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Abstract

his thesis investigates the modelling of the New Zealand hydro-thermal elec-
Ttricity generation system in order to determine an optimal strat(%y for gen-
eration, in terms of minimizing fuel costs. The model currently used by ECNZ
(Electricity Corporation of New Zealand) uses an SDP (Stochastic Dynamic Pro-
gramming) method for solution; this allows little detail of the physical system, and
models two explicit hydro reservoirs. The model developed in this thesis is flexi-
ble, in order to allow the balance between ensuring stochastically stable solutions
and the detail of the physical system, to be altered, whilst ensuring computational
tractibility. The areas of the system which are important to be modelled accurately
are isolated, as are those which may lead to computational intractibility if they are
modelled in too much detail. The flexibility in the model also allows the effects of
the approximations used on solutions to be explored in a wider framework.

The time horizon of the model is one to two years, with time steps of the order
of a week. The time horizon describes the level to which many aspects of the system
are to be modelled. Transmission is modelled explicitly so as to include information
on the geographical locations of power stations and power users; this takes the
form of a network structure underlying the model. The load at each geographic
location is represented by a Load Duration Curve (which is more robust, in terms of
forecasting, than a direct representation of load with respect to time). Hydro river
chains are modelled as single power stations with a single reservoir and connect
the model temporally; we model six explicit hydro river chains. Thermal stations
are modelled individually, and the generation from run-of-river and geothermal
stations is removed from load before solution begins.

The initial approach considers a model which, upon further investigation, is
unacceptable. However, examination of the issues highlighted by this approach
provide insight into the system. The resultant re-modelling of the problem leads

to a linear model which does not explicitly model the uncertainty in the generating



capacity of stations due to forced outages. This accentuates the reason why the
usual approach to explicitly modelling the uncertainty of supply (within a week)
cannot be used in the case where the geographic distribution of generation has
been explicitly modelled. The deterministic model may then be formulated as a
Generalized Network with side constraints.

The deterministic model developed can be extended stochastically in many
ways. The stochastic extension investigated uses Rockafellar and Wets’ Progres-
stve Hedging Algorithm. This takes a scenario approach, in which the stochastic
variables are approximated by a number of scenarios of observed values. A policy
is required which minimizes the expected cost of generation over these scenarios,
ensuring that information on the observed values of the stochastic variables is not
used before it would be available in practice.

Results and implementation issues are discussed for both the deterministic and
stochastic models. Consideration is given to the implementation of a finished prod-
uct, as well as implementation for the purposes of investigating the feasibility and

examining the computational effectiveness of approximations made in the model.

il
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Addendum

Page 25, line 11; “optimallity” should read “optimality™.

Page 109, §6.2, sentences two and three should become:
“The general stochastic program can be written as a multi-stage stochastic program
with recourse. The two-stage stochastic program with recourse can be written as follows:

Min fi(@) + E [ fula.8)]

subject to: (6.0a)
Arx =0

where z is the decision variable representing a decision that must be implemented prior
to the realization of the random variable £, fi(x) represents the cost of decision z, and
fa(z, &) (where £ is a single observation of €) is defined as:

fa(@, &) = Min g(y)
subject to: (6.0b)
Wy =€ — Tz,

y=>0

where this involves the determination of the optimal recourse variable y given the initail
decision z. Extension to the multi-stage case invloves defining (6.0b) in a similar manner
to (6.0a). In our case the recourse variables are the releases of the subsequent weeks.”

Page 113, paragraph 3; should be appended with the sentence:

“While there are many other stochastic techniques which could be considered, since
the focus here'is to show that it is feasible to extend the deterministic model developed
to a full stochastic model and we cannot cover every method here, the following are a
selection of approaches which have been used in the past to model such a system.”

Page 115, §6.5, line 2; “...as it offers the greatest flexibility in the extent ..." should read
“...as it appears to offer the greatest flexibility, of any of the many possible stochastic
approaches which could be used, in the extent ...”
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Chapter 1

Problem Definition

efore proving a Mathematical theorem one needs to have a clear definition of
Bthe premise. So it is with Operations Research; before modelling, one needs
a clear definition of the problem to be modelled—the features that it is important
to model well, and those for which a coarse approximation suffices. This becomes
very important in the case of a large, complex, problem such as the New Zealand
hydro-thermal electricity scheduling problem; designing a model which precisely
models the entire system, but is practically insolvable, is of little real use.

The New Zealand hydro-thermal electricity scheduling problem is a “large-
scale” problem with additional highly variable stochastic elements, making it ex-
tremely difficult to model in an accurate, consistent fashion. This means that
there needs to be a clear definition of the aspects of the problem which should be
emphasized.

The perspective taken here is to develop a model which gives more physical
detail than the model currently used by ECNZ (Electricity Corporation of New
Zealand). In particular, the goal is to include the explicit modelling of six separate
hydro reservoirs. Consequently, it may not be possible to model the stochastic
elements to a level of detail similar to that of the current model. This investi-
gation is not intended to produce a finished product for ECNZ, but to develop a
model, investigate whether it is viable, and determine whether it is useful enough
to develop further. In particular, the focus of this thesis is directed to the devel-
opment of a useful model, rather than rigorous testing of the stability, robustness
and quality of solutions produced; this is seen as an appropriate second stage of
model development—important if the model is to be used, but beyond the scope
of this thesis.
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1.1 Description of the System

The system being modelled is New Zealand's hydro-thermal electricity generation
system. Electricity is generated by various power stations and distributed via the
National Grid (a transmission network of power lines) to meet the current load.
Stations are powered by various “fuels”. Thermal stations generate power using
heat created, in general, by burning various hydrocarbon based fuels, mainly gas
by-products and coal. Hydro stations generate power using water flow in rivers,
which is partially controlled by hydro dams further up the river. Power from other
sources include geothermal stations; there are no nuclear power plants in New
Zealand.

The stations tend to be partitioned into three groups, characterized by their
generation constraints: thermal stations have a cost applied to the fuel, but little
constraint on the usage of this fuel; hydro stations have no direct cost attached
to water use, but they have limited storage and uncertain replenishment of this
water; and, auxiliary stations which, unlike the first two groups, have no useful
control over their level of generation—they tend to be small capacity stations and
are run continuously. We also include as auxiliary stations, those which are quite
complicated to model but have a very minor effect on the overall total generation.
These include some minor hydro stations, which are not part of other hydro sys-
tems, and are isolated from them; such stations can be thought of as acting like
“free” or base-loaded thermal stations.

Some of the statistics of the major stations are given below. This is to provide
some background on the New Zealand system, as well as to provide an idea of
the scale of the system, and to illustrate the systems capabilities and constraints.
New Zealand has six major hydro systems. The Waikato system (in the North
Island) has Lake Taupo (New Zealand’s largest lake) as its reservoir, and eight
hydro stations in the river system. Lake Taupo can hold in the order of 600
Gigawatt hours (GWh) of potential energy, and the hydro system has a generation
capacity in the order of 900 Megawatts (MW). The Tongariro system (also in the
North Island) has three hydro stations and can only hold up to 1 GWh of potential
energy; the generation capacity of this system is 400 MW. The last hydro system
in the North Island is the Waikaremoana system. This systemn has three hydro
stations, a combined generating capacity of 100 MW and its reservoir can store in

the order of 50 GWh of potential generation. The Waikaremoana system is the
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only New Zealand system with significant storage depletion over time.

Of the South Island hydro systems, the Waitaki system is the most extensive. It
has three major reservoirs and 10 hydro stations (two minor separate hydro systems
are also included in this system). The Waitaki system can store up to 2000 GWh
of potential generation, and has a combined generation capacity of 1600MW. The
Clutha system of the South Island has two hydro stations with a combined capacity
of 700 MW and can store up to 300 GWh of potential generation. The final South
Island hydro system, the Manapouri system, has the most extreme inflows and
hence spills most often. It is a simple hydro system consisting of a single reservoir
and station. The station’s generation capacity is about 600 MW and the reservoir
can hold up to 400 GWh of potential generation.

All of the thermal stations are in the North Island. The northernmost is the
Marsden station which runs on residual fuel oil (from the Marsden gas to gasoline
plant), and has a generation capacity of 100 MW. The Otahuhu station (in Auck-
land) runs on distillate oil and has a generation capacity of 100 MW. The Huntly
station can run on a mixture of both coal and natural gas, and has a generation ca-
pacity of 1000 MW. The New Plymouth and Stratford stations both run on natural
gas and have generation capacities of 600 MW and 200 MW, respectively. Finally,
the Whirinaki thermal station runs on distillate oil and has a generation capacity
of 200 MW. The cheapest fuel is Maui Gas which supplies the New Plymouth,
Stratford, and Huntly thermal stations via a single pipeline. The next cheapest
fuel is coal, then residual fuel oil, with the most expensive being distillate oil.

Auxiliary stations are used to model run-of-the-river hydro stations, small iso-
lated hydro stations with little major effect on the system, as well as the geothermal
stations near Taupo. Waihapa Gas, burned at the Stratford thermal station, may
also be modelled in this way, as it is otherwise flared. There is also some fixed coal
generation at the Huntly thermal plant, which is assumed to act as an auxiliary
station.

The National Grid is a large complex system running AC lines of various voltage
levels between major locations, and a high voltage DC link connecting the two
Islands. As most of the hydro generating capacity is in the South Island and most
of the power use occurs in the North Island, the DC link is crucial to the operation
of the system.

The major differences between the New Zealand system and other electricity
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generation systems in other parts of the world are the high reliance on hydro gener-
ation (with a total hydro storage capacity of only about three months’ generation),
and the great unpredictability of the inflows into this hydro system. These differ-
ences imply the need to design our own specialized model, or heavily tailor another
model to our needs, this is expanded upon in Chapter 2, together with discussion
on models of other systems.

As well as the major components of the New Zealand system already mentioned
there are additional constraints and properties of the system; for instance, the
available Maui Gas supply, used by three of the thermal stations, has an upper
limit on usage over any week. Such additions are dealt with separately from the
overall model, in Chapter 7, so that they do not obfuscate the construction of the
overall model. This is because they are of relatively lesser importance, and not
central to the model being developed.

In this thesis we seek to model the entire system to a level of detail allowable
by a time horizon of the order of one year. It is important at this stage to settle on
the order of the time horizon of the model as, under differing time horizons, differ-
ent areas of the system become more important and particular stochastic elements
have different levels of effect. This is, at least in part, due to the computational
complexity involved in implementing a model of the system as a whole. For exam-
ple, if we are solving a model with a time horizon of a day, the lag time of water
travelling in various river chains from one station to the next becomes important,
whereas, if we have a time horizon of about 30 years, the actual entire river flows

for each week are of lesser import.

1.2 Objectives of the Model

In attempting to model the New Zealand system in this way, we seek to satisfy three
conflicting objectives. The first is to provide enough detail of the physical system
(we would like to model every station individually and the transmission network
exactly); the second is to provide a good account of the stochastic elements, so
as to perform well in an uncertain environment; the third is the ability to obtain
numerical solutions in reasonable time. It seems unlikely that there is one way of
satisfying all three of these objectives to a high degree—an informal conservation

of effort law seems to apply. One could draw a diagram of the relative positions



CHAPTER 1. PROBLEM DEFINITION i}

of models with respect to these three aspects, and determine how close each of the
models is to the mythical centre of this diagram (which simultaneously satisfies all
three objectives to a high degree). Unfortunately the exact placement of a model
on this diagram is dependent on the relative importance one puts on the three
aspects, which is not only a subjective decision, but also dependent on the aims of
the model’s user.

The system is currently modelled by ECNZ in a framework appropriate for
the use of Stochastic Dynamic Programming (SDP) as a solution technique. This
approach tends to emphasize the stochastic elements since, due to the aptly named
curse of dimensionality, it can cope with only a very limited model of the physical
system. The motivation behind this thesis is to “attack the problem from the other
side” and design a model which provides considerable detail for the physical system
and, consequently, has less detail for the stochastic elements.

Some aspects of the system are more difficult to usefully model to a particular
level of detail than their potential effect on system operation would suggest is
worthwhile; usually this is due to the computational complexity added by such an
approach. Instead we must choose an approximation which embodies the essential
character of the particular aspect whilst being implementably achievable. Isolating
such aspects is often a difficult task and one must be guided by previous experience

and the intuition of those who actually run the system.

1.3 Uncertain Supply

It is necessary, in practice, for maintenance and repairs to be carried out on thermal
and hydro stations. Some of this maintenance can be scheduled beforehand and
taken into account by removing that station from the model for a corresponding
period of time. However, maintenance may take place over a time period which is
too short to be modelled effectively, or at a future time which is not known exactly
when the model is run. We must also take into consideration breakdowns and other
outages which cannot be scheduled, and any uncertainty in the fuel supply.
Unscheduled down-time can be modelled as random outages, sometimes called
forced outages. For each station, we specify a probability distribution signifying
the probable maximum generation by that station. These probability distributions

will be only discrete in-nature since a generation turbine can be either up (and so
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able to generate at full capacity) or down (and so not able to generate at all).

1.4 Hydro Detail

The detail sought by ECNZ is mainly in the form of information about individually
modelled hydro reservoirs, since it is the presence of these hydro reservoirs, and the
uncertainty involved in their water supply, which makes it so important to have a
model with the time horizon considered in our model. The current (SDP) model
incorporates only two hydro reservoirs, one for eachisland; a paper investigating the
possible approaches of a new model, Lermit et al. [9], recommended six separate
hydro reservoirs as being a desired level of approximation for the New Zealand
system. It is the intention of the model developed in this thesis to model six
spatially distributed hydro reservoirs.

When moving from two hydro reservoirs to six, one must also make appropriate
changes to the coarseness with which the rest of the system is modelled—modelling
different aspects of the system at vastly differing levels of accuracy can cause un-
wanted additional structure within the solutions which is an artifact of the model
rather than the system, and which could be avoided by using a more evenly ap-
proximated model. For this reason we seek to distribute all stations spatially and
hence model transmission of power from the stations to the power users.

In seeking to model six hydro reservoirs individually we need to determine an
appropriate level of detail for them. The scheduling of the hydro stations is the
most difficult, and most important, job of the model; without hydro stations we
would only need to optimize the scheduling of the system over a day or week, as
no other part of the model has as much effect on the decisions made later in the
year.

One stipulation by ECNZ for the model was that it did not model river chains
using a “spill past” model, as such a model would add complexity to the system
which would swamp the rest of the model and hence affect the level of detail
obtained. The time delay of the water travelling from the hydro reservoir, and
between stations, means that, when a spill past model is used, the generation at
each hydro station must reflect this delay and include the possibility of stations
further up the river spilling so as to allow generation by lower (possibly higher

capacity) stations at some future, higher load, time. These hydro systems are
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complicated enough to model, to such a level of detail, in isolation without the
added complexity of requiring that they, together with the thermal stations, meet
the load requirements of the system.

In modelling hydro stations individually, with or without a spill past model,
one encounters many more difficulties. Hydro reservoirs control the flow of water
down river chains, each of which may contain many hydro stations. The situation
is compounded by having multiple reservoirs and river chains interconnected by
controlled canals. Also, many hydro stations have “forbidden generation zones”,
which define minimum generation levels for each turbine of a station if that turbine
is to be used. These also occur in thermal stations but are compounded in hydro
stations by the fact that the water flow through many hydro stations is controlled
by the same reservoir.

In an effort to avoid these difficulties, we make a quite heavy-handed approx-
imation of the hydro systems: each river chain is represented by a single hydro
reservoir and station. This level of approximation may seem unreasonably coarse;
however, this model is expected to provide generation information for more detailed
models of the individual hydro systems, which in turn return “local” solution infor-
mation with which we can fine-tune the hydro system approximation in the longer
time horizon model (see Section 1.6).

Water enters the hydro systems via inflows, i.e. streams and runoff either enter-
ing the reservoir, or entering the river chain downstream from the reservoir. Inflows
entering the reservoir can be stored or released for generation and so are known as
controlled inflows; the other inflows are known as tributary or uncontrolled inflows.

In our single station approximation of the hydro system we assume the con-
trolled inflows enter the reservoir and the uncontrolled inflows enter the system
between the reservoir and the station (see Figure 1.1).

The capacity of the new amalgamated station is taken to be the sum of the
capacities of each station in the chain. Each station in the chain is assigned a
factor to represent the fraction of water released from the reservoir which can be
used by that station; another factor gives the fraction of the total tributary inflow
which flows through that station. There is also a conversion factor (or function)
for each station which gives its efficiency in converting water to electricity. These
conversion factors are combined, in terms of the fraction of water passing through

each station, to yield an overall generation efficiency for the amalgamated station.
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Figure 1.1: Amalgamated hydro system and representative inflows

1.5 Transmission Detail

As mentioned earlier, the transmission network (National Grid) is extremely com-
plex: transmission characteristics depend on the load and generation at various
points in the system; the network is mainly AC, of differing voltages, with a high
voltage DC link used to get power across Cook Strait; the National Grid has
13 000 km of transmission cable and 180 substations and switching yards; the line
capacities and power loss within the grid vary with the load and generation; also,
the use of AC power means there is power loss from both resistance and reactance.

A detailed model of the transmission network is not required by our model,
as we are interested in the generation schedule (more specifically hydro station
generation) rather than an accurate generation-transmission schedule. For our
purposes the transmission network needs to be represented by only the major lines
between power stations and power users, and the losses and capacities need be
modelled only simply. It is intended that, as with the hydro station generation,
our model will interact with a more detailed model of the transmission network so
as to use “local” solution information about the transmission network to update

our capacity and loss models.

1.6 Putting it in Perspective

In actuality there is an hierarchical structure linking all of the models used. The
model developed here (which shall be referred to as “our model” to avoid confusion)

interacts with other models within this structure, gaining local information from
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highly detailed short-term models and value or volume information past its plan-
ning horizon from long-term models. Our model also provides similar information
for the other models.

The reason for the hierarchical structure is that different models provide dif-
ferent information for different purposes; this structure also embodies an informal
decomposition of the system into manageable pieces which portray, in some way,
the manner in which we intend to operate the system. Each model finds a solution
which is locally optimal in terms of the constraints tmplied by the information
given to it from other models, as well as those ezplicitly defined.

Our model sets generation or storage targets for hydro stations, taking into
account the long term needs for water. Short-term models determine the actual
schedule for a river chain for the coming hour (and indeed a real-time model can
be used to determine the actual generation at the time). A long-term model is
concerned with developing future resources and predicting the needs of the system
as a whole into the future.

The presence of the hierarchical structure defines the environment in which
our model exists. In light of this we must consider the ways in which our model
interacts with other models within this structure. This is important in terms of
the information exchanged, which depends on our model and on the other models

within this structure; this is discussed further in Chapter 6.

1.7 An Implementable Model

In developing a model, implementation and formulation are inextricably linked.
A model which models every aspect of the system to a high and desirable level
is all but useless if it can be solved only by brute-force methods which do not
converge in a reasonable time, or even at all! Similarly, a model which has been
designed specifically for solution via an elegant solution method, but which does
not adequately represent the system, is also effectively useless.

Therefore, in developing a model, careful thought needs to be given to the
solution method as well as ensuring that the formulation represents the system well.
This does not mean, however, that one must decide on a fixed solution strategy; it is
better to consider many options in both the formulation and implementation phases

which can later be tested to decide upon the best combination for the required task.
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Generally a method will require tailoring to solve the model developed smoothly
and efficiently.

One of the most significant partitions in developing formulations is that of
linear and non-linear models. The advantages of a linear model are that there
are many solution methodologies available for them and that one can solve larger
linear models than non-linear ones. Another significant partition is that of convex
and non-convex models. Results abound on the properties of solutions to convex
problems, however in the non-convex case one cannot be sure whether the solution
obtained is indeed globally optimal or not.

It is _i;nportant that linearity and convexity be achieved, where possible, by
transformation, rather than approximation, of the formulation. However, if the
non-linearity or non-convexity is slight (in some sense) it would probably not change
the model much by making appropriate approximations. In such cases one needs

to consider the consequences of such action carefully, although often such approx-

imations are all but necessary to allow tractable solution.
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Chapter 2
Past Solutions

n this Chapter we do not present an exhaustive survey of all related literature.

We only highlight those papers which are important in model development
or which illustrate an important modelling or solution technique. The reason for
this is that we are modelling a specific system and so few reported models are of a
direct relevance. We seek to highlight literature which is relevant to the modelling
of the New Zealand system, or which contrasts with features of the New Zealand
system, leading to important observations about the structure of the model to be
developed. This is most effectively achieved without the unnecessary clutter an
exhaustive survey would inevitably create.

The New Zealand system has unique attributes, including: the mix of hydro
and thermal generation, the lack of any import or export of electricity, the unpre-
dictability and high variance of the inflows, and the relatively small total storage
capacity. The effect of this is that none of the models presented in the literature for
other systems can be directly used in New Zealand. The difficulties inherent in the
New Zealand system mean that, even when converted to allow for the New Zealand
conditions, the models and algorithms presented in the literature are challenged,
computationally, by the New Zealand system.

This provided the initial motivation for our approach. We seek to develop
a model which accurately portrays the New Zealand system, highlighting those
aspects which are seen as important to the system, in terms of the structure imposed
upon solutions. Because of this we do not intend to adapt an existing model to
the New Zealand system (such an investigation is currently being carried out at
ECNZ), but to create one from scratch. In doing so it is important to investigate

other approaches, both to solving the New Zealand system and other systems,
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which have been taken.

When modelling such a complex system one must inevitably make simplifi-
cations and approximations. Often these depend on the system being modelled,
whereby simplifications which are reasonable for one syvstem may be unreasonable
for another. For this reason it was decided that the model being developed should
“aim for the stars”, i.e. we want to describe the system in as much generality as
practicable in the model, and then make any simplifications necessary to allow the
model to be computationally feasible to solve. This should have a two-fold effect;
firstly, it will go a long way towards defining exactly what simplifications are made,
and, secondly, it will make it easier to expand the model in light of advances in
modelling and computer solution techniques. It is realized that not all simplifica-
tions and approximations can be left to be applied when the model is completed;
some are fundamental to the view of the system (such as those made in Chapter 1),
and others are needed to define the structure within which we model other aspects.
For this reason, in investigating other approaches to similar problems, we highlight
the inherent simplifications as well as the novel modelling techniques.

Many of the papers to be discussed present algorithms as well as formulations.
As noted in Section 1.7, in the development of a model both the formulation and
method of solution must be addressed. Formulations are often developed in a par-
ticular way so that special structure may be exploited in the solution method, or to
provide an illustrative example of a solution technique. We do not intend to exam-
ine this trade-oft here, since the models developed are for many different systems,
each with different attributes and different aspects of importance. A discussion
considering the trade-off only in terms of the New Zealand system would obviously
be highly biased towards models developed specifically for the New Zealand setting.

None of the approaches that will be examined here take explicit account of the
geographic location of power stations and load; it appears the main reason for this

involves the difficulties that such structure evokes.

2.1 Maximizing Generation

Various models have been developed for systems in which hydro generation is not
crucial, or is a beneficial side effect of scheduling hydro releases for other purposes,

such as irrigation. In these situations the emphasis is not on the cost of power
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generation but on maximizing the amount of hydro generation that can be coaxed
from the system. This differs from the situation where the emphasis is on the cost
of alternative generation or in explicitly attempting to meet the load requirements
of the system.

Both Ikura, Gross, and Hall [8] and Soliman and Christensen [21] describe
systems where the emphasis lies entirely on the accurate modelling of the hydro
systems involved. For the New Zealand system, such accurate hydro system models
are within the realms of the short term modelling (with a planning horizon of
about a week). Due to the time scales used in both [8] and [21], however, there are
modelling techniques which can be exploited in our model.

The lack of explicit modelling of thermal station generation in these systems
makes most of the modelling techniques irrelevant to the New Zealand situation,
since incorporation of these aspects would tend to make any model so developed
computationally infeasible. Also, in the New Zealand system, the load levels are
very important to the running of the system, as it is the load to be met which
determines the cost of generation. The maximization of hydro generation is not
an adequate substitute for this. The major modelling technique that appears to
be most useful for incorporation in a model of the New Zealand system is the rep-
resentation of hydro systems as networks, using bounds on the arcs to represent
constraints on river flows, generation and storage. Storage is represented by tem-
poral arcs which represent the volume of water carried from one time step to the

next.

2.2 Purely Deterministic

For many generation systems the hydro component is either relatively minor, overly
constrained by external limitations, or reasonably predictable in its inflows. In such
situations the use of a purely deterministic model, with the possibility of considering
a few inflow scenarios, is adequate. This allows for a very detailed model of the
physical system and is especially useful when the interactions within the system
have more of an effect on solution structure than any stochastic elements. It also
allows explicit expression of the effect of reservoir levels and turbine flow rate on
the generating efficiency of hydro stations and other non-linear dependencies of the

system.
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Due to large inflows which occur in Spring for the system modelled in (8], it
1s more concerned with minimizing the adverse effects of too much water, which
are not always quantifiable. For this reason they use a deterministic model and
evaluate the effects of various scenarios manually. In New Zealand it tends to be
the long term lack of water that is of most concern.

Lyra and Tavares [11] and Rosenthal [20] both use deterministic approaches
in which the cost of thermal generation is an explicit, and fixed, function of the
load not met by hydro generation; this appears to be a very “Engineering” type of
approach. The advantage hereis that one can model quite complex functions of the
efficiency of various thermal stations, and so it appears that, in these situations;
this thermal efficiency has more of an effect on the structure of solution than
any stochastic effects. In this case many stochastic aspects could adequately be
evaluated by comparing the solutions for a few important scenarios.

This approach has also been taken in Nabona [13], where the uncertainty of
inflows have been taken into account. The implicit assumption that inflows are
totally correlated in time, and the small number of different inflow sequences in-
vestigated for a few river systems, mean this approach has most of the advantages
and disadvantages of a purely deterministic approach.

Boshier and Lermit [1] use a deterministic approach to the New Zealand system.
The hydro reservoirs are amalgamated into catchment areas, and hvdro generation
is assumed to depend linearly on the volume of water released. Similar assumptions
about totally reliable thermal generation transform the formulation into a linear
Network, which is especially useful. A single transmission line (the DC link between
the North and South Islands) is modelled explicitly, but no transmission losses are
applied. Again the stochastic aspects could be taken into account by moving to a
scenario type approach.

Unfortunately the unpredictability, high variance, and lack of spatial correlation
in New Zealand’s hydro reservoir inflows make an approach which ignores the
stochastic aspects, or evaluates the effects of such manually, unacceptable. It is,
also, important to have an accurate model of the thermal generation as, in our
model, we seek to include information on the geographic distribution of stations
and load; this would completely eliminate the usefulness of modelling the cost of

thermal generation explicitly in terms of load not met by hydro generation.
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2.3 Stochastic Aspects

There are various methods for stochastic modelling and solution methodologies
which account for stochastic elements explicitly. In the New Zealand system, the
uncertain aspects with the most effect on system operation are the inflows into
various reservoirs. For this reason we separate our discussion on stochastic aspects
into two parts: those concerned with hydro reservoir inflows, and all other aspects
of the problem. The discussion on the exact method of accounting for inflows is
left until Chapter 6. For now we accept the necessity of modelling these stochastic
elements, but make no judgments on how such aspects will be modelled. Instead
we concentrate on the physical system being modelled, explicitly including the
stochasticity inherent in load and thermal supply.

There are many ways in which to incorporate the uncertainty in future loads;
one way is to use the average load for each week. The advantage of this approach
is that the average load can often be forecast with reasonable certainty and it
also simplifies the model with respect to thermal generation. When one takes into
account the fact that releases and inflows into the hydro system are often only
specified as totals over a week, this is not such an oversimplification.

Li, Yan and Zhou [10] and [11] use such an approximation for load. However,
[10] does try to take account of peak loads (and forced outages) by derating station
capacities. This approximation does not allow for the fact that peak load is appar-
ent for only part of the week, and only particular stations (which may not be known
in advance) are available to meet peak load. It also takes only above average load
into account, not below average load; this may mean that certain stations do not
generate at peak efficiency, and is liable to ruin any advantage gained by explicitly

using generation efficiency.

2.4 Load Duration Curves

The use of average load comes about because of the difficulty in approximating
and forecasting load. Most models divide the time horizon into discrete time steps
whose duration is a day, week, or month. Load is often characterized by two
major peaks in each day, as is the case in New Zealand. When forecasting load
the uncertainty is not only in the height of the peaks but also in their times of

occurrence. The degree of certainty with which load is forecast can be increased
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a little by moving to a slightly different representation—rather than considering
load as a direct function of time (as in a Load Curve representation), one can use a
curve which gives the fraction of time each load level occurs, 1.e. a Load Duration
Curve (LDC) (Electric Power Research Institute [6]). Figure 2.1 gives an example
of a Load Curve over a day, and its corresponding LDC. In using an LDC one
removes the uncertainty of exactly when peaks occur as well as information on the
difference in height of the two peaks, so LDC’s can be forecast with more accuracy
than Load Curves.

Most approaches use a single LDC to represent all of the load, e.g. Boshier,
Manning and Read [2], Dembo et al. [4] and [20]. In this case, the generation
pattern can be determined by finding the actual load, at a particular time, on
the curve and reading off the corresponding generation. Of course with such an
approximation one cannot specify start-up costs, as it is unclear how often the
station will be turned on and off. This is actually not such a burden as start-up
costs usually require integer variables to model them and so either become part of
the station’s efficiency curve or are left out of models of this scale entirely (and are
instead modelled in shorter time horizon models).

Another feature of the system which lessens the need to model start-up costs
accurately, 1s that not all small stations are modelled explicitly. There are various
stations which are modelled as auxilary stations, for convience and computational
tractibility, but which have more control over their generation than this would
imply; these stations can be used to smooth over start-up periods, and handle
discrepancies between the forecast and actual load.

These problems can be partially side-stepped by also specifying an approximate
“unsorting” of the LDC; this is done in Pereira and Pinto [14] (also [18]), where
discrete Load Curves are used. However, the time dimension is partitioned into,
possibly, unconnected regions over which the load is constant, which effectively
models the load as a discrete LDC with a specified “unsorting” to allow some
intra-week constraints to be applied.

In explicitly modelling the geographic distribution of load, there is another
dilemma to be faced. If all load, for one time step, is treated as a set of LDC’s,
once the generation schedule has been determined it is difficult to determine the
actual generation of each plant, since we have an implicit assumption that all load

is coherent (peaks occur at the same time); if a peak occurs at one location before
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it occurs elsewhere, the exact generation schedule to use is unclear. In reality, there
are shorter time-horizon models which are used to determine the actual generation
schedule used. The model being developed is used only to determine the mix of
hydro and thermal generation that should be used during the week, taking into
account the need for hydro over the year. The load is included explicitly to ensure
feasibility of the generation schedule, and not to provide explicit generation timing.

Given a Load Curve (forecast or from past data), the corresponding Load Du-
ration Curve can be calculated by sorting the Load Curve from highest to lowest
load. In theory one could determine the exact generation schedule by unsorting
the load and generation given by the model; however, there will be the same uncer-
tainty in the generation as for the forecast Load Curve. Furthermore, generating
an LDC from a forecast Load Curve is not as robust a method as forecasting the
LDC directly, in which case there is no specific underlying Load Curve.

One of the advantages of using LDC’s, which is exploited to include the uncer-
tainty in supply, is that the inverse of an LDC is a probability distribution function
(see Figure 2.2). This function gives the probability that the forecast load is above
each power level. Because of this we can include uncertainty in the forecast LDC by
changing the probability function used to be the total probability that the load is
above each power level, i.e. explicitly including the uncertainty of the forecast. The
LDC used is then the inverse of this probability distribution function, for which

there is no underlying Load Curve.

2.5 Filling an LDC using Thermal Stations

Given an LDC, we can determine the generation schedule of a given set of power
stations by determining the load each station must meet; this is known as filling the
Load Duration Curve. For a totally reliable, purely thermal system, this is achieved
by scheduling stations in increasing order of cost ([6]). Each station is scheduled
to generate at its peak capacity or at the remaining load level, whichever is lowest;
this generation is then removed from the load and the next station is similarly
scheduled. This leads to generation schedules similar to that shown in Figure 2.3.
When scheduling thermal stations one would like to take account of possible
forced outages (see Section 1.3). This can be done by re-solving the model, for each

state of each station, to determine the expected cost of generation. It should be
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obvious that such a task becomes extremely time-consuming for even a moderate
number of stations, as the total number of states is exponential in the number
of stations. Luckily, when using an LDC to represent load this can be achieved
with much less effort. The convolution of the probability distribution function
representing the probability that the station can meet various load levels with
the probability distribution function associated with the LDC gives a probability
distribution function representing the probability that the remaining load is above
various levels. Subsequent stations fill the remaining load in a similar manner (see
61)- )

An example of an LDC filled by such a method is used is given in Figure 2.4. It
must be remembered, however, that this schedule is derived only for the purpose of
determining the expected cost of generation. For the actual schedule of generation,
one must schedule all currently operational stations, at their current capacity, as
if they were totally reliable.

When one attempts to include information on the geographical distribution of
load and stations, it becomes necessary to calculate the expected cost by explicitly
re-solving the model for every state of the stations, since a change in the geo-
graphic distribution of power available may also change the optimal distribution of

generation.

2.6 Hydro Stations Filling LDC

For hydro stations one schedules their generation in one of two dual ways: given
the dual cost associated with the hydro station, it can be scheduled as if it were a
thermal station with this dual cost as the cost of generation; alternatively, given the
volume of water released (in terms of average potential generation), the station can
split the LDC, removing a section with height equal to its generating capacity and
area equal to the potential generation of the release (this is shown in Figure 2.5).
Station generation efficiencies can be modelled as functions of average potential
generation, and the effect on the generating efficiency of the reservoir level can
be modelled as a (non-linear) function of both average potential generation and
storage.

The difficulty involved in specifying the dual price of a hydro station is that

often this price is exactly the same as the fuel cost of one of the thermal stations,
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namely the station whose generation is effectively split (see Figure 2.6). In this
situation, it is unclear as to which station should be scheduled first. Often a rule
of thumb that the thermal is scheduled first is used, as, since both stations cost
the same and hydro inflows are uncertain, it is better to act on the side of caution.
In actuality it is probably the case that scheduling either of the stations first does
not yield the required generation. The problem in this case is that, if the hydro is
scheduled first, more water will be used than desired and so later, the order will be
reversed (and vice versa), often causing an oscillation in which the hydro station
and thermal station alternate in being run at full capacity and turned off.

The difficulty in scheduling hydro stations in a primal manner (given the release)
is that one needs to determine exactly where the station splits the curve—that is
the 6 shown in Figure 2.5. As with thermal stations one can include hydro station
uncertainty here; in the case of the primal method, the probability distribution
function corresponding to load is shifted by § before convolution, and in the case of
the dual method, one must also schedule all of the stations as if they were totally

reliable in order to determine the actual release.

2.7 Geographical Distribution of Power

None of the models in the literature deal explicitly with the geographic distribution
of load and stations. Some of the models do include some transmission constraints;
in general, these are in the form of capacities (and possibly losses) between the
station and the “pooled” load (see [18] and [10]). Models of the New Zealand
system explicitly include only the North-South DC link, due to its importance to
the system ([1]): this effectively partitions stations into two sets, those in the North
Island and those in the South Island.

The reasons for these omissions seem to be the difficulties in implementing such
an approach, and, at least in New Zealand, the actual freedom within the trans-
mission system in terms of capacity of lines. However, it is not just the capacity of
lines that has an effect; there is power loss in the transmission system and, most
importantly, the actual distribution of power. When considering the distribution
of power generation over multiple hydro reservoirs, it becomes important to also
consider the distribution of this power geographically. This geographic distribution
of power will be dealt with explicitly in the model developed.
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2.8 How Many Hydro Reservoirs?

The number of hydro reservoirs modelled by the various methods varies wildly. For
instance, there are 37 reservoirs modelled in Pereira and Pinto [15] but only two
separate reservoirs modelled in [2]. The reason behind this variation involves the
effects of the stochastic elements on the system—in a deterministic model there
is effectively no limit on the number of reservoirs which can be modelled, but, for
a stochastic model, this limit is very dependent on the correlations, predictability
and variance in inflows between reservoirs and over time.

The New Zealand system has six or seven important separate catchment areas;
however, to date, the system has only been able to be modelled effectively using
two separate catchment areas, because of the unpredictable inflow patterns, the
small storage capacity (in terms of total yearly generation), and the fraction of
hydro generation in the total generation ([2]). All of these factors mean that the
stochastic aspects can not be smoothed out of the system operation in any way,
i.e. the system must be run in response to the stochastic aspects as they occur.

Other systems with a larger volume of hydro storage can effectively smooth
out the variance in inflows with this storage, and the average predicted inflows are
useful in scheduling the system. In New Zealand it is the actual inflows which are
of prime importance, making the task of scheduling generation quite difficult.

Our model attempts to model the New Zealand hydro system using six sep-
arate reservoirs. It is hoped that the information gained about the running of
the geographically distributed physical system goes some way towards balancing
the inevitable loss of stochastic information required to make a computationally

feasible model.



Chapter 3

Desirable Features of the Model

his chapter describes the aspects of the problem seen as important to be well
7-Vmodelled7 and features which the model should possess. This includes both
features which are modelled well by other models:(as described in Chapter 2), and
features important to the New Zealand system which have not yet been modelled
well elsewhere. The goals are to give all of the important aspects a consistent level
of detail, to seek to isolate these aspects, and to provide approximations which give
an appropriate level of detail.

The intention is to propose elegant approximations and approaches to be in-
corporated into the model. However it is not always possible to find an elegant
approach for every aspect of the model and therefore in this case we settle for a
good approximation. Of course all approximations, both elegant and otherwise,
need to be modelled well in terms of implementability (including solution time)
and closeness to reality.

The first part of this chapter focuses on a “first step” model in which the
details of the approximation of the load and generation are not fixed; the actual
approximation to be used is discussed in the second part. The reason for thisis that
the choice of our approximation depends on the interaction of load and generation

with, and within, the system.

3.1 A Flexible Model

As mentioned in Section 1.2, our model attempts to satisfy three conflicting ob jec-

tives: detail of the physical system, effective planning for an uncertain future, and
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computational efficiency. However, we do not seek to explicitly define the best way
to achieve this, nor do we intend to rank the three; such decisions lie ultimately with
the end-users of the model and it should be able to survive a re-prioritorization of
the goals of these users. To accommodate these goals, the model should be made
as flexible as practicable. This does raise another difficulty, however, as now there
is need to investigate the effects of making allowable changes to the model on the
quality and structure of the solutions given.

Flexibility also allows the advantage that the same base model can be used for
different purposes; for instance, it may be desirable on occasion to make compu-
tationally expensive runs incorporating greater detail than usual to estimate the
deviation from optimallity, and the changes in structure, of the solutions usually
obtained.

The flexibility needs to be easy to control, in that the overall structure of the
model needs to remain constant. We desire flexibility that allows us to change the
level of detail with which we model one aspect of the model, whilst leaving the rest
of the model alone. As an example, we do not want to change the model from a
linearly constrained problem to one with non-linear constraints, even though this
may provide a finer approximation for load. Of course such problems in allowing
flexibility may be unavoidable, and the aspects of the problem for which they occur
need to be identified.

A related aspect of the flexibility is that we seek flexibility in terms of changes
to the model which only affect the (local) structure of the model, whilst leaving
the character of the solutions unchanged. We seek the model to be robust in
terms of the changes to the approximations we may make. Explicitly, if we move
to a coarser approximation which could have been thought of as valid under the
previous approximation, then the solution to the coarse approximation needs to be
a feasible solution to the finer approximation, and no better solutions to the finer
approzimation should be feasible for the coarse approzimation. That is, we want

coarser approximations to be sub-sets of the finer approximations.

3.2 Internal Consistency

In seeking flexibility and elegance we need to be careful that we do not end up

with a model which is a collection of different, elegant, ideas tied together only by
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the fact that they all model different parts of the same problem. Such a model will
tend to enforce structure on the solutions not present in reality—structure which
reinforces the differences in the modelling of various parts of the system, and which
may, in effect, represent differing management styles, or policies, for these parts of
the system, which do not occur in practice. For instance, if at some point during
the year we change from inflows of a stochastic nature to deterministic ones (in an
effort to cut down on the solution time, say), we are implying that after that point
in time our knowledge of the future becomes exact, and so we could leave lake levels
in a significantly worse condition then than we could possibly have allowed before
that time; in terms of management policy, after this point in time, management of
lakes becomes less conservative, and the solutions given by the model will reflect
this change.

We require the model to be as internally consistent as practicable. It may
appear that this is the same thing as requiring the detail of every element of the
model to be at a consistent level, but, to allow flexibility in the model, we seek
to allow similar parts of the model to be modelled at differing levels of detail and
yet with an overall consistent approach. This consistency requires that aspects
of the model which are the same in scope be modelled via similar methods. For
example, we do not mind if hydro releases are modelled as volumes of water over
the entire week while generation is modelled as a function of time, but we do not
want thermal generation to be modelled as power output over time while hydro

generation is modelled as just total energy output for the week.

3.3 Geographic Distribution

The most important difference between our approach and the SDP approach cur-
rently being used by ECNZ, is that our aim is to allow stations and power users to
be distributed over different geographic locations. This is best done by introducing
some sort of network structure into the model.

We leave describing the actual form the network structure will take until Sec-
tion 3.5. It may very well turn out to be a Linear Network in the strict Oper-
ational Research sense of the term—however, we do not mean to imply this is
the only structure it can have. Network structure, in our interpretation, will be

taken to mean that we have an underlying structure which can be thought of as



CHAPTER 3. DESIRABLE FEATURES OF THE MODEL 27

an (un)directed graph in which “arcs” which represent possible paths of flow of
some commodity and “nodes” represent points at which this flow interacts. In
essence we are more interested in the pictorial nature of the network than the
strict mathematical structure.

Facilities deemed to be coincident will be at the same node, and transmission
lines between these locations will act as arcs. As it is the transmission network
which represents the arcs, and thus relative displacement of nodes, it is a misnomer
calling this the geographic network; since we want to distinguish between this
network and the actual transmission network it is an approximation of, and since
different pﬁces in terms of the transmission network will be at different geographic
locations, we will continue to label it as such.

The desire for a flexible model means we would like the geographic network
used to be altered with little difficulty, in terms of the appearance rather than
the structure. This means that, when designing the model, we should not fix the
network to be used, but think in terms of an arbitrary geographic network. How-
ever, for the purposes of implementation and to allow for the creation of a working
model to work with, we define the network of Figure 3.1 to be the representative

geographic network of the model.

3.4 Time

As described in Section 1.1, the time horizon this model should cater for is of the
order of a year, but this needs to be allowed to be flexible. Different time horizons
can mean that different aspects of the problem become more, or less, important so
we need to keep in mind the intended time horizon for the model.

In choosing a fixed time horizon one needs to take into account the structure
in the various forms of data used in the model, especially any periodicity in this
data. Load curves have recurring patterns each day and week (as well as seasonal
effects), while lake and inflow levels express seasonal patterns; these patterns mean
that our model will need to have a time horizon which is an integral number of
weeks, and, in fact, to account for the seasonal effects, an integral number of years.
The problem of a calendar year not being an integral number of weeks is considered
later in this section.

It would be nice to be able to represent the time dimension of this model
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continuously. Comparing the two graphs of Figure 3.2, which show the entire load
for the North Island for one year and for a single day, it seems that trying this
type of approach will inevitably lose a lot of important information and require
horrendously large approximations (there are more than 720 local maxima for the
curve showing the entire year). On the other hand, splitting time up into smaller
portions seems to be trying to impose structure on the model which is not there in
practice. However, there does not seem to be any reasonable alternative.

Therefore, we choose to split the time horizon up into smaller time steps. As
with the time horizon itself, we need to base the length of these time steps on the
periodicity of the various problem data. Flexibility requires that we do not fix the
length of the time steps outright; as we require a fixed case for our working model,
we choose a weekly time step for this. This choice is reinforced slightly by the fact
that, for the current model used by ECNZ, Taupo, the major North Island hydro,
has a storage cycle length of about a month. ¢

The problem that months, seasons and years are not integral numbers of weeks
can, in general, be ignored, as the effects of changing the length of these longer
periods to become an integral number of weeks should be minimal, and, due to the
periodicity of the load, this seems more appropriate than to change the size of a
week so as to fit an integral number into a year. Of course one must be careful
when using data which is taken over periods which are not an integral number of
weeks long; as an example of this the inflow data used for this thesis was given as
52 evenly spaced inflow levels for each year.

Since the length of a time step is not fixed we will assume that all time steps are
normalized, i.e. have a “length” of one; this effectively sets our unit of time. The
time horizon is taken to be Y time steps long, where ¥ is a positive integer. Irre-
spective of the length of the time steps, we will henceforth refer to them generically

as weeks and the to time horizon generically as a year.

3.5 Transmission

Before talking about the transmission of power around the system it would seem
that we should decide on the form of the power representation. However, this
form depends on the interactions we require our power representations to have,

which in turn depends on how we are going to model transmission and generation
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and how we approximate load. This Section describes which features we wish the
transmission to possess.

As mentioned in Section 1.5, we do not seek to model the transmission net-
work exactly. Also, to deal with the need for consistency, we should not model the
characteristics of the transmission lines beyond the level at which we model gen-
eration and load. Each arc of the geographic network represents transmission over
a part of the National Grid; for each arc we specify a capacity and loss function,
representing similar characteristics displayed by that part of the National Grid.

If the loss function is chosen to be non-linear (quadratic is a good approximation
of loss and stems from well-grounded theory) the model will then have non-linear
constraints, be they modelled explicitly as constraints or as a penalty function in
the objective. To allow flexibility, we shall consider the possibility of either linear
and non-linear losses in the model. However, for the working model, we settle for
linear line losses. ¢

The DC link is very important, in terms of the system operation, and it is
deemed important, by ECNZ, that the loss structure on this arc is modelled with,
possibly, greater accuracy than that of the other lines. Our desire for consistency
in approach would seem to require that all lines be modelled in the same way,
however the DC link does have a different structure to other lines; it is DC and
so has no reactance loss, it is the only connection between the South and North
Islands, and it is also important to the system in terms of the reliability of supply.
For these reasons, and that of flexibility, we allow the loss of the DC link to be
modelled non-linearly even when other line losses are being modelled linearly.

If the transmission lines are to have an inherent power loss, one must be careful
about the direction of transmission. One can think of negative transmission as
being transmission in the opposite direction, but when we apply the loss function
to this negative power, the (negative) power seen at the other end of the line needs
to be sufficient to ensure that when it enters the line (as positive power transmitted
in the opposite direction) the power seen at this end of the line is the original power
transmitted negatively in the other direction. Mathematically this means that, for
any loss function, f, we require f(—f(—z)) = z. However this is not the case for

a linear loss, since, if f(z) = az for some a € (0, 1], then;
f(_f(_x)) = f—(—a(—x)) = f(az) =a’z # z, unlessa =1

Figure 3.3 shows this pictorially.
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Hence, for linear loss, we need to split the arcs into two oppositely directed arcs
and allow only positive power to be transmitted in each direction. We may also
have to apply this arc-splitting for non-linear losses since, in requiring the above
condition, the loss function may be non-differentiable at zero. This can be seen

from the linear loss function example.

3.6 Load

Load is modelled as occuring at the nodes of the geographic network, represented
as a Load Duration Curve over a week, as discussed in Section 2.4. Although this
representation removes some local information about the load, having a separate
LDC for each week means we do retain some of this information, with the advantage
that it is in a form that is more easily approximated well. The exact approximation
we use for LDC’s and other electricity curves is dealt with in Section 3.10.

By including an underlying network one must address the issue of the interaction
between Load Duration Curves, be this direct interaction in which load moves
around the network or indirect interaction where generation from the same station
is used to meet the load at two nodes. In investigating this interaction it should
be recalled that the Load Duration Curves are forecasts of load and so inherently
include some uncertainty. There are two fundamental forms of interaction which
can be considered: interaction in which the Load Duration Curves are considered
to be coherent, or independent.

For coherent interaction we are assuming the LDC’s can all be specified from
one parameter, which is some combination of time and the forecast uncertainty.
Therefore, if we know the value of one LDC for a particular parameter value, we
can infer ezactly the value of all other LDC’s at the same value. This form of
interaction is achieved by adding the appropriate curves.

For independent interaction the assumption is that there in no correspondence
between the values of one LDC and the values of any other. Knowing the value
of one LDC at a particular time gives no information whatsoever about the other
LDC’s values at that time. This interaction is achieved via a convolution of the
directly interacting curves.

In actuality, the LDC’s of a particular week are highly correlated and so combin-

ing them as if they are coherent is a reasonable approximation. It may appear that
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the correlation can be increased by using Load Curves rather than Load Duration
Curves, but this is not necessarily the case. One of the reasons for using LDC’s
is the reduced uncertainty in forecasting them relative to forecasting Load Curves
(refer to Section 2.4). The coherence which is lost in using Load Duration Curves
instead of Load Curves is made up for in the greater certainty with which they
can be forecast. So, in terms of uncertainty there is little difference in using Load
Curves or LDC’s. The approximation advantages therefore make using LDC’s the
preferred approximation.

For the artificial case where the actual Load Curves are known, Figure 3.4
shows the real (addition of the Load Curves), coherent approximation (addition
of the LDC’s), and independent approximation (convolution of the LDC’s) of the
interaction between two LDC'’s.

It should be noted here that if one wishes to use Load Curves instead of LDC’s,
the model should allow this by using a finer approximation for the load; since the
decreasing nature of each LDC is exploited later, this would require major revision
to the model, and so is not investigated directly. However, the tools used in other
areas of the model should be sufficient to allow a reasonable approximation to be
made to this end.

Having decided on the type of interaction between load at different nodes means
that we have settled on the structure underlying the network. The interaction at

a node, j say, without any stations, is simply

> A(X:()— > Xi(t) = Lj(t) Vte Week, (3.1)
1€IN(J) 1€0UT(s)

where, IN(j) and OUT(j) are the set of arcs entering and leaving node j respectively,
X 1s transmission as a function of time over week w, and f; is the loss function for
arc ¢, and L; is the load as a function of time over week w at node j. In all cases
the time dimension is in terms of the LDC parameter (which could be thought of
/as “sorted” time), and w.l.0.g. we assume the domain of all LDC’s (and hence all
related curves) is the interval [0, 1]; if this is not the case, an affine transformation
can be used to map Week,, — [0, 1], mapping the beginning of the week to 0, and
the end of the week to 1. Equation 3.1 requires the transmission in and out of the
node to exactly meet the load there; for a node with a station, a similar equation

will apply but the station generation needs to be included (see below). For a fixed

¢t and linear loss on each arc, Equation 3.1 characterizes the network constraint of
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a Generalized Network!.

3.7 Stations

Each station needs to generate power so as to meet the load at its node and the
nodes to which its power is transmitted. Constraints on station generation include a
generating capacity, possible uncertainty in supply, a fuel cost (for thermal stations)
and a limited supply of water (for hydro stations).

To incorporate an uncertainty of supply in generation meeting load at other
nodes, we need to identify, for all loa{a, the stations which were used to meet that
load. This requires a vast amount of information, as every station would need to be
represented at every node. We could, instead, re-solve the network for every “state”
of the stations, but this would require a lot of computational effort (see Section 2.5).
Alternatively, we could model this uncertainty so ds to try to make it independent of
the actual meeting of the load. This independence could be obtained by separating
the generation of power from the supplying of load. One way to achieve this
is to require that stations at the same node present a “Contract Curve” (C.C.)
representing the load they have chosen to meet. The C.C.’s are required to meet
all load when distributed via the transmission network, and the stations at each
node generate power so as to fill the C.C. at that node. Unfortunately changing
the state of a station could also change the optimal distribution of the Contract
Curves. However, it may be a reasonable approximation to assume that it does not.
This assumption means power stations can compensate for uncertain generation of
other stations at the same node (but not at other nodes), since C.C.’s are filled,
by the stations at that node, in the same way LDC'’s are filled by other modelling
methods (c.f. Section 2.5).

The inclusion of the C.C. means that, at station node, j, Equation 3.1 becomes

Gi(t)+ > fuXi(t)— X Xi(t) = L;(t) (3.2)
1EIN(7) 1€0UT(J)
where G is the C.C. for node j.
The C.C.’s are obviously non-negative, since allowing them to become nega-
tive means we get paid for creating load at a station. We assume the C.C.’s are

decreasing. The reason for this is that, since all of the LDC’s are decreasing, the

'Here the load represents a sink of the network (in standard network terminology)
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marginal cost of meeting any load, by any station, is also decreasing, so it will
not be of benefit to generate more at a time of lower load than when the load is
higher. Also, since the load is in terms of LDC’s, if we do have generation at a
station which is not decreasing then, when we come to implement this solution,
it is not clear how that station’s generation should be resolved. By imposing this
constraint we are also implicitly imposing some sort of regularity constraint on a
station’s generation. In light of this there seems little point in allowing load to be
given in terms of Load Curves, as proposed at the end of Section 3.6.

Further, we can impose such structure on the C.C. and not affect the optimal
solution of our model. The advantage of this is that the non-negativity condition

and any capacity constraint on a C.C. simply become
G(1) >0, and, G(0)<G (3.3)

where G : [0,1] — R is the C.C. and G is its capatcity.

Since the thermal and hydro stations fill the C.C. in different ways, we consider
the two separately, so as to investigate the impact these two methods of scheduling
have on both the way in which the problem is modelled, and the form of the

solutions given.

3.7.1 Thermal Stations

Thermal stations each have an associated cost of generation, so when filling a C.C.
we schedule the cheapest stations first. As part of this scheduling we incorporate the
uncertainty of supply of stations (see above discussion) by convolving a probabilistic
generation profile from the C.C.; as was discussed in Section 2.5.

To perform this convolution one requires the inverse of the C.C., which is the
probability distribution function form of the C.C., since the C.C. is over the inter-
val [0, 1] (see Section 3.6). To calculate this inverse in practice can be difficult and
computationally intensive. It is, however, possible to approzimate the inverse in-
stead of calculating it exactly. Discussion of how the convolution is to be achieved
is described later in the context of the model developed in Chapter 4.

To calculate the cost of generation for a thermal station we merely need to
calculate the difference between the amount of required generation before and after
that station is scheduled. All this requires is to be able to find the area under the

resulting C.C., or, in terms of the inverse, the area under the associated probability
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distribution function over the interval [0, o).

3.7.2 Hydro Stations

Hydro stations have the added complication of having to use water, a limited
resource, to generate their power. Limited storage capacity and uncertain inflows
into the hydro system make hydro stations difficult to model. The added difficulty
of having many stations on a river chain is remove_c-l-by amalgamating river chains
so that each hydro system is represented by a single reservoir and station (see
Section 1.4). This choice is reinforced by the fact that, over the weekly time step,
the lag time between stations becomes reasonably insignificant, and so, the implicit
assumption that all stations on a river chain generate in phase is reasonable.

The data for the controlled and uncontrolled inflows (see Section 1.4) is given
as the average inflow for each 51—2 of a vear, and th‘e inflow sequences for the last 60
years are used to predict the future inflows. Since we have effectively sorted the
time dimension during each time step by using LDC’s, we can not use any finer time
scale information than the total inflow during each time step. Therefore we must
make a decision about how to model the inflows with respect to the generation.
The assumption is made that the controlled (and some of the uncontrolled) inflow
arrives in such a manner as to accommodate any generation sequence required
for the station; the rest of the uncontrolled inflow is then assumed to arrive at a
constant rate throughout the time step. A factor is assigned to each hydro station
indicating the fraction of the uncontrolled inflow which arrives at a constant rate.
These assumptions are not unreasonable when one takes into account the river
chain structure incorporated within the amalgamated hydro station and the fact
that many hydro stations have some control over the “local” water flow. In terms of
the model, the whole uncontrolled inflow provides a minimum generation amount
for the whole time step, and the uncontrolled inflow arriving at a constant rate
provides a minimum generation level for each hydro station’s generation curve
(assuming no spill).

Each station has a conversion factor for converting the gravitational potential
energy of the released water into electricity. This conversion allows us to consider
the water in terms of its potential generation, rather than its volume. As well as the
usual constraints on all stations, the river systems themselves may have minimum

and maximum reservoir release levels and minimum flows from the river mouth
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specified; these allow for environmental and recreational concerns. However, due
to the uncertain nature of the inflows and the amalgamation of river chains, we
need not model these constraints too precisely if it would be difficult to do so,
as we do not want them to overly constrain the solutions when the coarseness of
our approximation of the hydro stations may make such constraints unnecessary.
If it transpires that the solution requires a particular station to fall irretrievably
outside these release bounds, then the problem could be re-solved with a more
precise approximation of these conditions, allowing greater flexibility through the
balancing of solution time against the incorporation of all relevant constraints. We
therefore need to consider how to model these constraints in both a precise and
imprecise fashion.

Hydro stations fill C.C.’s via the (dual) methods described in Chapter 2 for
hydro stations filling an LDC, i.e. we need to either fix a water cost for the hydro
station, or fix the reservoir release. Since load is distributed over the geographic
network, load at different nodes will “see” different costs for power from the same
station. Hence, it becomes difficult (and computationally expensive) to specify the
water costs for a hydro station. Also, ensuring that the water released from the
reservoir each week allows enough storage for subsequent weeks requires the actual
release anyway. For these reasons we use the release from the reservoir for each
week to specify the generation with respect to the local C.C..

Storage in a reservoir is limited in terms of the time horizon and, since the
inflows include seasonal patterns, this means that we need to include storage in-
formation for the whole year. This is most easily done by attaching a waterflow
network to each hydro station, i.e. an inter-temporal linking of the hydro station
from week to week. The waterflow network is the obvious time discretized network
discussed in Chapter 2, containing arcs for releases, inflows (the uncontrolled in-
flows can either be separated from the controlled inflows or be included with them
and appear as a minimum release as in Boshier and Lermit [1]) and storage from
one week to the next for the reservoir; see Figure 3.5. In determining the best
release and storage for each week, we need to determine a generation schedule for
each week of the year requiring a copy of the geographic network to be solved for
each week.

The release needs to be independent of any uncertainty in supply, as otherwise

this uncertainty would need to be carried through the whole year. Therefore the
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release may be no less than the maximum total generation under any possible
future. Including uncertainty when filling a C.C., will give the ezpected generation
and so the maximal generation would need to be calculated separately. If we used
the expected release as an approximation to the maximum release, when the station
does not breakdown (which is more often than not) we will end up with less water
in the lake than planned for. In a dry year this could have disastrous results.

In the working model, we disallow the possibility of an uncertain supply for
a hydro station. For flexibility we should allow this in general, although it would
require more work as we would need to determine both the expected and maximum

—generation.

Having determined a release, H (total volume of water released during the week,
in Megawatt hours), from the waterflow network, the hydro station generation
then splits the C.C. so as to generate at peak capacity for the longest period,
and generate exactly H MWh if possible (see Section 2.6). If the station cannot

generate H MWh, the remaining release is spilled.

3.7.3 Auxiliary Stations

Auxiliary stations (see Section 1.1) are assumed to run continuously at a constant
level during each time step; they are given no cost, limit or control on generation.
These stations are modelled by removing their proposed (constant) generation from
the load before solution begins, which may involve allowing some nodes to have
negative load. To allow for the fact that system constraints may not permit all
of this negative load to be used, we allow the “resulting load” at this node to be

negative, so long as it is above the initial negative load.

3.8 Non-Supply

The term non-supply is usually used to describe load which cannot be met by the
generation system. In allowing uncertain generation by some of the stations, we
need to cater for such a possibility, as there is always a (tiny) probability that the
load can not be completely satisfied due to breakdowns. The amount of non-supply
needs to be minimized by some method, since we do not want to allow the optimal
solution to generate no power at all since this involves no cost! This is done by

introducing a cost of non-supply, which is attached to any load which is not met
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by some station.

Allowing non-supply in the model ensures that there is always a feasible gen-
eration schedule, i.e. generate nothing. Another reason for allowing non-supply is
that there is then no longer any reason to enforce all the stations at a node to com-
pletely fill their C.C., as any contracted generation which can not be filled becomes
non-supply and effectively “filled” by an imaginary non-supply station. As a result
of this, filling a C.C. involves only determining the cost to fill it, and thus takes
place during evaluation of the objective function. This implies that, if determining
the generation of each station requires the use of some non-linear equations, we
are only introducing non-linearities into the objective function and not into the
constraint set.

Allowing for non-supply also means that we are only interested in the curve
resulting from the scheduling of some of the stations in order to schedule the
remaining stations—if we can discover some information about a curve which will
allow scheduling of a station and the computation of the area under the resulting
curve easily, we would prefer to utilize this information rather than having to
determine the actual curve at each stage of the scheduling process. Once an optimal
solution has been determined, we can use computationally expensive methods to
determine the actual filled curves (if this is required).

In terms of filling C.C., we allow stations at the same node to explicitly allow for
others’ uncertain generation. The residual unmet contracted load is then penalized
at the cost of non-supply. However, this load could have been met by a station at
another node, so the cost that should actually be applied is the cost of re-supply
by stations at other nodes. In general, this cost could be estimated for each node
and could either be incorporated in a different cost of non-supply at every node,
or explicitly split up into the cost of non-supply and a cost of re-supply for each
node.

The cost of non-supply, for our working model, is assigned a constant value,
but for the sake of flexibility we allow it to take different values at every node, if
required.

To prevent non-supply being allowed only at station nodes (and hence requir-
ing “non-supplied generation” to be transmitted via the geographic network), we
introduce a non-supply curve at each node. Such non-supply curves can be used

to identify badly modelled or highly constrained areas of the geographic network
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and be used to ensure feasibility.

3.9 Stochastic Elements

The two major elements of the model being developed are that it should provide
a high level of detail about the physical system, and that it should account well
for the stochastic elements of the system. To incorporate these two elements at
a consistent level of detail, and to allow for flexibility, in that each element may
change its level of approximation relatively easily without affecting the modelling
of the other element, they need to be separable in our model. It is, in fact, the
difficulty in providing an adequate balance between these two aspects that initially
prompted a flexible approach.

To make these two elements separate in some implementational sense, whilst
not enforcing too much of this separation into the structure of the solutions, is
difficult. We chose to initially develop a deterministic model which would then be
extended to a stochastic model, consistent with the model’s objectives, as described
in Section 1.2. The actual stochastic extension to the deterministic base model
need not be fixed. This will allow new (possibly better) methods to be used, as
well as allowing different stochastic extensions to be tested under similar conditions.
Flexibility in the deterministic model could be used to enhance particular stochastic
extensions.

It may be that not all stochastic extensions could be realistically applied to the
base model developed, and so we need to be careful, in the development of the
deterministic model, that there are at least some stochastic extensions that can be
used. To try to develop a deterministic base model which would allow any stochas-
tic extension is beyond the scope of this thesis, and not necessarily useful in terms
of its approximation to reality—a deterministic base model, specifically tailored for
the particular stochastic extension, would do better in this regard. In light of this
it may seem that we should have started with a stochastic extension and tailored
our deterministic approach to that; however, using this approach, the stochastic
extension used tends to set limits on the amount of detail in the deterministic ap-
proach used, but in this thesis we were seeking to make the level of detail in the
deterministic base problem drive the stochastic extension (see Chapter 1).

We do not blindly hope that there will be a reasonable stochastic extension
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available at the end of the deterministic model development; we plan on using a
scenario aggregation approach, as well as investigating other possible extensions.
Scenario aggregation methods allow for stochastic detail in the number and variety
of scenarios used, while deterministic detail is dependent on the underlying deter-
ministic subproblems; both of these can be independently varied. The discussion
of stochastic extensions is left for Chapter 6, so they may be investigated in terms

of the deterministic model developed.

3.10 The Electricity Curve Approximation

We use the term FElectricity Curve to refer to any curve which, represents the
generation, transmission or use of electricity, e.g. an LDC or a C.C..

There is no point in using an LDC approach if one is going to keep the approx-
imation of the LDC (and hence other Electricity Curves) in the form given by the
data, namely the average load level for each half-hour. We require an approxima-
tion which can store much of this information using only a few significant values,
since power station generation (a variable of our model) needs to be approximated
in the same way. In looking for such an approximation we need to consider the
impact on the entire model, and to allow for flexibility.

In light of the points made in Section 3.6 about the interaction of LDC’s, it
seems appropriate that the information stored about the Electricity Curves should
be in the form of coefficients of some fixed basis used to approximate the curves,

i.e. we would like to write each approximated Electricity Curve, G(t), as
Gf(t) = ngl(t) S Ao gNBN(f) (34)

where {Bj, ..., Bn} is the chosen basis.

Due to the nature of the LDC, we need to ensure the approximations we choose
for them are decreasing, even if there is a closer approximation (in terms of least
squares, say) for them which is not decreasing. As an example of this, Figure 3.6
shows where the least squares 3-piecewise quadratic approximation to an LDC is
not decreasing.

The basis used needs to not only be a good approximation to the LDC, but
also should allow the types of structures, required by system, for the other Elec-
tricity Curves (this is reinforced by the findings of Chapter 8). We want to keep

the number of basis elements in this representation low, as it affects the number
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of variables in our final model. Stations and transmission arcs have capacity con-
straints and require non-negative power, so the approximation needs to be able
to be constrained within a fixed range. The existence of this fixed range will also
mean that some of the curves required will want to be at capacity or zero for part
of the week and this may cause non-smooth points on the curve (see Figure 3.7).
Smooth bases trying to approximate non-smooth behaviour and constant function
values over positive length intervals often oscillate or admit superfluous optima and
do not approximate such phenomena well (see Figure 3.8). This suggests the use
of a piecewise basis of some kind.

The fixed range implies the use of a piecewise linear approximation in an effort
to keep the constraining equations linear. Unfortunately, piecewise linearity is not
a very good approximation for an LDC without a fine partition. Piecewise linearity
may seem reasonable in light of the uncertainty in the Load Duration Curves, but,
we seek to incorporate the particular structure of the solutions as much as possible,
as it 1s the structure of the solutions which is of most interest. Also, in allowing
a flexible approach, we seek to find the limits of the approximations used. By
enforcing C.C.’s to be decreasing, as explained in Section 3.7, the non-negativity

and capacity constraints of Equation 3.3 simply become
@1Bi(1) +--- + gnBn(1) 20, and, g1 B1(0) +--- + gnvBn(0) £ G

in terms of the basis approximation.

To enforce a C.C. to be always decreasing via linear constraints indicates the use
of a quadratic basis. As a piecewise quadratic basis provides a good approximation
to an LDC, moving to a cubic approximation would achieve little more in the
way of accuracy to this approximation; furthermore since there is no motivation
to use any type of basis other than a piecewise polynomial, we stay with the
piecewise quadratic. Figure 3.9 shows a 3-piece, 4-piece, and 5-piece piecewise
quadratic and an 8-piece piecewise linear approximation to an LDC with evenly
spaced breakpoints.

Empirical experimentation shows a 4-piece piecewise quadratic (NB: piecewise
quadratic and not quadratic spline) to be a good approximation to LDC. We choose
this for our central model, with partition {0, 0.1, 0.4, 0.7, 1.0}; Figure 3.10
shows such a piecewise quadratic approximation. For flexibility we allow for an
n-piecewise quadratic (or linear or discrete) approximation. We still have the open

problem of constraining the transmission, but this is left to be dealt with by the
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model.

For reference, in connection with the filling of C.C., the inverse of a decreasing
piecewise quadratic is reasonably easy to determine; unfortunately it is a rational
polynomial with (possibly) more pieces than the original, and initially unknown

break points.

3.11 Discussion

An underlying geographic network describes the distribution of load and power sta-
tions. The electricity flow in the network is approximated for each week, over the
year, by piecewise quadratics. Each power station node defines a Contract Curve
which represents the load to be met by the station(s) at that node. These stations
fill the C.C. in the cheapest possible manner, given that unmet contracted gener-
ation is penalized at a cost of non-supply. The C.C.’s must satisfy all load in the
system, represented by LDC'’s, as ensured by the transmission network constraints.

Generation by each hydro station is restricted by its generation capacity and
the release from the reservoir for that week. The hydro stations have an attached
waterflow network which describes the lake levels and releases for each week; these
networks tie the weeks together.

Every node has a non-supply curve to allow feasibility. This power is again
penalized at the cost of non-supply.

Such a representation creates a natural division in which the (contracted) supply
of load takes place via a constraint set (the geographic network) and the generation
of power (filling the Contract Curves) takes place in the objective function.

The next Chapter describes various methods considered for modelling the sys-
tem. In order that there is no need to cover the fundamental elements of t?e system
for each of the various methods, most of the basic structures defined in this Chap-
ter are taken to hold for each of the methods described, with modifications and

refinements as are necessary to develop the particular model.



CHAPTER 3. DESIRABLE FEATURES OF THE MODEL 49

1400
1200}
E
= 1000}

800[

400f

200}

Weeks

Figure 3.10: A 4-piecewise quadratic approximating an LDC



50

Chapter 4
Inappropriate Approximations

escription of the various wrong turns, blind alleys, and computationally un-
Dworkable approaches taken on the model before a final, workable, model
was produced, is given in this Chapter. The reason for including such a chapter
is partly because a considerable amount of the development work for the model
went into such areas, partly in an effort to express why the problem was, or was
not, modelled in particular ways, and also, partly as a warning to later modellers
of such systems: “don’t try this at home!” In our opinion, the two major reasons
for not including an approximation in the model appear to be either, that it cre-
ated significant undesirable structure in the solutions which was an artifact of the
approximation rather than the problem, or that it was unimplementable in terms
of solution time or convergence. In the latter case it must be remembered that the
deterministic model being developed is only a part of a stochastic extension, and
therefore needs to be robust.

It may seem that in any approximation one includes unwanted structure, if only
in the sense that solutions can only be in the form of the approximation. It is not
this type of unwanted structure in the problem that is of concern; that structure is
obvious, and is clearly taken as being acceptable when the approxirr;ation is made.
The extra structure of concern is the insidious structure implicitly imposed by the
approximation. This structure is almost never obvious from the outset, and can be
formed by a combination of seemingly unrelated approximations. Such structure
is mainly noticed in the form of the actual solutions obtained; as a symptom, it
is often difficult to trace. The effects of such structure are, unfortunately, often
unnoticed as they tend to be in the form of different management styles; these can

range from over-conservation of water, to full on/full off policies for some type of
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station. Of course it is sometimes impossible to avoid this extra structure, but
it always pays to be aware of its causes and effects. So it is with care, and an
ultimately pragmatic view, that any approximations are made.

In the previous chapter the approximation details of most of the model were left
undeveloped, the intention being to create a skeletal model made up of elegant, and
necessary, parts which could be enriched in the development of an implementable
model. The skeletal model is not meant to be totally inflexible, since to create a
good implementable model may require some re-working of the model’s basics; it
is supposed to embody the essence of the model, to emphasize the underlying di-
rection of model development. This model also allows this Chapter to concentrate
on specific areas of the model from within an encompassing structure which de-
scribes the interaction of the model’s components, without the added complication
of needing to explain an entire model.

In this Chapter, the aspects modelled will be discussed in the generality required
for the desired flexibility and consistency. Where moving the level of approximation
past some point would require making changes to other aspects of the model, these
levels are explained and the reasons for, or against, moving beyond such a limit

are discussed.

4.1 Filling Contract Curves

Probably the most obvious omission of Chapter 3 is the actual filling of the Contract
Curves. We need to determine a method of scheduling thermal stations in a (rea-
sonably) fast, automatic, manner which can be achieved without prior knowledge

of the exact C.C.. The resulting curve is given by:
F(z) = max {(G™" * Fo(z))™,0} (4.1)

where G is the C.C., Fg is the probability distribution function associated with

the station’s probable maximum generation, and the convolution is given by:
e

0% 1 [ /_Z G '(z — 2) dFg(2)

When the information about the uncertain supply of the station is in the form of

a single probability of complete breakdown this becomes:

P =iag { (pG (=) + (1= PG (e + Q) ,0}
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where p is the probability of breakdown, and Q is the capacity of the thermal
station. For a decreasing piecewise quadratic we can calculate the inverse exactly;
however, F' will be a piecewise function with more pieces than G. Keeping track
of the new pieces can be extremely difficult, viz the following case, with Q@ = 1,

= 0.9, and G given by;

12—t t 0,0.5
2t—1)2 t € (0.51]
so G~! becomes;
1-,/% z€[0,05)
. .9,0.7
G-(z) = 0.5 z € [0.5,0.7)
12—z z€[0.7,1.2
0 z>1.2
giving
1.2 —10¢ t € [0,0.05)
Flz) 2(1 —10t)? t € [0.05,0.0684)
&)= :
0.314 — 1.111¢ — 0.11/0.193 — 0.686¢ t € [0.0684,0.28]
0 t € (0.28,1.0]

Taking Q = 0.4 gives a very messy F with 6 pieces; one can see how difficult such an
approach would become when multiple stations try to fill a C.C.. However, we can
extract one advantage: as we are only interested in the amount of generation for
any station, when determining the cost of a solution, there is no need to re-invert
F. We can simply use F~!, since:

/01 max{F(t),0} dt = /OOF‘l(a;) dz (4.2)

0

Equation 4.2 possesses the advantages that we do not need to calculate the, ana-
lytically difficult, left-hand-side, and we need never know F~! for negative z.

For the moment we assume that either of the aboye methods, or some other
approach, is used, and concentrate on some other aspects of the model. Later in this
Chapter we will re-visit the filling of C.C., but for now it is sufficient to assume that
we have a function F(G, Fq) which gives the total remaining contracted load from
the C.C. G after scheduling a station with probable maximum generation described

by the probability distribution function Fgy. To cope with multiple stations we also



CHAPTER 4. INAPPROPRIATE APPROXIMATIONS 93

define the related function F(G, Fg) which gives the curve resulting from scheduling

the station. Note that we have the following relationship:
E(G, Fg) = /01 max{F (G, Fo)(t),0} dt
The amount of fuel used by a second station, @, is given by
E(G,Fq,) — E(F (G, Fq,), Fo,)

We also define the following, in anticipation of approximations to come, and to

clean up the notation somewhat. For C.C. G, recalling that a C.C. is non-negative,

m(G) = [ "G(t) dt (4.3)

When there is no confusion over the C.C. involved we will often write m for m(G).

we write

Notice that when Fp represents a single probability, p, of complete station

failure, then E(G, Fg) is exactly given by
E(G,Fq) = (1 -p)E(G, X[g,ee)) + Pm(C)

where X[@,) is the characteristic function of the set [@, c0) having value one on

the set and zero elsewhere.

4.2 Hydro Stations Filling Contract Curves

As mentioned in Section 3.7, hydro station generation splits the C.C.. Since this
takes place prior to the scheduling of thermal stations, it requires determination of
the resulting curve, which in turn requires determining exactly where the station

splits the curve. For a C.C., G, this requires determining § > 0 such that:
1
in{G(t),H+6}—-60} dt = H
/Omax{mln{ (t), H + } ! }

where H is the capacity of the hydro station. This is easier to calculate when put

in terms of G~!, as the above equation then becomes

H+6
[5 CRs () = B

If no such 4 exists, then the generation is only

' /01 min{G(t), H} dt < H



CHAPTER 4. INAPPROPRIATE APPROXIMATIONS 54

with the remaining release being spill. Figure 4.1 shows the two cases when, firstly,
a 6 exists and, secondly, does not exist, for the same H and H values.

Once 6 has been found, it is easier to specify the inverse of the resulting curve
than the curve itself; this inverse is given by G™(z) for z € [0,6], and G~ (z + H)
for £ > 4. This reiterates that, for the purposes of evaluating the cost of a C.C., it
is only the inverse of the C.C. that interests us.

To avoid the difficulty of needing to determine é, we can specify that each hydro
station must have its own Contract Curve. In this case if such a é exists, the total
generation is given by H, and if é does not exist, the total generation is given by
m(G) — E(G, H); here we slightly abuse notation by allowing the second argument
of F be a single value, representing the probability distribution function which is
equal to zero below this value and equal to one above it. This means the amount

of non-supplied contracted load for a hydro station’s C.C. is given by
max {m(G) - H, E(G, H)} (4.4)

Immediately one can see a potential problem with this: any combination of

release, H, and C.C. G, with
m(G)—~ H = E(G,H) (4.5)

will be a non-differentiable point of the objective function. It may seem that we
could eliminate this by requiring no spill; apart from the fact that this creates
a non-linear constraint (due to the non-linearity of F), it may also cause some
solutions to be infeasible (as there are times when spill is unavoidable, especially
when trying to cater for the uncertain environment).

A possible remedy might be to “smooth-off” these edges via an approximation
to Equation 4.4. Discussion of this is left until an exact representation of F is given,
since such an approximation will depend on the nature of this representation.

In the case of two hydro stations filling the same C.C., the order of scheduling
is unimportant. To see this, consider the scheduling of two hydro stations, with
releases H; and H;, and capacities H, and H, respectively. First schedule them
individually into the C.C.; if there is no overlap on the energy they wish to meet,
then, regardless of the order in which they are scheduled, they will still split the
curve in the same place (see Figure 4.2). If there is overlap, call the height of
the overlap 7 (see Figure 4.3). Notice that if we schedule the two stations as one

large station, with release H; + H, and capacity H, 4+ H, the split of the C.C.
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would contain both of the individual splits, since the extra area must exactly match
the overlapping area. Consider the portion of the curve that would be scheduled
to the combined station: if we remove the generation from one of the stations,
the resulting curve has height equal to the capacity of the other station, and area
equal to the release of that station—this is exactly where this station would split the
resulting curve. The stations may therefore generate differently, but the resulting
curve is independent of the order of scheduling them. This readily generalizes to
more than two hydro stations, by considering them in overlapping pairs.

In light of this, it may seem that, instead of requiring each hydro station to
have an individual C.C., we merely need to require that all of the hydro stations,
at a single node, have a collective C.C.. However, this allows underutilized stations
to generate using the spill from other stations. Consider the situation where the
generation of two stations does not overlap (when scheduled individually into a
C.C.), with some positive gap between the two schedules (as in Figure 4.3), and
the lower station (in terms of splitting the C.C.) is spilling. Because of the positive
gap, if the stations were scheduled using the same release (as they would be if
scheduled as a combined station), the non-spilling station could generate using

some of the spill of the other station by decreasing this gap.

4.3 Transmission Capacity

In Chapter 3 the modelling of transmission line losses was mentioned. Here, we
choose to use a linear line loss as, otherwise, we are incorporating a non-linear
equality constraint for every coefficient of every arc of every week (i.e. in the order
ol 10000 such constraints!). ISven just including a non-linear line loss for the North-
South DC link would incorporate in the order of 600 non-linear equality constraints.
Also, due to the basis representation, the non-linear constraints would necessarily
be an approzimation in any case.

For transmission capacity, the fact that transmission curves are not constrained
to be decreasing implies that the constraints required to keep transmission within
a fixed range must be non-linear. To see this, consider a quadratic, at? + bt + ¢,
over [0,1] which we seek to constrain in the range [A, B]. This is exactly the same

as requiring the polynomial at? + bt to be constrained in the region (A — ¢, B — ¢,
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with A < ¢ < B; hence we require the following conditions:

A<a+b+c<B
A<—i+c<BWhen —26[0,1]
~ 4a - 2a
The region of allowable coefficients is shown in Figure 4.4.

If we require these constraints on every transmission line, we would have in the
order of 15 x 2 x 52 x 4 = 6250 non-linear constraints, i.e. two for every arc in the
geographic network (one for each direction), for every week in the year, for each
quadratic piece of the transmission curve. Including these constraints explicitly
would adversely affect solution time. Instead we recognize that the maximum
transmission capacities are not truly hard constraints, so that they may be better
modelled as penalty functions in the objective.

To this end, suppose we have a function E which gives the amount of load
remaining after scheduling a station. If we could treat transmission as we treated
the scheduling of a station, and penalize untransmitted power, this would act like
a penalty function, penalizing over-capacity transmission. When the transmission
curve is X (t) and the line’s capacity is X, the untransmitted power, for that line,
is exactly E(X,X), and the negative transmission is E(—X,0) (where we use the
same slight abuse of notation here as we did in Section 4.2). These two values are
penalized in the objective function; since negative transmission incurs a power gain
in transmission, this will probably be penalized more heavily than the over capacity
transmission. An advantage of this approach is that it keeps the transmission and
station generation in a consistent form.

It may seem that one could perform a similar trick to model the unreliability of
thermal stations when “scheduling” the electricity through unreliable transmission
lines, however, to do so is not valid!. This would give the expected transmission,
the effect of which would be to derate the capacity of the line. What we seek
is the expected cost to the system, given that the line is unreliable, and might,
therefore, not be used. The other problem with such an approach is that not every
transmission line in the system is modelled; the geographic network arcs actually

L J
represent many lines, so that allowing an arc to be either “off” or “on” (or even

'It may seem that this is exactly the approximation used for thermal generation, however
there are two important differences; the first is that there is no cost directly applicable to the
uncertain transmission to apply (to use the penalty is clearly artificial); the second is that we do
not just use the cost of the expected generation to approximate the expected cost of generation,
in the case of thermal generation.
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assigning an arc a probability of being at a lower capacity) does not effectively
model what does, or even could, happen in practice.

The one exception is for the DC link: there is only one transmission link between
the North and South Islands, comprising twelve (parallel) lines. If one of the lines
breaks down, the transmission from the South Island to the North Island (the
predominant direction of transmission) is restricted to a lower capacity, and stations
in the North Island need to generate more to cope with the lost potential energy.
In this case the penalty factor could act, appropriately, as a cost of re-supply. As
the model is affected little by whether or not this aspect is included, flexibility
dictates that the specific modelling of the DC link be left unresolved.

4.4 The Objective Function and Convexity

Letting cn s be the cost of non-supply, ¢ the cost of fuel at thermal station @, and
P the penalty cost associated with over-capacity and negative transmission. We
can then write the objective function as:

Z= 3 cnsm(Gj)+ Y, cnsmax{m(G;)— Hj, E(G;,H)}

JENODE JEHYDRO

Kj
+ Y D uE(Gw(Gi), Fo,) + Y. P(E(Xi, X) + E(—X,0))
JETHERMAL k=1 1EARC

where G(x)(G) is the resulting C.C., after the first k—1 stations have been scheduled
into G. In particular G1)(G) = G. NODE is the set of all nodes, HYDRO and
THERMAL are the sets of C.C. for nodes with hydro stations and nodes with thermal
stations, respectively (the same node may be in both sets), and ARC is the set of
all arcs.

Notice, in particular, that the objective function is convex if £ and m are
convex, since the pointwise maximum of two convex functions is convex, as is the
sum of convex functions. Also, if £ admits multiple optima, then so will the
objective function. From Equations 3.4 and 4.3 we see that m(G) is linear in terms

of the basis coefficients, since

m(G)=/01G(t) dt=_ql/:Bl(t) dt+---+gN/OlBN(t) at

As the convexity depends only on F, it would, therefore, be beneficial if £ were

convex. We actually have more reason to desire F convex than just making our
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objective convex; it turns out, that more generally, £ is convex over the set of
integrable functions. Theorem 4.1 proves the case where the supply is certain, and

Theorem 4.2 extends this to the discrete uncertain supply case.

Theorem 4.1 Let G be a convez set of Lesbegue integrable functions, and define
E|G—®R, by
1 s
E(G):/ max{G(t) — X, 0} dt
0
for some fized X. Then E is convez over G.
Proof We can write E as

E(G) = /A _G(t) dt ~ Xm(Ag)

where Ag = {t € [0,1] | G(t) > X}, and m is the Lesbegue measure. Let P,Q € G,
and A € (0,1). Put R=AP + (1 —\)Q. Let Ap, Ag, and Ar be defined in a like

manner to Ag. Then,
E(R) = /A R(t) dt — Xm(AR)
— A ( [ P —Ym(AR)) + (1= (/AHQ dt_Ym(AR))
=\ ( B P dt —Ym(Ap)) + (1= ( N Q dt —Ym(AQ)>
4 /AR\AP P dt — Xm(Ag\ Ap)

— ) / P dt — Xm(Ap\ AR)
Ap\Ar

+(-3(/

ARp\

— (=5 /Aq\AR Q dt — Xm(Ag\ Ag)

Q dt—-j?nlL4R\‘4Q)
Aq

Now if t € Ar \ Ap then P(t) < X so that

P dtf;j?nlﬂ43\‘4p)
Ar\Ap

and if t € Ap\ Ag then P(t) > X so that

R 48 2:3?n1@4;:\,43)
Ap\Agr

The same is true if we replace P with @ so that

E(R) <A ( I P dt —Ym(Ap)> +(1-=2A) (/A Q dt —Ym(AQ)>
=)E(P)+(1- NE(Q) u
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Theorem 4.2 Let G be a convez set of Lesbegque integrable functions over [0, 1],

Fq be a discrete probability distribution function, and m be the Lesbegue measure
on R. For any G € G define the function F(G) by:

F(G)(z) =m({t € [0,1] | G(t) 2 z})

Then E | G — R, given by

s convez over G. —

Proof Note, in particular, that F(G) is a probability distribution function
with
lim F(G)(z) =0 and lim F(G)(z)=1

Ir—00 Ir——00
Since Fg is a monotonic step function, label the steps, in increasing order, as

{@1,...,Qn}. Let the step height at @, be p,. Then:
F(G)+ Fo(a) = [ F(G)(z - 2) dFa(2)

= L nF(O)z - Qn)

Therefore

o0

N
anF x_QN)

n=

v [ F(G)(z— Q) do

[}

/t_rj\a
Q

Il Il
M= o~

1

3
L

(e o]

F(G

[
M=

Pn
QN

L
/1 max{G(t) — Qn,0} dt

F]
|
-

-nt”/]z

from the definition of F(G), so E is convex from Theorem 4.1 and the facts that a

finite sum of convex functions is convex, and all of the p, are non-negative. m

Theorems 4.1 and 4.2 show that any non-convexity, and multipleoptima, bought

into the objective function by E(G, F) are only artifacts of the approximation of
E.
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4.5 A Cumulant Approximation

This Section examines one possibility for the form of the functions £ and F. We
take into account the previous comments regarding the use of the inverse of the
Contract Curve rather than the curve itself.

We require a representation, or an approximation, of the inverse of a partially
filled C.C., which gives enough information to schedule another station and find
the area under the curve. Recall that the inverse of a C.C. can be thought of as a
probability distribution function, and the act of scheduling a station can be thought
of as a convolution (see Equation 4.1). In Probability Theory, cumulants are used
to calculate convolutions since the cumulants of the resulting curve are the sum,
or difference, of the cumulants of the initial curves; these cumulants could be used,
in a truncated Gram-Charlier Type A expansion (Cramér [3]), to approximate the
curve (such an expansion is suggested by Electric Power Research Institute [6]).

Cumulants depend polynomially on the moments of a probability distribution
function [3]. The first moment (and cumulant) is the mean of the distribution; the
second cumulant is the variance (the square of the standard deviation). The k’th
moment of a standard (increasing) probability distribution function, P, is given
by:

& = / Z z* dP(z) (4.6)

In terms of a C.C., G(t), since G™! is decreasing, this means that

a= [ d(1-GT)@)
= /OG(I—t) dt

= /01 G(1)k dt (4.7)

using the variable substitution z = G(1 — ¢). In particular the mean (the first
cumulant) for any C.C., G, is exactly m(G) from Equation 4.3. The variance (the

2guem 1
second cumulant), ¢?, is given by;

o’ = j (G))" dt
s fo G(t)2 dt — m(G)? (4.8)

= Q2 —0-‘12

In terms of the basis approximation, the moments are polynomial in the basis

coeflicients, since:
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=f ng1+ +gNBN)k dt
= | (g¥B} + kgtg:Bi7 By + - + g BY) dt
1 1
—91] B dt+ ket [ BiTBadt+ -+ [ Bt
0 0 0

This, and the fact the cumulants depend polynomially on the moments, implies that
the cumulants depend polynomially on the basis coefficients. These polynomial
equations are not given here as they are tedious and not necessary for the current
developmé?lt.

The cumulants of the probability distribution function associated with the un-
certain supply can be calculated before solution, since this function is fixed, and
different, for each station (and possibly, for each week). In the case where the un-
certain supply is given by a fixed probability of breakdown, the cumulants are quite

easy to calculate, since the associated probability distribution function is given by:

0 <0
Fo(z)={ p z€(0,Q (4.9)
1 z2>Q

where p is the probability of breakdown. Section 1.3 notes that all outage distri-
butions will be discrete, so they will all have a similar form to Equation 4.9, but
with more discrete pieces. This actually represents the probability that there is
unserved power when the power level needed is z. The moments of this function
are given by:

—k

agk = (1-p)Q

The first four cumulants are given by:

Xea = (1-p)Q
xe2=p(1-p)@’
x@a=p(1-p)(2p - 1)Q°
xQa = p(1 —p)(6p* — 6p+ 1)Q"
In filling a C.C. a polynomial calculation is required to derive the cumulants of

the C.C.. Subsequently everything can be left in terms of cumulants, and only sums

and differences are required. To calculate the load not yet satisfied in a partially



CHAPTER 4. INAPPROPRIATE APPROXIMATIONS 65

filled C.C. one can approximate the associated probability distribution function,

P, via a truncated Gram-Charlier expansion of Type A, namely:

M
m-—z Ak 1y (M — T
Pa::‘I)( ) —@‘}( ) 4.10
(2) o a ,Z;,, k! o (4.10)
where ® is the normal distribution function, m and o? are the mean and variance
(first and second cumulants) of P, and the ax are constants depending on P.
Notice the use of =%, negative normalized variables, to convert to mean zero and
standard deviation one, and to allow for P being decreasing, while the standard

normal distribution function is increasing. Given

$¥)(z) = (-1)"Hi(2)¢(z) (4.11)

22

where ¢ = &' = 71276_7 is the normal frequency function and Hj is the k’th
Hermite polynomial. Using the properties that ® is an odd function, ¢ is even, and

H, is odd for odd values of k£ and even for even values of k£, we obtain:

P(z) = /j $(y) dy +é(-1)“'1%ffk-1 (m;x) ¢ (m _x)

a

3" coHas (“” ;m) qs("”_m) (4.12)

k=3 a

= [, 6 dy+

where the ¢, are given by Equation 4.13 and can be expressed as rational poly-
nomials of the cumulants (from Equation 4.6 and the fact that cumulants depend
polynomially on the moments), viz

ck = -]3/_(: P(z)Hi(z) dz (4.13)

The M, of Equation 4.12, is chosen to ensure a succinct approximation. Since
we are only interested in this approximation so as to calculate unserved contracted
load, the approximation needs to be good in terms of calculating the area under

the resulting curve.

4.5.1 Contract Curve Filling Functions

The function F (G, Fg) described in Section 4.1, is given by:

PG, Fa)(z) = [ #(0) du+ 3 s (F22) 6 (222)  aas)

2 k=3 a
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where the ¢k are given, in terms of the cumulants, by the same formula as for the

ck, with the cumulants given instead by

e = xk + (=1)*xouk

We can think of P(z), given in Equation 4.12, as being F(G,0), using the same
abuse of notation, for the second argument, as used in Section 4.2 for E.

It may appear that the mean gives the area under the curve (see Equation 4.7);
however, this includes fictitious negative generation. In terms of the approximation

given in Equation 4.14, the unmet contracted load is given by:

E(G, F) = /°°F(G Fo)(z) dz

- [ o e S [T ()6 (P57) @

; l
.

A B
Changing the order of integration for A, and using lim;—. ¢(z) = 0, and Equa-

tion 4.11, gives
A= /__ oy +m)é(y) dy

ol +m [ o
=0 («s(xo) 20 [" ) dy)
To
where o = — represents the zero prior to normalization. To simplify B we use
Hi(z)¢(z) = —$(Hi-1(z)¢(z)), obtainable from Equation 4.11, and the fact that
lim;_.co 2¥¢(z) = 0 for any positive integer k, giving:

=t e s (52 o (5]

k=3 ag 0
M

=0 Z ck Hi—2(z0)é(z0)

k=3
It should be noted here that for this form the differential of £ can be calculated

explicitly, if somewhat tediously. This is extremely useful in terms of optimizing

an objective which contains such terms, since, as noted in Section 3.11, filling the

C.C. takes place in the objective function.

4.5.2 Transmission Revisited

At this point it may seem that the use of cumulants means that we cannot apply

the penalty function to the transmission as explained in Section 4.3, since the
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transmission curves are not necessarily monotonic. However, Equation 4.7 indicates
that the moments are defined for any integrable function. For a transmission curve
these moments are exactly those for the curve when it has been “sorted” from
highest transmission to lowest. Regardless of how the transmission function is
sorted the area above, or below, any fixed level is the same. So it turns out that

the moments, and hence cumulants, of a curve always exist and are meaningful.

4.5.3 Dispense with Piecewise Quadratics?

We have moved from an almost hopeless situation of explicitly calculating inverses
of convolutions of inverses of piecewise quadratics, to evaluating polynomials mul-
tiplied by normal functions. It may even be that we could dispense with the need
to evaluate a polynomial expression by maintaining the Contract Curves in the
form of cumulants throughout. However, when discussing the use of cumulants for
the transmission capacity constraints above, it was noted that, regardless of how a
function is sorted, its cumulants are the same.

Consider: the two functions G(¢) and G(1 —t), over the interval [0, 1], have the
same cumulants. Given a node at which G(¢) is arriving from a lossless arc, and
G(t) is leaving down another arc, and a second node at which G(¢) is arriving from
a lossless arc, but G(1 —t) is leaving down another arc. A correlated interaction at
the first node results in no load left at that node, whereas a correlated interaction at
the second node will not, unless G is even about 0.5. Any interaction of cumulants
will result in the same load left in both situations, regardless of the form of G.

Of course, if we allow an independent interaction for transmission, cumulants
create no difficulties, but, as noted in Section 3.6, the interaction between electricity

curves needs to be modelled as being correlated.

4.6 Why a Normal Approximation?

The next obvious question is, perhaps, “how many cumulants are needed to provide
a reasonable approximation?” Actually this is not the correct question to ask, partly
because of flexibility issues. The main reason for this is illustrated in Figure 4.5,
which shows a truncated Gram-Charlier Type A approximation of an LDC, to 7
terms. Notice the oscillations at the extreme points: these disappear when only

the first two cumulants are used, or, when the full Gram-Charlier Type A series
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is used (if it converges!). The oscillations make this approach unacceptable, since,
if we do nothing about them, they create extraneous local optima in the objective
function. It may seem that since these oscillations are shallow, and, since we are
interested in the area under curves, they will not have much effect; but, note that
an optimal solution will minimize the amount of non-supply (i.e. the contracted
load remaining after every station at the node has been scheduled) and therefore,
near the optimal solution, the area under the remaining curve will be small. Since
we calculate this area from an approximation of G™! (of Equation 4.2), when this
approximation is negative the amount of non-supply can be negative, which would
act like being paid the cost of non-supply, rather than paying this cost; in terms
of the objective function this is worthwhile, and so the solution will “stick” at
points where there is negative non-supply—an artifact of our approximation. Also,
having alternative optima will lead to uncertainty in whether or not we are at a
truly global optimal solution; this could have potentially disastrous results when
one considers that the deterministic problem is only a small part of a stochastically
extended model.

It may seem that it would be useful to retain the cumulant approach, but
approximate the resulting curves where they begin to oscillate, in a monotonic
fashion. However, it is at these end pieces of the curves that we calculate the
non-supply for each thermal node, and, as this has already been approximated
twice, a third approximation, which may be a reasonable approximation of the
current approximation, will not necessarily be a good approximation of the actual
scheduled C.C.. The real difficulty, however, lies in the fact that finding where the
approximation should begin, is difficult. This is because it involves finding where
the cumulant approximation of the curve is equal to some fixed value, ¢, for the first
time. If the presence of multiple solutions is not enough to deter proceeding with

this approach, consider that the equation we seek to solve is to find the smallest z

for which: ,
[, o) dy+ S et (227 6 (22) =

k=3 g

where m, o?, and the ¢, are all dependent on variables from the model, Hy is the

2

k’th Hermite polynomial, and ¢(z) = ‘/-;2;6—7 is the normal frequency function.
If this was achieved numerically one could not then find the differential of the
objective function—the existence of this differential is effectively necessary for a

problem of this size to be solved in reasonable time in order that the stochastic
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extension then have a reasonable solution time.

The only option remaining seems to be to only use the first two cumulants,
i.e. approximating the inverse by a normal distribution with like mean and stan-
dard deviation. As we are interested only in the area under part of the curve,
this may not be too bad an approximation—it certainly seems to be a reasonable
approximation for the LDC, as shown in Figure 4.6.

In this situation, F(G, Fg) and E(G, Fg) are given by

oo
F(G, Fo)(z) = [ 4(s) dy

and

oo

Cewd) )

B(G, Fo) = /a{GY + o(Fa)” ( (e(0)) ~=(0)
where z is given by
z(z) _ Z = (m(G) - m(FQ))
Vo(G)? + a(Fo)?

To try to improve the approximation, we could use some sort of skew factor,

a role played by the third cumulant in the cumulant approximation. This could
be achieved by having effectively two standard deviations, one associated with the
resultant curve over [0,0.5], and the other associated with the same curve over
the interval [0.5, 1]. Such splitting could become more generalized, having multiple
splits, each with its own mean and standard deviation. Unfortunately, in this
case the method of performing the convolution (required for scheduling thermal
stations) becomes difficult. It was the ease of performing this convolution in terms

of the cumulants that lead to a cumulant approach initially.

4.6.1 Contract Curve Corners

In the meantime we will retain the normal approximation of the inverse of a Con-
tract Curve. This also means (as we only use the mean and standard deviation)
that we are using a normal approximation to the breakdown probability, so it would
probably be better to use a direct normal approximation of these rather than using
a normal approximation of the current discrete approximation. The normal ap-
proximation, of course, breaks down when the standard deviation is zero, as is the
case when the C.C. is constant. This implies that £ and the objective function,

have corners; Figure 4.7 shows an example of this.
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Figure 4.5: A truncated Gram-Charlier Type A expansion of an LDC
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Figure 4.6: A normal approximation of an LDC
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If these corners create a difficulty, we can bound solutions away from them by
ensuring that one (or more) of the coefficients of the basis elements are non-zero
for any Electricity Curve represented in the objective function. The problem with
this is that, since we represent over-capacity transmission in arcs as a penalty in
the objective function in this way, we will have some non-zero transmission in every

arc, which, due to arc loss, will increase the load.

4.6.2 Convexity of the New E

Recall from Section 4.4 that the convexity of the objective function depends on the
convexity of E. The reason for coveting a convex objective function is that it will
mean that all locally optimal solutions are globally optimal, and most Mathemat-
ical Program solvers are robust on convex problems; we desire robustness in our
deterministic model as it is to be the basis of an extended stochastic model, and
may need to be “solved” many times to obtain a solution to the stochastic model.

It turns out the current F, given by Equation 4.15, is convex, as is shown in

the following results.

Lemma 4.3 Let {By,...,Bn} be a basis of integrable functions over [0,1], and
G =[g1,--.,98) € RN. Put

L(t) = g1 Bi(t) + -+~ + gvBn (1)

and define o by: .
dcf:éﬁuf&-([LmdQ

Then o is non-negative and conver over G, and the kernel of o is contained in

one-dimensional subset of G.
Proof Notice o? is just the variance of G (as given by Equation 4.8), and we

a@f:L%MQ—ELm&Ydt

so that o is just a translated norm and, hence, both convex and nonnegative. Also

o(G) = 0 if, and only if

can write

90 /01 L(t) dt Ve [0, 1] (4.16)



CHAPTER 4. INAPPROPRIATE APPROXIMATIONS 72

i.e. when L(t) is constant. Since {Bi,...,Bn} is a basis of functions then ei-

ther Equation 4.16 holds nowhere, or describes a one-dimensional subspace of
span{Bi,...,Bn}. m

Theorem 4.4 Let functions m and o be defined over some open, convex, N -
dimensional set, G, with N > 2, where m is an affine function and o is a non-
negative convex function, the kernel of which is closed relative to G and contained

within some one-dimensional set. For any G € G define

E(m, o) / / y) dy dz (4.17)

when o # 0 and
E(m,0) = max{m, 0} (4.18)

Then E(m(G),c(G)) is convez, with respect to G.

Proof: Put G =[g;...9gn], where N > 2. First consider the case where o(G) # 0.

Using the change of variable, z « %)9—, in Equation 4.17 gives

E(m(6),0(G) = o(6) | "yyer [~ #00) dy do

~o(G)

Putting zo(G) = — a((G) , and writing £ = E(m(G), o(G)), we get

& /m N EOET I 920(G) 920(G) 4 . ()

09:'891 691891 8 (G) P ( )0 (G) ag,- 3zag(jG)
Zo o To To =S
agi 5; T o5 os 9 ag0g )fzo(cm e) de

Using the definition of z¢(G) and changing the order of integration in the double

integral gives

O0*FE 020'(6) a.’ro(G) axo(G))
= G ,
s = (G + (O 522 g2
so the Hessian of E(m(G),0(G)), H(E), can be written as H(E) = A + vT,

since both ¢ and ¢ are positive functions. By the convexity of o, A is positive

semi-definite. Now
tH(E)T = zAzT 4 2(vTv)27
= zAzT 4 (vzT)T (v27)
=zAz” + lvzT||? > 040=0
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and so H(F) is positive semi-definite. Hence E(m(G),o(G)) is convex over any
open set where o(G) # 0.

For the case where o is allowed to be zero, notice, from Equations 4.17 and
4.18, that lim,—o E(m,c) = E(m,0), so that, as m is linear and o is continuous,
E(m(G),o(G)) is also continuous.

For each G, H € G define

I(G,H)={)G+(1-NH | X€0,1]}
Calling K the kernel of o for every G, H € G one of the following holds
Case (a): I(G,H)NK =0, —
Case (b): I(G,H) C K ,
Case (c¢): I(G,H)nK = {D} 3D € K.

If Case (a) holds then X and I(G, H) are mutually exclusive closed convex sets
of G, so there exists an open convex set C C G, such that I(G,H) C C, and
C NK = 0. In this case we have already shown that if

A€ (0,1) and Dy=AG+ (1-ANH
then
E(m(Dy),0(Dy)) £ AE(m(G),0(G)) + (1 = A)E(m(H),o(H)) (4.19)

If Case (b) holds then we see that Equation 4.19 holds from the definition of
E over X, and the fact that the pointwise supremum of two convex functions is a
convex function.

For Case (c),if D € {G,H}, w.l.o.g. D= H. So thereis {D,} C I(G,H)\{H}
such that D, — H, and Equation 4.19 holds where H is replaced by D, for each
n. Hence, by the continuity of E(m(G),o(G)), Equation 4.19 holds for G and H.
If D ¢ {G,H}, there is {G,} C G\ K such that G, —» G, and I(G,,H)N K = 0,
since K is contained in a subset of dimension 1 of G, which is of dimension at least
3. The convexity of E therefore follows from the continuity of F(m(G),c(G)) and

the case where o is nonzero. m

Changing the order of integration in Equation 4.17 transforms it to the form
of Equation 4.15. By replacing the function m by m(G) — m(Fg), and o by
\/(02 + 0(Fg)?), in Theorem 4.4, (recalling Fq is fixed) we obtain the convexity of
E(G, Fy). '
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4.6.3 Hydro Creases

Recall from Section 4.2 that the non-supply from a hydro station’s C.C. is given by
Equation 4.4, which implies that the objective function may be non-differentiable
where Equation 4.5 holds. We will call this phenomena a “crease” in the objective
function. Having now a fixed formula for £ we can investigate these creases further.

Specifically the approximation of G™! is given by

so E(G, H) is given by

EGH) = [ /(:G]_I)Mz) dz

(G)

=o(G)¢ (E%'G—()‘C—}_jﬁ) + (ﬁ— m(G)) ](O:(G‘]_.E) é(z) dz

Since the term E(G, H) has no dependence on the variable H, there will be a
discontinuity in the differential of the objective here (if only in the direction of the
variable H). The crease created will be sharp—the differential with respect to H
will be one, on one side, and zero, on the other. There will also be discontinuities
in the gradient in the direction of the other variables, as m is linear but £ is not;
the values of the variables of G where Equation 4.5 holds are dependent on the
value of H, so the gradient of £ will vary for different G, but the gradient of m
will not. Figure 4.8 gives an example of this crease over two dimensions.

We would like to smooth off these creases whilst maintaining the convexity of the
objective function. This means either determining exactly where the crease occurs,
or applying some approximation based only on the relative values of m(G)— H and
E(G, H). To achieve the former we need to be able to solve analytically equations

of the form:

EGH)+H-m(G)=6§ (4.20)

for G and H. The form of E makes this impractical.
An approximation based only on the relative values of m(G)— H and E(G, H),
which is required to be convez everywhere, can be written as;
m(G) — H when m(G)— H > E(G,H) + &
f(G,H)={ E(G,H) when E(G,H)>m(G)—H + 6,
A(G,H

) otherwise
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Figure 4.7: Area above zero for the normal approximation of b(t — 3) 4 ¢ on [0, 1]
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Figure 4.8: Crease in hydro station non-supply over variables H and G(t) = at



CHAPTER 4. INAPPROPRIATE APPROXIMATIONS 76

where the function A must pass through the points where Equation 4.20 holds for
§ being, variously, é;, 0, and é,. Consider any subspace over which m(G) — H,
and E(G, H) are both linear; the subspace {(G, H) | G = 0} is one such subspace.
On this subspace, the only possible convex approximation which passes through
the points where Equation 4.20 holds for § = 0 in this subspace, is the function
max{m(G) — H, E(G, H)}. Consequently, we do not change the function on this
subspace, so a crease remains. Therefore we can not eliminate creases, in this way,

from the objective function in the current form and keep it convex.

4.7 The really bad news!

It was claimed in Section 4.6 that the normal distribution function was a reason-
able approximation for the LDC’s. Unfortunately this is not the only Electricity
Curve requiring approximation. When approximating Contract Curves, the normal
distribution function is used to determine the amount of power which can not be
used—in particular, the amount of power above the total capacity of the stations
present. Since we are using a normal approximation to the inverse of the C.C.,
there will always be some non-supply, as the normal distribution curve is positive
everywhere. We are interested in how large this amount of non-supply can become.

Consider a situation where a Contract Curve is being filled by only one totally
reliable station. If the station is required by the model to generate at capacity for
only part of the week in order to minimize non-supply, the C.C. at this node will
want to mimic this required generation pattern of the station. The situation where
the station generates at full capacity for 75% of the week, and has no generation
for the rest of the week, is shown in Figure 4.9.

This shows a substantial amount of fictitious non-supply from a Contract Curve
which should produce none. To illustrate the ramifications of this problem, Fig-
ure 4.10 shows the percentage of actual generation wrongly non-supplied for a C.C.
having a fixed non-zero level on the interval [0,7] and a zero level for the rest of the
period (black); and for a similar C.C. with the generation linearly decreasing to
zero at the end of the period (green). Since the cost of non-supply is in the order of
ten times the cost of the most expensive thermal station, this fictitious non-supply
is significant. Therefore, stations are penalized for having constant generation

rates for only part of the week, especially if the generating range is quite large. In
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Figure 4.9: A C.C. and its corresponding normal approximation

Percentage of Actual Generation

0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 09 1
r

Figure 4.10: Percentage of actual generation wrongly non-supplied
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general, the generation over the week is decoupled, in that the generation at one
time during the week should not be affected by the generation at any other time,
so the added structure is artificial.

Notice also that the worst point on Figure 4.10 is near the value of r = .7, which
happens to be one of our breakpoints (we would need one near this anyway), so it
is not unlikely for a station to want to generate at peak capacity (or some other
fixed level) on the interval [0,0.7] and then drop off to zero (say) on the interval
[0.7,1]. Unfortunately this model would discourage such a solution.

When one considers the similar graphs for transmission, the situation is worse,
sincein transmission the negative transmission is also penalized. Figure 4.11 shows
this for a transmission function at full capacity for a proportion r of the week, and
at zero for the remainder of the week. Such a model will try to (incorrectly)

encourage flat generation and transmission at all stations and along all arcs.

4.8 Discussion

It appears the model we have developed is riddled with superfluous unwanted struc-
ture and aspects which make it difficult to model. Such a model is unacceptable as
the deterministic base of a large-stochastic extension. It also appears that under
the current skeleton model for the system there are no “quick fixes”. It may be
that the model could be linearized, via a coarse linear approximation of the various
elements, from its current form, with the hope that this would remove much of the
extraneous and difficult structure currently present. Unfortunately, such a brutal
linearization would bear little resemblance to the system we seek to model, being
a coarse approximation of an already bad approximation.

The only options appear to be to completely re-model the system from scratch,
or to change some of the desired structure in the skeletal model, so as to remove
the difficulties which arise from there. It seems that the majority of the difficulties
arise from the need to find the inverse of the Contract Curves, which, in turn, result
from the filling of the C.C..

Actually the situation is not as grim as it may appear. We have only inves-
tigated one information structure for calculating £, namely cumulants, and from
this information structure, only two approximations. It may be that there is a

better information structure than cumulants to use, or that there are cumulant
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expansions without the problems associated with the Gram-Charlier Type A ex--
pansion. Such an investigation should possibly attract more attention than is given
here; however the rewards of such an investigation will probably be quite limited,
in terms of the model being developed, as the problem of the creases brought into
the objective function via the hydro station generation will still be present. It is
the investigation of the elimination of these creases from the objective function (as
discussed in the next Chapter) which leads, naturally, to a solution to many of the

other dilemmas discussed in this Chapter.
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Chapter 5

The Model

arious approximations examined in the previous Chapter each appeared to
Vimpose unwanted structure to the problem, in such a way as to make the
resultant model unsuitable for its desired purpose. This Chapter examines one
way to suppress the unwanted structure and hence develop a more suitable model.
In seeking a method for removing such difficulties, it is better to re-model the
system in such a way that the difficulty does not arise, rather than to approzimate
the difficulty out of the model. Of course the former is not always possible, with-
out creating more difficulties, and approximations applied to the model can often

motivate better methods for modelling the system.

5.1 Removing the Hydro Crease

Initial motivation for the actual change made came from examining ways of elimi-
nating the “crease” induced in the objective function by the hydro station genera-
tion; this is a natural way to introduce it.

Recall, from Section 4.2, that the non-supply remaining after a single hydro

station fills is own Contract Curve, G, is given by:
max{m(G) — H,E(G, H)}

where H is the release from the hydro reservoir and H is the capacity of the station.
This feature is not just an artifact of the approximations used, and becomes difficult
to handle when optimizing the model. Given that the deterministic model being
developed is to be used as a basis for a full stochastic model, we would like to

eliminate as many difficulties in the computation of a solution as possible.
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In Section 4.6 we examined the possibility of “smoothing” the corners; however,
this proved elusive, and it also appears to have little justification in practice. By
examining what the crease represents, we can provide a better opportunity to
eliminate its effects.

The crease is the only link between the geographic networks and the hydro
waterflow networks; since the waterflow networks link the geographic networks of
each week, this crease is extremely important. If we approximated the crease by
assuming we are always on one side of it, we effectively de-couple the geographic
and waterflow networks (and hence the weeks), and the problem becomes very
simple to solve, but of little use. It is therefore important that we model this
connection well.

One side of the crease (E(G, H)) represents the situation where there is some
spill at the hydro station, while the other side (m(G) — H) occurs when there is
none. It may be that if we include the spill explicitly we can remove the crease.
Using VW to represent the spill (the total generation is, therefore, given by H — V)
would require the inclusion of a constraint to ensure that we do not spill more than
we release, i.e. H > W, and another to ensure that all of H — W can be generated

given the hydro stations C.C., i.e.
H—-W <m(G) - E(G,H) (5.1)

which is a non-linear constraint.

The right-hand side of Equation 5.1 represents the maximum generation allowed
for by the station’s C.C. and its capacity. The non-linear term, E(G, H), represents
the area under the Contract Curve above the capacity of the station. Since each
hydro station has its own C.C., this part of the curve could be transferred to the
non-supply curve at this node, retaining the same solution (within the limits of the
piecewise quadratic approximation). The only difference in solution is that, instead
of having E(G, H) of non-supply in the hydro station’s C.C., it would be in the
non-supply curve; we are, afterall, merely interested in the amount of non-supply.

Removing the area above the station’s capacity is exactly the same as requiring
that the station’s C.C., G, is constrained below the station’s capacity, H, and,

since the C.C. is decreasing, this can be achieved by requiring

G0)< H
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which is a linear constraint. If this is included, Equation 5.1 becomes:
H—-W <m(G) (5.2)

a linear constraint. The non-supply remaining after scheduling the station is now
given by m(G) — H + W,

It was noted in Section 4.2 that, if more than one station fill the same C.C.
(as a combined station), some of the stations may use the spill at other stations
for generation. Since we model river chains as a single amalgamated station, this
allows explicit expression of the assumed approximations in this amalgamation.

Consider a simple hydro chain with just one reservoir, and some hydro stations

in series down the river (see Figure 5.1). The assumption is made that the uncon-

Controlled inflows Uncontrolled inflows

Hydro 1 Hydro 2 Hydro 3

! Storage

C

a7
& i

Release

Figure 5.1: A simple hydro river chain

trolled inflow arrives in fixed proportions above each station. The hydro stations
are scheduled as a single station with capacity equal to the sum of the capacities of
all of the individual stations, and release equal to the sum of the individual flows
(which is just the release from the reservoir). In other words, the approximation
used is equivalent to approximating all river chains as simple chains, and to as-
suming complete correlation in the uncontrolled inflows within this chain, together
with the added assumption that stations with spare capacity can generate using
the spill of other stations. There is also the implicit assumption that the storage
for individual stations is not used for week-to-week storage.

We can, in theory at least, use more sophisticated networks to approximate
hydro river chains. This would be most useful for modelling controlled canals be-
tween river chains, linked reservoirs and other controllable phenomena, although
by including too much detail here we would most likely make the model computa-
tionally intractable. Another reason for inclusion of such detail is to better model
conservation constraints of the minimum and maximum flows along various parts

of the river network.
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For a simple chain it is possible to model conservation constraints such as min-
imum and maximum flow constraints. The Contract Curves now act as generation
curves. Since the time dimension is effectively sorted we can apply constraints only
on the total release, or, as minimum and maximum generation levels. The prob-
lem with using only minimum and maximum generation levels to approximate the
corresponding release levels is that they ignore spill. For maximum release level,

F, we can include the constraint in two forms, namely
G(0)<F and, H<SF (5.3)

to effectively limit the spill to be less than the slack in the “total release” form (see

Figure 5.2). For a minimum release level, F, we require a constraint of the form

Gl)>F-W (5.4)

43

where the “ — W?” in this equation allows the use of constant spill to augment
some of the minimum level release. Equations 5.3 and 5.4 actually refer to flows
from the mouth of the river. For constraints on the flow at an arbitrary point in
the stmple river chain, we need to determine the proportion, ¢, of the uncontrolled

inflows which arrive below this point, and instead use the following constraints:
G00) <F + aU and, H<F +al

(which correspond to also requiring some of the alU flow be at a constant level)
and:

G(1)>F—W+ayU and, H>F+a(l —4)U

where v is the fraction of the uncontrolled inflow which is deemed to arrive at a
constant rate. These constraints correspond to ensuring that there is enough flow
above F at the bottom of the river chain to allow for the extra aU which arrives
below the point in the river chain where this constraint is being applied. Most of
these types of constraints have a € {0,1}, i.e. are at either end of the river.

After removing some of the non-supply from the hydro station’s C.C. it may
seem that we could (and probably should) remove all of the non-supply from the
C.C.. This could easily be done by converting Equation 5.2 into an equality con-
straint. In this case we would be explicitly treating all of the non-supply con-
sistently, by requiring that it is present only in the non-supply curve. When we

use Equation 5.2 as it stands, however, we are allowing a little more flexibility at
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Figure 5.2: A maximum level release constraint applied in both forms
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Table 5.1: Connections between the release and total generation

Constraint Non-supply Spill Comments

H-W =m(G) none w Less flexibility in the
structure of non-supply.

H-W<m(G) | m(G)— H w Non-supply is split between
the C.C. and non-supply
curve, leading to possible
alternative solutions.

H > m(G) none H — m(G) | No explicit spill variable,
and less flexibility in the
structure of non-supply.

these nodes, as it is no longer required that all non-supply must be in terms of the
approximation. Figure 5.3 shows an example of this in which the first graph shows
the desired non-supply form (the shaded area), and the second graph shows the
closest approximation allowable in the non-supply curve due to the basis used for
all Electricity Curves.

At this point it should be noted that if, instead, we require the constraint
H > m(G), then we do not need to include a spill variable. This means we can
include the connection between the release H, and the total contracted load, m(G),
in three equivalent ways, each of which endows the model with different properties;
these are listed in Table 5.1. For flexibility, we leave open the exact modelling
of this constraint. Notice that, in all three cases, the equation for determining
non-supply, and hence the hydro station’s contribution to the objective function,
is linear. For the working model, we employ the constraint H — W < m(G).

In light of the fact that there is no need to ezplicitly define spill to remove the
hydro station crease from the objective, it is apparent that the benefits derive from
the removal of the above-capacity non-supply from the hydro station’s C.C.. It may
be that similar benefits could be gained by applying this type of transformation to

the thermal station C.C.’s; we now investigate the effects of such an application.
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5.2 Thermal Contract Curves

Consider a thermal station with its own Contract Curve, G, fuel cost cg, and
probability distribution associated with failure, Fo. The cost of generation and

non-supply for this station is:
cqm(G) + (ens — c) E(G, Fo)

where cys is the cost of non-supply (or re-supbly, see Section 5.2.1). If Fg repre-
sents only a single probability, p, of total plant failure, the term E(G, Fy) is exactly
given by: -

E(G,Fq) = (1 - p)E(G, Q) + pm(G)

where Q is the capacity of the station (see Section 4.1). This means that if we
perform the same transformation as in Section 5.1, and transfer the above capacity
non-supply to the non-supply curve at this node, the cost of generation and non-

supply for this C.C. becomes
c@m(G) + p(evs — c@)m(G) = ((1 — p)eg + pens)m(G)

which is linear. It also has the added advantage that we no longer need an approx-
imation for calculating E in this case.

Of course, a similar trick applied to a C.C. for more than one station will not
work, since, when scheduling the first station, there will be contracted load above
its capacity. However, it does open up the possibility of allowing each station to
have a C.C. of its own; if we do this, we transform those parts of the objective
function dealing with filling Contract Curves into being linear. This then implies
that the only part of the objective function still with non-linearities would be the
penalty on over-capacity transmission.

The advantage of taking this approach is enormous. We move from a situa-
tion where we have no realistic approximation for an apparently non-linear energy
function, to one where this function can be calculated linearly. The disadvantage
1s that we can no longer use stations at the same node to cover stations which may
break down; this means that we are effectively using the cost of completely reliable
generation as an approximation to the expected cost of unreliable generation. The
cost of reliable generation provides a lower bound for the expected cost of unreliable

generation. Obviously the advantages outweigh the disadvantages.
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Recall from Section 2.5 that the non-linear method of filling is used to calculate
the expected value of generation to meet the load. This is not quite what it is
used for here, as we calculate the expected value of meeting the contracted load
using only stations at one node! However, in the geographic network chosen for the
working model there is only one node which has more than one thermal station at
it, and it has only two! This means that we were implicitly using an approximation
to the expected cost of unreliable generation, where load which was to be met by
a plant which fails, is just not met at all. This, therefore, may not provide a very
good approximation to the expected cost of generation, but it does provide an
upper bound for the expected cost of generation.

The non-linear method of filling an LDC also appears to be inconsistent in the
way it treats various stations. Stations at the same node can be used in case another
station at that node breaks down; however, for single stations, a breakdown means
the load is non-supplied, and so is penalized at the cost of non-supply. This would
seem to suggest that stations at nodes with more than one station are more reliable
than those at nodes with only one, which is extraneous structure we should seek
to deter.

Hence, if we are willing to accept one of the approximations, then the linear
version is better; if we are not willing to accept an approximation, then neither will
suffice. Of course, we could always consider solving the network for every “state”
of each station, in which case the linear approximation is fine. This is, however,
computationally infeasible (with one possible exception, mentioned below). For

our model we choose to accept the linear approximation.

5.2.1 Approximations to Handle Breakdowns

Unfortunately, there is no elegant representation (as opposed to approximation) of
station breakdowns when the transmission network is included. The reason for this
(as stated in Chapter 3) is that changing the state of a station could also change the
optimal distribution of the Contract Curves, which requires solving a Generalized
Network.

One approximation, already mentioned, is to use a cost of re-supply, rather
than the cost of non-supply, when filling Contract Curves. To obtain this cost
of re-supply we could use the cost of the next-most-expensive thermal station,

modified by the power loss incurred in transmission to this node and, possibly, a
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factor to allow for the probability that this station is already being used. This
would effectively mean that we are defining a fixed cost for covering the load met
by this station, if it were to break down. Such an approximation may seem more
reasonable when it is taken into account that, at the time of failure, stations are not
usually scheduled so as to optimally meet the load, in terms of the global situation.

We could also use past data to estimate the cost to the system of a station
breaking down, and use this for the cost of re-supply. It would appear that this
would be more effective; however, this cost is dependent on the current load and
the amount of hydro station generation in the system for that week, and so a fixed
figure would be difficult to obtain, and often be inapplicable.

Another possibility is to consider re-solving only the first week for every “state”
of each station since, after the first week, the amount of stored water (and hence
the hydro station generation) is uncertain, so that using a “cost of re-supply”
approximation is reasonable. Also, in this first week, we need not consider every
possible state of the generation system. For instance, the situation where every
thermal station fails is unlikely in the extreme, and, if it did happen, emergency
steps (which cannot be modelled) would be taken to minimize the effects. We could
therefore presume that such situations need not be catered for explicitly, unless this
is easily done.

We could also take a scenario approach to station failures, in which the “sce-
narios” chosen would define which stations had failed. It would seem reasonable
to include those scenarios which are most likely to happen, along with a few which
are seen as including important events to consider.

For the working model we use a cost of re-supply equal to the cost of non-
supply. However, for flexibility, we consider having differing re-supply costs, as

well as using a scenario approach in the first week.

5.3 Transmission

As mentioned above, the only non-linearities left in the objective function are those
associated with the penalty applied to over-capacity transmission. If we enforced
the transmission line’s capacity, this would not occur. However, it was the difficulty
in enforcing t his capacity constraint, in light of the fact that the transmission curves

are not necessarily decreasing, that led us to the use of objective penalties.
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It would be better to neither force the transmission to be within capacity, nor
apply a penalty to over-capacity transmission, but to use a non-linear increasing
line loss which could either explicitly or implicitly enforce the capacity; Figure 5.4
shows an example of an implicit and explicit capacity through line loss. Of course,
the problem with this approach is that it introduces many (about 10000) non-linear
equality constraints, which are extremely difficult to handle computationally.

The only realistic option, therefore, appears to be to bound the transmission via
linear approximations of the non-linear capacity constraints. To do this we need to
examine the constraints themselves. Recall from Section 4.3 that the constraints
needed to keep the quadratic at? + bt + ¢ within the range [A, B] over the interval
(0, 1] are:

A<c<BHB
A<a+b+c<B
b2 “b
A< ——+c¢< B when — — €[(0,1] (5.5)
4a 2a

Consider the situation where c is at one of the bounds; w.l.0.g. let this bound
be A, corresponding to points on the bottom face of the region shown in Figure 4.4.
The region into which a and b are allowed to fall is shown in Figure 5.5; notice, in
particular, that the edge between this face and one of the non-linear faces is linear.
A tight linear approximation which only allows feastble solutions should, therefore,
pass through this edge. Consider the other edge which also passes through the
point (a,b,c) = (0,0, A), and is defined by the intersection between the two faces
described by

a+b+c=A
b2 _ 4
4a+c_

It is described by the curve
{(a’b’c) = (t - A,_Q(t - A)’t) | te [A’B]}

Notice that, since this is linear, the two edges describe a linear face; this face is the

linear approximation used, and is given by:
b+2c>2A (5.6)

Similarly, the linear approximation used for the other non-linear face is obtained
by replacing A with B in Equation 5.6. Therefore, the constraints to ensure that

the transmission curves are within [0, X] are:
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Non-supply in a hydro station Contract Curve The approximation in a non-supply curve
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Figure 5.3: Non-supply in a hydro station’s G.C., and its “approximation”
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0< x?kti_l + Ziptk 1 + Tor < X (5.7)
0< zout?+zuti+zox <X
0< 3T1k + Tok <X

where the transmission curve is given by zxt? + z1xt + Tox over the subinterval
[tk-1,tk] (for £ =1,...,4 for the working model). _ .

It is worthy to note that, if we used a piecéwise linear approximation (or even
piecewise discrete) for Electricity curves instead of piecewise quadratic, we could
easily bound the transmission to be within capacity using linear constraints with-
out approximation. The reason we do not restrict ourselves to a piecewise linear
approximations is that, in seeking flexibility, we need to explore the limits of the
model being developed.

Another point to note is that our capacity approximation does allow all fea-
sible piecewise monotonic transmission. Also, in computational testing of these
constraints, when we instead impose a linear approximation which allows all fea-
sible transmission (for the capacity bound only), the optimal solution remains
unchanged.

Having moved to this approach allows a strategy for approximating convex
line losses. A piecewise linear approximation of the line loss could be achieved
by splitting the arc into many smaller sub-arcs, each with its own capacity (called
sub-capacities) and line loss, representing separate piecesof the piecewise linear ap-
proximation. One advantage to this approach over a more usual piecewise linear ap-
proximation is the effective smoothing off of the corners for particular transmission
shapes. If the solution prefers to transmit a shape which spans two sub-capacities
within a single partition interval (of the Electricity Curve approximation), this
shape is split into two similar shapes. Each shape is sent through one of the sub-
arcs, attracting appropriate linear line losses. The combined line loss of the whole
shape is thus somewhere between the line losses of the sub-arcs. Figure 5.6 shows

an example of this.

5.4 A Better Basis

When considering computational implementation of the model developed, it quickly

becomes apparent that we have few explicit bounds on variables. Instead, we have
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constraints which implicitly impose bounds. When solving a problem numerically,
it becomes important to have bounds on variables; any constraints which can be
imposed as bounds are dealt with intrinsically.

Rather than explicitly determining implicit bounds, it would be better if we
could transform some of the constraints already imposed into bounds, or non-
negativity conditions, by a change of basis. Here, a change of basis in the variables
of the formulation amounts to changing the basis of the piecewise quadratics in the
model. -

There are two candidate sets of equations for such a transformation: either
the capacity bound constraints for transmission, or the decreasing constraints for
generation. The capacity constraints include an approximation, which we may
wish to change, and only two other constraints for each quadratic piece, so we
would be left to choose another arbitrary constraint for each quadratic piece. The
decreasing constraints are enough to specify all but one of the new basis elements;
we do indeed use these constraints as well as the related non-negative generation
constraint.

The constraints we wish to convert to non-negativity conditions are therefore,

29k0tk1 + 961 <0 Vk=1--- K (5.10)

20Ktk + 91 <0 Vk=1--- K (5.11)

Gkt + gritk + Gro — Gra1,2ts — Gre1atk — Gra10 >0 VE=1---K —1 (5.12)
(5.13)

9r2+ 9rk1 + 9ro 2 0 5.13

where {0 = to,t1,...,tx = 1} is the partition used in the approximation, and the
Electricity Curve constrained is given by G = gx2t2 + gx1t + gro over the subinter-
val [tx—1,tk]. Equations 5.10 and 5.11 ensure the quadratic pieces are decreasing,
Equation 5.12 ensures the step discontinuities are decreasing, and Equation 5.13
ensures the curve is non-negative.

We need to ensure that the left-hand-sides of Equations 5.10-5.13 indeed define
a basis. To show this we merely need to show that we can write the natural basis
in terms of the left-hand-sides of these equations. The natural basis can be written

as
B o= {X[O,h], X[O,h]t’ X[O.tl]tQ’ I ©) X(t!\'_l,ll) X(t]\'_l,l]t’ X(th’_l,llt'z}

where X7 is the characteristic function of the set Z. We define the new coefficients,

fxj, in terms of the natural basis coefficients, gx;, as



CHAPTER 5. THE MODEL 95

fro = gratk® — Gra1.2tk’ + Grarts

— Gk+1,1tk + gko — k10 Vh=1--- K —1 (5.14)

fro = 9gr2 + gr1 + gKo (5.15)

fr1 = —2gxatk—1 — gn Vk=1---K (5.16)

fkg = —nggtk — dk VeE=1---K (517)

If we call the new basis elements {Blo,...,B;;g}, to write an Electricity Curve

in terms of the new basis, we substitute in the natural coefficients, gx;, using
Equations 5.14=5.17 and collect terms, and obtain the natural basis elements in

terms of the new basis:

Xio,n) = Bio
tX[0.u) = t1Bro — B — Biy
tZX[o,h] = ;2B — 2t By,

X[tl\'—lvl] = BI\’O N BI\‘-—].,O
tX[t}(—l,l] = Bro — Bk1 — Bk2 — tK—lBK—l,o
*X{tge_1.1) = Bro — 2tk _1Br1 — 2tk 1Brs — tk 1> Bk -1,0

showing the set of functions {Bio,..., B4}, indeed form a basis. It is interesting
to examine the form of these new basis elements; Figure 5.7 shows the new basis
elements for 2-piecewise quadratics with partition {0, .4,1}. It can be seen from
Equations 5.14-5.17 that a similar transformation can be used in the piecewise
linear case.

Having obtained a new basis representation, we need to convert all of our con-
straints into this new form. However, there is no need to explicitly do so here.
Also, there will be no effect on constraints which are valid for any basis, namely

the conservation of power constraints for nodes in the geographic network.

5.5 Exploiting Flexibility

There are some parts of the model for which we can use flexibility in ways as yet
unconsidered. We currently have the implicit assumption that all time steps are
of the same, fixed, length, e.g. all weeks or months; however, the model developed

has the flexibility to allow us to use time steps of differing length. We could, for
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Figure 5.7: Structure of the new basis elements
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instance, have time steps of a week, for the first six weeks, then use time steps of
four weeks, and finish the year with two time steps of thirteen weeks each. This
would reduce the problem to about a quarter of its original size.

The model developed allows infinite variability in the time steps’ lengths, and
the lengths of time steps to be used are dependent on the trade-off between com-
putability and accuracy of the approximation. As time passes in the model the
decisions made become less certain, so it seems that increasing the length of some
of the later time steps should not have too mﬁch effect on a solution’s accuracy.
In increasing the length of time steps in later periods, we are effectively relaxing
the maximum and minimum storage levels. The effect of this could be to use more
reckless policies on long time steps, as there is the ability to “push” our minimum
storage level during that time, effectively borrowing water during that time step.
This is not to say that this type of relaxation does not occur for constant length
time steps, but in this case we are consistent in the amount by which such bounds
can be pushed. In having different length time steps we are changing this amount,
from one time step to the next, and may find that solutions tend to take more
risks in earlier periods, as later periods have more chance of correcting any bad
consequences.

The further into the future we look, the more uncertain we are regarding the
exact state of the system, and so the effects of such changes in the length of time
steps may become swamped by our uncertainty. Also, since it is the intention to
re-solve this system each week, if the change in time step lengths occurs far enough
in the future, the effect on this week’s decision will be minimal.

Differing time step lengths could be used to implicitly model real changes in
the quality of our future knowledge. For instance, we could increase the length
of our time steps for periods in which the uncertainty inherent in the forecasts
exceeds a certain level. This would, hopefully, have the effect of including some
information on the accuracy of forecasts used, in that each time step would have
similar uncertainty in the values being used.

Another unconsidered use of flexibility is to have different geographic networks
for different weeks. The reasons for using flexibility in such a way are similar
to those for having differing length time steps. In fact it is probably useful to
use both of these techniques together. The concerns raised over differing length

time steps also apply to having differing geographic networks; however, it is the
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extra flexibility in transmission which is at issue in this case. This flexibility in
the geographic network used also extends to the approximation used for Electricity
Curves—it makes sense that, as the uncertainty of the forecasted load increases, our
accuracy in approximating it should decrease, as this would lead to less precision
in the costs associated with generation. However, the exact effect of such a loss in
accuracy is difficult to predict, as it is unclear whether the cost would tend to be
consistently lower or higher than the more accurately produced cost. Intuitively, it
would appear that on average these costs would be about the same, since in each
case we use a best fit approximation of the load, and it is just the coarseness of
this approximatiomrthat we are changing.

We also consider the aggregation of some hydro or thermal stations at future
time steps of the model. This would most likely occur in conjunction with the
use of differing geographic networks. Aggregation of thermal stations is quite easy
to apply, as the aggregated stations have no direct connection, in terms of the
formulation, with the same stations of the previous weeks.

Future aggregation of hydro stations is a little more difficult as it requires
integration of their respective waterflow networks. In actuality, this allows multiple
storage arcs to enter the same reservoir (the aggregated one) for a particular week.
There is no realistic way of splitting aggregated reservoirs at later time steps, as
it is difficult to decide how much water to assign to each of the new reservoirs;
this should not cause a problem, as there is no reason to approximate a group of
reservoirs more accurately further into the future. Such an aggregation means that
we need to include possible multiple storage arcs arriving from the previous week
in the conservation of water constraints for the waterflow network. If we define the
set LAST(h, w) to be the set of hydro reservoirs, present (in week w — 1) which are

to be aggregated into hydro reservoir h in week w, these constraints now become:

Shw+ Hhw = Y. Sjw- = Ihy + Uhw
JELAST(h,w)
where, for hydro reservoir A during week w, Sp, and Hp, are the storage and
release, respectively, and, T4, and Up,, are the controlled and uncontrolled inflows,
respectively. Note that the inflows are actually stochastic in nature but, for the
deterministic model, they are assumed to take on fixed values.
To realistically make a decision on the use of any of these techniques would

take rigorous computational testing and simulation of the system, which is beyond
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the scope of this study. For the moment, the working model will assume that all
of the features discussed above are constant over each time step and that there is
no further aggregation of hydro stations. However, for flexibility, we allow for the

modelling techniques described above to be included.

5.6 End Effects and Discount Factors

Thus far there has been no mention of the storage levels at the end of the year.
If no constraints are used to handle these, then it is most likely that all of the
lakes will be empty at the end of the year in an optimal solution, as this makes
fullest use of the “free” resource, water. We are not taking into account the fact
that we will need water beyond the end of the planning horizon, but we do not
have information now on how much we will need; therefore we need to define some
terminal conditions. ‘

We do not intend to adhere to more of the solution produced than that for
the first week, since, in each future week, we will be using the new information on
hand to refine the decisions made. This implies that the terminal conditions do
not need to be too precise, as the effect of these conditions on the the first week’s
solution should be minimal. However, as we use the model over time, this small
effect could propagate through the solutions from one week’s run to the next, until
it begins to have a major effect on the types of solutions generated. For instance,
it may be that if we allow the lakes to finish empty, use of this model over time
may slowly lower the average level of the lakes, since it appears that there is more
water available than is actually the case.

One solution is to estimate the future benefit of the final period’s lake levels,
for each lake, and include this in the objective function. A drawback with this
is that of estimating this future benefit—it is not a simple task, as, including too
much of a benefit will mean we leave the lakes full at the end of the year under the
impression that we can make better use of the water next year, and, too small a
benefit means we will use all of the water this year. Another problem with using a
future benefit is that, although this is only a coarse estimate, it has the potential to
swamp other more certainly known details in the objective function, due to factors
such as machine precision.

Another reasonable solution is to fix the lake levels at the end of the year. We
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could require these to be at some previously decided “best” level for the time of
year, or to be at the same level as they currently are. Another option is to fix the
volume of water over a particular set of lakes, and let the final solution decide the
exact distribution of this water. This will mean that, while the average lake level
remains constant, the relative levels of the lakes will change. This is the option used
in the working model, although it does tend to empty the most usefully located
and reliable lakes in preference to those which have-a high variability of inflow or
are geographically challenged?.

Of course, these options could be used in combination, with bounds also added
to final levels; however, they have little effect on the form of the model developed,
so we can assume the model can have any combination of the above terminal
conditions. There is little point in becoming too elaborate here, since the effect on
the first week’s solution is limited.

Another point to briefly mention is that of using discount factors. These are
used to discount the value of the objective function for later weeks, so as to to
place more emphasis on earlier weeks than later weeks since, when we actually
come to schedule later weeks, we will have more information on the conditions of
the system. This means that, if a the value of using water this week is the same as
using it next week, we will, in preference, use the water this week. For flexibility,
we allow any discount factor; a discount factor of 1 relates to the situation where

we do not discount at all.

5.7 The Deterministic Model

Table 5.2 shows a slightly generalized version of the full working model developed
so far. For simplicity and compactness, as many of the constraints as possible are
written in terms of the Electricity Curves themselves, rather than the coefficients
of the basis used to approximate these curves. To expand these constraints, the
Electricity Curve need only be replaced by its basis representation. This working
model uses a K -piecewise quadratic approximation to the Electricity Curves.

The notation of the formulation in Table 5.2 is explained in Table 5.3. A w
subscripted on a set represents only those elements in the set which are from week

w. Also, all elements of sets are assumed to be associated with a fixed week, e.g. a

lisolated
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Table 5.2: The Full Deterministic Working Model

X o
Min z Tw ( z CNsm(Fj) + Z ch(m(Gh) v Hh) + Z c;m(Gq)>
w=1 J1ENw hEHYDROy, gETHERMALy
subject to:
Dt Gy + Bt 17
gETHERMAL(J) hEHYDRO(])
+F+ Y 1-8)Xi— Y Xi=L; VjeN (5.18)
1€IN(7) 1EOQUT(J)
¢
Sh+Hi— Y Sk=I+U, Vh € HYDRO (5.19)
k€LAST(h)
H,—W, < m(Gh) Vh € HYDRO (5.20)
0< Wn < H, Vh € HYDRO (5.21)
By <5 =5
max{F,,Us} < Hy < Fa Vh € HYDRO (5.22)

R+ (1 -0, < H, <R+ U,

Gh(O) < rnin{Fh,ﬁh + 0}1}
; Vh € HYDRO (5.23)
Wh + Gi(1) > max{EFs, By + 7aUr}
X; € Cx. Vie A (5.24)
G(0)<=X4 Vs € POWER (5.25)

gis >0 Vs € POWER, fi;>0 VjeN Vie{10,...,K2} (5.26)
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Table 5.3: Notation used in Table 5.2

N, A All nodes and arcs, respectively, in geographic networks.
TYPE All type stations (POWER = HYDROUTHERMAL); a dependence
on j represents only those present at node j.
IN(7), oUT(y) All arcs entering and exiting, respectively, node j.
LAST(h) All hydro reservoirs, from the previous week, aggregated into
hydro reservoir A.
Cx Approximated set of all curves with range in [0, X].
{10,..., K 9} Subscripts of the coefficients of the basis elements.
m(G) Area under the curve defined by G.
Gs, 9is C.C. for station s and ¢’th coefficient of this, respectlvely
F;, fi; Node j non-supply curve and its :’th coefficient, respectively.
X; Transmission curve for arc 2.
R., Hy, R, Minimum, actual and maximum release, respectively, from hy-
dro reservoir h (including spill).
Sh, Sk, Sp Minimum, actual and maximum storage levels, respectively, for
hydro reservoir h at the end of the current week.
Wy Spill from hydro reservoir A.
L; Load Duration Curve for node j.
X; Capacity of station (or transmission line) j.
F,, Fi Minimum and maximum flow, respectively, from the river
mouth of hydro chain A.
Tw Factor for week w including discount factor and week length.
ens Cost of non-supply.
cg (1 —p)eg +pens where ¢ is the fuel cost for thermal station g.
B: Fraction of power loss for transmission arc 1.
vr  Fraction of uncontrolled inflow, for hydro station A, which ar-
rives at a constant rate.

hydro station at week w is a separate element of the same station at week w + 1.
The set C refers to all Electricity Curves whose coefficients satisfy Equations 5.7
5.9. The formulation shown in Table 5.2 assumes that each hydro station has its
own C.C..

To obtain an idea of the size of the formulation in Table 5.2, we count the num-
ber of constraints (the Equations in this Table each describe many constraints).
The assumption is made that the same geographic network, number of stations,
and approximation of the Electricity Curves are used for each week. Equation 5.18
(conservation of power at geographic network nodes) represents one constraint for

the coeflicients of each basis element for each node of a geographic network, giving
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3KY N constraints for a /-piece piecewise quadratic approximation of the elec-
tricity curves, where Y is the number of weeks in a year, and N is the number
of nodes in the geographic network for each week. Equation 5.19 (conservation
of water at waterflow network nodes) represents Y H constraints, where H is the
number of hydro stations. Equations 5.20 and 5.21 (ensuring W}, is the total spill)
also each represent Y H constraints. Equations 5.22 just represent bounds on stor-
age and release, and are generally dealt with separately, and so do not explicitly
add to the number of constraints; the same is true of the non-negativity conditions
(Equation 5.26) which ensure some of the Electricity Curves are decreasing. Equa-
tions 5.23 and 5.25 (minimum and maximum generation levels) represent Y (Q+2H)
constraints, where () is the number of thermal stations. Finally, Equation 5.24 rep-
resents 6/ constraints for every arc (this can be halved by enforcing bounds on
the slack of each constraint, giving a total of 3K'Y(2A) where A is the number of
transmission lines in the geographic network, being half the number of arcs since
these are split (see Section 3.5)).

These give a total of Y(3K (N + 2A) + 5H + Q) constraints. The number of
variables is Y(3LK' (N +2A) +3H), so the number of variables is approximately the
same as the number of constraints. For the working model as described in this and

preceding Chapters there are 29 328 variables and 28 392 constraints.

5.8 Generalized Network with Side Constraints

The model, as formulated in Table 5.2, can be re-formulated as a Generalized
Network with side constraints. This is most helpful in determining a solution
procedure as the Generalized Network structure is easily exploited to allow faster
solution times. The re-formulation is mostly a change in the way the problem is
interpreted. To show that a formulation is indeed a Generalized Network with
side constraints, we merely need to demonstrate that the formulation exhibits a
Generalized Network substructure which includes every variable.

Each basis element (used in the Electricity Curve approximation) has an associ-
ated Generalized Network for each week, corresponding to the geographic network.
The variables of this network, for week w, are exactly the coefficients of the as-
sociated basis element corresponding to each Electricity Curve of week w. For

each basis element’s network, Equation 5.18 corresponds to the “conservation of
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mass” constraint at a node, with the transmission variables corresponding to arcs
(with losses) connecting these nodes. The generation variables and non-supply
variables each correspond to an arc from the node, at which they appear, to a fic-
titious “power supply” node (a super source of the network). The load coeflicients
correspond to the sinks of this Generalized Network.

The waterflow networks are obviously (Pure) Networks (and therefore General-
ized Networks), however we need to incorporate the spill as a network variable, or
eliminate it from the formulation. It may be eliminated by replacing Equation 5.20
with the constraint

Hy > m(Gy) Vh-€ HYDRO

and, consequently, removing Equation 5.21. This slightly alters the model. The
same model can be maintained by the introduction of a new variable, V;, for each
hydro station h (with a particular week corresponding to each h). Vj exactly
represents the part of the release which flows throtugh the turbines of hydro station

h. This new variable is given by
Vi=Hy — W, (5.27)

and may be used to eliminate Hy from the formulation. However, since the removal
of Hj converts the bounds on Hj into explicit constraints, it may be more useful
to retain this variable.

The waterflow network, including the spill variable and the new variable V,, is
now a (Pure) Network with each variable corresponding to an arc. Equation 5.19
describes a storage node, and Equation 5.27 describes a “river mouth” node (the
arc corresponding to H, may be retained or removed). Equation 5.21 implicitly
holds (by Equation 5.27 and the non-negativity of V, and W}), so it can be removed
from the formulation. Figure 5.8 shows the part of a waterflow network, for a single
week, under this formulation.

Since every variable of the re-formulation may be considered to be part of a
Generalized Network, the re-formulation is a Generalized Network with side con-
straints. Constraints corresponding to Equations 5.20 and 5.23-5.25 are the side
constraints, and the remainder of the constraints correspond to either nodes of the

Generalized Network, or to bounds on the arc flows.
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Figure 5.8: Part of the waterflow network with the addition of V

5.9 Discussion

This Chapter described a deterministic model for the New Zealand hydro-thermal
electricity generation system. Although it includes some stochastic features (for
instance estimates on expected generation costs in terms of station failures), it
treats the major stochastic elements of the system as deterministic. These elements
are the inflows into the hydro reservoirs.

Due to the high variability and unpredictability of these inflows, the solution
to the deterministic model with particular inflows is not very robust as an imple-
mentable solution, since it relies on the fact that the inflows are fixed. This does
not imply that the solutions of the deterministic problem are of no use, merely that
they should not be implemented as they stand. They are useful in determining the
effect of uncertainty in the system, and for producing a lower bound on costs for
particular scenarios of inflows.

The major advantage of a purely deterministic model is the ability to allow vast
amounts of detail which it is not computationally reasonable to have in a stochastic
model. The next Chapter will describe how the deterministic model developed can

be usefully extended to encompass the stochastic elements.
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Chapter 6

Modelling Stochastic Inflows

linear model of the physical system discretized over the time horizon was
Adeveloped in Chapter 5. It included methods for coping with the stochastic
elements brought in by supply uncert;'a,inty and load forecasts, but it did not ex-
plicitly deal with the stochasticity of hydro reservoir inflows. Any model developed
needs to take adequate account of this stochasticity to be effective.

A reason for leaving the discussion of stochastic aspects until this Chapter is
that they are very difficult to take accurate account of, in the sense of developing
a computationally tractible model. In the New Zealand system, the hydro inflows
have a high variance; this is illustrated in Figure 6.1, which shows 10 years of
inflows into South Island lake, Te Anau (the reservoir for the Manapouri hydro
station). Note that the highest inflows into lake Te Anau are able to almost fill
the lake from empty. Also, there are differing correlations between reservoirs (even
those in the same Island); Figure 6.2 illustrates this by showing two scatter plots
of the inflows given in Figure 6.1 against those into South Island lakes Pukaki and
Hawea for corresponding weeks.

Every reservoir can be modelled by a separate random variable (or possibly a
combination, if partial correlations are included). Including temporal independence
increases the number of random variables involved to the order of 300. Given that
each random variable adds another dimension to the problem (in terms of right-
hand-sides and coefficients), taking all of these factors explicitly into account can

increase computation time to an unreasonable level if a brute-force search is used.
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Figure 6.1: Ten years of inflows into lake Te Anau
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Figure 6.2: Te Anau inflows against those into Pukaki and Hawea
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6.1 Optimality in a Stochastic Setting

Extending the constraint set to include stochastic elements is a reasonably simple
exercise. We merely need to define which values are stochastic and allow some of the
variables to depend on the observed value of various stochastic variables. We can
model correlations and dependencies by allowing some of the stochastic variables
to be given by a weighted sum of various random variables. For instance, suppose
thereis a correlation between the controlled and’un.controlled inflows of a particular
river chain. If welet £, ( and ¢ be random variables from appropriate distributions,
then the correlation can be modelled by setting I= é+A7¢ and U= v+ Ay(, where
the A’s represent correlation factors. In general each inflow would be a function of
arandom variable corresponding uniquely to that inflow, and various other random
variables (of which other inflows are also functions) corresponding to correlations
bought in by various environmental effects (local weather patterns, for instance).

A difficulty which arises when specifying the objective function is that of deter-
mining exactly what we are trying to optimize—the answer is not at all obvious.
The usual objective used for Stochastic Programming is that of minimizing the
expected cost (or maximizing the expected benefit); the actual objective depends
on the intention of the model and what is reasonably achievable.

The “tails” of random variable distributions present a difficulty when using
expected cost, since these tails are often not well approximated due to a lack of
information about this area of the distribution (consider approximating a statis-
tically 1 in 100 year drought using only 50 years of past data). However, these
tails may actually drive the solution, since the costs associated with such tails are
often large and could swamp the data which would otherwise lead to more rea-
sonable solutions. Another difficulty with these extreme values is that, generally,
approximations and constraints of the model are based on near-average values of
the stochastic variables and such approximations and constraints may break down,
or become unreasonable, in the extreme. Also, some constraints are not hard, but
are more easily modelled in this way, especially in the face of extreme conditions;
given a serious drought, noone can expect minimum river levels to be maintained.
Therefore, the difficulty may be the way the problem is modelled. However, in this
situation, it may not be desirable to re-model such constraints, as this re-modelling
may cause the model to become computationally intractible.

In general, the approximation used for random variable distributions truncates
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the tails of the underlying distribution (e.g. a discrete approximation). Such a
situation can be thought of as optimizing over some set of “reasonable” values,
and treating extreme situations as “acts-of-god”, for which special actions will be
taken which are not (or can not be) modelled explicitly. By specifying where the
truncations are made, we are defining such unreasonable situations.

Minimizing the expected cost is not the only objective that could be used; it
assumes that the intention is to do well in the long-term. To do better in the
short-term, one could include criteria for taking risks on the forecasts, or, risk
trying to do better in an average year by foresaking security in an extreme year.
Given the unpredictability of inflows into hydro reservoirs in New Zealand and the
lack of imported power, such risk taking is most likely untenable. Because of this,
and the difficulties inherent in specifying other objectives, we use the minimization
of expected cost, or an approximation thereof, as the objective for this model.
By changing the random variable distributions used, or incorporating a weighting
function into the objective function, we can change the importance given to various

probable futures and hence include some flexibility in the definition of the objective.

6.2 The General Problem

Recall (from Table 5.2) that the stochastic variables in the model are present only
as right-hand sides of some constraints and bounds. Hence, the general stochastic

program can be written as the multi-period stochastic program

Min £ (Z(z,y)]

A[;]z[;]

§2S[x]S£3
Y

where Z is the cost of generation, ¢ = [£; &; &]7 is the set of random variables (with
possible correlations), y is some type of state or history information from previous
time steps upon which our decisions (and some random variables) are contingent,
and z represents the decision variables. Here the expectation is calculated as an

integral over all possible random variable values which form some multi-dimensional
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set. It is the calculation of this integral that creates the difficulty, since, as pointed
out by Wets [22], while there are adequate ways of numerically computing integrals
over one (and possibly two) dimensions, there are no reasonable ways for doing so
over three or more dimensions.

It is well known that when the probability distributions underlying the stochas-
tic variables are discrete, the formulation can be written as an equivalent large-scale
deterministic program (with a stochastic interpretation). Furthermore, when the
model of the physical system underlying the stochastic problem is linear (as it is in
this case), the equivalent large-scale deterministic problem obtained is an LP. Many
methods discretize the probability distributions underlying the stochastic variables
(either before or during solution) to take advantage of this property, however the
large-scale nature of the equivalent deterministic problem means that even then
one must limit the size of “local” searches (possibly by limiting the size of the
problem investigated) so as to make the problem tractable.

In Section 6.3 we consider using a continuous approximation, via a fixed basis,
to the distributions underlying the stochastic variables, in a similar manner to the
approximation of Electricity Curves. The benefit of using a fixed basis is that it
eliminates the difficulty of calculating expected values, because one can obtain a
fixed polynomial expression.

A difficulty which arises when discretizing time is that of deciding exactly when
the random variable is observed (and when this information can be used). Such
knowledge at the beginning of the week assumes perfect foresight over the week,
while allowing this knowledge only at the end of the week assumes that we cannot
react to knowledge gained during the week. For the latter, however, some state
variables (in our case, storage at the end of the week) must depend upon the actual
value of the random variables. To approximatea limited use of the knowledge before
the end of the week, we could assume, say, that the Contract Curve of the station
needs to be fixed at the beginning of the week; however, the release, storage and
spill can all depend on the value of the random variable, allowing hydro generation
to be replaced by non-supply (or re-supply) depending on the observed value of
the random variable, simulating an ability to react to information gained over the
week.

For the working model we assume, for simplicity, that all decisions must be

made at the beginning of the week. This allows the possible first week’s inflows
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to realistically model inflow forecasts for the coming week, rather than needing
to forecast only one inflow for the first week. All decisions are extendable, with
appropriate modification, to any of the cases discussed above. Often we will use the

simplest case for a particular situation, so as to avoid obfuscatory complications.

6.3 A New Method

Consider for the moment the situation for which the reservoirs have independent
inflows which, individually, are completely correlated with respect to time. The
case for two reservoirs is easily generalizable to the multi-reservoir situation and so,
for simplicity, we use this as an example. We also make the assumption that there
are no uncontrolled inflows, although this can be extended to the assumption that
either the uncontrolled inflows are fixed, or totally correlated with the controlled
inflows. For the purpose of this discussion, we will also assume that the decisions
can be made with perfect foresight of the week ahead; this avoids the need to
distinguish between structure admitted by the method described and that created
by this lack of foresight.

Due to temporal correlation and spatial independence, inflow into a reservoir
for each week can be determined using a single random variable. This can be rep-
resented by having, for each reservoir j, a parameter z; € [0,1] and, for each week,
w, a function of this parameter, f;,, which gives the actual inflow for that week.
The conservation of water constraint, and the constraint linking the hydro station

release with its generation (for hydro reservoir j during week w), are respectively:
Sjw(xlrx2) + H.fu»‘(xltx2) = Sj‘wﬂl(th?) + wa(IJ) (6'1)

H;(z1,22) — Wjw(z1,22) < m(Gju(z1,22)) (6.2)

where each variable represents a two-dimensional function of a fixed basis so that
these constraints can be put in terms of their coefficients (which would be the
variables of the Mathematical Program). The variables are similar in design to
those given in Table 5.3.

Unfortunately, the assumption of temporal correlation is not a good approxi-
mation for the New Zealand system. However, if one introduces temporal inde-
pendence, then the decision variables for each week become functions of all of the

inflows for all of the preceding weeks! One way to circumvent this is to assume
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that our decision can be based only on fixed horizon hindsight. Suppose, for in-
stance, that we can base our release decisions only on the previous two weeks’
inflows. A natural extension to this is to allow the probability distribution of this
week’s inflows to depend on last week’s inflows as well (introducing a lag-1 temporal

correlation). Equations 6.1 and 6.2 therefore become

Siw(Trw T2ws T1,0—1, T2,w-1) + Hjuw(T1ws T2ws T1,w-1, T2,w-1, T1,w-2, T2,w—2)
= Sjw-1(T1w-1, T2,u—1, T1,w=2, T2,w-2) + fiw(Tjws Tjw-1)
(6.3)
ij($1w, Tow, $1,w-1,$2,w-1) = u/jw(-’l‘lw, T 2w, $1,w-1,$2,w_1)

S m(ij(xlw, Tow,y T1,w-1, x?,w—l))

The conceptual difficulty here is that we are assuming that our release decision for
this week cannot depend (explicitly) on the storage level at the beginning of the
week.

What we would lzke to do is to introduce a “forgetting” function, g, which ap-
proximates the distribution of storage levels for the beginning of the week (which
is currently a decision function of many parameters) by a single probability dis-
tribution (we could also include finite horizon hindsight if desired). If we have no
hindsight (except for the lake level at the beginning of the week), the conservation

of water constraint becomes:

Sjw(xjwa ij) + ij(ij) = g[S',w—I](yJ'w) G 5 fjw(ij)

In addition to the difficulty of specifying g, such an approach suffers from the
large number of variables needed. If we consider having six independent hydro
reservoirs, the function H;, of Equation 6.3 is a function of 18 parameters, so that
if, for each parameter, we have a basis of n functions, then to specify each function
H;, would take in the order of n!® variables! An in-depth investigation of such
an approach, even for a small number of reservoirs, would take a lot of theoretical
research to ensure that it is of a robust nature. Such an investigation is beyond

the scope of this thesis, and this approach is therefore not taken any further.

6.4 Stochastic Approaches

There are many approaches to solving Stochastic Programs in the literature. To

fully examine these alternatives as feasible extensions to the deterministic model
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would not only require adjustment of this model to fit the extension, but also
require rigorous testing of the viability and robustness of the resulting stochastic
model. Such an investigation is also well beyond the scope of this thesis, since the
intention here is to develop a detailed model of the physical system which can be
extended to a full stochastic model. To this end we examine only how one such
extension may be achieved and perform very minor testing so as to address some
of the implementation issues involved.

We do, however, identify the need to carfy out testing and simulations on
various stochastic models so as to identify those which best meet the needs of
New Zealand’s power scheduling system. Such a study, purely for the New Zealand __
system, has not yet been initiated. In performing such a study, there would be con-
siderable benefit gained from the use of consistent models of the physical system
because this would tend to remove discrepancies which are based on differences in
the way in which physical system is actually modelled in different stochastic models.
It would mean that all approaches could be developed and coded together, remov-
ing some of the arbitrariness in separately developed (and programmed) models.
Also, the solutions from such models could then be realistically compared, as the
structure of solutions obtained would tend to be consistent.

For the moment we give a brief account of some of the stochastic approaches
presented in the literature and discuss their possible use as extensions to the model

developed here.

6.4.1 Stochastic Dynamic Programming

Stochastic Dynamic Programming (SDP) uses the concept of state variables, which
are variables that react to the value of the decision variables and to the random
variables’ observations. In solution, SDP discretizes the random variables and the
state variables upon which the current decision is being made, so as to determine
the best current decision based on each of these values, and calculates the cost
of making such a decision. It then interpolates the costs, and uses this as an
approximation of the future cost of decisions for the decisions of the previous time
period (in a backwards recursion).

The undesirable feature associated with this approach is the aptly named “curse
of dimensionality”. Because of this, SDP can use few (two or three) random vari-

ables at each stage whilst remaining computationally feasible. Such an approach
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is taken by Boshier, Manning and Read [2] for the New Zealand system.

An effort to circumvent the curse of dimensionality resulted in the use of an
Aggregation-Decomposition approach (Duran, Puech, Diaz, and Sanchez [5]). The
principle behind this approach is to aggregate all but one of the reservoirs and solve
the resulting system using an SDP approach, repeating this for each reservoir. The
“solution” is then taken to be the combination of the individual solutions for each
reservoir. If such an approach were to be used in New Zealand, one would need
two aggregated reservoirs, one for the North Isiand and one for the South Island,
since the physical barrier between the two needs to be well represented.

Another attempt to side step the difficulties of SDP has recently been devel-
oped. Stochastic Dual Dynamic Programming (Pereira and Pinto [16]) discretizes
the state variables near points of interest (locations where a solution is likely to
venture) for the SDP backward recursion and then performs a forward simulation
to determine new “interesting” values of the state variables. The algorithm calcu-
lates lower bounds and estimates upper bounds, giving an idea of the convergence
of the objective value. It appears that such an approach could work well as a
stochastic extension here.

Lagrangian relaxation has also been used in a number of decomposition ap-
proaches. One method was to decompose the system into separate stations by
fixing the Lagrange multipliers corresponding to meeting demand. Li, Yan, and
Zhou [10]. The hydro systems are then individually solved using SDP and the
thermal station’s generation is directly determined. The Lagrange multipliers can
then be updated so as to ensure global convergence. Due to the use of an un-
derlying network in this model, such a method would be difficult to implement as
it stands, although for this model we could, instead, relax the Lagrange multipli-
ers of the constraints linking hydro reservoir release and hydro station generation.
Lagrangian relaxations are also used in conjunction with a scenario-aggregation

approach.

6.4.2 Scenario-Aggregation

A scenario-aggregation approach approximates the random variable distributions
with a number of fixed, appropriately weighted “scenarios”. The problem can
then be formulated as an equivalent large-scale deterministic problem in which

the deterministic base model is replicated for the various scenarios and so-called
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non-anticipavity conditions are introduced to ensure that no decision made uses
foreknowledge which would not be available at the time. The large-scale nature of
this problem all but forbids direct solution, and so the problem is often decomposed
by relaxing these non-anticipavity constraints.

In situations where the effects of the stochastic variables are slight, often only
the relaxation is solved and the solutions are combined by hand; see, for instance,
Dembo et al. [4]. Such a method is not appropriate for the New Zealand system
because of the high variability of the inflows aﬂd the significant influence this has
on deterministic solutions.

The structure of the equivalent large-scale deterministic problem lends itself
to the use of Bender’s Decomposition. Unfortunately, to be effective in reducing
the size of the problem to manageable portions would require many successive
applications of the decomposition, and, in practice, the number of Bender’s Cuts
necessary to obtain a solution makes this approach intractable.

Several methods have been developed which apply a Lagrangian relaxation to
the non-anticipavity conditions. One in particular, the Progressive Hedging Al-
gorithm of Rockafellar and Wets [19], uses an augmented Lagrangian technique
to successively tighten the non-anticipavity condition relaxation. This method is

described in more detail in the next Section.

6.5 Applying Progressive Hedging

A scenario aggregation approach was chosen to be used as the stochastic extension,
as it offers the greatest flexibility in the extent to which the modelling of stochastic
elements dominates the solution procedure. Furthermore, it allows correlations and
future forecasts to be included (if only implicitly). In taking such an approach we
are, in essence, approximating a multi-dimensional solution space by a few selected
snap-shots of this space. It is hoped that the physical detail given by solutions to
the thus created full stochastic model goes some way to making up for the lack of
stochastic detail. It is intended that this approach should be used in tandem with
another approach which is more thorough in dealing with the stochastic elements
(and hence has a less well defined physical system). Indeed, the flexibility of this
approach allows it to fulfill both roles.

In reality, however, the users of the model will probably want to use a single
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model which gives consistently sensible solutions. Therefore, such a model needs
to be sufficiently flexible so as to be capable of producing solutions which can be
well stochastically hedged or well detailed (since, in practice, achieving both is not
computationally tractable). The use of a scenario aggregation method, with the
deterministic model developed in Chapters 3-5, creates such a model.

The particular solution method chosen is Rockafellar and Wets’ Progressive
Hedging Algorithm [19]. The benefits of this method are that it has well-grounded
theory and may be solved on parallel process;)rs (which would greatly enhance
solution time). It also has the advantage that, at each iteration, it produces a
solution which obeys all of the non-anticipavity conditions (although these may
not be feasible in terms of the formulation); this solution can then be used as an
approximation to the optimal solution. In terms of the solution process, the Pro-
gressive Hedging Algorithm amounts to re-solving the deterministic model under
various scenarios, with a quadratic augmentation to the objective function, many

times.

6.5.1 A Brief Description of Progressive Hedging

The deterministic model for each scenario of inflows is known as a scenario sub-
problem. Each subproblem, ¢, is given a positive weight, p;, which can be thought
of as its probability of occurrence. The optimal solution to each of these subprob-
lems is found, and these are used as the initial subproblem solutions, z;. We begin
with an initial estimate of the value of the Lagrange multipliers associated with
the non-anticipavity conditions, W (usually W = 0 is used).

Using the current subproblem solutions, a policy, X, is determined for each
scenario. The value of each component of the policy for any scenario is equal to the
corresponding component of the current subproblem solution, or, if this component
is required to obey a non-anticipavity condition, it is equal to the average value
(weighted by the p;’s) of the components (of the current scenario subproblems)

which must also satisfy the same non-anticipavity condition. That is

D DPTh

Xij _ keH(1,5)
D"
keH(1,5)

where H(7,7) is the set of all subproblems for which the j’th variable is required
to be equal to the j’th variable of the 2’th subproblem by the non-anticipavity
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conditions. If z;; is not constrained by any non-anticipavity condition, we have
(s, ) = {3,

The current Lagrange multiplier estimates are updated via
Wi — Wi+ r (27 - X))

where r > 0 is a fixed penalty parameter. The objective functions of the scenario
subproblems are augmented so as to include the Lagrangian term for the non-
anticipavity conditions, Y; piW;;zi; (often written as (Wi, zi)), and a quadratic
term to limit the step length taken, Z||z} — Xi||> (where the norm corresponds
to the inner product used in the Lagrangian term). Each of these new scenario
subproblems is then solved to obtain new current subproblem solutions and the
process repeated until adequate convergence is obtained. Figure 6.3 describes this
process diagrammatically.

The implementation of this algorithm is reasonably straightforward, however
there are one or two implementation issues to be considered. These, and the

reported experiences of others who have also used this algorithm, are discussed in
Chapter 9.

6.6 Choosing Scenarios

Developing the exact method for choosing the scenarios to be used demands con-
siderable attention. It requires computational testing and simulation to convey an
appreciation for the effects of this choice in practice. When developing a model
to deal with stochastic aspects of a problem, there is no alternative to empirical
testing, as it is the quality of solutions produced for the system involved that is of
real interest. Such an exhaustive study is beyond the scope of this thesis.

In choosing a stochastic extension to the deterministic model developed we do,
however, have some expectations of the model to be implemented. A scenario
approach was chosen specifically because of the freedom allowed in the choice of
scenarios. Since the number of scenarios needed to take reasonable account of the
stochastic elements may be intractably large, it could be, nonetheless, that this
freedom is a false security in this case. The intention is to run the model under a
very few representative scenarios to gain insight into the running of the system as
a whole, and more importantly, for this model, to give a great deal of detail about

the physical implementation of such a solution.
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Figure 6.3: Rockafellar and Wets’ Progressive Hedging Algorithm
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One original intention was to solve the deterministic model under a number of
different scenarios (compiled from historic data), only ensuring that the first week’s
releases were all the same. Currently, the option that appears most attractive
(based purely on intuition) is to start with several (five, say) important scenes
(yearly inflow sequences) based on the volume of inflow. From these scenes, then
construct a scenario tree based on possible transitions from one scene to another as
the year progresses, where some transitions are expressly forbidden (e.g. transition
from a very wet scene to a very dry scene ana then back again). The scenario
tree so obtained would be unmanageably large (for five scenes we would obtain
in the order of 5Y scenarios). However, beyond some indeterminate horizon, the
prediction of inflows is no longer very precise, and, the effect of wrong predictions
on the first week’s decisions is slight; we call this horizon the short horizon. It
seems to be reasonable to approximate decisions made beyond this horizon by,
say, deterministic solutions; other possibilities beyond this horizon are discussed in
Section 6.8. Taking this short horizon to be four weeks gives in the order of 600
scenarios; from this a sub-tree can be chosen which has at most three arcs splitting
from any node, and consists of 3 to 20 scenarios. Thissub-tree defines the scenarios

which are to be used.

6.7 Reducing Effort when Progressive Hedging

When using a scenario approach one creates a scenario tree, as in Figure 6.4,
showing the various interactions between scenarios. Paths from the root node to a
leaf node represent the individual scenarios (see Figure 6.5).

The Progressive Hedging Algorithm solves the scenarios individually as (aug-
mented) deterministic subproblems. Notice that we require that some nodes in the
scenario tree to be “solved” many times for each hedging iteration, to ensure a fea-
sible solution in each deterministic subproblem. In Figure 6.5 the dashed ellipses
represent sets of nodes which are solved more than once; notice that their history
(path to the root node) must be the same in order that they can be considered as
being solved multiple times.

In the setting where the nodes of the scenario tree actually represent quite large
physical systems (such as the current problem), such an overlap would represent

a large overhead in solution time. To avoid this we should therefore decompose
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Period 1 Period 2 Period 3 Period 4

Figure 6.4: A scenario tree

Figure 6.5: Various scenarios from the scenario tree
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the system in another way. The reasons for choosing the natural decomposition
(of Figure 6.5) are that it is easy to implement, easy to understand, and, that it
exhibits similar structure in each subproblem (which may be exploited to obtain
faster solutions or a more compact representation).

The Progressive Hedging Algorithm decomposes the problem by relaxing non-
anticipavity conditions and then sequentially tightening them. Since the Progres-
sive Hedging Algorithm makes no assumptions about the scenario structures used,
one answer is to break up the scenario tree into subtrees rather than paths. For
the model developed there are few (very important) inter-period links, namely the
storage variables for each hydro station. It may, therefore, be better to split these
variables “breadth-wise” rather than “height-wise”, taking the sub-trees to be as in
Figure 6.6. In doing so, we are actually hedging on a “non-anticipation variable”,
i.e. an artificial variable equal to the value of the non-anticipavity constraint. To
give an example of the resulting difference in the decomposition used, consider the

following: let

At o = bg (64)

be the partial constraint set for period ¢, and

w
A}+1 = b}+1
[ Y
and .
w
Af+1 " = 6:2+1

to be two scenarios of partial constraint sets for period ¢t + 1, where © and w are
the variables linking periods ¢ — 1 and ¢, and, ¢ and ¢ + 1, respectively, and = and
y are the decision variables for periods ¢ and ¢t + 1, respectively. Usually we would

have the following partial constraint sets:

- .1 .
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(Note that we effectively solve Equation 6.4 twice). Decomposing as proposed

above would split W and have the following partial constraint sets:
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Such a decomposition breaks the problem up into small pieces, whose size is
controlled only by the number of arcs leaving a scenario tree node and the detail
in the physical system of each period. However, we further propose to “glue” some
of these sub-trees together so as to make large blocks of about the same size (e.g.
Figure 6.7).

One advantage to this approach is that it implicitly incorporates the fact that
the first period (the root node) is affected more by decisions made in close periods
than by distant periods. There may be an asynchronous parallel solution method
to solving these sub-trees (possibly an adapted version of the Progressive Hedging
Algorithm) which takes advantage of this by having smaller trees at the “narrow”
end of the scenario tree which are updated more often (but we do not pursue this

possibility further).
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Figure 6.6: Split sub-trees

Figure 6.7: Joined sub-trees
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The construction of these larger blocks is completely dependent on the base
model and the scenario tree used. In solving the problem using the natural decom-
position, the subproblems solved each use Y nodes of the scenario tree (where Y is
the number of weeks in a year); it is therefore reasonable to break the problem up
into subtrees, each with a depth of log, Y, where s is the average number of arcs
splitting from a scenario tree node.

For scenario trees similar to those described in Section 6.6, a natural construc-
tion of the large blocks is evident: the first block consisting of the scenario tree with
the deterministic “tails” removed (i.e. the part of the tree before the short hori-
zon), and the other blocks representing the deterministic tails. Figure-6.8 shows an
example of this. While this procedure removes only the same order of computation
as the removal of one scenario (for each progressive hedging iteration), the num-
ber of relaxed non-anticipavity variables is decreased from 54 to 18; this should
considerably reduce the number of iterations required. Most importantly, the new

structure will increase the convergence rate of the first week’s solution.

6.8 Non-anticipavity

In the scenario aggregation setting, the issue of when information on the observed
values of random variables becomes available begs the question as to which variables
should be the non-anticipation variables. Consistency of the model requires that
the same variables are used as non-anticipation variables each week. The choice of
non-anticipation variable is also dependent on the information to be sent to shorter
time models.

Where the assumption about the observation of the random variables is either,
that of perfect foresight over the week, or, the case where we can not react until the
end of the week, both the hydro station’s C.C. and release need to be based only
upon the information available at the beginning of the week. This can be achieved
by imposing the non-anticipavity condition only on the release, if desired, since,
when the releases are fixed for a week, the decisions for that week become decoupled
from the rest of the model. The case where we approximate partial foresight over
the week (as in Section 6.2), amounts to requiring the hydro station’s C.C. to be
non-anticipated but the release to be anticipated, hence the release may react to

the observed values of the random variables for that week.
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Figure 6.8: Suggested break-up of a particular scenario tree
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Another method of approximating partial foresight is to use storage as the non-
anticipated variable, and allow the release and generation to react to the observed
values of the random variables—this amounts to setting storage targets. Unfortu-
nately, in the situation where there is a large range of possible inflows for a week
(which is common for later weeks), the target storage is limited by the possible
storage given that the lowest inflow occurs, requiring that, for high inflows, the
solution should spill rather than not meet the storage target!

A slight generalization may, however, work well in tandem with the short hori-
zon proposed in Section 6.6. The idea is to approximate the effects of stochasticity
beyond the short horizon, by applying the non-anticipavity conditions to the target
storage level—for every scenario (regardless of its history) for every week beyond the
short horizon. Applying a penalty for under-achieving the storage target simulates
stochastic decision-making for these weeks. Of course, the solution is dependent
on the penalty actually used, but the effect on the first week’s decision may not be
overly great.

Such an approximation provides a setting for investigating the effects of different
approximations beyond the short horizon. Having a low (or zero) penalty parameter
is equivalent to assuming a deterministic solution beyond this point, whereas using
a very high penalty assumes that no benefit can be obtained from considering either
the past or possible futures of a decision regarding storage levels.

This approximation also comes with a warning. Both it, and the use of a short
horizon, are artificial structures which are included only to reduce the amount of
work involved in taking some account of the stochastic elements involved. They
are not approximations of real phenomena and will induce unwarranted structure
in solutions. The only way to fully evaluate their effect on solutions is to run and
compare exhaustive empirical studies and simulations.

T here are various possibilities regarding the choice of information which is given
to the shorter time horizon models. The exact choice depends on the short term
models and information exchange structures used. Communicating the generation
schedule requires a minimum release from the short term model. Release informa-
tion, or equivalently a target storage level, sent to the short term model requires
maximum generation from this model. Often price information, in the form of
water values, is given, in an attempt to provide local information in the face of

uncertainty about load and inflow information. Unfortunately, this often leads to
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an oscillating off /on situation when the water value is near the fuel cost for some
thermal station.

Incorporating information about the geographic location of load and power
stations means that price information is in terms of the dual variables of a network,
so that each power station “sees” a different value for its generation with respect
to different load locations. If a single cost were required, we could identify some
fixed load which a particular station is deemed to meet, and use this single value
(or obtain an average value over all load met by the station). If partial (or no)
foresight is allowed over the week, the price information with also depend on the
inflow. -

It appears that it is best to send both release information (possibly in the form
of a target storage level) and some price information, on the value of stored water.
This provides the short term model with a method for evaluating the effect of
approximations used in the longer term model (in terms of the local solution at
least) and may provide the basis for a decision on whether local price information is
necessary in the longer term model. Unfortunately this would also cause confusion
over which piece of information to use (the release or price) in scheduling the
system. Price information is more robust under the assumption that it does not
vary over the week.

We see the inclusion of another model as being a more robust option—one
which considers the whole system for just one week (and which can be used to
give the local stations and river chains more detailed daily information (even if this

information is only given once a week).

6.9 Advantages of a Scenario Method

In choosing a scenario approach we take advantage of some hidden benefits. By
discretizing the hydro reservoir inflows we can include constraints with a non-
linear dependence on the hydro inflows. This is most useful for constraints can be
relaxed in extreme inflow situations. For example consider constraints specifying
minimum and maximum flow somewhere on a hydro river chain—when inflows are
below (or above) certain specified levels, often the minimum (or maximum) flow
level is relaxed to take account of this. This can be modelled by removing the

constraint in a given week for a scenario with an extremely low (or high) inflow for
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that week.

6.10 Discussion

This Chapter considered many of the issues involved in moving from a deterministic
model to a stochastic one, specifically for the deterministic model developed in
Chapters 3-5. Various stochastic extensions which have been used to model similar
systems were reviewed. It was decided that a scenario approach should be taken
as this offered the most flexibility in the extent to which the stochastic extension
1s modelled.

Specifically, Rockafellar and Wets’ Progressive Hedging Algorithm was choosen.
Many advantages in taking a scenario approach and particularly in using the Pro-
gressive Hedging Algorithm have been highlighted. The implementation of both
the deterministic and stochastic approaches (for testing purposes) are discussed in
Chapter 9, however the enhancements proposed in this Chapter have not been im-
plemented since any effective comparison would require a thorough investigation,
which is beyond the scope of this thesis. '

Chapter 7 extends the model to include some local constraints, which cannot
be modelled via techniques already discussed. Chapter 8 describes a theoretical

investigation of the effects of a particular approximation.
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Chapter 7
House Rules

p until this point the model has been developed for a general setting, ignor-
uing locally applied constraints which are not central to the structure of the
model. These local features need to be addressed if the model is to be used in
practice. Their previous exclusion was to facilitate model development by avoiding
the complications they create.

The features addressed in this Chapter are those which do not immediately
fall within the framework of the model developed so far. There are many local
idiosyncrasies which may be adequately dealt with within the current framework,
e.g. the North-South DC link may be modelled with a greater precision than the
other transmission lines merely requiring the use of two different approximations

which have already been developed.

7.1 Huntly and Stratford

Huntly thermal station can be fuelled by any mixture of Maui Gas and coal. The
amount of Maui Gas which can be used is constrained (see Section 7.2) and coal is
used from a stockpile. The stockpile can be modelled in a similar way to the hydro
waterflow networks with the “inflows” becoming decision variables. Since there is
enough flexibility in the system to take adequate account of the coal stockpile by
examining possible future needs for coal, this is not included in the working model.
It may be useful, however, to include a stockpile model so as to model the cost of
coal as the price paid when the coal is purchased, rather than as a cost applied

when it is used.
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To model the dual fuel aspect of generation at Huntly, the Contract Curve for
Huntly, Gy, is split into two parts; G, for generation by Maui Gas and G, for

generation by coal. The generation capacity constraint for Huntly becomes
Gy(0) + Ge(0) < Qp

where Q is Huntly’s generating capacity. The amounts of Maui Gas and coal used
over the week are given by m(G,) and m(G.), respectively. Huntly’s contribution

to the objective function is
cgm(Gy) + ccm(Ge)

where ¢, and c. are the cost of Maui Gas and coal generation at Huntly, respectively.

Stratford thermal station is also fuelled by two fuels, Maui Gas and Waihapa
Gas. Waihapa Gas is otherwise flared and so it is base-loaded at the Stratford
plant. This is modelled by treating the Waihapa Gas generation as an auxiliary
station, and derating Stratford’s capacity accordingly. However, if required, the

dual fuel nature of Stratford may be modelled in the same manner as the Huntly
dual fuel.

7.2 Gas Deliverability

Maui Gas is extracted off the Taranaki coast. It provides fuel for three stations,
Huntly, New Plymouth and Stratford, via a single pipeline. This pipeline imposes
various constraints on the amount of gas which can be used. The nature of the
pipeline provides a buffer to changes in the rate of gas usage.

The C.C.’s of Huntly Maui Gas generation, G,, the New Plymouth thermal
station, Gnyp, and the Stratford thermal station, Gs, give the generation from
Maui Gas at each of these thermal stations. To obtain the actual usage of Maui
Gas, we use the reciprocal of the generation efficiency, called e; for station j. A
maximum level constraint would have the form

1 1 1 s
—Gy(0) + —Gnp(0) + —Gs(0) < Gasg
€g ENP €s

where Gasy, is the maximum instantaneous usage of gas. Due to an ability to use
the gas at a faster rate than it is pumped into the pipeline, for short periods,

the maximum level is a very soft constraint and so it is not used in the working
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model. Maximum usage constraints (over an integral number of weeks) are given

by constraints of the form

1 1 1 .
> (_m(Gg,w) + —m(Gnprw) + _m(GS,w)> < Gasyy
wEW €g ENP €s
where W is the set of weeks that the constraint is taken over, and, Gasyy is the
maximum total Maui Gas usage over this period.

The working model includes a constraint for only the maximum Maui Gas usage

over each week. This is generally the tightest of these types of constraints.

7.3 Security of Supply

Security of supply constraints are conditions imposed upon the system so as to
help to maintain a level of security of supply in the face of forced outages and
transmission failures, including running some hydro station turbines so that the
turbine is spinning but not producing any output; this is to allow a quick reaction
to failures in the system, and is known as a Spinning Reserve. The other major
security of supply constraint is that of ensuring that no station, nor the North-
South DC link, may supply more than a fixed fraction of the total generation for
a particular Island (including the contribution from the North-South DC link), at
any time.

To accurately model the optimal scheduling of Spinning Reserve within our
model would require integer variables, since the generating characteristics of the
amalgamated station are different if a turbine in one of the stations on the river
chain is being used as Spinning Reserve. A better method is to treat this constraint
as part of the generating characteristics of the river chain, effectively choosing which
stations will provide Spinning Reserve prior to solution. Interaction with shorter
time horizon models may be used to fine-tune such constraints for the first week.
The effect is to derate the capacity (and also possibly the generation efficiency),
and impose minimum generation, release or spill bounds on the (amalgamated)
hydro station involved.

For the constraint on the maximum generation of a particular station we con-
sider only northwards transmission on the North-South DC link; this is easily

generalized to be any power station or transmission direction on this power line.
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The constraint required can be formulated as

G (7.1)

@ jenorTH

Wosis

where NORTH is the set of all power stations in the North Island for this week, and
Xs-n 1s this week’s northwards transmission on the North-South DC link. Since
the piecewise quadratic on the left-hand side of Equation 7.1 is not necessarily
decreasing, we need to apply similar constraints as those applied to transmission
lines in order to enforce the transmission capacity constraints (as in Chapter 5).
This constraint is probably better achieved by using another approximation
which involves fewer variabl_e-_s, and so should create less overhead in solution. We
assume that the total generation for the North Island can be approximated by the
total North Island load increased by a factor 5 (approximating average line loss).

The constraint can now be written as

Xs-n(t)—a(l+8) ) Li(t) <0 (7.2)
JENI
where NI is the set of all North Island nodes. The constraints used to enforce

transmission capacity are used here to enforce Equation 7.2.

No security of supply constraints are used in the working model.

7.4 Implementation of these Constraints

A number of the constraints described in this Section are rarely active at an optimal
solution. This means that including them will often increase solution time, for little
or no gain in the quality of solution obtained. This is particularly important when
considering that the solution method used requires deterministic subproblems to
be solved many times.

In tuning the model to provide reduced solution time, constraints which are
rarely active (such as some of those given in this Chapter) should therefore be
omitted from the model for an initial solution. If any are violated by the solution,
the model can be re-run (from this solution) with the appropriate constraints, which
were initially not present, included (possibly all of them) to obtain an optimal

solution which is now feasible in terms of both those constraints included and not
included (hopefully).
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Given the stochastic nature of the problem being solved, it may be allowable for
some of the constraints which have been left out, to be violated slightly in a later
week of some scenario. This is because the remedial action may not greatly affect
the first week’s solution, which is the solution of most interest, and the constraint
is just an approzimation, so that, although it may be violated in the model, the

actual constraint may not be violated by the solution implemented.
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Chapter 8

Function Formulation

M odelling a complex system inevitably requires approximations. These

approximations have an indeterminate effect on the solutions given by
the model. It is hoped that enough of the essence of the system is endowed in
the model so as to provide good solutions in practice. One way of investigating
the effects of approximations made, as a whole, is by empirical testing and simu-
lation. However, this only highlights the symptoms of the approximations made,
and isolating the approximations from which superfluous structure arises, is often
difficult.

We seek to better understand, qualitatively, some of the approximations made
in modelling the system. The approximation under investigation in this Chapter
is that used for the Load Duration Curve. To investigate possible effects of this
approximation, we generalize the way the LDC is modelled so as to bring it “closer”
to reality.

There is an (unknown) point at which the Mathematical tools available are not
sufficient to study the differences between the approximation and reality. The dif-
ficulty, here, is characterizing the reality rather than isolating some of the essential
ingredients of that reality (which is the main tool of Mathematics). Our attempt
to get closer to reality may admit unrealistic solutions. It may also be that reality
does not exhibit worthwhile, exploitable, properties which can be used to facilitate
such an investigation.

There is, however, still value in such an investigation, with the benefit of empir-
ical testing and simulation to complement it. Where empirical testing highlights
symptoms, qualitative investigations, such as this one, indicate causes and possible

remedial actions.
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8.1 The Generalization

In investigating effects of the approximation used, it is not enough to only exam-
ine the difference between the actual LDC and the approximation. We are more
interested in the effect on the model (and hence on the optimal solution) of this
approximation. The intention is not to pursue such an investigation to its bitter
end, but to provide a framework within which such an investigation may be carried
out. o

Consider allowing all Electricity Curves to be any function from some set of
implementable schedules, in terms of the system; call this set Z. With no loss
of generality we can assume that 7 is a sub?pace of the space of all Riemann
Integrable functions. We are interested in investigating how the optimal solution
to the generalized model differs from that of the original (where the Electricity
Curves are piecewise quadratics).

Consider the Mathematical Program given in Table 8.1 defined over Z, which is

a subspace of the space of Riemann Integrable functions on the set S. Note the spe-

Table 8.1: Function formulation

Min Zc,-[sf}(t) dt

i€V
subject to:
ZA,'J'F{(t) — Y;(t) Yte S V] €& e - (81)
eV
Yo / Fi(t) dt > w Vo (8.2)
i€V B
el VieV

cific form of the Objective and Constraints. The reason for this form is that these
constraints become linear under the transformation used to make the formulation
tractable. Further, these constraints lend themselves well to formulating a system
with an underlying Network, or Generalized Network, structure, in which the arcs
transmit functions rather than values. It also generalizes most of the functional
constraints given in the deterministic formulation of Table 5.2. The definition of
each variable is given in Table 8.2.

In the form given, the Mathematical Program is unsolvable, as 7 may be of
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Table 8.2: Variables used in Table 8.1

V  Variable index set.

€  Functional equality constraint index set.

C  Integral constraint index set.

F;  Decision function. (A decision variable in 7.)

Y; RHS function, of the jth (functional) constraint. (Element of Z.)
Yx  Right hand side of the kth integral constraint. (Real)

¢i  Cost associated with variable F;. (Real)

A;; Coefficient of F; in the jth constraint. (Real)

aix  Coefficient of/ F;(t) dt in the kth constraint. (Real)
s

infinite dimension. The following definition facilitates the transformation of this

Mathematical Program to an LP.

Definition 8.1 Let V be a (possibly infinite dimensional) vector space, and B a
finite dimensional subspace of V. If every element of V can be approzimated “well”

by some element of B, then B is said to approximate V “well”.

In the above definition the term “well” is purposefully left vague, as what con-
stitutes a function being approximated well is often dependent on the circumstances
of the approximation.

If there is some subspace, B, of 7 with basis { B, ..., Bn}, which approximates
7T well, then we can approximate the Mathematical Program above by a Linear

Program. Write the approximation of each Yj, and Fj, as:
N
Y;(t) = 3 ynsBalt) VEES
n=1

Vs i friBa(t) VteS

n=1

The formulation in Table 8.1 can be approximated as shown in Table 8.3. The
form of the formulation given in Table 8.1 is overly restrictive, partially due to
constraints of the form f(t) > g¢(t) V¢ being all but impossible to implement without
knowledge of the structure of f(t) and ¢(t) a priori. If the matrix of coefficients in
Equation 8.1, [A;;], has a Network or Generalized Network structure, this structure
is preserved by the transformation. In this case capacity constraints of the type
givenin Equation 8.2 transform to side constraints (rather than capacity constraints

as might be anticipated).
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Table 8.3: Approximation of the formulation of Table 8.1

Mxnzz(a/B t)dt)fm

: 5 e :Evn_
s_t;bjegt_td;_ : Al
Z A,me = y,,,' Vn e {1 ‘N} VieE
- - 1eV ; s
N > :
5z (a‘k] Ba(t) dt) EES Vk cc
. i€Vn=1

fu€R Wncll BN} Vie Vs

Equation 8.2 and the Objective Function of the Table 8.1 formulation can be
generalized whilst retaining the same approximation. Assume we have M measures
defined over S, {ui1,...,#m}, such that every F € T is pp-measureable. The

Objective Function can be generalized to

z Zc,m/F dgi.n

m=1ieV
and Equation 8.2 generalized to

M
ZZa,km/F ditm 2 Ykm Ve EC

m=11€V

Note that this form includes constraints and costs pertaining to both integration
over some subset of S and the value of F' at particular points in S.

We would like to show that if B is close to Z then the formulation given in
Table 8.1 is also close to that given in Table 8.3, in the sense that their optimal

solutions are close.

8.2 Unsettling Results

It appears that the linear approximation in Table 8.3 should be close to the original
formulation of Table 8.1, especially as we take better approximations by increasing
the size of B. However, we can have the case where the original has a unique
optimal solution, but some or all linear approximations have no feasible solution.

Consider the following:
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Let {B,} be a sequence of subspaces of Z with the following properties: each B,
has {B,...,Bn} as a basis, making B,4, a refinement of B,; for each F' € T there
exists a unique approximation in B, which shall be denoted F;, = 5"%_; fxBi; Z is
approximated well by each B,, with ||F' — F,,|| — 0, where ||F|| = [q|F(¢)| dt.

We write B = |32, B,, and refer to the sequence {B,} by referring to B or to
{Bi1, Bs, ...}, the basis of B. The LP obtained by using B, as an approximation of
7, shall be denoted F,, with the original formulation being F.

Consider the formulation of Table 8.4, in which Z is the space of all Rie-

mann Integrable functions. It has a single feasible point, and hence unique op-
Table 8.4: F)

1
Min c/ F(t)dt
0
subject to:

F(fp="e
i ]
jF(t)dtsl—e-l
f _
FaeAd

t

timal solution, at F' = e~*. Consider approximations based on the polynomials,

{1,¢,¢2/2,...,t5 /K, ... }; F (corresponding to F(1)) is given in Table 8.5. This

Table 8.5: F{V)

n

Min Z (kTC]«)Ifk

k=1
subject to:

fi=(=1)* Vk=1,...,n
Z.. fk <1_e_1

: fkeéR : _Vk=1,...,n

formulation only has feasible solutions for odd n.
When the formulation of Table 8.6, F(?) is approximated by the same basis,

none of F{?) has a feasible solution, while the original formulation still has a unique
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optimal solution.
Table 8.6: F*)

Min ¢ [, “F(t) dt
"_':__subje(':t to; '
. - 20 e o
f[)lF(t) dt>e—1
Fel

However consider the basis
{e—1,(e —2)(2t — 1), (e — 5/2)(3t* — 2t), (e — 8/3)(4t> — 3t?),.. .}

where the k’th basis element is a polynomial of degree k such that the sum of the
first k basis elementsis 1 + ¢ +¢2/2 + - -+ + t*=1/(k — 1)! + at*, with « chosen so
the integral over [0, 1] of this sum is e — 1. Using this basis, each F? has a unique
optimal solution, and these optimal solutions have the optimal solution of F(?) as
their limit.

The reason for this phenomenon is that the equality constraints are projected
onto the subspace while the integral constraints are restricted within the subspace.
This means that the intersection of the two transformed regions is neither the
projection nor the restriction of the intersection of the original two, and so depends
heavily on the subspace used. Figure 8.1 shows how the choice of subspace can

adversely change the intersection of the two resulting sets.

8.3 Discussion

Notice that the bad cases presented are very specific and rely on a restrictive feasible
region. In most applications the system being modelled has greater freedom; it is
difficult to express this freedom in Mathematical terms.

This investigation does, however, accentuate some positive aspects. In consid-
ering the approximation to use, we must not only take into account the approxima-

tions of the right-hand side functions, but also the structure imposed upon these
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Set A is a line segment and set B is a triangle. Using the line U as the subspace,
C is the projection of A onto U, and D is the restriction of B to U; CN D # 0.
Using the line V as the subspace has E the projection of A and F the restriction
of B; here ENF = 0.

Figure 8.1: The projection/restriction of two sets onto two subspaces
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functions by the rest of the model. This was done in our model when investigating
the approximation for the Electricity Curves in Chapter 3.

The need for investigation into the approximation of potential solutions as well
as right-hand side functions is further reinforced by the experiences of Chapter 4.
In that Chapter, an approximation which appeared reasonable in approximating
LDC’s (the normal approximation) led to badly structured solutions due to an
inability to model potential solutions well (those with flat generation for part of
the week). -

The investigation of this Chapter could be taken much further. We could inves-
tigate the limit of the optimal solutions to each F,, in the case where each optimal
solution exists. The difference between a particular 7, and F could also be ex-
amined. Further constraints with a linear interpretation could be imposed, or we
could explicitly limit B to having particular structure so as to allow the applica-
tion of a more diverse range of constraints. However, such an investigation would
prove lengthy and, most likely, provide little help with the actual modelling of the
system considered. Such an investigation is beyond the scope of this thesis and is

not pursued further here.
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Chapter 9
Implementation and Results

ne of the most time-consuming aspects in the development of the model
Owas the computer implementation. Often a seemingly minor change to an
approximation within the model can lead to a major revision of the computer
implementation. Ensuring that the computer implementation corresponds to the
model is a long and arduous task, but is necessary to eliminate many unworkable
approximations considered.

This Chapter discusses two phases of implementation: implementation of the
working model for the purposes of testing and exploring the consequences of various
approximations; and, some of the issues involved in massaging the final implemen-
tation into a finished product. We emphasize that the intention is not to create a
finished product; insights gained from model development may prove useful in the
further development of the model and in solution strategies to be used in a finished
product. The initial implementation was developed in tandem with the model, and
it was through testing of the model at various stages that many refinements were
made and unsuitable approximations were highlighted.

For both phases of implementation there are many issues involved in addition
to the computational expression of the model and the coding of an algorithm. For
the different phases these issues need to be addressed differently: e.g. in final im-
plementation, the input of data needs to be integrated smoothly into the finished
product; however, in testing the working model, we will often require data in differ-
ent forms and so the data manipulation should be more flexible. Flexibility in the
development phase is of paramount importance; it is impossible to anticipate later
needs for the model. In comparison, the final implementation needs to professional

and efficient.
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The results given here are derived from testing, and highlight features of solu-
tions. Since these results are from a developmental model, they can not be directly
compared with those from other methods; instead they are intended to provide
guidelines on the solution structure and computational feasibility.

In this Chapter we do not address the question of how well the algorithm
performs in an uncertain environment. This important question requires much
further work to be addressed with any authority, and requires comparison with
other methods. Any lesser investigation cannot adequately investigate the method’s
ability to react to the uncertain future, or compare it with contemporary methods.

In this Chapter we also present suggestions on the form of the model which

should provide a basis for a final implementation.

9.1 Input Data

For any final implementation the input data needs to be provided by an integrated
system which provides direct access to the necessary data, and direct conversion to
necessary data formats. Care should be taken to ensure reasonable flexibility, but
efficiency and robustness are more important issues. Data used needs to be acces-
sible and its role within the system needs to be clear. The format and application
of this is entirely dependent on the system within which the model is integrated.

The form of data input into the working model is not so well defined. It needs to
be flexible enough to allow for format changes or for further manipulation. It is also
useful to be able to manually change some of the data for experimentation, so the
formats used need to allow for this. In this Section we examine the integration of
data from five major areas: load data, transmission network data, thermal station
descriptions, hydro system physical descriptions, and hydro inflow data.

To allow flexibility (so as to make debugging the process easier) the informa-
tion needed for a deterministic solution was collated in a collection of files (called
WeekRef files), one for each week, which contained all of the information about the
entire system model for that week. A master file, Master, gave information and
parameters which were relevant to the complete problem. These weekly files were
then combined into a format which could be used as input to the solution platform.

Appendix A gives input files for a single example. The descriptive file names

given both here and in the Appendix are to allow easier reference.
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9.1.1 Load

The raw data on load is past data, given as the average load over each half hour
for the North and South Islands, with various constant loads removed. The load at
any node is represented by a portion of the total load for the Island it originated
from, combined with any previously removed constant load deemed to originate at
that node. The generation by auxiliary stations is removed from the load at this
point. P

To achieve this, a file, NodeRef, is created for each geographic network used.
This file contained information on the distribution of the each Island’s load, the
constant loads, and auxiliary generation over the geographic network. In this file
every node was named and the node order specified the node numbers. These node
names were used by other procedures to specify station placement and transmission
line end points, so as to facilitate changes to the geographic network.

A routine was written in Matlab to convert the data into a weekly 4-piece
piecewise quadratic LDC for each node of the geographic network. The year-long
load curves were converted into weekly LDC’s, from which the best least-squares,
4-piece piecewise quadratic approximation was found and heuristically converted to
be decreasing. Routines for converting from the natural basis to the basis described
in Section 5.4 (and vice-versa) were also used.

To allow scaling (so as to facilitate solution robustness), a routine was included
which scaled the coefficients so that each had an average (over all coeflicients of
the same basis element) of order 1. Allowance for the use of different geographic
networks and different sized weeks, for the same system model, was made through
the use of different input files.

The information obtained was transferred into the WeekRef files in the form of

an LDC for each node. Scaling information was appended to the master file.

9.1.2 Transmission

Raw transmission data was given in the form of line characteristics of the higher
voltage lines which make up major components of the National Grid. The make-
up of arcs (in terms of these major lines connected in series and parallel) were
also given, so that characteristics of the arcs could be produced. For each arc
of the geographic network a representative capacity was estimated. In practice

the capacity of components of the National Grid depend on the actual load and
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generation over the whole of the New Zealand system; such complex dependencies
were deemed as unsuitable to be modelled here.

From this data, two types of file are created. The first, LineRef, gives represen-
tative loss characteristics (at 100MW) and the voltage level of each power line used
in a geographic network arc. This file also specifies the file names of the second
type of file, ArcRef, which represent the geographic network for each week. These
secondary files give the power line representation of the transmission arcs, so that
the arc loss can be calculated. The capacity of the transmission arcs and the nodes
to which each arc is connected are also given. The power loss on the North-South
DC link is specified as its resistance.

The arcs specified in the WeekRef files are directional arcs. The information in
the WeekRef files pertaining to each arc is: a linear approximation of power loss, a

representative capacity, and the entering and exiting nodes of the arc.

9.1.3 Thermal Stations

The raw data for thermal stations was included in an input file intended for the
current program used at ECNZ to schedule the system. This format was unaccept-
able for use as an input file, partially due to its size, to difficulties in interpreting
all data contain therein, and to difficulties in changing the data when required.
The data was, therefore, manually compiled into a single file, ThermalRef, giving
data on each fuel type, together with constraints applied to some of the fuels (see
Chapter 7) for each week.

The data given for each thermal station is: its forced outage rate (which is as-
sumed to be constant over the year), its capacity over the year (including scheduled
outages), the fuel type, and a conversion factor (the “heat rate”) for converting fuel
into electricity. The node at which the station appears for each week is also speci-
fied. Each station is given a name so as to distinguish stations at the same node,
and allow the appropriate stations to have fuel constraints applied.

For fuels, the cost and calorific value of the fuel are given, together with con-
straints on the usage of that fuel. The calorific valueis used only in the specification
of fuel constraints, and to allow fuel consumption information in the output.

The information from this file is included in the WeekRef files in the following
form: for each station its associated node, generation cost, capacity, and forced

outage rates are included; the coefficients of the various stations in the Maui Gas
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deliverability constraint are also given.

9.1.4 Hydro Station Data

The raw data for the physical attributes of the hydro systems were also included in
the input file intended for the current program used at ECNZ. This was manually
transferred into three files, HydroRef, StationRef, and InflowRef.

HydroRef specifies the attributes of each hy‘dro:river chain, including the node
at which it is based, its initial storage level and the stations and inflows which form
this river chain. It also specifies the directory which holds all of the inflow data.

StationRef describes the attributes of each hydro station, giving the controlled
and uncontrolled inflows which feed that station. This file also gives the generation
capacity, generation efficiency and fraction of uncontrolled inflow which passes
through each station. A fraction of uncontrolled inflow which represents the amount
of this inflow which arrives at the hydro station but which cannot be stored during
the week, is also included.

InflowRef specifies data on the inflows, and reservoirs of the river chains. For
inflows into reservoirs, the maximum level of the reservoir is specified. For both
controlled and uncontrolled inflows, bounds on the flow level at the beginning and
end of the river chains are specified. The name of the file containing the inflow
data, the starting date of that file (the information in all files ends on the same
date) and the start date to be used for this particular scenario are also included.

The specifications for hydro stations in the weekly WeekRef files are complex.
Each hydro station in this file corresponds to a hydro system specified by the
previous files. The node at which each hydro station is present is given, along with
a “hydro number” which specifies which hydro stations have been aggregated into
the current hydro station (this is to allow correct specification of the waterflow
networks). The hydro number for hydro stations of week one are unique powers
of two; those for aggregated hydro stations (in later weeks) are the sum of the
hydro numbers of the stations combined. For each hydro station, the amount of
controlled and uncontrolled inflow, the fraction of uncontrolled inflow which cannot
be stored during the week, and the generation and storage capacity are specified.
There are also specifications on the maximum and minimum release rates from the
reservoir, and flow rates from the river mouth (which is the flow rate leaving the

final station on the river chain).
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9.1.5 Inflow Data

Inflow data is given in a file for each inflow, which specifies the level of inflow, in
average litres per second over the week. This data is used for both the construction
of the WeekRef files and for directly converting the solution platform input files, to

represent a new scenario (as to be described in Section 9.2).

9.1.6 Weekly System Input Data

Information from the above files is compiled into the WeekRef files. The form of
these files is easy to read and change, and much more compact than the MPS
format—this relative compactness is mostly due to the specialized nature of MPS
format (for a case in which all of the WeekRef files required half a Megabyte, the
corresponding MPS file was over 10 Megabytes!). A program written to change
inflow scenarios directly using the MPS file meant that the WeekRef files can be
seen to embody the structure of the particular model version, and so are used to
store “fleshed out” models. The layout of the files made it particularly easy to
construct simple examples by hand for debugging purposes.

Each section of these files was created separately to allow for the different forms
of raw data given. This also allowed changes made to the individual sections to be
self-contained, thereby allowing easier experimentation in the modelling of various

aspects of the system.

9.2 Solution Platform

The solution platform used was MINOS 5.4. The platform needed to be flexible
enough to withstand changes in the model—indeed, the initial model being solved
was non-linear. MINOS also proved to be effective in the solution of the stochastic
case, since 1t can be used as a subroutine to a master program. The input format
for specification of the linear part of a formulation into the stand-alone version
of MINOS is MPS format. A routine was written to convert the WeekRef files
into MPS format. This routine also produces some of the parameters necessary
for MINOS, which are formulation specific. For easy interpretation of the output
data, another file (known as the “info-file”) is produced by this routine which

contains information, relevant to every constraint and variable, which is not directly
obtainable from the MPS file or MINOS output files.
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Since the volume of inflow affects only some right-hand side and bound values,
a program was written to convert an MPS file from describing one inflow sequence
to describing another. This removes the need to reconstruct all of the WeekRef files
when the only change is to the inflows. This program is most useful in conjunction
with the stochastic model.

For solution of the non-linear version of the model (described in Chapter 4), C
functions were written to compute the value of the objective and its differential,
as required during solution by MINOS. For testing of the objective function and
model, various small test problems were created which focussed on particular areas
of the model. However, for the reasons noted in Chapter 4, this model was dropped

as being unsatisfactory.

9.2.1 Viewing Solutions

The model is large. A 52 week example, which uses 17 nodes in each geographic
network, was specified by 42000 variables, 40000 constraints, 260000 non-zero
matrix elements and 19 000 non-zero objective coefficients. The size of the model
together with difficulties inherent in interpreting solution values of various basis
coefficients, made it impossible to investigate solutions manually. The sheer size
of the solution output made producing a full hard copy of the solution (even for
just one week) infeasible, so Matlab was used as a platform through which to view
solutions graphically.

To facilitate solution viewing, a program was written to convert the information
output from MINOS and the information contained in the “info-file” to a form more
readily usable by Matlab. The GUI (graphical user interface) features of Matlab 4
where used to allow easy movement through the information, and compilation of
some overall statistics. An example of the output given is shown in Appendix B
for the input files given in Appendix A.

The solution times were considerable for the large problems. Using only the
“crash” start option of MINOS (i.e., where no initial solution is specified) solutions
take in the order of 30 hours, for the model version specified above. Starting from
the optimal solution to another “scenario”, for the same model version, takes in
the order of 12 hours, but there a large variation in this solution time depending
on how “close” the scenarios are. This suggests very long solution times for only

moderately sized stochastic extensions.
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The solution times indicated above need to be taken in context; they are for
an “untuned” solution platform, with no “reasonable” choice of starting solution.
They are also more detailed than would be appropriate for a final implementation;
the physical system of the first week is as intricately detailed as that for the last
week, whereas in practice this would seem to add unnecessary difficulties for neg-
ligible improvement in accuracy. Finally, the solution platform takes no account
of the structure of the problem, which could be exploited in a tailored solution
platform.

Investigation of the fully detailed model is useful for the purpose of highlighting
implementation issues for the entire model. The necessity for the investigation of
these issues, in the context of a more highly detailed model than would be used
in practice, is to allow insight into the interactions of approximations, and the
feasibility of the model as a whole. It is not intended that this full model version
should be used in a final implementation. The final implementated version of the
model needs to be easily expandable, and flexibility in the entire model allows
this. Also, describing the universal model, of which the final model is a part,
allows interpretation of some of the approximations made in the final model and
investigation of the accuracy of the implemented model through comparison with
more detailed models, which are not appropriate for generating weekly generation
schedules.

Probably the most expensive approximation used, in terms of problem size
and solution time, is the Electricity Curve approximation. Forcing the Electricity
Curves to be continuous removes about a quarter of the variables, and a number of
constraints, for little loss of approximation. Moving to piecewise linear Electricity
curves reduces the number of variables by a third, and the number of constraints
1s also reduced.

An investigation of the benefits and the concomitant loss of information is not
appropriate for this thesis. Comparing objective values only considers the solutions
in terms of themselves and not in the setting of the system they model (which is
the only important comparison). Comparing the solutions produced by various
approximations can only be authoritatively achieved by simulation of the system
(which would need to be carried out in a deterministic manner, to be consistent with
the expectations of the models). Performing the exhaustive simulations necessary

are also beyond the scope of this thesis.



CHAPTER 9. IMPLEMENTATION AND RESULTS 150

Comparing only problem size and solution times gives an idea of the potential
savings in computer overheads. The piecewise linear model equivalent to the 52
week 17 node example above is specified by 28000 variables, 37000 constraints,
186000 non-zero matrix entries and 13000 non-zero objective coefficients. The
solution time for this example is of the order of 12 hours from a crash start and
6 hours from a previous scenario’s solution. For a piecewise quadratic continuous
model, equivalent to the same example, the specifications are: 32000 variables,
38 000 constraints, 199000 non-zero matrix elements, and 15000 objective coeffi-
cients. The solution time, here, was in the order of 18 hours from a crash start and
6 hours from a previous scenario’s solution.

For the final implementation, rather than using a generic solution platform,
one should be tailored to the model to allow fast, robust, solution. The platform
should exploit the structure of the model, especially the self-similarity of the weekly
systems. In particular, exploiting the fact that the problem may be formulated as
a Generalized Network with side constraints would decrease solution time.

To further reduce solution time, the final implementation should include a start-
up procedure which finds a “reasonable” solution. This would considerably save
on solution time, especially if the initial solution is feasible. Such a procedure was
not constructed for the initial implementation because, with a continually changing
model, such a procedure would also require continual change. This would hinder
model development by making it difficult to implement changes.

A fast, feasible initial solution could be constructed by decomposing the prob-
lem. A reasonable schedule of storage and release could be constructed for each
waterflow network by estimating the value of water released for each week based
purely on the average load for that week, and then determining an optimal wa-
ter schedule which maximizes the total value of water released. Such a schedule
could be found extremely quickly using a Pure Network solver. Given the releases
from this schedule, a feasible generation schedule could be found. All hydro sta-
tions would first meet as much of the load at their nodes as possible, and then
the stations with remaining capacity and release closest to the node with the high-
est remaining load would be scheduled to meet as much of this remaining load as
possible. Thermal stations would meet the load remaining after this in a similar
manner, scheduling the cheapest stations first. Load which cannot be met by this

method would be non-supplied. If fast solutions were available for single weeks,
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it may be useful to use the optimal solution for each week (with fixed releases),

starting from an initial solution for that week determined as described.

9.3 Stochastic Implementation

Initial implementation of the stochastic model was difficult because it required
the solution of many similar subproblems. MINOS allows iterative solution of
inter-related problems; however, the size of the necessary changes to the constraint
matrix for each subproblem rendered this method unsuitable. Instead, MINOS was
used as a Fortran subroutine to a master C program.

We were unable to use the MPS reader incorporated into MINOS since the
constraint matrix needed to be transformed to include extra linear terms in the
objectiverow for the Lagrangian term. This meant that the master program needed
to include a matrix reader. It was decided that an MPS format file reader was more
appropriate for the initial implementation than direct construction of the matrix
from the WeekRef files—it was easier to debug and it was easier to incorporate
multiple scenarios in an MPS file, since this merely required (in the case of our
model) the specification of multiple right-hand sides and bounds.

To speed up the time spent on the input phase, allowance was made to save
and load the model’s important information directly. This allowed the MPS file to
be read on the first Progressive Hedging run, with subsequent runs being started
with less overhead.

Direct implementation of the Progressive Hedging Algorithm (using the natural
decomposition of scenarios) is straight-forward, and so was used for the working
implementation. The non-linear part of the objective function is a simple quadratic
and easily programmed. The linear part needs to be specified differently for each
subproblem and for each iteration; this was easily done by updating a current ob-
jective and inserting the appropriate row into the constraint matrix (where MINOS
stores the objective function coefficients). This meant that the constraint matrix
of each subproblem was of the same dimensions as the deterministic case and so
we could directly use solutions to the deterministic cases as initial solutions for the
Progressive Hedging Algorithm.

Difficulties were experienced running MINOS in a linear manner (to obtain the

initial solutions) and then in a non-linear manner, as required by the Progressive
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Hedging Algorithm. For this reason, initial solutions to the subproblems were
obtained purely through MINOS, and stored as start-up files. This proved to be
a very satisfactory method as it separated the time taken to determine an initial
solution from that for stochastic solution, and allowed many runs using the same
scenarios under different parameter values to be performed efficiently.

In a final implementation, the solution obtained last week should provide a good
initial solution for this week, (hopefully) even under a change in the scenarios used.
This would be most effective when used in tandem with an heuristic procedure for
dealing with the increment in weeks, i.e. a procedure which takes the solution
obtained last week, removes the first week and adds a feasible solution for the last
week (probably similar to the solution for the, now, second-to-last week). Changes
to inflow and load forecasts would be harder to deal with, however the use of the
optimal policy and price variables from the solution found last week should be

reasonable.

9.4 Progressive Hedging Convergence

Convergence for the Progressive Hedging Algorithm (on a convex example such as
this) is guaranteed to be linear for the situation where every subproblem is solved
to optimality. This result holds even for the situation where the subproblems of
successive Progressive Hedging iterations are progressively solved to tighter tol-
erances under an explicit scheme where the tolerance (on the magnitude of the
gradient) is given by

p(1 - & min{1, ]z — X:||} (9.1)

where z is the solution point being considered, X is the current policy and g and
€ < 1 are positive constants.

Unfortunately, the large-scale nature of the model is prohibitive in the numerical
procurement of a truly optimal solution, i.e. we must be content with a solution
which is within some fixed tolerance of the optimum. In actuality, the tolerance of
Equation 9.1 will apply for a number of initial iterations (for some choice of p and
€), but beyond some unspecified point convergence will be no longer guaranteed,
because of machine precision and the possibility that X; is intolerably close to the
optimal solution of scenario t.

Convergence of the Progressive Hedging Algorithm can be measured explicitly



CHAPTER 9. IMPLEMENTATION AND RESULTS 153

via the the convergence of

2
5" = (nff“ ~XUR Y el - ffﬂﬁ) (9.2)
i€{1,...,5}
to zero, where n represents the Progressive Hedging iteration. In practice, con-
vergence is initially monotonic and fast. Subsequently, however, the convergence
rate slows, but, while it is no longer monotonic, progress continues to be made.
Figure 9.1 shows an example of this. To ensure convergence of the dual variables
it was found to be necessary to use an inner product (see Section 6.5) which was
weighted according to the relative importance of each variable (in terms of the
amount of electricity it represented). The difference in convergence is illustrated
in Figure 9.2.

However, solutions exhibited a lack of convergence after some indeterminant
point, and so it was necessary to devise a more useful stopping procedure. Stopping
when § was within some tolerance of zero was not useful, since the tolerance may
never be achieved or, if too loose, may not provide a solution adequately close to
optimum. In practice § seldom dropped below 10=3. The choice of an adequate
stopping criterion was made more difficult by the presence of spikes and non-
monotonic behaviour in the value of § as the algorithm progressed. These combined
to make the best stopping point an almost purely subjective decision; the real test
of adequacy of an optimal solution is in terms of its application to the system,
which is not addressed here.

We focussed on the the value of §, one of the few measures of convergence that
was available to us (as observed by Helgason and Wallace [7]). When the value
of 6 is no longer decreasing over time, the solution was halted so that a manual
investigation of convergence could be conducted (by viewing the rate of change
of various parameters and values) and a decision could be made to restart the
solution, or not.

Creating an automatic procedure to decide when 6 is no longer decreasing was
not simple. Trials which considered the gradient of the best linear least-squares
fit of the past ten § values, were very susceptible to spikes (sudden jumps in the
value of § which did not often indicate a lack of convergence). To alleviate the
effect of spikes we considered the last twenty such gradients, and a consensus of
them indicating an increasing 6 was taken to be the stopping criterion. However,

this also continued to be affected by spikes (as the height of the spikes was often
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large relative to the size of §). An effective stopping criterion was developed by
considering the most negative gradient obtained by successively ignoring one of the
previous ten 6 values. This was used in conjunction with the consideration of the
consensus of the previous twenty gradients so chosen.

To incorporate some extra robustness into the stopping criteria, consideration
was given to the convergence (to zero) of another parameter, -y, proposed by Mulvey

and Vladimirou [12], where

+ Y wller - X P
ie{1,...5)

Z pi (w/in7 x:’n)

i€{1,...5}

’7:

While 4 could not be expected to monotonically decrease to zero, in practice it
seemed to pass through continuos periods of decreasing or increasing. The 7 values
had the same stopping criterion applied as used for the § values, and solution was
stopped when both showed a lack of further decrease. Often this extra consideration
of 4 was enough to carry § to a point where it had begun to decrease again.

It must be stressed here that these stopping criteria are not in terms of ac-
ceptable convergence, but indicate a point where convergence had ceased. This
means the solution times (as given in this Chapter) cannot be thought of (at all)
as the time taken to reach an optimal solution; they are the time taken to first be
stopped by the stopping criteria described here. A large amount of convergence
has taken place at this point, but the solutions may remain a long way from an
optimal solution. Since the same stopping criterion is applied to all problems, it is
hoped this will give an indication of the relative solution timesto a solution which
is acceptably close to optimallity.

Due to the fact that we do not investigate to optimality of solutions in terms of
the system they model, we needed to consider many measures of convergence. This
was also useful in ensuring that some progress was being made, and for debugging.
Among the values considered were: the norm (in terms of the inner product used) of
the dual variables, the norm of the difference between the current optimal solutions
to the subproblems and the current policy, the norm of the change in policies
from one iteration to the next, the Lagrangian part of the objective function, the
objective function value, the part of the objective function deriving solely from the
non-anticipative variables, the norm of the non-anticipative variables, and the norm
of the policy-dual variable pair [19]. Figure 9.3 shows the progress of some of these

measures for an eight scenario example. It is difficult to comment on the efficiency
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of such measures when no rigorous concept of convergence has been obtained.
However, Figure 9.4 shows some of these parameters for a run which was continued
until there was no longer any apparent change in the value of the non-anticipative
variables. As can be seen from Figures 9.3 and 9.4, many of the measures shown
mimic the behaviour of others (e.g. the magnitude of the subproblem solutions
and the magnitude of the policies) while some appear to give little information on

convergence (e.g. the objective function values and the inner product).

9.5 Fine Tuning—A Discussion

There are few, as yet, case studies in the literature on the application of the Pro-
gressive Hedging Algorithm. In this Section we discuss the recommendations made
in the literature and our experience with the algorithm. Many of the recommen-
dations given in the literature pertain more to a final implementation than to
experimental implementation.

For most of the stochastic testing a four week version of the model was used.
The main reason for this is that the solution times for the full 52 week version of the
model were too long to allow adequate experimentation. A 52 week implementation
with only two scenarios which allowed deterministic solutions after the first week
took 70 hours of computer time in solution(!), with each scenario subproblem taking
an average of 15 minutes to solve. This would suggest that the fully detailed model
is too restrictive to be used as a basis for the stochastic extension (confirming the
comments made in Chapter 3). If solution was performed in a parallel manner, the
solution time would be in the order of 35 hours, which is still unacceptable.

Choice of the penalty parameter r has a major effect on the convergence rate.
Mulvey and Vladimirou [12] suggested a process of dynamically changing r during
solution; the effects of this on solution time are not investigated here, as the partic-
ular values and the regime for changing of r is heavily dependent on the complete
and final formulation. It did not appear appropriate to invest the vast amount of
time necessary to carry out such an investigation on a trial model, with no way to
investigate the quality of solutions produced and so no true method of determining
adequate convergence.

Toobtain convergence in reasonable time, different values of » were investigated.
The results of [12], [7] and Philpott and Leyland [17], suggested that low values
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of 7 produced slow convergence of the primal solution (very low values produced
no convergence at all), whereas high values of r quickly produced solutions which
adhered to the non-anticipavity conditions, but, from there, convergence to an
optimal solution was very slow. Our results, however, were inconclusive, as we
have no measure of optimality beyond the convergence measures used. The value
of many of these convergence measures is dependent on the r value used—lower
values of r did tend to produce more erratic behaviour in the value of 4. Figure 9.5
shows an example of the convergence of some parameters for differing values of r.

Table 9.1 compares the solution times for various r values.

Table 9.1: Solution times (in minutes) for various r values, the number of iterations
is given in brackets.

Solution Time
= Unweighted Weighted
inner product | inner product

10 | 80  (200) |300 (1000)

30 | 105 (200) |400 (1000)
100 [ 200  (200) |680 (1000)
300 | 360  (200) |940  (1000)

The nature of the model allows some additions which should have a beneficial
effect on the solution time. Since the objective function of the subproblems is
quadratic, the unconstrained minimum can be calculated explicitly. If this point is
feasible, this is exactly the optimal solution. In this case it is quite simple to find
the unconstrained minimum explicitly; for the z’th subproblem it is exactly given
by

Xi—r7Y(f+ W)
where the objective function of the deterministic problem is fTz, and no weighting
function is used in the inner product. Solution time may be saved by checking the
feasibility of this point.

Another solution point of interest is the policy. In the situation where this
point is feasible it would, most likely, be a better initial solution than the optimal
solution found during the previous Progressive Hedging iteration (which has the
advantage of always being feasible). Needless to say, it is better to start from a
feasible solution than an infeasible one, as there is no nice way of discovering a
feasible solution which is close to an infeasible one (in terms of both Euclidean

distance and objective value).
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The convergence under different non-anticipative variables was also investi-
gated. Generation, releases and storage were variously used as the non-anticapative
variables. The convergence rates seemed to reflect the “freedom” allowed by each
of the non-anticipavity variables; generation was the most constraining, release the
next and, finally, storage seemed to allow the most freedom, especially when used
in conjunction with a penalty for not meeting the target level. Since having dif-
ferent non-anticipated variables changes the formulation, the best value of r for
each such variable will be different. This, combined with the stopping criterion
used, means there would be little use in comparing the solution times using various
non-anticipation variables.

Changing the number of scenarios had a major effect on the time until solution.
To illustrate this, Table 9.2 shows the solution times for the same formulation, and

the same value of r, while using various numbers of scenarios. It also shows an

Table 9.2: Solution times under differing numbers of scenarios

Scenarios | Serial Estimated Iterations | Final
Time | Parallel Time )
2 310 160 260 0.00324
4 830 207 255 0.858
8 2450 306 202 1.81
16 7115 445 337 0.372

estimate of the solution time had solution been carried out on parallel processors
which is determined by dividing the total solution time by the number ol scenarios
used. This estimate is reasonable given the fact that the solution time spent between

subproblems was negligible when compared to the total solution time.

9.6 Discussion

This Chapter opens up many possibilities for future research. The model has
been brought to a point where the possibilities for implementation appear almost
boundless. Such an investigation would require the implementation of a simulation
environment and definition of a test inodel, whose scope is beyond the focus of this
thesis.

We feel that this juncture provides a very good starting point from which an

investigation on the usefulness, in practical terms, and implementation issues. Any
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investigation from this point must consider many possibilities, comparing and con-
trasting their effects. Any lesser investigation would surely provide a very biased
view thereby giving little credit to the wealth of possibilities which were not in-
vestigated. Thereby making this stage a very appropriate, and natural, point at
which to finish the development of the model.

Having looked ahead, in an attempt to anticipate some of the implementation
issues of the model, we have provided an initial basis for any encompassing research
in the stochastic and implementation issues of thhe model. The development of the
model has constructed a justifiable and useful framework within which to inves-
tigate the effects of various approximations, and trade-offs which may arise from

these.
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Chapter 10

Conclusions

roadly speaking, the initial intention of this thesis was to develop a model
Bof the New Zealand hydro-thermal electricity generation scheduling system
with a time horizon of one to two years, for subsequent use by ECNZ. The model
was required to provide detail of the physical system, including the explicit incor-
poration of six separate hydro reservoirs. The model was also required to account
for the stochastic aspects of the inflows into these reservoirs. The current model
used by ECNZ (for this specific scheduling instance) is based on an SDP approach,
which includes two hydro reservoirs with little detail of the physical system; it does
account well for the stochasticity in inflows.

The most significant contribution of this thesis is the development of a model
which provides a flexible level of detail for both the physical system and the stochas-
tic elements. Flexibility in the modelling of the physical system provides a frame-
work within which the effects of various approximations used may be investigated.
Determination of the limitations to this flexibility provided boundaries on the ap-
proximations which could be used, as well as insights into the efliciacy of various
modelling techniques.

The specifics of the intentions for the thesis metamorphosed as model develop-
ment progressed and we became more familiar with the limitations of the framework
used and the fundamental characteristics of the system. The emphasis moved from
the development of a specific model to the framework of a general model which
provided flexibility in many aspects of the system. This was in order that that
the level of approximation of the important aspects of the system did not preempt

further development, especially in the stochastic extension used. Broadening this
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emphasis reduced specificity in the model which, therefore, meant that deep explo-
ration of a stochastic extension became less meaningful to consider, in the context
of practicability and comparison of solutions.

The framework developed here will provide a good basis for a final implemen-
tation which is usable by ECNZ. It also provides the platform for a thorough in-
vestigation into the best design of a specific model, i.e. determination of the actual
level of approximation for each aspect of the system, so as to provide an adequate
representation of the system, reasonable solution time, and useful solutions.

The framework developed allows the balance between computational tractibil-
ity, detail of the physical system, and representation of the stochastic elements.
This is to allow the model to be “tuned” so as to provide well balanced solutions.
The flexibility also allows the use of sensitivity analysis for investigation into the

effects of approximations used, in terms of the wider framework provided.

10.1 The Deterministic Model—A Summary

The model’s development naturally separates into two parts: the deterministic
framework (in which the hydro inflows are treated as fixed), and the stochastic
extension (which allows future inflows to be uncertain). We now summarise the
achievements derived from the development of the deterministic framework.

With the emphasis of the model on its flexibility, the deterministic framework
was required to provide physical system detail and to allow a stochastic extension.
For this reason, the deterministic framework defines the structure underpinning
both the thesis and any model so derived.

A survey of literature highlighted the differences between the New Zealand sys-
tem and other systems, as well as the need for a unique approach to the modelling
of the New Zealand system. The features which are important to be modelled
well, and those for which it is reasonable (or even desirable) to be more coarsely
modelled, were discussed. Many of these features were defined by the fact that the
model was required to incorporate six explicit hydro reservoirs as well as a detailed
physical system.

The need for consistency within the model demanded the inclusion of informa-
tion on the geographical distribution of generation and power use. This feature

was incorporated through the use of a geographic network connecting locations of
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interest. Load was specified at the nodes of this network structure, as were the
significant power stations. To ensure ease of approximation, and to make the fore-
casting more robust, Load Duration Curves were used to represent this load. To
facilitate this, the time horizon was split into time steps (of the order of a week)
so as to allow the use of time-dependent hydro system information and decision
making.

Hydro and thermal stations may be present, in any number, at the nodes of the
network structure. Thermal stations have a fuel cost associated with generation,
and hydro stations have use of a limited supply of water which may be stored
over multiple time steps; it is the scheduling of the stored water which links the
generation schedule over the time horizon. The arcs of the network structure
represent transmission over part of the National Grid. To model this, the arcs take
on representative characteristics in the form of capacity and line loss information.

Load Duration Curves, transmission and generation curves are all approximated
by piecewise quadratics. A non-supply curve (together with a cost of non-supply)
is introduced to ensure feasibility in the meeting of demand.

An initial approach considered incorporating information on the uncertainty
of the generating capacity of stations (due to forced outages) by using a cumu-
lant approximation of the Electricity Curve inverse. Unfortunately, the approxi-
mation used artificially induced non-convexity in the objective function and ad-
mitted multiple locally optimal solutions. The objective function also exhibited
non-differentiable “corners”, some of which were an artifact of the way in which
the problem was modelled.

Other approximations of the Electricity Curve inverse were proposed, but, these
were not investigated further, for several reasons. One of the major reasons was
that the way in which the effects of the uncertainty in station generating capacity
were being modelled, was not a good approximation. Moreover, this approximation
induced many of the poor features apparent in the objective function. The other
major reason was that the re-modelling of the system, so as to eliminate the “cor-
ner” arising from the hydro stations’ contribution to the objective function, also
removed the need to use the inverse of the Electricity Curves. This re-modelling
included other beneficial side-effects, such as making the problem linear. The ex-
plicit use of Electricity Curve inverses does, however, allow for a better account of

forced outages in the case where the physical system has many thermal stations at
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the same node. This becomes important when the deterministic framework pro-
vided is used to define a simplistic physical model so as to afford more detail for
the stochastic elements; this would be useful in conjunction with the exploration
of stochastic extensions proposed in Chapter 6, and to allow more flexibility in the
deterministic framework. Since the intention of this thesis is to provide a detailed
physical system (in the New Zealand context) the existence and construction of ap-
proximations to Electricity Curve inverses which give a convex objective function
were not fully investigated. Such an investigatibn provides a worthwhile direction
for future research.

The re-modelling alluded to above was designed to facilitate modelling the
proposed generation of each station explicitly rather than as part of a collective
contract curve for each node. This re-modelling is reasonable, in the New Zealand
context, in light of the fact that there are at most two thermal stations at any node
in the representative geographic network, and that the hydro stations were already
individually scheduled. Modelling each station’s proposed generation individually
meant that the capacity of each station could be directly applied to the proposed
generation, rather than needing to be implicitly enforced via a non-supply cost for
over-capacity generation. It was the calculation of this non-supplied over-capacity
generation which induced the numerically difficult features in the objective func-
tion.

To fully remove the need for approximate Electricity Curve inverses, the trans-
mission capacity constraints (which were being modelled as penalties for over-
capacity transmission) also required re-modelling. Since the transmission curves
are piecewise quadratics, the constraints to explicitly enforce transmission capaci-
ties are non-linear. To circumvent this, a linear approximation of these constraints
was used which ensured that only feasible (below capacity) transmission was al-
lowed.

The model was expanded to include some features of the New Zealand system
which were not seen as central to the model, but which would need to be addressed
in a final implementation, for ECNZ. More specifically, the features included were:
the use of two fuels by some thermal stations, limitations on a fuel supplying three
of the thermal stations, and the modelling of consideration of the security of supply.

Constraints were designed which were well suited to the framework developed.
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10.2 Investigating the Deterministic Framework

The deterministic model developed could be formulated as a Generalized Network
with side constraints. This structure could be usefully exploited to ensure fast
solution times for a final implementation. Solution time could also be reduced
by the use of a less detailed model for later time steps, which would obviously
result in a concomitant loss of detail in solutions. The use of differing length time
steps, coarser Electricity Curve approximations an:d differing amounts of detail in
the physical system, were all discussed. None of these modelling techniques were
actually implemented, as fully evaluating the effects of such approximations would
necessitate rigorous testing and comparison of solutions, in order to determine how
the loss detail from solutions might affect system operation. Such testing is beyond
the scope of this thesis, as it requires a more specific model than the framework
developed here. We do identify the need for this testing to explore the effects that
such approximations have upon solutions. This will provide valuable information
on the amount of detail required from later weeks so as to continue to provide good
first week solutions. This is extremely important in the context of developing a
fast, efficient, final implementation for ECNZ.

A more theoretical exploration was initiated on the effects of the Electricity
Curve approximation. The approach taken was to investigate the behaviour of
structured approximated formulations derived from sequentially finer approxima-
tions of the Electricity Curves. These approximated formulations tend to an “un-
approximated” formulation (in which the Electricity Curves are allowed to be any
functions which are implementable in terms of the model) in the sense that the
right-hand-side functions of the approximated formulations converge to the appro-
priate right-hand-side functions of the unapproximated formulation. The point
of interest is whether the sequence of optimal solutions of the approximated for-
mulations converge to the optimal solution of the unapproximated formulation.
Examples showed that either some (or all) of the approximated formulations may
have no feasible region, but such occurences appeared to be dependent on the ap-
proximations used. This indicated that the approximations used needed to take
the types of solutions produced by the model into account, as well as the right-
hand-sides.

A full investigation would be lengthy and may not produce results of direct

importance to the model being developed. This is because the convergence (or
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non-convergence) of a sequence gives no indication of how well a single element of
that sequence approximates the sequence limit. For these reasons the investigation
was not taken to its conclusion. In practice, investigation into the effects of the
Electricity Curve approximation may be better served by an empirical study into
the quality of solutions obtained.

This is not to say that a full theoretical investigation of this nature is not
important and worthwhile; it just does not fit into the framework of this thesis. We
offer the full investigation into the limit of optirﬁal solutions (when they all exist) of
the approximate formulations as a worthwhile direction for future research, as well
as an investigation into the difference between a single approximated formulation

and its corresponding unapproximated formulation.

10.3 Deterministic Implementation

Implementation of the deterministic model was discussed. An formative implemen-
tation was used to isolate many of the difficult approximations, and some of the
issues involved in a final implementation were also explored. The formative im-
plementation used a working model (as described in Chapters 3-5). This working
model was designed to test the limits of the framework where such limits were seen
as important (e.g. the use of piecewise quadratics), to be internally consistent (e.g.
all weeks were specified to the same level of detail), and to provide a level of detail
which was at least a level desirable to ECNZ (e.g. the representative geographic
network). Such a model would be detailed enough to highlight inconsistencies in
the framework.

The formative implementation demanded procedures to allow specification of
the model being solved (from within the framework provided), and specification
of the input data that were required. The continual change of the model and the
deterministic framework meant that the solution input needed to be flexible. This
made the input structures used unsuitable for use in a final implementation.

Due the the enormity of evaluating solutions directly from the output of MINOS
5.4 (the solution procedure used), procedures were written to allow solutions to be
viewed using the GUI (graphical user interface) features of Matlab 4. This proved

to be an effective method for interrogating solutions.
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The need for a procedure to determine a feasible (and reasonable) initial so-
lution, so as to speed up solution times, was highlighted. The inclusion of such
a procedure in a formative implementation merely increases the difficulties asso-
ciated with making amendments to the model, and so was seen as inappropriate
during this development phase. Development of such a procedure, therefore, pro-
vides a direction of future research; however, the development of a corresponding

procedure for the stochastic case may supercede this.

10.4 Stochastic Extension

Allowing future inflows to be uncertain, and future decisions to depend on previous
inflows (once they are known), increases the difficulty of the problem. There are
many ways in which the deterministic model developed can be extended to include
such uncertainty; several of these were discussed. The necessity of comparing the
effectiveness of these methods under similar conditions was also identified. An
authoritative comparison would necessarily be extensive, requiring simulation of
the system to evaluate various solutions in terms their benefit to the system. Such
rigorous testing is well beyond the scope of this thesis, and provides an important
direction for future research in development of a full working implementation for
use by ECNZ.

For a stochastic model it is much more important to investigate the robustness
and effectiveness of solutions produced. This is often done though simulation of the
system, and comparison with current policies and those produced by other methods.
Since the focus of this thesis was on the development of a deterministic framework
for use as the basis to a full stochastic model (and not on the development of a
specific full stochastic model itself), there are many issues and modelling aspects
of a stochastic model which cannot be meaningfully explored here. Instead we
provided a brief examination of the feasibility of extending a deterministic model
(developed from the framework provided) stochastically, and explored some of the
issues which arose in order to “set the scene” for the exhaustive testing and analysis
of stochastic extensions, which is seen as an important next phase. This meant
that any examination undertaken here could not directly involve investigation of
the quality of solutions produced, making any comparison of solutions obtained,

during testing performed here, effectively meaningless in this context.
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A scenario approach, using Rockafellar and Wets’ Progressive Hedging Algo-
rithm, was used to illustrate one stochastic extension, and to allow preemptive
investigation of some of the implementation issues in an effort to provide guide-
lines for the future development of a stochastic extension. This particular stochastic
extension was used because it provides flexibility in the amount of stochastic in-
formation which can used; this flexibility is bounded only by the solution time of
the consequent model (this is, of course, a very significant bound). It also does not
limit the formulation of the underlying deterministic model of the system in any,
explicit, way.

The modelling issues, generated through the use of the Progressive Hedging Al-
gorithm, included ideas on the choice of scenarios, the choice of the non-anticipative
variables, and a possible method for reducing the solution time through the use of a
different decomposition. These issues were not fully addressed computationally, as
the benefits they provide need to be evaluated within the context of the solutions
they produce.

The convergence of the Progressive Hedging Algorithm is guaranteed only when
the subproblems are solved to successively tighter tolerances each iteration under
a strict regime. Unfortunately, the large-scale nature of the deterministic model,
induced by the detail required in the physical system, means that convergence
beyond some fixed tolerance is impossible. Therefore, in theory, convergence was
not guaranteed beyond some indeterminant tolerance. In practice, the algorithm
did converge. Due to the distance of the solutions to the deterministic subproblems
from their respective optimal solutions, scaling was an important consideration.
Better convergence was achieved through the use of a scaled inner product (for the
Lagrangian term and the quadratic augmentation), where the variables were scaled
relative to their importance to solutions (i.e. in terms of the amount of generation
they represent). This produced a most satisfactory result, and its inclusion should
make implementation of a final model more robust.

A brief examination of the effect of the choice of the non-anticipative variable
on various convergence measures was made. This showed that the use of storage
in this context appeared to allow the most freedom, with the use of generation
allowing the least freedom, and the use of release giving slightly more freedom
than that given by the use of generation. A variety of convergence measures were

investigated, including the measure proposed by Rockafellar and Wets’ [19] as the
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definitive convergence measure, another proposed by Mulvey and Vladimirou [12],
and the convergence of various primal and dual variables. Many of these produced
similar patterns of convergence.

Due to extremely slow convergence experienced beyond an unpredictable point,
a stopping criterion was needed which indicated where convergence appeared to
have stopped, since there was no longer a guarantee of convergence to within a
pre-specified tolerance. This proved satisfactory and allowed the user to determine
whether further convergence was possible, or Whether the convergence measure
used was merely exhibiting temporary non-monotonic behaviour. With no way
to.examine the difference in quality between solutions obtained at various points
during use of the Progressive Hedging Algorithm, there is little use in taking such
an examination further. This does highlight another direction for future research—
that of investigating the correspondence between the values of various convergence
measures and the quality of solutions obtained; this would provide valuable infor-
mation on the convergence requirements, as well as possibilities for limiting solution
time, in a final implementation.

An examination of the convergence for various values of the Progressive Hedging
penalty parameter was carried out, in terms of the convergence measures mentioned
above. The results obtained were inconclusive, since the stopping criterion used
gave no indication of the quality of solutions (or how close to optimallity these
were), and also because the values of many of the convergence measures depended
on the value of the penalty parameter used. Such an investigation would be more
appropriate in the context of a full investigation of this particular stochastic ex-

tension.

10.5 Future Directions

We see the main directions for future research as being able to be encompassed
within an investigation which furthers the development of a specific model into a
form which is directly usable by ECNZ. There are three directions that such an
investigation could take. The development of a full model for ECNZ would be best
served by pursuing these three directions simultaneously, enabling the results of
these investigations to be compared and contrasted.

The three directions are: the development of a specific deterministic model, and
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an examination of the sensitivity in the quality of solutions to changes in the various
approximations used; an investigation comparing the various stochastic extensions
used in conjunction with appropriately approximated deterministic models arising
from the deterministic framework developed here; and, an investigation into the
implementation issues arising from the use of the Progressive Hedging Algorithm
as a particular stochastic extension.

The development of a specific deterministic model requires close consultation
with ECNZ. The investigation should be concerned with the sensitivity of the first
week’s solution to the use of various approximations. The effects on solution time
and solution quality of these approximations also needs to be addressed. The
specific deterministic model used will depend, not only on the results of this inves-
tigation, but also on the stochastic extension chosen and the physical detail allowed
by this extension to ensure computationally tractable models.

An investigation into the various stochastic extensions would need to follow
two paths. The first would be to compare solutions and solution times under the
same deterministic base model. The second would be a comparison of the quality
of solutions when the physical systems were tailored so that the solution times
were all within some pre-specified bound. The latter investigation would be more
useful in terms of the development of a full model, usable by ECNZ; however, it
would be difficult to compare solutions obtained via different methods since the
level of detail in both the stochastic elements and the physical systems would be
different. This means the solutions will need to be compared in terms of how well
they perform on simulations of the system.

The investigation into the implementation of the Progressive Hedging Algo-
rithm, as an extension to a deterministic model constructed from the deterministic
framework developed here, may seem preemptive vis-a-vis the outcome of the in-
vestigation into all of the stochastic extensions. This need not be the case. The
investigation into possible stochastic extensions will, due to constraints of time,
not be able to “fine-tune” each stochastic extension so as to allow fastest, most
efficient, solution time. To ensure that each method is treated with fairness, this
means that none of the methods should be tuned to any greater extent than oth-
ers. An extensive investigation into a particular stochastic extension will provide

information on the speed-up which could be expected from tuning of the stochastic
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extensions. Also, a scenario approach (and more specifically the Progressive Hedg-
ing Algorithm) provides the most flexibility for the model as a whole, making such
an investigation worthwhile for its own sake.

The other future research directions, which have been outlined in this Chapter,
while being worthy of further investigation, are not directly relevant to the further
development of a model for use by ECNZ, and so are seen, in terms of the aims of

this thesis, as being of secondary importance.

10.6 Discussion

The framework developed in this thesis allows flexibility in all aspects of the mod-
elling of New Zealand’s hydro-thermal electricity generation system. This will allow
the developers of a full model access to information on the cost (in terms of the
loss of information) of approximations made within this framework. The determin-
istic framework also allows for many different stochastic extensions, so as to allow
investigation into the one which best serves the needs of the user.

Development of the framework has been taken to a stage which allows future
developers a platform upon which to base their investigations. Some of the con-
clusions about the system and possible modelling extensions provide useful insight
for future modellers which will help to direct their investigations towards fruitful
areas.

The framework is fully developed at this point. An investigation into a specific
representation of the physical system will be dependent on the stochastic extension
to be used, and the quality of solutions produced by the consequent full stochastic
model—whereas a stochastic extension requires a specific representation of the
physical system on which to base itself.

Future investigations will require a re-prioritization of aims and intentions from
this point, while the development of the framework, for both designing a spe-
cific model and determining the effects of approximations used within this specific
model, has reached a point of natural conclusion, making this an appropriate point

at which to conclude this thesis.



174

Appendix A
Sample Input Files

his Appendix gives a selection of the input files used to specify the system.
TThe example chosen has a time horizon of two weeks. For illustrative pur-
poses, we use the same geographic network for both weeks, consisting of four nodes
(three nodes in the North Island and one in the South Island) with two hydro
stations (one in each Island) and two thermal stations (both in the North Island).
Files which specify multiple weeks contain some fields which specify their values
for each week separately.

The MPS and information files which are created from the WeekRef files are
not given—the layout of the information file is superfluous and the MPS structure
is standard. Furthermore, these files contain transformed data which would be
tedious to explain and which is discussed thoroughly in the description of the
model, so that no benefit is obtained by the inclusion of these files.

The problem described herein is specified by 420 variables, 360 constraints, 2500
non-zero elements in the constraint matrix and 220 non-zero objective coefficients.

The problem took under 2 seconds to solve.

A.1 Master File

The file Master specifies most constants of the system. It also contains information

for later use as it is used throughout the entire solution procedure.

Name: Master

InputFiles:



APPENDIX A. SAMPLE INPUT FILES

175

ThermalFile:
MainArcFile:
HydroFiles:
Reservoirs:
Inflows:
Stations:
MPSFiles:
MPSOutput:
SPECSOutput:

Information:

TransitFiles:

ToMPS:

Maximums:

NumberOfWeeks:

MaxNodes:
MaxArcs:
MaxHydros:

MaxThermals:

Detail:
WeekSizes:
DataDeckName:

DiscountRate:

NonSupplyCost:

O1Partition:

Units:
TimeInHours:

PowerInMW:

WeeklyNodeFiles:

ThermalRef
LineRef

HydroRef
InflowRef
StationRef

example.mps

example.spc

example.Info

WeekRef.%w % Y%w is replaced by appropriate week

N N 00 N

11 -

EXAMPLE

0.07 % per year

300

0.0 0.10.40.71.0

168.0 % scaling factors for the
1000.0 % objective function

NodeRef NodeRef —

Unscaling; % from scaling for basis coefficients
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Unscale:Rowl:
Unscale:Row2:
Unscale:Row3:

Unscale:Row4:

1.0el 1.0e3 1.0e2
1.0el 1.0e2 1.0e2
1.0el 1.0e2 1.0e2
1.0e2 1.0e2 1.0e2

A.2 Load Input File

The file NodeRef specifies the make-up of load at each node of a geographic network

for a single week. The amount of generation from auxiliary stations is specified by

Matlab variables, as is each Island’s yearly load curve.

Name:
Week:
SizeOfWeek:

Start:

Name:
Island(N/S):
FlatLoad:

FlatGenerator:

LoadFraction:

Name:
Island(N/S):
FlatLoad:

FlatGenerator:

LoadFraction:

Name:
Island(N/S):
FlatLoad:

FlatGenerator:

LoadFraction:

Name:

NodeRef
1

1 % in weeks

Auckland

N

890000 % in GWh
HuntlyCoal

0.52

Taupo

N

1320000
Wairaki&Ohaaki
0.39

NewPlymouth
N

0.0

None

0.09

Christchurch
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Island(N/S): S
FlatLoad: 4340000
FlatGenerator: Arnold

LoadFraction: 1.00

A.3 Transmission Input Files

The file LineRef gives specification of each power line, and the network file for

each week.

Name: LineRef

NetworkFiles: ArcRef ArcRef —

Lines:

Name RL XL Volt

ALB-HEN-3 0.00188 0.01537 220 % proportional losses @100MW
ARA-WRK 0.00058 0.00342 220 % RL = real loss
ATI-OHK 0.00119 0.00564 220 % XL = imaginary loss
AVI-WTK 0.00163 0.00803 220 % Volt = line voltage
BEN-AVI-1 0.00325 0.01509 220

BEN-AVI-2 0.00325 0.01509 220

BPE-HAY-1 0.02198 0.10411 220

WRK-WHI 0.00823 0.06765 220

WTK-LIV 0.00629 0.02983 220

The network file, ArcRef, specifies the make-up and distribution of arcs in the

geographic network. Node names correspond to those given in NodeRef.

Name: ArcRef

Network:
NodesFromTo: Auckland Taupo
Capacity: 1300 % Megawatts
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LineMakeUp:

NodesFromTo:

Capacity:
LineMakeUp:

NodesFromTo:

Capacity:
LineMakeUp:

NodesFromTo:

Capacity:
LineMakeUp:

((OTA-WKM-1 // OTA-WKM-2) // OTA-WKM-3) // (OTA-HLY
+ TAK-HLY + GLN-HLY + HLY-HAM + HAM-WKM + WPA-MTI +
(MTI-WKM-1 // MTI-WKM-2) + (WKM-TKU-1 // WKM-TKU-2)
+ (OKI-WRK-1 // OKI-WRK-2) + ARA-WRK + (TRK-ATI-1 //
TRK-ATI-2) + (TRK-EDG-1 // TRK-EDG-2) + EDG-KAW +
KAW-OHK + WRK-RPO + ((WKM-ATI + ATI-OHK + OHK-WRK)
// WKM-WRK)) ! % // in parallel, + in series

Auckland NewPlymouth
360
HLY-SFD // (HLY-TMN + TMN-SFD) !

NewPlymouth Taupo

600

(NPL-SFD-1 // NPL-SFD-2) + ((SFD-BRK-1 // SFD-BRK-2)
// SFD-BRK-3) !

Taupo Christchurch
1240
22.8 ! % Ohms, D C resistance

A.4 Thermal Station Input File

The file ThermalRef gives information on the fuels and fuel constraints, as well as

data on each thermal station.

Name:

Fuels:
FuelName:

FuelCost:

ThermalRef

Coal
2.4 % $ per Gigajoule

CalorificValue: 22 % GJ/unit

Constraint:

FuelName:

None None —

Maui
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FuelCost: 2
CalorificValue: 1000
Constraint: Maui Maui —
FuelConstraints:

MaxWeeklyMaui: 2300 2300 — % PJ (units)

Thermals:

Node: Auckland Auckland —
Thermal: Huntly
ForcedOutage: 0.033

Capacity: 960 960 — % MW
FuelUsed: Maui Coal —
HeatRate: 10 GJ/MWh

Node: NewPlymouth NewPlymouth —
Thermal: NewPlymouth
ForcedOutage: 0.073

Capacity: 580 580 —

FuelUsed: Maui —

HeatRate: 10.5

A.5 Hydro Station Input Files

The file HydroRef gives information on the characteristics of each river chain which

is to be used as a single hydro station in the model. Information on the inflows

and stations of each river chain are given in other files.

ReservoirsName: HydroRef

DataDirectory: $HOME/InflowData

HydroReservoirs:

Name: Taupo
NodeAtEachWeek: Taupo Taupo —
Island: N
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Initial:
INames:
UNames:

Stations:

Name:

NodeAtEachWeek:

Island:
Initial:
INames:
UNames:

Stations:

240000 % MWh

Taupo — % controlled inflows

Waikato — % uncontrolled inflows

Aratiatia Arapuni Atiamuri Karapiro Maraetai

Ohakuri Whakamaru Waipapa —

Waitaki )

Christchurch Christchurch —

S

1240000

Cobb Coleridge Pukaki —

Benmore Ohau Tekapo —

Aviemore Benmore Cobb Coleridge OhauA OhauB

OhauC TekapoA TekapoB Waitaki —

The file StationRef gives information on every hydro station. Hydro stations

have specified controlled and uncontrolled inflows (which are respectively combined

for the single station representation).

StationsName:

Name:

IInflow:
UInflow:
MaxGeneration:
Cumec/MW:
Part0fUThru:

FractionFlat:

Name:

IInflow:
UInflow:
MaxGeneration:
Cumec/MW:
Part0fUThru:

FractionFlat:

StationRef

Aratiatia

Taupo % controlled inflow

Waikato % uncontrolled inflow

84 84 — % MW

3.6 % generation efficiency

0.07 % fraction of uncontrolled flowing through

0.17 % immediately generated uncontrolled flow

Arapuni
Taupo
Waikato
140 140 —
2.23

1

0.12
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Name:

IInflow:
UInflow:
MaxGeneration:
Cumec/MW:
Part0fUThru:

FractionFlat:

Name:

IInflow:
UInflow:
MaxGeneration:
Cumec/MW:
Part0fUThru:

FractionFlat:

TekapoB

- % none

Tekapo

160 160 —
0.78

1

1550

Waitaki
Pukaki
Benmore
100 90 —
6.2

1.1

0.5

The file InflowRef gives information on the reservoirs and inflows (both con-

trolled and uncontrolled), including the file in which the past data on each inflow

is given.

InflowsName:

Controlled:
Name:
FileName:
FileStartDate:
InflowStart:
MaxLevel:
MaxRel:
MinRel:
MinFlow:

Name:

FileName:

InflowRef

Taupo

taupo.dat % containing inflow data

1/4/31
16/2/66
9900 9900 —
220 220 =
35 35 — %
160 160 —

Cobb
cobb.dat _

% m3s~! days
% m3s~!

m3s~!

% m3s~!
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FileStartDate:

InflowStart:
MaxLevel:
MaxRel:
MinRel:
MinFlow:

Name:

FileName:

FileStartDate:

InflowStart:
MaxLevel:
MaxRel:
MinRel:
MinFlow:

Name :

FileName:

FileStartDate:

InflowStart:
MaxLevel:
MaxRel:
MinRel:
MinFlow:

Uncontrolled:
Name:

FileName:

FileStartDate:

InflowStart:
MaxRel:
MinRel:
MinFlow:

1/4/31
16/2/66
280 280 —
inf inf —
00 —

00 —

Coleridge
coleridg.dat
1/4/31
16/2/66

1600 1600 —
inf inf -
00 —

0.0 ~

Pukaki
pukaki.dat
1/4/31
16/2/66

38000 38000 —
440 440 —

00 —

120 120 —

Waikato
waikato.dat
1/4/31
16/2/66

inf inf —
00 —

00 —
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Name:
FileName:
FileStartDate:
InflowStart:
MaxRel:
MinRel:
MinFlow:

Name:
FileName:
FileStartDate:
InflowStart:
MaxRel:
MinRel:
MinFlow:

Name:
FileName:
FileStartDate:
InflowStart:
MaxRel:
MinRel:
MinFlow:

A.6 Week

Benmore
benmore.dat
1/4/31
16/2/66

inf inf —
00 —

00 —

Ohau
ohau.dat
1/4/31
16/2/66
inf inf —
00 —
00 —

Tekapo
tekapo.dat
1/4/31
16/2/66
inf inf —
00

00 —

ly System File

The WeekRef files specify the whole system for a single week. They were con-

structed from the previous files. The format used was simple to change, allowing

the construction of examples by hand for debugging purposes.

Name:

NODES:
GeneralNodeData:

NumberOfNodes:

WeekRef .1
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SpecificNodeData:

Node: 1

MatrixG:Rowl: 7.908e-01 2.128e+00 0.000e+00
MatrixG:Row2: 0.000e+00 6.432e+00 2.436e+00
MatrixG:Row3: 2.484e+00 1.016e+00 1.226e+00
MatrixG:Row4: 6.362e+00 1.044e+00 3.467e+00
Node: 2 o
MatrixG:Rowl: 5.931e-01 1.596e+00 0.000e+00
MatrixG:Row2: 0.000e+00 4.824e+00 1.827e+00
MatrixG:Row3: 1.863e+00 7.623e-01 9.191e-01
MatrixG:Row4: 1.929e+00 7.829e-01 2.600e+00
Node: 3

MatrixG:Row1l: 1.369e-01 3.684e-01 0.000e+00
MatrixG:Row2: 0.000e+00 1.113e+00 4.215e-01
MatrixG:Row3: 4.299e-01 1.759e-01 2.121e-01
MatrixG:Row4: 9.248e-01 1.807e-01 6.000e-01
Node: 4

MatrixG:Rowl: 1.197e+00 1.941e+00 2.169e+00
MatrixG:Row2: 0.000e+00 4.053e+00 4.681e+00
MatrixG:Row3: 6.220e-01 4.012e-01 9.119e-01
MatrixG:Row4: 8.920e+00 9.663e-01 3.009e+00
THERMALS :

GeneralThermalData:

ThermalNodes: 1 8 —

ThermalNames: Huntly NewPlymouth

MauiMax: 2300

MauiWeightings:

Thermal Node Fuel Weight
Huntly 1 1 0.01
NewPlymouth 2 1 0.0105
SpecificThermalData:

ThermalNode: 1
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ForcedOutage:
GenerationCost:
Capacity:
ThermalNode:
ForcedOutage:
GenerationCost:

Capacity:

HYDROS :
GeneralHydroData:
HydroNodes:
HydroNumbers:

HydroNames:

SpecificHydroData:

HydroNode2:1:
AU 2
FractionOfUFlat:

MaximumGeneration:

Storagelnterval:
TopInterval:
BottomInterval:
HydroNode4:1:
:U:
FractionOfUFlat:

MaximumGeneration:

Storagelnterval:
TopInterval:

BottomInterval:

ARCS:
GeneralArcData:
NumberOfArcs:
SpecificArcData:

ArcO:FromTo:

0.033
20 24 —
960

0.073
21 —
580

2 4 —
12

Taupo Waitaki

2.81e+05
0.00e+00
0.34

930
.00e+00
.57e+01
.92e+02
.36e+06
.81le+04
.56
1600
0.00e+00
0.00e+00
3.18e+02

o O »r W m O

i 2

% controlled

% uncontrolled

5.82e+05
5.39e+02 % release

inf % flow from river mouth

2.12e+06
1.17e+03

inf
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PowerLoss: 0.075
Capacity: 1300
Arcil:FromTo: 2
PowerLoss: 0.075
Capacity: 1300
Arc2:FromTo: 13
PowerLoss: 0.053
Capacity: 360
Arc3:FromTo: 3 i
PowerlLloss: 0.053
Capacity: 360
Arc4:FromTo: 32
PowerLoss: 0.026
Capacity: 600
Arc5:FromTo: 20 13
PowerLoss: 0.026
Capacity: 600
Arc6:FromTo: 2 4
PowerLoss: 0.23
Capacity: 1240
Arc7:FromTo: 4 2
PowerLoss: 0.23
Capacity: 1240
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Appendix B

Model Output

ere we illustrate the first week’s solution for the small example for which
Hsome of the input files are given in Appeddix A. This small example is
not very realistic as requires that only four power stations are used to meet all of
New Zealand’s load for two weeks. It does, however, illustrate many features of
the model. The LDC’s show the non-supply curves shaded in red. Both the release
and storage levels for both weeks of solution are given. In these plots, the black
curve is the minimum level, the red curve gives the maximum level and the blue
curve gives actual release or storage. For the transmission arcs, the blue curve is
the power entering the line, and the cyan curve is the power exiting the line. The
final plot shows a break-down of the schedule for both weeks. The green line shows
the total load, the cyan line shows the total generation, and the black line shows
the total generation plus non-supply; the difference between the total load and the
total generation plus non-supply is due to line losses. The red curve gives total

non-supply, the blue curve gives total hydro generation, and the magenta curve

gives total thermal generation.
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Node 1. Load and Huntly Generation.

Load and NonSupply

Generation at Thermal 1
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0 50 100 150 0 50 100 150
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Node 2. Load and Taupo Generation.
Load and NonSupply Generation
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Node 3. Load and New Plymouth Generation.

Load and NonSupply Generation at Thermal 2
L NonSupply = 0.00 Fuel = 12180.00 NoaSupply = 12702.00
250
600+
2008 5001 |
s 400
150+ SNy i
2 LA
= § 300
100F T
200
Sof 100}
00 50 100 150 00
Hours
Node 4. Load and Waitaki Generation.
Load and NonSupply Generation
NonSupply = (.00 NonSupply = 0.00
1600 -\‘ 1600
1400¢ i 1400
12000 T 1200}
L 1000
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S 800 T 500
600 600
400 400
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Transmission.

Combined inthe Node 1 to Node 2 direction.

Combined in the Node 1 to Node 3 direction.

300f
1000}
200f
500 100
/‘ﬁ‘ —:':
-100¢
-500} )
-200¢
~1000F -300}
0 50 100 150 0 50 100 150
Hours Hours
gamnbinedinjhEs et e inee Combined in the Node 2 to Node 4 direction.
1000}
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= ] =
2 0 € o
-200r
_500 L
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-800 : - v
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< 10° Weekly Generation and Load for All
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