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ABSTRACT!

 

 In the past decades, emulsions have been widely used as delivery systems for 

incorporating bioactive compounds into foods. With the advancing of 

nanotechnology, smaller particles in the nanometric range (i.e. nanoemulsions) can 

be created with better properties that are more advantageous than conventional 

emulsions in terms of their stability to gravitational separation, optical clarity and 

better absorption of nutrients in drug delivery (with increased bioavailability). In 

particular, emulsification and solvent evaporation method has been used to produce 

nanoemulsions with optimum results. However, like conventional emulsions, 

protein-stabilised nanoemulsions become unstable when exposed to certain 

environmental stresses such as high temperatures, salt addition and extreme pH 

changes. Additionally, liquid emulsions are difficult to transport and use in some 

food systems while being susceptible to microbial spoilage. To remedy, a dry, stable 

emulsion system has to be obtained for their prospective future in food applications.  

 The objective of this research was to develop nanoemulsions with useful 

attributes. The thesis consists of three main parts in which the first part studied the 

formation and properties of nanoemulsions using emulsification and solvent 

evaporation method; the second part delved into the making of dried nanoemulsion 

powders and the third part focused on the structural modifications of nanoemulsions 

and encapsulation of a bioactive compound lutein.  

 To begin, an experimental study to optimise the conditions for producing 

nanoemulsions using emulsification and solvent evaporation methodology was 

performed under different processing conditions (microfluidisation pressures and 

number of passes), organic phase ratios and materials (oil types and emulsifiers). It 

was found that smaller oil droplets (around 80 nm in diameter) were achieved when 

increasing the microfluidisation pressure up to 12000 psi (80 MPa) for 4 passes at an 

organic phase ratio of 10:90. There was a progressive decrease in particle size with 

increasing emulsifier concentration up to a 1% (w/w) level for whey protein isolate 

(WPI) and lactoferrin but it did not decrease further at higher concentration. On the 

other hand, much larger oil droplets were formed in Tween 20 emulsions (120 – 450 

nm). The environmental study showed that lactoferrin and Tween 20 emulsions have 
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a better stability to pH changes (pH 2 – 12) and salt addition (0 – 500 mM NaCl or 0 

– 90 mM CaCl2) than WPI stabilised nanoemulsions. 

 After successful preparation of nanoemulsions, liquid nanoemulsions were 

converted to dried powders by spray drying or freeze drying. The nanoemulsions 

were mixed with different wall materials consisting of maltodextrin alone, trehalose 

alone or a 1:1 ratio of maltodextrin and trehalose at 10, 20 or 30% (w/w) solid 

concentration. Results showed that the powders containing 20% trehalose have better 

powder properties with lower moisture content and water activity, higher bulk 

density and good reconstitution in water. The freeze-dried powders showed excellent 

wettability and dispersibility in water but lower encapsulation efficiency than spray 

dried powders.  

 In another part of study, nanoemulsions with modified interfacial structure 

were used to improve their stability to environmental stresses. The interactions 

between WPI and lactoferrin in aqueous solutions were first studied to explore the 

feasibility of using these two proteins to form complex interfacial structures at the 

droplet surface in the emulsions. Based on ζ-potential and turbidity measurements, 

both proteins were shown to interact with each other via electrostatic interactions at 

pH values between 6 and 8. The adsorption of protein layers on a gold surface that 

mimics the hydrophobic oil surface was also confirmed by a quartz crystal 

microbalance with dissipation (QCM-D) study.  

 Next, a series of bi-layer nanoemulsions at different pH values and lactoferrin 

concentrations were prepared so as to determine the best conditions on the overall 

emulsion stability. It was shown that the stability of emulsions was dependent on 

both pH and lactoferrin concentration. At pH values close to pI of WPI (around pH 

5), the nanoemulsions remained unstable regardless of the lactoferrin concentration 

used (0.25 – 5% w/w). The nanoemulsions at pH 6 were also unstable at low 

concentrations (0.5 – 1% w/w) presumably due to “bridging flocculation” and 

exhibited phase separation. Consequently, a lactoferrin concentration of 3% (w/w) 

was used to produce bi-layer nanoemulsions at pH 6. At pH 7 – 10, the bi-layer 

nanoemulsions were stable at all lactoferrin concentrations and formed a bi-layer 

structure at the interface of droplet.   
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 The formulated nanoemulsions (single layer and bi-layer emulsions) were 

subjected to a variety of environmental stresses and in vitro digestion under 

simulated gastrointestinal conditions. The emulsion stability to pH changes and salt 

addition was improved in the bi-layer emulsions containing WPI and lactoferrin 

when compared to the single layer nanoemulsions stabilised by WPI alone. However, 

the bi-layer emulsions were more susceptible to destabilisation on heating at 

temperatures above 60oC. The in vitro digestion of bi-layer nanoemulsions was 

similar to single layer nanoemulsions in which the protein hydrolysis of the 

interfacial layers results in extensive droplet flocculation. 

 In subsequent formulations, lutein was incorporated in the emulsions as a 

model of bioactive compound for the application of nanoemulsions as a novel 

delivery system. The nanoemulsions well encapsulated lutein in their matrices with 

an encapsulation efficiency of 80% and contained small oil droplets (70 – 80 nm). 

All the emulsions were physically stable under the tested conditions up to 28 days at 

different storage temperatures (5, 20 and 40oC). However, there was a significant 

decrease in lutein content during storage especially at higher temperatures due to 

oxidative degradation. Nevertheless, the bi-layer nanoemulsions showed a better 

stability to lutein degradation. Based on in vitro cell toxicity studies on Caco-2 cells 

using MTT assay, both nanoemulsions did not show toxicity as the cell viability was 

more than 80% at 10 times or more dilution after 24 hours of incubation. The cellular 

uptake of lutein was higher in bi-layer nanoemulsions when compared to single layer 

emulsions. 

 The present work demonstrated that nanoemulsions can be formed using 

emulsification and a solvent evaporation method. Dried microcapsules of 

nanoemulsions were formed with similar properties as their original nanoemulsions 

after reconstitution in water. The nanoemulsions with bi-layer interfacial structure 

have better stability to environmental changes than single layer emulsions. 

Nanoemulsions did not show more toxicity than their corresponding conventional 

emulsions with large oil droplets produced without the use of organic solvent. These 

have important implications in the use of nanoemulsions for encapsulation lutein or 

other bioactive compounds for applications in foods and beverages.  

! !
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