other literature discussed in Chapter 8 suggests that a model

should also be assessed on its fitness for its intended purpose and clearly some of the

quality goals summarised in Table 5, relate to the structural aspects of the model itself.

The quality goals not covered by Krogstie et aI's (1995) framework include simplicity,

flexibility, integration, implementability, maintainability, suitability and performance.

Of these, the first two appear both relevant and measurable and were thus included. The

rest were discarded for the various reasons described below.

Moody and Shanks have defined integration as the measure of how well a model fits

with other organisational models. While this is recognised as an important quality in

some contexts, it was not relevant in the 'stand alone' environment that was intended for

the ISPG development, although it should be included for other developments where

191

appropriate. Implementability (Moody & Shanks, 1994) and maintainability and

performance (Kesh, 1995) are more closely related to the characteristics of the final

physical database schema than to either the infological or datalogical conceptual data

model and were therefore not included. Finally, suitability (Kesh� 1994), while clearly

intended to address the overall fitness of the data model for its purpose, relied only on

rather vague subjective ratings. No alternative means of measurement suitable for the

intended development could be found and therefore it too was discarded.

The infological version of the analysis model would provide the basis for judging two

components, semantic and pragmatic qUality. Semantic quality requires that all

statements contained in the model are correct and relevant and that all such statements

are included. It becomes a user responsibility to confirm that no statements (fact types)

are missing, that all the statements represent valid information and that the example

sentences for each fact type are correct. Pragmatic quality, i.e. that all the statements

are understandable and understood, is thus a necessary pre-requisite for this check and in

practice will need to be achieved before any semantic verification can begin.

The datalogical version of the design model would provide the basis for assessing the

remaining quality goals. Social quality requires the designer to confirm that the model

can support all the required user views and that any apparent conflicts in these views are

a result of differing interpretations of the model rather than any incompatibility inherent

in its actual structure. A subjective rating by the designer, and possibly from a peer

review would be used to measure this. As the datalogical design model for the ISPG

system was to be an ERIR hybrid, syntactic quality would require that the model be

relationally correct and this would be assessed by checking the model for relational

conformancel . Again, this would be the responsibility of the designer assisted by peer

review. Structural quality has two distinct goals, flexibility and simplicity. Unlike

Moody and Shanks (1 994), who measured flexibility subjectively by its perceived ability

to support changes in requirements, flexibility would be measured here by assessing the

level of normalisation of the model. This decision was made on the basis that

normalisation will generally provide a "good base for future growth" (Date, 1995,

1 This rather narrow definition proved constraining. The commonly used generalisation-specialisation
construct is not strictly correct from a relational viewpoint and is yet a common and useful approach in
modelling at this level.

192

p.335) and Boyce Codd Normal Form is taken as being the minimum level of acceptable

normalisation. Following Moody and Shanks (1994), the simplicity of the model would

be measured by calculating the number of entities and relationships in the model with

the aim of achieving the smallest number that would support all the required statements.

The Quality Plan in Practice

Thus, the ISPG development began with a set of quality criteria developed from the

relevant literature, which, in line with much professional practice, would be applied at

the end of the process. However as the development was under way a number of quality

related issues became apparent. Three of these issues were sufficiently significant to

require a substantial review of the quality plan and are discussed below.

1. Analysis or Design Model?

The quality criteria discussed in Chapter 8 are primarily concerned with evaluating the

final product of a conceptual modelling process but just as no clear differentiation is

made between analysis and design models, the criteria for evaluating them are similarly

indistinct. Indeed, the set of quality criteria that is selected often reflects the authors'

view of the nature of the conceptual data model more clearly than any specifIc

definition. Thus, syntactic correctness is almost universally included, while others such

as, conciseness or flexibility and maintainability are only likely to be regarded as

desirable qualities to those for whom the conceptual data model is clearly datalogical.

One of the major strengths of the INTECoM process is the clear delineation of the

analysis and design stages and models yet the quality plan, being based on work that had

not made this differentiation, did not reflect this. At the end of the analysis phase of the

ISPG development, it seemed natural to undertake a quality exercise. While there was

nothing to prevent this happening, the plan had not been designed to be used in this way.

Thus, for example, a syntactical check of the analysis model had not been envisioned. It

became clear that the goals of the two stages should be distinctly recognised, allowing

criteria and measurements appropriate to both stages to be determined. The different

characteristics and requirements of the analysis and design models had been clearly laid

down in the description of INTECoM and a rigorous quality evaluation needed to reflect

this.

193

2. Auditability

Previous discussion of the NIAM approach to modelling has suggested that the

technique can provide a clear audit trail from the initial identification of the fact types to

the eventual data structures. Through its incorporation of NIAM and the creation of a

set of natural language statements for the design model, INTECoM also has this

potential. However no use was being made of this powerful quality mechanism. The

ability to trace all constructs in the design model back to their origin would clearly

provide a means to identify how, why and when constructs appeared in the models . It

would also be possible to identify requirements that had gone 'missing' during the

modelling process or had been created without any fIrm basis in the domain. Such

knowledge would be very useful in improving the quality of the fInal product and

therefore a new quality goal, auditability, was recognised.

3. The quality of the process

The quality criteria, discussed in Chapter 8, were exclusively concerned with evaluating

the fInal product. Consequently, there were no criteria that addressed the process by

which the model was constructed. However, this process is highly l ikely to reflect on

the quality of the fInal product and to this end another quality goal, procedural

correctness, was also identifIed.

Reflection on these issues necessitated a re-appraisal of the quality environment in

which the INTECoM development was taking place. Practical experience with the plan

suggested two new quality goals and the clear need to formally distinguish the quality

measures appropriate to the two models. The straightforward inclusion of the new goals

into the existing plan was a possibility but did little to address the remaining issue.

Instead, a critical comparison was made between the original quality plan, the inputs

defIned for the first two stages of INTECoM and the quality framework constructed by

Krogstie et al (1995). The result of this comparison was the defInition of a complete

quality framework, illustrated at Figure 23, based on extensions to the Krogstie et al.

(1 995) model. The justification for, and the instantiation of, this framework are

discussed in the following section. In addition, several refinements based on quality

considerations were also made to the INTECoM framework itself and these are also

discussed below.

194

The INTECoM Quality Framework

As Krogstie et aI' s framework suggests, a model is a representation of statements taken

from a domain and expressed using some form of formal grammar or language.

However, their framework only illustrates a static position and does not recognise the

dynamics of model construction. Thus a new concept of process is added. This reflects

that not only are the constructs of a language used to represent the information within a

domain but that some form of process (or method) is also required to build any

particular model . Lindland et at (1994) define the links of semantics, relating the

model to the domain, and syntax, relating the model to the modelling language.

Likewise the link of procedure relates the model to the process by which it is

constructed and gives rise to the procedural quality shown on the new diagram. The·

goal of procedural quality is that the process by which model construction had occurred

is explicit and has been followed appropriately. It is clearly relevant to both phases of

model building.
r---�

perceived
semantic

quality

Figure 23 INTECoM - Quality Framework

social
quality

Kesh (1995), Moody and Shanks (1994, 1 998), and Shanks and Darke (1996) identify

that the overall quality of a model also requires some desirable structural qualities of the

195

model itself. This consideration lead to the identification of a new quality dimension,

that of structural quality. The goal of structural quality brings together a number of

elements that relate to the inherent soundness of the model and its 'fitness for purpose' .

These characteristics are a reflection of a 'good' design and in the context of the

INTECoM framework are seen as relevant only to the datalogical design model.

With this new quality framework in place, the first two steps of INTECoM were

appraised to identify whether quality goals, compatible with the framework, could be

identified. A set of quality goals, focussed on the purpose and inputs of each step, was

determined. These are discussed below

Step 1

Purpose and Inputs

The purpose of Step 1 is to explicitly record the relevant information requirements of

the problem domain. Seven inputs to the process are identified: enterprise knowledge,

system expectation, analysis procedure, analysis language, syntactic verification,

information requirements and semantic verification. Both the analyst and the users are

expected to contribute enterprise knowledge to the INTECoM process and this, together

with the users' information requirements, suggests that the original quality goals of

perceived semantic completeness and perceived semantic correctness are appropriate.

The analyst' s contribution of analysis procedure and language suggested the goals of

syntactic and procedural correctness. The combined input of users' and analyst's

system expectations suggested a further quality goal of fulfilled expectations. The

remaining two inputs of semantic verification and syntactic verification did not require

quality goals of their own.

Qualities

An initial comparison of these five goals against the qualities identified in the quality

framework identified four of the qualities that were not matched: semantic, structural,

social and pragmatic. The non-consideration of semantic quality has already been

discussed and was not seen as problematic. Structural quality had already been

identified as relevant only to the design model and was therefore not a requirement of

this step. Social quality was originally considered as pertinent to both steps of the

INTECoM method, in which case a goal needed to be identified. However, the decision

196

to retain discrete individual users' views until the beginning of the design step removed

the need to reach a position of agreement between the user views in the analysis stage.

Therefore, the lack of this quality in the analysis model was considered acceptable.

Pragmatic quality had not been specifically targeted by the inputs of Step 1 possibly

because it is such a fundamental part of the whole step. The choice of NIAM-CSDP for

this step necessarily involved the basic principle that all communication with the user

was conducted in the users own language, which would thereby be both understandable

and understood by them. The decision not to amalgamate the different views also

strengthened this aspect by removing from each user the need to understand any view

but their own. As such, the need for pragmatic quality was inherent in the entire step,

for without it the development could not proceed. However, it is recognised that there

could well be advantages in requiring the analyst to specifically determine that the

model was both understandable and understood and so these quality goals were added to

the set but no additional input was identified.

Quality Quality 20al Means Who?
A1 Perceived Semantic completeness Subjective. User confirmation that their U ser

Semantic view is complete

A2 Perceived Semantic correctness Each fact type has a complete set of correct User
Semantic and relevant examples

A3 Pragmatic Pragmatic correctness Subjective. Confirmation that infological Both
a) understandable model is understandable & understood
b) understood

A4 Procedural Procedural correctness Task checklist in place Analyst
Task checklist complete

AS Syntactic Syntactic correctness Fact types are well formed and example set Analyst
is complete. All objects are defined.
All constraints are recorded.

AS Fulfilled expectations Subjective. Cross check between context Both
diagram and identified fact types.
Cross check between identified fact types
and initial problem definition.

Table 12 Quality evaluation of analysis model

One quality objective, fulfilled expectation, had been identified, however, that did not

appear to relate comfortably to any of the qualities of the framework. The initial

reaction was to remove this quality goal, as the input seemed to be rather vague and ill

defined which would lead to problems in measuring or checking the goal. Nevertheless,

removing the input appeared to leave an important gap and it was clear that at least

some checking could be undertaken. It was therefore decided to leave the goal in place.

197

Six quality goals had thus been identified; five of which were closely matched to the

quality framework. These goals and their associated qualities are summarised in Table

1 2 together with the means of checking that a goal had been reached and the agent

responsible for this checking. The goals are numbered A l - A6 for later convenience.

Assessment

The means by which these quality goals could be assessed also required definition. The

measures for perceived semantic completeness and perceived correctness were

essentially unchanged from the initial criteria. Users would confirm that their view was

complete and that each fact type within their view had a full set of correct and relevant

examples. A similar position concerned pragmatic correctness, which would also

require user confirmation.

No Task Quality goal
1 Record system expectation A6
1 . 1 Context Diagram

1 .2 Problem Definition

1 .3 User Requests
1 .4 Other

2 Identify appropriate users
3 Initial requirement collection
3 . 1 Interview
3.2 Documents
3.3 Other

3.4 Initial sentences confirmed A1, A2
4 Construction of qualified fact types
5 Confirmation of qualified fact types A1, A2
6 Collection of examples
7 Confirmation of example sentences A1, A2
8 Syntactic verification AS
9 Expectation matching A6
10 Confirmation that sentences are Aa

understandable and understood
11 Task checklist complete A4

Table 13 Analysis Task Checklist

Procedural correctness requires that the process by which the model is constructed is

explicitly laid down and that the relevant activities have been completed satisfactorily.

Therefore the analyst would be required to draw up a task checklist summarising the

essential activities of the step and this together with the completion of the checklist

would be taken as the determinant of procedural correctness. The task checklist, with its

associated quality goals, developed for the ISPG system is illustrated at Table 1 3.

198

One of the tasks placed on the checklist was expectation matching which was defined as

a cross check between the infological model and the original high level system

requirements as recorded in the system context diagram, problem definition and user

requests. Although it is recognised that this only encompasses some of the elements of

the system expectation input, it was decided that completion of this task would be taken

as fulfilling expectations.

All the quality goals derived from the inputs identified by the INlECoM framework and

those identified by the development of the quality framework were thus instantiated.

The INlECoM framework was, in turn, refined by the addition of two further inputs to

Step 1 , procedural verification and expectation verification. The amended INlECoM

diagram is illustrated at Figure 25 on page 206. Finally, it was noted that all quality

evaluation in the analysis step was based on the infological model alone.

Step 2

Purpose and Inputs

The purpose of Step 2 is to take the users' information requirements, together with any

known future requirements and transform them into a potentially implementable data

structure. Eight inputs, other than the analysis model itself, had been identified; design

procedure and language, enterprise knowledge, previous experience, future

requirements, paradigm knowledge, syntactic, structural and semantic verification and

these inputs were also considered in relation to the qualities of the framework.

As before, enterprise knowledge, this time with the addition of future requirements,

suggested perceived semantic correctness and perceived completeness, while design

procedure, design language and paradigm knowledge again suggested syntactic and

procedural correctness. Paradigm knowledge also suggested that the model should

conform to 'good practice ' , which, in the instance of a relational model, could be

interpreted as an appropriate level of normalisation and conformance to various

relational design guidelines such as the removal of redundant relationships and non­

required relations, and minimal primary keys. These were thus equated with the

previously identified goals of the structural quality, simplicity and flexibility.

Of all the specified inputs, previous experience was the only one that did not appear to

be directly related to a specific quality criterion. Although the amount and quality of the

199

previous experience may well reflect on the overall quality of the designer's solutions, it

was considered impractical to attempt to measure this. However, it seemed detrimental

to remove the input itself from the INTECoM framework. Nevertheless, it was not

included within the quality evaluation. The remaining specified inputs of structural,

semantic and syntactic verification had been originally designed to assess some of the

identified criteria and, as before, did not require specific quality goals.

Qualities

All these quality goals can be associated with qualities described in the framework;

however, three qualities are not represented, semantic, pragmatic and social. Semantic

quality was again ignored in favour of perceived semantic quality but the remaining two

needed more careful consideration.

The goal of the pragmatic quality is clearly more relevant in this stage where the model

not only represents an amalgamation of the user views but also their conversion into

relational structures. It had been the intention that the construction of the infological

design model through the use of NaLER sentences would provide users with access to

the data structures that had been designed. It was clearly important that this was done

and that the pragmatic goals of comprehension and comprehensibility were explicitly

measured. They are therefore included in the set of quality goals.

The social quality of feasible agreement is also very important in this stage. The

designer would have consolidated all the user views into the one global design,

incorporated future requirements and restructured some elements in line with relational

theory. However, it was not necessary for each user to agree to the complete model. If
the designer was able, for each user, to extract NaLER sentences from the design model

which corresponded to the original fact types, and if they could be instantiated with the

appropriate examples then clearly any apparent conflict between the views was one of

perception only. Nevertheless, user confirmation that their view was still supported was

essential. Social agreement was thus added to the set of quality goals.

Ten quality goals had thus been identified; all of which were closely matched to the

quality framework. These goals and their associated qualities are summarised in Table

14, together with the means of checking that a goal has been reached and the agent

responsible for this checking. The goals are numbered 0 1 - 010 for later convenience.

200

Quality Quality goal Metrics Who?
01 Perceived Semantic Subjective. User confirmation that their Each user

Semantic completeness view. as shown by NaLER sentences is
complete. Designer
Confirmation of future requirements

02 Perceived Semantic Each NaLER sentence has a complete set of Each user
Semantic correctness correct and relevant examples.

Each 'new' NaLER sentence has a complete Designer
set of correct and relevant examples.

03 Pragmatic Understandability Complete set of instantiated NaLER Designer
sentences

04 Pragmatic Understood Efficient and effective verification Designer
User confirmation Each user

05 Procedural Procedural Task checklist in place and complete Designer
correctness

06 Procedural Auditability All NaLER sentences can be traced to their Designer
originating requirement. Each user

07 Social Social agreement Full view integration Designer
Complete set of instantiated NaLER Each user
sentences

08 Structural Aexibility Datalogical model is in BCNF Designer
09 Structural Simplicity No redundant relationships. primary keys are Designer

minimal. all relations are required.
010 Syntactic Syntactic The datalogical model is relationally correct. Designer

correctness

Table 14 Quality evaluation of design model

Assessment

The means by which these quality goals could be assessed again needed to be developed

or confmned. The measure of perceived semantic correctness requires user

confirmation. In this stage, however, the designer is required to extract the relevant

NaLER sentences from the model, instantiate them with examples taken from the

analysis model and present the appropriate set to each user. Each user then needs to

confirm that the set of sentences and examples is both complete and correct. Once

again, pragmatic correctness is a required pre-requisite for this activity but can be

measured here in slightly more concrete form. A measure of understandability can be

assessed by the designer' s ability to construct the full set of instantiated NaLER

sentences and not only can the user confirm that the sentences have been understood but

the designer can also evaluate how efficiently user verification had been obtained.

Procedural correctness again required the creation and completion of a task checklist,

which is shown at Table 1 5 . An additional measure of procedural correctness was also

identified in auditability, which requires the designer to trace the origin of each

statement in the model by tracking each NaLER sentence to its source. One additional

activity was added to this task checklist. In recognition of 'best practice', peer review at

201

various stages of the evolving design, was considered an essential element of the design

process. A formal peer review activity was therefore added to the checklist and

incorporated into the activity of Step 2. Social agreement would be determined by the

designer's ability to extract the NaLER sentences for each user view and from the users'

confirmation that the NaLER sentences and examples represented their original view.

No Task _ Quali� Goal
1 Prepare first draft desb�n model
1 . 1 Transfonn analysis models to

relational representations
1 .2 Amalgamate logical views
1.2. 1 List all entities and P Ks
1.2.2 Merxe entities with same PK
1.2.3 Checkfor synonyms
1.2.4 Checkfor similar PKs
2 Generate/evaluate alternatives
3 Incorporate future requirements
4 Create final draft design
5 Verify final design
5.1 Syntax Check 01 0
5. 1. 1 Create 2-way sentences
5. 1.2 Check parlicipation constraints
5. 1.3 Check PK-FK links
5. 1.4 Check normalisation 08
5.2 Simplicity check 09
5.2. 1 Checkfor minimal primary keys
5.2.2 Checkfor redundant relationships
5.2.3 Check for trivial relations
5.2.4 Check all relations are required
5.3 Semantic check 02, 03 07
5.3.1 Create NaLER sentences
5.3.2 Populate NaLER with examples taken

from analysis model
5.3.3 Create cross reference table -

analysis facts to NaLER sentences
5.3.4 Check for completeness
5.3.5 CheckJ2r consistency
6 Audit 06
6. 1 Check source of all NaLER sentences
7 Peer Review
8. User Verification 01 04
7 . 1 Create NaLER user views
7.2 Correlate NaLER and analysis views
7 .3 Gain user verification
9 Task Checklist complete 05

Table 15 Design Task Checklist

Whereas the previous goals were based on the infological design model, the remainder

was targeted on the (relational) datalogical design. The structural objectives of the

model, simplicity and flexibility would be assessed as originally envisioned. Aexibility

202

would be judged by the level of normalisation, and syntactic correctness would require

that the model conformed to relational rules.

perceived
semantic

quality

A1 A2
01 02

A3
03 04

Figure 24 INTECoM - Instantiated Quality Framework

social
quality

07

All the quality goals derived from the inputs identified by the INTECoM framework for

Step 2 and those identified by the quality framework were thus instantiated. Figure 24

illustrates the quality framework instantiated with the various quality goals identified by

their codes.

Quality in Practice - Observations

A number of the issues pertaining to quality, which arose during the ISPG development,

have been addressed in the previous section. In particular, those relating to the differing

quality goals of analysis and design models and to the need to focus on the quality of the

process and not just the output were seen as important. Addressing these two issues

resulted in a fundamental reappraisal of the initial quality criteria and produced a

significantly more rigorous approach to quality. However, three additional observations

were also made.

203

1. Self-verification

The first observation was that one of INTECoM's strengths lay in the fact that the

process, which it employed, had a high degree of self-verification. By the end of the

analysis phase the users' requirements had been developed systematically from the

expression of the high-level information needs and their decomposition into the initial

sentences. Everything that appeared in the analysis model had not only been verified by

the users but also, to a large extent, explicitly provided by them. Additionally it had not

been necessary for the users to have any training in the analysis 'language' as this was

exclusively their own natural language, including their own preferred nomenclature.

Both the semantic and the articulatory distances, as identified by Hutchins et aI. , (1985),

between the users and the representation of their requirements, was thus considerably

reduced.

During the design phase, the creation of the N aLER sentences and examples ensured

that both a completeness and a correctness check was undertaken by the developer

before the design model was presented to users. Not only did this ensure that a high

quality model was presented to users for verification but also ensured that the model

was quickly viewed with a high level of credibility. The syntactic check resulting from

the input of the NaLER sentences and examples to InfoModeler™ and the subsequent

creation of an optimal normal form relational schema, which matched the design model,

also provided an additional quality check. Finally, the user verification at the end of the

design phase was also conducted in the users' own language, via the NaLER sentences.

Thus, once again, there was no necessity for the users to learn the design language. At

no time, were users shown the model in any form other than in natural language

sentences. Despite some initial scepticism from two of the users, who were very

familiar with E-R/R models, none of the users asked to see the datalogical versions of

the models and yet had no hesitation in enthusiastically confirming that their views were

understandable, understood, complete and correct.

2. Introduced errors

The second observation was that there were a number of areas in which errors could be

introduced into the models. This was not seen as a problem specific to INTECoM but

was a characteristie shared with other database design methods. Further, it was

identified that the kinds of errors that could occur were of specific types, e.g. of

204

omission. No taxonomy of errors had been discovered in the literature and yet this

would seem to be an area in which productive work might be undertaken. It was

considered possible that if the nature of these errors were better understood and

described specific processes or behaviours could be defined that would assist in

minimising them2. No such taxonomy was attempted but the possibility was noted for

future investigation.

3. Quality integration

Finally it was noted that many aspects of the quality evaluation were part of an on-going

process. Quality checks were not generally additional tasks to be undertaken if time and

motivation allowed but were integral to the activities within the INTECoM framework

itself. Indeed, many of the prescribed activities could not proceed unless previous

quality goals had already been satisfied. In other cases, for example the creation of the

equivalence tables, a quality check was inherent in the activity being undertaken.

Summary

Undoubtedly, in any information system development, quality matters but as Chapter 8

has indicated no definitive set of quality criteria has been determined for data modelling.

Although the construction of the INTECoM framework was not primarily focussed on

explicit quality issues, nevertheless it had been largely driven by a desire to identify a

quality process for conceptual data modelling, i.e. the intention had been to seek

techniques that were 'fit for the purpose' of the activities to which they were applied. In

so doing, INTECoM succeeded in incorporating a number of important quality checks

into the process that it delineated. Procedural correctness was recognised as an

important quality goal and the full potential of NaLER sentences was utilised. Not only

was it possible to construct an effective and useable quality framework but also, through

such refinements as the task checklists, INTECoM itself was improved.

2 For example the correlation of the NaLER sentences with the analysis 'facts' identified a straightforward
error of omission that had occurred in the transfonnation of the analysis to the design model.

13 INTECoM: an instantiation

"In spite of our best efforts, any formalism we adopt as the basis of the conceptual model,
will still be an artificial structure. The concepts will not be perfectly intuitive to anyone; the
rules, limitations, and idiosyncrasies will have to be learned. There will be a formal
language to be learned, as well as operating procedures. " (Kent, 1978 p.94)

Introduction

20S

A theoretical framework for database development, concentrating specifically on the

construction of the conceptual models of analysis and design was detailed in Chapter 9.

The process of developing a small database, and determining appropriate quality

measures, described in Chapters 1 1 and 12, resulted in various modifications to the

original framework. In particular, various strategies, which had not been considered in

the initial description, were developed. Although the overall structure of INTECoM has

not altered, this chapter consolidates the previous work by delineating the final version

of INTECoM, instantiated with elements of the NIAM-CSDP method in the analysis

stage and E-R/R and NaLER techniques in design.

The diagram shown at Figure 25 is based on the original diagram on page 1 33 and

incorporates all the modifications. There are three additional inputs in Step 1 ,

procedural verification from the Data Analyst and expectation verification from both the

Data Analyst and the Users. Step 2 has an additional input, procedural verification,

from the Data Designer while design procedure and language have been amalgamated to

maintain the clarity of the diagram. The input of the analysis model to the design

process has also changed slightly. On the original diagram it flows from the datalogical

view, here it is shown as emanating from the supers et. This is to reflect that either or

both views may be used and the decision should be at the discretion of the Data Analyst.

All other aspects of the diagram are unchapged both in form and content from that

shown at Figure 14. Consequently, the detail of many of these elements is not repeated

in this description

206

Step 1

DATA enterprise knowledge enterprise knowledge

ANALYST system expectations L USERS J
I

procedural verification
_��

I
svstem exoectations

analysis procedure V creat;"'l\ jnformation requirement
analvsis lanauaae analysis \+-----'--------'

syntactic verification
\. model /. semantic verification

expectation verification expectation verification

(.... -.-.-.---�����.;.� ��·�;-�··-··-·-···-········i
I r dataloglcal llntologlcalj :
i l view view !

Analyse requirements \ _ _--_ _ --..... -..... � -.....)

Step 2

DATA nrAviolJ!:
DESIGNER I----PI!. . BlliaI.IS...m'PI:u:ieD . iClL-, I TlnlJre r"",,;,...monTe l��� �

I I paradigm knowledge ... Vcreate
design procedure and languaqly design "'1 ... semantic verification

orocedural verification model 1--------1---'
. ..nd et" ,,,t,,,,,1 . . .,

r--���-�'I

Create logical model
(conceptual schema)

! l dataloglcal }- [lntolo9IcaIJ !
i view view i
\ .. _. ._ ..

. ... i

DATABASE I--D�m��·oLU.lS...mS ���
DESIGNER future �.';rom -, I_.""l �

, desion method ... �c@eate
DBMS knowledoe 7 physical

system knowledoe . � model
syntactic and structural verification �

I!

;

.

'

r ""::SlCAL [0':: .. "" Jl
Step 3 l view l view !
Create intemal schema " '_' _. _________ ... _._._ _ ___1

S1ep 4
Create external schema

system knowledge "�
... user , ______ 01

views ,.---_. __ ._. __ .. ---------_
i 1 i USER VIEWS i i. __________ .. _ ____ • __ • ___ ...)

Figure 2S INTECoM Framework - Final Version

207

An instantiation of INTECoM

Step 1. Analyse requirements

• Agents. There are two identified roles in this step, Data Analyst and User. There

may be more than one individual playing each role and, conversely, one individual

may play more than one role. While the identification of suitable individuals for the

first role is likely to have been completed prior to the start of development, the

identification of appropriate users is seen as a responsibility of the Data Analyst and,

thus, appears as a task within the analysis process. It is necessary for the Data

Analyst to be familiar with the language and procedure of the chosen analysis

technique and it is desirable, but not essential for the Data Analyst to be familiar

with the problem domain. However, it is not necessary for the Data Analyst to be

experienced in database implementation techniques. Likewise, it is not necessary

for the User to have any specific technical training or understanding. In this chapter,

a capitalised rendition of the agent names is used to signify that it is the role that is

being referred to rather than any specific individual .

• Inputs. There are twelve identified inputs to the analysis process. Five are

concerned with verification, of the procedure, syntax, semantics and expectations.

Four relate to pre-existing knowledge that the agents bring to the development

activity, i.e. enterprise knowledge and the skills required by the Data Analyst. Two

are concerned solely with the expectations that both the Data Analyst and User role

bring to the development. The final input, information requirements, contains the

domain knowledge that the Data Analyst needs to elicit from the User. This is the

most significant input into the following process.

• Process: Create Analysis Model. This process is based on the steps of the NIAM­

CSDP, summarised on page 73. However, the steps have been adapted to make the

most productive use of the InfoModeler™ CASE tool. While the following process

is described in a linear fashion, it is recognised that many of the tasks and activities

may be performed iteratively and/or concurrently, at the discretion of the Data

Analyst. The activities required by this process are summarised in Figure 26.

208

1 . Construct task checklist

2. Record expectations

3. Identify appropriate users

4. Collect initial information requirements

5. Construct qualified fact types

6. Collect example sentences

7. Verify syntax

8. Confirm fact types are understandable and understood

9. Confirm fact types are correct and complete

10. Confirm expectations are being met

1 1 . Confirm task checklist is complete

Figure 26 Create Analysis Model - Activities

1. Construct task checklist. The Data Analyst will create a task checklist, which

defines the procedure to be followed in this process. The detail of the list will

depend on the analysis technique and CASE tool to be used. It may well remain

the same from one development to another. The tasks described here are based

on the checklist developed for the ISPG development detailed in Chapter 1 1 .

2. Record expectations. The recording of expectations can take a number of

forms and many will come from other areas of the system's development. These

may include a set of user requests, a feasibility stUdy, a context diagram, and

problem definition statements. Although there is nothing to preclude it, there is

no requirement for the Data Analyst to create these documents directly, merely

to collect together the information that they contain. This record forms the basis

for checking that expectations have been fulfilled (quality goal A6).

3. Identify appropriate users. The Data Analyst is responsible for identifying a

set of appropriate users. There should be at least one user from each user

community with an interest in the final system. It should generally be sufficient

to document a single view for each user community rather than for each

individual. However, there is no reason, apart perhaps from duplication of

effort, why individual views cannot be constructed. Indeed, this may be

desirable where it proves difficult to capture a consensus view from one

community. The decision on the number of views that are required is the

responsibility of the Data Analyst.

4. Collect initial information requirements. This is likely to include a number of

different activities chosen from the usual range of requirement elicitation

techniques which may include, interviews with users, and a study of input and

output documents. For each user view that is to be constructed, a set of initial

sentences is collected, preferably with the assistance of the user representatives.

5. Construct qualified fact types. This activity transforms the initial sentences

into qualified fact types suitable for input to the CASE tool, following the

guidelines of NIAM-CSDP.

6. Collect example sentences for each qualified fact type. This activity provides

a full set of examples for each of the fact types identified in the step above. It is

probable that activities 4, 5 and 6 will occur concurrently. As an initial sentence

is formulated, a qualified fact type can often be postulated and confirmed by the

creation of examples. A CASE tool such as InfoModeler™ encourages the Data

Analyst to input the fact types and examples together.

7. Verify Syntax. The Data Analyst is required to confirm the soundness of the

fact types and to reflect on alternatives. Once, the Data Analyst believes that a

complete set of fact types and examples has been collected for a particular user,

the model for that user should be checked for correct syntax. This will be

repeated for each user view. This can usually be achieved automatically if a

CASE tool is being used (quality goal A5).

8. Confirm that sentences are understandable and understood. Each user

needs to confirm that the sentences from their view are understandable and

understood. Some sentences may need explanation but generally the discussion

of examples is sufficient to clarify understanding. It is essential that the Data

Analyst ensures that this understanding had been achieved, for without it the

confirmation required by activity 9 is not valid (quality goal A3).

210

9. Confirm qualified fact types and examples. The Data Analyst, from the

syntactically checked model should compile a complete set of fact types,

instantiated with examples. Again, the use of a CASE tool such as

InfoModeler™ significantly simplifies this process. This list of natural language

sentences, possibly with additional information on the composition and

description of each object, is then provided to the user whose view it represents.

The user is asked to confirm that the sentences are correct, complete and that the

examples are representative and valid (quality goals, Al and A2).

10 Confirm expectations are met. This activity falls into two parts, one

undertaken by the Data Analyst and one by the Data Analyst and User together.

Initially, it is the responsibility of the Data Analyst to compare each user view to

the initial requirement documents and check that the two are compatible. Any

single view will not necessarily support all the requirements identified for the

system but all requirements should be accounted for by inclusion in at least one

view. Any omissions should be included, if necessary by the development of an

additional view, that of the Data Analyst. This may well be necessary where the

system incorporates a number of new or changing, requirements that are not

readily identified by the User. It may also be useful to identify any fact types

that have been included in a user view but do not appear to have been required.

The User, in conjunction with the Data Analyst, also needs to confirm that the

original requirements, as laid out in the original documentation are being met

(quality goal A6).

11. Confirm task checklist is complete. The [mal activity in Step I is for the Data

Analyst to verify that the task checklist is complete and that the process has been

followed as originally planned. Any modifications made to the plan should be

noted and justified (quality goal A4).

The analysis process is then complete and the following outputs have been created.

• Infological Analysis Model. This model is the superset of the formal, natural

language deliverables created for the user views. For each view, it will consist

211

of the complete set of syntactical correct fact types, example sentences, object

descriptions and constraint descriptions.

• Datalogical Analysis Model. This is the superset of annotated ORM diagrams.

When InfoModeler™ is used, these diagrams, one for each user view, are created

automatically as the natural language information is being input. However, there

are some constraints that can only be entered by annotating the diagram. In the

worked example described in Chapter 1 1 , the datalogical analysis model was not

used except to enter such constraints.

Step 2 Design the logical model (conceptual schema)

• Agents. There are two roles identified for this step Data Designer and User.

However, it is expected that there would be considerable liaison between the Data

Analyst and Data Designer and that the individuals acting in the user role in the

previous step, would continue to do so. The Data Designer will require a good

understanding of the database paradigm, e.g. relational theory, and expertise in the

design language and procedures. However, as in the previous step, there is no

requirement for the User to have any specific technical knowledge.

• Inputs. There are nine inputs identified for this step, all but two of them coming

from the Data Designer. Three inputs relate specifically to quality checking, i.e.

semantic, syntactic and procedural verification. One input, future requirements,

relates to the information requirement and can extend the scope of the development.

Four inputs relate to the specific skills of the Data Designer, paradigm knowledge,

design procedure and language skills, and previous experience. It is the application

of these latter inputs to the final one, the analysis model itself, that comprises most

of the activity of the following process.

• Process: Create Design Model. The process described here is based on various

aspects of traditional E-R modelling together with the NaLER technique. However

the primary entities and relationships are directly identified from the analysis model

rather than from any independent analysis activities. While the following process is

described in a linear fashion, it is recognised that many of the tasks and activities

212

may be performed iteratively and/or concurrently at the discretion of the Data

Designer. The activities required in this step are summarised in Figure 27.

1 2. Construct task checklist

1 3. Prepare first draft design model

a) transform each user analysis view to relational representation

b) amalgamate individual relational representations

c) construct first draft

14. Generate and evaluate alternatives

1 5 . Incorporate future information requirements

1 6. Create final draft design model

1 7. Verify final draft design model

a) syntax

b) simplicity

c) semantic content

1 8. Create audit document

19. Conduct peer review

20. Prepare User documentation

2 1 . Gain User verification

22. Confirm task checklist is complete

Figure 27 Construct Design Model - Activities

1. Construct task checklist. The Data Designer will need to create a task

checklist, which defines the procedure that will be followed in this process. The

list will be dependant on the design technique that will be used and the

preferences of the Data Designer but may well remain the same from one

development to another. Again the tasks described here are based on the

development undertaken as part of this research.

2. Prepare first draft design model. This activity comprises two major stages.

Either, or both, the infological or datalogical view of the analysis model may be

used as the starting point at the discretion of the Data Designer and may well

depend on the technical support that is provided by the analysis CASE tool.

213

a) Transform each analysis view to a relational representation. Where the

analysis model had been recorded in a CASE tool this transformation can be

effected quickly and automatically by the tool i tself. If a suitable tool is not

available, the appropriate transformation algorithm is detailed in Halpin

(1995) and can be applied manually. Either of these methods will result in

optimal normal form relations. The transformation is effected independently

for each user view.

b) Amalgamate user views. The relational representations are used as the

basis for this amalgamation. It is important that all views are considered and

all aspects included initially. The following strategy proved effective in the

worked example.

i) Create a table, in a word processing document, which for all views lists

all the entities, their primary keys and the source view.

ii) Sort this table on the basis of the primary keys.

iii) Identify and merge entities with identical primary keys. The order of

the primary key columns is not be significant.

iv) Identify synonyms and homonyms and merge entities, if appropriate.

The example sentences can be used to identify merger candidates.

v) Identify and merge, if appropriate, entities with similar primary keys.

These are the most difficult merger candidates to identify. If there is

any doubt, and the examples are unclear, it may well be prudent to

retain their individual identity until later in the design process.

c) Construct first draft design model diagram. Apart from the initial

relational diagrams, all the work above will probably have been undertaken

without the use of diagrams. The construction of a graphical representation

at this point, while not essential, can be of assistance in visualising the

overall shape of the emerging data structure.

This completes the preparation of the first draft design model.

3. Generate and evaluate alternatives. This is the most creative aspect of the process

and not an activity that can easily be prescribed. The Data Designer will evaluate

214

the first draft design model and seek to make 'improvements ' based on previous

experience, paradigm knowledge and an understanding of the development context.

Any number of alternatives may be generated for all or part of the model and peer

review is likely to be one useful means of arriving at satisfactory decisions. Merger

candidates identified, but not resolved, in the earlier stage can be usefully revisited

here.

4. Incorporate future requirements. The incorporation of known future

requirements may already have been addressed in the previous activity. If it has not,

then the preferred model derived in that activity will be need to be checked and

adapted, if necessary, to accommodate all such requirements. Even where no future

requirements are known, the Data Designer has a responsibility to ensure that the

design retains reasonable flexibility. This is not an aspect of a model that can easily

be measured, except perhaps with hindsight, nor is it an activity that can be

prescribed. The Data Designer' s experience and skill will play a significant part in

determining the level of flexibility that can be achieved.

5. Create final draft design model. The work to date now needs to be formally

consolidated into the final draft design model . This should comprise the usual E-R

deliverables of a diagram and a full supporting data dictionary. It will provide the

basis for the final verification tasks.

This completes the preparation of the datalogical view of the final draft design model.

6. Verify final draft design model. This comprises three major activities, each of

which consists of a number of tasks.

a) Check model's syntax. A systematic and formal check on the syntax of the

final draft model ensures that no syntactic errors or anomalies are present when

the model i s finally submitted for user verification (quality goal D l O). This

check confirms that the data structure is being constructed 'correctly' . There are

three tasks required by this activity.

i) Check the model for conformance to normalisation rules. The level of

normalisation is at the discretion of the Data Designer but a minimum of

Boyce Codd Normal Form is recommended (quality goal DS).

215

ii) Check that the primary to foreign key links are correct, appropriate and

represented accurately on the diagram. The normalisation check should

identify any such problems but a final check is recommended.

iii) Check participation constraints. The construction of 2 way sentences may

assist in this process. However, the construction of NaLER sentences and

their instantiation with examples will also help to confirm that optionality

has been correctly established.

b) Check model for simplicity. This is designed to ensure that the model

conforms to 'best' practice. It is recognised that the final decision regarding

checks ii) to iv) will be made by the Database Designer in Step 3 . Some

apparently redundant or trivial elements may, therefore, remain in the model

until that time (quality goal D9). There are four tasks required by this activity.

i) Check for minimal primary keys. In conformance with relational theory,

each primary key should contain the minimum number of attributes to ensure

unique identification of each tuple.

ii) Check for redundant relationships. It may be correct to carry more than one

relationship between two relations, although such instances should always be

checked. There may also be derivable or spurious relationships that can be

eliminated.

iii) Check for trivial relations. Some 'key only' or minor 'look-up' relations

may be considered trivial and removed from the model. However, this is

generally a decision best left to the Database Designer in Step 3.

iv) Check all relations are required. Again, the Database Designer may be in a

better position to make such decisions. However, any relations that are clearly

redundant could be removed at this point.

c) Check model for accurate semantics. This activity requires the Data Designer

to check that the semantics represented in the model are correct and complete in

terms of the initial statements of information requirements. The creation of the

NaLER sentences and their cross-reference to the facts of the analysis model is a

powerful tool for the Data Designer to confirm that the 'right' database is being

216

constructed (quality goals D2, D3, and D7). There are four tasks required in this

activity.

i) Create a full set of NaLER sentences. Each element on the model, apart

from the relations, will have an equivalent NaLER sentence.

ii) Populate NaLER with examples. Every NaLER sentence will have a set of

example sentences constructed, as far as possible, from the examples

provided during analysis. Where no examples exist, the Data Designer will

need to construct suitable examples, perhaps from existing documents or

from additional User input. Wherever possible, new examples should be

confirmed as valid by a member of the user community.

iii) Create cross-referencing 'equivalence' tables one for each original user

view. These tables show how each analysis fact type is represented by one

or more NaLER sentence. For those sentences which cannot be matched to

one or more analysis facts, the source of the sentence should be recorded,

e.g. as a result of normalisation, determined by a future information need

etc. An important principle underlying this task is that all NaLER sentences

can be traced to their point of origin and that all analysis facts are

represented, in some form, in the design model.

iv) Check for completeness and consistency. Construction of the equivalence

tables should identify all missing or misrepresented facts. However, a final

formal check is recommended.

7. Create audit document. The previous verification tasks will have created the audit

trail required in this activity. The source of all NaLER sentences will have been

noted. No element will thus be present in the design model that cannot be traced to

its source (quality goal D6). If the previous tasks have been fully completed, this

activity only requires that an audit document be compiled from the information

available.

8. Conduct peer review. A number of peer reviews may already have taken place.

However, a formal peer review of the complete model, undertaken prior to user

verification, is recommended. Ideally, this review should consider the infological

view and the audit trail as well as the data structures.

217

9. Create User documentation. While a full set of sentences and examples will have

been created in previous activities, it is useful to create a subset for each user view.

This ensures that each user is only required to verify their own equivalent set. Each

set of user documentation should include:

• the original set of analysis fact types and examples for that user's view,

• a cross-reference table of equivalencies, showing the mapping between each

fact type and its NaLER equivalent,

• a set of NaLER sentences and examples for that user's view, and

• a full set of all NaLER sentences for reference.

One copy of this documentation should be given to the User and another retained

for use by the Database Designer as a basis for the creation of physical User

views in Step 4.

10. Gain User confirmation. This activity requires each user, for whom an analysis

view was constructed, to verify that the NaLER sentences correctly represent their

view (quality goals D 1 D4). This can be assisted by encouraging the user to

compare the initial analysis sentences to the NaLER sentences. Many will be a

straightforward match and can be confirmed easily. For the remainder, the cross­

referencing equivalence table and the use of examples can help clarify how an initial

information need is being represented in the design model .

1 1 Confirm task checklist is complete. The final activity in Step 2 is for the Data

Designer to verify that the task checklist is complete and that the process has been

followed as originally planned. Any modifications made to the plan should be noted

and justified (quality goal 05).

The design process is now complete and the following outputs have been created.

• Infological Design Model. This model is the superset of the natural language

statements and associated deliverables created for the user views. For each

view, it will consist of the relevant set of NaLER sentences, example sentences

and equivalence tables.

• Datalogical Design Model. This model consists of a standard E-RJR

deliverable, i.e. a labelled diagram and full supporting data dictionary, together

218

with associated deliverables. These may include a record of design decisions

taken and estimates of entity volumes. The number and extent of these

deliverables will be at the discretion of the Data Designer in consultation with

the Database Designer.

Steps 3 and 4

Consideration of these steps is beyond the scope of this study and, therefore, further

discussion is not appropriate here.

Summary

This chapter has provided an example of an instantiation of the revised INTECoM

framework. However, it is important to note that the framework is not designed to

function only around these two techniques. Indeed, it should be possible to slot other

modelling facilities into the appropriate steps. Clearly, some of the processes, strategies

and quality measures would need to be adapted to accommodate alternative methods.

Nevertheless, the fundamental framework and quality goals should remain intact.

Whatever techniques or methods are used to instantiate INTECoM, there are three

principles, on which the framework is founded, which should not be abandoned. Firstly,

there is the axiom, taken from NIAM, that all communication with the User should be in

that user's own language, i .e. in some form of natural language. The use of NIAM­

CSDP and N aLER, demonstrated in this example, ensures that this is the case.

Secondly, the clear distinctions between the analysis and design stages, and between the

infological and datalogical views of the models, should be preserved. In the fIrst

instance, it is important, regardless of the names of the stages, that the differing

behaviours of analysts and designers should be recognised and encouraged at

appropriates points in the development cycle. In the second instance, the particular

purposes of the different views should be acknowledged and met separately. It should

also be ensured that the two views are tightly coupled and are effective representations

of the same underlying model. The third principle is that of aUditability. It should be a

common expectation that any constructs in a design model can be tracked to their source

and that a designer is accountable for ensuring the semantic integrity of a model.

219

This chapter, and the practical work on which it is based, has shown that with the

introduction of NaLER, it is possible to adhere to these principles using current

techniques. Other techniques, perhaps better suited to INTECoM, may exist, and the

further testing of the framework remains a challenge for the future. Therefore, the

outline provided here should be taken as one successful instantiation of the INTECoM

framework rather than a definitive description of a conceptual data modelling method.

220

14 Implications

"If words were nuts and bolts, people could make any bolt fit into any nut: they 'd just
squish the one into the other, as in some surrealistic painting where everything goes soft.
Language, in human hands, becomes almost like a fluid, despite the coarse grain of its
components. " (HoJstadter, 1979)

Introduction

221

INTECoM is a comprehensive framework, in that it covers all recognised stages of the

database design activity. However, the focus in this study has been on the conceptual

modelling activities of the first two stages, i.e. the analysis of the user requirements and

the logical design of a suitable data structure to support them. While this is, arguably, a

rather wide definition of 'conceptual data modelling', it is not inconsistent with the

broad range of definitions used by both researchers and practitioners in the area. It also

corresponds to the 'conceptual' and 'paradigm' models of the meta-data architecture

discussed on page 35. Although there may be superficial similarities between

INTECoM and other database design methodologies, there are a number of significant

implications, for both practitioners and educators, inherent in its adoption.

Implications for Practice

In practice, perhaps the most significant effects of the use of INTECoM would result

from the clear demarcation between the stages of analysis and design. It is generally

accepted in other areas of information systems development that the different stages will

require different activities and techniques (A vison & Fitzgerald, 1 995). However, this

differentiation is not apparent within data modelling where the distinction is seen largely

in the degree of detail, rather than as an inherent difference. The tacit acceptance of a

situation that provides a single technique to fulfil the functions of both stages is both

widespread and potentially dangerous.

222

Analysis and Design Demarcation

INTECoM recognises the differences in analysis and design activities and seeks to

match those activities with appropriate techniques. In so doing, it also seeks to

minimise the amount of design decisions made early in the process by utilising a

technique which defers such decisions until the end of the analysis stage. As has been

argued previously, the use of E-R Modelling for recording the results of analysis

requires some fundamental design decisions to be made at the outset: decisions that may

never be revisited. During the analysis stage of INTECoM the focus is very clearly on

understanding and recording the data requirements of each user, in a form that i s

accessible to those users without the need for specific IS skills. As a result, the

behaviour of the data analysts, and the background and skills that they require, are

clearly differentiated from those of the data designers.

Clarification of the Analyst Role

Data analysts using the INTECoM framework could be expected to interact with

appropriate users or user representatives, on an individual basis, and be specifically

interested in uncovering and recording a complete and accurate view of the users'

perceived needs. Using the NIAM-CSDP as an analysis tool, there is no requirement to

reconcile those views, as they are collected, but only to record each one accurately. The

analyst needs to be skilful in assisting the user to identify relevant needs and to provide

appropriate examples. Interpersonal skills are likely to be highly valued and a good

understanding of the organisation' s business is likely to be more useful than a detailed

understanding of database theory.

Analysis Consistency

As the NIAM-CSDP provides a significantly more prescriptive approach to analysis

than E-R Modelling it should be possible to ensure fairly consistent results from

different analysts. This is an important consideration in co-operative situations,

reducing the amount of re-work required in integrating a number of individual models in

large applications and reducing the amount of inappropriate creativity which may be

introduced by individual categorisation at too early a stage. It would, therefore, be
.

reasonable for the analysis to be conducted by a number of different people, even in

geographically remote locations, as the resulting fact types, which need to be well

supported by appropriate examples, will be consolidated and integrated at a later stage.

Clarification of the Designer Role

On the other hand, the second stage of INTECoM would begin with a set of clearly

documented, individual user requirements. Although additional requirements may need

to be addressed by the designer, in most situations, a large part of the analysis work will

have been completed. The designer is thus able to focus on creating appropriate data

structures to support specific requirements. As has already been suggested, the skills

required by a data designer include a thorough understanding of the database paradigm

for which they are designing, together with a flair for innovative problem solving. The

primary focus of the designer is thus not on interacting with the users but on

transforming their documented requirements into appropriate database structures. While

designers undoubtedly have a responsibility to the users, it is primarily to their technical

colleagues that they should be required to justify their designs and decisions.

User Accessibility

Another benefit, implicit in the adoption of INTECoM is an increase in user

accessibility, both to the process and to the models themselves. Simsion and Shanks

(1 993) observe that the more experienced modellers in their study were far more likely

to use constructs, and names for those constructs, which appeared to have little

grounding in the scenario description they had been given. It was clear that such

modellers were using past experience and re-using previous patterns to a considerable

extent, rather than focussing on the specific information requirements of the users. This

situation, with its inherent dangers (Yunker, 1 993), would seem to be characteristic of

expert designer behaviour but runs the risk of only capturing the modeller's view of the

requirements. The designers' brief, after all, is to create an optimum solution.

However, this behaviour requires a considerable degree of faith on the part of the users,

to whom it may not be clear whether or not the unfamiliar names and constructs will

support their information needs.

The use of the infological models in both stages of the INTECoM framework is

intended to alleviate this alienation and increase the users' level of confidence in the

personnel, the process, and the models themselves. Anecdotal evidence suggests that it

224

is possible "when analysts explain a graphical model to users" for everyone to "agree

that an incorrect model is correct" (Sharp, 1 994 p.D3). This may arise, as Marche

(1 993) suggests, because "people are so effective at intuitively" accommodating

ambiguity or confusion in a model by "projecting meaning onto the data structures

rather than abstracting meaning out of them" (p.45). The use of a formalised subset of

natural language, as, from the users' perspective, the language of analysis and design,

improves the chances of accurate validation and releases users from the need to

understand technical jargon and techniques. It thus increases the potential for positive

user involvement. The conceptual models created during the analysis and design stages

provide one of the most important foundations for the development of an information

system; errors in them may not be uncovered until much further through the

development life-cycle and may be costly to correct. For this reason, if no other, it is

essential that user access to them should be as straightforward as possible.

Even without the full adoption of the INTECoM framework, the use of a technique such

as NaLER, designed to provide a full, natural language interpretation of a design model,

can be of considerable benefit. NaLER, after all, is primarily a more structured way of

recording the informal explanations that frequently take place between designers and

users. The ability to compare design statements with the original sentences, and

particularly to see them instantiated with the same examples, adds considerable value to

the activity. However, even just the provision of an intelligible, complete and accurate

interpretation of a design model is likely to be welcomed by non-technical users.

Flexibility

The existence of a distinct analysis stage also provides a much greater degree of

flexibility than a process that views analysis and design as a hybrid activity. The

INTECoM infological analysis model should be much less implementation-oriented

than the more traditional analysis data model. If there were to be a significant paradigm

shift in database technology, equivalent to the advent of the Relational Model in the late

70' s, many currently constructed conceptual data models would become obsolete. By

avoiding the use of quasi-relational constructs such as entities, the infological model

contains far less implementation bias than its E-RJR counterpart. Such a model would

22S

thus be better positioned to become the basis for non-relational database designs and to

take advantage of the meta-model independence described in Chapter 3.

There are other reasons too, for moving away from the relational dependence exhibited

in many conceptual data models. As Kent (1978) suggested it might, a significant

investment has been made in educating users to think of their data in relational terms

and in persuading them to believe that that is how their data needs to be structured. A

change in paradigm would result in a lot of confused, if not disaffected, users.

Additionally, by excluding relational bias, it becomes easier to design mixed paradigm

databases from the same conceptual model.

Fast Track Development

On the other hand, there are situations where a straightforward relational

implementation is all that is required. The use of an analysis technique appropriate to

the first step of INTECoM, such as the NIAM-CSDP, could be beneficial where there

are uncontentious database applications awaiting development that would benefit from

rigorous but essentially mundane analysis but which require little, if any, innovative

design. In these situations a relatively inexperienced modeller, with the assistance of a

CASE tool such as InfoModeler™ may well be able to produce a competent database

solution. The expensive, creative and innovative problem solving of the design stage

may not always be appropriate or necessary.

Quality Control

The use of the INTECoM framework also provides a practical opportunity for quality

control, not only of the models themselves but also of the process whereby they are

constructed. Amer (1993) observes that conceptual modelling errors can signify errors

in database processing. This is particularly likely to occur if the modellers are unable to

account for the use of constructs in their model. The 'way of controlling' , as Bronts et

al. (1 995) describe it, has not been a central focus of this study, however, it has been

suggested that INTECoM provides more in-built checks than the traditional database

design process. The existence of individual user requirements, clearly documented in

accessible language, together with the expectation that the designer will provide an

infological view of the design, combine to offer opportunities to track the means by

which specific requirements are being met or conflicts resolved. When INTECoM is

226

operated as suggested, a two-way audit trail is constructed for every statement of user

requirement and every element of the final design, providing a means of accountability

that is not possible using traditional methods. As the worked example illustrated, a

rigorous quality framework can be constructed and operated for an INTECoM

development with very few tasks that are additional to normal 'best practice' . Quality

checking, rather than imposing an overhead on the activity, becomes an integral part of

it.

Increased Timescale

A potential criticism of INTECoM could be that the division of the conceptual

modelling activity into two discrete stages would increase the overall time required by

the database design activity. However, the use of a prescriptive technique during the

analysis stage may well make it easier to provide a realistic time estimate, as well as

shortening the overall time by allowing a number of analysts to work simultaneously. A

significant time can be spent, in a traditional analysis phase, in attempting to resolve

'stakeholder' conflicts and in building the definitive model of user requirements. The

strategy, of recording only individual requirements and not integrating them until

design, could well reduce the overall time requirements of the analysis phase.

Clearly, some of the time saved will be required to integrate the views in design but the

provisional datalogical design model which is produced early in the stage will be

soundly based, thus facilitating other aspects of information systems development.

While it is possible that some activities required by the use of INTECoM may take

longer, it is envisaged that others, particularly those that relate to user verification, could

take considerably less. It is also likely that rework, necessitated by inaccurate

specification, or misunderstanding of user requirements, will be minimised.

CASE tool support

Another criticism could be that there is no holistic CASE tool support for this

instantiation of INTECoM, and it is accepted that elements of the NIAM-CSDP, such as

the transformation algorithm, can be difficult and tedious to undertake without

automated assistance. While it is possible to overcome these issues by using two CASE

tools in combination, as Grimes (1998) suggests, this interrupts the smooth transition

from analysis to design and introduces unnecessary duplication and complexity. The

227

provision of a single integrated CASE tool would greatly increase the attractiveness of

the framework.

'Expert' Resistance

Experienced data modellers who have developed a number of strategies for successfully

completing complex and wide-ranging hybrid activities may not welcome the division

of roles and responsibilities that are implicit in the INTECoM approach. Experienced

modellers' skills have been developed in response to the need to resolve many of the

conflicting issues discussed in this study, and will have been learnt experientially over a

number of years. 'Experts' have no reason to embrace a simplification of the process

that they have made their own. Indeed, they are likely to have a vested interest in not

doing so ! However, the adoption of INTECoM is not primarily targeted at those

individuals or organisations that are confident in their ability to successfully capture and

structure their data requirements. INTECoM is intended to provide a simpler, but

effective, process for those who currently do not have this capability.

Implications for Education

The adoption of INTECoM would also have implications for educators, both of students

and professionals. Hitchman (1 995 p.3 1) refers to "unsupported assertions that

educators find the entity-relationship approach difficult to teach", while PI etch (1 989)

observed that "students generally find it difficult to manage the complexity surrounding

the conceptual model, its development and usage" (p.74). With the INTECoM

approach, the aim, initially, w\,uld be to provide students with the ability to complete

the tasks of the analysis stage and the creation of the first draft datalogical design model.

Prescriptive Method of Analysis

A prescriptive approach should be easier both to learn and to teach than a descriptive

one, particularly if it is supported by an appropriate CASE tool 1 . An holistic

understanding of the entire process is not required before progress can be made,

although clearly the more complete the understanding the more easily and intelligently

I Everest (1994) consid�rs that the availability of InfoModeler is an important consideration in the ability
to teach NIAM-CSDP successfully.

228

the process can be followed. The users of such an approach can begin to follow certain

steps with minimal instruction. They can also be taught to identify mistakes in

executing the steps, even before they are able to grasp the full implications of those

errors, thereby satisfying Eden's (1 996) criterion that "novices need a well defined

process with validity tests at each stage" (p.42). The ability to transform the results of

analysis into an implementable solution also provides timely feedback and an

opportunity to study the effect of 'design' on such results. Consequently, novices have

much less need for trial and error. Instead, particularly where the VoD is not overly

complex, novices can be expected to create reasonably accurate solutions fairly quickly:

an important consideration in helping to build their self-confidence.

In contrast, the current teaching of modelling skills is often a process of providing

examples of input and output and then encouraging students to induce their own rules

for constructing a conceptual model. Given the difficulty of recognising the 'best'

solution for anything other than trivial examples, together with the obvious problem of

determining what criteria a student has used for classification and consequently how a

student has arrived at a solution, it is difficult for an educator to provide any fonn of

objective assessment or feedback. In addition, students are required to take a holistic

view from the outset, learning to identify potential relations during their analysis and to

represent the users' view in the relational paradigm, while they are still coming to tenns

with the paradigm themselves. As Sharp (1 994), comments the students are "learning

how to create graphical models that are targeted at being understandable by other

analysts and potentially not understandable by users" (p.D3) and, it could be added, not

always by the students themselves.

Sharp (1 994) reporting on personal experiences of teaching NIAM to practitioners,

comments that, before such instruction, "staff with modelling skills are not confident of

those skills" and reports that if such students are asked to create a model of a relatively

simple problem using their preferred method, only " . . . one fourth or less have a credible

start of a model after 20 minutes" (p.D3). Pletch (1989) also observes that modelling

students often display the same characteristics of high school math students who "sit

and look at the words in the text for some time waiting for the required equation to be

miraculously revealed to them" (p.74). After instruction in NIAM-CSDP, Sharp (1994)

observed an increase in confidence among students and suggested it came from now

having a "specified approach for attacking each problem" and noticed that "the mental

activity that [had previously J delayed a solution to the problem could usually be

overcome" (p.D1 1) .

Providing a prescriptive approach to the initial stage of conceptual data modelling may

well lead to a decline in the creativity of the process but in common with most crafts,

expertise comes with prescriptive experience. Most, if not all, creative professions

require novices to spend a considerable amount of time learning, prescriptively, the

fundamentals of their chosen discipline. As an appreciation begins to develop, of the

subtle interplay between process, content, environment and result, a craft apprentice

may begin to experiment with alternatives, moving towards creativity, innovation and

originality from a solid foundation. Using INTECoM, a similar development is

available for novice modellers. When learning any new technique, the need for

creativity and the provision of a multitude of possibilities, can be confusing and counter­

productive, both hindering the learning process and lengthening the learning curve.

Initial experience with a prescriptive approach can increase self-confidence, create an

appreciation of the processes involved, improve productivity and allow for gradual and

subtle shifts towards creativity in the final product in a way that does not compromise its

fundamental soundness.

Reduced Emphasis on Teaching Design

With the instantiation of INTECoM described in this study, novices would be expected

to learn the basics of the E-RJR approach for use in the design stage. However the

expectation would be that the refinement of those skills would come through

experience, exposure to a range of real situations and preferably the opportunity to work

alongside more experienced designers. In addition, many of those who never made the

transition to 'expert', would, nevertheless, still have the skills to build an accurate,

complete, auditable, if unimaginative, conceptual schema.

Self-appraisal

Even when the full INTECoM framework is not taught, the use of the NaLER technique

alone could provide a useful adjunct to the traditional techniques. NaLER allows

student modellers to appraise their own work more critically, and thus begins to address

the problem of 'outcome irrelevant learning' noted by Batra and Antony (1 994). Use of

230

this technique should improve the students' ability to focus on what is actually recorded

in an E-R/R model, in terms of information content, which would in turn improve their

understanding of certain syntactical conventions of E-R/R modelling. The need to

investigate the semantics of the model in detail, particularly the construction of

examples, also encourages them to identify problems relating to inappropriate

normalisation levels and incorrect designation of primary key attributes.

Initial experience with teaching NaLER has suggested to the researcher that students

find little difficulty in learning or using the technique. Indeed, some remarked that it

provided a structure for which they had intuitively recognised a need (Atkins & Patrick,

1 998). Perhaps the most encouraging observation was that like any useful tool, it began

to be used as a method of choice for solving problems other than that for which it was

designed. For example, given the problem of deciding which of two models better

represented a scenario description, some students developed a NaLER description for

both models and compared them directly via these descriptions. A few students

unknowingly followed the first step of the NIAM-CSDP, by creating a set of elementary

fact sentences from the scenario description itself and which they then used as a

benchmark against which to compare the descriptions derived from the models. They

thus innovatively found a way to compare each NaLER description to a formal

expression of the required semantics of the UoD which made it fairly straightforward to

determine which 'facts ' were usefully represented, which were missing or unclear, and

which had been introduced by the modeller. This use of this technique has subsequently

proved useful to the researcher in assessing data models constructed for assignments.

The use of NaLER encouraged students to assess the validity of the information that

they were creating in their model and to be more precise in their use and interpretation

of syntax. It has thus gone some way in encouraging the students to abstract meaning

from the models rather than projecting meaning on to them. It also encouraged healthy

questioning among students, for example, querying why a particular element had been

designated as an entity rather than an attribute, or what was the basis on which

categorisation had been decided.

231

Summary

The adoption of the INTECoM approach to database development would necessitate a

reappraisal of the skills that are required at different stages of the conceptual modelling

process. In practice, this could result in an increase in the number of professionals able

to successfully undertake data analysis and it is conceivable that data analysts could be

recruited from the user base rather than from IS personnel. Data design would continue

to be a highly skilled, technically oriented problem-solving activity in which experience

and past achievement were essential ingredients. The emphasis of the training given to

IS data developers would move away from attempting to teach a descriptive design

technique and concentrate instead on providing them with a solid introduction to data

analysis thereby laying a useful foundation from which to build in their professional

careers.

232

15 Conclusion

"True analysis always begins with the unknown . . . It is the job of the analyst to research the
facts, exercise critical judgement and impose order and structure where none
existed . . . (but} . . . there is no way to completely eliminate uncertainty from the analytical
process " (Flavin, 1981 p. lO).

233

This study has investigated a number of issues within the area of conceptual data

modelling and highlighted some of the confusion and contradictions that currently exist.

Over the last twenty years, other researchers have undertaken similar exercises but many

of the problems associated with these issues persist. In particular, academic wisdom

and practitioner behaviour seem to have developed along very different lines and

although there would appear to be a consensus on the importance of conceptual data

modelling within IS development, recent studies have suggested that a large majority of

organisations do not undertake it.

Even the very concept of a 'conceptual data model' is contentious. There are numerous

definitions and although the differences between them may sometimes appear subtle, it

is clear that there is no consensus on either the purpose, or the format of such a model.

It does seem that, while lip service is paid to its use as a tool of communication, a

conceptual data model is almost always constructed with the eventual database

implementation very firmly in mind. As this implementation is, almost exclusively,

relational there is a strong tendency to construct conceptual models which are heavily

biased towards relational constructs. The greatest danger in this, aside from the loss of

meta-data independence, arises from its unrecognised nature.

Based on a variety of evidence, the existence of a largely unacknowledged E-RJR hybrid

model has been purported in this study. It has been suggested that, although a number

of academic researchers continue to claim that Chen's (1976) E-R Model is very widely

used in practice, it is in fact the Relational Model, diagrammatically represented with E-

234

R notation, that is, in fact, the most ubiquitous. As this hybrid has become increasingly

used for data model representations, at all three stages of the database design process,

i .e. conceptual, logical and physical, it has exercised a significant effect on, among other

things, the processes involved in constructing these models.

This study has brought together a number of criticisms that have been made of the E-R

method; criticisms, which it has suggested, should be, more appropriately, directed at

the E-RIR hybrid. Thes� }�_lude claims tha� E_-
_
R

_
M
_

o
_
de

_
l
_
s �?�_at,=--:u=n::d=e:::rs::tan==d=a=b::;le::...o.:::r�_

intuitive for non-specialists, not that well understood by practitioners, difficult to teach
-- -------- �� -

and difficult to evaluate for qualit . Nevertheless, the E-RIR approach offers a powerful

design technique, when used by skilled practitioners, and the hybrid Model provides a

very suitable datalogical representation for relational data structures.

NIAM-CSDP, an alternative, less-widely used, conceptual modelling method has ,also

been investigated. This study proposes that certain elements of this approach,

particularly the provision of a prescriptive technique for establishing the data content of

a UoD and the use of examples to verify the validity of the fact types, will facilitate

novice learning and improve the analytical base from which data structures can be

designed. In addition the use of natural language throughout the modelling process

would make it more accessible to users. It has been observed that the NIAM-CSDP has

not been shown to be any easier to use than its rival, and the results achieved by novices

have not been proven to be any better. It has also been recognised that the prescriptive

nature of the NIAM-CSDP, while a strength in some ways, could act as a constraint on

the creativity required to find, apt and ingenious, solutions to difficult problems.

The major impact of the E-RlRelational hybrid on the data modelling process has been

to increase the fuzziness of the boundary between data analysis and data design. The

utilisation of the hybrid as the only tool for both stages has not only brought into

question the effectiveness of the technique itself, but also served to conceal the essential

differences between the two activities. i Consequently, this study also considered the

characteristics of the two stages and suggested that it would be more productive to see

1 However. in some methodologies. the phase of requirements elicitation becomes the first analysis phase
and all conceptual modelling is seen as part of the design stage (e.g. Ram. 1995).

23S

the E-RJR approach and the NIAM-CSDP as complementary rather than competitive.

There seems good reason to suppose that a method, such as NIAM-CSDP, which

employs a wide use of natural language would be useful in several infological ways but

that there were other, datalogical, needs which were better met by elements of the

existing E-RJR approach.

A tension certainly exists between the prescriptive and descriptive approach to

conceptual data modelling as well as between the infological and datalogical roles such

models are intended to play. This study has demonstrated that while there is a clear

need for tools that assist both the analysis and the design stages, it is probably

unreasonable to expect one tool to do both effectively. The question of how users, or

modellers, think of the data, e.g. as objects, entities or something quite different (Weber,

1 996), is perhaps less important than the fact that they generally communicate about

them in natural language. Therefore, it seems reasonable to suggest that a framework,

which provides for an analysis tool, that utilises natural language, to be integrated with a

design tool, which both facilitates creative thought and can easily represent

implementable data structures, will be both useful and powerful .

INTECoM is such a framework. By combining the prescriptive, analytical approach of

the NIAM-CSDP with the essentially creative elements of E-R/R modelling, it utilises the

strengths of both approaches while compensating for some of their weaknesses. Its own

strength lies, partly in the fact that it does not require the introduction of a large number of

new skills, methods or techniques and partly that it encompasses an already recognised

framework for database development. While the use of INTECoM may necessitate a new

attitude to the two techniques and how they fit into the overall development cycle, with

the exception of NaLER, the techniques themselves are extensively documented and have

been widely trialled. Although, experienced practitioners may find the framework overly

constraining, the adoption of INTECoM could have a number of beneficial implications

for the less experienced modellers, educators and those organisations that do not currently

make sophisticated, if any, use of conceptual data modelling. In addition, the NaLER

technique, even on its own, offers a pragmatic and easily leamed method of 'reading' a

model for those who have no requirement or interest in learning to construct one.

236

This study has brought together academic research, practitioner behaviour and

educational experience from which to infer a theoretical framework. While all the

major elements of the framework have been tested empirically or by prolonged use,

INTECoM, itself, and its perceived benefits are still largely hypothetical . It has not been

rigorously tested nor has it been taught as a formal method. The NaLER technique has

been taught to two groups of final year undergraduate Information Systems students, but

the evidence of its success is restricted to a small number of people and is anecdotal .

However, there has been considerable interest from the educators with whom it has so

far been discussed. The lack of an integrated CASE tool to support the INTECoM

framework is a significant obstacle to its adoption by the wider commercial IS industry.

Future Work

There are a number of fruitful areas of research that could be developed from this study_

There is a paucity of research focussed on the area of data modelling practice

(Srinivasan and Te'eni, 1 995). A more detailed investigation into organisations'

expectations of conceptual data modelling would provide a clearer foundation of the

practical requirements of the activity, as would information on the behaviour of expert

modellers in the areas of data analysis and data design. A more thorough study of the

characteristics of these two stages of database development would assist in deciding

whether the strengths of the E-RJR and NIAM-CSDP approaches would fit together, as

usefully as this study has hypothesised and the worked example suggested. Further

study is required into the ways in which graphical representations are perceived both by

users and modellers and whether a natural language interpretation is the most useful

form of interface that can be provided for non-technical users.

It would also be very useful to have a better understanding of the processes whereby

novice modellers learn the skills of data analysis and data design. This would help in

evaluating whether the use of a prescriptive method would reduce the learning curve and

increase both their self-confidence and their effectiveness. There needs to be further

discussion on the desirability, or not, of a prescriptive method for conceptual modelling

and investigation of the contention that any modelling facility which uses the

entity/attribute constructs is, by its very nature, precluded from developing a prescriptive

approach. This study has suggested that the NIAM-CSDP could be useable as an

237

analysis technique by those with no specific IS skills and this contention also needs to

be investigated more fully.

INTECoM as a framework needs to be the subject of a comprehensive study preferably

undertaken on a suitably sized project within an organisation that does not currently use

a sophisticated database development process. There does not appear to be any research

comparing the ease of learning or the quality of models, produced by students, following

E-RJR and NIAM training. It would be interesting to teach the INTECoM framework to

undergraduate IS students. The new techniques involved would be an extension to the

current skill set rather than an alternative and in this way, the impact of teaching a

natural language analysis method on the students' ability to build successful and

appropriate relational database structures, could be assessed.

The specification of a suitable integrated CASE tool would be valuable, as would either

the construction of such a tool or the customisation of an existing one. This would also

require an investigation of how INTECoM could best be integrated with other aspects of

the information systems development life cycle. Another possibility would be to

investigate the possibility of automating the production of a full set of example sentences

from an E-RJR hybrid model, as it is held within current CASE tools, using the principles

of the NaLER technique.

Finally, it is recognised that both INTECoM and NaLER have been described within the

context of the E-RIR models that are the usual output of modelling in the commercial

environment. However, object-oriented techniques are increasingly being used for

systems analysis even where there is still a requirement to design a relational database;

and the problems of translating these data requirements into an appropriate relational

design are significant. There needs to be a much closer examination of the different

elements inherent in object-oriented analysis and their applicability to the needs of data

analysis and design. From this it could be determined whether they represent more

appropriate alternative techniques and whether they could, in turn, be used to enhance the

INTECoM method. While ORM and ERIR techniques have provided the means of

instantiating the initial INTECoM framework, it is not these techniques themselves that

are the essential ingredients but the 'ways of working' that they represent. The real

contribution of the INTECoM framework is its emphasis, on making a clear distinction

238

between data analysis and design, improving user accessibility and facilitating quality

auditing.

In keeping with Flavin's (1981) observations that head this chapter, this research began as

a journey into the unknown. Facts were researched and critical judgement exercised. The

desire to impose order and structure led to the visualisation of a framework that would

assist this quest. However, in keeping with the content of the research, the actualisation

of the framework, required creativity, innovation and a large measure of design. Just as

there is ultimately, no definitive conceptual data model, so there is no definitive

framework for creating one. Refinements, improvements, even, perhaps, better

alternatives to INTECoM, are thus expected and welcomed. Indeed, if identifying the

need for such a framework and constructing this prototype, encourages such a response,

then the journey, undoubtedly, will have been worthwhile.

239

References

240

241

AMER, T.S. (1993): Entity-Relationship and Relational Database Modeling
Representations for the Audit Review of Accounting Applications: An
Experimental Examination of Effectiveness. Journal of Information Systems. 7(1) :
1 - 15 .

ANSI (AMERICAN NATIONAL STANDARDS INSTITUTE) (1975):
ANSIIX3/SP ARC Study Group on Data Base Management Systems: Interim
Report, ACM SIGMOD Bulletin:7(2).

ATKINS, c.P. (1996): Prescription or Description: Some Observations on the
Conceptual Modelling Process, in PURVIS, M. (ed.), Proceedings of Software
Engineering: Education and Practice Conference, Dunedin New Zealand, January:
34-4 1 .

ATKINS, C.P. and PATRICK, 1 .D. (1998): NaLER: A Natural Language Method for
Interpreting E-R Models, in PURVIS, M. (ed.), Proceedings of Software
Engineering: Education and Practice Conference, Dunedin New Zealand, January:
2-9.

AURISA (1991): Anonymous workshop handout, Proceedings of the JCjh Australian
Conference on Urban and Regional Information Systems, Wellington, New
Zealand: 9- 19.

AVIS ON , D.E. and mZGERALD G. (1995): Information Systems Development:
methodologies, techniques and tools (2nd Edition), McGraw-Hill, Maidenhead.

AVISON, D.E. and WOOD-HARPER, A.T. (1990): Multiview: An exploration in
Information Systems Development, McGraw-Hill, Maidenhead.

AVISON, D.E. (1992): Information Systems Development, A Database Approach (2nd
edition), Blackwell Scientific Publications, Oxford.

BACHMAN, C. (1 969): The data structure diagrams, Bulletin of ACM SIGFIDEr 1 (2).

BARDEN, 1. (1 994): Conceptual Models to the Desktop: MethodslTools for
Client/Server, Proceedings of the 2nd NIAM-ISDM Conference, Albuquerque, USA:
1 - 14.

BARKER, R. (1990): CASE*Method: Entity Relationship Modelling, Addison Wesley.

BATINI, c., CERI, S. and NAVATHE, S. (1992): Conceptual Database Design: an
Entity Relationship Approach, Benjamin Cummings, Redwood City, California.

BATRA, D and DAVIES, J.G. (1 992): Conceptual Data Modelling in Database Design:
similarities and differences between novice and expert designers, International
Journal of Man-Machine Studies, 37: 82- 1 0 1 .

BATRA, D . and ANTONY S .R. (1994): Novice errors in conceptual database design,
European Journal of Information Systems, 3(1): 57-69.

242

BATRA, D. and MARAKAS G.M. (1995): Conceptual Data Modelling in Theory and
Practice, European Journal of Information Systems, 4: 1 85-193.

BATRA, D. and SEIN, MAUNG K. (1994): Improving conceptual database design
through feedback, International Journal of Human-Computer Studies, 40: 653-676.

BATRA, D. and SRINIV AS AN, A. (1 992): A review and analysis of the usability of
data management environments, International Journal of Man-Machine Studies,
36: 395-417 .

BATRA, D. and ZANAKIS, S .H. (1 994): A conceptual database design approach based
on rules and heuristics, European Journal of Information Systems, 3(3): 228-239.

BATRA, D., HOFFER, J .A. and BOSTROM, RP. (1990): Comparing Representations
with Relational and EER Models, Communications of the ACM, 33(2): 1 26- 1 39.

BENYON, D. (1 997): Information and Data Modelling (2nd Edition), McGraw-Hill,
London.

BENYON-DAVIES, P. (1 992a): Entity models to object models: object oriented
analysis and database design, Information and Software Technology, 34(4): 255-
262.

BENYON-DAVIES, P. (1992b): The realities of database design: an essay on the
sociology, semiology and pedagogy of database work, Journal of Information
Systems, 2: 207-220.

BENYON-DAVIES, P. (1996): Database Systems, Macmillan Press, London.

BILLER, H. and NEUHOLD, E. (1977): Concepts for the Conceptual Schema, in
NUSSEN, G. (ed.), Architecture and Models in DataBase Management Systems,
North-Holland, Amsterdam.

BILLER, H., and NEUHOLD, E. (1978): Semantics of Data Bases: The Semantics of
Data Models, Information Systems 3: 1 1 -30.1

BLAHA, M.R, PREMERLANI, WJ. and RUMBAUGH, J.E. (1 988) : Relational
Database Design using an Object-Oriented Methodology, Communications of the
ACM, 3 1 (4): 414-427.

BLAHA, M.R and PREMERLANI, WJ. (1997): Object Oriented Modeling and Design
for Database Applications, Prentice Hall

BOCK, D.B. and RYAN, T. (1 993): Accuracy in Modeling with Extended Entity
Relationship and Object Oriented Data Models, Journal of Database Management,
4(4): 30-39.

BOLAND, RJ. (1 987): The In-formation of Information Systems, in: BOLAND, RJ.
and HIRSCHHEIM, R. (eds.). Critical Issues in Information Systems. Wiley,
Chichester.

243

BOLAND, R.1. (1 99 1): Information Systems Use as a Hermeneutic Process, in
NISSEN, H-E. KLEIN, H.K. and HIRSCHHEIM R.A. (eds.), Information Systems
Research: Contemporary Approaches and Emergent Traditions, North-Holland,
Amsterdam:.439-464.

BOOCH, G. (199 1): Object Oriented Design: With Applications, Benjamin Curnmings,
Menlo Park California.

BOOCH, G. (1995): Object Solutions, Addison-Wesley, Redwood City, California.

BOUZEGHOUB, M. and GARDARIN, G. (1984): The design of an expert system for
database design, in GARDARIN, G. and GELENBE, E. (eds.), New Applications
of Databases, Academic Press, London (quoted in Ram, 1995).

BRODIE, M.L., MYLOPOULOS, J. and SCHMIDT, J .W. (eds.)(1984): On Conceptual
Modelling, Springer-Verlag, New York.

BRONTS, G., BROUWER, S.1., MARTENS, C.L.J. and PROPER, H.A. (1 995): A
Unifying Object Role Modelling Theory, Information Systems, 20(3): 2 13-235 .

BROWN, L. (ed.) (1 993): The New Shorter Oxford English Dictionary, Clarendon Press
Oxford.

BUBENKO, J.A. (1 986): Information Systems Methodologies: A research view, in
OLLE, T.W., SOL, H.G., VERRDN-STUART, A.A. (eds.) Information Systems
Design Methodologies: Improving the Practice, North-Holland, Amsterdam.

BUCKINGHAM Shum, S. and HAMMOND, N. (1994): Argumentation-based Design
Rationale: what use at what cost, International Journal of Human-Computer
Studies, 40: 603-652.

BURCH, J.G. (1 992): Systems Analysis, Design and Implementation, boyd and fraser
publishing company, Boston.

BURMEISTER, O.K. (1 995): Evaluating the Factors that Facilitate Deep Understanding
of Data Analysis, Australian Journal of Information Systems, 3(1) : 2-1 3.

BURRELL, G., and MORGAN, G. (1979): Sociological Paradigms and Organisational
Analysis, Heinemann Educational Books. London (quoted in de Carteret and
Vidgen, 1995).

CALWAY, B.A. and SYKES J . (1995): A. Grammatical Conversion of Descriptive
Narrative - An Application of Discourse Analysis in Conceptual Modelling,
Australian Journal of Information Systems, 3 (2): 1 0- 19 .

CAMPBELL, D. (1992): Entity-Relationship Modeling; One Style Suits All? Database
Summer: 12- 1 8.

CARROLL, J.M. (ed.)(1 995): Scenario-Based Design, John Wiley and Sons, New
York.

244

CARROLL, LEWIS (1 871) : Through the Looking Glass, reprinted 1 965 in The Works
of Lewis Carroll, Paul Hamlyn, London.

CATfELL, R.G.G. (1994): Object Data Management: Object-Oriented and Extended
Relational Database Systems (revised edition), Addison Wesley, Reading, MA.

CCTA (1994): Corporate Data Modelling, Her Majesty's Stationery Office, London.

CERPA, N. (1995): Pre-Physical data base design heuristics, Information and
Management 28: 35 1 -359.

CHECKLAND, P. and SCHOLES, J. (1 990): Soft Systems Methodology in Action,
Wiley, Chichester.

CHEN, P.P. (1976): The Entity-Relationship Model - Toward a Unified View of Data,
ACM Transactions on Database Systems, 1 (1): 9-36.

CHEN, P.P. (1 983): English Sentence Structure and Entity-Relationship Diagrams,
Information Sciences 29(2): 127- 149.

cmORRA, C.u. (1997): Crisis and Foundations: An Inquiry into the Nature and Limits
of Models and Methods in the IS Discipline, Proceedings of the 5th European
Conference of Information Systems, Cork, Ireland: 1 549- 1 560.

COAD, P. and YOURDON E. (1991): Object Oriented Analysis, Prentice Hall.

CODASYL (197 1): Report of the CODASYL Database Task Group, Communications
of the ACM April (quoted in Navathe, 1 992).

CODD, E.F. (1 970): A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM1 3 (6): 377-387.

CODD, E.F. (1 990): The Relational Model for Database Management Version 2,
Addison-Wesley, Reading, MA.

COLLINGNON, M.A. and VAN DER WEIDE, T.P. (1994) An Information Analysis
Method Based on PSM. , Proceedings of the 2nd NIAM-ISDM Conference,
Albuquerque, New Mexico:

CONNOLLY, T.M., BEGG, C.E and STRACHAN, A.D. (1 995): Database Systems,
Addison Wesley, Wokingham, England.

CREASY, P. (1989): ENIAM: a more complete conceptual schema language.
Proceedings of the 15th Conference on Very Large Databases, Amsterdam,
September (quoted in Laender and Flynn 1994).

CREASY, P. and MOULIN, B. (1992): Adding Semantics to Semantic Data Models, in
(Nagle et al., 1 992).

24S

DARKE, P. and SHANKS, G. (l 994a): Viewpoint Development for Requirements
Definition: An analysis of concepts, issues and approaches, Dept of Information
Systems, Monash University Working Paper Series 21194 Melbourne, Australia.

DARKE, P and SHANKS, G. (1994b): Defining Systems Requirements: A critical
assessment of the NIAM Conceptual Schema Design Procedure, Dept of
Information Systems, Monash University Working Paper Series 8/94 Melbourne,
Australia.

DARKE, P. and SHANKS, G. (1 995a): Viewpoint Development for Requirements
Definition: Towards a Conceptual Framework, Dept of Information Systems,
Monash University Working Paper Series 9/95 Melbourne, Australia.

DARKE, P. and SHANKS, G. (l995b): The use of Viewpoint Development to Enhance
Requirements Definition with the NIAM Conceptual Schema Design Procedure,
Dept of Information Systems, Monash University Working Paper Series 1 2/95
Melbourne, Australia.

DARKE, P. and SHANKS, G. (l 995c): Defining Systems Requirements: A critical
assessment of the NIAM conceptual schema, Australian Journal of Information
Systems, 2(2): 50-62

DATE, c.J. (1986): Relational Database selected writings, Addison-Wesley, Reading,
Massachusetts.

DATE, c.J. (1 995): An Introduction to Database Systems (6th Edition), Addison­
Wesley, Reading, Massachusetts.

de CARTERET, C. and VIDGEN, R. (1995): Data Modelling for Information Systems,
Pitman Publishing, London.

DURDING, B.M., BECKER, c.A. and GOULD, J.D. (1 977): Data Organisation,
Human Factors, and 1 9(1): 1 - 14.

EAGLES TONE, B. and RIDLEY, M. (1 998): Object Databases: An Introduction,
London, McGraw-Hill.

EDEN, P. (1 996): A Method for Conceptual Data Analysis using Entity-Relationship
Diagrams and Functional Dependency Diagrams, Proceedings of Software
Engineering: Education and Practice Conference, Dunedin New Zealand, January:
42-48.

ELMASRI, R., WEELDRYER, J. and HEVNER, A. (1 985): The Category Concept: An
extension to the Entity-Relationship Model, Data and Knowledge Engineering, 1 :
75- 1 1 6.

ELMASRI, R. and NAVATHE, S.B. (1 989): Fundamentals of Database Systems,
Benjamin Cummings.

EV A, M. (1994): SSADM version 4: a users guide (2nd edition), McGraw-Hill, England.

EVEREST, G. (1 994): Experiences in teaching NIAM/OR modelling, Proceedings of
2nd NIAM-ISDM conference, Albuquerque, New Mexico, USA.

FALKENBERG, E.D. (1 976): Concepts for modelling infonnation, in NUSSEN G.M.
(ed.) Modelling in Database Management Systems, North-Holland Amsterdam,
(quoted in Nijssen and Halpin, 1 989).

FILLMORE, C.J. (1 968): The case for case, in BACH E. and HARMS, R.T Universals
in Linguistic Theory, Holt, Rhinehart and Winston, New York: 1 -88 (quoted in
Halpin, 1 995).

FINKELSTEIN, C. (1989): An Introduction to Information Engineering: From Strategy
Planning to Information Systems, Addison Wesley, Sydney.

FIRNS, P.G. (1 990): Determining a Useful Balance between Understandability and
Rigour in Data Modelling, New Zealand Journal of Computing 2(1): 1 3-2 1 .

FIRNS, P.G. (1993): A Data Modelling and Schema Generation Toolfor Use in System
Development Courses, Presentation, Department of Infonnation Sciences,
University of Otago, Dunedin, New Zealand: 1 1 1 - 1 19.

FLAVIN, M. (1 98 1): Fundamental Concepts of Information Modelling, Yourdon, New
York.

FLYNN, D. (1 998): Information Systems Requirements: Determination and Analysis
(2nd edition), McGraw-HiII, London.

GALLIERS, R.D. (1993): Research Issues in Information Systems, Journal of
Information Technology, 8(2): 92-98.

GERROLD, D. (1 988): When H.A.R.L.I.E. was One, Bantam Books, USA.

GmSON, M.L. and HUGHES C.T. (1 994): Systems Analysis and Design. A
Comprehensive Methodology with CASE, boyd and fraser publishing company,
Massachusetts.

GOLDSTEIN, R.c. and STOREY, V.C. (1 990): Some findings of the intuitiveness of
entity-relationship constructs, in LOCHOVSKY, F.H., (ed.), Entity-Relationship
Approach to Database Design and Querying, Elsevier Science Amsterdam.

GREEN, P.F. (1 997) : Use of Infonnation Systems Analysis and Design (ISAD)
Grammars in Combination in Upper Case Tools - An Ontological Evaluation,
Proceedings of the Second CAiSElIFIP 8. I International Workshop on Evaluation
of Modeling Methods in Systems Analysis and Design (EMMSAD), Barcelona,
Spain.

GRIMES, S. (1998): Modeling Object/Relational Databases, DBMS, April: 1 1 (4): 5 1 -
55.

HALPIN, T.A. and ORLOWSKA, M.E. (1 992): Fact-oriented modelling for data
analysis, Journal of Information Systems 2.

247

HALPIN, T.A. (1 993a): An overview of Object-Role Modelling, in PERSCHKE, S. and
LICZBANSKI, M. (eds.) Access for Windows Power Programming, Que
Corporation, Carmel, IN, USA.

HALPIN, T.A. (1 993b): What is an elementary fact? Proceedings of 1st NIAM-ISDM
Conference, Utrecht, The Netherlands.

HALPIN, T.A. (1995): Conceptual Schema and Relational Database Design (2nd

edition), Prentice Hall, Australia.

HAMMER, M. and MCLEOD, D. (1981): Database Description with SDM: A Semantic
Database Model, ACM Transactions on Database Systems, 6(3) : .35 1 -386.

HANKS P. (ed.)(1 979): Collins Dictionary of the English Language, Collins.

HA WRYSZKIEWYCZ, I. (1 987): User Experience with the E-R Approach, Report on
the Panel Session, Prepared by Gary Schuldt, in SPACCAPIETRA, S. (ed.), Entity­
Relationship Approach, E1sevier Science Publishers B.V., North-Holland,
Amsterdam: 465-472.

HAWRYSZKIEWYCZ, I. (1 997): Introduction to Systems Analysis and Design (4th

edition), Prentice Hall, Sydney.

HERBET, F. (1972): Dune, New English Library, Sevenoaks, Kent.

HIRSCHHEIM, R., KLEIN, H.K. and LYYTINEN, K. (1 995): Information Systems
Development and Data Modelling, Conceptual and Philosophical Foundations,
Cambridge University Press, Cambridge.

IllTCHMAN, S. (1 995): Practitioner perceptions on the use of some semantic concepts
in the entity-relationship model, European Journal of Information Systems, 4: 31 -
40.

HOFSTADTER, D.R. (1979): Gruel, Escher, Bach: An Eternal Golden Braid, The
Harvester Press, UK.

HOWE, D.R. (1989): Data Analysis for Database Design (2nd edition), Edward Amold,
and London.

HUTCHINS, E.L., HOLLAN, J.D. and NORMAN, D.A. (1985): Direct Manipulation
Interfaces, Human Computer Interaction 1 : 3 1 1 -338.

HUFF, H.W. (1 992): The Relational Model contra Entity-Relationship? SIGMOD
Record, 21(3) : 33-34.

HULL, R. and KING, R. (1987): Semantic database modeling: Survey, applications and
research issues, ACM Computing Surveys, 1 9(3): 201 -260.

IFIP> ICC (1966): Vocabulary of Information Processing, North Holland, Amsterdam
(quoted in Olle, 1 993).

248

IS 1 0027(1 993): Reference Model of Data Management, (quoted in Olle, 1 993).

IsorrC97/SC5IWG3 Report (March 1 982) In van Griethuyzen (1983).

JACOBSON, I., CHRISTERSON, M., JONSSON, P. and OVERGAARD, G. (1992):
Object-Oriented Software Engineering: A Use Case Driven Approach, Addison­
Wesley, Wokingham.

JARVENPAA, S .L and MACHESKY, J.J. (1 989): Data Analysis and Learning: an
experimental study of data modelling tools, International Journal of Man-Machine
Studies, 3 1 :367-391 .

JIH, W.K., BRADBARD, D.A., SNYDER, C.A. and THOMPSON, N.G.A., (1 989):
The effects of relational and entity-relationship data models on query performance
of end users, International Journal of Man-Machine Studies, 3 1 : 257-267.

JUHN, S. and NAUMANN, 1.D. (1 985): The effectiveness of data representation
characteristics on user validation, Proceedings of the Sixth International
Conference on Information Systems. Indianapolis: 2 12-226.

KENT, W. (1 978): Data and Reality, North-Holland, Amsterdam.

KENT, W. (1 979): Limitations of Record-based Information Models, ACM
Transactions on Database Systems, 4(1) : 1 07- 1 3 1 .

KENT, W . (1 98 1): Consequences of Assuming a Universal Relation, ACM TODS, 6(4)
(quoted in Date, 1 995).

KENT, W. (1 983): Fact-based Analysis and Design, in DA VIES, e.G., JAJODIA, S . ,
NG, P.A. and YEH, R.T. (eds.), Proceedings of the Entity-Relationship Approach
to Software Engineering, Elsevier Science Publishers, Amsterdam: 3-53.

KEPNER, C.H. (1 996): Calling all thinkers, H R Focus, 73(10): 3 .

KESH, S . (1995): Evaluating the quality of entity relationship models, Information and
Software Technology, 37(12): 68 1 -689.

KEUFFEL, W. (1 996): Battle of the Modeling Techniques, DBMS, August: 83-84,86,97

KIM, Y-G. and MARCH S.T. (1995): Comparing Data Modeling Forrnalisms,
Communications of the ACM. 38(6): 1 03- 1 1 5 .

KINN, S . and SVLLWAN, F. (1994): Good relations, The British Journal of Health care
Computing and Information Management, 1 1 (4) May: 21 -23.

KLEIN, H. and HIRSCHHEIM, R.A. (1987): A Comparative Framework of Data
Modelling Paradigms and Approaches, The Computer Journal, 30(1): 8- 1 5 .

KLEIN, H . and MYERS, M . (1999): A Set Of Principles for Conducting and Evaluating
Interpretive Field Studies in Information Systems, MIS Quarterly, and 23(1) : 67-93.

249

KONSYNSKl, B.R. (1979): Data Base Driven Systems, University of Arizona, (quoted
in Hitchman, 1995)

KORZYBSKl, A. (194 1): Science and Sanity, Science Press, New York (quoted in
Benyon-Davies, 1996).

KOSKO, B. (1993): Fuzzy Thinking: the new science of fuzzy logic, Harper Collins,
London.

KROENKE, D.M. (1 992): Database Processing: Fundamentals, Design,
Implementation (4th edition), Maxwell Macmillan International.

KROGSTIE, 1., LINDLAND 0.1 and SINDRE, G. (1995): Towards a deeper
understanding of Quality in Requirements Engineering, Proceedings of 7th CAiSE,
Jyvaskyla, Finland. June: unnumbered.

LAENDER, A.H.F. and FL YNN, DJ. (1994): A semantic comparison of the modelling
capabilities of the E-R and NIAM models, Lecture notes in Computer Science No
823 Springer-Verlag: 242-256.

LAKOFF, G. (1987): Women, Fire and Dangerous Things, The University of Chicago
Press.

LANGEFORS, B. (1963): Some Approaches to the Theory of Infonnation Systems, BIT
3: 229-254 (quoted in Hirschheim et al., 1995).

LARMAN, C. (1 998): Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design, Prentice Hall, Upper Saddle River, New Jersey.

LEUNG, C.M.R. and NUSSEN, G. M. (1 988): Relational Database Design using the
NIAM Conceptual Schema, Information Systems, 1 3(2): 219-227.

LINDLAND, 0.1., SINDRE, G and S0LVBERG, A. (1 994): Understanding Quality in
Conceptual Modelling, IEEE Software, March: 42-49.

LOOMIS, M.E.S. (1987): The Database Book, Macmillan, New York.

LOOSLEY, C. and GANE, C. (1990): Information Systems Modeling Part 1 : The object
of processing is data, InfoDB, 4(4) this version reprinted for Bachman: 1 - 14.

LYYTINEN, KJ. and KLEIN, H.K. (1 985): The Critical Theory Of Jurgen Habennas
As A Basis For A Theory Of Information Systems, in MUMFORD, E et al. (eds.),
Research Methods in Information Systems, Elsevier Science Publishers B .V.
(North-Holland): 21 9-235.

MACDONELL, S .G. (1 994): Software Development, CASE tools and 4GLs - A Survey
of New Zealand Usage. Part 1 : 750 New Zealand Organisations, New Zealand
Journal of Computing, 5(1) : 23-33.

MACEACHREN, A.E. (1 995): How Maps Work, The Guildford Press, New York.

250

MANNILA, H and RAffiA, K-J. (1992): The Design of Relational Databases, Addison
Wesley.

MARCHE, S. (1993): Measuring the stability of data models, European Journal of
Information Systems, 2(1) 37-47.

MARTIN, J. and ODELL, J. (1992): Object-Oriented Analysis and Design, Prentice­
Hall, Englewood Cliffs.

MARTIN, J. (1990): Information Engineering. Book 11: Planning and Analysis,
Prentice-Hall, New Jersey.

MARTINDALE, V. (1 997): Personal Communication, Eagle Star Insurance Group,
Cheltenham, UK.

MA YER, R.E. (1 989): Models for Understanding, Review of Educational Research,
59(1): 43-64.

MCFADDEN, F.R. and HOFFER, J .A. (1994): Database Management,
Benj aminlCummings, California.

METAlS E., MEUNIER, J-N. and LEVREAU, G. (1993): Database Schema Design: A
Perspective from Natural Language Techniques to Validation and View Integration,
Proceedings of the 12th International Conference on Entity-Relationship Approach,
Arlington, Texas, 1 90-205.

MOODY, D. (1 996): The Seven Habits of Highly Effective Data Modelers, Database
Programming and Design, October: 57-64.

MOODY, D. and OSIANLIS, A. Q99� Bringing Data Models to "Life": An
Interactive Tool for Representing Entity Relationship Models, Proceedings of the
7th Australian Conference on Information Systems (ACIS'96). University of
Tasmania Australia: 497-508.

MOODY, D. and SHANKS, G. (1 994): What Makes a Good Data Model? Evaluating
the Quality of Entity Relationship Models, Dept of Information Systems, Monash
University Working Paper Series 1 2/94, Melbourne, Australia.

MOODY, D. and SHANKS, G. (1 998): What Makes a Good Data Model? A
Framework for Evaluating and Improving the Quality of Entity Relationship
Models, The Australian Computer Journal, 30(3): 97- 1 10.

NAGLE, T.E., NAGLE J.A., GERHOLZ, L.L. and EKLUND, P.W. (eds.)(1 992):
Conceptual Structures: Current Research and Practice, Ellis Horwood, New York.

NA V A THE, S.B. (1992): Evolution of Data Modelling for Databases, Communications
of the A CM, 35 (9): 1 1 2- 1 23.

NIJSSEN, G.M. and HALPIN, T.A, (1989): Conceptual Schema and Relational
Database Design, Prentice Hall.

251

NDSSEN, G. M. (1994): A General Analysis Procedure, Proceedings of the 2nd NIAM­
ISDM Conference, Albuquerque, New Mexico USA: B I -B I5 .

NORDBOTTEN, J.c. and CROSBY, M.E. (1 996): Reading strategies for graphic
models from an experiment in data model perception, Proceedings of 5th
International Conference on User Modeling, Hawaii, USA, January: 43-48.

OLDS, D. (1997): Personal Communication, mM Int. (NZ).

OLLE, T.W., HAGELSTEIN, J. , MACDONALD, I.G., SOL, H .G., VAN ASSCHE,
FJ.M. and VERRUN-STUART, A.A. (199 1): Information Systems Methodologies:
A Frameworkfor Understanding (2nd edition), Addison Wesley.

OLLE, T.W. (1 993): Data Modelling and Conceptual Modelling: A comparative
analysis of functionality and roles, Australian Journal of Information Systems, 1 (1):
46-57.

PAGE JONES, M. (1 988): The Practical Guide to Structured System Design, Prentice­
Hall, New Jersey.

PA VLIA, P.c., LIAO, C . and TO, P-L. (1992): The Impact of Conceptual Data Models
on End-User Performance, Journal of Database Management, 3(4): 4- 15 .

PECKHAM, J . and MARY ANSKI, F . (1 988): Semantic Data Models, A CM Computing
Surveys, and 20(3): 153-189.

PLETCH, A. (1989): Conceptual Modelling in the Classroom, SIGMOD RECORD, and
1 8(1): 74-80.

POHL, K. (1994): The three dimensions of requirements engineering: A Framework and
its applications, Information Systems, 1 9(3): 243-258.

POST, G.V. (1999): Database Management Systems: Designing and Building Business
Applications, IrwinlMcGraw-Hill, Boston, USA.

QUATRANI, T. (1 998): Visual Modeling with Rational Rose and UML, Addison­
Wesley, Reading Mass.

RAM, S. (1 995): Deriving Functional Dependencies from the Entity-Relationship
Model, Communications of the ACM, 58(9): 95-107.

RAYMOND, D.R., CANAS, AJ., TOMPA, F.W. and SAFAYENI F.R. (1989):
Measuring the effectiveness of personal database structures, International Journal
of Man-Machine Studies 3 1 : 237-256.

RUMBAUGH, J . , BLAHA, M., PREMERLANI, W., EDDY, F. and LORENSON W.
(199 1): Object-Oriented Modelling and Design, Prentice-Hall International, New
York.

RICARDO, C. (1990): Database Systems: Principles, Design and Implementation,
Macmillan, New York.

252

ROBINS ON, M. and BANNON, L. (199 1) : Questioning Representations, Proceedings
of 2nd European Conference on Computer-Supported Cooperative Work,
Amsterdam, The Netherlands, Spring (quoted in Darke and Shanks, 1 995b).

RYDER, M.R. (1993): A CASE for Relational Modelling, Unpublished thesis, Massey
University, New Zealand.

RYDER, M.R. (1 996): Facilitating Evolution in Relational Database Design: A
procedure to evaluate and refine novice database designers ' schemata,
Unpublished thesis, Massey University, New Zealand.

SANDERS, G.L. (1995): Data Modeling, boyd and fraser, ITP Inc, Danvers,
Massachusetts.

SAPlR, E. (1 93 1) : Conceptual categories in Primitive Languages, Science (74), (quoted
in Kent, 1 978).

SCHENCK, D.A. and WILSON P.R. (1 994): Information Modeling: The EXPRESS
Way, Oxford University Press, New York.

SCHOUTEN, H. (1 993): A Comparison of Conceptual Graphs with NIAM,
Proceedings of NI AM-ISD M Conference Utrecht, The Netherlands: 1 -29.

SCHOUTEN, H. (1 994): How to formally specify the NIAM information analysis
method, Proceedings of the 2nd NIAMjSDM Conference, Albuquerque, New
Mexico: EI -E36.

SHANKS, G. (1997): Conceptual Data Modelling: An empirical study of expert and
novice data modellers, Australian Journal of Information System, 4(2): 63-73.

SHANKS, G. and DARKE, P. (1996): Understanding and Evaluating the Quality of
Conceptual Models: Linking Theory and Practice, Dept. of Information Systems,
Monash University Working Paper Series 7/96, Melbourne, Australia.

SHANKS, G. and DARKE, P. (1997): Using Explanation and Visualisation to hnprove
Understanding of Corporate Data Models, Proceedings of 8th Australian Conference
on Information Systems, Tasmania, Australia.

SHANKS, G., SIMSION G. and REMBACH, M. (1 993) : The Role of Experience in
Conceptual Schema Design, Dept. of Information Systems, Monash University
Working Paper Series 2/93, Melbourne, Australia.

SHARP, J.K. (1993): A comparison of IDEFIX and NIAM-ISDM, Proceedings of the
NIAM-/SDM Conference, Utrecht, The Netherlands: 1 - 1 3.

SHARP, J .K. (1994): Adopting the Natural Language Information Analysis
Methodology in your corporation, Proceedings of the 2nd NIAM-ISDM Conference,
Albuquerque, New Mexico: D I -D I 7.

SHA YE, M.J .R. (1 98 1): Entities, functions and binary relations: steps to a conceptual
schema, The Computer Journal, 24(1) : 42-46.

253

SHOV AL, P. and EVEN-CHAIME, M. (1 987): Database schema design: An
experimental comparison between nonnalisation and infonnation analysis,
Database, 18(3), Spring: 30-39.

SHOVAL, P. and FRUMERMANN, I. (1994): 00 and EER Conceptual Schemas: A
comparison of Vser Comprehension, Journal of Database Management, 5(4) : 28-
38.

SHOV AL, P. (1982): From Infonnation Needs to Database Conceptual Design,
Proceedings of the Annual IPA Conference on Data Processing, Jerusalem, Israel,
pp.41 -61 .

SHOV AL, P. (1985): Essential Infonnation Structure Diagrams and Database Schema
Design, Information Systems, 1 0(4): 417-423.

SHOV AL, P. (1997): Experimental Comparisons of Entity-Relationship and Object­
Oriented Data Models, Australian Journal of Information Systems, 4(2): 74-81 .

SlAV, K., WAND, Y . and BENBASAT I. (1995): A Psychological Study on the Use of
Relationship Concept - Some Preliminary Findings, in IL V ARI, J. , L YYTINEN, K.,
ROSSI, M. (eds.), Lecture Notes in Computer Science, 932. Springer: 341 -354.

SlAV, K., WAND, Y. and BENBASAT 1. (1 996) : When Parents Need Not Have
Children - Cognitive Biases in Information Modeling, in CONSTANTOPOULOS,
P., MYLOPOULOS and VASSILIOU, T, (eds.), Lecture Notes in Computer
Science, 1080. Springer: 402-41 9.

SIMSION, G. and SHANKS G. (1 993): Choosing Entity Types - A Study of 5 1 Data
Modellers, Dept of Information Systems, Monash University Working Paper Series
1 7/93, Melbourne, Australia.

SIMSION, G., (1 994): Data Modelling Essentials Analysis, Design and Innovation, Van
Nostrand Reinhold, Boston.

SMITH, J.M. and SMITH, D.C.P. (l 977a): Database Abstractions: Aggregation and
Generalisation, ACM Transactions on Database Systems, 2(2): 105-133 .

SMITH, J.M. and SMITH, D.C.P. (l 977b): Database Abstractions: Aggregation,
Communications of the A CM, 20(6): 405-413 .

SONG, I-Y. and FORBES, E.A. (1 99 1): Schema conversion rules between EER and
NIAM model, Proceedings of the 1(jh International Conference on Entity­
Relationship Approach, San Mateo, California. October.

SOW A, J.F. (1984): Conceptual Structures: information processing in mind and
machine, Addison Wesley Reading Massachusetts.

SOWA, J.F. (199 1): Towards the Expressive Power of Natural Languages, in J.F.
SOWA, J.F. (ed.), Principles of Semantic Networks, Morgan Kaufmann, San
Mateo, CA.

254

SRINN ASAN, A and TE'ENI, D. (1995): Modeling as Constrained Problem Solving:
An Empirical Study of the Data Modeling Process, Management Science, 41 (3):
419-434

STEINBERG, G., FALEY, R. and CillNN, S. (1994): Automatic Database Generation
by Novice End-Users Using English Sentences, Journal of Systems Management,
March: 1 0- 1 5 .

STOREY, V. and GOLDSTEIN R. (1988): A Methodology for Creating User Views in
Database Design, ACM Transactions on Database Systems. 1 3(3): 305-338.

STOREY, V. and GOLDSTEIN R. (1 993): Knowledge-Based Approaches to Database
Design, MIS Quarterly, March: 25�6.

SUTCLIFFE, AG. and MAIDEN, N.AM. (1 992): Analysing the novice analyst:
cognitive models in software engineering, International Journal of Man-Machine
Studies, 36: 7 1 9-740.

TEOREY, T.1 . and FRY, J.P. (1982) : Design of Database Structures, Prentice-Hall,
Englewood Cliffs, New Jersey.

TEOREY, T.J, YANG, D. and FRY, J.P. (1 986): A Logical Design Methodology for
Relational Databases using the Extended Entity-Relationship Model, Computing
Surveys, 1 8(2) June: 1 97-222.

TJOA, AM. and BERGER, L. (1993): Transformation of Requirements Specifications
expressed in Natural Language into an EER Model, Proceedings of the 12th
International Conference on Entity Relationship Approach, Arlington, Texas: 206-
2 17.

TOLlS, e. (1 996): Working with models in development work: Differences that hinder
or facilitate, Proceedings of the 1h Australian Conference on Information Systems,
(ACIS '96) University of Tasmania, Hobart, Tasmania, 2 : 735-745.

TSICHRITZIS, D.e. and LOCHOVSKY, F.H. (1982): Data Models, Prentice Hall,
Englewood Cliffs, New Jersey.

V ADERA, S . and MEZIANE, F. (1994): From English to Formal Specifications, The
Computer Journal, and 37(9) : 753-763.

van der LEK, H., BAKEMA, G.P. and ZWART, J.P.C. (1992): Unifying object types
and fact types: a practically and didactically productive theory, translated from the
Dutch by BERTHOFF, T and ZWART, J .P.C., De inificatie van objecttypen en
feittypen, een praktisch en didactisch vruchtbare theorie, Informatie, 34(5): 279-
295,

van GRIETHUYZEN, J.1. (ed.), (1983): Concepts and Terminology for the Conceptual
Schema and the Information Base ISO/TC97ISC5-N695, International Organization
for Standardization, Geneva, Switzerland (quoted in OBe, 1 993).

255

VERYARD, R (1 984): Pragmatic Data Analysis, Blackwell Scientific Publication
Oxford.

VERYARD, R (1 992): Information Modelling: Practical Guidance, Prentice Hall,
Englewood Cliffs, New Jersey.

VERYARD, R (1994): Information co-ordination: The management of Information
Models, Systems and Organizations, Prentice Hall Englewood Cliffs, New Jersey

W ALSHAM, G. (1993): Interpreting Information Systems in Organizations, WHey,
Chichester, England

WAND, Y. and WEBER, R. (1993): On the ontological expressiveness of infonnation
systems analysis and design grammars, Journal of Information Systems, 3(4): 217-
237.

WAND, Y. and WEBER, R (1995): On the deep structure of information systems,
Information Systems Journal, 5 : 203-223.

W ATSON, RT. (1 996) Data Management: An Organizational Perspective, John
Wiley, New York.

W AY, E. C. (199 1): Knowledge Representation and metaphor, Kluwer Academic
Publishers, Dordrecht, The Netherlands.

WEBER, R and ZHANG, Y., (1991) An ontological evaluation of NIAM's grammar
for conceptual schema design, Proceedings of the 12th International Conference on
Information Systems, New York: 75-82.

WEBER, R, (1 996): Are Attributes Entities? A study of Database Designers' Memory
Structures, Information Systems Research, 7(2) June.

WEBER, R. (1997): The Link between Data Modeling Approaches and Philosophical
Assumptions: A Critique, Proceedings of the Association of Information Systems
Conference, Indianapolis: 306-308.

WONG CHEE-PUN, (1995): Fried Rice: A Recipe for Data Modeling and Design,
Database Programming and Design, April: 41 -44.

YAO, S .B., NAVATHE, S.B., and WELDON, J.L. (1 982): An integrative approach to
database design, in Database Design Techniques 1 : Requirements and Logical
Structures Proceedings (quoted in Hitchman, 1 995).

YUNKER, K. (1993): The Dependency between Representation and Procedure,
Proceedings of the NIAM-ISDM Conference, Utrecht, The Netherlands: 1 -27.

ZACHMAN, 1. (1987) : A Framework for Information Systems Architecture, IBM
Systems Journal 26(3): 276-292.

analysis

analysis model

analysis stage

CASE tool

conceptual
data model

conceptual
data modelling

conceptual
schema

construct

creativity

Glossary

In general tenns, an activity which seeks to detennine the
elements or components of something complex and to discover
the general principles underlying these concrete phenomena. In
IS development it is the decomposition of problems into their
component parts.

A fonnal and precise specification of the users identified
requirements for a system under development. Ideally, this
record will be a specification of what the needs are, with no
consideration of how they will be implemented physically.

In IS development, the stage where the user requirement is
identified and specified, usually in a formal and precise record.

Computer Aided Systems (or Software) Engineering. A software
package that provides computer support for key activities in the
system development process.

A model, or collection of models, that records the information
requirements of a system with no consideration of the specific
technology by which it will be implemented. Sometimes referred
to as the 'logical model' of the system.

In this study, the conceptual data model is considered to
encompass both the analysis and the paradigmatic design models.

The process by which a conceptual data model is constructed.

In this study, this process includes both analysis and design
activities.

A name sometimes given to the design version of the conceptual
data model, usually with an emphasis on the data structuring
aspect of the model .

In this study, the preferred tenn for a Data Model' s primitive
element.

Coming up with new and innovative ideas

257

258

data

data model

Data Model

data modelling

data modelling
approach

data modelling
facility

data modelling
formalism

data modelling
method

data modelling
methodology

Data correspond to discrete, recorded facts about phenomena
from which we gain information about the world. However, they
do not always correspond to concrete or actual facts. Sometimes
they are imprecise or they describe things that have never
happened (e.g. idea). For our purposed data correspond to
descriptions of any phenomena or idea that a person considered
worth formulating and recording. Data will be of interest to us if
they are worth not only thinking about but also worth recording in
a somewhat precise manner. (taken largely from Tsichritzis and
Lochovsky, 1982).

A representation of a particular set of data created according to
the syntax of a specific Data Model (see below). A data model
will usually minimally include a graphical representation of the
data and textual details. It may also be called an 'application
model' or a 'user model' .

A set of conventions used to represent a simplified, formal and
highly abstracted view of data. A Data Model will define a set of
primitive elements (or constructs) and a set of rules for regulating
how the elements can be combined to represent data objects (the
'way of modelling'). Most Data Models will also have guidelines
on how they should be represented formally ('way of
communicating'). Some definitions of Data Model also insist that
rules for manipulating the primitive elements should also be
defined, as in the Relational Model.

The process by which a data model is created by the use of a data
modelling approach.

Usually used to describe a generic type rather than a specific Data
Model, e.g. the E-R approach describes the general characteristics
of the Data Model rather than those of a particular version.

In this study, it is used to convey the combination of the 'way of
modelling', the 'way of communicating' and the 'way of
working' .

The combination of the 'way of modelling' and 'way of
communicating' inherent in the use of a specific Data Model.

As data modelling facility

A set of guidelines or procedures setting out the steps to be
followed in creating a data model with a specific data modelling
approach.

A predefined set of steps, together with a collection of tools that
can be used to build a data model . The term is often used
interchangeably with data modelling method. Wherever possible,
its use has been avoided in this study.

data modelling
scheme

data modelling
technique

datalogical
model

descriptive

design

design
methodology

design model

entity

E-R Model

E-RlRelational
hybrid model

implementatio
n model,

infological
model

logical data
design

As data modelling facility.

As data modelling facility.

A view of a data model, which emphasises the structural qualities
of the data. The primary function of a datalogical model is to
represent the designed structure of the data.

Relating to, or based upon description or classification rather than
explanation or prescription.

The creation of an artefact, in accordance with appropriate
functional or aesthetic criteria. Design is often considered to be
the action of discovering solutions to problems.

In this study it is specifically relates to the rendition of the
identified user information requirement into a structural form,
which can form the basis of an appropriate electronic database.

A collection of modelling methods that provides techniques to
undertake design. Where such a methodology is tailored to data
design, it will usually include techniques for analysis.

A formal and precise specification of all identified requirements
for a system under development. The structures represented in
the model will have been constrained by the type of Data Model
to which the final physical database will have to conform.

In general terms, something that has a real or distinct existence.

In data modelling terms, an abstracted view of a collection of
properties (attributes) that described something of interest to the
system under consideration.

A Data Model that uses three primitive elements, entities,
attributes and relationships to represents data of interest to a
system.

An application data model that has a relational structure and is
graphically represented with a form of E-R notation. The
'entities' in such a model are, in fact, relations and the
'relationships' are primary-foreign key links.

A type of Data Model which can be implemented by
commercially available DBMSs, e.g. Relational, Object-Oriented,
Network Models.

A view of a data model, which focuses on the information content
of the model. The primary function of an infological model is to
facilitate communication between technical and non-technical
users.

The stage of database design that is concerned with the design of
the paradigmatic data structures. In some approaches, it includes

259

design

logical model

meta-data

meta-data
architecture

method

NIAM

ORM

paradigm
model

physical model

prescriptive

problem
domain

quality

semantics

tool

the analysis of the data. It is specifically separated from physical
data design.

The end result of logical data design. The term, design model is
preferred in this study.

Data about data, e.g. descriptions of the properties of entities
rather than the data values that they represent.

A framework for organising a number of different data models
often of different types. Together they form a coherent
representation of the data within a system or an organisation, at
the conceptual, paradigmatic and physical levels.

Either the specification of behaviour or the software that
implements that behaviour, that is stored in an object in an object­
oriented development.

Natural Language Information Analysis Method. A
comprehensive and prescriptive method for the construction of
relational database, which uses a formal subset of natural
language to identify the information requirements.

Object-Role Model(ling). A Data Model which uses the primitive
elements of objects and roles to represent data of interest to a
system.

A level of model within the meta-data architecture that conforms
to the rules of a specific Data Model, e.g. Relational, but which
has not been tuned for implementation in a specific DBMS.

A representation of a data model that has been tailored for
implementation in a particular DBMSs, e.g. DB2, and which
includes the programming statements required to create all the
database objects as well as the specification for those internal
objects peculiar to the physical database, e.g. tablespaces and
indexes.

Providing a well-defmed pattern for usage. For example, a
prescriptive method will detail the steps to be followed and the
order in which they should be executed in order to achieve the
desired end result.

The area of an organisation that is under consideration as part of a
database development activity.

The notion of 'fitness for purpose' . Applied to database
development is concerned both with 'building the system right'
and with 'building the right system' .

The information content of the data model.

An aid to an activity within the data modelling process, which is
usually, but not essentially, an automated software aid.

Universe of

Discourse
(DoD)

user

requirement

The preferred term in this study for the 'problem domain' .

This is the users' perception of the system that the users want and

includes the set of functional and information requirements that

the user will demand of a system.

statement of · A formal definition of the user requirement

way of This describes the form in which the models are to be

communicating communicated to human beings, usually in some form of
graphical notation. Although models have the same way of

modelling they can use different notation.

way of
modelling

This describes the constructs, together with their properties and

the permitted relationships between them. In other words it

provides the grammar and syntax of the 'language' in which the

models are to be expressed

way of working This defines and orders the tasks and sub-tasks that are to be

performed and also provides guidelines and heuristics on how

these tasks should be carried out.

261

162

263

Appendices

us

Appendix 1

InfoModeler™ transformations

On page 76 of this study it is suggested that InfoModeler™ will create an equivalent

relational structure for unary and binary fact types which carry the same general

meaning, thus allowing the analyst to retain the unary form if this is a more intuitive.

The following examples illustrate this and are based on the sentence, 'Hedgehogs

hibernate '

Example 1 The animal type 'hedgehog' hibernates.

@nirnal �------r---�
(type) hibernates

CREA TE TABLE Animal (

Type varchar

1** Animal is . . . **1

Hibernates logical

(20) NOT NULL,

NOT NULL,

1** Indicates whether Animal hibernates or not **1

PRIMARY KEY (Type»

Example 2 The animal type 'hedgehog' has HibernationStatus of 'H'

@
Animal _______ � ,........-u;;: :-:;::--..,.
(type) . L-_----I"--_---Ir---<�ernationStat� has

CREATE TABLE Animal (

Type varchar (20) NOT NULL,

1** Animal that has HibernationStatus. **1

HibernationStatus logical NULL,

1** HibernationStatus that Animal has. **1

PRIMARY KEY (Type»

267

Appendix 2 - NaLER Definition

Language

The NaLER sentences described in Chapter 10 are constructed with the elements

described below. There are a number of primitive constructs some of which are

constants and some variables. These primitives can be combined to create sentences,

some of which are themselves constructed from subset combinations termed phrases.

Primitives

Constants
All constants are italicised. They are,

Each A string which signifies that every instance of the

entity participates in the 'fact' , which follows it.

Is uniquely identified by A string which describes the specific relationship

between an entity and its primary key attribute.

is a

must have only one

may have only one

and

(

A string which describes the specific relationship

between a specialised entity and the entity which is

the generalisation of the first named entity.

A string which denotes the relationship between an

entity and an attribute which it contains, where a

data value is always required in the attribute.

A string which denotes the relationship between an

entity and an attribute which it contains where the

attribute may hold a null value.

A string which is used as a conjunction between

two phrases.

A string which is used to signify the beginning of a

primary key variable.

268

) A string which is used to signify the end of a

primary key variable.

A string which identifies the completion of a

sentence.

Variables

All variables are delineated by arrow brackets. They are,

<entity name> The name of an entity on the E-RJR diagram

<super entity name> The name of a super-entity on an E-R/R diagram

<sub entity name> The name of a sub-entity on an E-RJR diagram

<primary key> The name of the primary key attribute(s) of the entity

which immediately precedes it. If it is a composite

primary key, the attribute names are separated by a

comma.

<attribute name> The name of an attribute within the named entity

<relationship name> The name of a relationship which links the two named

entities

<optionality>

<cardinality>

This describes whether or not the participation of an

entity in a relationship is shown on the diagram as

mandatory or not. It can have two values 'may' or 'must'

This describes the degree of the relationship as shown on

the diagram.

Phrases

EP (Entity Phrase) <entity name> « primary key »

RP (Relationship Phrase) <optionality> <relationship-name> <cardinality>

Sentences

1 . Primary Key Sentence

Each <entity-name> is uniquely identified by <primary key>.

2. Attribute Sentence

Each EP must have only one <attribute name >.

3. Super-sub Sentence

Each <sub-entity-name>« primary key» is a <super-entity-name> « primary key» .

4. Binary sentence

Each EP RP EP .

5. Ternary sentence (Type 1)

Each EP RP EP and RP EP .

6. Ternary sentence (Type 2)

Each EP RP EP and RP EP and RP EP .

269

270

271

Appendix 3 - ISPG Context Diagram

A ward recommendaUon

Student
Student detaUs

College
Administrator

Connnnation

Academic
Records

Postgraduate
Student

Database
System

Class lists

Staff
Member

rse agreements

..... ted award

Head
of

Department

Student details Includes all identification and contact details, current enrolment,
future plans and research interests

Confirmation Report of all information held for an individual student by the system

Award Complete information on a student's results for a completed
recommendation programme of study including the grade point average and a

recommendation that the award be granted with a particular grade

Course proposals Details of a proposed programme of study i ncluding all papers and
the time periods in which they will be studied.

Granted award Notification that an award has been given with a specific grade

Employment status Notification of a students current employment status in the university

Course agreements Record of any decisions made by the head of department pertaining to
a students programme

Research interests The areas of research interest of a member of staff in which research
supervision will be accepted

Class lists

Previous
programmes

List of all students enrolled in a particular paper together with their
contact details

Record of previous programmes of study and awards gained together
with grades where appropriate

272

273

Appendix 4 - Analysis Documentation

Infological

4.1 Initial Sentences

4.1.1 Student View

1. A student enrols in a paper in a particular semester of a particular year.

2. A paper has a specified number of points

3. A paper is run by a member of staff

4. A student enrols in an endorsed programme in a particular year.

s. A programme requires a certain number of points

6. A student has a name.

7. A student has an address.

8. A student has a unique student id.

9. A student may have a unique email address.

10. A student may have a phone number.

11. A student requires approval for a programme of study.

12. A student enrolled in a Special Topic paper requires content approval.

13. A student enrolled in a Research Paper has a research supervisor.

14. A Special Topic is a type of paper.

15. A Research Paper is a type of paper.

274

4.1.2 Paper Co-ordinator View

1. Each paper is identified by a number

2. Each paper has a title

3. Each paper has a points value

4. One paper may be offered in any semester in any year.

5. A staff member may offer more than one paper at a time

6. Many students can be enrolled in such a paper

7. Each student has a unique student id.

8. Each student has a name

9. Each student has contact details

10. Each student has a final grade for such a paper

1 1. Each student is enrolled with a College of the university

12. If such a paper is a Special Topic then

each student has an approved content

13. If such a paper is a Research Project then

each student has a research title

the student in the paper may have additional supervisors.

275

4.1.3 Head of Department View

1 . A student i s enrolled in a programme within a College for a particular time

period

2. A student' s enrolment in such a programme requires HoD approval

3. A student's enrolment in such a programme College approval.

4. A student is enrolled in papers in such a programme.

S. A student has a name

6. A student has one or more previous academic qualifications or
7. A student has been granted graduate status

8. A student enrolled in a research paper has a supervisor

9. A student enrolled in a special topic needs approval for the content

10. A student has a result for a paper

11. A student may have several areas of research interest

12. A student may be employed within the department in some capacity.

13. A staff member can be a co-ordinator for several papers at the same time.

14. A staff member may be a supervisor of several research projects at any one time

15. A staff member has research interests

16. A student's research paper has a project title.

276

4.1.4 College Administrator View

1. A student has a unique identifier

2. A student has a full name

3. A student has an address

4. A student has a programme

5. A student has an annual schedule of proposed papers for a programme

6. A student has Head of Department of approval for programme

7. A student has a total number of points for a programme

8. A student has a schedule of completed papers for a programme for each year of

that programme

9. A student has a grade for each completed paper

10. A paper within each programme has a points value

It.A student has a grade point score for each completed paper

12.A student has a grade point average for a completed programme

13. A student has a supervisor for each completed research paper

14. A student has a title for each completed research paper

15. A student has a grade recommendation for an award

277

4.2 Qualified Fact Types

4.2.1 Student View

Facts:

1 . P a per is run by Staff_Member
Each Paper is run by at most one Staff_Member

2. Paper is worth Points
Each Paper is worth at most one Points

3. Programme requires TotaLPoints
Every Programme requires exactly one Total_Points

4. Student enrols in P aper in Semester in Year
Each Student, Paper, Semester, Year combination is unique

5. Student enrols in Programme with Endorsement in Year
Each Student, P rogramme, Year combination occurs with at most one Endorsement

6. Student has Address
Each Student has at most one Address

7. Student has Email-Address
Each Student has at most one Email_Address and
Each Email_Address has at most one Student that has it

8. Student has Name
Each Student has at most one Name

9. Student has Phone no
Each Student h as at most one Phone_no

1 0 . Student has Research_Supervisor for Research_Paper for Year
Each Student, Research_Paper, Year combination OCCl.:rs with at most one Research_Supervisor

1 1 . Student requires Approval for Programme
Each Student, Programme combination occurs with at most one Approval

1 2 . Student requires Approved_Content for Special_Topic
Each Student, Special_Topic combination occurs with at most one Approved_Content

278

4.2.2.Paper Co-ordinator View

Facts:

1 . Paper has Title
Every Paper has exactly one Title

2. Paper offered in Semester and Year
Each Paper, Semester, Year combination is unique

3. PaperSemesterYear has a Type
Every PaperSemesterYear has a exactly one Type

4. PaperSemesterYear has Points_value
Every PaperSemesterYear has exactly one Points_value

5 . PaperSemesterYear run by Staff_member
Every PaperSemesterYear run by at least one Staff_member and
Each Staff_member has zero or more PaperSemesterYear that run by it

6. Student enrols in PaperSemesterYear
Every Student enrols in at least one PaperSemesterYear and
Every PaperSemesterYear has at least one Student that enrols in it

7. Student has a Name
Every Student has a exactly one Name and
Each Name has at most one Student that has a it

8. Student has Contact_detai ls
Each Student has at most one Contact_details

9. Student is enrolled with College
Every Student is enrolled with exactly one College

1 0. StudentPaperSemesterYear awarded a Result
Each StudentPaperSemesterYear awarded a at most one Result

1 1 . StudentPaperSemesterYear has Appro�ed_Content
Each StudentPaperSemesterYear has at most one Approved_Content

1 2. StudentPaperSemesterYear has Project_Title
Each StudentPaperSemesterYear has at most one Project_Title and
Each Project_Title has at most one StudentPaperSemesterYear that has it

1 3. StudentPaperSemesterYear has Supervisor
Each StudentPaperSemesterYear has zero or more Supervisor and
Each Supervisor has zero or more StudentPaperSemesterYear that has it

1 4. Supervisor has Research interest
Each Supervisor has zero or more Research_interest and
Each Research_interest has zero or more Supervisor that has it

4.2.3 Head of Department View

Facts:

1 . Paper offered by Staff_member in Semester in Year
Each Paper, Staff_member, Semester, Year combination is unique

2. Staff member has Research interest
Each Staff member has zero or more Research interest and
Each Research_interest has zero or more Staff_member that has it

3. Student employed as Position
Each Student employed as at most one Position

4. Student enrols in Programme
Every Student enrols in at least one Programme and
Every Programme has at least one Student that enrols in it

5. Student granted Graduate_status
Each Student granted at most one Graduate_status

6. Student has gained Previous_qualification _

Each Student has gained zero or more Previous_qualification and
Each Previous_qualification has zero or more Student that has gained it

7. Student has Name
Each Student has at most one Name

8. Student has Research interest
-.

Each Student has zero or more Research_interest and
Each Research_interest has zero or more Student that has it

9. Studen�Enrolment gains Result
Each StudentEnrolment gains at most one Result

1 0. StudentEnrolment has Project_title
Each StudentEnrolment has at most one Project_title and
Each Project_title has at most one StudentEnrolment that has it

1 1 . StudentEnrolment has Supervisor
Each StudentEnrolment has zero or more Supervisor and
Each Supervisor has zero or more StudentEnrolment that has it

1 2. StudentEnrolment needs Approved_content
Each StudentEnrolment needs at most one Approved_content

1 3 . StudentProgramme consists of Paper
Each StudentProgramme consists of zero or more Paper and
Each Paper has zero or more StudentProgramme that consists of it

279

280

1 4. StudentProgramme is for Time_Period
Each StudentProgramme is for at most one Time_Period

1 5 . StudentProgramme is within College
Each StudentProgramme is within at most one College

1 6. StudentProgramme requires College_approval
Each StudentProgramme req uires at most one College_approval

1 7 . StudentProgramme requires Oepartment_Approval
Each StudentProgramme requires at most one Oepartment_Approval

1 8. StudentProgrammePaper is for Semester in Year
StudentProgrammePaper is mandatory
Each StudentProgrammePaper, Semester, Year combination is unique

4.2.4 College Administrator View

Facts:

1 . Completed Paper has G rade
Every Completed Paper has exactly one Grade

2. CompletedPaper has Grade.J>oint_score -
Every CompletedPaper has exactly one Grade.J>oint_score
Derived by rule 'value of grade - points value (eg If grade = A and points = 1 0 then score = 80'

3. CompletedPaper has Points
Every Completed Paper has exactly one Points

4. CompletedPaper has Project_title
Each CompletedPaper has at most one Project_title and
Each Project.title has at most one CompletedPaper that has it

5. Completed Paper has Supervisor
Each CompletedPaper has at most one Supervisor

6 . Student enrols in Programme
Each Student enrols in zero or more Programme and
Each Programme has zero or more Student that enrols in it

7. Student has Address
Each Student has at most one Address

8. Student has FulLname
Each Student has at most one Full_name and
Each FulLname has at most one Student that has it

9. StudentProgramme completes Paper in Year
Each StudentProgramme, Paper, Year combination is unique

1 0 . StudentProgramme has Grade.J)oint_average -
Each StudentProgramme has at most one G rade.J)oint_average
Derived by rule 'sum of grade point score/sum of points' .

1 1 . StudentProgramme has HoD_approval
Every StudentProgramme has exactly one HoD_approval

1 2 . StudentProgramme has Points total -
Each StudentProgramme has at most one Points_total
Derived by rule 'Sum of points for all req uired papers in programme'

1 3 . StudentProgramme has Recommended_grade
Each StudentProgramme has at most one Recommended_grade

1 4 . StudentProgramme proposes Paper in Year
Each StudentProgramme, Paper, Year combination is unique

281

282

4.3. Example sentences

4.3.1 Student View

Facts:

1 . Paper is run by Staff_Member
Each Paper is run by at most one Staff_Member

Examples:
Paper '57 .720' is run by Staff_Member 'Larry Haist'
Paper '57.72 1 ' is run by Staff_Member 'Jon Patrick'
Paper '57 .794' is run by Staff_Member 'Jon Patrick'

2. Paper is worth Points
Each Paper is worth at most one Points

Exam ples:
Paper '57.720' is worth Points ' 1 5'
Paper '57.72 1 ' is worth Points ' 1 0'
Paper '57.722' is worth Points '1 0'

3. P rogramme requires Total_Paints
Every Programme requires exactly one TotaLPoints

Examples:
Programme 'M SS' requires TotaLPoints '200'
Programme 'DiplnfSci' requires TotaLPoints '90'
Programme 'MSc' requires TotaLPoints '200'

4. Student enrols in Paper in .Semester in Year
Each Student, Paper, Semester, Year combination is unique

Examples:
Student '9801 0 1 01 ' enrols in Paper '57.794' in Semester ' 1 ' in Year '1 998'
Student '980 1 01 01 ' enrols in Paper '57.794' in Semester '2' in Year '1 998'
Student '980 1 01 01 ' enrols in Paper '57 .794' in Semester ' 1 ' in Year '1 999'
Student '98020202' enrols in Paper '57.794' in Semester ' 1 ' in Year '1 998'

5 . Student enrols in Programme with Endorsement in Year
Each Student, Programme, Year combination occurs with at most one Endorsement

Examples:
Student '980 1 01 01 ' enrols in Programme ' SSc(Hons)' with Endorsement 'Information Systems' in Year , .
Student '98020202' enrols in Programme ' SSc(Hons)' with Endorsement 'Information Systems' in Year , .
Student '9801 0 1 0 1 ' enrols in Programme 'PhO' with Endorsement ' Information Systems' in Year '1 998'
Student '980 1 0 1 0 1 ' enrols in Programme 'PhD' with Endorsement ' Information Systems' in Year '1 999'
Student '98030303' enrols in Programme 'OiplnfSci' with Endorsement 'Information Systems' in Year ' 1 9
Student '98030303' enrols in Programme 'OiplnfSci' with Endorsement 'Computing' i n Year '1 997'

6. Student has Address
Each Student has at most one Address

Examples:
Student '980 1 01 0 1 ' has Address '59 Main St, Palmerston North'
Student '98020202' has Address ' 1 0 Cobden St, Feilding'
Student '963322 1 1 ' has Address '59 Main St Palmerston North'

7 . Student has Email_Address
Each Student has at most one Email Address and
Each Email Address has at most one Student that has it

Examples:
-

Student '980 1 0 1 0 1 ' has Email_Address ·C.Atkins@massey.ac.nz·
Student '98020202' has EmaiLAddress ·L.Weston@massey.ac. nz·

8. Student has Name
Each Student has at most one Name

Examples:
Student '980 1 0 1 01 ' has Name 'Clare Atkins'
Student '98020202' has Name 'liz Weston'

9. Student has Phone_no
Each Student has at most one Phone_no

Examples:
Student '980 1 0 1 0 1 ' has Phone_no '350-4206'
Student '98020202' has Phone_no '350-52 1 7'

283

1 0 . Student has Research_Supervisor for Research_Paper for Year .
Each Student, Research_Paper, Year combination occurs with at most one Research_Supervisor

Examples:
Student '980 1 01 0 1 ' has Research_Supervisor 'Jon Patrick' for Research_Paper '57.799' for Year ' 1 99
Student '980 1 0 1 01 ' has Research_Supervisor ' Roger Tagg' for Research_Paper '57.800' for Year ' 1 9!
Student '980 1 01 0 1 ' has Research_Supervisor 'Jon Patrick' for Research_Paper '57.900' for Year '1 99
Student '98020202' has Research_Supervisor 'Jon Patrick' for Research_Paper '57.800' for Year '1 99

1 1 . Student requ i res Approval for Programme
Each Student, P rogramme combination occurs with at most one Approval

Examples:
Student '980 1 0 1 0 1 ' requires Approval 'Y' for Programme 'BSc(Hons)'
Student '9801 01 01' requires Approval 'N' for Programme 'DiplnfSci'
Student '980 1 0 1 0 1 ' requ i res Approval 'Y for Programme 'PhD'

1 2 . Student requ i res Approved_Content for Special_Topic
Each Student, S pecial_Topic combination occurs with at most one Approved_Content

Examples:
Student '980 1 01 01 ' requires Approved_Content '331 + essay' for Special_Topic '57 .794'
Student '98020202' requires Approved_Content '33 1 + essay' for Special_Topic '57.794'
Student '980 1 0 1 0 1 ' requires Approved_Content '332 + 341 ' for Special_Topic '57.795'

284

4.3.2 Paper Co-ordinator View

Facts:

1 .. Paper has Title . .
Every Paper has at least one Title
Each Paper has at most one Title

Examples:
Paper '57.720' has Title 'Information Systems Research M ethods'
Paper '57 .722' has ntle 'Semantic Modelling'
Paper '57 .794' has Title 'Special Topic in IS'
Paper '57.795' has Title 'Special Topic in Is'

2. Paper offered in Semester and Year
Each Paper, Semester, Year combination is unique

Examples:
Paper '57.720' offered in Semester ' 1 ' and Year '1 998'
Paper '57 .720' offered in Semester ' 1 ' and Year '1 999'
Paper '57.794' offered in Semester ' 1 ' and Year '1 998'
Paper '57.794' offered in Semester '2' and Year '1 998'
Paper '57.799' offered in Semester '2' and Year '1 998'
Paper '57.721 ' offered in Semester ' 1 ' and Year '1 998'

3. PaperSemesterYear has a Type
Every PaperSemesterYear has a at least one Type
Each PaperSemesterYear has a at most one Type

Examples:
PaperSemesterYear '57.794 , 1 , 1 1 998' has a Type 'Special Topic'
PaperSemesterYear '57.794 ,2 , 1 998' has a Type 'Special Topic'
PaperSemesterYear '57.799,2, 1 998' has a Type ' Research'

4. PaperSemesterYear has Points_value
Every PaperSemesterYear has at least one Points_value
Each PaperSemesterYear has at most one Points_value

5 . PaperSemesterYear run by Staff_member
Every PaperSemesterYear run by at least one Staff_member
Each PaperSemesterYear, Staff_member combination is unique

Examples:
PaperSemesterYear '57.720 , 1 , 1 998' run by Staff_member 'LH'
PaperSemesterYear '57.799,2 , 1 998' run by Staff_member 'LH'
PaperSemesterYear '57.799,2, 1 998' run by Staff_member 'CA'
PaperSemesterYear '57.72 1 , 1 , 1 998' run by Staff_member 'LH'

6. Student enrols in PaperSemesterYear
Every Student enrols in at least one PaperSemesterYear
Every PaperSemesterYear has at least one Student that enrols in it
Each Student, PaperSemesterYear combination is unique

Examples:
Student '9701 0 1 0 1 ' enrols in PaperSemesterYear '57 .720, 1 , 1 997'
Student '97020202' enrols in PaperSemesterYear '57.720, 1 , 1 997'
Student '970 1 0 1 0 1 ' enrols in PaperSemesterYear '57 .721 , 1 , 1 997'
Student '1 999' enrols in PaperSemesterYear '980 1 0 1 0 1 ,57 .800 , 1 2'
Student ' 1 999' enrols in PaperSemesterYear '980 1 0 1 0 1 ,57.800, 1 2'
Student ' 1 998' enrols in PaperSemesterYear '98020202,57 .799 , 1 '

7. Student has a N ame
Every Student has a at least one Name
Each Student has a at most one Name
Each N ame has at most one Student that has a it

Examples:
Student '980 1 0 1 01 ' has a Name 'Mike Ryder'

Student '98020202' has a Name 'liz Weston'

8. Student has Contact_details
Each Student has at most one Contact_details

Examples:
Student '980 1 0 1 0 1 ' has Contact details '59, Main St 355-5555'

Student '98020202' has Contact-details ' 1 0 Duna Place 354-6677'

Student '96020202' has Contact=details '59 , Main St 355-5555'

9 . Student is enrolled with College
Every Student is enrolled with at least one College
Each Student is enrolled with at most one College

Examples:
Student '980 1 0 1 0 1 ' is enrolled with College 'Science'
Student '98020202' is enrolled with College 'Business'
Student '970 1 0 1 0 1 ' is enrolled with College 'Science'

1 0 . StudentPaperSemesterYear awarded a Result
Each StudentPaperSemesterYear awarded a at most one Result

Examples:
StudentPaperSemesterYear '980 1 0 1 0 1 ,57.720 , 1 , 1 998' awarded a Result 'A'
StudentPaperSemesterYear '980 1 0 1 0 1 ,57.72 1 , 1 , 1 998' awarded a Result 'A'
StudentPaperSemesterYear '98020202,57.720 , 1 , 1 998' awarded a Result 'B'

1 1 . StudentPaperSemesterYear has Approved_Content
Each StudentPaperSemesterYear has at most one Approved_Content

Examples:
StudentPaperSemesterYear '980 1 0 1 0 1 ,57.794 , 1 , 1 998' has Approved_Content '33 1 +essay'
StudentPaperSemesterYear '9801 0 1 0 1 ,57. 794,2 , 1 998' has Approved_Content 'work project'
StudentPaperSemesterYear '98020202,57.794,2 , 1 998' has Approved_Content 'work project'

1 2 . StudentPaperSemesterYear has Project_Title
Each StudentPaperSemesterYear has at most one Project_Title
Each Project_Title has at most one StudentPaperSemesterYear that has it

Examples:
StudentPaperSemesterYear '9801 0 1 0 1 ,57.799,2 , 1 998' has Project_Title 'A case for CASE'
StudentPaperSemesterYear '98020202,57.799,2 , 1 998' has Project_Title 'An investigation of'

1 3 . StudentPaperSemesterYear has Supervisor
Each StudentPaperSemesterYear, Supervisor combination is unique

Examples:
StudentPaperSemesterYear '980 1 0 1 0 1 ,57.800 , 1 2 , 1 999' has Supervisor 'RW
StudentPaperSemesterYear '980 1 0 1 0 1 ,57.800 , 1 2 , 1 999' has Supervisor 'C F'
StudentPaperSemesterYear '98020202 ,57.799, 1 , 1 998' has Supervisor 'RW

1 4 . Supervisor has Research interest
Each Supervisor, ResearchJnterest combination is unique

Examples:
Supervisor 'CF' has ResearchJnterest 'conceptual modelling'
Supervisor 'CA' has Research_interest 'conceptual modelling'
Supervisor 'CA' has Research_interest 'CASE tools'

285

286

4.3.3 Head of Department View

Facts:

1 . Paper offered by Staff_member in Semester in Year
Each Paper, Staff_member, Semester, Year combination is unique

Examples:
Paper '57 .720' offered by Staff_member 'LH' in Semester ' 1 ' in Year '1 998'
Paper '57 .799' offered by Staff_member 'LH' in Semester ' 1 ' in Year ' 1 998'
Paper '57.799' offered by Staff_member ' LH' in Semester '2' in Year ' 1 998'
Paper '57.799' offered by Staff_member 'CA' in Semester '2' in Year ' 1 998'
Paper '57.720' offered by Staff_member 'LH' in Semester ' 1 ' in Year ' 1 999'

2. Staff member has Research interest
EaCh Staff member, Research interest combination is unique

- - .

Examples:
Staff_member 'CF' has ResearchJnterest 'conceptual modell ing'
Staff_member 'CF' has Research_interest 'Semantic modell ing'
Staff_member 'CA' has Research_interest 'conceptual modell ing'

3. Student employed as Position
Each Student employed as at most one Position

Examples:
Student '9801 01 0 1 ' employed as Position 'Graduate Assistant - half time'
Student '98020202' employed as Positi o n 'Casual Assistant'

. Student '98030303' emplQyed as Positio n 'Graduate Assistant - half time'

4. Student enrols in Programme
Every Student enrols in at least one Programme
Every Programme has at least one Student that enrols in it
Each Student, Programme combination is unique

Examples:
Student '980 1 0 1 0 1 ' enrols in Programm e ' M BS' ·
Student '9801 0 1 0 1 ' enrols in Program me 'PhD'
Student '98020202' enrols in Programme ' M BS'
Student '98020202' enrols in Programm e 'PhD'
Student '98020202' enrols in Programme ' MSc'
Student '98040404' enrols in Programme 'DiplnfSci'

5. Student granted G raduate status
Each Student g ranted almost one Graduate_status

Examples:
Student '98040404' granted Graduate_status "('
Student '98050505' granted Graduate_status "('

6. Student has gained Previous_qualificati o n
Each Student, Previous_qualification combination is unique

Examples:
Student '980 1 0 1 0 1 ' has gained Previous_qualification 'BA(Hons)'
Student '98020202' has gained Previo us_qualification 'OipSci'
Student '98030303' has gained Previous_qualification 'OipSci'
Student '98030303' has gained Previous_qualification 'MSc'

7. Student has Name
Each Student has at most one Name

Examples:
Student '9801 0 1 0 1 ' has Name 'Clare Atkins'
Student '98020202' has Name 'Mike Ryder'

8. Student has Research interest
Each Student, Research_interest combination is u nique

Examples:

Student '98040404' has Research_interest 'conceptual modelling'
Student '98040404' has Research interest 'methodologies'
Student '980 1 0 1 0 1 ' has Research=i nterest 'conceptual modelling'

9. StudentEnrolment gains Result
Each StudentEnrolment gains at most one Result

Examples:
StudentEnrolment '98040404,DiplnfSci,S7.72 1 , 1 , 1 998' gains Result 'S'
StudentEnrolment '98040404, DiplnfSci,S7.794, 1 , 1 998' gains Result 'A'
StudentEnrolment '98040404, Dip lnfSci,S7.794,2 , 1 998' gains Result 'A'

1 0. StudentEnrolment has Project_title
Each StudentEnrolment has at most one Project_title
Each ProjecLtitle has at most one StudentEnrolment that has it

Examples:

287

StudentEnrolment '980 1 0 1 0 1 , M BS,S7.800, 1 2, 1 997' has Project_title 'A case for CASE'
StudentEnrolment '980 1 0 1 01 ,Ph D,S7.900, 1 2, 1 999' has ProjecLtitle 'An investigation into '

1 1 . StudentEnrolment has Supervisor
Each StudentEnrolment, Supervisor combin atio n is unique

1 2 . StudentEnrolment needs Approved_content
Each StudentEnrolment needs at most one Approved_content

Examples: _

StudentEnrolment '98040404, DiplnfSci,S7.794 , 1 , 1 998' needs Approved_content 'work projec
StudentEnrolment '980S0S0S,DiplnfSci,S7. 794, 1 , 1 998' needs Approved_content 'work projec
StudentEnrolment '98040404, DiplnfSci,S7.794,2 , 1 998' needs Approved_content '332+ essay

1 3. StudentP rogramme consists of Paper
Each StudentProgramme, Paper combination is unique

Examples:
StudentProgramme '98040404,DiplnfSci' consists of Paper 'S7.720'
StudentProgramme '98040404, DiplnfSci' consists of Paper 'S7.721 '
StudentProgramme '980S0S0S, Dip lnfSci' consists of Paper 'S7.720'
StudentProgramme '98040404, DiplnfSci' consists of Paper '57.794'
StudentProgramme '980S0S0S, DiplnfSci' consists of Paper 'S7.794'
StudentProgramme '980 1 0 1 0 1 , M BS' consists of Paper 'S7.800'

1 4. StudentProgramme is for Time Period .
Each StudentProgramme is for at most one Time Period

Examples: -

StudentProgramme '980 1 0 1 01 , M BS' is for Time Period ' 1 997-1 998'
StudentProgramme '980 1 0 1 01 , Ph D' is for Time -Period ' 1 998-200 1 '
StudentProgramme '98020202, PhO' is for Time=Period ' 1 998-2001

,

1 5 . StudentProgramme is withi n College
Each StudentProgramme is within at most one College

Examples:
StudentProgramme '9801 01 0 1 , M BS' is within College 'Business'
StudentProgramme '9801 0 1 01 , PhD' i s within College 'Business'
StudentProgramme '98020202, PhD' is within College 'Science'

1 6. StudentProgramme requires College_approval
Each StudentProgramme requires at most one College_approval

Exam ples:
StudentProgramme '9801 0 1 0 1 , M BS' requires College_approval 'Y'
StudentProgramme '98020202,MSc' requires College_approval ''('

1 7. StudentProgramme requires DepartmenCApproval
Each StudentProgramme requires at most one Department_Approval

Examples:
StudentProgramme '9801 0 1 01 ,PhD' requires Department_Approval 'Y'
StudentProgramme '98020202,PhD' requires Department_Approval 'Y'

1 8. StudentProgrammePaper i s for Semester i n Year
Eve,y StudentProgrammePaper must participate in this relationship
Each StudentProgrammePaper, Seme ster, Year combination is unique

Examples:
StudentProgrammePaper '98040404 ,DiplnfSci ,57.794' is for Semester ' 1 ' in Year ' 1 998'
StudentProgrammePaper '98040404, DiplnfSci,57.794' is for Semester '2' in Year ' 1 998'
StudentProgrammePaper '98040404,DiplnfSci,57.794' is for Semester ' 1 ' in Year ' 1 999'
StudentProgrammePaper '98050505, Di p l nfSci,57.794' is for Semester ' 1 ' in Year '1 998'
StudentProgrammePaper '980 1 0 1 0 1 , M BS,57.800' is for Semester ' 1 2' in Yea r '1 997'
StudentProgrammePaper '980 1 01 0 1 , PhD,57.900' is for Semester ' 1 2' in Year '1 999'

4.3.4 College Administrator View

Facts:

1 . CompletedPaper has G rade
Every CompletedPaper has exactly one Grade

Examples:
CompletedPaper '980 1 01 0 1 , Diploma of Science,57 .794, 1 998' has Grade '8'
Completed Paper '9801 0 1 0 1 , Diploma of SCience,57.794 , 1 999' has Grade 'A'
CompletedPaper '98020202, Diploma of Science,57.794, 1 998' has Grade 'A'

2. CompletedPaper has GradeJ>oint_score "
Every CompletedPaper has exactly one G radeJ>oint_score
Derived by rule 'value of grade " points value (eg If grade = A and points = 1 0 then score = 80'

Examples:
CompletedPaper '980 1 0 1 0 1 , Diploma of Science,57.794, 1 998' has GradeJ>oint_score '80'
Completed Paper '980 1 0 1 0 1 , Diploma of Science,57.794, 1 999' has GradeJ>oint_score '60'
CompletedPaper '98020202, Diploma of science,57.794, 1 998' has GradeJ>oint_score '80'

3. CompletedPaper has Points
Every CompletedPaper has exactly one Points

Examples:
CompletedPaper '980 1 01 0 1 , Diploma of Science,57.720 , 1 998' has Points ' 1 5'
CompletedPaper '980 1 0101 , Diploma of Science,57.721 , 1 998' has Points ' 1 0'
CompletedPaper '98020202, Diploma of Science,57 .720, 1 998' has Points ' 1 5'

-

4. CompletedPaper has Project_title
Each CompletedPaper has at most one Project_title and
Each Project_title has at most one CompletedPaper that has it

Exam ples:

289

CompletedPaper '980 1 0101 , Master of Science,57.799, 1 998' has Project_title 'A case of CASE'
CompletedPaper '98020202, Master of Science,57.799, 1 998' has Project_title 'An investigation of '

5 . CompletedPaper has Supervisor
Each CompletedPaper has at most one Supervisor

Exam ples:
CompletedPaper '9801 0101 , Master of Science,57.799, 1 998' has Supervisor 'Larry Haist'
CompletedPaper '980 1 0 1 0 1 , Master of Science,57.BOO, 1 999' has Supervisor 'Ellen Rose'
CompletedPaper '98020202, Master of Science,57.799, 1 998' has Supervisor 'Larry Haist'

6. Student enrols in Programme
Each Student enrols in zero or more Programme and
Each Programme has zero or more Student that enrols in it

Exam ples:
Student '980 1 0 1 0 1 ' enrols in Programme 'Master of Science'
Student '980 1 01 01 ' enrols in Programme ' Doctor of Philosophy'
Student '98020202' enrols in Programme ' Master of Science'
Student '980 1 0 1 01 ' enrols in Programme ' Diploma of Social Sciences'
Student '98020202' enrols in Programme ' Master of Science'
Student '98060606' enrols in Programme ' Master of Science'

7. Student has Address
Each Student has at most one Address

Exam ples:
Student '980 1 0 1 0 1 ' has Address '59 Main Street, Palmerston North'
Student '98020202' has Address ' 1 0 Duna Place, Feilding'
Student '98030303' has Address '59 Main Street, Palmerston North'

290

8. Student has FulLname
Each Student has at most one Full_name and
Each Full_name has at most one Student that has it

Examples:

Student '980 1 0 1 0 1 ' has FulLname 'Clare Frances Atkins'
Student '98020202' has Full_name 'Michael Robert Ryder'

9. StudentProgramme completes Paper in Year
Each StudentProgramme, Paper, Year combination is unique

Examples:
StudentProgramme '9801 01 01 , Diploma of Science' completes Paper '57.794' in Year '1 998'
StudentProgramme '9801 0 1 01 , Diploma of Science' completes Paper '57 .721' in Year ' 1 998'
StudentProgramme '980 1 0 1 01 , Diploma of Science' completes Paper '57.794' in Year '1 999'
StudentProgramme '98020202, Diploma of Science' completes Paper '57.794' in Year '1 998'
StudentProgramme '98020202, Diploma of science' completes Paper '57.794' in Year· '1 998'
StudentProgramme '980 1 01 01 , Diploma of Science' completes Paper '57.720' in Year '1 998'

1 0. StudentProgramme has Gradeyoint_average *

Each StudentProgramme has at most one Gradeyoint_average
Derived by rule 'sum of grade point score/sum of points'

Examples:
StudentProgramme '980 1 0 1 01 , Diploma of Science' has Gradeyoint_average '2'
StudentProgramme '980 1 0 1 01 ,Master of Science' has Gradeyoint_average '4.5'
StudentProgramme '98020202,Diploma of Science' has Gradeyoint_average '2'

1 1 . StudentProgramme has HoD_approval
Every StudentProgramme has exactly one HoD_approval

Examples:
StudentProgramme '980 1 0 1 01 ,Master of Science' has HoD_approval 'IS HoD'
StudentProgramme '980 1 0 1 01 , Diploma of Social Sciences' has HoD_approval ' IS HoD'
StudentProgramme '98020202, Master of Science' has HoD_approval ' IS H o D'
StudentProgramme '98060606,Master of Science' has HoD_approval 'CS H o D'

1 2 . StudentProgramme has Points total *

Each StudentProgramme has at most one Points_total
Derived by rule 'Sum of points for all required papers in programme'

Examples:
StudentProgramme '980 1 0 1 01 ,Diploma of Science' has Points_total '95'
StudentProgramme '980 1 0 1 01 ,Master of Science' has Points_total '200'
StudentProgramme '98020202,Diploma of Science' has Points_total '90'
StudentProgramme '98020202,Master of Scien ce' has Points_total '200'

1 3. StudentProgramme has Recommended_grade
Each StudentProgramme has at most one Recommended_grade

Examples:
StudentProgramme '980 1 0 1 01 ,Diploma of Science' has Recommended_grade 'Distinction'
StudentProgramme '980 1 0 1 01 ,Master of Science' has Recommended_grade 'First Class Honours'
StudentProgramme '98020202,Master of Science' has Recommended_grade 'Distinction'

1 4. StudentProgramme proposes Paper in Year
Each StudentProgramme, Paper, Year combination is unique

Examples:
StudentProgramme '980 1 0 1 01 ,Diploma of Science' proposes Paper '57.794' in Year '1 998'
StudentProgramme '980 1 0 1 01 ,Diploma of Science' proposes Paper '57 .794' in Year '1 999'
StudentProgramme '98020202,Diploma of Science' proposes Paper '57.794' in Year '1 998'
StudentProgramme '980 1 01 01 ,Master of Science' proposes Paper '57.800' i n Year ' 1 999'

. I

291

Datalogical Model

4.4 ORM Diagrams

4.4.1 Student View

_.ss : :

�==;---��_�:". ·!�i�.':.·. '::

'::. '. '.����. ' . . ::

.. .req.ires .. .for,..

.
: : . :, •• tf_� : ::

Student

�
�

>
... 0

... � = .-"0
... 0
I 0

U
...
�

go �
N

N ..,;
0- ..,; N

. . ' .
Name :

. eo;,tact�deiaiis • • ::

. - - . . .

-: ·College . • r---
. . . .

. Hie ' . .

f--�': ' Point� �I�e' • � L-__ """'-__ -.J • . • • - • . '

has a
' . . Type ';

Stair_member
(stair_code)

• Re;ea�ch I�te�e�t " :
.

. ' . :-

:: .' ' CoIi�e_�p��i ' .' ::-----1 , , , , , , , ' ' L. __ ---i_..,.---'

'��rt�:nt ' A��I ' ,
-

,: ,'College ::

..
" TlIlle_Period

Programme
(Prgramme_code) ': ' Pr��l iitl� , " :-

Result
.

). :', Name ':

Previous_qualification
(Id+)

" : R�s'ea;Ch-'�te;
,
e�� : , ,'

.
Graduate_status

needs

:' Semester+
.

, A�';"'ed �t�nl ' , .:: '7

111 ' , , Year+ "
.

�
�
�
�
!.
o
t='
.g �

g
� =
<
..
�
�

�

� � .->
"'"
.s � "'"
... tIJ

.-C 'S �
-<
� t)I) � --0

U
'<:I'

� � 0- � N

:: Points_totalt

. ' Gr�d;j,oi�t_�v�ra�e� . ' . • '
.

. ' . . R�m'm�d��;ade '. '
. . '

. . . proposes . . . in . . .

... �.. �
,_ � :' 'F�"�n�m� " ,

'Addr�s� : :

• • • I • •

Programme • ':
. . . .

. .

I--�I:: ' HoO_�pp�a.:i ::: .
. . .

. . .

f----� .. : 'Grade ':

.
. . ' . .Gr.ad.e_�,nt-:s��t

. . • '

.. � . . , " It- -I : Points. :

I I Year ':

. . . completes . . . ln • .

has

Supervisor
.

. ProjecUitle

295

Appendix 5 - Initial Design

5.1 Initial design model - Student View

Research
StudentProgramme

has
Progranune

is a
�nrolsf -- ID

requires

enrols in Student
StudentPaper

�.uv .. in

h5� t�rols
ProgramrneApproval ID

It- SpecialTopic

Paper

ProgrammeApproval Research SpecialTopic
*StudenCid *StudenCid *StudenCid
*Programme_code *Paper30de *Paper_code
Approval *Year Approved30ntent

Staff_code

Student StudentPaper StudentProgramme
*Studencid *StudenCid *StudenCid
Name *Paper30de *Progranune_code
Address *Year *Year
Email *Semester Endorsement
Phone_no

Paper Programme
*Papeccode *Programme_code
Points Total_points
Staff_member

296

5.2 Initial design model - Paper Co-ordinator View

is offered� has

Paper PaperSemesterYear Staff Allocation

r';�'
requ� has

Supervisor
Student

Enrolment

Researchlnterest

Paper Student Staff Allocation
*Paper_no *StudenCid *Paper_no
Title Name *Semester

ContacCdetails *Year
Enrolled_college *StafCname

PaperSemesterYear Enrolment Supervisor
*Papecno *StudenCid *StudenCid
*Semester *Papecno *Papecno
*Year *Semester * Semester
Points_value *Year *Year

Type Approved30ntent * Staff_name
Result
ProjecCtitle

ResearchInterest
* Staff_name
*Research_interest

5.3 Initial design model - Head of Department View

StudentResearch

I StaffResearch

StudentResearch
*Studencid
*Research_interest

Student
*Studencid
Name

Graduate_status
Position

ResearchInterest
*Staff_name
*Research_interest

'7--Q- 11
have interest in

Student

enrols
in

I StudentProgramrne

Staff Allocation

Staff Allocation
*Papecno
*Semester
*Year
* Staff_name

StudentEnrolment
*Studencid
*Programme_code
*Paper_code
*Semester
*Year
Approved_content
Result
ProjecCtitle

I

297

has�
StudentQualification

consists of

StudentEnrolrnent

��
Supervisor

StudentQualification
*StudenCid
*Qualification

StudentProgranune
*StudenCid
*Programme30de
*Papecno
*Semester
*Year
* Staff_name

298

5.4 College Administrator View

Student

Student
*StudenCid
Full_name

Address

Completed Paper

CompletedPaper
*StudenCid
*Prograrnme
*Papecno
*Year
Grade
Points
Supervisor
ProjecCtitle

enrolled in

has

PToposedPTogranune
*Studencid
*Programme
*Paper_no
*Year

StudentProgramme

== ==

has

=1=
ProposedProgranune

StudentProgranune
*StudenCid
*Programme
HoD _approval
Recommended�ade

5.5 Initial Global Design Model

Entity/Attribute List

As there were a number of redundant and overlapping relationships implicit in this draft

schema, it was not possible to create a useful diagram at this point.

Entity Name Primary Key Other Attributes
Paper Paper code Title, Points
PaperSemesterYear Paper code, Semester, Year Points value, Type
Programme Programme code Points value
Staff Allocation Paper _code, Semester, Year,

Staff name
StaffResearch Staff name, Research interest
Student Student_id Full_name, Address,

Email_address, Phone_no,
Enrolled_college,
Graduate status, Position

Supervisor StudenUd, Paper_code, Semester,
Year Staff name

ProposedProgramme Student id, Programme, Paper, Year
CompletedPaper Student_id, Programme, Paper, Year Grade, Points, Supervisor,

Project title
ProgrammeApproval Student_id, ProgrammeJode HoD_approval,

Recommended �ade
Enrolment Student_id, ProgrammeJode, Approved_content,

Paper, Semester, Year Result, Project title
StudentProgramme Student_id, Programme_code, Paper,

Semester, Year, Staff name
StudentQualification Student id, Qualification
StudentResearch Student id, Research interest

300

301

Appendix 6 - Design in Progress

6.1 Second Draft Design Model

Student Progmnmc

contains

Entity Name Primary Key Other Attributes
ApprovedProgramme StudenUd, HoD_approval,

Programme_code Recommended-W"ade,
Start -year

Enrolment StudenUd, Approved_content,
Programme_code, Result,
Paper_code, ProjecCtitle,
Semester, Year Staff-code

Offering Paper_code, Points_value,
Semester, Type,
Year Staff_code

Paper Paper code Title, Points
Programme Programme_code Programme_name,

Points_value
College,
PG_admin_name,
PG admin _phone no

Staff StafCcode StafCname,
Research interest

Student StudenUd Full_name, Address,
Email_address,
Phone_no, Enrolled_college,
Graduate_status, Position,
Previous_qualifications,
Work_experience,
Research interest

302

6.2 Final Draft Design Model

enrols in I Student �pprovedProgramme '" Programme
participates
in

contains

I has
Offering Enrolment

(;
appears as .()+.

runs- Staff

I Paper

Entity Name Primary Key Other Attributes
}\pprovedPrograrnrn StudenCid, HoD _}\pproval,
e ProgrammeJode Recommended_Grade,

Start _year
Enrolment StudenCid,Programme_co Approved_Content,

de, Result,
Paper _code,Semester, Year Projecuitle,

Supervisor
Offering Paper_code. Semester, Points_value,

Year Type,
Staff_code

Paper Paper_code Title,
Points

Programme ProgrammeJode Programme_name,
Points_value
College,
PG_admin_name,
PG admin _phone no

Staff StafCcode StafCname,
Research interest

Student StudenUd Full_name,
}\ddress,
Phone_no,
Email_address
Enrolled_college,
Graduate_status,
Position,
Previous_qualifications,
Work_experience,
Research interest

303

6.3 Pre-verification Design Model

enrols in
Student ApprovedProgramme

�CiPates
Programme

in

contains offers

has
Offering Enrolment College

(;
appears
as

runs Ot- Staff

Paper

Entity Name Primary Key Other Attributes
ApprovedProgramm StudenUd, HoD_approval,
e Programme_code Recommended�ade,

Start -year,
Enrolment StudenCid, Approved_content,

Prog ramme _code, Result,
Paper_code, ProjecUitle,
Semester, Year Supervisor

Offering Paper_code, Points_value,
Semester, Year Staff_code

Paper Paper30de Title,
TYJ!e

Programme Programme_code Programme_name,
Required_points,
College name

College College_name PG_admin_name,
PG admin _phone no

Staff StafCcode StafCname,
Research interest

Student StudenUd Full_name,
Address,
Phone_no,
Email_address,
Graduate_status,
Position
Previous_qualifications,
Work_experience,
Research interest

Appendix 7 - Design Verification

7.1 NaLER Sentences

Primary Key Sentences

SI. Each ApprovedProgramme is uniquely identified by StudenUd, Programme_code.

S2. Each College is uniquely identified by College_name

SI. Each Enrolment is uniquely identified by StudenUd, Programme_code, Paper_code, Semester,
Year.

S2. Each Offering is uniquely identified by Paper_code, Semester, Year.

S3. Each Paper is uniquely identified by Paper_code.

S4. Each Programme is uniquely identified by Programme_code.

SS. Each Staff is uniquely identified by StafCcode.

SI. Each student is uniquely identified by StudenUd

Attribute Sentences

S9. Each ApprovedProgramme (Student_id, Programme_code) must have one HoD3PProval.

S10. Each ApprovedProgramme (StudenUd, Programme_code) must have one Recommended--yade.

S11. Each ApprovedProgramme (Student_id, Programme_code) must have one Start-year.

S12. Each College (College_name) must have one PG_admin_name.

S13. Each College (College_name) must have one PG_admin_phone_no.

S14. Each Enrolment (StudenUd, Programme_code. Paper30de, Semester, Year) may have one
Approved30ntent.

30S

SIS. Each Enrolment (StudenUd, Programme_code. Paper30de, Semester, Year) must have one Result.

S16. Each Enrolment (StudenUd, Programme_code. Papeccode, Semester, Year) may have one
Project_title

S17. Each Enrolment (StudenCid, Programme_code. Paper30de, Semester, Year) may have one
Supervisor

S18. Each Offering (Paper_code, Semester, Year) must have one Points_value.

S19. Each Paper (paper_code) must have one Title.

S20. Each Paper (paper3ode) must have one Type.

S21. Each Programme (Programme_code) must have one Programme_name.

S22. Each Staff (StafCcode) must have one StafCname.

S23. Each Student (Student_id) must have one FUll_name.

S24. Each Student (Student_id) must have one Address.

S2S. Each Student (StudenUd) may have one Phone_no.

S26. Each Student (StudenUd) may have one Email_address.

S27. Each Student (StudenUd) must have one Graduate_status.

S28. Each Student (StudenUd) may have one Position.

S29. Each Student (StudenUd) may have one Previous_qualifications.

306

S30. Each Student (StudenUd) may have one Work3xperience.

S31. Each Student (StudenUd) may have one Research_interest.

Relationship Sentences

S32. Each College (College_name) must have one or more Programme (Programme_code).

Each Programme (Programme_code) must belong to only one College (College_name).

S33. Each Programme (Programme_code) must participate in one or more ApprovedProgramme
(StudenUd, Programme_code).

Each ApprovedProgramme (Student_id, Programme30de) must belong to only one Programme
(Programme_code).

S34. Each Student (StudenUd) must take one or more ApprovedProgramme (StudenUd,
Programme_code).

Each ApprovedProgramme (StudenUd, Programme_code) must belong to only one Student(StudenCid).

S35. Each ApprovedProgramme (StudenUd, Programme_code) must consist of one or more Enrolment
(StudenUd, Programme3ode, Paper3ode, Semester, Year).

Each Enrolment (Studencid, Programme_code, Paper_code, Semester, Year) must be part of
ApprovedProgramme (StudenUd, Programme30de).

S36. Each Enrolment (StudenUd, Programme_code, Paper_code, Semester, Year) must belong to one
Offering (Paper_code, Semester, Year).

Each Offering (Paper3ode, Semester, Year) may have one or more Enrolment (StudenUd,
Programme30de, Paper30de, Semester, Year).

S37. Each Offering (Paper30de, Semester, Year) must consist of only one Paper (Paper3ode).

Each Paper (Paper_code) may participate in one or more Offering (Papeccode, Semester, Year).

S38. Each Offering (Paper_code, Semester, Year) may be run by only one Staff (StafCcode).

Each Staff(StafCcode)may run one or more Offering (Paper_code, Semester, Year).

Omitted Sentences

S39. Each ApprovedProgramme (StudenUd, Programme3ode) must have one Endorsement.

S40. Each Programme (Progranune_code) must have one Required_points.

S41. Each Staff (Staff_code) may have one Research_interest.

Added Sentences

S42. Each ApprovedProgramme (StudenUd, Programme3ode) may have one Intended_finish-year.

S43. Each ApprovedProgramme (StudenUd, Programme_code) may have one College_approval_date

Replacement Sentence

S44. Each ApprovedProgramme (StudenUd, Prograrnrne_code) may have one HoD_approval_date

7.2 NaLER Example Sentences

89. Each ApprovedProgramme (8tudenCid, Programme_code) must have one HoD_approval.

ApprovedPrograrnrne (98010101 ,MSc) must have HoD_approval ' IS HoD'
ApprovedPrograrnrne (98010101 ,DipSocSc) must have HoD_approval 'IS HoD'
ApprovedPrograrnrne (98020202,MSc) must have HoD_approval 'IS HoD'
ApprovedPrograrnrne (98060606,MSc) must have HoD_approval 'CS_HoD'

307

View - College Administrator Fact 1 1 , related to Student Fact 1 1 . (Conflict with HoD

Fact 1 6 and 1 7)

Notes - In the original examples, the full Programme name was used rather than the

Programme_code.

810. Each ApprovedProgranune(8tudenCid, Programme_code) must have one
Recommended-wade.

ApprovedPrograrnrne (98010101 ,DipS c) has Recommended�ade 'Distinction'
ApprovedPrograrnrne (98010101 ,MSc) has Recommended�ade 'First Class Honours'
ApprovedPrograrnrne (98020202,MSc) has Recommended�ade 'Distinction'

View - College Administrator Fact 1 3 .

Notes - A s S 9 above.

811. Each ApprovedProgranune (Student_id, Programme_code) must have one 8tart-year.

ApprovedPrograrnrne (98010 1 0 1 ,DipSc) has Start-year ' 1 997'
ApprovedPrograrnme (98010101 ,MSc) has Start-year ' 1 998'
ApprovedPrograrnme (98020202,MSc) has Start_year ' 1 997'

View - None but related to Student Fact 5 .

Notes - This fact was created during the generation of alternative solutions. It

corresponds partly to the Year attribute of the primary key of the

ApprovedProgramme entity of the Student view, which was considered unnecessary

during the view amalgamation phase. These examples created by the developer.

S12. Each College (College_name) must have one PG_admin_name.

College (Business) has PG_adrnin_name 'Alison Gustafson'
College (Science) has PG_adrnin_name 'Mike Hardman' .

View - None.

Notes - This fact was created during the generation of alternative solutions. It provides

information on who needs to be notified of Proposed and Completed Programmes.

These examples have thus been created by the developer.

813. Each College (College_name) must have one PG_admin_phone_no.

College (Business) has PG3drnin_phone_no '4222'
College (Science) has PG_adrnin_phone_no '4333' .

308

View - None.

Notes - This fact was created during the generation of alternative solutions. These

examples have thus been created by the developer.

S14. Each Enrolment (StudenCid, Programme_code. Paper_code, Semester, Year) may have one
Approved_content.

Enrolment (9801010 1 , DipSc, 57.794, 1 , 1997) has Approved-Content '33 1 + essay'.
Enrolment (98020202, DipSc,57. 794, 1 , 1997) has Approved-Content '331 + essay' .
Enrolment (9801010 1 , MSc,57 .795, 1 , 1 997) has Approved-Content '332+ 341 ' .

View - related to Student Fact 1 2, HoD Fact 1 2, Paper Co-ordinator Fact 1 1

S15. Each Enrolment (StudenCid, Programme_code. Paper_code, Semester, Year) must have one
Result.

Enrolment (98040404, DiplnfSc,57.72I , I , 1998) has Result 'B'.
Enrolment (98040404, DiplnfSc,57. 794, 1 , 1998) has Result ' A'.
Enrolment (98040404, DiplnfSc,57. 794,2, 1998) has Result ' A'.

View - HoD Fact 9, related to College Administrator Fact 1, related to Paper Co­

ordinator Fact 10

S16. Each Enrolment (StudenCid, Programme30de. Paper_code, Semester, Year) may have one
ProjecCtitle

Enrolment (9801 0 1 0 1 , MBS,57.800,12, 1 997) has ProjecUitle 'A case for CASE'.
Enrolment (98010101 , PhD,57.900, 1 2, 1999) has Projecuitle 'An investigation into ' .

View - HoD Fact 10, related to Paper Co-ordinator Fact 12, related to College

Administrator Fact 4

S17. Each Enrolment (StudenCid, Programme_code. Paper_code, Semester, Year) may have one
Supervisor

Enrolment (98010101 ,DiPc,57.799,2,1996) has Supervisor 'lon Patrick'.
Enrolment (9801 0101 ,MSc,57.800, 12, 1 998) has Supervisor 'Roger Tagg'.
Enrolment (9801 0101 ,PhD,57.900,12,1999) has Supervisor 'lon Patrick' .
Enrolment (98020202, MSc,57.800,12, 1 998) has Supervisor 'lon Patrick'.

View - related to Student Fact 10, related to College Administrator Fact 5, related to

HoD Fact 1 1

Enrolment (9801 0101 ,MSc,57.800, 12, 1999) has Supervisor 'Richard Whiddett' .
Enrolment (980 1 0101 ,MSc,57.800, 12, 1 999) has Supervisor 'Chris Freyberg' .
Enrolment (98020202, MSc,57.799, 1 , 1998) has Supervisor ' Richard Whiddett ' .

View - related to Paper Co-ordinator Fact 13

Notes - In this second set of examples the second sentence is now an incorrect example

as the decision was taken to hold only the chief supervisor for each project.

S18. Each Offering (Paper_code, Semester, Year) m ust have one Points_value.

Offering (57.720, 1 , 1 998) has Points_value ' 15 ' .
Offering (57.721 , 1 , 1 998) has Points_value ' 1 0' .
Offering (57.720, 1 , 1 999) h as Points_value ' 15 ' .

309

View - Paper Co-ordinator Fact 4, related to College Administrator Fact 3, related to

Student Fact 5

S19. Each Paper (Paper30de) must have one Title.

Paper (57.720) has Title 'Infonnation Systems Research Methods'.
Paper (57.722) has Title 'Semantic Modelling' .
Paper (57.794) has Title 'Special Topic in IS' .
Paper (57.795) has Title 'Special Topic in IS' .

View - Paper Co-ordinator Fact 1

S20. Each Paper (Paper_code) must have one Type.

Paper (57.794) has Type 'Special topic' .
Paper (57.799) has Type 'Research' .

View - related to Paper Co-ordinator Fact 3

S21. Each Programme (Programme_code) must have one Programme_name.

Programme (MSc) has Programme_name 'Master of Science' .
Programme (DiplnfSci) has Programme_name 'Diploma of Infonnation Sciences'.

View - None.

Notes - This sentence was created during the generation of alternatives (point 1) but is

implicit in the use of Programme_code by three views and Programme_name by the

fourth. These examples were created by the developer.

S22. Each Staff (Staff_code) must have one Staff_name.

Staff (RT) has the name 'Roger Tagg' .
Staff (JP) has the name ' Jon Patrick' .

View - None.

This fact was created during the generation of alternatives (Point 1) . These examples

here created by the developer.

S23. Each Student (StudenCid) must have one FuO_name.
Student (98010101) has the Full_name 'Michael Robert Ryder' .
Student (98020202) has the Full_name 'Lisabeth Anne Weston'.

View - related to Paper Co-ordinator Fact 7, related to Student Fact 8, related to HoD

Fact 7, College Administrator Fact 8

S24. Each Student (StudenCid) must have one Address.

Student (98010101) has Address '59 Main Street, Palmerston North'
Student (98020202) has Address ' 1 0 Cobden Street, Feilding ' .
Student (963322 1 1) has Address '59 Main Street, Palmerston North'

View - Student Fact 6, College Administrator Fact 7, related to Paper Co-ordinator Fact

8

S25. Each Student (StudenCid) may have one Phone_no.

310

Student (98010101) has Phone_no '350-4206'
Student (98020202) has Phone_no '350-5217 ' .

View - Student Fact 9, related to Paper Co-ordinator Fact 8

S26. Each Student (StudenCid) may have one EmaiCaddress.

Student (980101 0 1) has EmaiLaddress ·C.Atkins@massey.ac.nz·
Student (98020202) has EmaiI3ddress .L.Weston@massey.ac.nz.

View - Student Fact 7

S27. Each Student (StudenCid) must have one Graduate_status.

Student (98040404) has Graduate_status 'Y'
Student (98050505) has Graduate_status 'Y'

View - HoD Fact 5

S28. Each Student (StudenCid) may have one Position.

Student (980101 0 1) has Position 'Graduate Assistant - half-time'.
Student (98020202) has Position 'Casual Assistant ' .
Student (980030303) has Position 'Graduate Assistant - half-time'.

View - HoD Fact 3

S29. Each Student (StudenCid) may have one Previous_qualifications.

Student (9801010 1) has Previous_qualifications 'BA(Hons)'.
Student (98020202) has Previous_qualifications 'DipSc '.
Student (98030303) has Previous_qualifications 'DipSc , MSc' .

View - related to HoD Fact 6

S30. Each Student (StudenCid) may have one Work_experience.

Student (98020202) has Work_experience ' 1 0 years as systems developer ' .
Student (98030303) has Work_experience '3 years as help desk, 2 years programming' .

View - none

Notes - This fact was created during the generation of alternative solutions (point 3).

These examples created by the developer

S31. Each Student (StudenCid) may have one Research_interest.

Student (98040404) has Research_interest 'conceptual modelling, methodologies ' .
Student (98010 1 0 1) has Research_interest 'conceptual modelling ' .

View - related to HoD Fact 8

S32. Each College (College_name) must have one or more Programme (Programme_code).

College (Business) has Programme 'BBS (Hons)
,
.

College (Business) has Programme 'PhD' .
College (Science) has Programme 'PhD' .

R. Each Programme (Programme_code) must belong to only one College (CoUege_name).

Programme 'BBS (Hons)
,

belongs to College (Business)
Programme 'PhD' belongs to College (Business)
Programme 'PhD' belongs to College (Science)

311

View - related to HoD Fact 15, related to Paper Co-ordinator Fact 9

Notes - This fact was created during the normalisation check. The examples were

created by the developer. During their creation a potential problem was highlighted

in that the PhD program was not unique to a College. In fact an unidentified many

to many relationship existed between Programme and College. This needed to be

investigated further with the user.

S33. Each Programme (Programme_code) must participate in one or more ApprovedProgramme
(StudenCid, Programme_code).

Programme 'BBS (Hons)
,

participates in ApprovedProgramme (98010101 ,BBS(Hons» .
Programme 'PhD' participates in ApprovedProgramme (98010101 ,PhD» .
Programme 'PhD' participates in ApprovedProgramme (98020202,PhD).

R. Each ApprovedProgramme (StudenCid, Programme_code) must belong to only one Programme
(Programme_code).

Programme 'BBS (Hons)
,

participates in ApprovedProgramme (98010101 ,BBS(Hons» .
Programme 'PhD' participates in ApprovedProgramme (98010101 ,PhD» .
Programme 'PhD' participates in ApprovedProgramme (98020202,PhD).

View - none

Notes - This fact was created during the generation of alternatives phase (point 1) .

These examples were therefore created by the developer.

S34. Each Student (StudenCid) must take one or more ApprovedProgramme (StudenCid,
Programme_code).

Student (9801 0101) takes ApprovedProgramme (98010101 ,MSc).
Student (98010101) takes ApprovedProgramme (98010101 ,PhD).
Student (98020202) takes ApprovedProgramme (98010101 ,MSc).

Each ApprovedProgramme (StudenCid, Programme_code) must belong to only one Student
(StudenUd).

ApprovedProgramrne (98010101 ,MSc) belongs to Student (98010101).
ApprovedProgramrne (980 1 0101 ,PhD) belongs to Student (98010101).
ApprovedProgramrne (98020202,MSc) belongs to Student (98020202).

View - related to Student Fact 5, related to College Administrator Fact 6, related to HoD

Fact 4

S35. Each ApprovedProgramme (StudenCid, Programme_code) must consist of one or more
Enrolment (StudenCid, Programme_code, Paper30de, Semester, Year).

ApprovedProgramrne (98010101 ,MSc) consists of Enrolment (98010101 ,MSc,
57.800,12,1998).

ApprovedProgramrne (98010101 ,MSc) consists of Enrolment (98010101 ,MSc,
57.720, 1 , 1998).

ApprovedProgramrne (980 1 0101 ,PhD) consists of Enrolment (98010101 ,PhD,
57.900,12, 1999).

ApprovedProgramrne (98020202,MSc) consists of Enrolment (98020202,MSc,
57.800,12 , 1998).

Each Enrolment (StudenCid, Programme_code, Paper_code, Semester, Year) must be part of
ApprovedProgramme (StudenCid, Programme_code).

312

Enrolment (98010101 ,MSc, 57.800,12,1998) is part of
ApprovedProgramme (98010101 ,MSc).

Enrolment (98010101 ,MSc, 57.720, 1 , 1 998) is part of
ApprovedProgramme (980101 0 I ,MSc).

Enrolment (98010101 ,PhD, 57.900, 12, 1999) is part of
ApprovedProgramme (980 10 I O I ,PhD).

Enrolment (98020202,MSc,57.800, 12,1998) is part of
ApprovedProgramme (98020202,MSc).

View - related to Student Fact 4, related to College Administrator Fact 9, related to HoD

Fact 13,

S36. Each Enrolment (StudenCid, Programme30de, Paper_code, Semester, Year) must belong to
one Offering (Paper_code, Semester, Year).

Enrolment (98040404,DipInfSc, 57.794, 1 , 1 998) belong to Offering (57.794, 1 , 1 998).
Enrolment (98040404,DiplnfSc, 57.794,2,1998) belong to Offering (57.794,2, 1 998).
Enrolment (98040404,DiplnfSc, 57.794,1 , 1 999) belong to Offering (57.794, 1 , 1 999).
Enrolment (98050505,DiplnfSc, 57.794, 1 , 1 998) belong to Offering (57.794, 1 , 1 998).

Each Offering (Paper3ode, Semester, Year) may have one or more Enrolment (StudenCid,
Programme_code, Paper_code, Semester, Year).

Offering (57.794, 1 , 1 998) has Enrolment (98040404,DiplnfSc, 57.794, 1 , 1 998).
Offering (57.794,2, 1 998) has Enrolment (98040404,DiplnfSc, 57.794,2, 1 998).
Offering (57.794, 1 , 1 999) has Enrolment (98040404,DiplnfSc, 57.794, 1 , 1 999).
Offering (57.794, 1 , 1 998) has Enrolment (98050505,DiplnfSc, 57.794, 1 , 1 998).

View - related to HoD Fact 1 8, related to College Administrator Fact 14, related to

Paper Co-ordinator Fact 6

S37. Each Offering (Paper_code, Semester, Year) must consist of only one Paper (Paper_code).

Offering (57.794, 1 , 1 998) consists of Paper (57.794).
Offering (57.794,2, 1 998) consists of Paper (57.794).
Offering (57.794, 1 , 1 999) consists of Paper (57.794).
Offering (57.720, 1 , 1 998) consists of Paper (57.720).

Each Paper (Paper_code) may participate in one or more Offering (Paper_code, Semester, Year).

Paper (57.794) participates in Offering (57.794, 1 , 1 998).
Paper (57.794) participates in Offering (57.794,2, 1 998).
Paper (57.794) participates in Offering (57.794, 1 ,1 999).
Paper (57.720) participates in Offering (57.720, 1 ,1 998).

View - related to Paper Co-ordinator Fact 2

S38. Each Offering (Paper_code, Semester, Year) may be run by only one Staff (Staff_code).

Offering (57.794,1 , 1 998) is run by Staff (CA).
Offering (57.794,2, 1 998) is run by Staff (JP).
Offering (57.794,1 , 1 999) is run by Staff (CA).
Offering (57.720, 1 , 1 998) is run by Staff (LH).

Each Staff (Staff_code)may run one or more Offering (Paper_code, Semester, Year).

Staff (CA) runs Offering (57.794, 1 , 1998).
Staff (JP) runs Offering (57.794,2, 1998).
Staff (CA) runs Offering (57.794, 1 , 1999).
Staff (LH) runs Offering (57.720,1 , 1998).

View - Paper Co-ordinator Fact 5, HoD Fact 1 , related to Student Fact 1

Omitted Sentences

S39. Each ApprovedProgramme (StudenCid, Programme_code) must have one Endorsement.

ApprovedProgramme (98010101 ,DipS c) has Endorsement 'Computing'
ApprovedProgramme (98010101 ,MSc) has Endorsement 'Infonnation Systems'
ApprovedProgramme (98020202,MSc) has Endorsement 'Infonnation Systems '

View - None but related to Student Fact 5.

S40. Each Programme (Programme_code) must have one Required_points.

Programme (MBS) has Required_points '200'
Programme (DiplnfSci) has Required_points '90'
Programme (MSc) has Required_points '200'

View - Student Fact 3 .

S4 1 . Each Staff (Staff_code) may have one Research_interest.

Staff (CA) has Research_interest 'Conceptual Modelling, CASE tools'
Staff (CF) has Research_interest 'Conceptual Modelling'
Staff (MR) has Research_interest 'Conceptual Modelling, CASE tools'

View - HoD Fact 2, related to Paper Coord Fact 14.

New sentences

S42. Each ApprovedProgramme (StudenUd,
Intended_rmishJear.

ApprovedPrograrnme (98010101 ,DipSc) has Intended_finishJear ' 1 998'
ApprovedProgramme (98010101 ,MSc) has Intended_finish_year '2000'
ApprovedProgramme (98020202,MSc) has Intended_finishJear ' 1998'

View - None but related to HoD Fact 14

may have

313

one

S43. Each ApprovedProgramme (StudenCid, Programme_code) may have one College_approval

ApprovedProgramme (98010101 ,DipS c) has College_approval_date '21 -5-1997'
ApprovedProgramme (98010101 ,MSc) has College_approval_date '21 -5-1998'
ApprovedProgramme (98020202,MSc) has College_approval_date '21-5-1998'

View - None but related to HoD Fact 16

Replacement Sentences

S44. Each ApprovedProgramme (StudenUd, Programme_code) must have one
HoD _approval_date.

ApprovedPrograrnme (98010101 ,MSc) has HoD_approval_date ' 1 -3-1998'
ApprovedPrograrnme (98010101 ,DipSocSc) has HoD_approval_date ' 1 -3-1998'
ApprovedPrograrnme (98020202,MSc) has HoD_approval_date '28-2- 1998'

View - related to College Administrator Fact 1 1 , related to Student Fact 1 1 , related to

HoD Fact 17

Notes - Replaces S9

Late Addition

S45. Each Offering (Paper_code, Semester, Year) must be offered in one Mode.

314

Offering (57.720, 1 , 1 999) is offered 'Internal'
Offering (57.720,1 ,2000) is offered 'Internal'
Offering (57.723,2, 1 999) is offered 'Block'

315

Appendix 8 - Equivalence Tables

8.1 NaLER Sentences v Infological Analysis Model

View Fact Sentence Notes Action
Student 1 38

2 1 8
3 missing added, S 40
4 35
5 1 1 134 but endorsement added, S 39

missing
6 24
7 26
8 23
9 25
10 17
1 1 9
12 14

View Fact Sentence Notes Action
Paper Coord 1 19

2 37
3 20
4 1 8
5 38
6 36
7 23
8 24/25
9 32
10 1 5
1 1 14
12 16
13 17
14 missing now related to S 4 1

316

View Fact Sentence Notes Action
HoD 1 38

2 missing added, S4 1
3 28
4 34
5 27
6 29
7 23
8 3 1
9 1 5
1 0 1 6
1 1 1 7
12 1 4
1 3 35
14 missing added Intended_finish_year,

S42
15 32
16 conflict with added College_approval_date,

S9 S43
17 conflict with renamed HoD _approvaCdate,

S9 S44
1 8 36

View Fact Sentence Notes Action
College 1 1 5
Administrato
r

2 deri ved fact
3 1 8
4 1 6
5 1 7
6 34
7 24
8 23
9 35
10 derived fact
1 1 9
1 2 derived fact
1 3 1 0
14 36

317

8.2 Verification Views

8.2.1 Student

F# S# Sentences
1 38 Each Offering(Paper30de,Semester, Year) may be run by only one

Staff(StafCcode)

Each Staff(StafCcode)may run one or more Offering(Papeccode,Semester,
Year).

2 1 8 Each Offering(Paper code,Semester,Year) must have one Points value.
3 40 Each Programme(Programme code) must have one Required _points.
4 35 Each ApprovedProgramme (StudenUd,Prograrnme_code) must consist of one or

more Enrolment(StudenCid,Programme_code, Paper_code, Semester, Year).

Each Enrolment(StudenUd,Programme_code, Papeccode, Semester, Year)
must be part of ApprovedProgramme (Student id,Programme code).

5 1 1 Each ApprovedProgramme(StudenUd,Programme_code) must have one
34 StarCyear.

Each Student(StudenUd) must take one or more ApprovedProgramme
(Student_id, Programme30de).
Each ApprovedProgramme (StudenUd,Programme_code) must belong to only
one Student(Student id).

6 24 Each Student(Student id) must have one Address.
7 26 Each Student(Student id) may have one Email address.
8 23 Each Student(Student id) must have one Full name.
9 25 Each Student(Student id) may have one Phone no.
10 17 Each Enrolment(StudenUd,Programme_code.Paper_code,Semester, Year) may

have one Supervisor
1 1 44 Each ApprovedProgramme(Student_id,Programme_code) may have one

HoD approval date.
1 2 14 Each Enrolment(StudenUd,Programme_code.Paper30de,Semester,Year) may

have one Approved content.

318

8.2.2 Paper Co-ordinator View

F# S# Examples
1 1 9 Each Paper(Paper code) must have one Title.
2 37 Each Offering(Papeccode,Semester, Year) must consist of only one

Paper(Paper_code).
Each Paper(Paper_code) may participate in one or more
Offering(Paper code, Semester, Year).

3 20 Each P,!!,er(Paper code) must have one Type.

4 1 8 Each Offering(Paper code,Semester,Year) must have one Points value.
5 38 Each Offering(Papeccode,Semester, Year) may be run by only one

Staff(StafCcode).

Each Staff(StafCcode)may run one or more Offering(Paper_code,Semester,
Year).

6 36 Each Enrolment(StudenUd,Programme30de, Paper_code, Semester, Year) must
belong to one Offering(Paper_code,Semester, Year).

Each Offering(Papeccode,Semester, Year) may have one or more Enrolment
(Student id,Programme code, Paper code, Semester, Year).

7 23 Each Student(Student id) must have one Full name.
8 24/ Each Student(StudenUd) must have one Address.

25 Each Student(Student id) may have one Phone no.
9 32 Each College(College_name) must have one or more

Programme(Programme_code).
Each Programme(Programme_code) must belong to only one
ColleKelCollege name).

l O 15 Each Enrolment(StudenUd,Programme_code.Paper_code,Semester, Year) must
have one Result.

1 1 14 Each Enrolment(StudenUd,Programme30de.Paper_code,Semester,Year) may
have one Approved content.

1 2 1 6 Each Enrolment(StudenUd,Programme_code.Paper_code,Semester, Year) may
have one Project title

1 3 1 7 Each Enrolment(StudenUd,Programme_code.Paper_code,Semester, Year) may
have one Supervisor

14 4 1 Each Staff(Staff code) may have one Research interest.

319

8.2.3 Head of Department View

F# S# Examples
1 38 Each Offering(Paper_code,Semester, Year) may be run by only one

Staff(StafCcode) .

Each Staff(StafCcode)may run one or more Offering (Paper_code,Semester,
Year).

2 41 Each Staff(Staff code) may have one Research interest.
3 28 Each Student(Student id) may have one Position.
4 34 Each Student(StudenUd) must take one or more ApprovedProgramrne

(StudenUd,Programme_code).

Each ApprovedProgramme (StudenUd,Programme_code) must belong to only
one Student(Student id).

5 27 Each Student(Student id) must have one Graduate status.
6 29 Each Student(Student id) may have one Previous _qualifications.
7 23 Each Student(Student id) must have one Full name.
8 3 1 Each Student(Student id) may have one Research interest.
9 1 5 Each Enrolment(StudenUd,Programme_code.Paper30de,Semester, Year) must

have one Result.
10 16 Each Enrolment(StudenUd,Programme_code.Papeccode,Semester,Year) may

have one Project title
1 1 1 7 Each Enrolment(StudenUd,Programme30de.Paper_code,Semester, Year) may

have one Supervisor
1 2 14 Each Enrolment(StudenUd,Programme_code.Paper_code,Semester, Year) may

have one Approved content.
1 3 35 Each ApprovedProgramme (StudenUd,Programme30de) must consist of one or

more Enro!ment(StudenUd,Programme_code, Paper_code, Semester, Year).

Each Enrolment(StudenUd,Programme_code, Papeccode, Semester, Year)
must be part of ApprovedProgramme (Student id,Programme code).

14 42 Each ApprovedProgramme(StudenUd,Programme30de) may have one
Intended finish "year.

1 5 32 Each College(College_name) must have one or more
Programme(Programme_code) .

Each Programme(Programme_code) must belong to only one
College{College name).

1 6 43 Each ApprovedProgramme(StudenUd,Programme_code) may have one
College approval date

1 7 44 Each ApprovedProgramme(StudenUd,Programme_code) may have one
HoD approval date

1 8 36 Each Enrolment(StudenUd,Programme_code, Paper_code, Semester, Year)
must belong to one Offering(Papeccode,Semester, Year).

Each Offering(Paper_code,Semester, Year) may have one or more Enrolment
(Student id,Programme code, Paper code, Semester, Year).

320

8.2.4 College Administrator View

F# S# Examples
1 1 5 Each Enrolment(StudenUd,Programme_code.Paper_code,Semester, Year) must

have one Result.
2 derived - Enrolment.result(value) *Offering.Points = grade point score
3 1 8 Each Offering(Paper code,Semester,Year) must have one Points value.
4 1 6 Each Enrolment(StudenUd,Programme30de.Paper30de,Semester, Year) may

have one Project title
5 1 7 Each Enrolment(StudenUd,Programme_code.Paper_code,Semester, Y ear) may

have one Supervisor
6 34 Each Student(StudenUd) must take one or more ApprovedProgramme

(StudenUd,Programme_code).

Each ApprovedProgramme (StudenUd,Programme_code) must belong to only
one Student(Student id).

7 24 Each Student(Student id) must have one Address.
8 23 Each Student(Student id) must have one Full name.
9 35 Each ApprovedProgramme (Studencid,Programme_code) must consist of one or

more Enrolment(StudenUd,Programme_code, Paper_code, Semester, Year).

Each Enrolment(StudenUd,Programme_code, Papeccode, Semester, Year)
must be part of ApprovedProgramme (Student id,Programme code}.

10 derived fact -grade point scorelEnrolment.Offering.Points(sum)
1 1 44 Each ApprovedProgramme(StudenUd,Programme_code) may have one

HoD approval date
1 2 derived fact
1 3 10 Each ApprovedProgramme(StudenUd,Programme_code) must have one

Recommended Grade.
1 4 36 Each Enrolment(StudenUd,Programme30de, Paper30de, Semester, Year)

must belong to one Offering(Papeccode,Semester, Year).

Each Offering(Paper_code,Semester, Year) may have one or more Enrolment
(Student id,Programme code, Paper code, Semester, Year).

321

Appendix 9 - Design Documentation

9.1 Verified Design Model - Datalogical

enrols in
Student f\pprovedProgramme �CiPates

Programme

in

contains offers

has
Offering Enrolment College

(;
appears as

runs -ot- Staff

Paper

Entity Name Primary Key Other Attributes
ApprovedProgramme Student_id, HoD _approval_date,

Programme_code College_approval_date,
Recommended--wade,
Start-year,
Intended_finish-year
Endorsement

Enrolment StudenCid, Approved30ntent,
Programme_code, Result,
Paper_code, Projecuitle,
Semester, Year Supervisor

Offering Paper_code, Points_value,
Semester, Year StafLcode

PIlJ>e--," Paper code Title, Type
Programme Prograrnme30de Programme_name,

Required_points,
College name

College College_name PG_admin_name,
PG admin_phone no

Staff Staff_code Staff_name,
Research interest

Student Student_id Full_name,
Address,
Phone_no,
Email_address,
Graduate_status,
Position
Previous_qualifications,
Work experience,

322

I Research interest

9.2 Relational Schema

CREATE TABLE ApprovedProgramme (
StudenUd smallint
Programme_code char varying(20)
HoD_approval_date date
College_approval_date date
Start-year smallint
Recommendect.grade char (3) NULL,

NOT NULL,
NOT NULL,
NULL,
NULL,
NOT NULL,

Endorsement char varying(30) NULL,
Intended_finish_year smallint NULL,

PRIMARY KEY (StudenUd, Programme_code),
FOREIGN KEY (StudenUd) REFERENCES Student,
FOREIGN KEY (Programme_code) REFERENCES Programme

CREATE TABLE College (

)

College_name char (20)
PG_adrnin_name char (30)
PG3drnin_phone_no char (4)

PRIMARY KEY (College_name)

NOT NULL,
NULL,
NULL,

CREATE TABLE Enrolment (

)

StudenUd smallint
Programme_code char (20)
Paper_code char (6)
Semester smallint
Year smallint
Approved_content varchar (60)
Result char(6)
Project_title varchar(80) NULL,
Supervisor varchar(30) NULL,

NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NULL,
NULL,

PRIMARY KEY (StudenUd, Programme3ode, Paper_code, Semester, Year),
FOREIGN KEY (StudenUd, Programme_code) REFERENCES ApprovedPrograrnrne,
FOREIGN KEY (paper_code, Semester, Year) REFERENCES Offering

CREATE TABLE Offering (
Papeccode char (6)
Semester smallint
Year smallint
Staff_code char (3)

Points_value smaIlint

NOT NULL,
NOT NULL,
NOT NULL,
NULL,
NULL,

PRIMARY KEY (Paper_code, Semester, Year),
FOREIGN KEY (Paper3ode) REFERENCES Paper,
FOREIGN KEY (StafCcode) REFERENCES Staff)

CREATE TABLE Paper (
Paper_code char(6)
Title varchar(20)

NOT NULL,
NOT NULL,

323

324

Type char(2)

PRIMARY KEY (Paper_code)

)

CREATE TABLE Programme (
Programme_code
College_name
Programme_name
Required_points

NOT NULL,

char(20) NOT NULL,
char(20) NOT NULL,
varchar (40) NOT NULL,
smallint NOT NULL,

PRIMARY KEY (Programme_code),
FOREIGN KEY (College_name) REFERENCES College

)
CREATE TABLE Staff (

Staff_code
Staff_name
StafCresearch_interests

PRIMARY KEY (StafCcode)

)

CREATE TABLE Student (
StudenUd
Full_name
Address

)

Phone_no
Email
Graduate_status
Position
Previous_qualifications
Work_experience
Research_interest

PRIMARY KEY (StudenUd)

char(3) NOT NULL,
char(30) NOT NULL,
varchar(80) NULL,

smallint
char(30)
varchar(50)
char(1 5)
varchar(30)

logical
varchar(20)
varchar(40)
varchar(80)
varchar (80)

NOT NULL,
NULL,
NULL,
NULL,
NULL,

NULL,
NULL,
NULL,
NULL,
NULL,

325

Appendix 10 - Verified Design Model

Infological

10.1 Fact Sentences

1 . Address belongs to Student
Each Student has at most one Address that belongs to it

2. ApprovedProgramme consists of Offering
Each ApprovedProgramme consists of zero or more Offering and

.

Each Offering has zero or more ApprovedProgramme that consists of it

3. ApprovedProgramme has Endorsement
Each ApprovedProgramme has at most one Endorsement

4. ApprovedProgramme has Intended_finish3ear
Each ApprovedProgramme has at most one Intended_finish3ear

5. ApprovedProgramme has Recommended_grade
Each ApprovedProgramme has at most one Recommended_grade

6. ApprovedProgramme has Start3ear
Each ApprovedProgramme has at most one Start3ear

7. ApprovedProgramme requires College_approvaLdate
Each ApprovedProgramme requires at most one College_approvaLdate

8. ApprovedProgramme requires HoD_approvaLdate
Each ApprovedProgramme requires at most one HoD_approvaLdate

9. College has PG_admin_name
Each College has at most one PG_adm in_name

1 0. College has PG_admin-phone_no
Each College has at most one PG_adminJ>hone_no

1 1 . College offers Programme
Each Programme has at most one College that offers it

1 2. Email belongs to Student
Each Student has at most one Email that belongs to it

1 3 . Enrolment has Approved_content
Each Enrolment has at most one Approved_content

1 4. Enrolment has ProjecCtitle
Each Enrolment has at most one Project_title

1 5 . Enrolment has Result
Each Enrolment has at most one Result

326

1 6 . Enrolment has Supervisor
Each Enrolment has at most one Supervisor

1 7. Full_name belongs to Student
Each Student has at most one FulLname that belongs to it

1 8. Graduate_status belongs to Student
Each Student has at most one Graduate_status that belongs to it

1 9. Offering has Points value
Each Offering has at most one Points_value

20. Offering offered in M ode
Each Offering offered in at most one Mode

21 . Paper has Title
Each Paper has at most one Title

22. Paper has Type
Each Paper has at most one Type

23. Paper offered in Semester in Year
Each Paper, Semester, Year combination is unique

24. Phone_no belongs to Student
Each Student has at most one Phone_no that belongs to it

25. Position held by Student
Each Student has at most one Position that held by it

26. Previous_qualifications held by Student
Each Student has at most one Previous_qualifications that held by it

27 . Programme has Programme_name
Each Programme has at most one Programme_name

28. Programme has Required_points
. Each Programme has at most one Required_points

29. ReseachJnterests belong to Student
Each Student has at most one ReseachJnterests that belong to it

30. Staff has Staff_name
Each Staff has at most one StafCname

3 1 . Staff has Staff_research_interests
Each Staff has at most one Staff_researchJnterests

32. Staff runs Offering
Each Offering has at most one Staff that runs it

33. Student takes Programme
Each Student takes zero or more Programme and
Each Programme has zero or more Student that takes it

34. WOrk_experience held by Student
Each Student has at most one Work_experience that held by it

,: ·�_�d���o�e�n� · . ·.

'" ' PG . adm� �a�e" ': ' . . -; . . -. . . .

.:' . F�II' n�m� ':. . . . -. . .

Address ' :

::. ·.p��.e�� ·

:: Em��' :
.. .. �

'G�duaie��IU� . : ::
. . . . '

:. Pos4ion

" . , "�;��S�q�al���n� :

.: . , ·W� ��r�n�' . ::---1
" . . � '

. : .R��C.h_�I�;e�· .

..... , . ..

belong 10

. ' • : : • ��u���ts.+ • : ::
1 I r--:,... ,

' , .
�.. .. '" , �r��"!m�_�a!,"e, '

, . :
i.':" 'Iniended ;in�h ' y�a; • . " .:' - . . -.

� .: : ������n� : ::

:', : " H?D;-�PP��I�d�,le·. '. : :'

':. · .
.
. �i'����p�r�·'"d�'� ..

.. .. :.

1 .: '.S��_y�a�;. : ':

� - -- r::::���'������d<:::
has

:: . Ap�r� �Ie'nt' - '.
MI3 ..

. -; • . •

.../ ·: .R��II::

:--I I , . ' . . . , . .

� • •
' . . P�OJ�I:-".Ie. ::

r 1 r �" ��� " : " '
.. ..

(,. ?< I "J--l _ < ��e. :·

.. : �.N�!���!��_�I����. '.

:; . Po�ts . va'lu�; ':: ' -

r -: Hie :

..... �
N
o

�
l:'
;.
�
A)

9

11

328

329

Appendix 1 1 - Design Innovation

Comparison of NaLER sentences to Fact Types

Sentence Final Desi211 Student Paper Coord HoD College Admin
9 reQlaced by S44 S l 1 C l l

10 5 CB
1 1 6 S5
12 new > 9
1'3 hew ,10 , ,
14 1 3 S 1 2 Pl l H12
1 5 1 5 P l O H9 C l
1 6 1 4 P12 HlO C4
17 1 6 S l O P13 H1 1 C5
18 1 9 S2 P4 C3
19 21 PI
20 22 P3
21 new 27
22 new 30
23 1 7 S8 P7 H7 C8
24 9 S6 P8 C7
25 24 S9 P8
26 1 2 S7
27 1 8 H5
28 25 H3
29 26 H6

30 new 34
3 1 29 H8
32 1 1 P9 H I 5
33 new 33
34 33 S5 H4 C6
35 2 S4 H 1 3 C9
36 2 P6 HI8 CI4
37 23 P2
38 32 S I P5 HI
39 3 S5
40 28 S3
41 3 1 PI4 H2
42 4 HI4
43 7 HI6
44 8 H17

�45 new 20

The N aLER sentences recorded in the highlighted rows cannot be traced back to any

analysis Fact Types> They are thus tenned 'innovative' >

330

331

Appendix 12 - Task Checklists

Analysis Stage

No Task Comments Date Quality 20al
1 Record system expectation A6
1 . 1 Context Diagram
1 .2 Problem Definition
1 .3 User Requests
l A Other
2 Identify appropriate users
3 Initial requirement collection for each user
3. 1 Interview
3.2 Documents
3.3 Other
304 Initial sentences confirmed each user A1 , A2
4 Construction of qualified fact types
5 Confirmation of qualified fact types each user A1, A2
6 Collection of examples
7 Confirmation of example sentences each user A1, A2
8 Syntactic verification A5
9 Expectation matchin2 each user A6
10 Confumation that sentences are each user A3

understandable and understood
11 Task checklist complete A4

332

Design Stage

No Task Comments Date Quality
Goal

1 Prepare first draft desi2n model
1 . 1 Transfonn analysis models to

relational representations
1 .2 Amalgamate logical views
1.2.1 List all entities and P Ks
1.2.2 Merge entities with same PK
1.2.3 Check for synonyms
1.2.4 Check for similar PKs
2 Generate/evaluate alternatives
3 Incorporate future requirements
4 Create final draft desi2n

5 Verify final design
5.1 Syntax Check 010
5. 1 .1 Create 2.way sentences
5. 1.2 Check participation constraints
5. 1.3 Check PK·FK links
5. 1.4 Check normalisation 08
5.2 Simplicity check 09
5.2.1 Checkfor minimal primary keys
5.2.2 Checkfor redundant relationships
5.2.3 Checkjor trivial relations
5.2.4 Check all relations are required
5.3 Semantic check 02, 03, 07
5.3.1 Create NaLER sentences
5.3.2 Populate NaLER with examples taken

from analysis model
5.3.3 Create cross reference table -

analysis facts to NaLER sentences
5.3.4 Check for completeness
5.3.5 Checkjor consistency
6 Audit 06
6. 1 Check source of all NaLER sentences
7 Peer Review
8. User Verification 01, 04
7.1 Create NaLER user views
7.2 Correlate NaLER and analysis views
7.3 Gain user verification
9 Task Checklist complete 05

