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Abstract 

This thesis investigates the modelling of the New Zealand hydro-thermal elec­
tricity generation system in order to determine an optimal strategy for gen­

eration, in terms of minimizing fuel costs. The model currently used by ECNZ 
(Electricity Corporation of New Zealand) uses an SDP (Stochastic Dynamic Pro­
gramming) method for solution; this allows little detail of the physical system, and 
models two explicit hydro reservoirs. The model developed in this thesis is flexi­

ble, in order to allow the balance between ensuring stochastically stable solutions 
and the detail of the physical system, to be altered, whilst ensuring computational 
t ractibility. The areas of the system which are important to be modelled accurately 
are isolated, as are those which may lead to computational intractibility if they are 
modelled in too much detail . The flexibility in the model also allows the effects of 
t he approximations used on solutions to be explored in a wider framework .  

The time horizon of the model i s  one t o  two years , with time steps of the order 
of a week . The time horizon describes the level to which many aspects of the system 
are to be modelled. Transmission is modelled explicitly so as to include information 
on t he geographical locations of power stations and power users; this takes the 

form of a network structure underlying the model. The load at each geographic 
location is represented by a Load Duration Curve (which is more robust ,  in terms of 
forecasting, than a direct representation of load with respect to time) . Hydro river 
chains are modelled as single power stations with a single reservoir and connect 
t he model temporally; we model six explicit hydro river chains. Thermal stations 
are modelled individually, and the generation from run-of-river and geothermal 
stations is removed from load before solution begins . 

The initial approach considers a model which, upon further investigation, IS 

unacceptable. However ,  examination of the issues highlighted by this approach 
provide insight into the system. The resultant re-modelling of the problem leads 
to a linear model which does not explicitly model the uncertainty in the generating 
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capacity of stations due to forced outages. This accentuates the reason why the 

usual approach to explicitly modelling the uncertainty of supply (within a week) 
cannot be used in the case where the geographic distribution of generation has 
been explicitly modelled. The deterministic model may then be formulated as a 
Generalized Network with side constraints. 

The deterministic model developed can be extended stochastically in many 

ways . The stochastic extension investigated uses Rockafellar and \Nets' Progres­
sive Hedging Algorithm. This takes a scenario approach , in which the stochastic 
variables are approximated by a number of scenarios of observed values. A policy 
is  required which minimizes the expected cost of generation over these scenarios, 
ensuring that information on the observed values of the stochastic variables is not 
used before it would be available in practice. 

Results and implementation issues are discussed for both the deterministic and 
stochastic models. Consideration is given to the implementation of a finished prod­

uct , as well as implementation for the purposes of investigating the feasibility and 
examining the computational effectiveness of approximations made in the model . 

Ill 
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Addendum 

Page 25, line 1 1; '·optimallity" should read "optimality". 

Page 1 09 ,  §6.2, sentences t\vo and three should become: 
"The general stochastic program can be written a.s a multi-stage st.ochastic program 

with recourse. The two-stage stochastic program \vith recourse can be \nitten as follows: 

subject to: 

f-.1in ft(x)+�[.f2(a:,�)] 
� 

A:r = b 

( 6 . 0a.) 

where x is the decision Yaria.ble representing a decision that must be implemented prior 
to the realization of the random variable [ , fi(.r) represents the cost of decision a�, and 
f2(x,0 (where (is a single observation of [ ) is defined as: 

h(;r,�) = l\Iin g( y) 

subject to: ( G.Ob) 

l.Vy = �- Tx, 

y'2 0 

where this involves the determination of the optimal recourse variable y gi,·en the initail 
decision x. Extension to the multi-stage case indoves defining (6.0b) in a similar manner 
to (6.0a) . In our case the recourse variables are the releases of the subsequent weeks." 

Page 1 13, paragraph 3; should be appended with the sentence: 
"vVhile there are many other stochastic techniques which could be considered, since 

the focus here· is to sho•v that it is feasible to extend the deterministic model developed 
to a full stochastic model and we cannot cover every method here, the following are a 
selecti'on of approaches which have been used in the pa.st to model such a. system." 

Page 1 15, §6.5, line 2; " ... as it offers the greatest flexibility in the extenl .... ·· should read 
" ... as it appears to offer the greatest flexibility, of any of the many possible stochastic 
approaches which could be used, in the extent ... " 
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Chapter 1 

Problem Definition 

Before proving a Mathematical theorem one needs to have a clear definition of 
the premise. So i t  is with Operations Research; before modelling, one needs 

a clear definition of the problem to be modelled--,-the features that it is important 
to model well ,  and those for which a coarse approximation suffices . This becomes 
very important in the case of a large, complex, problem such as the New Zealand 
hydro-thermal electricity scheduling problem; designing a model which precisely 
models the entire system, but is practically insolvable, is of little real use. 

The New Zealand hydro-thermal electricity scheduling problem is a "large­
scale" problem with additional highly variable stochastic elements, making i t  ex­
tremely difficult to model in an accurate, consistent fashion. This means that 
there needs to be a clear definition of the aspects of the problem which should be 
emphasized. 

The perspective taken here is to develop a model which gives more physical 
detail than the model currently used by ECNZ (Electricity Corporation of New 
Zealand) . In particular, the goal is to include the explicit modelling of six separate 
hydro reservoirs. Consequently, it may not be possible to model the stochastic 
elements to a level of detail similar to that of the current model . This investi­
gation is not intended to produce a finished product for ECNZ, but to develop a 
model, investigate whether i t  is viable, and determine whether i t  is useful enough 

to develop further. In particular, the focus of this thesis is directed to the devel­
opment of a useful model , rather than rigorous testing of the stability, robustness 
and quality of solutions produced; this is seen as an appropriate second stage of 
model development-important if the model is to be used, but beyond the scope 
of this thesis . 



CHAPTER 1. PROBLEM DEFINITION 

1 . 1  D escript ion of t he System 

2 

The system being modelled is New Zealand's hydro-thermal electricity generation 
system. Electricity is generated by various power stations and distributed via the 
National Grid (a transmission network of power lines) to meet the current load. 
Stations are powered by various "fuels". Thermal stations generate power using 
heat created, in general, by burning various hydrocarbon based fuels , mainly gas 
by-products and coal. Hydro stations generate power using water flow in rivers, 
which is partially controlled by hydro dams further up the river. Power from other 

sources include geothermal stations ; there are no nuclear power plants in New 
Zealand.  

The stations tend to be partitioned into three groups, characterized by their 
generation constraints: thermal stations have a cost applied to the fuel , but little 
constraint on the usage of this fuel; hydro stations have no direct cost attached 
to water use, but they have limited storage and uncertain replenishment of this 

water; and,  auxiliary stations which , unlike the first two groups, have no useful 
control over their level of generation-they tend to be small capacity stations and 
are run continuously. vVe also include as auxiliary stations ,  those which are quite 
complicated to model but have a very minor effect on the overall total generation. 
These include some minor hydro stations, which are not part of other hydro sys­
tems ,  and are isolated from them; such stations can be thought of as acting like 
':free" or base-loaded thermal stations. 

Some of the statistics of the major stations are given below. This is to provide 
some background on the New Zealand system, as well as to provide an idea of 

the scale of the system, and to illustrate the systems capabil i ties and constraints. 
New Zealand has six major hydro systems. The Waikato system (in the North 
Island) has Lake Taupo (New Zealand's largest lake) as its reservoir , and eight 
hydro stations in th� river system. Lake Taupo can hold in the order of 600 
Gigawatt hours ( GWh) of potential energy, and the hydro system has a generation 
capacity in the order of 900 Megawatts (MvV) .  The Tongariro system (also in the 
North Island) has three hydro stations and can only hold up to 1 GvVh of potential 
energy; the generation capacity of this system is 400 MW. The last hydro system 
in the North Island is the vVaikaremoana system. This system has three hydro 
stations , a combined generating capacity of 100 MW and its reservoir can store in 
the order of 50 GWh of potential generation. The Waikaremoana system is the 
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only New Zealand system with significant storage depletion over time. 
Of the South Island hydro systems, the Waitaki system is the most extensive. It 

has three major reservoirs and 10 hydro stations (two minor separate hydro systems 
are also included in this system) . The Waitaki system can store up to 2000 GWh 
of potential generation, and has a combined generation capacity of 1 600MvV. The 
Clutha system of the South Island has two hydro stations with a combined capacity 
of 700 MW and can store up to 300 GWh of potential generation. The final South 
Island hydro system, the Manapouri system, has the most extreme inflows and 
hence spills most often. It is a simple hydro system consisting of a single reservoir 

and station. The station's generation capacity is about 600 MvV and the reservoir 
can hold up to 400 GWh of potential generation. 

All of the thermal stat ions are in the North Island. The northernmost is the 
Marsden stat ion which runs on residual fuel oil (from the Marsden gas to gasoline 
plant) , and has a generation capacity of 100 MW. The Otahuhu station ( in Auck­

land) runs on distillate oil and has a generation capacity of 1 00 MvV. The Huntly 
station can run on a mixture of both coal and natural gas, and has a generation ca­
pacity of 1 000 MvV.  The New Plymouth and Stratford stations both run on natural 
gas and have generation capacities of 600 MvV and 200 MvV, respectively. Finally, 
the vVhirinaki thermal station runs on distillate oil and has a generation capacity 
of 200 MW. The cheapest fuel is Maui Gas which supplies the New Plymouth, 
Stratford, and Huntly thermal stations via a single pipeline. The next cheapest 
fuel is coal , then residual fuel oil, with the most expensive being distillate oil . 

Auxiliary stations are used to model run-of-the-river hydro stations , small iso­
lated hydro stations with little major effect on the system, as well as the geothermal 
stations near Taupo .  vVaihapa Gas ,  burned at the Stratford thermal station, may 
also be modelled in this way, as it is otherwise flared. There is also some fixed coal 
generation at the Huntly thermal plant , which is assumed to act as an auxiliary 
station. 

The National Grid is a large complex system running AC lines of various voltage 
levels between major locations , and a high voltage DC link connecting the two 
Islands. As most of the hydro generating capacity is in the South Island and most 
of the power use occurs in the North Island, the DC link is crucial to the operation 
of the system. 

The major differences between the New Zealand system and other electricity 
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generation systems in other parts of the world are the high reliance on hydro gener­
ation (with a total hydro storage capacity of only about three months ' generation) ,  
and the great unpredictability of the inflows into this hydro system. These differ­
ences imply the need to design our own specialized model , or heavily tailor another 
model to our needs ,  this is expanded upon in Chapter 2, together with discussion 

on models of other systems. 
As well as the major components of the New Zealand system already mentioned 

there are additional constraints and properties of the system; for instance, the 
available Maui Gas supply, used by three of the thermal stations , has an upper 
limit on usage over any week. Such additions are dealt with separately from the 
overall model , in Chapter 7, so that they do not obfuscate the construction of the 
overall model . This is because they are of relatively lesser importance, and not 

central to the model being developed. 
In this thesis we seek to model the entire system to a level of detail al lowable 

by a time horizon of the order of one year. It is important at this stage to settle on 

the order of the t ime horizon of the model as , under differing time horizons , differ­
ent areas of the system become more important and particular stochastic elements 
have different levels of effect . This is , at least in part, due to the computational 

complexity involved in implementing a model of the system as a whole. For exam­
ple, if we are solving a model with a time horizon of a day, the lag time of water 
travelling in various river chains from one station to the next becomes important, 
whereas , if we have a time horizon of about 30 years, the actual entire river flows 

for each week are of lesser import . 

1 . 2  Obj e ct ives of t he Model 

In attempting to model the New Zealand system in this V:'ay, we seek to satisfy three 
conflicting objectives . The first is to provide enough detail of the physical system 

(we would like t o  model every station individually and the transmission network 
exactly) ;  the second is to provide a good account of the stochastic elements ,  so 
as to perform well in an uncertain environment ; the third is the ability to obtain 
numerical solutions in reasonable time. It seems unlikely that there is one way of 

satisfying all three of these objectives to a high degree-an informal conservation 
of effort law seems to apply. One could draw a diagram of the relative posit ions 
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of models with respect to these three aspects ,  and determine how close each of the 

models is to the mythical centre of this diagram (which simultaneously satisfies all 
three objectives to a high degree) .  Unfortunately the exact placement of a model 
on this diagram is dependent on the relative importance one puts on the three 
aspects, which is not only a subjective decision, but also dependent on the aims of 

the model 's user. 
The system is  currently modelled by ECNZ in a framework appropriate for 

the use of Stochastic Dynamic Programming (SDP) as a solution technique. This 
approach tends to emphasize the stochastic elements since, due to the aptly named 

cu·rse of dimensionality, it can cope with only a very limited model of the physical 
system. The motivation behind this thesis is to "attack the problem from the other 
side" and design a model which provides considerable detail for the physical system 
and, consequently, has less detail for the stochastic elements .  

Some aspects of the system are more difficult to usefully model to a particular 
level of detail than their potential effect on system operation would suggest is 
worthwhile; usually this is due to the computational complexity added by such an 
approach . Instead we must choose an approximation which embodies the essential 
character of the particular aspect whilst being implementably achievable . Isolating 
such aspects is often a difficult task and one must be guided by previous experience 
and the intuition of those who actually run the system. 

1 . 3 U ncert ain S upply 

It is necessary, in practice, for maintenance and repairs to be carried out on thermal 
and hydro stat ions . Some of this maintenance can be scheduled beforehand and 
taken into account by removing that station from the model for a corresponding 
period of time. However, maintenance may take place over a t ime period which is 
too short to be modelled effectively, or at a future time which is not known exactly 
when the model is run. vVe must also take into consideration breakdowns and other 
outages which cannot be scheduled, and any uncertainty in the fuel supply. 

Unscheduled down-t ime can be modelled as random outages , sometimes called 
forced outages .  For each station, we specify a probability distribution signifying 
the probable maximum generation by that station. These probability distributions 
will be only discrete in ·nature since a generation turbine can be either up (and so 
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able to generate at full capacity) or down (and so not able to generate at all). 

1 .4 Hydro D etail 

The detail sought by ECNZ is mainly in the form of information about individually 

modelled hydro reservoirs, since it is the presence of these hydro reservoirs, and the 

uncertainty involved in their water supply, which makes it so important to have a 

model with the time horizon considered in our model. The current (SDP) model 

incorporates only two hydro reservoirs, one for each island; a paper investigating the 

possible approaches of a new model, Lermit et al. [9] , recommended six separate 

hydro reservoirs as being a desired level of approximation for the New Zealand 

system. It is the intention of the model developed in this thesis to model six 

spatially distributed hydro reservoirs. 

vVhen moving from two hydro reservoirs to six, one must also make appropriate 

changes to the coarseness with which the rest of the system is modelled-modelling 

different aspects of the system at vastly differing levels of accuracy can cause un­

wanted additional structure within the solutions which is an artifact of the model 

rather than the system, and which could be avoided by using a more evenly ap­

proximated model. For this reason we seek to distribute all stations spatially and 

hence model transmission of power from the stations to the power users. 

In seeking to model six hydro reservoirs individually we need to determine an 

appropriate level of detail for them. The scheduling of the hydro stations is the 

most difficult, and most important, job of the model; without hydro stations we 

\Vould only need to optimize the scheduling of the system over a day or week, as 

no other part of the model has as much effect on the decisions made later in the 

year. 

One stipulation by ECNZ for the model was that it did not model river chains 

using a "spill past" model, as such a model would add complexity to the system 

which would swamp the rest of the model and hence affect the level of detail 

obtained. The time delay of the water travelling from the hydro reservoir, and 

between stations, means that, when a spill past model is used, the generation at 

each hydro station must reflect this delay and include the possibility of stations 

further up the river spilling so as to allow generation by lower (possibly higher 

capacity) stations at some future, higher load, time. These hydro systems are 
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complicated enough to model, to such a level of detail, in isolation without the 

added complexity of requiring that they, together with the thermal stations, meet 
the load requirements of the system. 

In modelling hydro stations individually, with or without a spill past model , 
one encounters many more difficulties . Hydro reservoirs control the flow of water 

down river chains, each of which may contain many hydro stations. The situation 
is compounded by having multiple reservoirs and river chains interconnected by 
controlled canals. Also, many hydro stations have "forbidden generation zones" , 
which define minimum generation levels for each turbine of a station if that turbine 
is to be used. These also occur in thermal stations but are compounded in hydro 
stations by the fact that the water flow through many hydro stations is controlled 
by the same reservoir .  

In an effort to avoid these difficulties, we make a quite heavy-handed approx­
imation of the hydro systems: each river chain is represented by a single hydro 
reservoir and station. This level of approximation may seem unreasonably coarse; 
however, this model is expected to provide generation information for more detailed 
models of the individual hydro systems, which in turn return "local " solution infor­
mation with which we can fine-tune the hydro system approximation in the longer 
t ime horizon model (see Section 1 .6 ) .  

Water enters the  hydro systems via inflows, i .e . streams and runoff either enter­
ing the reservoir, or entering the river chain downstream from the reservoir. Inflows 
entering the reservoir can be stored or released for generation and so are known as 
controlled inflows ; the other inflows are known as tributary or uncontrolled inflows. 

In our single station approximation of the hydro system we assume the con­
trolled inflows enter the reservoir and the uncontrolled inflows enter the system 
between the reservoir and the station (see Figure 1 . 1 ) .  

The capacity of  the new amalgamated station i s  taken to  be the sum of the 
capacities of each stat ion in the chain .  Each station in the chain is assigned a 
factor to represent the fraction of water released from the reservoir which can be 
used by that station; another factor gives the fraction of the total tributary inflow 
which flows through that stat ion. There is also a conversion factor (or function) 
for each station which gives its efficiency in converting water to electricity. These 
conversion factors are combined, in terms of the fraction of water passing through 
each station, to yield an overall generation efficiency for the amalgamated station. 
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Controlled inflows Uncontrolled inflows 

Generation 

Release 

Figure 1 . 1 :  Amalgamated hydro system and representative inflows 

1. 5 Transmission Detail 

As mentioned earlier, the transmission network (National Grid) is extremely com­

plex: transmission characteristics depend on the load and generation at various 

points in the system; the network is mainly AC, of differing voltages, with a high 

voltage DC link used to get power across Cook Strait; the National Grid has 

13 000 km of transmission cable and 180 substations and s•vitching yards; the line 

capacities and power loss within the grid vary with the load and generation; also, 

the use of AC power means there is power loss from both resistance and reactance. 

A detailed model of the transmission network is not required by our model, 

as we are interested in the generation schedule (more specifically hydro station 

generation) rather than an accurate generation-transmission schedule. For our 

purposes the transmission network needs to be represented by only the major lines 

between power stations and power users, and the losses and capacities need be 

modelled only simply. It is intended that, as with the hydro station generation, 

our model will interact with a more detailed model of the transmission network so 

as to use "local" solution information about the transmission network to update 

our capacity and loss models. 

1 .6 P ut ting it  in Persp ective 

In actuality there is an hierarchical structure linking all of the models used. The 

model developed here (which shall be referred to as "our model" to avoid confusion) 
interacts with other models within this structure, gaining local information from 
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highly detailed short-term models and value or volume information past its plan­
ning horizon from long-term models . Our model also provides similar information 
for the other models. 

The reason for the hierarchical structure is that different models provide dif­
ferent information for different purposes; this structure also embodies an informal 

decomposition of the system into manageable pieces which portray, in some way, 
the manner in which we intend to operate the system. Each model finds a solution 
which is locally optimal in terms of the constraints implied by the information 
given to it from other models, as well as those explicitly defined. 

Our model sets generation or storage targets for hydro stations , taking into 
account the long term needs for water. Short-term models determine the actual 
schedule for a river chain for the coming hour (and indeed a real-time model can 
be used to determine the actual generation at the time) . A long-term model is 
concerned with developing future resources and predicting the needs of the system 
as a whole i n.to the future. 

The presence of the hierarchical structure defines the environment in which 
our model exists. In light of this we must consider the ways in which our model 
interacts with other models within this structure. This is important in terms of 
the information exchanged, which depends on our model and on the other models 
within this structure; this is discussed further in Chapter 6. 

1 . 7  An Imple ment able Model 

In developing a model , implementation and formulation are inextricably linked. 

A model which models every aspect of the system to a high and desirable level 
is all but useless if it can be solved only by brute-force methods which do not 
converge in a reasonable time, or even at all !  Similarly, a model which has been 

designed specifically for solution via an elegant solution method, but which does 
not adequately represent the system, is also effectively useless. 

Therefore, in developing a model, careful thought needs to be given to the 
solution method as well as ensuring that the formulation represents the system well . 
This does not mean , however, that one must decide on a fixed solution strategy; it is 

better to consider many options in both the formulation and implementation phases 
which can later be tested to decide upon the best combination for the required task. 
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Generally a method will require tailoring to solve the model developed smoothly 

and efficiently. 
One of the most significant parti tions in developi ng formulations is that of 

linear and non-linear models. The advantages of a li near model are that there 
are many solution methodologies available for them and that one can solve larger 

linear models than non-linear ones . Another significant partition is that of convex 
and non-convex models .  Results abound on the properties of solutions to convex 
problems , however in the non-convex case one cannot b e  sure whether the solution 
obtained is indeed globally optimal or not. 

It is important that linearity and convexity be achieved ,  where possible, by 
transformation, rather than approximation, of the formulation. However, if the 
non-linearity or non-convexity is slight ( in some sense) it would probably not change 
the model much by making appropriate approximations .  In such cases one needs 
to consider the consequences of such action carefully, although often such approx­

imat ions are all but necessary to allow tractable solution. 
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Chapter 2 

Past Solutions 

7n this Chapter we do not present an exhaustive survey of all related literature. 
_L, We only highlight those papers which are important in model development 
or which illustrate an important modelling or solution technique. The reason for 

t his is that we are modelling a specific system and so few reported models are of a 
direct relevance. We seek to highlight literature which is relevant to the modelling 
of the New Zealand system, or which contrasts with features of the New Zealand 
system, leading to important observations about the structure of the model to be 
developed. This i s  most effectively achieved without the unnecessary clutter an 
exhaustive survey would inevitably create. 

The New Zealand system has unique attributes, including: the mix of hydro 
and thermal generation, the lack of any import or export of electricity, the unpre­
dictability and high variance of the inflows, and the relatively small total storage 
capacity. The effect of this is that none of the models presented in the literature for 
other systems can be directly used in New Zealand. The difficulties inherent in the 
New Zealand system mean that , even when converted to allow for the New Zealand 

conditions, the models and algorithms presented in the literature are challenged, 
computationally, by the New Zealand system. 

This provided the initial motivation for our approach. 'vVe seek to develop 
a model which accurately portrays the New Zealand system, highlighting those 

aspects which are seen as important to the system, in terms of the structure imposed 
upon solutions . Because of this we do not intend to adapt an existing model to 
the New Zealand system (such an investigation is currently being carried out at 
ECNZ) , but to create on� from scratch . In doing so it is important to investigate 
other approaches, both to solving the New Zealand system and other systems, 
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which have been taken. 

·when modelling such a complex system one must inevitably make simplifi­

cations and approximations. Often these depend on the system being modelled, 

whereby simplifications which are reasonable for one system may be unreasonable 

for another. For this reason it was decided that the model being developed should 

"aim for the stars" , i.e. we want to describe the system in as much generality as 

practicable in the model, and then make any simplifications necessary to allow the 

model to be computationally feasible to solve. This should have a two-fold effect; 

firstly, it will go a long way towards defining exactly what simplifications are made, 

and, secondly, it will make it easier to expand the model in light of advances in 

modelling and computer solution techniques. It is realized that not all simplifica­

tions and approximations can be left to be applied when the model is completed; 

some are fundamental to the view of the system (such as those made in Chapter 1), 

and others are needed to define the structure within •vhich we model other aspects. 

For this reason, in investigating other approaches to similar problems, ,,.e highlight 

the inherent simplifications as well as the novel modelling techniques. 

Many of the papers to be discussed present algorithms as well as formulations. 

As noted in Section 1 .7, in the development of a model both the formulation and 

method of solution must be addressed. Formulations are often developed in a par­

ticular way so that special structure may be exploited in the solution method, or to 

provide an illustrative example of a solution technique. 'vVe do not intend to exam­

ine this trade-off here, since the models developed are for many different systems, 

each with different attributes and different aspects of importance. A discussion 

considering the trade-off only in terms of the New Zealand system would obviously 

be highly biased towards models developed specifically for the New Zealand setting. 

None of the approaches that will be examined here take explicit account of the 

geographic location of power stations and load; it appears the main reason for this 

involves the difficulties that such structure evokes. 

2 . 1  M aximizing Generation 

Various models have been developed for systems in which hydro generation is not 

crucial, or is a beneficial side effect of scheduling hydro releases for other purposes, 

such as irrigation. In these situations the emphasis is not on the cost of power 
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generation but on maximizing the amount of hydro generation that can be  coaxed 

from the system. This differs from the situation where the emphasis is on the cost 
of alternative generation or in explicitly attempting to meet the load requirements 
of the system. 

Both Ikura, Gross, and Hall [8] and Soliman and Christensen [21] describe 
systems where the emphasis lies entirely on the accurate modelling of the hydro 

systems involved. For the New Zealand system, such accurate hydro system models 
are within t he realms of the short term modelling (with a planning horizon of 
about a week) . Due to the time scales used in both [8] and [2 1 ] ,  however, there are 
modelling techniques;.,hich can be exploited in our model . 

The lack of explici t modelling of thermal station generation in these systems 
makes most of the modelling techniques irrelevant to the New Zealand situation , 
since incorporation of these aspects would tend to make any model so developed 
computationally infeasible. Also, in the New Zealand system, the load levels are 
very important to the running of the system, as it is the load to be met which 
determines the cost of generation. The maximization of hydro generation is not 
an adequate substitute for this. The major modelling technique that appears to 
be most useful for incorporation in a model of the New Zealand system is the rep­

resentation of hydro systems as networks, using bounds on the arcs to represent 
constraints on river flows , generation and storage. Storage is represented by tem­
poral arcs which represent the volume of water carried from one time step to the 
next .  

2 . 2  P urely D et erminist ic 

For many generation systems the hydro component is either relatively minor, overly 
constrained by external limitations, or reasonably predictable in its inflows. In such 
situations the use of a purely deterministic model, with the possibility of considering 

a few inflow scenarios, is adequate. This allows for a very detailed model of the 
physical system and is especially useful when the interactions within the system 
have more of an effect on solution structure than any stochastic elements .  It also 
allows explicit expression of the effect of reservoir levels and turbine flow rate on 
the generating efficiency of hydro stat ions and other non-linear dependencies of the 
system. 
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Due to large inflows which occur in Spring for the system modelled in [8] , it 

is more concerned with minimizing the adverse effects of too much '>Vater, which 

are not always quantifiable. For this reason they use a deterministic model and 

evaluate the effects of various scenarios manually. In New Zealand it tends to be 

the long term lack of water that is of most concern. 

Lyra and Tavares [ 1 1 ] and Rosenthal [20] both use deterministic approaches 

in which the cost of thermal generation is an explicit, and fixed,  function of the 

load not met by hydro generation; this appears to be a very "Engineering" type of 

approach. The advantage here is that one can model quite complex functions of the 

efficiency of various thermal stations, and so it appears that, in these situationS, 

this thermal efficiency has more of an effect on the structure of solution than 

any stochastic effects. In this case many stochastic aspects could adequately be 

evaluated by comparing the solutions for a few important scenarios. 

This approach has also been taken in Nabona [ 13], where the uncertainty of 

inflows have been taken into account. The implicit assumption that inflows are 

totally correlated in time, and the small number of different inflow sequences in­

vestigated for a few river systems, mean this approach has most of the advantages 

and disadvantages of a purely deterministic approach. 

Boshier and Lermit [ 1 ]  use a deterministic approach to the New Zealand system. 

The hydro reservoirs are amalgamated into catchment areas, and hydro generation 

is assumed to depend linearly on the volume of water released. Similar assumptions 

about totally reliable thermal generation transform the formulation into a linear 

Network, which is especially useful. A single transmission line (the DC link between 

the North and South Islands) is modelled explicitly, but n o  transmission losses are 

applied. Again the stochastic aspects could be taken into account by moving to a 

scenario type approach. 

Unfortunately the unpredictability, high variance, and lack of spatial correlation 

m New Zealand's hydro reservoir inflows make an approach which ignores the 

stochastic aspects, or evaluates the effects of such manually, unacceptable. It is, 

also, important to have an accurate model of the thermal generation as, in our 

model, we seek to include information on the geographic distribution of stations 

and load;  this would completely eliminate the usefulness of modelling the cost of 

thermal generation explicitly in terms of load not met by hydro generation. 
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2. 3 S t o chastic Aspects 

There are vanous methods for stochastic modelling and solution methodologies 
which account for stochastic elements explicitly. In the New Zealand system, the 
uncertain aspects with the most effect on system operation are the inflows into 
various reservoirs. For this reason we separate our discussion on stochastic aspects 
into two parts: those concerned with hydro reservoir inflows, and all other aspects 
of the problem. The discussion on the exact method of accounting for inflows is 

left until Chapter 6. For now we accept the necessity of modelling these stochastic 
elements, but make no judgments on how such aspects will be modelled . Instead 
we concentrate on the physical system being modelled, explicitly including the 
stochastici ty inherent in load and thermal supply. 

There are many ways in which to incorporate the uncertainty in future loads; 
one way is to use the average load for each week.: The advantage of this approach 
is that the average load can often be forecast with reasonable certainty · and it 
also simplifies the model with respect to thermal generation. vVhen one takes into 

account the fact that releases and inflows into the hydro system are often only 
specified as totals over a week, this is not such an oversimplification. 

Li, Yan and Zhou [ 1 0] and [ 1 1 ]  use such an approximation for load. However, 
[ 1 0] does try to take account of peak loads (and forced outages) by derating station 
capacities . This approximation does not allow for the fact that peak load is appar­
ent for only part of the week, and only particular stations (which may not be known 
in advance) are available to meet peak load. It also takes only above average load 

into account , not below average load; this may mean that certain stations do not 
generate at peak efficiency, and is liable to ruin any advantage gained by explicitly 
using generation efficiency. 

2 .4 Load D uration C urves 

The use of average load comes about because of the difficulty in approximating 
and forecasting load . Most models divide the time horizon into discrete time steps 
whose durat ion i s  a day, week, or month. Load is often characterized by two 
major peaks in each day, as is the case in New Zealand. When forecast ing load 
the uncertainty is not only in the height of the peaks but also in their times of 
occurrence. The degree of certainty with which load is forecast can be increased 
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a little by moving to a slightly different representation-rather than considering 

load as a direct function of time (as in a Load Curve representation) , one can use a 

curve which gives the fraction of time each load level occurs, i .e. a Load Duration 

Curve (LDC) (Electric Power Research Institute [6] ) .  Figure 2 . 1  gives an example 

of a Load Curve over a day, and its corresponding LDC. In using an LDC one 

removes the uncertainty of exactly when peaks occur as well as information on the 

difference in height of the two peaks, so LDC's can be forecast with more accuracy 

than Load Curves. 

Most approaches use a single LDC to represent all of the load, e.g. Boshier, 

Manning and Read [2] , Dembo et al. [4] and [20] . In this case, the generation 

pattern can be determined by finding the actual load, at a particular time, on 

the curve and reading off the corresponding generation. Of course with such an 

approximation one cannot specify start-up costs , as it is unclear how often the 

station will be turned on and off. This is actually not such a burden as start-up 

costs usually require integer variables to model them and so either become part of 

the station's efficiency curve or are left out of models of this scale entirely (and are 

instead modelled in shorter time horizon models) . 
Another feature of the system which lessens the need to model start-up costs 

accurately, is that not all small stations are modelled explicitly. There are various 

stations which are modelled as auxilary stations, for convience and computational 

tractibility, but which have more control over their generation than this would 

imply; these stations can be used to smooth over start-up periods, and handle 

discrepancies between the forecast and actual load. 

These problems can be partially side-stepped by also specifying an approximate 

"unsorting" of the LDC; this is done in Pereira and Pinto [ 14] (also [ 18 ] ) ,  where 

discrete Load Curves are used. However, the time dimension is partitionea into, 

possibly, unconnected regions over which the load is constant, which effectively 

models the load as a discrete LDC with a specified "unsorting" to allow some 

intra-week constraints to be applied. 

In explicitly modelling the geographic distribution of load, there is another 

dilemma to be faced. If all load, for one time step, is treated as a set of LDC's, 

once the generation schedule has been determined it is difficult to determine the 

actual generation of each plant, since we have an implicit assumption that all load 

is coherent (peaks occur at the same time) ; if a peak occurs at one location before 
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i t  occurs elsewhere, the exact generation schedule to use is unclear. In reality, there 

are shorter time-horizon models which are used to determine the actual generation 
schedule used. The model being developed is used only to determine the mix of 

hydro and thermal generation that should be used during the week, taking into 
account t he need for hydro over the year. The load is included explicitly to ensure 
feasibili ty of the generation schedule, and not to provide explicit generation timing. 

Given a Load Curve (forecast or from past data) , the corresponding Load Du­
ration Curve can be calculated by sorting the Load Curve from highest to lowest 
load. In theory one could determine the exact generation schedule by unsorting 

the load and generation given by the model; however, there will be the same uncer­
tainty in the generation as for the forecast Load Curve. Furthermore, generating 
an LDC from a forecast Load Curve is not as robust a method as forecasting the 
LDC directly, in which case there is no specific underlying Load Curve. 

One of the advantages of using LDC's, which is exploited to include the uncer­
tainty in supply, is that the inverse of an LDC is a probability distribution function 
(see Figure 2 .2) . This function gives the probability that the forecast load is above 
each power level . Because of this we can include uncertainty in the forecast LDC by 
changing the probability function used to be the total probability that the load is 

above each power level , i . e .  explicitly including the uncertainty of the forecast. The 
LDC used is then the inverse of this probability distribution function, for which 
there is no  underlying Load Curve. 

2 . 5  F illing an LD C using Thermal Stat ions 

Given an LDC, we can determine the generation schedule of a given set of power 
stations by determining the load each station must meet ; this is known as filling the 
Load Duration Curve. For a totally reliable, purely thermal system, this is achieved 
by scheduling stat ions in increasing order of cost ( [6] ) .  Each station is scheduled 
to generate at its peak capacity or at the remaining load level , whichever is lowest ; 
this generation is then removed from the load and the next station is similarly 
scheduled. This leads to generation schedules similar to that shown in Figure 2 .3 .  

vVhen scheduling thermal stations one would like to  take account of possible 
forced outages (see Section 1 .3 ) .  This can be done by re-solving the model , for each 
state of each station, to determine the expected cost of generation. It should be 
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obvious that such a task becomes extremely time-consuming for even a moderate 
number of stations, as the total number of states is exponential in the number 
of stations .  Luckily, when using an LDC to represent load this can be achieved 
with much less effort. The convolution of the probability distribution function 
representing the probability that the station can meet various load levels with 
t he probability distribution function associated with the LDC gives a probability 

distribution function representing the probability that the remaining load is above 
various levels . Subsequent stations fill the remaining load in a similar manner (see 

[6] ) .  
An example of an LDC filled by such a method is used i s  given i n  Figure 2 .4 .  It 

must be remembered, however, that this schedule is derived only for the purpose of 
determining the expected cost of generation. For the actual schedule of generation, 
one must schedule all currently operational stations, at their current capacity, as 
if they were totally reliable. 

When one attempts to include information on the geographical distribution of 
load and stat ions , i t  becomes necessary to calculate the expected cost by explicitly 
re-solving the model for every state of the stations, since a change in the geo­
graphic distribution of power available may also change the optimal distribution of 
generation. 

2 . 6 Hydro S t at ions Filling LDC 

For hydro stat ions one schedules their generation in one of two dual ways : given 
t he dual cost associated with the hydro station, it can be scheduled as if it were a 
thermal station with this dual cost as the cost of generation; alternatively, given the 
volume of water released (in terms of average potential generation) , the station can 
split the LDC, removing a section with height equal to its generating capacity and 
area equal to the potential generation of the release (this is shown in Figure 2 .5) . 
Station generation efficiencies can be modelled as functions of average potential 
generation, and the effect on the generating efficiency of the reservoir level can 
be modelled as a (non-linear) function of both average potential generation and 
storage. 

The difficulty involved in specifying the dual price of a hydro station is that 
often this price is exactly the same as the fuel cost of one of the thermal stations , 
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namely the station whose generation i s  effectively split (see Figure 2.6 ) .  In this 
situation , it is unclear as to which station should be scheduled first . Often a rule 
of thumb that the thermal is scheduled first is used, as, since both stat ions cost 
the same and hydro inflows are uncertain , it is better to act on the side of caution. 
In actuality it is probably the case that scheduling either of the stations first does 

not yield t he required generation. The problem in this case is that , if the hydro is 
scheduled first , more water will be used than desired and so later, the order will be 
reversed (and vice versa) ,  often causing an oscillation in which the hydro stat ion 
and thermal station alternate in being run at full capacity and turned off. 

The difficulty in scheduling hydro stations in a primal manner (given the release) 
is that one needs to determine exactly where the station splits the curve-that is 
the 8 shown in Figure 2.5 . As with thermal stations one can include hydro station 
uncertainty here; in the case of the primal method, the probability distribution 
function corresponding to load is shifted by 8 before convolution, and in the case of 
the dual method, one must also schedule all of the stations as if they were totally 
reliable in order to determine the actual release. 

2 . 7  G eographical Distribution of Power 

None of the models in the literature deal explicitly with the geographic distribution 
of load and stations. Some of the models do include some transmission constraints; 
in general , these are in the form of capacities (and possibly losses) between the 
station and the "pooled" load (see [ 1 8] and [ 10 ] ) .  Models of the New Zealand 
system explicitly include only the North-South DC link, due to its importance to 
the system ( [1 ] ) :  this effectively partitions stations into two sets, those in the North 
Island and those in the South Island. 

The reasons for these omissions seem to be the difficulties in implementing such 
an approach, and, at least in New Zealand, the actual freedom within the trans­
mission system in terms of capacity of lines . However, it is not just the capacity of 
lines that has an effect; there is power loss in the transmission system and, most 
importantly, the actual distribution of power. ·when considering the distribution 
of power generation over multiple hydro reservoirs, i t  becomes important to also 
consider the distribution of this power geographically. This geographic distribution 
of power will be dealt with explicitly in the model developed. 
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2 . 8  How Many Hydro Reservoirs ? . 

23 

The number of hydro reservoirs modelled by the various methods varies wildly. For 
instance, there are 37 reservoirs modelled in Pereira and Pinto ( 15] but only two 
separate reservoirs modelled in (2] . The reason behind this variation involves the 
effects of the stochastic elements on the system-in a deterministic model there 
is effectively no limit on the number of reservoirs which can be modelled, but, for 
a stochastic model , this limit is very dependent on the correlations, predictability 

and variance in i nflows between reservoirs and over time. 
The New Zealand system has six or seven important separate catchment areas; 

however, to date ,  the system has only been able to be modelled effectively using 
two separate catchment areas, because of the unpredictable inflow patterns, the 

small storage capacity (in terms of total yearly generation) , and the fraction of 
hydro generation in the total generation ( [2] ) .  A,P of these factors mean that the 
stochastic  aspects can not be smoothed out of the system operation in any way, 
i .e . the system must be run in response to the stochastic aspects as they occur. 

Other systems with a larger volume of hydro storage can effectively smooth 
out the variance in inflows with this storage, and the average predicted inflows are 
useful in scheduling the system. In New Zealand it is the actual inflows which are 
of prime importance, making the task of scheduling generation qui te difficult .  

Our model attempts to model the New Zealand hydro system using six sep­
arate reservoirs. It is hoped that the information gained about the running of 
the geographically distributed physical system goes some way towards balancing 
the inevitable loss of stochastic information required to make a computationally 
feasible model. 



24 

Chapter 3 

Desirable Feat ures of t he Mo del 

This chapter describes the aspects of the problem seen as important to be well 

modelled, and features which the model should possess. This includes both 

features which are modelled well by other modek (as described in Chapter 2), and 

features important to the New Zealand system which have not yet been modelled 

well elsewhere. The goals are to give all of the important aspects a consistent level 

of detail, to seek to isolate these aspects, and to provide approximations which give 

an appropriate level of detail. 

The intention is to propose elegant approximations and approaches to be in­

corporated into the model. However it is not always possible to find an elegant 

approach for every aspect of the model and therefore in this case we settle for a 

good approximation. Of course all approximations, both elegant and otherwise, 

need to be modelled u:ell in terms of implementability (including solution time) 

and closeness to reality. 

The first part of this chapter focuses on a "first step" model in which the 

details of the approximation of the load and generation are not fixed; the actual 

approximation to be used is discussed in the second part. The reason for this is that 

the choice of our approximation depends on the interaction of load and generation 

with, and within, the system. 

3 . 1  A Flexible Model 

As mentioned in Section 1 .2, our model attempts to satisfy three conflicting objec­

tives : detail of the physical system, effective planning for an uncertain future, and 
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computational efficiency. However, we do not seek to explicitly define the best way 
to achieve this, nor do we intend to rank the three; such decisions lie ultimately with 
the end-users of the model and it  should be able to survive a re-prioritorization of 
the goals of these users . To accommodate these goals, the model should be made 
as flexible as practicable. This does raise another difficulty, however, as now there 
is need to i nvestigate the effects of making allowable changes to the model on the 
quality and structure of the solutions given. 

Flexibility also allows the advantage that the same base model can be used for 
different purposes ; for instance, it may be desirable on occasion to make compu­
tationally expensive runs incorporating greater detail than usual to estimate the 
deviat ion from optimallity, and the changes in structure, of the solutions usually 
obtained. 

The flexibility needs to be easy to control, in that the overall structure of the 
model needs to remain constant . vVe desire flexibility that allows us to change the 

level of detail with which we model one aspect of the model, whilst leaving the rest 
of the model alone. As an example, we do not want to change the model from a 
l inearly constrained problem to one with non-linear constraints, even though this 
may provide a finer approximation for load. Of course such problems in allowing 

flexibility may be unavoidable, and the aspects of the problem for which they occur 
need to be identified. 

A related aspect of the flexibility is that we seek flexibility in terms of changes 
to the model which only affect the ( local ) structure of the model, whilst leaving 

the character of the solutions unchanged. vVe seek the model to be robust in 
terms of the changes to the approximations we may make. Explicitly, if we move 
to a coarser approximation which could have been thought of as valid under the 
previous approximation, then the solution to the coarse approximation needs to be 
a feasible solution to the finer approximation, and no better solutions to the finer 
approximation should be feasible for the coarse approximation. That is, we want 
coarser approximations to be sub-sets of the finer approximations . 

3 .  2 Int ernal C onsist ency 

In seeking flexibility and elegance we need to be careful that we do not end up 

with a model which is a collection of different , elegant, ideas tied together only by 
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the fact that they all model different parts of the same problem. Such a model will 

tend to enforce structure on the solutions not present in reality-structure which 

reinforces the differences in the modelling of various parts of the system, and which 

may, in effect, represent differing management styles, or policies, for these parts of 

the system, which do not occur in practice. For instance, if at some point during 

the year we change from inflows of a stochastic nature to deterministic ones (in an 

effort to cut down on the solution time, say) , we are implying that after that point 

in time our knowledge of the future becomes exact, and so we could leave lake levels 

in a significantly worse condition then than we could possibly have allowed before 

that time; in terms of management policy, after this point in time, management of 

lakes becomes less conservative, and the solutions given by the model will reflect 

this change. 

vVe require the model to be as internally consistent as practicable. It may 

appear that this is the same thing as requiring the detail of every element of the 

model to be at a consistent level, but, to allow flexibility in the model, we seek 

to allow similar parts of the model to be modelled at differing levels of detail and 

yet with an overall consistent approach. This consistency requires that aspects 

of the model which are the same in scope be modelled via similar methods. For 

example, we do not mind if hydro releases are modelled as volumes of water over 

the entire week while generation is modelled as a function of time, but we do not 

want thermal generation to be modelled as power output over time while hydro 

generation is modelled as just total energy output for the week . 

3 . 3  Geographic D istribut ion 

The most important difference between our approach and the SDP approach cur­

rently being used by ECNZ, is that our aim is to allow stations and power users to 

be distributed over different geographic locations. This is best done by introducing 

some sort of network structure into the model. 

We leave describing the actual form the network structure will take until Sec­

tion 3 .5 .  It may very well turn out to be a Linear Network in the strict Oper­

ational Research sense of the term-however, we do not mean to imply this is 

the only structure it can have. Network structure, in our interpretation, will be 

taken to mean that we have an underlying structure which can be thought of as 
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an (un)directed graph in which "arcs" which represent possible paths of flow of 
some commodity and "nodes" represent points at which this flow interacts .  In 
essence we are more interested in the pictorial nature of the network than the 
strict mathematical structure. 

Facilities deemed to be coincident \vill be at the same node, and transmission 

l ines between these locations will act as arcs. As it is the transmission network 
which represents the arcs, and thus relative displacement of nodes, it is � misnomer 
calling this the geographic network; since we want to distinguish between this 
network and the actual transmission network it  is an approximation of, and since 
different places in terms of the transmission network will be at different geographic 

locations, we will continue to label it as such. 
The desire for a flexible model means we would like the geographic network 

used to be altered with little difficulty, in terms of the appearance rather than 
the structure. This means that , when designing the model, we should not fix the 

network to be used , but think in terms of an arbitrary geographic network .  How­
ever, for the purposes of implementation and to allow for the creation of a working 
model to work with ,  we define the network of Figure 3 . 1  to be the representative 
geographic network of the model . 

3 . 4  Time 

As described in Section 1 . 1 ,  the time horizon this model should cater for i s  of the 
order of a year, but this needs to be allowed to be flexible. Different t ime horizons 
can mean that different aspects of the problem become more, or less, important so 
we need to keep in mind the intended time horizon for the model . 

In choosing a fixed time horizon one needs to take into account the structure 
in the various forms of data used in the model , especially any periodicity in this 
data. Load curves have recurring patterns each day and week (as well as seasonal 
effects ) ,  while lake and inflow levels express seasonal patterns; these patterns mean 
that our model will need to have a time horizon which is an integral number of 
weeks, and, in fact ,  to account for the seasonal effects, an integral number of years. 
The problem of a calendar year not being an integral number of weeks is considered 
later in this section. 

It would be nice to be able to represent the time dimension of this model 
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continuously. Comparing the two graphs of Figure 3.2, which show the entire load 
for t he North Island for one year and for a single day, it seems that trying this 
type of approach will inevitably lose a lot of important information and require 
horrendously large approximations (there are more than 720 local maxima for the 
curve showing the entire year) . On the other hand, splitting time up into smaller 

portions seems to be trying to impose structure on the model which is not there in 
practice. However, t here does not seem to be any reasonable alternative. 

Therefore, we choose to split the time horizon up into smaller time steps .  As 
with the time horizon itself, we need to base the length of these time steps on the 

periodicity of the various problem data. Flexibility requires that we do not fix the 
length of the time steps outright ; as we require a fixed case for our working model, 
we choose a weekly time step for this. This choice is reinforced slightly by the fact 
that ,  for the current model used by ECNZ, Taupo, the major North Island hydro, 
has a storage cycle length of about a month .  

The problem that months, seasons and years are not integral numbers of weeks 
can, in general, be ignored, as the effects of changing the length of these longer 
periods to become an integral number of weeks should be minimal, and,  due to the 
periodicity of the load , this seems more appropriate than to change the size of a 

week so as to fit an integral number into a year. Of course one must be careful 
when using data which is taken over periods which are not an integral number of 
weeks long; as an example of this the inflow data used for this thesis was given as 

52 evenly spaced inflow levels for each year. 
Since the length of a time step is not fixed we will assume that all t ime steps are 

normalized, i .e . have a "length" of one; this effectively sets our unit of time. The 
time horizon is taken to be Y t ime steps long, where Y is a positive integer. Irre­
spective of the length of the time steps, we will henceforth refer to them generically 
as weeks and the to time horizon generically as a year. 

3 . 5  Transmission 

Before talking about the transmission of power around the system it would seem 
t hat we should decide on the form of the power representation. However, this 
form depends on the interactions we require our power representations to have, 
which in turn depends on ho_w we are going to model transmission and generation 



CHAPTER .3. DESIRABLE FEATURES OF THE MODEL 

Load over a Y c:ar 

500 

0 0 50 100  1 50 200 250 300 
Days 

Load over a Day 

3000 

2500 

� 2000 
'"' 
:: � 1 500 
� 

1 000 

500 

0 0 0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Days 

350 

0.9 

Figure 3 .2 :  The North Island load for a whole year and a single clay 

30 



CHAPTER 3. DESIRABLE FEATURES OF THE 1\IIODEL 31 

and how we approximate load. This Section describes which features we wish the 

transmission to possess. 

As mentioned in Section 1 .5 , we do not seek to model the transmission net­
work exactly. Also, to deal with the need for consistency, we should not model the 
characteristics of the transmission lines beyond the level at which we model gen­

eration and load. Each arc of the geographic network represents transmission over 
a part of the National Grid; for each arc we specify a capacity and loss function, 
representing similar characteristics displayed by that part of the National Grid. 

If the loss function is chosen to be non-linear (quadratic is a good approximation 
of loss and stems from well-grounded theory) the model will then have non-linear 
constraints ,  be they modelled explicitly as constraints or as a penalty function in 
the objective. To allow flexibility, we shall consider the possibili ty of either linear 
and non-linear losses in the model. However, for the working model , we settle for 
linear line losses . 

The DC link is very important , in terms of the system operation, and it is 
deemed important , by ECNZ, that the loss structure on this arc is modelled with, 
possibly, greater accuracy than that of the other lines. Our desire for consistency 
in approach would seem to require that all lines be modelled in the same way, 
however the DC link does have a different structure to other lines; it is D C  and 
so has no reactance loss, it is the only connection between the South and North 
Islands, and it is also important to the system in terms of the reliability of supply. 
For these reasons ,  and that of flexibility, we allow the loss of the DC link to be 
modelled non-linearly even when other line losses are being modelled linearly. 

If the transmission lines are to have an inherent power loss, one must be careful 
about the direction of transmission . One can think of negative transmission as 
being transmission in the opposite direction, but when we apply the loss function 
to this negative power, the (negative) power seen at the other end of the line needs 
to be sufficient to ensure that when it enters the line (as positive power transmitted 
in the opposite direction) the power seen at this end of the line is the original power 
transmitted negatively in the other direction. Mathematically this means that, for 
any loss function, f,  we require f(-f( -x)) = x .  However this is not the case for 
a linear loss , since, if f(x) = ax for some a E (0 ,  1 ] , then; 

f(-f( -x) )  = f( -a (  -x) )  = f(ax) = a2x -=J x, unless a = 1 

Figure 3 .3  shows this pictorially. 
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F igure 3 .3 :  The effect of allowing negative power transmission with a linear loss 
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Hence, for linear loss, we need to split the arcs into two oppositely directed arcs 
and allow only posit ive power to be transmitted in each direction . vVe may also 
have to apply this arc-splitting for non-linear losses since, in requiring the above 
condition, the loss function may be non-differentiable at zero. This can be seen 
from the l inear loss function example. 

3 . 6  Load 

Load is modelled as occurin_g at the nodes of the geographic network, represented 
as a Load Duration Curve over a week, as discussed in Section 2.4.  Although this 
representation removes some local information about the load , having a separate 
LDC for each week means we do retain some of this information, with the advantage 

that i t  is in  a form that is more easily approximated well .  The exact approximation 
we use for LDC's and other electricity curves is dealt with in Section 3 . 10 .  

By including an underlying network one must address the issue of the interaction 
between Load Duration Curves, be this direct interaction in which load moves 
around the network or indirect interaction where generation from the same station 
is used to meet the load at two nodes . In investigating this interaction it should 
be recalled that the Load Duration Curves are forecasts of load and so inherently 
include some uncertainty. There are two fundamental forms of interaction which 
can be considered: interaction in which the Load Duration Curves are considered 
to be coherent, or independent. 

For coherent interaction we are assuming the LDC 's can all be specified from 
one parameter, which is some combination of time and the forecast uncertainty. 
Therefore, if we know the value of one LDC for a particular parameter value, we 
can infer exactly the value of all other LDC's at the same value. This form of 
interaction is achieved by adding the appropriate curves . 

For independent interaction the assumption is that there in no correspondence 
between the values of one LDC and the values of any other. Knowing the value 
of one LDC at a particular time gives no information whatsoever about the other 
LDC's values at that time. This interaction is achieved via a convolution of the 
directly interacting curves . 

In actuality, the LDC's of a particular week are highly correlated and so combin­
ing them as if they are coherent is a reasonable approximation. It may appear that 
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the correlation can be increased by using Load Curves rather than Load Duration 
Curves ,  but this is not necessarily the case. One of the reasons for using LDC's 
is the reduced uncertainty in forecasting them relative to forecasting Load Curves 

( refer to Section 2 .4) . The coherence which is lost in using Load Duration Curves 
instead of Load Curves is made up for in the greater certainty with which they 

can b e  forecast .  So, in terms of uncertainty there is little difference in using Load 
Curves or LDC's .  The approximation advantages therefore make using LDC's the 
preferred approximation. 

For the artificial case where the actual Load Curves are known, Figure 3.4 

shows the real (addition of the Load Curves) ,  coherent approximation (addition 
of the LDC 's) , and independent approximation (convolution of the LDC 's) of the 
interaction between two LDC's .  

It should be noted here that i f  one wishes to use Load Curves instead of LDC 's, 
the model should allow this by using a finer approximation for the load ; since the 

decreasing nature of each LDC is exploited later, this would require major revision 
to the model , and so is not investigated directly. However, the tools used in other 
areas of the model should be sufficient to allow a reasonable approximation to be 
made to this end . 

Having decided on the type of interaction between load at different nodes means 
that we have settled on the structure underlying the network. The interaction at 
a node, j say, without any stations , is simply 

( 3 . 1 )  
iE IN(j) iEOUT(j )  

where, IN(j )  and OUT(j ) are the set of arcs entering and leaving node j respectively, 
X; is transmission as a function of time over week w, and J; is the loss function for 
arc i ,  and L1 is the load as a function of time over week w at node j .  In all cases 
the time dimension is in terms of the LDC parameter (which could be thought of 

�·--
as "sorted" time) , and w.l. o .g. we assume the domain of all LDC's (and hence all 

related curves) is the interval [0, 1 ] ;  if this is not the case, an affine transformation 
can be used to map Weekw �----+ [0, 1 ] , mapping the beginning of the week to 0, and 
the end of the week to 1 .  Equation 3. 1 requires the transmission in and out of the 
node to exactly meet the load there; for a node with a station , a similar equation 

will apply but the station generation needs to be included (see below) . For a fixed 
t and linear loss on each arc, Equation 3 . 1 characterizes the network constraint of 
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Each station needs to generate power so as to meet the load at its node and the 
nodes to which its power is transmitted. Constraints on station generation include a 
generating capacity, possible uncertainty in supply, a fuel cost (for thermal stations) 
and a limited supply of water (for hydro stations ) .  

To incorporate an uncertainty of supply in generation meeting load at other 

nodes , we need to identify, for all load , the stations which were used to meet that 
load . This requires a vast amount of information, as every station would need to be 
represented at every node. vVe could, instead , re-solve the network for every "state" 
of the stations , but this would require a lot of computational effort (see Section 2 . 5 ) .  

Alternatively, we could model this uncertainty so as to  try to make i t  independent of 
the actual meeting of the load. This independence could be obtained by separating 
the generation of power from the supplying of load . One way to achieve this 
is to require that stations at the same node present a "Contract Curve" (C .  C . )  

representing the load they have chosen t o  meet . The C . C . ' s  are required to meet 
all load when distributed via the transmission network , and the stations at each 
node generate power so as to fill the C .C . at that node. Unfortunately changing 
the state of a station could also change the optimal distribution of the Contract 
Curves . However, it may be a reasonable approximation to assume that it does not . 
This assumption means power stations can compensate for uncertain generation of 
other stations at the same node (but not at other nodes) ,  s ince C . C . 's are filled , 

by the stations at that node, in the same way LDC's are filled by other modelling 
methods ( c .f Section 2 .5 ) .  

The inclusion of the C .C .  means that , at station node, j ,  Equation 3 . 1  becomes 

(3 .2)  
iE IN (j )  iEOUT(j) 

where G1 is the C .C .  for node j .  
The C .  C . 's are obviously non-negative, since allowing them to become nega­

tive means we get paid for creating load at a station . We assume the C .C . 's are 
decreasing. The reason for this is that , since all of the LDC's are decreasing, the 

1 Here the load represents a sink of the network (in standard network terminology) 
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marginal cost of meeting any load, by any station, is also decreasing, so it will 

not be of benefit to generate more at a t ime of lower load than when the load is 
higher. Also, since t he load is in terms of LDC's ,  if we do have generation at a 
station which is not decreasing then, when we come to implement this solution , 
i t  is not clear how that station's generation should be resolved. By imposing this 
constraint we are also implicitly imposing some sort of regularity constraint on a 
station 's generation. In light of this there seems little point in allowing load to be 
given in terms of Load Curves , as proposed at the end of Section 3 .6 .  

Further, we can impose such structure on the C.C . and not affect the optimal 
solution of our model . The advantage of this is that the non-negativity condit ion 
and any capacity constraint on a C .C .  simply become 

G(1 )  2: 0, and, G(O) :::; G 

where G :  [0, 1 ] -+ � is the C .C .  and G is its cap�city. 

(3 .3) 

Since the thermal and hydro stations fill the C.C. in different ways, we consider 
the two separately, so as to investigate the impact these two methods of scheduling 

have on both the way in which the problem is modelled, and the form of the 
solutions given. 

3 .  7 . 1  Thermal Stat ions 

Thermal stations each have an associated cost of generation, so when filling a C .C .  

we schedule the cheapest stations first . As part of this scheduling we incorporate the 
uncertainty of supply of stations (see above discussion) by convolving a probabilisti c  
generation profile from the C .C . ;  as  was discussed in Section 2.5 .  

To perform this convolution one requires the inverse of the C.C. , which is the 
probability distribution function form of the C .C . ,  since the C.C.  is over the inter­

val [0, 1 ]  (see Section 3 . 6 ) .  To calculate this inverse in practice can be difficult and 
computationally intensive. It is ,  however, possible to approximate the inverse in­
stead of calculating i t  exactly. Discussion of how the convolution is to be achieved 
is described later in the context of the model developed in Chapter 4 .  

To calculate the cost of  generation for a thermal station we merely need to 
calculate the difference between the amount of required generation before and after 
that station is scheduled. All this requires is to be able to find the area under the 
resulting C .C . ,  or, in terms of the inverse, the area under the associated probability 
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distribution function over the interval [0, oo ) . 
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Hydro stations have t he added complication of having to use water, a limited 
resource, to generate t heir power. Limited storage capacity and uncertain inflows 
into the hydro system make hydro stations difficult to model. The added difficulty 
of having many stations on a river chain is removed by amalgamating river chains 

so that each hydro system is represented by a single reservoir and station (see 
Section 1 .4 ) . This choice is reinforced by the fact that , over the weekly time step, 
the lag t ime between stations becomes reasonably insignificant, and so, the implicit 
assumption that all stations on a river chain generate in phase is reasonable. 

The data for the controlled and uncontrolled inflows (see Section 1 .4 )  is given 
as the average inflow for each 512 of a year, and the inflow sequences for the last 60 

( 

years are used to predict the future inflows. Since we have effectively sorted the 
time dimension during each time step by using LDC 's, we can not use any finer time 
scale information than the total inflow during each time step . Therefore we must 
make a decision about how to model the inflows with respect to the generation. 
The assumption is made that the controlled (and some of the uncontrolled) inflow 
arrives in such a manner as to accommodate any generation sequence required 
for the station ; the rest of the uncontrolled inflow is then assumed to arrive at a 
constant rate throughout the time step. A factor is assigned to each hydro station 
indicating the fraction of the uncontrolled inflow which arrives at a constant rate. 
These assumptions are not unreasonable when one takes into account the river 

chain structure incorporated within the amalgamated hydro stat ion and the fact 
that many hydro stations have some control over the "local" water flow. In terms of 
the model ,  the whole uncontrolled inflow provides a minimum generation amount 
for the whole time step, and the uncontrolled inflow arriving at a constant rate 
provides a minimum generation level for each hydro station's generation curve 

(assuming no spill) . 
Each station has a conversion factor for converting the gravitational potential 

energy of the released water into electricity. This conversion allows us to consider 
the water in terms of its potential generation, rather than its volume. As well as the 
usual constraints on all stations, the river systems themselves may have minimum 
and maximum reservoir release levels and minimum flows from the river mouth 
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specified; these allow for environmental and recreational concerns . However, due 

to the uncertain nature of the inflows and the amalgamation of river chains, we 
need not model these constraints too precisely if it would be difficult to do so, 

as we do not want them to overly constrain the solutions when the coarseness of 
our approximation of the hydro stations may make such constraints unnecessary. 

If i t  transpires that the solution requires a particular station to fall irretrievably 
outside these release bounds, then the problem could be re-solved with a more 
precise approximation of these conditions, allowing greater flexibility through the 
balancing of solution time against the incorporation of all relevant constraints. vVe 
therefore need to consider how to model these con;traints in  both a precise and 
imprecise fashion. 

Hydro stations fill C .C .  's via the (dual) methods described in Chapter 2 for 
hydro stations filling an LDC, i .e .  we need to either fix a water cost for the hydro 
station , or fix the reservoir release. Since load is distributed over the geographic 
network ,  load at different nodes will "see" different costs for power from the same 
station. Hence, it becomes difficult (and computationally expensive) to specify the 
water costs for a hydro station. Also, ensuring that the water released from the 
reservoir each week allows enough storage for subsequent weeks requires the actual 

release anyway. For these reasons we use the release from the reservoir for each 
week to specify the generation with respect to the local C.C . .  

Storage i n  a reservoir i s  limited i n  terms of the t ime horizon and, since the 
inflows include seasonal patterns , this means that we need to include storage in­
formation for the whole year. This is most easily done by attaching a waterflow 
network to each hydro station, i .e. an inter-temporal linking of the hydro station 
from week to week. The waterflow network is the obvious time discretized network 
discussed in Chapter 2, containing arcs for releases, inflows (the uncontrolled in­
flows can either be separated from the controlled inflows or be included with them 

and appear as a minimum release as in Boshier and Lermit [ 1 ] )  and storage from 
one week to the next for the reservoir; see Figure 3.5. In determining the best 
release and storage for each week, we need to determine a generation schedule for 
each week of the year requiring a copy of the geographic network to be solved for 
each week . 

The release needs to be independent of any uncertainty in supply, as otherwise 
this uncertainty would neeq to be carried through the whole year. Therefore the 
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release may be no less than the maximum total generation under any possible 

future. Including uncertainty when filling a C .C . ,  will give the expected generation 
and so the maximal generation would need to be calculated separately. If we used 

the expected release as an approximation to the maximum release, when the station 
does not breakdown (which is more often than not) we will end up with less water 

in the lake than planned for. In a dry year this could have disastrous results. 
In the working model, we disallow the possibility of an uncertain supply for 

a hydro station. For flexibility we should allow this in general, although i t  would 
require more work as we would need to determine both the expected and maximum 
generation. 

Having determined a release, H (total volume of water released during the week, 
m Megawatt hours) , from the waterflow network, the hydro station generation 
then splits the C .C .  so as to generate at peak capacity for the longest period, 
and generate exact ly H MvVh if possible (see Section 2 .6 ) .  If the station cannot 
generate H MvVh, the remaining release is spilled. 

3 . 7 . 3  Auxiliary Stations 

Auxiliary stat ions (see Section 1 . 1 )  are assumed to run continuously at a constant 
level during each time step ; they are given no cost , limit or control on generation. 
These stat ions are modelled by removing their proposed (constant) generation from 
the load before solution begins, which may involve allowing some nodes to have 
negative load. To allow for the fact that system constraints may not permit all 
of this negative load to be used , we allow the "resulting load" at this node to be 
negative, so long as it is above the init ial negative load. 

3 . 8  Non- S upply 

The term non-supply is usually used to describe load which cannot be met by the 
generation system. In allowing uncertain generation by some of the stations , we 
need to cater for such a possibility, as there is always a (tiny) probability that the 

load can not be completely satisfied due to breakdowns. The amount of non-supply 
needs to be minimized by some method, since we do not want to allow the optimal 
solution to generate no power at all since this involves no cost !  This is done by 
introducing a cost of non-supply, which is attached to any load which is not met 
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Allowing non-supply in the model ensures that there is always a feasible gen­
eration schedule, i .e. generate nothing. Another reason for allowing non-supply is 
that there is then no longer any reason to enforce all the stations at a node to com­

pletely fill their C .C . ,  as any contracted generation which can not be filled becomes 

non-supply and effectively "filled" by an imaginary non-supply station. As a result 
of this , filling a C .C .  involves only determining the cost to fill i t ,  and thus takes 
place during evaluation of the objective function. This implies that , if determining 
the generation of each station requires the use of some non-linear equations , we 

are only introducing non-linearities into the objective function and not into the 
constraint set . 

Allowing for non-supply also means that we are only interested in the curve 
result ing from the scheduling of some of the stations in order to schedule the 
remaining stat ions-if we can discover some information about a curve which will 
allow scheduling of a station and the computation of the area under the resulting 
curve easily, we would prefer to utilize this information rather than having to 

determine the actual curve at each stage of the scheduling process .  Once an optimal 
solution has been determined, we can use computationally expensive methods to 
determine the actual filled curves (if this is required) .  

I n  terms of filling C .C . ,  we allow stations at the same node t o  explicitly allow for 
others' uncertain generation. The residual unmet contracted load is then penalized 
at the cost of non-supply. However, this load could have been met by a station at 

another node, so the cost that should actually be applied is the cost of re-supply 
by stations at other nodes. In general, this cost could be estimated for each node 

and could either be incorporated in a different cost of non-supply at every node, 
or explicitly split up into the cost of non-supply and a cost of re-supply for each 
node. 

The cost of non-supply, for our working model , is assigned a constant value, 
but for the sake of flexibility we allow it to take different values at every node, if 
required. 

To prevent non-supply being allowed only at station nodes (and hence requir­
ing "non-supplied generation" to be transmitted via the geographic network) ,  we 
introduce a non-supply curve at each node. Such non-supply curves can be used 
to identify badly modelled or h ighly constrained areas of the geographic network 
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The two major elements of the model being developed are that it should provide 
a high level of detail about the physical system, and that i t  should account well 
for the stochastic elements of the system. To incorporate these two elements at 
a consistent level of detai l ,  and to allow for flexibility, in that each element may 
change its level of approximation relatively easily without affecting the modelling 
of the other element , they need to be separable in our model . It is, in fact , the 
difficulty in providing an adequate balance between these two aspects that initially 
prompted a flexible approach. 

To make these two elements separate in some implementational sense, whilst 
not enforcing too much of this separation into the structure of the solutions , is 
difficult. vVe chose to initially develop a deterministic model which would then be 
extended to a stochastic model , consistent with the model's objectives , as described 
in Section 1 .2 .  The actual stochastic extension to the deterministic base model 
need not be fixed. This will allow new (possibly better) methods to be used, as 
well as allowing different stochastic extensions to be tested under similar condit ions . 
Flexibility in the deterministic model could be used to enhance particular stochastic 
extensions . 

It may be that not all stochastic extensions could be realistically applied to the 
base model developed, and so we need to be careful , in the development of the 
deterministic model, that there are at least some stochastic extensions that can be 
used . To try to develop a deterministic base model which would allow any stochas­

t ic  extension is beyond the scope of this thesis, and not necessarily useful in terms 
of its approximation to reality-a deterministic base model , specifically tailored for 
the particular stochastic extension, would do better in this regard. In light of this 
it may seem that we should have started with a stochastic extension and tailored 
our deterministic approach to that ; however, using this approach, the stochastic 
extension used tends to set limits on the amount of detail in the deterministic  ap­
proach used, but in this thesis we were seeking to make the level of detail in  the 
deterministic base problem drive the stochastic extension (see Chapter 1 ) .  

We do not blindly hope that there will be a reasonable stochastic extension 
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available at the end of the deterministic model development ;  we plan on using a 
scenario aggregation approach, as well as investigating other possible extensions . 
Scenario aggregation methods allow for stochastic detail in the number and variety 
of scenarios used , while deterministic detail is dependent on the underlying deter­

ministic subproblems; both of these can be independently varied. The discussion 

of stochastic extensions is left for Chapter 6, so they may be investigated in terms 
of the deterministic model developed. 

3-. 1 0  The Electricity Curve Approximat ion 

We use the term Electricity Curve to refer to any curve which , represents the 
generation , transmission or use of electricity, e.g. an LDC or a C.C . .  

There is no point in using an LDC approach i f  one i s  going to  keep the approx­
imation of the LDC (and hence other Electricity Curves) in the form given by the 
data, namely the average load level for each half-hour. We require an approxima­
tion which can store much of this information using only a few significant values, 
since power station generation (a variable of our model) needs to be approximated 
in the same way. In looking for such an approximation we need to consider the 
impact on the entire model, and to allow for flexibility. 

In light of the points made in Section 3.6 about the interaction of LDC's ,  i t  
seems appropriate that the information stored about the Electricity Curves should 
be in the form of coefficients of some fixed basis used to approximate the curves, 
i .e .  we would like to write each approximated Electricity Curve, G( t ) ,  as 

(3 .4) 

where {B1 , . . .  , EN } i s  the chosen basis .  
Due to the nature of the LDC, we need to ensure the approximations we choose 

for them are decreasing, even if there is a closer approximation (in terms of least 
squares, say) for them which is not decreasing. As an example of this, Figure 3 .6  

shows where the least squares 3-piecewise quadratic approximation to an LDC i s  
not decreasing. 

The basis used needs to not only be a good approximation to the LDC ,  but 
also should allow the types of structures, required by system, for the other Elec­
trici ty Curves (this is reinforced by the findings of Chapter 8 ) .  We want to keep 
the number of basis elements in this representation low, as it affects the number 
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of variables in our final model. Stations and transmission arcs have capacity con­
straints and require non-negative power, so the approximation needs to be able 
to be constrained within a fixed range. The existence of this fixed range will also 
mean that some of the curves required will want to be at capacity or zero for part 
of the week and this may cause non-smooth points on the curve (see Figure 3 . 7) . 
Smooth bases trying to approximate non-smooth behaviour and constant function 

values over positive length intervals often oscillate or admit superfluous optima and 
do not approximate such phenomena well (see Figure 3 .8) . This suggests the use 
of a piecewise basis of some kind. 

The fixed range implies the use of a piecewise linear approximation inan effort 
to keep the constraining equations linear. Unfortunately, piecewise linearity i s  not 
a very good approximation for an LDC without a fine partit ion. Piecewise linearity 

may seem reasonable in light of the uncertainty in the Load Duration Curves , but, 
we seek to incorporate the particular structure of the solutions as much as possible, 

as it is the structure of the solutions which is of most interest . Also, in allowing 
a flexible approach, we seek to find the limits of the approximations used . By 
enforcing C .C . 's to be decreasing, as explained in Section 3 .7 ,  the non-negativity 
and capacity constraints of Equation 3.3 simply become 

in terms of the basis approximation. 
To enforce a C. C. to be always decreasing via linear constraints indicates the use 

of a quadratic basis . As a piecewise quadratic basis provides a good apprqximation 
to an LDC,  moving to a cubic approximation would achieve little more in the 
way of accuracy to this approximation; furthermore since there is no motivation 
to use any type of basis other than a piecewise polynomial, we stay with the 
piecewise quadratic .  Figure 3 . 9  shows a 3-piece, 4-piece, and 5-piece piecewise 
quadratic and an 8-piece piecewise linear approximation to an LDC with evenly 
spaced breakpoints. 

Empirical experimentation shows a 4-piece piecewise quadratic (NB: piecewise 
quadratic and not quadratic spline) to be a good approximation to LDC. We choose 
this for our central model, with partition {0, 0 . 1 ,  0 .4, 0 .7 ,  1 .0 } ;  Figure 3 . 1 0  
shows such a piecewise quadratic  approximation. For flexibility we allow for an 
n-piecewise quadratic (or linear or discrete) approximation. 'vVe still have the open 
problem of constraining the transmission, but this is left to be dealt with by the 
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Figure 3 .6 :  The best least squares 3-piecewise quadratic approximation to an LDC 
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For reference, in connection with the filling of C .C . ,  the inverse of a decreasing 

piecewise quadratic is reasonably easy to determine; unfortunately it is a rational 
polynomial with (possibly) more pieces than the original, and initially unknown 
break points. 

3 . 1 1  D iscussion 

An underlying geographic network describes the distribution of load and power sta­
tions. The electricity flow in the ne.twork is approximated for each week, ove�the 
year, by piecewise quadratics. Each power station node defines a Contract Curve 
which represents the load to be met by the station( s) at that node. These stations 
fill the C .C .  in the cheapest possible manner, given that unmet contracted gener­
ation is penalized at a cost of non-supply. The C .C . 's must satisfy all load in the 
system, represented by LDC's , as ensured by the transmission network constraints. 

Generation by each hydro stat ion is restricted by its generation capacity and 
the release from the reservoir for that week. The hydro stations have an attached 

waterflow network which describes the lake levels and releases for each week; these 
networks tie the weeks together. 

Every node has a non-supply curve to allow feasibility. This power is again 

penalized at the cost of non-supply. 
Such a representation creates a natural division in which the (contracted) supply 

of load takes place via a constraint set (the geographic network) and the generation 
of power (filling the Contract Curves) takes place in the objective function. 

The next Chapter describes various methods considered for modelling the sys­
tem. In order that t here is no need to cover the fundamental elements of the system 

• 

for each of the various methods, most of the basic structures defined in this Chap­
ter are taken to hold for each of the methods described, with modifications and 
refinements as are necessary to develop the particular model . 
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Chapter 4 

Inappropriate Approximations 

D escription of the various wrong turns, blind alleys, and computationally un­
workable approaches taken on the model before a final, workable, model 

was produced, is given in this Chapter . The reason for including such a chapter 

is partly because a considerable amount of the development work for the model 
went into such areas , partly in an effort to express why the problem was, or was 
not , modelled in particular ways , and also, partly as a warning to later modellers 
of such systems: "don't try this at home!" In our opinion, the two major reasons 
for not including an approximation in the model appear to be either, that it cre­
ated significant undesirable structure in the solutions which was an artifact of the 
approximation rather than the problem, or that it was unimplementable in terms 
of solution t ime or convergence. In the latter case it must be remembered that the 
deterministic model being developed is only a part of a stochastic extension , and 
therefore needs to be robust . 

It may seem that in any approximation one includes unwanted structure, if only 
in the sense that solutions can only be in the form of the approximation .  It is not 
this type of unwanted structure in the problem that is of concern ;  that structure is 

• 
obvious, and is clearly taken as being acceptable when the approximation is made. 
The extra structure of concern is the insidious structure implicitly imposed by the 
approximation. This structure is almost never obvious from the outset , and can be 
formed by a combination of seemingly unrelated approximations . Such structure 
is mainly noticed in the form of the actual solutions obtained; as a symptom, it 
is often difficult to trace. The effects of such structure are, unfortunately, often 
unnoticed as they tend to be in the form of different management styles ; these can 
range from over-conservation of water, to full on/full off policies for some type of 
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station. O f  course i t  i s  sometimes impossible to avoid this extra structure, but 
it always pays to be aware of its causes and effects .  So it is with care, and an 
ultimately pragmatic view, that any approximations are made. 

In the previous chapter the approximation details of most of the model were left 
undeveloped, the intention being to create a skeletal model made up of elegant , and 
necessary, parts which could be enriched in the development of an implementable 
model. The skeletal model is not meant to be totally inflexible, since to create a 
good implementable model may require some re-working of the model's basics; it 
i s  supposed to embody the essence of the model , to emphasize the underlying di­
rection of model development . This model also allows this Chapter to concentrate 
on specific areas of the model from within an encompassing structure which de­
scribes the interaction of the model 's components, without the added complication 
of needing to explain an entire model. 

In this Chapter, the aspects modelled will be discussed in the generality required 
for the desired flexibility and consistency. Where moving the level of approximation 
past some point would require making changes to other aspects of the model, these 
levels are explained and the reasons for, or against , moving beyond such a limit 
are discussed . 

4 . 1  F illing Contract C urves 

Probably the most obvious omission of Chapter 3 is the actual filling of the Contract 
Curves . We need to determine a method of scheduling thermal stations in a (rea­
sonably) fast ,  automatic, manner which can be achieved without prior knowledge 
of the exact C .C  . .  The resulting curve is given by: 

( 4 . 1 )  

where G i s  the C .C . ,  FQ i s  the probability distribution function associated with 
the station's probable maximum generation, and the convolution is given by: 

• 

a-1 * FQ (x) = j_: a-1 (x - z) dFQ(z ) 

When the information about the uncertain supply of the station is in the form of 
a single probability of complete breakdown this becomes: 
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where p is the probability of breakdown, and Q is the capacity of the t hermal 
station. For a decreasing piecewise quadratic we can calculate the inverse exactly ; 
however, F will be a piecewise function with more pieces than G. Keeping track 

of t he new pieces can be extremely difficult , viz the following case, with Q = 1 ,  
p = 0 .9 ,  and G given by; 

so c-l becomes; 

giVmg 

F(x) = 

G( { 1 .2 - t t E [0 , 0 .5] 
t )  = 

2(t - 1 )2 (0 5 1 ]  t E . , 

a-1 (x)  = 

1 .2 - lOt 
2(1 - 10t )2 

1 - � 
0.5 
1 .2 - X 

0 

x E [0, 0 .5) 

X E [0 .5 , 0 .  7) 
x E [0 .7 ,  1 .2] 

X > 1 .2 

t E [0 ,  0 . 05) 
t E [0 . 05 ,  0 .0684) 

0 .314 - l . l l l t - 0.1J0 . 193 - 0.686t t E [0.0684, 0 .28] 
0 t E (0 .28 ,  1 . 0] 

Taking Q = 0.4 gives a very messy F with 6 pieces; one can see how difficult such an 

approach would become when multiple stations try to fill a C .  C . .  However, we can 
extract one advantage: as we are only interested in the amount of generation for 
any station, when determining the cost of a solution, there is no need to re-invert 
F. We can simply use F�l , s ince: 

11 max{F(t) ,  0} dt = fooo F-1 (x) dx (4.2) 

Equation 4 .2 possesses the advantages that we do not need to calculate the, ana­

lytically difficult , left-hand-side, and we need never know F-1 for negative x .  
For the moment we assume that either of the abo¥e methods, or some other 

approach, is used, and concentrate on some other aspects of the model . Later in this 
Chapter we will re-visit the filling of C .C . ,  but for now it is sufficient to assume that 
we have a function E( G, FQ) which gives the total remaining contracted load from 
the C .C .  G after scheduling a station with probable maximum generation described 
by the probability distribution function FQ . To cope with multiple stations we also 
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define the related function F( G, FQ ) which gives the curve resulting from scheduling 
the stat ion. Note that we have the following relationship: 

E(G, FQ )  = 11 max{F(G, FQ)(t ) , O} dt 

The amount of fuel used by a second station, Q2 , is given by 

We also define the following, in anticipation of approximations to come, and to 
clean up t he notation somewhat . For C .C .  G, recalling that a C .C .  is non-negative, 

we write 
m (G) = 11 G(t) dt (4.3) 

When there is no confusion over the C .C .  involved we will often write m for m ( G) . 

Notice that when FQ represents a single probability, p, of complete station 
failure, then E( G, FQ ) is exactly given by 

E(G, FQ) = ( 1 - p)E(G , XrQ".oo) ) + pm( G) 

where XrQ,oo) is the characteristic function of the set [Q, oo ) having value one on 
the set and zero elsewhere. 

4 . 2  Hydro Stat ions F illing Contract C urves 

As mentioned in Section 3. 7, hydro station generation splits the C. C . .  Since this 
takes place prior to the scheduling of thermal stations , it requires determination of 
the result ing curve, which in turn requires determining exactly where the station 

splits the curve. For a C .C . ,  G, this requires determining 8 2: 0 such that : 

11 max { min { G(t) , H + 8} - 8, 0} dt = H 

where H is the capacity of the hydro station. This is easier to calculate when put 
in terms of c-1 ' as the above equation then becomes 

{H+S 
la c- 1 (x) dx = H 

If no such 8 exists ,  then the generation is only 

- 11 min{ G(t) ,  H} dt < H 
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with the remaining release being spi l l .  Figure 4 . 1  shows the two cases when, firstly, 
a 8 exists and , secondly, does not exist, for the same H and H values . 

Once 8 has been found, it i s  easier to specify the inverse of the resulting curve 

than the curve i tself; this inverse is given by a-1 (X) for X E [ 0 ' 8] , and a-1 (X + H) 
for x > 8. This reiterates that , for the purposes of evaluating the cost of a C .C . ,  i t  
is only the inverse of the C.C.  that interests us. 

To avoid the difficulty of needing to determine 8, we can specify that each hydro 
station must have its own Contract Curve. In this case if such a 8 exists, the total 
generation is given by H ,  and i f  8 does not exist, the total generation is given by 

m ( G) - E( G, H) ;  here we slightly abuse notation by al lowing the second argument 
of E be a single value, representing the probabi lity distribution function which is 
equal to zero below this value and equal to one above i t .  This means the amount 

of non-supplied contracted load for a hydro station's C .C .  is given by 

max {m( G) - H, E(G, H)} ( 4.4) 

Immediately one can see a potential problem with this: any combination of 
release, H ,  and C .C .  G, with 

m( G) - H = E(G, H) ( 4.5) 

wi l l  be a non-differentiable point of the objective function . It may seem that we 
could eliminate this by requiring no spi l l ;  apart from the fact that this creates 
a non-linear constraint (due to the non-l inearity of E) , it may also cause some 
solutions to be infeasible (as there are times when spi l l  is unavoidable, especially 
when trying to cater for the uncertain environment ) .  

A possible remedy might be to "smooth-ofP' these edges via an approximation 
to Equation 4 .4 .  Discussion of this is left until an exact representation of E is given, 
since such an approximation wil l  depend on the nature of this representation. 

In the case of two hydro stations filling the same C .C . ,  the order of schedu ling 
i s  unimportant . To see this, consider the scheduling of two hydro stations ,  with 
releases HI and H2 , and capacities H1 and H2 respectively. First schedule them 
individually into the C .C . ;  if there is no overlap on the energy they wish to meet ,  
then ,  regard less of the order in which they are scheduled , they wi l l  stil l sp l i t  the 
curve in  the same place ( see Figure 4 .2 ) . If there is  overlap, call the height of 
the overlap 1] ( see Figure 4 .3 ) .  Notice that if we schedule the two stations as one 
large station , wi th release H1 + H2 and capacity HI + H2 , the split of the C .C .  
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would contain both of the individual splits, since the extra area must exactly match 
the overlapping area. Consider the portion of the curve that would be scheduled 
to the combined station: if we remove the generation from one of the stations, 

the resulting curve has height equal to the capacity of the other station ,  and area 
equal to the release of that station-this is exactly where this station would split the 
resulting curve. The stations may therefore generate differently, but the resulting 
curve is independent of the order of scheduling them . This readily generalizes to 
more than two hydro stations, by considering them in overlapping pairs. 

In light of this, it may seem that, instead of requiring each hydro station to 

have an individual C .C . ,  we merely need to require that all of the hydro stations, 
at a single node, have a collective C.C . .  However, this allows underutilized stations 
to generate using the spill from other stations. Consider the situation where the 
generation of two stations does not overlap (when scheduled individually i nto a 
C .C . ) ,  with some positive gap between the two schedules (as in  Figure 4 .3 ) , and 

the lower station ( i n  terms of splitting the C .C . )  is spilling. Because of the positive 

gap, if the stations were scheduled using the same release (as they would be if 
scheduled as a combined station) ,  the non-spilling station could generate using 
some of the spill of the other station by decreasing this gap. 

4 . 3  Transmission Capacity 

In  Chapter 3 the modelling of transmission line losses was mentioned. Here, we 
choose to use a linear line loss as , otherwise, we are incorporating a non-l inear 
equality constraint for every coefficient of every a.rc of every week ( i .e .  in the order 
of I 0 000 ::;uch con ::;t rai nts ! ) . Even ju::;t i ncl ud in g a non- l i near l i ne lo::;s for the Nort h­
South DC l ink would incorporate in  the order of 600 non-linear equal ity constraints . 
Also, due to the basis representation , the non-linear constraints would necessarily 
be an approximation in any case. 

For transmission capacity, the fact that transmission curves are not constrained 
to be. decreasing implies that the constraints required to keep transmission within 
a fixed range must be non- linear. To see this, consider a quadratic, a t2 + bt + c, 

over [0, 1 ]  which we seek to constrain in the range [A, B] . This is exactly the same 
as requiring the polynomial al2 + bl to be constrained in the region [A - c, B - c] , 
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Blue release 34GW, capacity 250MW. Red release 29GW, capacity 300MW. 
800 
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Weeks 

Figure 4 .3 :  Two hydro stations filling a C .C .  with overlap 
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with A ::; c ::; B ;  hence we require the following conditions: 

A ::; a + b + c ::; B  
b2 b A ::; - 4a + c ::;  B when - 2a E [0, 1 ]  

The region of allowable coefficients is shown in Figure 4 .4. 
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If we require these constraints on every transmission line, we would have in the 
order of 15 x 2 x 52 x 4 = 6250 non-linear constraints, i .e. two for every arc in the 
geographic network (one for each direction) ,  for every week in the year, for each 
quadratic piece of the transmission curve. Including these constraints explicitly 
would adversely affect solution t ime. Instead we recognize that the maximum 
transmission capacities are not truly hard constraints, so that they may be better 
modelled as penalty functions in the objective. 

To this end, suppose we have a function E which gives the amount of load 
remaining after scheduling a station. If we could treat transmission as we treated 
the scheduling of a station, and penalize untransmitted power, this would act like 
a penalty function, penalizing over-capacity transmission. ·when the transmission 

curve is X(t )  and the line's capadty is X ,  the untransmitted power, for that line, 
is exactly E(X, X) ,  and the negative transmission is E(-X, O) (where we use the 
same slight abuse of notation here as we did in Section 4.2) . These two values are 
penalized in t he objective function; since negative transmission incurs a power gain 

in t ransmission, this will probably be penalized more heavily than the over capacity 
transmission . An advantage of this approach is that it keeps the transmission and 
station generation in a consistent form. 

It may seem that one could perform a similar trick to model the unreliability of 
thermal stations when "scheduling" the electricity through unreliable transmission, 
lines , however, to do so is not valid1 . This would give the expected transmission, 
the effect of which would be to derate the capacity of the line. vVhat we seek 
is the expected cost to the system, given that the line is unreliable, and might, 
therefore, not be used. The other problem with such an approach is that not every 
transmission line in the system is modelled; the geographic network arcs actually 

• 
represent many lines, so that allowing an arc to be either "off" or "on" (or even 

1 It may seem that this is exactly the approximation used for thermal generation, however 
there are two important differences; the first is that there is no cost directly applicable to the 
uncertain transmission to apply (to use the penalty is clearly artificial) ; the second is that we do 
not just use the cost of the expected generation to approximate the expected cost of generation, 
in the case of t hermal generation.  
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Figure 4 .4 :  Values of [a b c] for which at2 + bt + c E [0, 1] Vt E [0, 1 ]  
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assigning an arc a probability of being at a lower capacity) does not effectively 
model what does , or even could, happen in practice. 

The one exception is for the DC link: there is only one transmission link between 
the North and South Islands, comprising twelve (parallel) lines. If one of the lines 
breaks down, the transmission from the South Island to the North Island (the 
predominant direction of transmission) is restri cted to a lower capacity, and stations 
in the North Island need to generate more to cope with the lost potential energy. 
In this case the penalty factor could act , appropriately, as a cost of re-supply. As 
the model is affected little by whether or not this aspect is included, flexibility 
dictates that the specific modelling of the DC link be left unresolved. 

4 . 4  The Objective Function and C onvexity 

Lett ing CNs be the cost of non-supply, CQ the cost of fuel at thermal station Q, and 
P the penalty cost associated with over-capacity and negative transmission. vVe 
can then write the objective function as : 

jENODE jEHYDRO 
Kj 

+ L L CQjkE(G(k) (Gj) , FQjk ) +  L P(E(X; , X) + E(-X; , O ) )  
jETHERMAL k=l iEARC 

where G(k) (G) is the resulting C.C . ,  after the first k - 1  stations have been scheduled 
into G. In particular G(l) ( G) = G. NODE is the set of all nodes , HYDRO and 
THERMAL are the sets of C.  C .  for nodes with hydro stations and nodes with thermal 
stations , respectively (the same node may be in both sets) ,  and ARC is the set of 
all arcs. 

Notice, in particular, that the objective function is convex if E and m are 
convex, since the pointwise maximum of two convex functions is convex, as is the 
sum of convex functions. Also, if E admits multiple optima, then so will the 
objective function. From Equations 3.4 and 4.3 we see that m ( G) is linear in terms 
of the basis coefficients, since 

• 

m ( G) = fo1 G(t) dt = g1 
fo1 B1

(t ) dt + · · · + 9N fo1 BN(t ) dt 

As the convexity depends only on E, it would , therefore, be beneficial if E were 
convex. We actually have more reason to desire E convex than just making our 
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objective convex; it turns out, that more generally, E is convex over the set of 
integrable functions. Theorem 4 . 1  proves the case where the supply is certain ,  and 
Theorem 4 .2  extends this to the discrete uncertain supply case. 

Theorem 4 . 1  Let 9 be a convex set of Lesbegue integrable functions) and define 

E 1 9 --+ �) by 

E(G) = fo1 max{G(t ) - X, O} dt 

for some fixed X .  Then E is convex over 9 .  

Pro�f We can write E as 

E(G) = l
G 

G(t ) dt - Xm(Aa) 

where Aa = { t  E [0, 1 ] 1 G(t) � X } ,  and m is the Lesbegue measure. Let P, Q E 9, 

and A E (0, 1 ) .  Put R = AP + ( 1 - A)Q.  Let Ap , AQ , and AR be defined in a like 
manner to Aa. Then, 

E(R) = l R(t ) dt - Xm(AR) 

= A (lR P dt - Xm(AR)) + ( 1 - A) (lR Q dt - Xm(AR)) 

= A (lp P dt - Xm(Ap)) + ( 1 - A) (l
o 

Q dt - Xm(AQ)) 
+ A [j P dt - Xm(AR \ Ap)l AR\Ap 
- A  j P dt - Xm(Ap \ AR) Ap\AR 
+ ( 1 - A) [j Q dt - Xm(AR \ AQ )l AR\AQ 
- ( 1 - A) j Q dt - Xm(AQ \ AR) Ao\AR 

Now if t E AR \ Ap then P (t ) < X  so that j P dt :S Xm(AR \ Ap) AR\Ap 
and if t E Ap \ AR then P (t ) � X  so that j P dt � Xm(Ap \ AR) Ap\AR 
The same is true if we replace P with Q so that 

• 

E(R) � >. (LP P dt - Xm(Ap)) + ( 1 - >.) (L
o 

Q dt - Xm(AQ)) 
= AE(P) + ( 1 - A)E(Q) • 
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Theorem 4 . 2  Let g be a convex set of Lesbegue integrable functions over [0, 1 ] ,  
FQ be a discrete probability distribution function1 and m be the Lesbegue measure 

on �- For any G E Q define the function F( G) by: 

F (G) (x) = m( {t E (0 , 1] I G(t) 2: x} )  

Then E I Q ---+ �1 given by 

is con vex o ver g .  

Proof Note, in particular, that F(G) is a probability distribution function 
with 

lim F(G)(x)  = 0 and lim F(G) (x) = 1 
X--+00 X-+-00 

Since FQ is a monotonic step function, label the steps , in increasing order, as 
{ Q1 , . . .  , Q N } .  Let the step height at Qn be Pn · Then: 

Therefore 

F(G) * FQ (x)  = l: F(G) (x - z) dFQ (z) 
N 

= � PnF(G) (x - QN) 
n=l 

r= 
N 

E(G) = Jo � PnF(G) (x - QN) dx 
0 n=l N r:> = � Pn Jo F(G) (x - QN) dx 

n=l 0 · 

N joo 
= � Pn F(G)(x) dx 

n=l -QN 
N 1 

= � Pn la max { G ( t )  - Q N, 0} 'dt 
n=l 0 

• 

from the definition of F(G) , so E is convex from Theorem 4 . 1  and the facts that a 
finite sum of convex functions is convex, and all of the Pn are non-negative. • 

Theorems 4 . 1  and 4.2 show that any non-convexity, and multiple optima, bought 
into the objective function by E (  G, FQ ) are only artifacts of the approximation of 
E. 
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4 . 5  A C umulant Approximation 

This Section examines one possibility for the form of the functions E and F. We 
take into account the previous comments regarding the use of the inverse of the 
Contract Curve rather than the curve itself. 

We require a representation, or an approximation, of the inverse of a partially 
filled C .C . ,  which gives enough information to schedule another station and find 
the area under the curve. Recall that the inverse of a C.C . can be thought of as a 
probability distribution function, and the act of scheduling a station can be thought 
of as a convolution (see Equation 4 . 1 ) .  In Probability Theory, cumulants are used 
to calculate convolutions since the cumulants of the resulting curve are the sum, 
or difference, of the cumulants of the initial curves; these cumulants could be used, 
in a truncated Gram-Charlier Type A expansion (Cramer [3] ) ,  to approximate the 
curve (such an expansion is suggested by Electric Power Research Institute [6] ) .  

Cumulants depend polynomially on the moments of a probability distribution 
function [3] . The first moment (and cumulant) is the mean of the distribution ; the 
second cumulant is the variance (the square of the standard deviation) . The k'th 
moment of a standard ( increasing) probabili ty distribution function, P, is given 
by: 

Ctk = I: xk dP(x) ( 4.6) 

In terms of a C .C . ,  G(t ) ,  since G-1 is decreasing, this means that 

C'tk = I: xk d( l - c-l ) (x)  

= - 11 G(l - t )k dt 

= lal �( t ) k dt (4.7) 

using the variable substitution x = G( l - t ) .  In particular the mean (the first 
cumulant) for any C .C . ,  G, is exactly m(G) from Equation 4.3 . The variance (the 
second cumulant) , a2 , is given by; 

( 4.8) 

In terms of the basis approximation, the moments are polynomial in the basis 
coefficients , since: 
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This , and the fact the cumulants depend polynomially on the moments , implies that 
the cumulants depend polynomially on the basis coefficients . These polynomial 
equations are not given here as they are tedious and not necessary for the current 
development . 

The cumulants of the probability distribution function associated with the un­
certain supply can be calculated before solution, since this function is fixed, and 
different , for each station (and possibly, for each week) .  In the case where the un­
certain supply is given by a fixed probability of breakdown, the cumulants are quite 
easy to calculate, since the associated probability distribution function is given by : 

Fq(x) = { � X :::; 0 

X E (0 ,  Q] 
x > Q  

(4.9) 

where p is the probability of breakdown. Section 1 . 3 notes that all outage distri­
butions will be discrete, so they will all have a similar form to Equation 4.9 , but 
with more discrete pieces . This actually represents the probability that there is 
unserved power when the power level needed is x. The moments of this function 
are given by : 

-k 
O.Q,k = ( 1 - p)Q 

The first four cumulants are given by : 

XQ,l = ( 1 - p)Q 
-2 XQ ,2 = p( 1 - p)Q 

• -3 XQ,3 = p(1 - p) (2p - 1 )Q  
2 -4 XQ,ot = p( 1 - p) (6p - 6p + 1 )Q 

In filling a C .C .  a polynomial calculation is required to derive the cumulants of 
the C.  C . . Subsequently everything can be left in terms of cumulants , and only sums 
and differences are required. To calculate the load not yet satisfied in a partially 
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filled C .C . one can approximate the associated probability distribution function, 
P, via a truncated Gram-Charlier expansion of Type A, namely: 

M 
P(x) = � (m - x ) + L 

a�q, (k) (m - x ) 
(7 k=3 k. (7 

( 4. 10 )  

where � is the normal distribution function, m and 0'2 are the mean and variance 
(first and second cumulants) of P, and the ak are constants depending on P. 
Notice the use of m;x , negative normalized variables, to convert to mean zero and 
standard deviation one, and to allow for P being decreasing, while the standard 
normal distribution function is increasing. Given 

( 4. 1 1 )  

2 
where <P = �� = J;e- ""2 is the normal frequency function and Hk is the k'th 
Hermite polynomial . Using the properties that <I> is an odd function, <P is even, and 
Hk is odd for odd values of k and even for even values of k , we obtain: 

(4. 12 )  

where the Ck are given by Equation 4 . 13 and can be expressed as rational poly­
nomials of the cumulants (from Equation 4 .6 and the fact that cumulants depend 
polynomially on the moments) , viz: 

1 joo Ck = k ! _00 P(x)Hk(x) dx (4. 1 3 )  

The Jvf, of Equation 4 . 12 ,  is chosen to ensure a succinct approximation. Since 
we are only interested in this approximation so as to calculate unserved contracted 
load, the approximation needs to be good in terms of calculating the area under 
the resulting curve. 

4 . 5 . 1  C o ntract C urve Filling Functions 

The function F(G, FQ) described in Section 4 . 1 ,  is given by : 

( 4 . 14)  
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where the Ck are given, in terms of the cumulants , by the same formula as for the 
ck , with the cumulants given instead by 

We can think of P(x ) ,  given in Equation 4 . 12 ,  as being F( G, 0) ,  using the same 
abuse of notation, for the second argument , as used in Section 4.2 for E. 

It may appear that the mean gives the area under the curve (see Equation 4 .7) ;  

however , this includes fictitious negative generation. In terms of the approximation 
given i n  Equation 4 . 14 ,  the unmet contracted load is given by: 

E(G, FQ) = fo
oo F(G, FQ) (x) dx 

= fo
oo ��m �(y) dy dx + t Ck 1a= Hk-1 

(X � m ) � (X� m ) dx 
u k=3 

A B 

Changing the order of integration for A, and using limx-oo �( x) = 0 ,  and Equa­
tion 4. 1 1 , gives 

A = 1: (O"y + m)�(y) dy 
u 00 

= O" [-�(y)e'� + m 1m_ �(y) dy 
= O" (�(xo) - xo 1� �(; ) dy) 

where x0 = -; represents the zero prior to normalization. To simplify B we use 
Hk (x)�(x) = -�x (Hk_1 (x)�(x ) ) , obtainable from Equation 4 . 1 1 ,  and the fact that 
limx--+oo xk�(x) = 0 for any positive integer k, giving: 

B = a  E -c, [H,_, (x �m
) � (x �m

)] � 

M 
= O" L ckHk-2 (xo)�(xo) 

k=3 
It should be noted here that for this form the differential of E can be calculated 

explicitly, if somewhat tediously. This is extremely useful in terms of optimizing 
an objective which contains such terms, since, as noted in Section 3 . 1 1 ,  filling the 
C .C . takes place in the objective function. 

4 . 5 . 2  Transmission Revisited 

At this point it may _seem that the use of cumulants means that we cannot apply 
the penalty function to the transmission as explained in Section 4 .3 ,  since the 
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transmission curves are not necessarily monotonic. However, Equation 4.7 indicates 
that the moments are defined for any integrable function. For a transmission curve 
these moments are exactly those for the curve when it has been .:sorted" from 
highest transmission to lowest. Regardless of how the transmission function is 
sorted the area above, or below, any fixed level is the same. So it turns out that 
the moments, and hence cumulants, of a curve always exist and are meaningful. 

4 . 5 . 3  D ispense with P iecewise Quadratics? 

vVe have moved from an almost hopeless situation of explicitly calculating inverses 
of convolutions of inverses of piecewise quadratics, to evaluating polynomials mul­
tiplied by normal functions. It may even be that we could dispense \vith the need 
to evaluate a polynomial expression by maintaining the Contract Curves in the 
form of cumulants throughout. However, when discussing the use of cumulants for 
the transmission capacity constraints above, it was noted that, regardless of how a 
function is sorted , its cumulants are the same. 

Consider: the two functions G(t )  and G(l - t ) ,  over the interval [0, 1 ] ,  have the 
same cumulants . Given a node at which G(t) is arriving from a lossless arc, and 
G(t )  is leaving down another arc , and a second node at which G(t) is arriving from 
a lossless arc, but G( l - t )  is leaving down another arc. A correlated interaction at 
the first node results in no load left at that node, whereas a correlated interaction at 
the second node will not , unless G is even about 0.5 .  Any interaction of cumulants 
will result in the same load left in both situations, regardless of the form of G. 

Of course , if we allow an independent interaction for transmission, cumulants 
create no difficulties , but , as noted in Section 3.6, the interaction between electricity 
curves needs to be modelled as being correlated . 

4 . 6  Why a Normal Approximation? 

The next obvious question is , perhaps, "how many cumulants are needed to provide 
a reasonable approximation?" Actually this is not the correct question to ask, partly 
because of flexibility issues. The main reason for this is illustrated in Figure 4.5 ,  

which shows a truncated Gram-Charlier Type A approximation of an LDC, to 7 
terms . Notice the oscillations at the extreme points: these disappear when only 
the first two cumulants are used, or, when the full Gram-Charlier Type A series 
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is used (if i t converges ! ) .  The oscillations make this approach unacceptable, since, 
if we do nothing about them, they create extraneous local optima in the objective 
function. It may seem that since these oscillations are shallow, and, since we are 
interested in the area under curves , they will not have much effect ; but, note that 
an optimal solution will minimize the amount of non-supply (i .e . the contracted 
load remain ing after every station at the node has been scheduled) and therefore, 
near the optimal solution, the area under the remaining curve will be small. Since 
we calculate this area from an approximation of Q-1 (of Equation 4.2) , when this 
approximation is negative the amount of non-supply can be negative, which would 
act like being paid the cost of non-supply, rather than paying this cost; in terms 
of the objective function this is worthwhile, and so the solution will "stick" at 
points where there is negative non-supply-an artifact of our approximation. Also, 
having alternative optima will lead to uncertainty in whether or not we are at a 
truly global optimal solution; this could have potentially disastrous results when 
one considers that the deterministic problem is only a small part of a stochastically 
extended model. 

It may seem that it would be useful to retain the cumulant approach, but 
approximate the resulting curves where they begin to oscillate, in a monotonic 
fashion. However, it is at these end pieces of the curves that we calculate the 
non-supply for each thermal node, and, as this has already been approximated 
twice , a third approximation, which may be a reasonable approximation of the 
current approximation, will not necessarily be a good approximation of the actual 
scheduled C . C  . .  The real difficulty, however, lies in the fact that finding where the 
approximation should begin, is difficult. This is because it involves finding where 
the cumulant approximation of the curve is equal to some fixed value, e, for the first 

time. If the presence of multiple solutions is not enough to deter proceeding with 
this approach, consider that the equation we seek to solve is to find the smallest x 
for which : 

foo 
N 

(X - m) (X - m) J� <f;(y) dy + L CkHk-1 
()" <P ()" 

= E 
q k=3 . 

where m, CT2 , and the Ck are all dependent on variables from the model, Hk is the 2 
k 'th Hermite polynomial , and <f;(x) = vke_ :r2 is the normal frequency function. 
If this was achieved numerically one could not then find the differential of the 
objective function-the existence of this differential is effectively necessary for a 
problem of this size to be solved in reasonable time in order that the stochastic 
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extension then have a reasonable solution time. 
The only option remaining seems to be to only use the first two cumulants , 

i .e . approximating the inverse by a normal distribution with like mean and stan­
dard deviation. As we are interested only in the area under part of the curve, 
this may not be too bad an approximation-it certainly seems to be a reasonable 
approximation for the LDC, as shown in Figure 4.6 .  

In this situation, F(G, FQ )  and E(G, FQ )  are given by 

and 

F(G, FQ ) (z) = {oo <P(y) dy Jx(z) 

E(G, FQ )  = V(j(G)2 + C7(FQ) 2  (<P(x(O) ) - x(O) roo <P(y) dy) Jx(O) 
where x is given by 

x (z) = 
z - (m(G) - m(FQ ) )  
VC7(G)2 + C7(FQ)2 

( 4 . 15) 

To try to improve the approximation, we could use some sort of skew factor, 
a role played by the third cumulant in the cumulant approximation. This could 
be achieved by having effectively two standard deviations, one associated with the 
resultant curve over [0, 0 . 5] ,  and the other associated with the same curve over 
the interval [0 .5 ,  1 ] .  Such splitting could become more generalized, having multiple 
splits , each with its own mean and standard deviation. Unfortunately, in this 
case the method of performing the convolution (required for scheduling thermal 
stations) becomes difficult . It was the ease of performing this convolution in terms 
of the cumulants that lead to a cumulant approach initially. 

4 . 6 . 1  Cont ract C urve Corners 

In the meantime we will retain the normal approximation of the inverse of a Con­
t ract Curve. This also means (as we only use the mean and standard deviation) 
that we are using a normal approximation to the breakdown probability, so it would 
probably be better to use a direct normal approximation of these rather than using 
a normal approximation of the current discrete approximation. The normal ap­
proximation, of course, breaks down when the standard deviation is zero, as is the 
case when the C .C . is constant. This implies that E and the objective function, 
h ave corners; Figure 4. 7 shows an example of this. 
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Figure 4 . 5 :  A truncated Gram-Charlier Type A expansion of an LDC 
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Figure 4.6 :  A normal approximation of an LDC 

70 



CHAPTER 4. INAPPROPRIATE APPROXIMATIONS 71 

If these corners create a difficulty, we can bound solutions away from them by 
ensuring that one (or more) of the coefficients of the basis elements are non-zero 
for any Electricity Curve represented in the objective function. The problem with 
this is that , since we represent over-capacity transmission in arcs as a penalty in 
the objective function in this way, we will have some non-zero transmission in every 

arc, which, due to arc loss, will increase the load. 

4 . 6 . 2  Convexity o f  t he New E 

Recall from Section 4.4 that the convexity of the objective function depends on the 
convexity of E.  The reason for coveting a convex objective function is that it will 
mean that all locally optimal solutions are globally optimal, and most Mathemat­
ical Program solvers are robust on convex problems; we desire robustness in our 
deterministic model as it is to be the basis of an extended stochastic model , and 
may need to be "solved" many times to obtain a solution to the stochastic model. 

It turns out the current E, given by Equation 4 .15 , is convex, as is shown in 
the following results . 

Lemma 4.3 Let {E1 ,  . . .  , EN} be a basis of integrable functions over [0 , 1 ] , and 
G = (g1 , . . .  , gN] E �N . Put 

and define a by: 

a( G)2 = 11 L(t )2 dt - (11 L(t) dt) 2 
Then a is non-negative and convex over 91  and the kernel of a is contained in 
one-dimensional subset of G .  

Proof Notice a2 i s  just the variance of G (as given by Equation 4.8) , and we 
can write 

so that a is just a translated norm and, hence, both convex and nonnegative. Also 
a ( G) = 0 if, and only if 

L(t )  = 11 L(t )  dt Vt E (0 , 1] ( 4. 16) 
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i .e .  when L( t )  is constant .  Since {E1 , . . .  , EN} is a basis of functions then ei­
ther Equation 4 . 1 6  holds nowhere, or describes a one-dimensional subspace of 
span{E1 , . . .  , EN } . • 

Theorem 4.4 Let functions m and u be defined over some open, convex, N­

dimensional set, 9 ,  with N > 2, where m is an affine function and u is a non­

negative convex function, the kernel of which is closed relative to 9 and contained 

within some one-dimensional set. For any G E 9 define 

E( m, u) = fooo ]::m if>(y) dy dx 
<7 

( 4 . 17 )  

when u =/::. 0 and 

E(m, O ) = max{m, O} ( 4 . 18) 

Then E(m(G) , u(G) ) is convex, with respect to G. 

Proof: Put G = (g1 . . . 9NL where N > 2 .  First consider the case where u( G) =/::. 0 .  

Using the  change of  variable, x +-- x�(��) , in Equation 4.17 gives 

E(m(G) , u(G)) = u(G) loo� L�o if>(y) dy dx 
(- u(G) ) X 

Put ting x0(G) = -;tgi, and writing E = E(m(G), u(G) ) , we get 

[)2 E 
= 
f:J2u( G) roo roo if>(y) dy dx + u( G) axo( G) oxo( G) if>( Xo( G) ) ogi89i f:Jgi89i lxo (G) lx Ogi ogi 
- ( au( G) axo( G) + 8u( G) oxo( G) + u( G) 02Xo( G) ) {00 

if>( X) dx ogi ogi ogi ogi ogi89i lxo (G) 
Using the definition of x0( G) and changing the order of integration in the double 
integral gives 

82 E 
= 
(fPu( G) + u( G) 8xo( G) 8xo( G) ) if>(xo( G)) 8gi09j 8gi09j f:Jgi 8gj 

so the Hessian of E(m(G) , u(G) ) ,  H(E) , can be written as H(E) = A + vTv, 
since both u and if> are positive functions. By the convexity of u, A is positive 
semi-definite. Now 

xH(E)xT = xAxT + x(vTv)xT 
= xAxT + (vxTf(vxT) 
= xAxT + l l vxTI I 2 � 0 + 0 = 0 
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and so H(E)  is positive semi-definite. Hence E(m(G), er(G)) is convex over any 
open set where er(  G) -::J 0 .  

For t he case where er i s  allowed t o  b e  zero, notice, from Equations 4 . 1 7  and 
4 . 1 8 ,  that liiTiq_.0 E(m , er) = E(m, O) ,  so that , as m is linear and er is continuous, 
E (  m(  G) ,  er (  G) ) is also continuous. 

For each G, H E g define 

I (G, H) = {AG + ( 1 - >.)H I ).  E [0, 1] } 

Calling JC the kernel of er for every G, H E g one of the following holds 

Case ( a) :  I(G, H) n JC = 0 ,  

Case (b ) :  I(G, H) c JC , 

Case ( c ) :  I(G, H) n JC = {D} 3D E JC. 

If Case (a) holds then JC and I(G, H) are mutually exclusive closed convex sets 
of g, so t here exists an open convex set C C g, such that I ( G, H) C C, and 

C n JC = 0 .  In this case we have already shown that if 

then 

). E (0, 1 )  and D>. = >.G + ( 1 - >.)H 

E(m(D>.) , er (D>. ) )  � >.E(m(G) , er(G)) + ( 1 - >.)E(m(H) , er(H)) ( 4 . 1 9) 

If Case (b) holds then we see that Equation 4 . 19  holds from the definit ion of 
E over JC ,  and the fact that the pointwise supremum of two convex functions is a 
convex function. 

For Case (c) , if D E  {G, H} , w.l. o .g. D = H. So there is { Dn }  C I(G, H) \ {H} 
such that Dn -+ H,  and Equation 4 . 1 9  holds where H is replaced by Dn for each 
n .  Hence, by the continuity of E(m(G) , er (G) ) ,  Equation 4. 1 9  holds for G and H. 
If D � { G, H} , there is { Gn } C g \ JC such that Gn -+ G, and I( Gn , H) n JC = 0 ,  
since JC is contained in a subset of dimension 1 of g ,  which is of dimension at least 
3 .  The convexity of E therefore follows from the continuity of E( m(  G) , er ( G)) and 
the case where er is nonzero. • 

Changing the order of integration in Equation 4 . 1 7  transforms it to the form 
of Equation 4 . 15 .  By replacing the function m by m(G) - m(FQ) ,  and er by 
V(er2 + er (FQ )2) ,  in Theorem 4.4, (recalling FQ is fixed) we obtain the convexity of 
E(G, FQ ) ·  
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4 . 6 . 3  Hydro Creases 

Recall from Section 4.2 that the non-supply from a hydro station's C .  C .  is given by 
Equation 4.4, which implies that the objective function may be non-differentiable 
where Equation 4.5 holds . We will call this phenomena a "crease" in the objective 
funct ion. Having now a fixed formula for E we can investigate these creases further. 

Specifically the approximation of G-1 is given by 

G-1 (x) � reo <P(z) dz Jr( m(Gl-z ) 
so E(  G, H) is given by 

E G H = z dz 
_ �oo loo 

<T(G) 

( ' ) H ( mLn)") </> (  ) (m (  G) -H) (- ) reo I = a(G)</> 
a(G) 

+ H - m(G) J(m��b)li) q>(z) dz 

Since the term E(G, H) has no dependence on the variable H, there will be a 
discontinuity in the differential of the objective here (if only in the direction of the 

variable H). The crease created will be sharp-the differential with respect to H 
will be one, on one side, and zero, on the other. There will also be discontinuities 
in the gradient in the direction of the other variables, as m is linear but E is not ; 
t he values of the variables of G where Equation 4 .5 holds are dependent on the 

value of H, so the gradient of E will vary for different G, but the gradient of m 
will not . Figure 4.8 gives an example of this crease over two dimensions . 

We would like to smooth off these creases whilst maintaining the convexity of the 
objective function. This means either determining exactly where the crease occurs, 

or applying some approximation based only on the relative values of m( G) - H and 

E(  G, H) .  To achieve the former we need to be able to solve analytically equations 
of the form: 

E(G, H) + H - m(G) = 8  ( 4.20) 

for G and H. The form of E makes this impractical . 
An approximation based only on the relative values of m( G) - H and E( G, H) ,  

which i s  required to  be  convex everywhere, can be written as; { m(G) - H when m(G) - H � E(G, H) + 81 
f(G, H) = E(G, H) when E(G, H) � m( G) - H + 82 

· - A( G, H) otherwise 
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Figure 4 .7 :  Area above zero for the normal approximation of b(t - t) + c on [0, 1 ]  
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where the function A must pass through the points where Equation 4.20 holds for 
8 being, variously, 81 , 0 ,  and 82 . Consider any subspace over which m( G) - H, 

and E( G, H) are both linear; the subspace { (  G, H) I G = 0}  is one such subspace. 
On this subspace, the only possible convex approximation which passes through 

the points where Equation 4.20 holds for 8 = 0 in this subspace, is the function 

max { m( G) - H, E( G, H) } .  Consequently, we do not change the function on this 
subspace, so a crease remains. Therefore we can not eliminate creases , in this way, 
from the objective function in the current form and keep it  convex. 

4 . 7  The really bad news ! 

It was claimed in Section 4 .6 that the normal distribution function was a reason­

able approximation for the LDC's .  Unfortunately this is not the only Electricity 
Curve requiring approximation. When approximating Contract Curves , the normal 

distribution function is used to determine the amount of power which can not be 

used-in particular, the amount of power above the total capacity of the stations 
present .  Since we are using a normal approximation to the inverse of the C .C . , 
there will always be some non-supply, as the normal distribution curve is positive 
everywhere. We are interested in how large this amount of non-supply can become. 

Consider a situation where a Contract Curve is being filled by only one totally 
reliable station . If the station is required by the model to generate at capacity for 
only part of the week in order to minimize non-supply, the C .C .  at this node will 
want to mimic this requi red generation pattern of the station. The situation where 
the station generates at fu ll capacity for 75% of the week, and has no generat ion 
for the re::;t of Lh< ! wee k ,  i:; ::; I I < >W J I  in Fig1 1 n! 1! . 9 .  

This shows a substantial amount of fictitious non-supply from a Contract Curve 
which should produce none. To illustrate the ramifications of this problem, Fig­
ure 4 . 10 shows the percentage of actual generation wrongly non-supplied for a C .C .  
having a fixed non-zero level on the interval [0, r ]  and a zero level for the rest o f  the 
period (black ) ; and for a similar C .C .  with the generation linearly decreasing to 
zero at the end of the period (green). Since the cost of non-supply is in the order of 
ten times the cost of the most expensi ve thermal station , this fictitious non-supply 
is s igni fican t . Tl1erefore, stations are penalized for having  constant generation 
rates for only part of the week, especially if the generating range is quite large. In 
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general, the generation over the week is decoupled, in that the generation at one 
time during the week should not be affected by the generation at any other t ime, 
so the added structure is artificial . 

Notice also that the worst point on Figure 4 . 1 0  is near the value of r = .7 ,  which 
happens to be one of our breakpoints (we would need one near this anyway) ,  so i t  

is not unlikely for a station to want to generate at peak capacity (or some other 
fixed level) on the interval [0, 0 . 7) and then drop off to zero (say) on the interval 
[0 .7 ,  1 ] .  Unfortunately this model would discourage such a solution. 

When one considers the similar graphs for transmission, the situation is worse, 

sincein transmission the negative transmission is also penalized . Figure 4 . 1 1  shows 
this for a transmission function at full capacity for a proportion r of the week, and 
at zero for the remainder of the week. Such a model will try to ( incorrectly) 
encourage flat generation and transmission at all stations and along all arcs . 

4 . 8  D iscussion 

It appears the model we have developed is riddled with superfluous unwanted struc­
ture and aspects which make it difficult to model. Such a model is unacceptable as 
the deterministic base of a large-stochastic extension. It also appears that under 
the current skeleton model for the system there are no "quick fixes" . It may be 

that the model could be linearized, via a coarse linear approximation of the various 
elements, from its current form, with the hope that this would remove much of the 
extraneous and difficult structure currently present . Unfortunately, such a brutal 
linearization would bear little resemblance to the system we seek to model, being 

a coarse approximation of an already bad approximation . 
The only options appear to be to completely re-model the system from scratch, 

or to change some of the desired structure in the skeletal model, so as to remove 
the difficulties which arise from there. It seems that the majority of the difficulties 
arise from the need to find the inverse of the Contract Curves, which, in turn, result 
from the filling of the C .C . .  

Actually the situation i s  not as grim as i t  may appear. We have only inves­
tigated one information structure for calculating E, namely cumulants, and from 
this information structure, only two approximations. It may be that there i s  a 
better information structure than cumulants to use, or that there are cumulant 
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expansions without the problems associated with the Gram-Charlier Type A ex- · · 
pansion. Such an investigation should possibly attract more attention than is given 
here; however the rewards of such an investigation will probably be quite limited, 
in terms of the model being developed, as the problem of the creases brought into 
t he objective function via the hydro station generation will still be present . It is 

the investigation of the elimination of these creases from the objective function (as 
discussed in  the next Chapter) which leads, naturally, to a solution to many of the 
other dilemmas discussed in this Chapter. 
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The Mo del 

V arious approximations examined in the previous Chapter each appeared to 
impose unwanted structure to the problem, in such a way as to make the 

resultant model unsuitable for its desired purpose. This Chapter examines one 
way to suppress the unwanted structure and hence develop a more suitable model . 

In seeking a method for removing such difficulties, it is better to re-model the 
system in such a way that the difficulty does not arise, rather than to approximate 

the difficulty out of the model . Of course the former is not always possible, with­

out creating more difficulties, and approximations applied to the model can often 
motivate better methods for modelling the system. 

5 . 1  Removing t he Hydro C rease 

Initial motivation for the actual change made came from examining ways of elimi­
nat ing the "crease" induced in the objective function by the hydro station genera­
tion; this is a natural way to introduce it .  

Recall, from Section 4.2, that the non-supply remaining after a single hydro 
station fills is own Contract Curve, G, is given by: 

max{m(G) - H, E(G, H)}  

where H is the release from the hydro reservoir and H is the capacity of the station. 
This feature is not just an artifact of the approximations used, and becomes difficult 
to handle when optimizing the model. Given that the deterministic model being 

developed is to be used as a basis for a full stochastic model, we would like to 
eliminate as many difficulties in the computation of a solution as possible. 
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In Section 4 .6 we examined the possibility of "smoothing" the corners ; however, 
this proved elusive, and it also appears to have little justification in practice. By 
examining what the crease represents, we can provide a better opportunity to 
eliminate its effects. 

The crease is the only link between the geographic networks and the hydro 
waterfiow networks ;  since t he waterfiow networks link the geographic networks of 

each week, this crease is extremely important. If we approximated the crease by 
assuming we are always on one side of i t ,  we effectively de-couple the geographic 
and waterfiow networks (and hence the weeks) , and the problem becomes very 

simple to solve, but of lit t le use. It is therefore important that we model this 
connection well .  

One side of the crease (E(G, H)) represents the situation where there is some 
spill at the hydro station, while the other side (m( G) - H) occurs when there is 
none. It may be that if we include the spill explicitly we can remove the crease. 

Using vV to represent the spill (the total generation is, therefore, given by H - vV) 
would require the inclusion of a constraint to ensure that we do not spill more than 
we release, i .e. H � vV, and another to ensure that all of H - vV can be generated 
given the hydro stations C . C . ,  i .e . 

H - vV � m(G) - E(G, H) ( 5 . 1 )  

which is a non-linear constraint. 
The right-hand side of Equation 5.1 represents the maximum generation allowed 

for by the station's C .C .  and its capacity. The non-linear term, E(G, H) , represents 
the area under the Contract Curve above the capacity of the station. Since each 
hydro station has its own C .C . ,  this part of the curve could be transferred to the 
non-supply curve at this node, retaining the same solution (within the limits of the 
piecewise quadratic approximation) . The only difference in solution is that , instead 
of having E(G, H) of non-supply in the hydro station's C .C . ,  it would be in  the 
non-supply curve; we are, afterall , merely interested in the amount of non-supply. 

Removing the area above the station's capacity is exactly the same as requiring 
that the station's C .C . ,  G, is constrained below the station's capacity, H, and, 
since the C .C .  is decreasing, this can be achieved by requiring 

G(O) � H 
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which is a linear constraint . If this is included, Equation 5 . 1  becomes: 

H - vV ::; m(G) (5.2) 

a linear constraint. The non-supply remaining after scheduling the station is now 
given by m( G) - H + W. 

It  was noted in Section 4 .2 that ,  if more than one stat ion fill the same C.C. 

( as a combined station) ,  some of the stations may use the spill at other stations 
for generation. Since we model river chains as a single amalgamated stat ion, this 
allows explicit expression of the assumed approximations in this amalgamation. 

Consider a simple hydro chain with just one reservoir, and some hydro stations 
in series down the river (see Figure 5 . 1 ) .  The assumption is made that the uncon-

Controlled inflows Uncontrolled inflows 

Release 
Hydro 1 Hydro 2 Hydro 3 

Figure 5 . 1 :  A simple hydro river chain 

t rolled inflow arrives in fixed proportions above each station. The hydro stations 
are scheduled as a single station with capacity equal to the sum of the capacities of 

all of the individual stations, and release equal to the sum of the individual flows 
(which is j ust the release from the reservoir) . In other words, the approximation 
used is equivalent to approximating all river chains as simple chains, and to as­
suming complete correlation in the uncontrolled inflows within this chain, together 

with the added assumption that stations with spare capacity can generate using 
t he spill of other stations . There is also the implicit assumption that the storage 
for individual stations is not used for week-to-week storage. 

We can , in theory at least ,  use more sophisticated networks to approximate 

hydro river chains. This would be most useful for modelling controlled canals be­
tween river chains, linked reservoirs and other controllable phenomena, although 
by including too much detail here we would most likely make the model computa­
t ionally intractable. Another reason for inclusion of such detail is to better model 

conservation constraints of the minimum and maximum flows along various parts 
of the river network. 
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For a simple chain it is possible to model conservation constraints such as min­

imum and maximum flow constraints .  The Contract Curves now act as generation 
curves .  Since the t ime dimension is effectively sorted we can apply constraints only 
on the total release, or, as minimum and maximum generation levels . The prob­
lem with using only minimum and maximum generation levels to approximate the 
corresponding release levels is that they ignore spill. For maximum release level , 

F, we can include the constraint in two forms, namely 

G(O) :::; F and, H :::; F (5 .3)  

to effectively limit the spill to be less than the slack in the "total release" form (see 
Figure 5 .2) . For a minimum release level, F, we require a constraint of the form 

G( l )  � F - W (5 .4 )  

where the " - W" in this equation allows the use of constant spill to augment 
some of the minimum level release. Equations 5 . 3  and 5.4 actually refer to flows 

from the mouth of the river. For constraints on the flow at an arbitrary point in 
the simple river chain, we need to determine the proportion, a, of the uncontrolled 
inflows which arrive below this point , and instead use the following constraints: 

G(O) :::; F + aU and, H :::; F + aU 

(which correspond to also requiring some of the aU flow be at a constant level) 
and: 

G( l )  � F - vV + a1U and, H � F + a(l - 1)U 

where 1 i s  the fraction of the uncontrolled inflow which i s  deemed to  arrive at a 
constant rate. These constraints correspond to ensuring that there is enough flow 
above F at the bottom of the river chain to allow for the extra aU which arrives 
below the point in the river chain where this constraint is being applied. Most of 
these types of constraints have a E {0,  1 } ,  i . e. are at either end of the river . 

After removing some of the non-supply from the hydro station's C .C .  i t  may 
seem that we could (and probably should) remove all of the non-supply from the 
C .C  . .  This could easily be done by converting Equation 5.2 into an equality con­
straint . In this case we would be explicitly treating all of the non-supply con­
sistently, by requiring that it is present only in the non-supply curve. When we 
use Equation 5 .2  as it stands, however, we are allowing a little more flexibili ty at 
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The constraints require all spill to occur in the shaded region 
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Figure 5 .2 :  A maximum level release constraint applied in both forms 
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Table 5 . 1 :  Connections between the release and total generation 

Constraint Non-supply Spill Comments 

H - W = m(G) none -vv Less flexibility in the 
structure of non-supply. 

H - vV :S m(G) m(  G) - H w Non-supply is split between 
the C.C .  and non-supply 
curve, leading to possible 
alternative solutions . 

H � m(G) none H - m( G) No explicit spill variable, 
and less flexibility in the 
structure of non-supply. 

these nodes , as it is no longer required that all non-supply must be in terms of the 
approximation. Figure 5 . 3  shows an example of this in which the first graph shows 
the desired non-supply form (the shaded area) , and the second graph shows the 

closest approximation allowable in the non-supply curve due to the basis used for 
all Electricity Curves . 

At this point it should be noted that if, instead, we require the constraint 
H � m( G) , then we do not need to include a spill variable. This means we can 

include the connection between the release H, and the total contracted load, m( G) , 
in three equivalent ways , each of which endows the model with different properties; 
these are listed in Table 5 . 1 .  For flexibility, we leave open the exact modelling 
of this constraint . Notice that , in all three cases, the equation for determining 

non-supply, and hence the hydro station's contribution to the objective function , 
is linear. For the working model , we employ the constraint H - vV :S m( G) . 

In light of the fact that there is no need to explicitly define spill to remove the 
hydro stat ion crease from the objective, it is apparent that the benefits derive from 
the removal of the above-capacity non-supply from the hydro station's C .  C . .  I t  may 
be that similar benefits could be gained by applying this type of transformation to 
the thermal station C .C .  's; we now investigate the effects of such an application. 
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5 . 2  Thermal C ontract Curves 

Consider a thermal station with its own Contract Curve, G, fuel cost CQ ,  and 
probability distribution associated with failure, FQ . The cost of generation and 

non-supply for this station is : 

where CNs is the cost of non-supply (or re-supply, see Section 5.2 . 1 ) .  If FQ repre­
sents only a single probability, p, of total plant failure, the term E( G, FQ ) is exactly 
given by: 

E(G, FQ ) = ( 1 - p)E(G, Q) + pm( G) 

where Q is the capacity of the station (see Section 4 . 1 ) .  This means that if we 
perform the same transformation as in Section 5. 1 , and transfer the above capacity 
non-supply to the non-supply curve at this node, the cost of generation and non­
supply for this C .C .  becomes 

CQm(G) + p(cNs - CQ )m(G) = ( ( 1 - p)cQ + PCNs)m(G) 

which is linear .  It also has the added advantage that we no longer need an approx­
imation for calculating E in this case. 

Of course, a similar trick applied to a C .C .  for more than one station will not 
work, since, when scheduling the first station, there will be contracted load above 
i ts  capacity. However, it does open up the possibility of allowing each station to 
have a C .C .  of its own; if we do this, we transform those parts of the objective 
function dealing with filling Contract Curves into being linear .  This then implies 
that the only part of the objective function still with non-linearities would be the 
p enalty on over-capacity transmission. 

The advantage of taking this approach is enormous. We move from a situa­
tion where we have no realistic approximation for an apparently non-linear energy 
function, to one where this function can be calculated linearly. The disadvantage 
is  that we can no longer use stations at the same node to cover stations which may 
break down; this means that we are effectively using the cost of completely reliable 
generation as an approximation to the expected cost of unreliable generation . The 
cost of reliable generation provides a lower bound for the expected cost of unreliable 
generation. Obviously the advantages outweigh the disadvantages . 
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Recall from Section 2.5 that the non-linear method of filling is used to calculate 
the expected value of generation to meet the load. This is not quite what it is 
used for here, as we calculate the expected value of meeting the contracted load 
using only stations at one node! However, in the geographic network chosen for the 
working model there is only one node which has more than one thermal station at 

i t ,  and it has only two! This means that we were implicitly using an approximation 
to the expected cost of unreliable generation, where load which was to be met by 
a plant which fails, is just not met at all .  This, therefore, may not provide a very 
good approximation to the expected cost of generation, but it does provide an 

upper bound for the expected cost of generation. 
The non-linear method of filling an LDC also appears to be inconsistent in the 

way it t reats various stations. Stations at the same node can be used in case another 
station at that node breaks down; however, for single stations, a breakdown means 
the load is non-supplied , and so is penalized at the cost of non-supply. This would 
seem to suggest that stations at nodes with more than one station are more reliable 
than those at nodes with only one, which is extraneous structure we should seek 
to deter. 

Hence, if we are willing to accept one of the approximations , then the linear 

version is better; if we are not willing to accept an approximation , then neither will 
suffice. Of course, we could always consider solving the network for every "state" 
of each station, in which case the linear approximation is fine. This is , however, 
computationally infeasible (with one possible exception , mentioned below) . For 

our model we choose to accept the linear approximation. 

5 . 2 . 1  Approximat ions t o  Handle Breakdowns 

Unfortunately, there is no elegant representation (as opposed to approximation) of 
station breakdowns when the transmission network is included. The reason for this 
(as stated in Chapter 3) is that changing the state of a station could also change the 
optimal distribution of the Contract Curves, which requires solving a Generalized 
Network. 

One approximation, already mentioned , is to use a cost of re-supply, rather 
than the cost of non-supply, when filling Contract Curves . To obtain this cost 
of re-supply we could use the cost of the next-most-expensive thermal station, 
modified by the power loss incurred in transmission to this node and, possibly, a 
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factor to allow for the probability that this station is already being used. This 

would effectively mean that we are defining a fixed cost for covering the load met 
by this station, if it were to break down. Such an approximation may seem more 
reasonable when it is taken into account that , at the time of failure, stations are not 
usually scheduled so as to optimally meet the load, in terms of the global situation . 

We could also use past data to estimate the cost to the system of a station 
breaking down, and use this for the cost of re-supply. It  would appear that this 

would be more effective; however, this cost is dependent on the current load and 
the amount of hydro station generation in the system for that week, and so a fixed 

figure would be difficult to obtain, and often be inapplicable. 
Another possibili ty is to consider re-solving only the first week for every "state" 

of each station since, after the first week, the amount of stored water (and hence 

t he hydro station generation) is uncertain, so that using a "cost of re-supply" 
approximation is reasonable. Also, in this first week, we need not consider every 

possible state of the generation system. For instance, the situation where every 
thermal station fails is unlikely in the extreme, and, if it did happen, emergency 
steps (which cannot be modelled) would be taken to minimize the effects. We could 
t herefore presume that such situations need not be catered for explicitly, unless this 

is easily done. 
We could also take a scenario approach to station failures, in which the "sce­

narios" chosen would define which stations had failed. It would seem reasonable 
to include those scenarios which are most likely to happen, along with a few which 

are seen as including important events to consider. 
For the working model we use a cost of re-supply equal to the cost of non­

supply. However, for flexibility, we consider having differing re-supply costs, as 
well as using a scenario approach in the first week. 

5 . 3 Transmission 

As mentioned above, the only non-linearities left in the objective function are those 
associated with the penalty applied to over-capacity transmission. If we enforced 
the transmission line's capacity, this would not occur. However, it was the difficulty 
in enforcing t his capacity constraint , in light of the fact that the transmission curves 

are not necessarily decreasing, that led us to the use of objective penalties . 
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It would be better to neither force the transmission to be within capacity, nor 

apply a penalty to over-capacity transmission, but to use a non-linear increasing 
line loss which could either explicitly or implicitly enforce the capacity; Figure 5 .4 

shows ar1 example of an implicit and explicit capacity through l ine loss. Of course, 

the problem with this approach is that it introduces many (about 1 0  000) non-linear 

equality constraints, which are extremely difficult to handle computationally. 
The only realist ic option, therefore, appears to be to bound the transmission via 

linear approximations of the non-linear capacity constraints. To do this we need to 
examine the constraints themselves . Recall from Section 4 . 3  that the constraints 

needed to keep the quadratic at2 + bt + c within the range [A, B] over the interval 
[0, 1 )  are: 

A :::; c :::; B 

A :::; a + b + c :::; B 
b2 I b 

A :::; - 4a + c :::; B when 
- 2a E [0, 1 ) (5 .5)  

Consider the s ituation where c is at one of the bounds; w.l. o .g. let this bound 
be A ,  corresponding to points on the bottom face of the region shown in Figure 4.4. 
The region into whi ch a and b are allowed to fall is shown in Figure 5.5 ; notice, in 
particular, that the edge between this face and one of the non-linear faces i s  l inear . 
A tight linear approximation which only allows feasible solutions should ,  therefore, 
pass th rough this edge. Consider the other edge which also passes through the 
point ( a ,  b, c) = (0 ,  0, A) ,  and is defined by the intersection between the two faces 
des cri bed by 

It i s  described by the curve 

a + b + c = A  
b2 

- - + c = A . 
4a 

{ (a , b, c) = ( t - A, -2(t - A) , t ) I t E [A ,  B) } 

Notice that , since this is linear, the two edges describe a linear face; this face is the 
li near approximat ion used, and i s  given by: 

b + 2c ;::: 2A (5 .6) 

Simi larly, the li near approximation used for the other non-linear face i s  obtained 
by replacing A wi th B in Equation 5 .6 .  Therefore, the constraints to ensure that 
the transmission curves are within [0, X] are: 
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Figure 5 .3 :  Non-supply in a hydro station's O .C . ,  and its "approximation" 
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. 2 -
0 ::; x2ktk_1 + X1ktk-1 + Xok ::; X 

2 -
0 ::; x2ktk + x1ktk + Xok ::; X 

0 ::; �X1k + Xok ::; X 
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(5 .7) 
(5 .8) 
(5 .9) 

where the transmission curve is given by x2kt2 + x1kt + Xok over the subinterval 
[tk-1 , t k] (for k = 1 ,  . . . , 4  for the working model) . __ . 

It is  worthy to note that , if we used a piecewise linear approximation (or even 
piecewise discrete) for Electricity curves instead of piecewise quadratic, we could 

easily bound the transmission to be within capacity using linear constraints with­

out approximation. The reason we do not restrict ourselves to a piecewise linear 
approximations is that, in seeking flexibility, we need to explore the limits of the 
model being developed . 

Another point to note is that our capacity approximation does allow all fea­
sible piecewise monotonic t ransmission. Also, in computational testing of these 
constraints, when we instead impose a linear approximation which allows all fea­
sible transmission (for the capacity bound only) , the optimal solution remains 

unchanged. 
Having moved to this approach allows a strategy for approximating convex 

line losses . A piecewise linear approximation of the line loss could be achieved 
by splitting the arc into many smaller sub-arcs , each with its own capacity (called 

sub-capacities) and line loss, representing separate pieces of the piecewise linear ap­
proximation. One advantage to this approach over a more usual piecewise linear ap­
proximation is the effective smoothing off of the corners for particular transmission 
shapes. If the solution prefers to transmit a shape which spans two sub-capacities 

within a single partition interval (of the Electricity Curve approximation) , this 
shape is split into two similar shapes. Each shape is sent through one of the sub­
arcs, attracting appropriate linear line losses . The combined line loss of the whole 
shape is thus somewhere between the line losses of the sub-arcs . Figure 5 .6  shows 

an example of this. 

5 .4 A Better Basis 

·when considering computational implementation of the model developed, i t  quickly 
becomes apparent that we have few explicit bounds on variables . Instead , we have 
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constraints which implicitly impose bounds. When solving a problem numerically, 
i t  becomes important to have bounds on variables ; any constraints which can be 
imposed as bounds are dealt with intrinsically. 

Rather than explicitly determining implicit bounds , it would be better if we 
could transform some of the constraints already imposed into bounds, or non­
negativity conditions, by a change of basis. Here, a change of basis in the variables 
of the formulation amounts to changing the basis of the piecewise quadratics in the 
model . 

There are two candidate sets of equations for such a transformation: either 

the capacity bound constraints for transmission, or the decreasing constraints for 
generation. The capacity constraints include an approximation, which we may 
wish to change, and only two other constraints for each quadratic piece, so we 

would be left to choose another arbitrary constraint for each quadratic piece. The 
decreasing constraints are enough to specify all but one of the new basis elements; 

we do indeed use these constraints as well as the related non-negative generation 
constraint . 

The constraints we wish to convert to non-negativity conditions are therefore, 

2gk2 tk-1 + 9k1 ::; 0 Vk = 1 · · · ]{ ( 5 . 10) 
2gk2 tk + 9k1 ::; 0 Vk = 1 ·  · · ]( (5 . 1 1 ) 

9k2 ik + 9kl tk + 9ko - 9k+1 ,2 ik - 9k+l ,l tk - 9k+l ,o 2:: 0 Vk = 1 ·  · · I< - 1 ( 5 . 12) 
9K2 + 9K1 + 9Ko 2:: 0 (5 . 13) 

where {0 = t0 , t 1 , • . .  , iK = 1 }  is the partition used in the approximation, and the 
Electricity Curve constrained is given by G = 9k2t2 + 9k1 t + 9ko over the subinter­

val [tk-b tk] · Equations 5 . 1 0  and 5 . 1 1  ensure the quadratic pieces are decreasing, 
Equation 5 . 12 ensures the step discontinuities are decreasing, and Equation 5 . 1 3  
ensures the curve i s  non-negative. 

vVe need to ensure that the left-hand-sides of Equations 5 . 10-5 . 1 3  indeed define 
a basis . To show t his we merely need to show that we can write the natural basis 
in terms of the left -hand-sides of these equations. The natural basis can be written 
as 

B = { X[o,td , X[o,t1J t , X[o,tl ] i2 , . • •  , X(t/(_1 ,1 ] , X(ti<-l >l]t ,  X(tl(_1 ,1]i2 } 
where Xr is the characteristic function of the set I. We define the new coefficients, 

fkj , in  terms of the natural basis coefficients, 9kj , a� 
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fko = 9k2tk 2 - 9k+1 ,2t/ + 9k1 tk 
- 9k+1 ,1 tk + 9ko - 9k+l ,O Vk = 1 · · · ]{ - 1 

fKo = 9K2 + 9K1 + 9Ko 
!kl = -2gk2tk-1 - 9k1 
!k2 = -2gk2tk - 9k1 

Vk = 1 ·  . . K 

Vk = 1 ·  . .  K 
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(5 . 14) 
(5 . 15) 
(5 . 1 6) 
(5 . 1 7) 

If we call the new basis elements {B10 ,  . . .  , B42 } , to write an Electricity Curve 
i n  terms of the new basis, we substitute in the natural coefficients, 9kj , using 
Equations 5 . 14=5. 1 7  and collect terms, and obtain the natural basis elements in 
terms of the new basis :  

X(o,tl ]  = B10 
tX[o,tl ]  = t1 B10 - En - B12 

t2X[o,tl ]  = t1 2 B10 - 2t1B12 

X[tg_1 , 1 ]  = BKo - BK-1 ,o 
tX[tK_1 ,1 ] = BKo - BK1 - BK2 - tK-1BK-1 ,o 

t2X[tK_1 ,1] = BKo - 2tK-1BK1 - 2tK-1BK2 - tK-12 BK-1 ,o 

showing the set of functions {B10 , . . •  , B42} , indeed form a basis. It is interesting 
to examine the form of these new basis elements; Figure 5.7 shows the new basis 
elements for 2-piecewise quadratics with partition {0 , .4, 1 } .  It can be seen from 
Equations 5 . 1 4-5. 1 7  that a similar transformation can be used in the piecewise 
l inear case. 

Having obtained a new basis representation, we need to convert all of our con­
straints into this new form. However, there is no need to explicitly do so here. 
Also, there will be no effect on constraints which are valid for any basis, namely 
the conservation of power constraints for nodes in the geographic network .  

5 . 5  Exploiting Flexibility 

There are some parts of the model for which we can use flexibility in ways as yet 
unconsidered. We currently have the implicit assumption that all time steps are 
of the same, fixed, length, e.g. all weeks or months; however, the model developed 
has the flexibility to allow us to use t ime steps of differing length. 'vVe could, for 
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instance, have time steps of a week, for the first six weeks, t hen use time steps of 
four weeks, and finish the year with two time steps of thirteen weeks each. This 

would reduce the problem to about a quarter of its original size. 
The model developed allows infinite variability in the time steps' lengths, and 

the lengths of time steps to be used are dependent on the trade-off between com­

putability and accuracy of the approximation. As time passes in the model the 
decisions made become less certain ,  so it seems that· increasing the length of some 
of the later time steps should not have too much effect on a solution's accuracy. 
In increasing the length of time steps in later periods, we are effectively relaxing 

the maximum and minimum storage levels. The effect of this could be to use more 
reckless policies on long time steps , as there is the ability to "push" our minimum 
storage level during that time, effectiv�ly borrowing water during that time step. 
This is not to say that this type of relaxation does not occur for constant length 
t ime steps, but in this case we are consistent in the amount by which such bounds 

can be pushed. In having different length time steps we are changing this amount , 
from one time step to the next, and may find that solutions tend to take more 
risks in earlier periods, as later periods have more chance of correcting any bad 
consequences . 

The further into the future we look, the more uncertain we are regarding the 
exact state of the system, and so the effects of such changes in the length of time 
steps may become swamped by our uncertainty. Also, since it is the intention to 
re-solve this system each week, if the change in time step lengths occurs far enough 
in the future, the effect on this week's decision will be minimal. 

Differing time step lengths could be used to implicitly model real changes in 
the quality of our future knowledge. For instance, we could increase the length 
of our time steps for periods in which the uncertainty inherent in the forecasts 
exceeds a certain level. This would ,  hopefully, have the effect of including some 
information on the accuracy of forecasts used, in that each time step would have 
similar uncertainty in the values being used. 

Another unconsidered use of flexibility is to have different geographic networks 
for different weeks .  The reasons for using flexibility in such a way are similar 
to those for having differing length time steps. In fact it is probably useful to 
use both of these techniques together. The concerns raised over differing length 
time steps also apply to having differing geographic networks; however ,  it is the 
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extra flexibili ty in transmission which is at issue in this case. This flexibility in 

the geographic network used also extends to the approximation used for Electricity 
Curves-it makes sense that, as the uncertainty of the forecasted load increases, our 

accuracy in approximating it should decrease, as this would lead to less precision 
in the costs associated with generation. However, the exact effect of such a loss in  
accuracy is difficult to  predict , as i t  is unclear whether the cost would tend to be  
consistently lower or  higher than the more accurately produced cost .  Intuitively, i t  
would appear that on average these costs would be about the same, since in each 
case we use a best fit approximation of the load, and it is just the coarseness of 

this approximatiorrthat we are changing. 
We also consider the aggregation of some hydro or thermal stations at future 

time steps of the model. This would most likely occur in conjunction with the 
use of differing geographic networks . Aggregation of thermal stat ions is quite easy 
to apply, as the aggregated stations have no direct connection, in terms of the 
formulation, with the same stations of the previous weeks. 

Future aggregation of hydro stations is a little more difficult as it reqmres 
integration of their respective waterflow networks . In actuality, this allows mult iple 
storage arcs to enter the same reservoir (the aggregated one) for a particular week. 

There is no realist ic way of splitting aggregated reservoirs at later time steps, as 
i t  is difficult to decide how much water to assign to each of the new reservoirs ; 
this should not cause a problem, as there is no reason to approximate a group of 
reservoirs m o re accurately further into the future. Such an aggregation means that 

we need to include possible multiple storage arcs arriving from the previous week 
in the conservation of water constraints for the waterflow network . If we define the 
set LAST( h ,  w) to be the set of hydro reservoirs , present (in week w - 1 )  which are 
to be aggregated into hydro reservoir h in week w, these constraints now become: 

Shw + Hhw - L Sj,w-l = jhw + [hw 
jELAST(h,w) 

where, for hydro reservoir h during week w, Shw and Hhw are the storage and 
release, respectively, and,  hw and [hw are the controlled and uncontrolled inflows, 
respectively. Note that the inflows are actually stochastic in nature but, for the 
deterministic model, they are assumed to take on fixed values. 

To realistically make a decision on the use of any of these techniques would 
take rigorous computational testing and simulation of the system, which is beyond 
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the scope of this study. For the moment , the working model will assume that all 

of the features discussed above are constant over each time step and that there is 
no further aggregation of hydro stations. However, for flexibility, we allow for the 
modelling techniques described above to be included. 

5 . 6  End Effect s and D iscount Factors 

Thus far there has been no mention of the storage levels at the end of the year. 
If no constraints are used to handle these, then it is most likely that all of the 

lakes will be empty at the end of the year in an optimal solution, as this makes 
fullest use of the "free" resource, water. We are not taking into account the fact 
that we will need water beyond the end of the planning horizon, but we do not 

have information now on how much we will need; therefore we need to define some 
terminal conditions. 

We do not intend to adhere to more of the solution produced than that for 
the first week, since, in each future week, we will be using the new information on 

hand to refine the decisions made. This implies that the terminal conditions do 
not need to be too precise, as the effect of these conditions on the the first week's 
solution should be minimal. However, as we use the model over time, this small 
effect could propagate through the solutions from one week's run to the next , until 

i t  begins to have a major effect on the types of solutions generated. For instance, 
i t  may be that if we allow the lakes to finish empty, use of this model over time 
may slowly lower the average level of the lakes, since it appears that there is more 
water available than is actually the case. 

One solution is to estimate the future benefit of the final period's lake levels ,  
for each lake, and include this in the objective function. A drawback with this 
i s  that of estimating this future benefit-it is not a simple task, as , including too 
much of a benefit will mean we leave the lakes full at the end of the year under the 
impression that we can make better use of the water next year, and, too small a 
benefit means we will use all of the water this year. Another problem with using a 
future benefit is that ,  although this is only a coarse estimate, it has the potential to 
swamp other more certainly known details in the objective function, due to factors 
such as machine precision. 

Another reasonable solution is to fix the lake levels at the end of the year. We 
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could require these to be at some previously decided "best" level for the time of 

year, or to be at the same level as they currently are. Another option is to fix the 
volume of water over a particular set of lakes, and let the final solution decide the 
exact distribution of this water. This will mean that , while the average lake level 
remains constant, the relative levels of the lakes will change. This is the option used 
in the working model, although it does tend to empty the most usefully located 
and reliable lakes in preference to those which have· a high variability of inflow or 
are geographically challenged1 . 

Of course, these options could be used in combination , with bounds also added 

to final levels ; however, they have little effect on the form of the model developed, 
so we can assume the model can have any combination of the above terminal 
conditions. There i s  little point in  becoming too elaborate here, since the effect on 
the first week's solution is limited .  

A nother point to briefly mention i s  that of uising discount factors . These are 

used to discount the value of the objective function for later weeks, so as to to 
place more emphasis on earlier weeks than later weeks since, when we actually 
come to schedule later weeks , we will have more information on the conditions of 
the system. This means that, if a the value of using water this week is the same as 

using it next week , we will, i n  preference, use the water this week. For flexibility, 
we allow any discount factor; a discount factor of 1 relates to the situation where 
we do not discount at all .  

5 .  7 The D eterminist ic Model 

Table 5.2 shows a s lightly generalized version of the full working model developed 
so far . For simplicity and compactness, as many of the constraints as possible are 

written in terms of the Electricity Curves themselves, rather than the coefficients 
of the basis used to approximate these curves . To expand these constraints, the 

Electricity Curve need only be replaced by its basis representation. This working 
model uses a K-piecewise quadratic approximation to the Electricity Curves. 

The notation of the formulation in Table 5.2 is explained in Table 5 .3 .  A w 

subscripted on a set represents only those elements in the set which are from week 
w. Also, all elements of sets are assumed to be associated with a fixed week, e.g. a 

1 isolated 
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Table 5 .2 : The Full Deterministic \,Yorking Model 

.. 

. 
Min ,£: Tw ( ;t CNsm (Fi ) + ,L : CNs (m (G�)-� Bh) + 

,L . C�Trf(dq)) 
w=l jEN'w h.EHYDROw · · · . qETHERMALw 

subject to :  

L Gq +  L Gh 
qETHERMAL(j) hEHYDRO(j) 
+ Fj + 2J ( 1 - ,Bi)xi - 2J xi = Lj Vj E JV 

iEL'<{j) iEOUT{j) 

sh + Hh - 2J sk = lh + fh Vh E HYDRO 
kELAST(h) 

Vh E HYDRO 

Vh E HYDRO 

Vh E HYDRO 

Gh(O) ::; min{Fh , Rh +  Uh} } 
Vh E HYDRO 

�Vh + Gh ( 1 ) ;::: max{Fh , Rh + /hUh } 

Xi E Cx ; Vi E A 

Gs (O) ::; Xs Vs E POWER 

(5. 1 8) 

(5 . 19) 

(5.20) 

(5.2 1 )  

(5 .22) 

(5.23) 

(5 .24) 

(5.25) 

gi,s ;::: 0 Vs E POWER, fi.1 � 0 Vj E N  Vi E { 10, . . .  , K2}  (5.26) 



CHAPTER 5. THE MODEL 1 02 

N, A 
TYP E 

IN (j ) ,  OUT (j ) 
LAST ( h) 

c-X 
{ 10, . . .  , K2} 

m( G) 
Gs , 9i,s 
Fi , Ai 

xi 
Rh , Hh , Rh 

sh ,  sh , sh 

vvh 
L ·  ] 
X ·  ] 

Fh , Fh 

Tw CNS c' q 
f3i 
/h 

Table 5.3 :  Notation used in Table 5 .2 
All nodes and arcs, respectively, in  geographic networks . 
All type stations (POWER = HYDRO U TH E RMAL) ; a dependence 
on j represents only t hose present at node j .  
All arcs entering and exiting, respectively, node j .  
All hydro reservoirs, from the previous week, aggregated into 
hydro reservoir h . 
Approximated set of all curves with range in [0 , X] . 
Subscripts of the coefficients of the basis elements. 
Area under the curve defined by G. 
C.C .  for station s and i 'th coefficient of this, respectively. 
Node j non-supply curve and its i ' th coefficient , respectively. 
Transmission curve for arc i .  
Minimum, actual and maximum release, respectively, from hy­
dro reservoir h (including spill) . 
Minimum, actual and maximum storage levels , respectively, for 
hydro reservoir h at the end of the current week. 
Spill from hydro reservoir h .  
Load Duration Curve for node j .  
Capacity of station (or  transmission line) j .  
Minimum and maximum flow, respectively, from the nver 
mouth of hydro chain h. 
Factor for week w including discount factor and week length .  
Cost of non-supply. 
( 1 - p)cq + peNs where cq is the fuel cost for thermal station q.  
Fraction of power loss for transmission arc i .  
Fraction of uncontrolled inflow, for hydro station h, which ar­
rives at a constant rate. 

hydro station at week w is a separate element of the same station at week w + 1 .  
The set Cx refers to all Electricity Curves whose coefficients satisfy Equations 5 .  7-
5 .9 .  The formulation shown in Table 5 .2  assumes that each hydro station has its 
own C.C . .  

To obtain an idea of the size of the formulation in Table 5.2, we count the num­
ber of constraints ( the Equations in this Table each describe many constraints) .  
The assumption i s  made that the same geographic network, number of stations , 
and approximation of the Electricity Curves are used for each week . Equation 5 . 1 8  
(conservation of power at geographic network nodes) represents one constraint for 
the coefficients of each basis element for each node of a geographic network, giving 
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3KY N constraints for a K-piece piecewise quadratic approximation of the elec­

t ricity curves, where Y is the number of weeks in a year, and N is the number 
of nodes in the geographic network for each week. Equation 5 . 19  (conservation 
of water at waterflow network nodes) represents Y H constraints, where H is the 
number of hydro stations. Equations 5.20 and 5 .21 (ensuring vVh is the total spill) 
also each represent Y H constraints .  Equations 5.22 just represent bounds on stor­
age and release, and are generally dealt with separately, and so do not explicitly 
add to the number of constraints ;  the same is true of the non-negativity conditions 
(Equation 5 .26)  which ensure some of the Electricity Curves are decreasing. Equa­
t ions 5 .23 and 5 .25 (minimum and maximum generation levels) represent Y( Q+2H) 

constraints, where Q is the number of thermal stations. Finally, Equation 5 . 24 rep­
resents 6]{ constraints for every arc (this can be halved by enforcing bounds on 
the slack of each constraint , giving a total of 3KY(2A) where A is the number of 
transmission lines in the geographic network, being half the number of arcs since 
t hese are split (see Section 3 .5) ) .  

These give a total of Y(3K(N + 2A) + 5H + Q) constraints . The number of 
variables is Y(3K(N + 2A) + 3H) , so the number of variables is approximately the 
same as the number of constraints .  For the working model as described in this and 

preceding Chapters there are 29 328 variables and 28 392 constraints . 

5 . 8  G eneralized Network with Side Constraint s 

The model, as formulated in Table 5.2 ,  can be re-formulated as a Generalized 
Network with side constraints .  This is most helpful in determining a solution 
procedure as the Generalized Network structure is easily exploited to allow faster 
solution times . The re-formulation is mostly a change in the way the problem is 
interpreted. To show that a formulation is indeed a Generalized Network with 
s ide constraints, we merely need to demonstrate that the formulation exhibits a 
Generalized Network substructure which includes every variable. 

Each basis element (used in the Electricity Curve approximation) has an associ­
ated Generalized Network for each week, corresponding to the geographic network . 
The variables of this network , for week w ,  are exactly the coefficients of the as­
sociated basis element corresponding to each Electricity Curve of week w .  For 
each basis element 's network, Equation 5 . 18  corresponds to the "conservation of 
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mass" constraint at a node, with the transmission variables corresponding to arcs 

(with losses) connecting these nodes . The generation variables and non-supply 
variables each correspond to an arc from the node, at which they appear, to a fic­
t it ious "power supply" node (a super source of the network) .  The load coefficients 
correspond to the sinks of this Generalized Network. 

The waterflow networks are obviously (Pure) Networks (and therefore General­
ized Networks) , however we need to incorporate the spill as a network variable, or 
eliminate it from the formulation . It may be eliminated by replacing Equation 5.20 

with the constraint 

and ,  consequently, removing Equation 5 .21 . This slightly alters the model. The 
same model can be maintained by the introduction of a new variable, Vh , for each 
hydro station h (with a particular week corresponding to each h ) .  Vh exactly 
represents the p art of the release which flows thro'ugh the turbines of hydro station 

h .  This new variable is given by 

(5.27) 
and may be used to eliminate Hh from the formulation. However , since the removal 
of Hh converts t he bounds on Hh into explicit constraints, it may be more useful 
to retain this variable. 

The waterflow network, including the spill variable and the new variable Vh , is 
now a (Pure) Network with each variable corresponding to an arc. Equation 5 . 19  

describes a storage node, and Equation 5 .27  describes a "river mouth" node (the 
arc corresponding to Hh may be retained or removed) .  Equation 5 .21  implicitly 
holds (by Equation 5.27 and the non-negativity of Vh and vVh ) ,  so i t  can be removed 
from the formulation. Figure 5.8 shows the part of a waterflow network, for a single 
week, under this formulation. 

Since every variable of the re-formulation may be considered to be part of a 
Generalized Network, the re-formulation is a Generalized Network with side con­
straints. Constraints corresponding to Equations 5 .20 and 5.23-5 .25 are the side 
constraints, and the remainder of the constraints correspond to either nodes of the 
Generalized Network, or to bounds on the arc flows . 
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Figure 5 .8 :  Part of the waterflow network with the addition of V 

5 . 9 D iscussion 

This Chapter described a deterministic model for the New Zealand hydro-thermal 
electricity generation system. Although it includes some stochastic features (for 
instance estimates on expected generation costs in terms of station failures) ,  it 

t reats the major stochastic elements of the system as deterministic. These elements 

are the inflows into the hydro reservoirs. 
Due to the high variability and unpredictability of these inflows , the solution 

to t he deterministic model with particular inflows is not very robust as an imple­
mentable solution, since it relies on the fact that the inflows are fixed. This does 

not imply that the solutions of the deterministic problem are of no use, merely that 
they should not be implemented as they stand. They are useful in determining the 
effect of uncertainty in the system, and for producing a lower bound on costs for 
particular scenarios of inflows . 

The major advantage of a purely deterministic model is the ability to allow vast 
amounts of detail which it is not computationally reasonable to have in a stochastic 
model. The next Chapter will describe how the deterministic model developed can 
be usefully extended to encompass the stochastic elements . 
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Chapter 6 

Modelling Sto chastic Inflows 

A linear model of the physical system discretized over the time horizon was 
developed in Chapter 5. It included methods for coping with the stochastic 

elements brought in by supply uncertainty and load forecasts, but it did not ex­
plicitly deal with the stochasticity of hydro reservoir inflows . Any model developed 
needs to take adequate account of this stochasticity to be effective. 

A reason for leaving the discussion of stochastic aspects until this Chapter is 
that they are very difficult to take accurate account of, in the sense of developing 
a computationally tractible model . In the New Zealand system, the hydro inflows 
have a high variance; this is i llustrated in Figure 6. 1 ,  which shows 10  years of 
inflows into South Island lake, Te Anau (the reservoir for the Manapouri hydro 

station) . Note that the highest inflows into lake Te Anau are able to almost fill 
the lake from empty. Also, there are differing correlations between reservoirs (even 
those in the same Island) ; Figure 6 .2 illustrates this by showing two scatter plots 
of the inflows given in Figure 6 . 1  against those into South Island lakes Pukaki and 
Hawea for corresponding weeks . 

Every reservoir can be modelled by a separate random variable (or possibly a 
combination, if partial correlations are included) . Including temporal independence 
i ncreases the number of random variables involved to the order of 300. Given that 
each random variable adds another dimension to the problem ( in terms of right­

hand-sides and coefficients) , taking all of these factors explicitly into account can 
increase computation time to an unreasonable level if a brute-force search is used. 
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Figure 6 . 1 :  Ten years of inflows into lake Te Anau 
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Extending the constraint set to include stochastic elements is a reasonably simple 
exercise. We merely need to define which values are stochastic and allow some of the 

variables to depend on the observed value of various stochastic variables . We can 
model correlations and dependencies by allowing some of the stochastic variables 
to be given by a weighted sum of various random �ariables. For instance, suppose 
there is a correlation between the controlled and -uncontrolled inflows of a particular 

river chain .  If we let � ' ( and '1/; be random variables from appropriate distributions , 
then the correlation can be modelled by setting J = �+AI( and [; = '1/; + >.u(, where 
the >. 's represent correlation factors . In general each inflow would be a function of 
a random variable corresponding uniquely to that inflow, and various other random 

variables (of which other inflows are also functions) corresponding to correlations 
bought in by various environmental effects ( local weather patterns, for instance) .  

A difficulty which arises when specifying the objective function is that of deter­
mining exactly what we are trying to optimize-the answer is not at all obvious . 

The usual objective used for Stochastic Programming is that of minimizing the 
expected cost (or maximizing the expected benefit) ;  the actual objective depends 
on the intention of the model and what is reasonably achievable. 

The "tails" of random variable distributions present a difficulty when using 

expected cost , since these tails are often not well approximated due to a lack of 
information about this area of the distribution (consider approximating a statis­
tically 1 in 1 00 year drought using only 50 years of past data) . However, these 
tails may actually drive the solution, since the costs associated with such tails are 
often large and could swamp the data which would otherwise lead to more rea­
sonable solutions. Another difficulty with these extreme values is that , generally, 
approximations and constraints of the model are based on near-average values of 
the stochastic  variables and such approximations and constraints may break down, 

or become unreasonable, in the extreme. Also, some constraints are not hard, but 
are more easily modelled in this way, especially in the face of extreme conditions; 
given a serious drought, noone can expect minimum river levels to be maintained. 

Therefore, the difficulty may be the way the problem is modelled. However, in this 
situation, it may not be desirable to re-model such constraints, as this re-modelling 
may cause the model to become computationally intractible. 

In general, the approximation used for random variable distributions truncates 
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the tails of the underlying distribution (e.g. a discrete approximation) .  Such a 
situation can be thought of as optimizing over some set of "reasonable" values, 
and treating extreme situations as "acts-of-god" , for which special actions will be 
taken which are not (or can not be) modelled explicitly. By specifying where the 
truncations are made, we are defining such unreasonable situations. 

Minimizing the expected cost is not the only objective t hat could be used; it 
assumes that the i ntention is to do well in  the long-term. To do better in  the 
short-term, one could include criteria for taking risks on the forecasts, or, risk 
trying to do better in an average year by foresaking security in an extreme year. 
Given the unpredictability of inflows into hydro reservoirs in New Zealand and the 
lack of imported power, such risk taking is most likely untenable. Because of this , 
and the difficulties inherent in specifying other objectives, we use the minimization 
of expected cost , or an approximation thereof, as the objective for this model . 
By changing the random variable distributions used, or incorporating a weighting 
function into the objective function, we can change the importance given to various 
probable futures and hence include some flexibility in the definition of the objective. 

6 . 2 The General P roblem 

Recall (from Table 5 .2) that the stochastic variables in the model are present only 
as right-hand sides of some constraints and bounds. Hence, the general stochastic 

program can be written as the multi-period stochastic program 

Min E [Z(x, y) ]  
( IY  

where Z is the cost of generation , e = [6 6 6]T is the set of random variables (with 
possible correlations) , y is some type of state or history information from previous 
t ime steps upon which our decisions (and some random variables) are contingent , 
and x represents the decision variables . Here the expectation is calculated as an 
i ntegral over all possible random variable values which form some multi-dimensional 
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set . It is the calculation of this integral that creates the difficulty, since, as pointed 

out by Wets [22] , while there are adequate ways of numerically computing integrals 
over one (and possibly two) dimensions , there are no reasonable ways for doing so 
over three or more dimensions .  

I t  is well known that when the probability distributions underlying the stochas­

tic variables are discrete, the formulation can be written as an equivalent large-scale 
deterministic program (with a stochastic interpret.ation) . Furthermore, when the 
model of the physical system underlying the stochastic problem is linear (as it is in 
this case) , the equivalent large-scale deterministic problem obtained is an LP. Many 

methods discretize the probability distributions underlying the stochastic variables 
(either before or during solution) to take advantage of this property, however the 
large-scale nature of the equivalent deterministic problem means that even then 
one must limit the size of "local" searches (possibly by limiting the size of the 
problem investigated) so as to make the problem tractable. 

In Section 6 .3  we consider using a continuous approximation, via a fixed basis, 
to the distributions underlying the stochastic variables , in a similar manner to the 
approximation of Electricity Curves . The benefit of using a fixed basis is that it 
eliminates the difficulty of calculating expected values , because one can obtain a 

fixed polynomial expression. 
A difficulty which arises when discretizing time is that of deciding exactly when 

the random variable is observed (and when this information can be used) . Such 
knowledge at the beginning of the week assumes perfect foresight over the week , 

while allowing this knowledge only at the end of the week assumes that we cannot 
react to knowledge gained during the week. For the latter, however, some state 
variables (in our case, storage at the end of the week) must depend upon the actual 
value of the random variables . To approximate a limited use of the knowledge before 
the end of the week , we could assume, say, that the Contract Curve of the station 
needs to be fixed at the beginning of the week ; however ,  the release, storage and 
spill can all depend on the value of the random variable, allowing hydro generation 
to be replaced by non-supply (or re-supply) depending on the observed value of 

the random variable, simulating an ability to react to information gained over the 
week. 

For the working model we assume, for simplicity, that all decisions must be 
made at the beginning of the week. This allows the possible first week's inflows 
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t o  realistically model inflow forecasts for the coming week, rather than needing 

to forecast only o n e  inflow for the first week. All decisions are extendable, with 
appropriate modification, to any of the cases discussed above. Often we will use the 
simplest case for a particular situation, so as to avoid obfuscatory complications. 

6 . 3  A New Met hod 

Consider for the moment the situation for which the reservoirs have independent 
i nflows which, individually, are completely correlated with respect to time. The 
case for two reservoirs is easily generalizable to the multi-reservoir situation and so, 
for simplicity, we use this as an example. vVe also make the assumption that there 
are no uncontrolled inflows, although this can be extended to the assumption that 
either the uncontrolled inflows are fixed, or totally correlated with the controlled 
i nflows . For the purpose of this discussion , we will also assume that the decisions 
can be made with perfect foresight of the week ahead; this avoids the need to 
distinguish between structure admitted by the method described and that created 
by this lack of foresight. 

Due to temporal correlation and spatial independence, inflow into a reservoir 
for each week can be determined using a single random variable. This can be rep­
resented by having, for each reservoir j ,  a parameter Xj E [0 , 1 ]  and, for each week, 
w ,  a function of this parameter, fjw ,  which gives the actual inflow for that week. 
The conservation of water constraint, and the constraint linking the hydro station 
release with its generation (for hydro reservoir j during week w) , are respectively: 

(6. 1 )  

(6 .2) 

where each variable represents a two-dimensional function of a fixed basis so that 
t hese constraints can be put in terms of their coefficients (which would be the 
variables of the Mathematical Program) .  The variables are similar in design to 
those given in Table 5.3. 

Unfortunately, the assumption of temporal correlation is not a good approxi­
mation for the New Zealand system. However, if one introduces temporal inde­
pendence, then the decision variables for each week become functions of all of the 
i nflows for all of the preceding weeks! One way to circumvent this is to assume 
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that our decision can be based only on fixed horizon hindsight . Suppose ,  for in­
stance, that we can base our release decisions only on the previous two weeks' 
inflows. A natural extension to this is to allow the probability distribution of this 

week's inflows to depend on last week's inflows as well (introducing a lag- 1 temporal 
correlation) .  Equations 6 . 1 and 6 . 2  therefore become 

Sjw(x1WJ X2w,  X1 ,w-1 , x2 ,w-1 ) + Hjw(x1w, X2w ,  x1 ,w-1 , x2 ,w-1 ,  x1 ,w-2 , x2 ,w-2 ) 
= Sj,w-1 (x1 ,w- 1 ,  X2 ,w-1 , x1 ,w-2 , x2,w-2)+ !iw (Xjw, Xj,w-d 

Hjw (X1w,  X2w,  x1 ,w-1 , X2 ,w-d - vVjw(x1w ,  X2w,  x1 ,w-1 , X2,w-1 )  
:::; m( Gjw( X1w, X2w,  x1 ,w-l ' X2,w-l ) ) 

(6 .3)  

The conceptual difficulty here i s  that we are assuming that our release decision for 

this week cannot depend (explicit ly) on the storage level at the beginning of the 

week. 
vVhat we would like to do is to introduce a "forgetting" function, g, which ap­

proximates the distribution of storage levels for the beginning of the week (which 
is currently a decision function of many parameters) by a single probability dis­
tribution (we could also include finite horizon h indsight if desired) .  If we have no 
hindsight (except for the lake level at the beginning of the week) ,  the conservation 
of water constraint becomes : 

In addition to the difficulty of specifying g,  such an approach suffers from the 
large number of variables needed . If we consider having six independent hydro 
reservoirs , the function Hiw of Equation 6 .3 is a function of 18 parameters , so that 

if, for each parameter, we have a basis of n functions, then to specify each function 

Hjw would take in the order of n 18 variables ! An in-depth investigation of such 
an approach, even for a small number of reservoirs , would take a lot of theoretical 
research to ensure that it is of a robust nature. Such an investigation is beyond 
the scope of this thesis, and this approach is therefore not taken any further. 

6 . 4  Stochastic Approaches 

There are many approaches to solving Stochastic Programs in the literature. To 
fully examine these alternatives as feasible extensions to the deterministic model 
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would not only require adjustment of this model to fit the extension, but also 

require rigorous testing of the viability and robustness of the resulting stochastic 
model. Such an investigation is also well beyond the scope of this thesis ,  since the 
intention here is to develop a detailed model of the physical system which can be 
extended to a full stochastic model . To this end we examine only how one such 
extension may be achieved and perform very minor testing so as to address some 
of t he implementation issues involved. 

We do, however, identify the need to carry out testing and simulations on 
various stochastic models so as to identify those which best meet the needs of 
New Zealand's power scheduling system. Such a study, purely for the New Zealand_ 
system, has not yet been initiated. In performing such a study, there would be con­
siderable benefit gained from the use of consistent models of the physical system 
because this would tend to remove discrepancies which are based on differences in 
the way in which physical system is actually modelled in different stochastic models. 
It would mean that all approaches could be developed and coded together, remov­

ing some of the arbitrariness in separately developed (and programmed) models . 
Also, the solutions from such models could then be realistically compared, as the 
structure of solutions obtained would tend to be consistent . 

For the moment we give a brief account of some of the stochastic approaches 
presented in the literature and discuss their possible use as extensions to the model 
developed here. 

6 . 4 . 1  Sto chastic Dynamic Programming 

Stochastic Dynamic Programming (SDP) uses the concept of state variables, which 
are variables that react to the value of the decision variables and to the random 
variables' observations . In solution, SDP discretizes the random variables and the 
state variables upon which the current decision is being made, so as to determine 
the best current decision based on each of these values , and calculates the cost 
of making such a decision. It then interpolates the costs, and uses this as an 
approximation of the future cost of decisions for the decisions of the previous t ime 
period (in a backwards recursion) . 

The undesirable feature associated with this approach is the aptly named "curse 
of dimensionality" . Because of this, SDP can use few (two or three) random vari­
ables at each stage whilst remaining computationally feasible. Such an approach 
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is taken by Boshier, Maiming and Read [2] for the New Zealand system. 
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An effort to circumvent the curse of dimensionality resulted in the use of an 
Aggregation-Decomposition approach (Duran, Puech, Diaz, and Sanchez [5] ) .  The 
principle behind this approach is to aggregate all but one of the reservoirs and solve 
the resulting system using an SDP approach, repeating this for each reservoir .  The 

"solution" is then taken to be the combination of the individual solutions for each 
reservoir. If such an approach were to be used in. New Zealand, one would need 
two aggregated reservoirs , one for the North Island and one for the South Island, 
since the physical barrier between the two needs to be well represented. 

Another attempt to side step the difficulties of SDP has recently been devel­
oped. Stochastic Dual Dynamic Programming (Pereira and Pinto [ 16] ) discretizes 
t he state variables near points of interest (locations where a solution is likely to 
venture) for the SDP backward recursion and then performs a fonvard simulation 
to determine new "interesting" values of the state variables . The algorithm calcu­
lates lower bounds and estimates upper bounds, giving an idea of the convergence 
of the objective value. It appears that such an approach could work well as a 
stochastic extension here. 

Lagrangian relaxation has also been used in a number of decomposition ap­
proaches . One method was to decompose the system into separate stations by 
fixing the Lagrange multipliers corresponding to meeting demand: Li , Yan, and 
Zhou [ 10] . The hydro systems are then individually solved using SDP and the 
thermal stat ion's generation is directly determined. The Lagrange multipliers can 
then be updated so as to ensure global convergence. Due to the use of an un­
derlying network in this model, such a method would be difficult to implement as 
it stands , although for this model we could, instead, relax the Lagrange multipli­
ers of the constraints linking hydro reservoir release and hydro station generation. 
Lagrangian relaxations are also used in conjunction with a scenario-aggregation 
approach. 

6 .4.2  S cenario-Aggregat ion 

A scenario-aggregation approach approximates the random variable distributions 
with a number of fixed, appropriately weighted "scenarios" . The problem can 
then be formulated as an equivalent large-scale deterministic problem in which 
the deterministic base model is replicated for the various scenarios and so-called 
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non-anticipavity conditions are introduced to ensure that no decision made uses 
foreknowledge which would not be available at the time. The large-scale nature of 
this problem all but forbids direct solution, and so the problem is often decomposed 
by relaxing these non-anticipavity constraints . 

In situations where the effects of the stochastic variables are slight, often only 
the relaxation is solved and the solutions are combined by hand; see, for instance, 
Dembo et al. [4] . Such a method is not appropria.te for the New Zealand system 
because of the high variabi lity of the inflows and the significant influence this has 
on deterministic solutions. 

The structure of the equivalent large-scale deterministic  problem lends itself 
to the use of Bender's Decomposition. Unfortunately, to be effective in reducing 
the size of the problem to manageable portions would require many successive 
applications of the decomposition, and, in practice, the number of Bender's Cuts 
necessary to obtain a solution makes this approach intractable. 

Several methods have been developed which apply a Lagrangian relaxation to 
the non-anticipavity conditions . One in particular, the Progressive Hedging Al­
gorithm of Rockafellar and \Nets [ 19] ,  uses an augmented Lagrangian technique 
to successively tighten the non-anticipavity condition relaxation. This method is 

described in more detail in the next Section. 

6 . 5  Applying Progressive Hedging 

A scenario aggregation approach was chosen to be used as the stochastic extension , 
as it offers the greatest flexibility in the extent to which the modelling of stochastic 

elements dominates the solution procedure. Furthermore, it allows correlations and 
future forecasts to be included (if only implicitly) . In taking such an approach we 
are, in essence, approximating a multi-dimensional solution space by a few selected 
snap-shots of this space. It is hoped that the physical detail given by solutions to 
the thus created full stochastic model goes some way to making up for the lack of 
stochastic detail .  It is intended that this approach should be used in tandem with 
another approach which is more thorough in dealing with the stochastic elements 
(and hence has a less well defined physical system) . Indeed , the flexibil ity of this 
approach allows it to fulfill both roles. 

In reality, however, the users of the model will probably want to use a single 
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model which gives consistently sensible solutions. Therefore, such a model needs 

to be sufficiently flexible so as to be capable of producing solutions which can be 
well stochastically hedged or well detailed (since, in practice, achieving both is not 
computationally tractable) .  The use of a scenario aggregation method, with the 
deterministic model developed in Chapters 3-5, creates such a model . 

The particular solution method chosen is Rockafellar and \Nets' Progressive 

Hedging Algorithm [ 19] . The benefits of t his method are that it has well-grounded 
theory and · may be solved on parallel processors (which would greatly enhance 
solution time) . It also has the advantage that , at each iteration, it produces a 
solution which obeys all of the non-anticipavity conditions (although these may 
not be feasible in terms of the formulation) ; this solution can then be used as an 
approximation to the optimal solution. In terms of the solution process, the Pro­
gressive Hedging Algorithm amounts to re-solving the deterministic model under 
various scenarios , with a quadratic augmentation to the objective function, many 
t imes. 

6 . 5 . 1  A B rief Description o f  Progressive Hedging 

The deterministic model for each scenario of inflows is known as a scenario sub­
problem. Each subproblem, i, is given a positive weight, p; , which can be thought 
of as its probability of occurrence. The optimal solution to each of these subprob­
lems is found, and these are used as the initial subproblem solutions , xi.  We begin 
with an initial estimate of the value of the Lagrange multipliers associated with 
the non-anticipavity conditions, W (usually W = 0 is used) . 

Using the current subproblem solutions, a policy, X, is determined for each 
scenario. The value of each component of the policy for any scenario is equal to the 
corresponding component of the current subproblem solution, or, if this component 
is required to obey a non-anticipavity condition, it is equal to the average value 

(weighted by the p; 's) of the components (of the current scenario subproblems) 
which must also satisfy the same non-anticipavity condition. That is 

L PkXkj 
X· .  

-
kE'H(i,j) 

l]
-

L Pk 
kE'H( i,j) 

where 'H(i , j )  is the set of all subproblems for which the j'th variable is required 
to be equal to the j 'th variable of the i'th subproblem by the non-anticipavity 
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conditions. If Xij is not constrained by any non-anticipavity condition, we have 

'H(i , j ) = { i } . 
The current Lagrange multiplier estimates are updated via 

W:· +-- W· + r (x� - X·) t t t t 

where r > 0 i s  a fixed penalty parameter. The objective functions of the scenario 

subproblems are augmented so as to include the_ Lagrangian term for the non­
anticipavity conditions, Li PiVVijXij (often written as ( vVi , xi) ) , and a quadratic 
term to limit the step length taken, � l l xi - Xi l l 2  (where the norm corresponds 
to the inner product used in the Lagrangian term).  Each of these new scenario 

subproblems is then solved to obtain new current subproblem solutions and the 
process repeated until adequate convergence is obtained . Figure 6.3 describes this 
process diagrammatically. 

The implementation of this algorithm is reasonably straightforward, however 
there are one or two implementation issues to be considered. These, and the 
reported experiences of others who have also used this algorithm, are discussed in 
Chapter 9 .  

6 . 6 C hoosing S cenarios 

Developing the exact method for choosing the scenarios to be used demands con­

siderable attention . It requires computational testing and simulation to  convey an 
appreciation for the effects of this choice in practice. ·when developing a model 
to deal with stochastic aspects of a problem, there is no alternative to empirical 
testing, as it is the quality of solutions produced for the system involved that is of 

real interest . Such an exhaustive study is beyond the scope of this thesis .  
In choosing a stochastic extension to the deterministic model developed we do, 

however, have some expectations of the model to be implemented. A scenario 
approach was chosen specifically because of the freedom allowed in the choice of 
scenarios . Since the number of scenarios needed to take reasonable account of the 
s tochastic elements may be intractably large, it could be, nonetheless, that this 
freedom is a false security in this case. The intention is to run the model under a 
very few representative scenarios to gain insight into the running of the system as 
a whole, and more importantly, for this model , to give a great deal of detail about 
the physical implementation of such a solution. 
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One original intention was to solve the deterministic model under a number of 

different scenarios ( compiled from historic data) , only ensuring that the first week's 
releases were all the same. Currently, the option that appears most attractive 
(based purely on intuition) is to start with several (five, say) important scenes 

(yearly inflow sequences) based on the volume of inflow. From these scenes, then 
construct a scenario tree based on possible transitions from one scene to another as 
t he year progresses, where some transitions are expressly forbidden (e.g. transition 
from a very wet scene to a very dry scene and then back again) . The scenario 
t ree so obtained would be unmanageably large (for five scenes we would obtain 

in the order of 5Y scenarios) .  However, beyond some indeterminate horizon, the 
prediction of inflows is no longer very precise, and, the effect of wrong predictions 
on the first week's decisions is slight ; we call this horizon the short horizon. It  
seems to be reasonable to approximate decisions made beyond this horizon by, 
say, deterministic solutions; other possibilities beyond this horizon are discussed in 
Section 6.8. Taking this short horizon to be four weeks gives in the order of 600 
scenarios; from this a sub-tree can be chosen which has at most three arcs splitting 
from any node, and consists of 3 to 20 scenarios . This sub-tree defines the scenarios 
which are to be used. 

6 .  7 Reducing Effort when Progressive Hedging 

When using a scenario approach one creates a scenario tree, as in Fig11re 6 .4 ,  
showing the various interactions between scenarios. Paths from the root node to a 
leaf node represent the individual scenarios (see Figure 6 .5) . 

The Progressive Hedging Algorithm solves the scenarios individually as (aug­
mented) deterministic subproblems. Notice that we require that some nodes in the 
scenario tree to be "solved" many times for each hedging iteration, to ensure a fea­
sible solution in each deterministic subproblem. In Figure 6.5 the dashed ellipses 

represent sets of nodes which are solved more than once; notice that their history 
(path to the root node) must be the same in order that they can be considered as 
being solved multiple times. 

In the setting where the nodes of the scenario tree actually represent quite large 

physical systems (such as the current problem),  such an overlap would represent 
a large overhead in solution time. To avoid this we should therefore decompose 
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Period 1 Period 2 Period 3 

Figure 6.4 : A scenario tree 
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Figure 6.5 : Various scenarios from the scenario tree 
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the system in another way. The reasons for choosing the natural decomposition 

(of Figure 6 .5) are that i t  is easy to implement, easy to understand, and, that it 
exhibits similar structure in each subproblem (which may be exploited to obtain 
faster solutions or a more compact representation) . 

The Progressive Hedging Algorithm decomposes the problem by relaxing non­
anticipavity conditions and then sequentially tightening them. Since the Progres­
sive Hedging Algorithm makes no assumptions about the scenario structures used, 
one answer is to break up the scenario tree into subtrees rather than paths . For 
the model developed there are few (very important ) inter-period links, namely the 

storage variables for each hydro station. It may, therefore, bej:>etter to split these 
variables "breadth-wise" rather than "height-wise" , taking the sub-trees to be as in 
Figure 6 .6 .  In doing so, we are actually hedging on a "non-anticipation variable" , 
i . e .  an artificial variable equal to the value of the non-anticipavity constraint . To 
give an example of the resulting difference in the decomposition used, consider the 
following: let 

(6 .4) 

be the partial constraint set for period t ,  and 

and 

to be two scenarios of partial constraint sets for period t + 1 ,  where u and w are 
the variables linking periods t - 1 and t, and, t and t + 1 ,  respectively, and x and 
y are the decision variables for periods t and t + 1 ,  respectively. Usually we would 
have the following partial constraint sets :  
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with non-anticipavity condition 

1 22 

(Note that we effectively solve Equation 6 .4 twice) . Decomposing as proposed 

above would split vV and have the following partial constraint sets: 

with non-anticipavity condition 

Such a decomposition breaks the problem up into small pieces, whose size is 
controlled only by the number of arcs leaving a scenario tree node and the detail 
in the physical system of each period. However, we further propose to "glue" some 
of these sub-trees together so as to make large blocks of about the same size (e.g. 
Figure 6 .7 ) .  

One advantage to th is  approach is that i t  implicitly incorporates the fact that 
the first period (the root node) is affected more by decisions made in close periods 
than by distant periods . There may be an asynchronous parallel solution method 
to solving these sub-trees (possibly an adapted version of the Progressive Hedging 
Algorithm) which takes advantage of this by having smaller trees at the "narrow" 
end of the scenario tree which are updated more often (but we do not pursue this 
possibility further) .  
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Figure 6 .6 :  Split sub-trees 
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Figure 6 .7 :  Joined sub-trees 
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The construction of these larger blocks is completely dependent on the base 
model and the scenario tree used. In solving the problem using the natural decom­
position, the subproblems solved each use Y nodes of the scenario tree (where Y is 
the number of weeks in a year) ; it is therefore reasonable to break the problem up 
into subtrees, each with a depth of logs Y, where s is the average number of arcs 

splitting from a scenario tree node. 
For scenario trees similar to those described in .. Section 6.6, a natural construc­

tion of the large blocks is evident: the first block consisting of the scenario tree with 
the deterministic "tails" removed ( i .e. the part of the tree before the short hori­

zon ) ,  and the other blocks representing the deterministic tails. Figure-6.8 shows an 
example of this . While this procedure removes only the same order of computation 
as the removal of o n e  scenario (for each progressive hedging iteration) ,  the num­
ber of relaxed non-anticipavity variables is decreased from 54 to 18 ;  this should 
considerably reduce the number of iterations required. Most importantly, the new 

structure will increase the convergence rate of the first week's solution. 

6 . 8 Non-ant icipavity 

In the scenario aggregation setting, the issue of when information on the observed 
values of random variables becomes available begs the question as to which variables 

should be the non-anticipation variables . Consistency of the model requires that 

the same variables are used as non-anticipat ion variables each week. The choice of 
non-anticipation variable is also dependent on the information to be sent to shorter 
t ime models . 

vVhere the assumption about the observation of the random variables is either, 
that of perfect foresight over the week, or, the case where we can not react until the 
end of the week, both the hydro station's C .C .  and release need to be based only 
upon the information available at the beginning of the week. This can be achieved 
by imposing the non-anticipavity condition only on the release, if desired , since, 
when the releases are fixed for a week, the decisions for that week become decoupled 
from the rest of the model . The case where we approximate partial foresight over 
the week (as in Section 6 .2) , amounts to requiring the hydro station's C .C .  to be 
non-anticipated but the release to be anticipated, hence the release may react to 
the observed values of the random variables for that week. 
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Stochastic Block Deterministic Blocks 

Figure 6.8 :  Suggested break-up of a particular scenario tree 
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Another method of approximating partial foresight is  to use storage as the non­

anticipated variable, and allow the release and generation to react to the observed 
values of the random variables-this amounts to setting storage targets. Unfortu­
nately, in the situation where there is a large range of possible inflows for a week 
(which is common for later weeks) , the target storage is limited by the possible 
storage given that the lowest inflow occurs , requiring that, for high inflows, the 
solution should spill rather than not meet the stor_age target ! 

A slight generalization may, however, work well in tandem with the short hori­
zon proposed in Section 6 .6 .  The idea is to approximate the effects of stochasticity 

beyond the short horizon, by applying the non-anticipavity conditions to the target 
storage level for every scenario (regardless of its history) for every week beyond the 
short horizon .  Applying a penalty for under-achieving the storage target simulates 
stochastic decision-making for these weeks .  Of course, the solution is dependent 
on the penalty actually used, but the effect on the first week 's decision may not be 
overly great . 

Such an approximation provides a setting for investigating the effects of different 
approximations beyond the short horizon. Having a low (or zero) penalty parameter 
is equivalent to assuming a deterministic solution beyond this point , whereas using 

a very high penalty assumes that no benefit can be obtained from considering either 
the past or possible futures of a decision regarding storage levels. 

This approximation also comes with a warning. Both it, and the use of a short 
horizon, are artificial structures which are included only to reduce the amount of 
work involved in taking some account of the stochastic elements involved. They 
are not approximations of real phenomena and will induce unwarranted structure 
in solutions . The only way to fully evaluate their effect on solutions is to run and 
compare exhaustive empirical studies and simulations. 

There are various possibilities regarding the choice of information which is given 
to the shorter time horizon models. The exact choice depends on the short term 
models and information exchange structures used. Communicating the generation 
schedule requires a minimum release from the short term model. Release informa­
tion, or equivalently a target storage level, sent to the short term model requires 
maximum generation from this model. Often price information , in the form of 
water values, is given, in an attempt to provide local information in the face of 
uncertainty about load and inflow information . Unfortunately, this often leads to 
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an oscillating off/on situation when the water value is near the fuel cost for some 

thermal station. 
Incorporating information about the geographic location of load and power 

stations means that price information is in terms of the dual variables of a network, 
so that each power station "sees" a different value for its generation with respect 

to different load locations. If a single cost were required, we could identify some 
fixed load which a particular station is deemed to meet , and use this single value 

(or obtain an average value over all load met by the station) . If partial (or no) 
foresight is allowed over the week, the price information with also depend on the 
inflow. 

It appears that it is best to send both release information (possibly in the form 
of a target storage level) and some price information, on the value of stored water. 
This provides the short term model with a method for evaluating the effect of 
approximations used in the longer term model (in terms of the local solution at 
least) and may provide the basis for a decision on whether local price information is 
necessary in the longer term model. Unfortunately this would also cause confusion 
over which piece of information to use (the release or price) in scheduling the 
system. Price information is more robust under the assumption that it does not 

vary over the week. 
We see the inclusion of another model as being a more robust option-one 

which considers the whole system for just one week (and which can be used to 
give the local stations and river chains more detailed daily information (even if this 
information is only given once a week) . 

6 . 9  Advantages o f  a S cenario Method 

In choosing a scenario approach we take advantage of some hidden benefits . By 
discretizing the hydro reservoir inflows we can include constraints with a non­
l inear dependence on the hydro inflows. This is most useful for constraints can be 
relaxed in extreme inflow situations. For example consider constraints specifying 
minimum and maximum flow somewhere on a hydro river chain-when inflows are 
below (or above) certain specified levels, often the minimum (or maximum) flow 
level i s  relaxed to take account of this. This can be modelled by removing the 
constraint in a given week for a scenario with an extremely low (or high) inflow for 
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that week. 

6 . 1 0  D iscussion 
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This Chapter considered many of the issues involved in moving from a deterministic 
model to a stochastic one, specifically for the deterministic model developed in 
Chapters 3-5. Various stochastic extensions which have been used to model similar 
systems were reviewed. It  was decided that a scenario approach should be taken 

as this offered the most flexibility in the extent to which the stochastic extension 

is modelled. 
Specifically, Rockafellar and Wets' Progressive Hedging Algorithm was choosen. 

Many advantages in taking a scenario approach and particularly in using the Pro­

gressive Hedging Algorithm have been highlighted. The implementation of both 
the deterministic and stochastic approaches (for testing purposes) are discussed in 
Chapter 9 ,  however the enhancements proposed in this Chapter have not been im­
plemented since any effective comparison would require a thorough investigation, 

which is b eyond the scope of this thesis. 
Chapter 7 extends the model to i nclude some local constraints, which cannot 

be modelled via techniques already discussed. Chapter 8 describes a theoretical 
invest igation of the effects of a particular approximation. 
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C hapter 7 

House Rules 

Up until this point the model has been developed for a general setting, ignor­
ing locally applied constraints which are not central to the structure of the 

model . These local features need to be addressed if the model is to be used in 

practi ce .  Their previous exclusion was to facilitate model development by avoiding 
the complications they create. 

The features addressed in this Chapter are those which do not immediately 
fall within the framework of the model developed so far . There are many local 
i diosyncrasies which may be adequately dealt with within the current framework, 
e .g .  the North-South DC link may be modelled with a greater precision than the 
other transmission lines merely requiring the use of two different approximations 
which have already been developed. 

7 . 1  Hunt ly and S t ratford 

Huntly thermal station can be fuelled by any mixture of Maui Gas and coal . The 
amount of Maui Gas which can be used is constrained (see Section 7.2) and coal is 
used from a stockpile. The stockpile can be modelled in a similar way to the hydro 
waterfiow networks with the "inflows" becoming decision variables. Since there is 
enough flexibility in the system to take adequate account of the coal stockpile by 
examining possible future needs for coal, this is not included in the working model . 
It may be useful, however, to include a stockpile model so as to model the cost of 
coal as the price paid when the coal is purchased, rather than as a cost applied 
when it is used. 
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To model the dual fuel aspect of generation at Huntly, the Contract Curve for 

Huntly, GH, i s  split into two parts ;  G9 for generation by Maui Gas and Gc for 
generation by coal. The generation capacity constraint for Huntly becomes 

where Q H is Huntly's generating capacity. The amounts of Maui Gas and coal used 
over the week are given by m( G9) and m( Gc) , respectively. Huntly's contribution 
to the objective function is 

where c9 and Cc are the cost of Maui Gas and coal generation at Huntly, respectively. 

Stratford t hermal stat ion is also fuelled by two fuels , Maui Gas and Waihapa 
Gas .  Waihapa Gas is otherwise flared and so it is base-loaded at the Stratford 
plant . This is modelled by t reating the Waihapa Gas generation as an auxiliary 
station, and derating Stratford's capacity accordingly. However, if required, the 

dual fuel nature of Stratford may be modelled in the same manner as the Huntly 
dual fuel .  

7 . 2  G as Deliverability 

Maui Gas is extracted off the Taranaki coast. It provides fuel for three stations, 

Huntly, New P lymouth and S tratford, via a single pipeline. This pipeline imposes 
various constraints on the amount of gas which can be used. The nature of the 
pipeline provides a buffer to changes in the rate of gas usage. 

The C .C . 's of Huntly Maui Gas generation, G9 , the New Plymouth thermal 
station , GNP,  and the Stratford thermal station, Gs, give the generation from 
Maui Gas at each of these thermal stations. To obtain the actual usage of Maui 
Gas,  we use t he reciprocal of the generation efficiency, called ej for station j .  A 
maximum level constraint would have the form 

where GasL is the maximum instantaneous usage of gas. Due to an ability to use 

the gas at a faster rate than it is pumped into the pipeline, for short periods , 
the maximum level is a very soft constraint and so it is not used in the working 
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model . Maximum usage constraints (over an integral number of weeks) are given 

by constraints of the form ( 1 1 1 ) 2::: -m(G9,w) + -m(GNP,w) + -m(Gs,w)  
wEW � eNP es 

w here W is the set of weeks that the constraint is taken over, and , Gasw is the 
maximum total Maui Gas usage over this period. 

The working model includes a constraint for only the maximum Maui Gas usage 
over each week. This is generally the tightest of these types of constraints. 

7 . 3  S ecurity of S upply 

Security of supply constraints are conditions imposed upon the system so as to 
help to maintain a level of security of supply in the face of forced outages and 
transmission failures , including running some hydro station turbines so that the 
t urbine is spinning but not producing any output ; this is to allow a quick reaction 
to failures in the system, and is known as a Spinning Reserve. The other major 
security of supply constraint is that of ensuring that no station, nor the North­
South DC link, may supply more than a fixed fraction of the total generation for 

a particular Island (including the contribution from the North-South DC link) , at 
any time. 

To accurately model the optimal scheduling of Spinning Reserve within our 
model would require integer variables, since the generating characteristics of the 
amalgamated station are different if a turbine in one of the stations on the river 
chain is being used as Spinning Reserve. A better method is to treat this constraint 
as part of the generating characteristics of the river chain, effectively choosing which 
stations will provide Spinning Reserve prior to solution. Interaction with shorter 
t ime horizon models may be used to fine-tune such constraints for the first week. 
The effect is to derate the capacity (and also possibly the generation efficiency) ,  
and impose minimum generation, release o r  spill bounds on the (amalgamated) 
hydro station involved. 

For the constraint on the maximum generation of a particular station we con­
s ider only northwards transmission on the North-South DC link ; this is easily 
generalized to be any power station or transmission direction on this power line. 



CHAPTER 7. HO USE R ULES 132 

The constraint required can be formulated as 

a 
Xs-N (t ) - -- L Gj (t) � 0 

1 - a jENORTH 
( 7 . 1 )  

where N O RTH is the set of all power stations in the North Island for this week, and 

Xs-N is this week's northwards transmission on the North-South DC link. Since 

the piecewise quadratic on the left-hand side of Equation 7 . 1  is not necessarily 
decreasing, we need to apply similar constraints as those applied to transmission 
lines in order to enforce the transmission capacity constraints (as in Chapter 5 ) .  

This constraint i s  probably better achieved by using another approximation 

which involves fewer variables, and so should create less overhead in solution. We 
assume that the total generation for the North Island can be approximated by the 
total North Island load increased by a factor f3 (approximating average line loss) .  

The constraint can now be written as 

Xs-N(t) - a( 1  + /3) L Lj (t) � 0 (7 .2)  
jENI 

where NI is the set of all North Island nodes . The constraints used to enforce 
transmission capacity are used here to enforce Equation 7.2. 

No security of supply constraints are used in the working model . 

7.4 Implementat ion of t hese Constraints 

A number of  the constraints described in this Section are rarely active at an optimal 
solution. This means that including them will often increase solution time, for little 
or no gain i n  the quality of solution obtained . This is particularly important when 
considering that the solution method used requires deterministic subproblems to 
be solved many t imes . 

In tuning the model to provide reduced solution time, constraints which are 
rarely active (such as some of those given in this Chapter) should therefore be 
omitted from the model for an initial solution. If any are violated by the solution, 
the model can be re-run (from this solution) with the appropriate constraints, which 
were initially not present , included (possibly all of them) to obtain an optimal 
solution which is now feasible in terms of both those constraints included and not 
included (hopefully ) .  
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Given the stochastic nature of the problem being solved, i t  may be allowable for 

some of the constraints which have been left out , to be violated slightly in a later 
week of some scenario. This is because the remedial action may not greatly affect 
t he first week's solution, which is the solution of most interest, and the constraint 
is just an approximation, so that , although it may be violated in the model , the 
actual constraint may not be violated by the solution implemented. 
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Chapter 8 

Function Formulation 

M odelling a complex system inevitably requires approximations . These 
approximations have an indeterminate effect on the solutions given by 

t he model . It is hoped that enough of the essence of the system is endowed in 

the model so as to provide good solutions in practice. One way of investigating 
the effects of approximations made, as a whole, is by empirical testing and simu­
lat ion. However, this only highlights the symptoms of the approximations made, 
and isolating the approximations from which superfluous structure arises , is often 
difficult. 

vVe seek to better understand, qualitatively, some of the approximations made 
in modelling the system. The approximation under investigation in this Chapter 
is that used for the Load Duration Curve. To investigate possible effects of this 
approximation , we generalize the way the LDC is modelled so as to bring it  "closer" 
to reality. 

There is an (unknown) point at which the Mathematical tools available are not 
sufficient to study the differences between the approximation and reality. The dif­

ficulty, here, is characterizing the reality rather than isolating some of the essential 
ingredients of that reality (which is the main tool of Mathematics) . Our attempt 
to get closer to reality may admit unrealistic solutions. It may also be that reality 
does not exhibit worthwhile, exploitable, properties which can be used to facilitate 
such an investigation . 

There is ,  however, sti ll value in such an investigation, with the benefit of empir­
ical testing and simulation to complement it .  Where empirical testing highlights 
symptoms , qualitative investigations, such as this one, indicate causes and possible 
remedial actions . 



CHAPTER 8. F UNCTION FORMULATION 135 

8 . 1  T he Generalizat ion 

In investigating effects of the approximation used, i t  is not enough to only exam­

ine the difference between the actual LDC and the approximation. 'vVe are more 

interested in the effect on the model (and hence on the optimal solution) of this 
approximation. The intention is not to pursue such an investigation to its bitter 
end, but to provide a framework within which such

_
an investigation may be carried 

out . 
Consider allowing all Electricity Curves to be any function from some set of 

implementable schedules, in terms of the system; call this set I. With no loss 
of generality we can assume that I is a subspace of the space of all Riemann 
Integrable functions . 'vVe are interested in investigating how the optimal solution 
to the generalized model differs from that of the original (where the Electricity 

Curves are piecewise quadratics) . 
Consider the Mathematical Program given in Table 8 . 1  defined over I, which is 

a subspace of the space of Riemann Integrable functions on the set S .  Note the spe-

Table 8 . 1 :  Function formulation 

;E Ai]'Fi(t) .
· }j (t)' �fft J=  S' Vj E E 

iEV . · _'-� ,.· 
. . . . 

� aik is Fi (t ) dt � Yk Vk E C 
. tFi E I Vi E V 

,�, (� . 1 )  

. '-(8 .2) 
.,._ , · : 

cific form of the Objective and Constraints. The reason for this form is that these 
constraints become linear under the transformation used to make the formulation 
tractable. Further, these constraints lend themselves well to formulating a system 
with an underlying Network, or Generalized Network, structure, in which the arcs 
t ransmit functions rather than values . It also generalizes most of the functional 
constraints given in the deterministic formulation of Table 5 .2 . The definition of 
each variable is given in Table 8 .2 .  

In the form given, the �athematical Program is  unsolvable, as I may be of 
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Table 8 .2 :  Variables used in Table 8 . 1  

V Variable index set . 
£ Functional equality constraint index set . 
C Integral constraint index set . 
F; Decision function . ( A  decision variable in I.) 
}j RHS function, of the jth (functional) constraint . (Element of I.) 
Yk Right hand side of t he kth integral constraint. (Real) 
c; Cost associated with variable F; . (Real) 
A;j Coefficient of F; in the jth constraint . (Real) 
a;k Coefficient of is F;(t )  dt in the kth constraint . (Real) 
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i nfinite dimension. The following definition facilitates the transformation of this 
Mathematical Program to an LP. 

Definition 8.1 Let V be a (possibly infinite dimensional) vector space, and B a 
finite dimensional subspace of V .  If every element of V can be approximated "well" 

by some element of B, then B is said to approximate V "well". 

In the above definition the term "well" is purposefully left vague, as what con­

stitutes a function being approximated well is often dependent on the circumstances 
of the approximation. 

If there is some subspace, B, of I with basis {E1 , . . .  , EN} ,  which approximates 
I well, then we can approximate the Mathematical Program above by a Linear 
Program. Write the approximation of each }j, and F; , as: 

N 
}j (t) = 2:: YniEn (t) Vt E S 

n=l 
N 

F; (t) = 2:: fniEn (t) Vt E S 
n=l 

The formulation in Table 8 . 1  can be approximated as shown in Table 8 .3 .  The 
form of the formulation given in Table 8 . 1  is overly restrictive, partially due to 
constraints of the form f(t) 2: g(t )  Vt being all but impossible to implement without 
knowledge of the structure of f(t) and g(t) a priori. If the matrix of coefficients in 
Equation 8 . 1 ,  [A;j] ,  has a Network or Generalized Network structure, this structure 
i s  preserved by the transformation. In this case capacity constraints of the type 

given in Equation 8.2 transform to side constraints (rather than capacity constraints 
as might be anticipated) .  
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Table 8.3: Approximation of the formulation of Table 8 . 1  

Equation 8 .2 and the Objective Function of the Table 8 . 1  formulation can be 
generalized whilst retaining the same approximation. Assume we have !vi measures 
defined over S, {JL1 , . . .  , JlM } , such that every F E I is Jlm -measureable. The 

Objective Function can be generalized to 

and Equation 8.2 generalized to 

M 
L L aikm 1 Fi djLm 2: Ykm Vk E C 
m=l iEV S 

Note that this form includes constraints and costs pertaining to both integration 
over some subset of S and the value of F at particular points in 5. 

We would like to show that if B is close to I then the formulation given in 
Table 8 . 1  is also close to that given in Table 8.3, in the sense that their optimal 
solutions are close. 

8 . 2  Unsettling Result s 

It  appears that the linear approximation in Table 8.3 should be close to the original 
formulation of Table 8 . 1 ,  especially as we take better approximations by increasing 
the size of B. However, we can have the case where the original has a unique 
optimal solution, but some or all linear approximations have no feasible solution. 
Consider the following: 
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Let { Bn } be a sequence of subspaces of 'I with the following properties : each Bn 
has {E1 ,  • • •  , En } as a basis, making Bn+l a refinement of Bn ; for each F E  'I there 
exists a unique approximation in Bn which shall be denoted Fn = L:k=l fkEk ; 'I is 
approximated well by each Bn , with I I F - Fn l l  -+ 0, where I I F I I  = fs IF (t ) l dt .  

We write B = U�=1 Bn , and refer to  the sequence {Bn }  by referring to B or  to  

{E1 ,  E2 , • . .  } ,  the basis of  B .  The LP obtained by using Bn as an approximation of 
'I, shall be denoted :Fn, with the original formulation being F. 

Consider the formulation of Table 8.4, in which 'I is the space of all Rie­
mann Integrable functions. It has a single feasible point, and hence unique op-

Table 8.4: F(l ) 

·.· ., ; Min c 11 
f(t) 'd t  

, F(t} = 'e-t 
· ,  f� P(t) .dt ... s; J . _:_ e..-1 
la · " 

F E  'I,, 

t imal solution, at F = e-t . Consider approximations based on the polynomials, 
{ 1 , t , t2j2,  . . .  , tkjk ! ,  . . .  } ; F�1 ) (corresponding to F(1) ) is given in Table 8.5. This 

Table 8.5: F�1)  

subject to: 

formulation only has feasible solutions for odd n. 

When the formulation of Table 8.6, F(2) is approximated by the same basis, 
none of F�2) has a fea1?ible solution, while the original formulation still has a unique 
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optimal solution. 

Table 8 .6 :  :F(2) 

: , ; : :M_in c f 1
- F(t) ' dt - lo 

However consider the basis 

{ e - 1 ,  ( e - 2) (2t - 1 ) ,  ( e - 5/2) (3e - 2t) ,  ( e - 8/3) (4t3 - 3t2 ) ,  • • .  } 

where the k'th basis element i s  a polynomial of degree k such that the sum of the 
first k basis elements is 1 + t + t2 /2 + · · · + tk- t j (k - 1 ) !  + o:tk , with o: chosen so 
the integral over [0, 1 ]  of this sum is e - 1. Using this basis, each :F�2) has a unique 
optimal solution, and these optimal solutions have the optimal solution of :F(2) as 
their limit .  

The reason for this phenomenon is  that the equality constraints are projected 

onto the subspace while the integral constraints are restricted within the subspace. 
This means that the intersection of the two transformed regions is neither the 
projection nor the restriction of the intersection of the original two, and so depends 
heavily on the subspace used . Figure 8 . 1  shows how the choice of subspace can 

adversely change the intersection of the two resulting sets .  

8 . 3 D iscussion 

Notice that the bad cases presented are very specific and rely on a restrictive feasible 
region. In most applications the system being modelled has greater freedom; it is 
difficult to express this freedom in Mathematical terms. 

This investigation does , however, accentuate some positive aspects . In consid­
ering the approximation to use, we must not only take into account the approxima­
t ions of the right-hand side functions, but also the structure imposed upon these 
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E n F = 0  
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Set A is a line segment and set B is a triangle. Using the line U as the subspace, 
C is the projection of A onto U, and D is the restriction of B to U; C n D =J 0 .  
Using the line V as the subspace has E the projection of A and F the restriction 
of B; here E n F = 0 .  

Figure 8 . 1 :  The projection/restriction of two sets onto two subspaces 
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functions by the rest of the model . This was done in our model when investigating 

the approximation for the Electricity Curves in Chapter 3 .  
The need for investigation into the approximation of  potential solutions as well 

as right-hand side functions is further reinforced by the experiences of Chapter 4. 
I n  that Chapter, an approximation which appeared reasonable in approximating 

LDC's (the normal approximation) led to badly structured solutions due to an 
inability to model potential solutions well (those :with flat generation for part of 
t he week) . 

The investigation of this Chapter could be taken much further. vVe could inves­

t igate the limit of the optimal solutions to each Fn in the case where each optimal 
solution exists .  The difference between a particular Fn and F could also be ex­
amined. Further constraints with a linear interpretation could be imposed, or we 
could explicitly limit B to having particular structure so as to allmv the applica­
tion of a more diverse range of constraints .  However, such an investigation would 
prove lengthy and, most likely, provide little help with the actual modelling of the 
system considered. Such an investigation is beyond the scope of this thesis and is 
not pursued further here. 
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Chapter 9 

Implementation and Results 

0 ne of the most time-consuming aspects in the development of the model 
was the computer implementation. Often a seemingly minor change to an 

approximation within the model can lead to a major revision of the computer 
implementation . Ensuring that the computer implementation corresponds to the 
model is a long and arduous task, but is necessary to eliminate many unworkable 
approximations considered. 

This Chapter discusses two phases of implementation : implementation of the 

working model for the purposes of testing and exploring the consequences of various 
approximations ; and, some of the issues involved in massaging the final implemen­
tation into a finished product. vVe emphasize that the intention is not to create a 
finished product ;  insights gained from model development may prove useful in the 

further development of the model and in solution strategies to be used in a finished 
product . The initial implementation was developed in tandem with the model, and 
it was through testing of the model at various stages that many refinements were 
made and unsuitable approximations were highlighted. 

For both phases of implementation there are many issues involved in addition 
to the computational expression of the model and the coding of an algorithm. For 
the different phases these issues need to be addressed differently: e.g. in final im­
plementation, the input of data needs to be integrated smoothly into the finished 
product; however, in testing the working model, we will often require data in differ­
ent forms and so the data manipulation should be more flexible. Flexibility in the 
development phase is of paramount importance; it is impossible to anticipate later 
needs for the model. In comparison, the final implementation needs to professional 
and efficient .  
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The results given here are derived from testing, and highlight features of solu­

t ions. S ince these results are from a developmental model, they can not be directly 
compared with those from other methods ; instead they are intended to provide 
guidelines on the solution structure and computational feasibility. 

In this Chapter we do not address the question of how well the algorithm 
performs in an uncertain environment. This important question requires much 
further work to be addressed with any author!ty;. and requires comparison with 
other methods. Any lesser investigation cannot adequately investigate the method's 
abi lity to react to the uncertain future, or compare it with contemporary methods . 

In this Chapter we also present suggest ions on the form of the model which 
should provide a basis for a final implementat ion . 

9 . 1  Input Dat a  

For any final implementation the input data needs to b e  provided by an integrated 
system which provides direct access to the necessary data, and direct conversion to 

necessary data formats. Care should be taken to ensure reasonable flexibility, but 
efficiency and robustness are more important issues . Data used needs to be acces­
s ib le and its role within the system needs to be clear. The format and application 
of this is entirely dependent on the system within which the model is integrated. 

The form of data input into the working model is not so well defined. It needs to 
be flexible enough to allow for format changes or for further manipulation . It is also 
useful to be able to manually change some of the data for experimentation, so the 
formats used need to allow for this. In this Section we examine the integration of 
data from five major areas: load data, t ransmission network data, t hermal station 
descriptions , hydro system physical descriptions , and hydro inflow data. 

To allow flexibility (so as to make debugging the process easier) the informa­
t ion needed for a deterministic solution was collated in a collection of files (called 

W eekRef files) , one for each week, which contained all of the information about the 
entire system model for that week . A master file, Mast er, gave information and 
parameters which were relevant to the complete problem. These weekly files were 
t hen combined into a format which could be used as input to the solution platform. 

Appendix A gives input files for a single example. The descriptive file names 
given both here and in the Appendix are to allow easier reference. 
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The raw data  on load is past data, given as the average load over each half hour 
for the North and South Islands , with various constant loads removed. The load at 
any node is represented by a portion of the total load for the Island it o�iginated 
from,  combined with any previously removed constant load deemed to originate at 

that node. The generation by auxiliary stations is removed from the load at this 
point . 

To achieve this, a file, NodeRef , is created for each geographic network used. 
This file contained information on the distribution of the each Island's load, the 

constant loads , and auxiliary generation over the geographic network. In this file 
every node was named and the node order specified the node numbers . These node 
names were used by other procedures to specify station placement and transmission 
line end points ,  so as to facilitate changes to the geographic network . 

A routine was written in Matlab to convert the data into a weekly 4-piece 
piecewise quadratic LDC for each node of the geographic network. The year-long 
load curves were converted into weekly LDC's, from which the best least-squares, 
4-piece piecewise quadratic approximation was found and heuristically converted to 

be decreasing. Routines for converting from the natural basis to the basis described 
in Section 5 .4 ( and vice-versa ) were also used. 

To allow scaling (so as to facilitate solution robustness) , a routine was included 

which scaled the coefficients so t hat each had an average (over all coefficients of 
the same basis element) of order 1 .  Allowance for the use of different geographic 
networks and different sized weeks, for the same system model, was made through 
the use of different input files. 

The information obtained was transferred into the WeekRef files in the form of 
an LD C for each node. Scaling information was appended to the master file. 

9 . 1 . 2  Transmission 

Raw transmission data was given in the form of line characteristics of the higher 
voltage lines which make up major components of the National Grid. The make­
up of arcs (in terms of these major lines connected in series and parallel) were 

also given, so that characteristics of the arcs could be produced . For each arc 
of the geographic network a representative capacity was estimated. In practice 
the capacity of components of the National Grid depend on the actual load and 



CHAPTER 9. IMPLEMENTATION AND RESULTS 145 

generation over the whole of the New Zealand system; such complex dependencies 
were deemed as unsuitable to be modelled here. 

From this data, two types of file are created. The first, LineRef , gives represen­
tat ive loss characteristics (at lOO MW) and the voltage level of each power line used 
in a geographic network arc. This file also specifies the file names of the second 

type of file, ArcRef , which represent the geographic network for each week. These 
secondary files give the power line representati�n of the transmission arcs, so that 
the arc loss can be calculated. The capacity of the transmission arcs and the nodes 
to which each arc is connected are also given. The power loss on the North-South 

DC link is specified as its resistance. 
The arcs specified in the WeekRef files are directional arcs . The information in 

the WeekRef files pertaining to each arc is :  a linear approximation of power loss ,  a 
representative capacity, and the entering and exiting nodes of the arc . 

9 . 1 . 3 Thermal Stat ions 

The raw data for thermal stations was included in an input file intended for the 
current program used at ECNZ to schedule the system. This format was unaccept­
able for use as an input file, partially due to its size, to difficulties in interpreting 
all data contain therein, and to difficulties in changing the data when required. 
The data was , therefore, manually compiled into a single file, TherrnalRef, giving 
data on each fuel type, together with constraints applied to some of the fuels (see 
Chapter 7) for each week. 

The data given for each thermal station is: its forced outage rate (which is as­
sumed to be constant over the year) ,  its capacity over the year (including scheduled 
outages) ,  the fuel type, and a conversion factor ( the "heat rate" ) for converting fuel 
into electricity. The node at which the station appears for each week is also speci­
fied. Each station is given a name so as to distinguish stations at the same node, 
and allow the appropriate stations to have fuel constraints applied. 

For fuels, the cost and calorific value of the fuel are given, together with con­
straints on the usage of that fuel. The calorific value is used only in the specification 
of fuel constraints, and to allow fuel consumption information in the output . 

The information from this file is included in the WeekRef files in the following 
form: for each station its associated node, generation cost, capacity, and forced 
outage rates are included; t�e coefficients of the various stations in the Maui Gas 
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The raw data for the physical attributes of the hydro systems were also included in 
the input file intended for the current program used at ECNZ. This was manually 
transferred into three files, HydroRef , Stat ionRef

_� 
and InflowRef . 

HydroRef specifies the attributes of each hydro river chain,  including the node 

at which it  is based, its initial storage level and the stations and inflows which form 
this river chain. It also specifies the directory which holds all of the inflow data. 

Stat ionRef describes the attributes of each hydro station, giving the controlled 
and uncontrolled inflows which feed that station. This file also gives the generation 

capacity, generation efficiency and fraction of uncontrolled inflow which passes 
through each station. A fraction of uncontrolled inflow which represents the amount 
of this inflow which arrives at the hydro station but which cannot be stored during 

the week, is also included. 

InflowRef specifies data on the inflows , and reservoirs of the river chains. For 
inflows into reservoirs , the maximum level of the reservoir is specified. For both 
controlled and uncontrolled inflows, bounds on the flow level at the beginning and 
end of the river chains are specified. The name of the file containing the inflow 
data, the starting date of that file (the information in all files ends on the same 
date) and the start date to be used for this particular scenario are also included. 

The specifications for hydro stat ions in the weekly WeekRef files are complex. 
Each hydro station in this file corresponds to a hydro system specified by the 
previous files . The node at which each hydro station is present is given, along with 

a "hydro number" which specifies which hydro stat ions have been aggregated into 
the current  hydro stat ion (this is to allow correct specification of the waterflow 
networks) . The hydro number for hydro stations of week one are unique powers 
of two; those for aggregated hydro stations (in later weeks) are the sum of the 
hydro numbers of the stations combined. For each hydro station, the amount of 
controlled and uncontrolled inflow, the fraction of uncontrolled inflow which cannot 
be stored during the week, and the generation and storage capacity are specified. 
There are also specifications on the maximum and minimum release rates from the 
reservoir, and flow rates from the river mouth (which is the flow rate leaving the 
final station on the river chain) . 
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Inflow data is given in a file for each inflow, which specifies the level of inflow, in 
average litres per second over the week. This data is used for both the construction 
of t he WeekRef files and for directly converting the solution platform input files , to 
represent a new scenario (as to be described in Section 9 .2) .  

9 . 1 . 6 Weekly Syste m  Input Data 

Information from the above files is compi led into the WeekRef files . The form of 

these files i s  easy to read and change, and much more compact than the MPS 
format-this relative compactness is mostly due to the specialized nature of MPS 
format (for a case in which all of the WeekRef files required half a Megabyte, the 
corresponding MPS file was over 10 Megabytes ! ) . A program written to change 
inflow scenarios directly using the MPS file meant that the WeekRef files can be 
seen to embody the structure of the particular model version, and so are used to 
store "fieshed out" models . The layout of the files made it particularly easy to 
construct simple examples by hand for debugging purposes . 

Each section of these files was created separately to allow for the different forms 
of raw data given. This also allowed changes made to the individual sections to be 
self-contained, thereby allowing easier experimentation in the modelling of various 
aspects of the system. 

9 . 2  S olut ion P latform 

The solution platform used was MINOS 5.4. The platform needed to be flexible 
enough to withstand changes in the model-indeed, the initial model being solved 
was non-linear. MINOS also proved to be effective in the solution of the stochastic 
case, since i t  can be used as a subroutine to a master program. The input format 
for specification of the linear part of a formulation into the stand-alone version 
of MINOS is MPS format . A routine was written to convert the WeekRef files 
into MPS format . This routine also produces some of the parameters necessary 
for MINOS ,  which are formulation specific. For easy interpretation of the output 
data, another file (known as the "info-file" ) is produced by this routine which 
contains information, relevant to every constraint and variable, which is not directly 
obtainable from the MPS file or MINOS output files . 
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Since the volume of inflow affects only some right-hand side and bound values , 

a program was written to convert an MPS file from describing one inflow sequence 
to describing another. This removes the need to reconstruct all of the WeekRef files 
when the only change is to the inflows . This program is most useful in conjunction 
with the stochastic model. 

For solution of the non-linear version of the model (described in Chapter 4) , C 

functions were written to compute the value of the objective and its differential ,  

a s  required during solution by MINOS. For testing of the objective function and 
model, various small test problems were created which focussed on particular areas 

of the model. However, for t he reasons noted in Chapter 4, this model was dropped 
as being unsatisfactory. 

9 . 2 . 1  Viewing Solutions 

The model is large. A 52 week example, which uses 1 7  nodes in each geographic 
network, was specified by 42 000 variables , 40 000 constraints, 260 000 non-zero 

matrix elements and 19 000 non-zero objective coefficients. The size of the model 
together with difficulties inherent in interpreting solution values of various basis 
coefficients, made it impossible to investigate solutions manually. The sheer size 
of the solution output made producing a full hard copy of the solution (even for 
j ust one week) infeasible, so Matlab was used as a platform through which to view 
solutions graphically. 

To facilitate solution viewing, a program was written to convert the information 
output from MINOS and the information contained in the "info-file" to a form more 
readily usable by Matlab .  The GUI (graphical user interface) features of Matlab 4 

where used to allow easy movement through the information, and compilation of 
some overall statistics. An example of the output given is shown in Appendix B 
for the input files given in Appendix A. 

The solution times were considerable for the large problems .  Using only the 
"crash" start option of MINOS (i .e . ,  where no initial solution is specified) solutions 
take in the order of 30 hours , for the model version specified above. Starting from 
the optimal solution to another "scenario" , for the same model version , takes in 
the order of 12  hours, but there a large variation in this solution time depending 
on how "close" the scenarios are . This suggests very long solution times for only 
moderately sized stochastic extensions . 
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The solution times indicated above need to be taken in context; they are for 

an "untuned" solution platform, with no "reasonable" choice of starting solution . 
They are also more detailed than would be appropriate for a final implementation; 

t he physical system of the first week is as intricately detailed as that for the last 
week, whereas in practice this would seem to add unnecessary difficulties for neg­

ligible improvement in accuracy. Finally, the solution platform takes no account 
of the structure of the problem, which could �e exploited in a tailored solution 
platform. 

Investigation of the fully detailed model is useful for the purpose of highlighting 

i mplementation issues for the entire model. The necessity for the investigation of 
these issues, in the context of a more highly detailed model than would be used 
in practice, is to allow insight into the interactions of approximations , and the 
feasibility of the model as a whole. It is not intended that this full model version 
should be used in a final implementation. The final implementated version of the 

model needs to be easily expandable, and flexibility in the entire model allows 
this .  Also, describing the universal model, of which the final model is a part ,  
allows interpretation of some of the approximations made in the final model and 
i nvestigation of the accuracy of the implemented model through comparison with 
more detailed models, which are not appropriate for generating weekly generation 
schedules. 

Probably the most expensive approximation used, in terms of problem size 
and solution time, is the Electricity Curve approximation. Forcing the Electricity 
Curves to be continuous removes about a quarter of the variables, and a number of 
constraints, for little loss of approximation. Moving to piecewise l inear Electricity 
curves reduces the number of variables by a third, and the number of constraints 
is also reduced. 

An investigation of the benefits and the concomitant loss of information is not 
appropriate for this thesis. Comparing objective values only considers the solutions 
i n  terms of themselves and not in the setting of the system they model (which is 
the only important comparison ) .  Comparing the solutions produced by various 

approximations can only be authoritatively achieved by simulation of the system 
(which would need to be carried out in a deterministic manner, to be consistent with 
the expectations of the models) .  Performing the exhaustive simulations necessary 
are also beyond the scope of this thesis . 



CHAPTER 9. I1\IIPLE1VIENTATION AND RESULTS 150 

Comparing only problem size and solution times gives an idea of the potential 
savings in computer overheads. The piecewise linear model equivalent to t he 52 

week 17 node example above is specified by 28 000 variables , 37 000 constraints , 
186 000 non-zero matrix entries and 13  000 non-zero objective coefficients. The 
solution time for this example is of the order of 12 hours from a crash start and 
6 hours from a previous scenario's solution. For a piecewise quadratic  continuous 
model, equivalent to the same example, the specifications are: 32 000 variables , 
38 000 constraints , 199 000 non-zero matrix elements, and 1 5  000 objective coeffi­
cients .  The solution time, here, was in the order of 18 hours from a crash start and 

6 hours from a previous scenario's solution. 
For the final implementation, rather than using a generic solution platform, 

one should be tailored to the model to allow fast ,  robust ,  solution. The platform 
should exploit the structure of the model, especially the self-similarity of the weekly 
systems . In particular, exploiting the fact that the problem may be formulated as 
a Generalized Network with side constraints would decrease solution time. 

To further reduce solution time, the final implementation should include a start­
up procedure which finds a "reasonable" solution. This would considerably save 
on solution time, especially if the initial solution is feasible. Such a procedure was 

not constructed for the initial implementation because, with a continually changing 
model , such a procedure would also require continual change. This would hinder 
model development by making it difficult to implement changes. 

A fast ,  feasible initial solution could be constructed by decomposing the prob­

lem. A reasonable schedule of storage and release could be constructed for each 
waterflow network by estimating the value of water released for each week based 

purely on the average load for t hat week, and then determining an optimal wa­
ter schedule which maximizes the total value of water released. Such a schedule 

could be found extremely quickly using a Pure Network solver. Given the releases 
from this schedule, a feasible generation schedule could be found. All hydro sta­
tions would first meet as much of the load at their nodes as possible, and then 
the stations with remaining capacity and release closest to the node with the high­
est remaining load would be scheduled to meet as much of this remaining load as 
possible. Thermal stations would meet the load remaining after this in a similar 
manner, scheduling the cheapest stations first . Load which cannot be met by this 
method would be non-supplied. If fast solutions .were available for single weeks, 
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i t  may be useful to use the optimal solution for each week (with fixed releases) ,  

starting from an init ial solution for that week determined as described. 

9 . 3  S t o chastic Implementation 

Initial implementation of the stochastic model was difficult because it required 
the solution of many similar subproblems. MINOS allows i terative solution of 
inter-related problems; however, the size of the necessary changes to the constraint 

matrix for each subproblem rendered this method unsuitable. Instead, MINOS was 
used as a Fortran subroutine to a master C program. 

vVe were unable to use the MPS reader incorporated into MINOS since the 
constraint matrix needed to be transformed to include extra linear terms in the 

objective row for the Lagrangian term. This meant that the master program needed 
to include a matrix reader. It was decided that an MPS format file reader was more 
appropriate for the initial implementation than direct construction of the matrix 
from the WeekRef files-it was easier to debug and it was easier to incorporate 
multiple scenarios in an MPS file, s ince this merely required (in the case of our 
model) t he specification of multiple right-hand sides and bounds . 

To speed up the time spent on the input phase, allowance was made to save 
and load the model's important i nformation directly. This allowed the MPS file to 
be read on the first Progressive Hedging run, with subsequent runs being started 
with less overhead . 

Direct implementation of the Progressive Hedging Algorithm (using the natural 
decomposition of scenarios) is straight-forward, and so was used for the working 
implementat ion. The non-linear part of the objective function is a simple quadratic 
and easily programmed. The linear part needs to be specified differently for each 
subproblem and for each iteration; this was easily done by updating a current ob­
j ective and inserting the appropriate row into the constraint matrix (where MINOS 
stores the objective function coefficients ) .  This meant that the constraint matrix 
of each subproblem was of the same dimensions as the deterministic case and so 
we could directly use solutions to the deterministic cases as initial solutions for the 
P rogressive Hedging Algori thm. 

Difficulties were experienced running MINOS in a linear manner (to obtain the 
initial solutions) and then in a non-linear manner, as required by the Progressive 
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Hedging A lgorithm. For this reason, initial solutions to the subproblems were 

obtained purely through MINOS, and stored as start-up files . This proved to be 

a very satisfactory method as it separated the time taken to determine an initial 

solution from that for stochastic solut ion, and allowed many runs using the same 
scenarios under different parameter values to be performed efficiently. 

In a final implementation, the solution obtained last week should provide a good 

initial solution for this week, (hopefully) even u�der a change in the scenarios used. 
This would be most effective when used in tandem with an heuristic procedure for 
dealing with the increment in weeks, i .e. a procedure which takes the solution 

obtained last week, removes the first week and adds a feasible solution for the last 
week (probably similar to the solution for the, now, second-to-last week) .  Changes 
to inflow and load forecasts would be harder to deal with, however the use of the 
optimal policy and price variables from the solution found last week should be 
reasonable. 

9 .4 P rogressive Hedging Convergence 

Convergence for the Progressive Hedging Algorithm (on a convex example such as 
this) is guaranteed to be linear for the situation where every subproblem is solved 
to optimality. This result holds even for the situation where the subproblems of 
successive Progressive Hedging iterations are progressively solved to tighter tol­
erances under an explicit scheme where the tolerance (on the magnitude of the 
gradient) is given by 

( 9 . 1 )  

where x i s  the solution point being considered, X i s  the current policy and p and 
c < 1 are positive constants .  

Unfortunately, the large-scale nature of the model is prohibitive in the numerical 

procurement of a truly optimal solution, i .e .  we must be content with a solution 
which is within some fixed tolerance of the optimum. In actuality, the tolerance of 
Equation 9 . 1  will apply for a number of initial iterations (for some choice of 11- and 
t) , but b eyond some unspecified point convergence will be no longer guaranteed, 
because of machine precision and the possibility that xi is intolerably close to the 
optimal solution of scenario i .  

Convergence of the Progressive Hedging Algorithm can be measured explicitly 
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via t he the convergence of 

1 53 

(9 .2) 

to zero, where n represents the Progressive Hedging iteration. In practice, con­
vergence is initially monotonic and fast .  Subsequently, however, the convergence 
rate slows, but, while it is no longer monotonic, progress continues to be made. 

Figure 9 . 1  shows an example of this. To ensure convergence of the dual variables 
i t  was found to be necessary to use an inner product (see Section 6.5) which was 

weighted according to the relative importance of each variable (in terms of the 
amount of electricity it represented) .  The difference in convergence is i llustrated 
in Figure 9 .2 .  

However, solutions exhibited a lack of convergence after some indeterminant 
point , and so i t  was necessary to devise a more useful stopping procedure. Stopping 
when 8 was within some tolerance of zero was not useful , since the tolerance may 
never be achieved or, if too loose, may not provide a solution adequately close to 
optimum. In practice 8 seldom dropped below 10-3 . The choice of an adequate 
stopping criterion was made more difficult by the presence of spikes and non­
monotonic behaviour in the value of 8 as the algorithm progressed. These combined 
to make the best stopping point an almost purely subjective decision; the real test 
of adequacy of an optimal solution is in terms of its application to the system, 
which is not addressed here. 

We focussed on the the value of 8, one of the few measures of convergence that 
was available to us (as observed by Helgason and Wallace [7] ) .  When t he value 
of 8 i s  no longer decreasing over time, the solution was halted so that a manual 
i nvestigation of convergence could be conducted (by viewing the rate of change 

of various parameters and values) and a decision could be made to restart the 
solution, or not . 

Creating an automatic procedure to decide when 8 is no longer decreasing was 
not simple. Trials which considered the gradient of the best linear least-squares 
fit of the past ten 8 values , were very susceptible to spikes (sudden jumps in the 
value of 8 which did not often indicate a lack of convergence) . To alleviate the 
effect of spikes we considered the last twenty such gradients, and a consensus of 
them indicating an increasing 8 was taken to be the stopping criterion. However, 
this also continued to be affected by spikes (as the height of the spikes was often 
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large relative to the size of 8) . An effective stopping criterion was developed by 
considering the most negative gradient obtained by successively ignoring one of the 
previous ten 8 values. This was used in conjunction with the consideration of the 
consensus of the previous twenty gradients so chosen. 

To incorporate some extra robustness into the stopping criteria, consideration 
was given to the convergence (to zero) of another parameter, /, proposed by Mulvey 
and Vladimirou [ 12] ,  where 

in = L pi (YVt, x7'n) + L Pd lx7 'n - X�-l l l 2  
iE{l ,  . . .  ,S} iE{l ,  . . .  ,S} 

vVhile 1 could not be expected to monotonically decrease to zero, in practice i t  
seemed to  pass through continuos periods of decreasing o r  increasing. The 1 values 
had the same stopping criterion applied as used for the 8 values, and solution was 
stopped when both showed a lack of further decrease. Often this extra consideration 
of 1 was enough to carry 8 to a point where it had begun to decrease again .  

I t  must be stressed here that these stopping criteria are not in terms of ac­
ceptable convergence, but indicate a point where convergence had ceased. This 
means the solution times (as given in this Chapter) cannot be thought of ( at all) 

as the time taken to reach an optimal solution; they are the time taken to first be 
stopped by the stopping criteria described here. A large amount of convergence 
has taken place at this point , but the solutions may remain a long way from an 

optimal solution. S ince the same stopping criterion is applied to all problems , it i s  
hoped this will give an indication of the relative solution times to a solution which 
is acceptably close to optimallity. 

Due to the fact that we do not investigate to optimality of solutions in terms of 
the system they model, we needed to consider many measures of convergence. This 
was also useful in ensuring that some progress was being made, and for debugging. 
Among the values considered were: the norm (in terms of the inner product used) of 
the dual variables, the norm of the difference between the current optimal solutions 
to the subproblems and the current policy, the norm of the change in policies 
from one iteration to the next , the Lagrangian part of the objective function, the 
objective function value, the part of the objective function deriving solely from the 
non-anticipative variables, the norm of the non-anticipative variables, and the norm 
of the policy-dual variable pair [ 1 9] .  Figure 9.3 shows the progress of some of these 
measures for an eight scenario example. It is difficult to comment on the efficiency 
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of such measures when no rigorous concept of convergence has been obtained. 

However, Figure 9.4 shows some of these parameters for a run which was continued 
unti l  there was no longer any apparent change in the value of the non-anticipative 

variables . As can be seen from Figures 9.3 and 9.4, many of the measures shown 
mimic the behaviour of others (e.g. the magnitude of the subproblem solutions 

and t he magnitude of the policies) while some appear to give little information on 
convergence (e.g. the objective function values �nd the inner product ) .  

9 . 5  F ine Tuning-A D iscussion 

There are few, as yet , case studies in the literature on the application of the Pro­
gressive Hedging Algorithm. In this Section we discuss the recommendations made 
in the literature and our experience with the algorithm. Many of the recommen­
dations given in the literature pertain more to a final implementation than to 
experimental implementation . 

For most of the stochastic testing a four week version of the model was used. 
The main reason for this is that the solution times for the full 52 week version of the 
model were too long to allow adequate experimentation. A 52 week implementation 
with only two scenarios which allowed deterministic solutions after the first week 

took 70 hours of computer time in solution( ! ) ,  with each scenario subproblem taking 

an average of 1 5  minutes to solve. This would suggest that the fully detailed model 
is too restrictive to be used as a basis for the stochastic extension (confirming the 
comments made in Chapter 3) . If solution was performed in a parallel manner, the 
solut ion t ime would be in the order of 35 hours, which is still unacceptable. 

Choice of the penalty parameter r has a major effect on the convergence rate. 
Mulvey and Vladimirou [ 12] suggested a process of dynamically changing r during 
solution; the effect s  of this on solution time are not investigated here, as the partic­
ular values and the regime for changing of r is heavily dependent on the complete 

and final formulation. It did not appear appropriate to invest the vast amount of 
t ime necessary to carry out such an investigation on a trial model, with no way to 
invest igate the quali ty of solutions produced and so no true method of determining 
adequate convergence. 

To obtain convergence in reasonable time, different values of r were investigated. 
The results of [ 1 2] ,  [7] and Philpott and Leyland [17] , suggested that low values 
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of r produced slow convergence of the primal solution (very low values produced 

no convergence at all) , whereas high values of r quickly produced solutions which 
adhered to the non-anticipavity conditions , but, from there, convergence to an 
optimal solution was very slow. Our results, however, were inconclusive, as we 
have no measure of optimality beyond the convergence measures used. The value 

of many of these convergence measures is dependent on the r value used-lower 

values of r did tend to produce more erratic behaviour in the value of 8. Figure 9.5 

shows an example of the convergence of some parameters for differing values of r.  

Table 9. 1 compares the solution t imes for various r values . 

Table 9 . 1 :  Solution times ( in minutes) for various r values, the number of iterations 
is given in brackets. 

Solution Time 
T Unweighted Weighted 

inner product inner product 
10  80 (200) 300 ( 1 000) 
30 1 05 (200) 400 ( 1 000) 
1 00 200 (200) 680 ( 1 000) 
300 360 (200) 940 ( 1 000) 

The nature of the model allows some additions which should have a beneficial 
effect on the solution time. Since the objective function of the subproblems is 

quadratic, the unconstrained minimum can be calculated explicitly. If this point is 
feasible, this is exactly the optimal solution. In this case it is quite simple to find 
the unconstrained minimum explicitly; for the i'th subproblem it is exactly given 
by 

xi - r-lu + w;) 

where the objective function of the deterministic problem is JT x ,  and no weighting 
function is used in the inner product . Solution time may be saved by checking the 
feasibility of this point . 

Another solution point of interest is the policy. In the situation where this 
point is feasible it would, most likely, be a better initial solution than the optimal 
solution found during the previous Progressive Hedging iteration (which has the 
advantage of always being feasible) . Needless to say, it is better to start from a 
feasible solution than an infeasible one, as there is no nice way of discovering a 
feasible solution which is close to an infeasible one (in terms of both Euclidean 
distance and objective value) . 
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The convergence under different non-anticipative variables was also i nvesti­
gated . Generation , releases and storage were variously used as the non-anticapative 

variables . The convergence rates seemed to reflect the "freedom" allowed by each 
of the non-anticipavity variables ; generation was the most constraining, release the 
next and, finally, storage seemed to allow the most freedom,  especially when used 

in conjunction with a penalty for not meeting the target level. Since having dif­
ferent non-anticipated variables changes the formulation, the best value of r for 
each such variable wil l be di fferent . This, combined with the stopping criterion 
used , means there would be little use in comparing the solution times using various 
non-anticipation variables . 

Changing the number of scenarios had a major effect on the time until solution. 
To illustrate this, Table 9.2 shows the solution times for the same formulation, and 

the same value of r ,  while using various numbers of scenarios. It also shows an 

Table 9 . 2 :  Solution times under differing numbers of scenarios 

Scenarios Serial Estimated Iterations Final 
Time Parallel Time 8 

2 3 1 0  1 60 260 0 .00324 
4 830 207 255 0 .858 
8 2450 306 202 1 . 8 1  

1 6  7 1 1 5  445 337 0 .372 

estimate of the solution time had sol u t ion been carried out on parallel processors 
wh ich is determined by div id ing t he total so l u t ion t i me by the number of scenarios 
used . T h i s  est i m ate is reasonable gi ven the fact that the sol u t ion t i m e  spent between 
snbproblems was n egl igib le w h e n  c.orn pn.red to the total sol u tion t i me. 

9 . 6  D iscussion 

This Chapter opens up many possibilities for future research. The model has 
been brought to a point where the possibilities for implementation appear almost 
boundless. Such an investigation would require the implementation of a simulation 
environment and definition of a test model, whose scope is beyond the focus of this 
thesi s .  

We feel that t h is j uncture provides a very good start ing point from which an 
investigation on the usefulness , in practical terms, and implementation issues . Any 
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investigation from this point must consider many possibilities, comparing and con­
trast ing their effects. Any lesser invest igation would surely provide a very biased 
view thereby giving little credit to the wealth of possibilities which were not  in­
vestigated. Thereby making this stage a very appropriate, and natural , point at 
which to finish the development of the model. 

Having looked ahead, in an attempt to anticipate some of the implementation 
issues of the model, we have provided an initial basis for any encompassing research 
in the stochastic  and implementation issues of the model. The development of the 
model has constructed a j ustifiable and useful framework within which to inves­

t igate the effects of various approximations, and trade-offs which may arise from 
these. 
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Chapter 1 0  

Conclusions 

Broadly speaking, the initial intention of this thesis was to develop a model 
of the New Zealand hydro-thermal electricity generation scheduling system 

with a time horizon of one to two years, for subsequent use by ECNZ. The model 

was required to provide detail of the physical system, including the explicit incor­
poration of six separate hydro reservoirs . The model was also required to account 
for the stochastic aspects of the inflows into these reservoirs. The current model 
used by ECNZ (for this specific scheduling instance) is based on an SDP approach, 

which includes two hydro reservoirs with little detail of the physical system; it does 
account well for the stochasticity in inflows . 

The most significant contribution of this thesis is the development of a model 
which provides a flexible level of detail for both the physical system and the stochas­
t ic  elements .  Flexibility in the modelling of the physical system provides a frame­

work within which the effects of various approximations used may be investigated. 
Determination of the limitations to this flexibility provided boundaries on the ap­
proximations which could be used, as well as insights into the efficiacy of various 
modelling techniques . 

The specifics of the intentions for the thesis metamorphosed as model develop­
ment progressed and we became more familiar with the limitations of the framework 
used and the fundamental characteristics of the system. The emphasis moved from 
the development of a specific model to the framework of a general model which 
provided flexibility in many aspects of the system. This was in order that that 
the level of approximation of the important aspects of the system did not preempt 
further development , especially in the stochastic extension used. Broadening this 
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emphasis reduced specificity in the model which, therefore, meant that deep explo­
ration of a stochastic extension became less meaningful to consider, in the context 
of practicability and comparison of solutions. 

The framework developed here will provide a good basis for a final implemen­
tation which is usable by ECNZ. It also provides the platform for a thorough in­

vestigation into the best design of a specific model, i .e . determination of the actual 

level of approximation for each aspect of the syster:n, so as to provide an adequate 
representation of the system, reasonable solution time, and useful solutions. 

The framework developed allows the balance between computational t ractibi l­
ity, detail of the physical system, and representation of the stochastic elements. 
This is to allow the model to be "tuned" so as to provide well balanced solutions. 
The flexibility also allows the use of sensitivity analysis for investigation into the 
effects of approximations used, in terms of the wider framework provided. 

10 . 1  T he D et erministic Model-A S ummary 

The model 's development naturally separates into two parts : the deterministic 
framework (in which the hydro inflows are treated as fixed) ,  and the stochastic 
extension (which allows future inflows to be uncertain) .  We now summarise the 
achievements derived from the development of the deterministic framework. 

·with the emphasis of the model on its flexibility, the deterministic framework 

was required to provide physical system detail and to allow a stochastic extension. 
For this reason, the deterministic framework defines the structure underpinning 
both the thesis and any model so derived. 

A survey of literature h ighlighted the differences between the New Zealand sys­
tem and other systems , as well as the need for a unique approach to the modelling 
of the New Zealand system. The features which are important to be modelled 

well, and those for which it is reasonable (or even desirable) to be more coarsely 
modelled , were discussed. Many of these features were defined by the fact that the 
model was required to incorporate six explicit hydro reservoirs as well as a detailed 
physical system. 

The need for consistency within the model demanded the inclusion of informa­
tion on the geographical distribution of generation and power use. This feature 
was incorporated through the use of a geographic network connecting locations of 
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interest . Load was specified at the nodes of this network structure, as were the 

significant power stat ions. To ensure ease of approximation, and to make the fore­
casting more robust ,  Load Duration Curves were used to represent this load . To 
facilitate this , the t ime horizon was split into time steps (of the order of a week) 
so as to allow the use of time-dependent hydro system information and decision 

making. 

Hydro and thermal stat ions may be present , in ?-ny number, at the nodes of the 
network structure .  Thermal stations have a fuel cost associated with generation, 
and hydro stat ions have use of a limited supply of water which may be stored 

over multiple t ime steps; it is the scheduling of the stored water which links the 
generation schedule over the time horizon. The arcs of the network structure 
represent transmission over part of the National Grid. To model this, the arcs take 
on representative characteristics in the form of capacity and l ine loss information. 

Load Duration Curves , transmission and generation curves are all approximated 

by piecewise quadratics. A non-supply curve ( together with a cost of non-supply) 
is introduced to ensure feasibility in the meeting of demand. 

An initial approach considered incorporating information on the uncertainty 
of the generating capacity of stations (due to forced outages) by using a cumu­
lant approximation of the Electricity Curve inverse. Unfortunately, the approxi­
mation used artificially induced non-convexity in the objective function and ad­
mitted multiple locally optimal solutions . The objective function also exhibited 
non-differentiable "corners" , some of which were an artifact of the way in which 
the problem was modelled. 

Other approximations of the Electricity Curve inverse were proposed, but , these 
were not investigated further, for several reasons . One of the major reasons was 
that the way in which the effects of the uncertainty in station generating capacity 
were being modelled, was not a good approximation. Moreover, this approximation 
induced many of the poor features apparent in the objective function. The other 
major reason was that the re-modelling of the system, so as to eliminate the "cor­
ner" arising from the hydro stations' contribution to the objective function, also 
removed the need to use the inverse of the Electrici ty Curves . This re-modelling 

included other beneficial side-effects ,  such as making the problem linear. The ex­
plicit use of Electricity Curve inverses does, however, allow for a better account of 
forced outages in the case where t_he physical system has many thermal stations at 
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the same node. This becomes important when the deterministic framework pro­

vided is used to define a simplistic physical model so as to afford more detail for 
the stochastic elements ;  this would be useful in conjunction with the exploration 

of s tochastic extensions proposed in Chapter 6,  and to allow more flexibility in the 
deterministic framework. Since the intention of this thesis is to provide a detai led 

physical system (in the New Zealand context) the existence and construction of ap­
proximations to Electricity Curve inverses which give a convex objective function 
were not fully investigated. Such an investigation provides a worthwhile direction 
for future research. 

The re-modelling alluded to above was designed to facilitate modelling the 
proposed generation of each station explicitly rather than as part of a collective 
contract curve for each node. This re-modelling is reasonable, in the New Zealand 
context , in light of the fact that there are at most two thermal stations at any node 
in the representative geographic network, and that the hydro stations were already 

individually scheduled. Modelling each station's proposed generation individually 
meant that the capacity of each station could be directly applied to the proposed 
generation, rather than needing to be implicitly enforced via a non-supply cost for 
over-capacity generation. It was the calculation of this non-supplied over-capacity 
generation which induced the numerically difficult features in the objective func­
tion .  

To fully remove the need for approximate Electricity Curve inverses , the trans­
mission capacity constraints (which were being modelled as penalties for over­
capacity transmission) also required re-modelling. Since the transmission curves 
are piecewise quadratics, the constraints to explicitly enforce transmission capaci­
ties are non-linear. To circumvent this , a linear approximation of these constraints 

was used which ensured that only feasible (below capacity) transmission was al­
lowed. 

The model was expanded to include some features of the New Zealand system 
which were not seen as central to the model, but which would need to be addressed 
in a final implementation, for ECNZ. More specifically, the features included were: 
the use of two fuels by some thermal stations, limitations on a fuel supplying three 
of the thermal stations , and the modelling of consideration of the security of supply. 
Constraints were designed which were well suited to the framework developed. 



CHAPTER 1 0. CONCL USIONS 167 

1 0 . 2  Invest igating t he D et erminist ic Framework 

The deterministic model developed could be formulated as a Generalized Network 
with side constraints .  This structure could be usefully exploited to ensure fast 
solution t imes for a final implementation. Solution time could also be reduced 
by the use of a less detailed model for later time steps, which would obviously 
result in a concomitant loss of detail in solutions. !he use of differing length time 
steps, coarser Electricity Curve approximations· and differing amounts of detail in 

the physical system, were all discussed. None of these modelling techniques were 
actually implemented, as fully evaluating the effects of such approximations would 
necessitate rigorous testing and comparison of solutions, in order to determine how 
the loss detail from solutions might affect system operation. Such testing is beyond 

the scope of this thesis, as it requires a more specific model than the framework 
developed here. vVe do identify the need for this testing to explore the effects that 
such approximations have upon solutions. This will provide valuable information 
on the amount of detail required from later weeks so as to continue to provide good 

first week solutions. This is extremely important in the context of developing a 
fas t ,  efficient , final implementation for ECNZ. 

A more theoretical exploration was initiated on the effects of the Electricity 
Curve approximation. The approach taken was to investigate the behaviour of 
structured approximated formulations derived from sequentially finer approxima­
t ions of the Electricity Curves. These approximated formulations tend to an "un­
approximated" formulation (in which the Electricity Curves are allowed to be any 

functions which are implementable in terms of the model) in the sense that the 
right-hand-side functions of the approximated formulations converge to the appro­
priate right-hand-side functions of the unapproximated formulation. The point 
of interest is whether the sequence of optimal solutions of the approximated for­
mulations converge to the optimal solution of the unapproximated formulation. 
Examples showed that either some (or all) of the approximated formulations may 
have no feasible region, but such occurences appeared to be dependent on the ap­
proximat ions used. This indicated that the approximations used needed to take 
the types of solutions produced by the model into account ,  as well as the right­
hand-sides. 

A full investigation would be lengthy and may not produce results of direct 
importance to the model being ·developed . This is because the convergence (or 
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non-convergence) of a sequence gives no indication of how well a single element of 
t hat sequence approximates the sequence limit .  For these reasons the investigation 

was not taken to its conclusion. In practice, investigation into the effects of the 
Electricity Curve approximation may be better served by an empirical study into 
the qual i ty of solutions obtained. 

This is not to say that a full theoretical investigation of this nature is not 
important and worthwhile; i t  j ust does not fit into t.he framework of this thesis . vVe 
offer the full investigation into the limit of optimal solutions (when they all exist)  of 
t he approximate formulations as a worthwhile direction for future research, as well 
as an investigation into the difference between a single approximated formulation 
and its corresponding unapproximated formulation. 

1 0 . 3  D eterministic Implementat ion 

Implementation of the deterministic model was discussed. An formative implemen­
tation was used to isolate many of the difficult approximations, and some of the 
issues i nvolved in a final implementation were also explored . The formative im­
plementation used a working model (as described in Chapters 3-5) . This working 
model was designed to test the limits of the framework where such limits were seen 
as important (e.g. the use of piecewise quadratics ) ,  to be internally consistent (e.g. 
all weeks were specified to the same level of detail) , and to provide a level of detail 
which was at least a level desirable to ECNZ (e.g. the representative geographic 
network) .  Such a model would be detailed enough to highlight inconsistencies in 
the framework. 

The formative implementation demanded procedures to allow specification of 
the model being solved (from within the framework provided) ,  and specification 

of the input data that were required. The continual change of the model and the 
deterministic framework meant that the solution input needed to be flexible. This 
made the input structures used unsuitable for use in a final implementation. 

Due the the enormity of evaluating solutions directly from the output of MINOS 
5 .4 ( the solution procedure used) ,  procedures were written to  allow solutions to be 
viewed using the GUI (graphical user interface) features of Matlab 4. This proved 
to be an effective method for interrogating solutions . 



CHAPTER 1 0. CONCL USIONS 169 

The need for a procedure to determine a feasible (and reasonable) initial so­
lution, so as to speed up solution times, was highlighted. The inclusion of such 
a procedure in a formative implementation merely increases the difficulties asso­
ciated with making amendments to the model, and so was seen as inappropriate 
during this development phase. Development of such a procedure, therefore, pro­

vides a direction of future research; however, the development of a corresponding 
procedure for the stochastic case may supercede t4.is. 

1 0 . 4  Stochastic Extension 

Allowing future inflows to be uncertain, and future decisions to depend on previous 
inflows (once they are known) ,  increases the difficulty of the problem. There are 
many ways in which the deterministic model developed can be extended to include 
such uncertainty; several of these were discussed. The necessity of comparing the 
effectiveness of these methods under similar conditions was also identified. An 
authoritative comparison would necessarily be extensive, requiring simulation of 

the system to evaluate various solutions in terms their benefit to the system. Such 
rigorous testing is well beyond the scope of this thesis, and provides an important 
direction for future research in development of a full working implementation for 
use by ECNZ. 

For a stochastic model it is much more important to investigate the robustness 
and effectiveness of solutions produced. This is often done though simulation of the 
system, and comparison with current policies and those produced by other methods . 
Since the focus of this thesis was on the development of a deterministic framework 
for use as the basis to a full stochastic model (and not on the development of a 
specific full stochastic model itself ) ,  there are many issues and modelling aspects 
of a stochastic model which cannot be meaningfully explored here. Instead we 
provided a brief examination of the feasibility of extending a deterministic model 
(developed from the framework provided) stochastically, and explored some of the 
issues which arose in order to "set the scene" for the exhaustive testing and analysis 
of stochastic extensions ,  which is seen as an important next phase. This meant 
that any examination undertaken here could not directly involve investigation of 
the quality of solutions produced, making any comparison of solutions obtained, 
during testing performed here, effectively meaningless in this context. 
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A scenano approach, using Rockafellar and Wets' Progressive Hedging Algo­

rithm, was used to illustrate one stochastic extension, and to allow preemptive 
i nvest igation of some of the implementation issues in an effort to provide guide­
lines for the future development of a stochastic extension. This particular stochastic  
extension was used because i t  provides flexibility in the amount of stochastic in­
formation which can used; this flexibility is bounded only by the solution t ime of 
the consequent model (this is ,  of course, a very sig�ificant  bound) . It also does not 
limit the formulation of the underlying deterministic model of the system in any, 
explici t ,  way. 

The modelling issues, generated through the use of the Progressive Hedging Al­
gorithm, included ideas on the choice of scenarios, the choice of the non-anticipative 
variables, and a possible method for reducing the solution time through the use of a 
different decomposition. These issues were not fully addressed computationally, as 
the benefits they provide need to be evaluated within the context of the solutions 
they produce. 

The convergence of the Progressive Hedging Algorithm is guaranteed only when 
the subproblems are solved to successively tighter tolerances each iteration under 
a strict regime. Unfortunately, the large-scale nature of the deterministic model, 
i nduced by the detail required in the physical system, means that convergence 
beyond some fixed tolerance is impossible. Therefore, in theory, convergence was 
not guaranteed beyond some indeterminant tolerance. In practice, the algorithm 
did converge. Due to the distance of the solutions to the deterministic subproblems 
from their respective optimal solutions, scaling was an important consideration . 
Better convergence was achieved through the use of a scaled inner product (for the 
Lagrangian term and the quadratic augmentation) , where the variables were scaled 
relative to their importance to solutions ( i .e. in terms of the amount of generation 

they represent) .  This produced a most satisfactory result , and its inclusion should 
make implementation of a final model more robust. 

A brief examination of the effect of the choice of the non-anticipative variable 
on various convergence measures was made. This showed that the use of storage 

in this context appeared to allow the most freedom, with the use of generation 

allowing the least freedom, and the use of release giving slightly more freedom 
than that given by the use of generation. A variety of convergence measures were 
invest igated, including_ the measure proposed by Rockafellar and Wets '  [ 19] as the 
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definitive convergence measure, another proposed by Mulvey and Vladimirou [ 12] ,  

and the convergence of various primal and dual variables. Many of these produced 
similar patterns of convergence. 

Due to extremely slow convergence experienced beyond an unpredictable point , 
a stopping criterion was needed which indicated where convergence appeared to 
have stopped, since there was no longer a guarantee of convergence to within a 
pre-specified tolerance. This proved satisfactory an_d allowed the user to determine 
whether further convergence was possible, or whether the convergence measure 
used was merely exhibiting temporary non-monotonic behaviour. 'With no way 

to..-examine the difference in quality between solutions obtained at various points 
during use of the Progressive Hedging Algorithm, there is little use in taking such 
an examination further. This does highlight another direction for future research­
that of investigating the correspondence between the values of various convergence 
measures and the quality of solutions obtained; this would provide valuable infor­
mation on the convergence requirements, as well as possibilities for limiting solution 
time, in a final implementation. 

An examination of the convergence for various values of the Progressive Hedging 
penalty parameter was carried out , in terms of the convergence measures mentioned 
above. The results obtained were inconclusive, since the stopping criterion used 
gave no indication of the quality of solutions (or how close to optimallity these 
were) , and also because the values of many of the convergence measures depended 
on the value of the penalty parameter used. Such an investigation would be more 
appropriate in the context of a full investigation of this particular stochastic ex­
tension. 

1 0 . 5  Future D irect ions 

We see the main directions for future research as being able to be encompassed 
within an invest igation which furthers the development of a specific model into a 
form which is directly usable by ECNZ. There are three directions that such an 
investigation could take. The development of a full model for ECNZ would be best 
served by pursuing these three directions simultaneously, enabling the results of 
these invest igations to be compared and contrasted. 

The three directions are: the development of a specific d�terministic model , and 
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an examination of the sensitivity in the quality of solutions to changes in the various 

approximations used; an investigation comparing the various stochastic extensions 
used in conjunction with appropriately approximated deterministic models arising 
from the deterministic framework developed here; and, an investigation into the 
implementation issues arising from the use of the Progressive Hedging Algorithm 
as a particular stochastic extension. 

The development of a specific deterministic m9del requires close consultation 

with ECNZ. The investigation should be concerned with the sensitivity of the first 
week 's solution to the use of various approximations. The effects on solution time 

and solution quality of these approximations also needs to b;-addressed . The 
specific deterministic model used will depend, not only on the results of this inves­
tigation, but also on the stochastic extension chosen and the physical detail allowed 
by this extension to ensure computationally tractable models. 

An investigation into the various stochastic extensions would need to follow 

two paths. The first would be to compare solutions and solution times under the 
same deterministic base model. The second would be a comparison of the quality 
of solutions when the physical systems were tailored so that the solution times 
were all within some pre-specified bound. The latter investigation would be more 

useful in terms of the development of a full model, usable by ECNZ; however, it 
would be difficult to compare solutions obtained via different methods since the 
level of detail in both the stochastic elements and the physical systems would be 
different. This means the solutions will need to be compared in terms of how well 

t hey perform on simulations of the system. 
The investigation into the implementation of the Progressive Hedging Algo­

rithm, as an extension to a deterministic model constructed from the deterministic 
framework developed here, may seem preemptive vis-a-vis the outcome of the in­

vestigation into all of the stochastic extensions. This need not be the case. The 
investigation into possible stochastic extensions will, due to constraints of time, 
not be able to "fine-tune" each stochastic extension so as to allow fastest ,  most 
efficient , solution time. To ensure that each method is treated with fairness, this 
means that none of the methods should be tuned to any greater extent than oth­
ers. An extensive investigation into a particular stochastic extension will provide 
information on the speed-up which could be expected from tuning of the stochastic 



CHAPTER 1 0. CONCL USIONS 173 

extensions . Also, a scenario approach (and more specifically the Progressive Hedg­
ing Algorithm) provides the most flexibility for the model as a whole, making such 
an investigation worthwhile for its own sake. 

The other future research directions, which have been outlined in this Chapter, 
while being worthy of further investigation, are not directly relevant to the further 

development of a model for use by ECNZ, and so are seen, in terms of the aims of 
this thesis, as being of secondary importance. 

1 0 . 6  D is cussion 

The framework developed in this thesis allows flexibility in all aspects of the mod­
elling of New Zealand's hydro-thermal electricity generation system. This will allow 

the developers of a full model access to information on the cost ( in terms of the 
loss of information) of approximations made within this framework. The determin­
ist ic framework also allows for many different stochastic  extensions, so as to allow 
investigation into the one which best serves the needs of the user. 

Development of the framework has been taken to a stage which allows future 
developers a platform upon which to base their investigations . Some of the con­
clusions about the system and possible modelling extensions provide useful insight 
for future modellers which will help to direct their investigations towards fruitful 
areas . 

The framework is fully developed at this point . An investigation into a specific 

representation of the physical system will be dependent on the stochastic extension 
to be used, and the quality of solutions produced by the consequent full stochastic 
model-whereas a stochastic extension requires a specific representation of the 
physical system on which to base i tself. 

Future investigations will require a re-prioritization of aims and intentions from 
this point , while the development of the framework, for both designing a spe­

cific model and determining the effects of approximations used within this specific 

model , has reached a point of natural conclusion, making this an appropriate point 
at which to conclude this thesis .  
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Appendix A 

Sample Input Files 

This Appendix gives a selection of the input files used to specify the system. 
The example chosen has a t ime horizon of two weeks. For illustrative pur­

poses , we use the same geographic network for both weeks, consisting of four nodes 
( three nodes in the North Island and one in t he South Island) with two hydro 
stations (one in each Island) and two thermal stations (both in the North Island) .  
Files which specify multiple weeks contain some fields which specify their values 
for each week separately. 

The MPS and information files which are created from the WeekRef files are 
not given-the layout of the information file is superfluous and the MPS structure 
is standard. Furthermore, these files contain t ransformed data which would be 
tedious to explain and which is discussed thoroughly in the description of the 
model , so that no benefit is obtained by the inclusion of these files. 

The problem described herein is specified by 420 variables, 360 constraints , 2 500 

non-zero elements in the constraint matrix and 220 non-zero objective coefficients. 
The problem took under 2 seconds to solve. 

A . l  Master File 

The file Mast er specifies most constants of the system. It also contains information 
for later use as it is used throughout the entire solution procedure. 

Name : Master 

InputFiles : 
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ThermalFile : 

MainArcFi l e : 

HydroFiles : 

Reservoirs : 

Inflows : 

Stat ions : 

MPSFiles : 

MPSOutput : 

S PECSOut put : 

Informat i on :  

Trans itF iles : 

ToMPS : 

Maximums : 

NumberOfWeeks : 

MaxNodes :  

MaxArcs : 

MaxHydros : 

MaxThermal s :  

Detail : 

WeekS izes : 

Dat aDeckName : 

D i s countRat e : 

NonSupplyCost : 

0 1Part it ion : 

Unit s :  

TimeinHours : 

PowerinMW : 

ThermalRef 

LineRef 

HydroRef 

Inf lowRef 

Stat ionRef 

example . mps 

example . spc 

example . Info 

WeekRef . %w % %w is replaced by appropriate week 

2 

4 

8 

2 

2 

1 1 -

EXAMPLE 

0 . 07 % per year 
300 

0 . 0  0 . 1  0 . 4 0 . 7 1 . 0 

1 68 . 0 % scaling factors for the 
1 000 . 0  % objective function 

WeeklyNodeFi les : NodeRef NodeRef -

Unscal ing ; % from scaling for basis coefficients 
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Unscale : Row1 : 

Unscale : Row2 : 

Unscale : Row3 : 

Unscal e : Row4 : 

1 . 0e1  1 . 0e3 1 . 0e2 

1 . 0e1  1 . 0e2 1 . 0e2 

1 . 0e1  1 . 0e2 1 . 0e2 

1 . 0e2 1 . 0e2 1 . 0e2 

A . 2  Load Input F ile 
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The file NodeRef specifies the make-up of load at each node of a geographic network 
for a single week. The amount of generation from auxiliary stat ions is specified by 
Matlab variables , as is each Island's yearly load curve. 

Name : 

Week : 

SizeDfWeek : 

St art : 

Name : 

Island (N/S) : 

FlatLoad : 

FlatGenerator : 

LoadFract ion : 

Name : 

Island (N/ S ) : 

FlatLoad : 

Flat Generator : 

LoadFract ion : 

Name : 

I sland (N/ S ) : 

FlatLoad : 

FlatGenerator : 

LoadFract ion : 

Name : 

NodeRef 

1 

1 % in weeks 

Auckland 

N 

890000 % in GWh 
HuntlyCoal 

0 . 52 

Taupo 

N 

1320000 

Wairaki&Ohaaki 

0 . 39  

NewPlymouth 

N 

0 . 0  

None 

0 . 09 

Christ church 
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I sland (N/S ) : S 

FlatLoad : 4340000 

FlatGenerat o r : Arnold 

LoadFract ion : 1 . 00 

A . 3  Transmission Input Files 

177 

The file L ineRef gives specification of each power line, and the network file for 
each week. 

Name : L ineRef 

NetworkF i l e s : ArcRef ArcRef 

L ines : 

Name 

ALB-HEN-3 

ARA-WRK 

ATI -OHK 

AVI -WTK 

BEN-AV I- 1  

BEN-AV I - 2  

BPE-HAY- 1 

WRK-WHI 

WTK-LIV 

RL XL Volt 

0 .  00 188 0 .  0 1 537 220 % proportional losses @ lOOMW 
0 .  00058 0 .  00342 220 % RL = real loss 
0 .  0 0 1 1 9  0 .  00564 220 % XL = imaginary loss 
0 . 00 163 0 . 00803 220 % Volt = line voltage 
0 . 00325 0 . 0 1 509  220 

0 . 00325 0 . 0 1 509 220 

0 . 02 198 0 . 104 1 1  220 

0 . 00823 0 . 06765 220 

0 . 00629 0 . 02983 220 

The network file, ArcRef , specifies the make-up and distribution of arcs in the 
geographic network. Node names correspond to those given in NodeRef . 

Name : ArcRef 

Network : 

NodesFrornTo : Auckland Taupo 

Capacity : 1300  % Megawatts 
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L ineMakeUp : ( (OTA-WKM- 1 11  OTA-WKM-2 ) 1 1  OTA-WKM-3 ) 1 1  ( OTA-HLY 

+ TAK-HLY + GLN-HLY + HLY-HAM + HAM-WKM + WPA-MTI + 

(MTI-WKM- 1 11 MTI-WKM-2) + (WKM-TKU- 1 11  WKM-TKU- 2 ) 
+ ( OKI -WRK - 1  11  OKI -WRK-2 ) + ARA-WRK + (TRK-AT I - 1  11  
TRK-ATI-2 ) + (TRK-EDG - 1  11  TRK-EDG-2 ) + EDG-KAW + 

KAW-OHK + WRK-RPO + ( (WKM-ATI + ATI-OHK + OHK-WRK ) 

NodesFromTo : 

C apacity : 

L ineMakeUp : 

NodesFromTo : 

C apacity : 

L ineMakeUp : 

I I WKM-WRK ) )  ! % I I in par�llel-; + in series 

Auckland NewPlymouth 

360 

HLY-SFD 1 1  (HLY-TMN + TMN-SFD ) 

NewPlymouth Taupo 

600 

(NPL-SFD- 1 11 NPL-SFD-2 ) + ( ( SFD-BRK- 1  11  SFD-BRK-2 ) 
11 SFD-BRK-3) ! 

NodesFromTo : Taupo Chri stchurch 

C apacity : 

L ineMakeUp : 

1 240 

22 . 8  % Ohms, D C  resistance 

A .4 Thermal S t at ion Input F ile 

The file ThermalRef gives information on the fuels and fuel constraints, as well as 
data on each thermal station . 

Name : ThermalRef 

Fuels : 

FuelName : Coal 

FuelCost : 2 . 4 % $ per Gigajoule 
C alorif icValue : 22 % GJiunit 
C onstraint : None None -

FuelName : . Maui 
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FuelCost : 2 

C al o r if i cValue : 1 000 

Constraint : Maui Maui -

FuelConstraint s : 

MaxWeeklyMaui : 2300 2300 - % PJ (units) 

Thermals : 

Node : 

Thermal : 

ForcedOut age : 

C apac ity : 

FuelUsed : 

HeatRate : 

Node : 

Thermal : 

ForcedOut age : 

Capacity : 

FuelUsed : 

HeatRate : 

Auckland Auckland 

Huntly 

0 . 033 

960 960  % MW 
Maui Coal -

1 0  GJ/MWh 

NewPlymouth NewPlymouth 

NewPlymouth 

0 . 073 

580 580 

Maui 

1 0 . 5  

A . 5  Hydro Stat ion Input Files 

179 

The file HydroRef gives information on the characteristics of each river chain which 
is to be used as a single hydro station in the model. Information on the inflows 
and stations of each river chain are given in other files . 

ReservoirsNarne : HydroRef 

D at aD i rect o ry : $HOME/InflowData 

HydroReservo irs : 

Name : Taupo 

NodeAtEachWeek : Taupo Taupo 

I sl and : N 
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Init i al : 

IName s : 

UNames :  

S t at i ons : 

240000 % MWh 
Taupe - % controlled inflows 
Waikat o - % uncontrolled inflows 
Arat iat i a  Arapuni At iamuri Karapiro Maraet ai 

Ohakuri Whakarnaru Waipapa 

Name : Waitaki 

NodeAtEachWeek : Chri st church Christ church 

I sland : S 

Init i al : 1 240000 

INames :  Cobb Coleridge Pukaki -

UNames :  Benrnore Ohau Tekapo -

Stat i ons : Aviernore B enrnore Cobb Coleridge OhauA OhauB 

OhauC TekapoA TekapoB Wait aki -
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The file Stat ionRef gives information on every hydro station. Hydro stations 
have specified controlled and uncontrolled inflows (which are respectively combined 
for the single station representation) . 
S t at i onsNarne : 

Name : 

I Infl ow : 

Uinf low : 

Stat ionRef 

Arat iat ia 

Taupe % controlled inflow 
Waikat o % uncontrolled inflow 

MaxGeneration : 84 84 - % MvV 
Curnec/MW : 

Part OfUThru : 

Fract ionFlat : 

Name : 

I Infl ow : 

Uinf l ow : 

MaxGenerat ion :  

Curnec/MW : 

PartOfUThru : 

Fract ionFlat : 

3 .  6 % generation efficiency 
0 . 07 % fraction of uncontrolled flowing through 
0 . 17  % immediately generated uncontrolled flow 

Arapuni 

Taupo 

Waikat o 

140 140 

2 . 23 

1 

0 . 12 
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Name : TekapoB 

! Inflow : % none 
Uinflow : Tekapo 

MaxGenerat i on : 1 6 0  1 6 0  

Curnec /MW : 0 . 78 

PartOfUThru : 1 

Fract ionFlat : 1 . 0 

Name : Wait aki 

! Infl ow : Pukaki 

Uinflow : Benrnore 

MaxGenerat i on : 100  90 -

Curnec/MW : 6 . 2  

Part OfUThru : 1 . 1  

Fract i onFlat : 0 . 5  

1 8 1  

The file InflowRef gives information on  the reservoirs and inflows (both con­
t rolled and uncontrolled) ,  including the file in which the past data on each i nflow 
IS given. 

InflowsName : 

Controlled : 

Name : 

F i l eName : 

F i leSt artDat e : 

Inf lowSt art : 

MaxLevel : 

MaxRel : 

MinRel : 

MinFlow : 

Name : 

F i l eName : 

InflowRef 

Taupo 

t aupo . dat 

1 /4/31 

1 6/2/66 

9900 9900 

220 220 -

35 35  -

160 1 6 0  -

Cobb 

cobb . dat 

% containing inflow data 

% m3s-1 days 
% m3s-I 

% m3s-I 

% m3s-I 
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F ileStartD ate : 1/4/ 3 1  

InflowSt art : 16/2/66  

MaxLevel :  280 280 

MaxRel : inf inf 

MinRel : 0 0 

MinFlow : 0 0 

Name : Coleridge 

FileName : coleridg . dat 

FileStartDate : 1 /4/3 1 

InflowSt art : 1 6/2/66 

MaxLevel : 1600 1600  

MaxRel : inf inf 

MinRel : 0 0 

MinFlow : 0 0 

Name : Pukaki 

FileName : pukaki . dat 

FileSt artDate : 1 /4/31 

InflowSt art : 16/2/66 

MaxLevel : 38000 38000 

MaxRel : 440 440 

MinRel : 0 0 

MinFlow : 120 120  

Uncontroll ed : 

Name : Waikat o  

FileName : waikat o . dat 

FileStartD ate : 1 /4/31 

InflowSt art : 1 6/2/66 

MaxRel : inf inf 

MinRel : 0 0 

MinFlow : 0 0 
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Name : Benmore 

F i l eName : b enmore . dat 

F i l eStartDat e : 1 /4/31  

Inf lowStart : 1 6/ 2 / 6 6  

MaxRel : inf inf 

MinRel : 0 0 

M inFlow : 0 0 

Name : Ohau 

F i l eName : ohau . dat 

F i l eStartDate : 1 /4/3 1  

Inf lowStart : 1 6/2/66  

MaxRel : inf inf 

MinRel : 0 0 

MinFlow : 0 0 

Name : Tekapo 

F i l eName : t ekapo . dat 

F i l e St artDate : 1 /4/31  

Inf l owSt art : 1 6 /2 / 6 6  

MaxRel : inf inf 

MinRel : 0 0 

MinFlow : 0 0 

A . 6  Weekly System File 

183 

The WeekRef files specify the whole system for a single week. They were con­
s tructed from the previous files . The format used was simple to change, allowing 
the construction of examples by hand for debugging purposes . 

Name : WeekRef . 1  

NODES : 

GeneralNodeDat a :  

NumberOfNodes :  4 
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SpecificNodeData : 

Node : 

Mat rixG : Row1 : 

Mat rixG : Row2 : 

MatrixG : Row3 : 

Mat rixG : Row4 : 

Node : 

MatrixG : Row1 : 

MatrixG : Row2 : 

Mat rixG : Row3 : 

MatrixG : Row4 : 

Node : 3 

MatrixG : Row 1 : 

MatrixG : Row2 : 

MatrixG : Row3 : 

MatrixG : Row4 : 

Node : 

MatrixG : Row 1 : 

MatrixG : Row2 : 

MatrixG : Row3 : 

MatrixG : Row4 : 

THERMALS :  

GeneralThermalDat a :  

ThermalNodes :  

ThermalNames :  

MauiMax : 

MauiWeight ings : 

Thermal 

Huntly 

NewPlymouth 

SpecificThermalData : 

1 

7 . 908e- 0 1  2 . 1 28e+OO O . OOOe+OO 

O . O O Oe+OO 6 . 432e+OO 2 . 436e+OO 

2 . 484e+OO 1 . 0 16e+OO 1 . 226e+OO 

6 . 362e+OO 1 . 044e+OO 3 . 467e+OO 

2 

5 . 93 1 e-0 1 1 . 5 9 6 e+OO O . OOOe+OO 

O . OOOe+OO 4 . 824e+OO 1 . 827e+OO 

1 . 863e+OO 7 . 623e-0 1 9 . 1 9 1 e - 0 1  

1 . 9 29e+OO 7 . 829e-0 1 2 . 600e+OO 

1 . 36 9e-0 1 3 . 684e-0 1 O . OOOe+OO 

O . OOOe+OO 1 . 1 13e+OO 4 . 2 1 5 e - 0 1  

4 . 299e-0 1 1 . 759e-0 1 2 . 1 2 1 e - 0 1  

9 . 248e-0 1 1 . 807e- 0 1  6 . 000e- 0 1  

4 

1 . 1 97e+OO 1 . 9 4 1 e+OO 2 . 1 69e+OO 

O . OOOe+OO 4 . 053e+OO 4 . 6 8 1 e+OO 

6 . 220e-0 1 4 . 0 12e-0 1 9 . 1 19 e - 0 1  

8 . 920e+OO 9 . 663e-0 1 3 . 009e+OO 

1 3 -

Hunt ly NewPlymouth 

2300 

Node Fuel We ight 

1 1 0 . 0 1  

2 1 0 . 0 10 5  

ThermalNode : 1 
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ForcedOut age : 

Generat i onCo st : 

Capacity : 

ThermalNode : 

ForcedOut age : 

Generat i onCo st : 

Capacity : 

HYDROS : 

GeneralHydroData : 

HydroNodes :  

HydroNumbers : 

HydroNames : 

Specif icHydroDat a :  

0 . 033 

20 24 

960 

3 

0 . 073 

2 1  

580 

2 4 

1 2 

-

Taupo Wai t aki 

HydroNode2 : I :  2 . 8 1 e+05 % controlled 
: U :  O . OOe+OO % uncontrolled 

Fract ionOfUFlat : 0 . 34 

MaximumGenerat ion : 930 

Storage!nterval : O . OOe+OO 5 . 82e+05 

Top!nterval : 8 . 57e+0 1 5 . 39e+02 % release 
Bottom!nt erval : 3 .  9 2e+02 inf % flow from river mouth 
HydroNode4 : I :  1 . 36e+06 

: U :  6 . 8 1 e+04 

Fract ionOfUFlat : 0 . 56 

MaximumGenerat ion : 1600  

Storage!nt erval : O . OOe+OO 2 . 12e+06 

Top!nt erval : O . OOe+OO 1 . 17e+03 

Bottom!nt erval : 3 . 1 8e+02 inf 

ARCS : 

GeneralArcDat a : 

NumberOfArcs : 8 

Specifi cArcDat a :  

ArcO : FromTo : 1 2 
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PowerLe s s : 0 . 075 

Cap acity : 1300 

Arc 1 : FromTo : 2 1 

PowerLe s s : 0 . 075 

Cap acity : 1300 

Arc2 : FromTo : 1 3 

PowerLes s : 0 . 053 

Cap acity : 360 

Arc3 : FromTo : 3 1 

PowerLe s s : 0 . 053 

Capac ity : 360 

Arc4 : FromTo : 3 2 

PowerLe s s : 0 . 026 

Cap ac ity : 600 

Arc5 : FromTo : 2 3 

PowerLes s : 0 . 026 

Cap acity : 600 

Arc6 : FromTo : 2 4 

PowerLe s s : 0 . 23 

Cap ac it y : 1240 

Arc7 : FromTo : 4 2 

PowerLe s s : 0 . 23 

Capacity : 1240 
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Appendix B 

Mo del Output 

/Lf ere we illustrate the first week's solution for the small example for which 
J {, some of the input files are given in Appeddix A. This small example is 

not very realistic as requires that only four power stations are used to meet all of 
New Zealand's load for two weeks. It does , however, illustrate many features of 
the model . The LDC's show the non-supply curves shaded in red. Both the release 
and storage levels for both weeks of solution are given. In these plots, the black 
curve is the minimum level, the red curve gives the maximum level and the blue 

curve gives actual release or storage. For the transmission arcs, the blue curve is 
the power entering the line, and the cyan curve is the power exiting the line. The 

final plot shows a break-down of the schedule for both weeks . The green line shows 
the total load , the cyan line shows the total generation, and the black line shows 

t he total generation plus non-supply; the difference between the total load and the 
total generation plus non-supply is due to line losses. The red curve gives total 
non-supply, the blue curve gives total hydro generation, and the magenta curve 
gives total t hermal generation. 
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1 500 

1000 

250 

200 

1 50 
:;:: � 

1 00 

50 

8 

1 .2 

Node 1 .  Load and Huntly Generation. 
Generation at Thermal 1 Load and NonSupply 

NonSupply = 43926.50 Fuel = 19999.80 NonSupply = 9.'504 00 

600 :;:: � 
400 /·, "f:�aW Gas 'lt 

200 ,/ ·j ,jrj 1/ rr I/ 00 
1"1 

1 50 50 1 00 Hours 

Node 2 .  Load and Taupo Generation. 
Load and NonSupply 

NonSupply = 0.00 

50 100 Hours 

.,_ 

1 000 

800 

600 

400 

1 50 

Generation 
NonSupply = O.<Xl 

Taupo Releases (with no spill ) and Storage. 
Weekly Release Weekly Storage 

5 

4 

1 .4 1 .6 1 .8 2 Week Week 

1 50 
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2 
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Node 3 .  Load and New Plymouth Generation. 
Load and NonSupply Generation at Thermal 2 

2501 NonSupply = 0.00 Fuel = 1 2 1 80.00 NonSupply = 12702.00 

:,:: ::;; 

:,:: ::;; 

600 
' t '�--, ____ 

200 ··----........ 
500 

,, ', ', ' 
',, 400 ,, 1 50 ,, ' ', � 300 

\ ' -,, Maui Gas -...... , 
1 00 ··-------. ... 

200 
. ·, 

50 1 00 

00 50 1 00 1 50 00 50 1 00 Hours Hours 

Node 4 . Load and Waitaki Generation . 
Load and NonSupply Generation 

NonSupply = 0.00 NonSupply = 0 (X) 
1 600 

., 1 600 ....... ········ ·················-···-····· 

1 400 1 400 
1 200 ----.... 1 200 1 1JI� 1 000 ·-... 1 000 � :,:: 

800 ::;; 800 'I 600 
tcydro 

600 If J 400 400 

200 200 

l'i·
l 

00 00 
l 

50 1 00 1 50 50 1 00 Hours Hours 

Waitaki Releases (with no spill) and Storage. 

2.5 

5 x 1 0 Weekly Release 

2L---------

0.5 

01L-----�1�.2----�1 .�4----�1 .�6-----1�.�8----� 2 Week 

� ::;; 

X 1 06 Weekly Storage 

2 

1 . 5 

0.5 

01 1 .2 1 .4 1 .6 Week 

, , . 1li 

I 

1 50 

� 

I 11 
1 50 

1 .8 2 
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Transmission. 
Combined in the Node 1 to Node 2 direction. Combined in the Node 1 to Node 3 direction. 

1 000 

500 

0�----------------

-500 

-1000 

0 50 1 00 Hours 1 50 

300 

200 

1 00 

- 1 00 

-200 

-300 

0 50 1 00 Hours 1 50 

Combined in the Node 3 to Node 2 direction. 
600.--------------------------------- Combined in the Node 2 to Node 4 direction. 

·----------- 1 000 
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