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Abstract 

The goal of this work was to measure native milk fat globule membrane (NMFGM) 

damage in a number of processing operations within the milk powder manufacturing 

process. 

Analysis of the literature showed that NMFGM damage was not well understood, 

particularly as caused by processing operations within factories. Reliable methods of 

measuring NMFGM damage were not available; current methods had limited scope or 

were qualitative in nature. In the highly mechanised dairy industry, damage to the 

NMFGM can lead to serious quality and financial losses owing to consequences such as 

lipolysis and creaming. The aims of this work were to develop new techniques for 

measuring NMFGM damage, and to use these in assessing the effects of a number of 

operations within the milk powder process. 

The majority of time was spent on developing two new tests, the selective lipolysis 

(SLl) test and the particle size zoning (PSZ) test. The SLl test measures a chemical 

consequence ofNMFGM damage, that is the production of free fatty acids (FFAs). The 

PSZ test measures a physical consequence ofNMFGM damage, that is the change in the 

fat globule size distribution. 

Controlled experiments were used to measure NMFGM damage in process operations 

including pumping, agitation, preheating and evaporation. For these operations, 

variables such as shear, time, temperature, air inclusion and cavitation were 

investigated. Surveys of two industrial milk powder plants were also conducted. 

The results showed that the SLl and PSZ tests were reproducible, sensitive enough to 

detect NMFGM damage in a number of process operations, and, together, could give a 

reasonably comprehensive picture of NMFGM damage. The results of pumping and 

agitation experiments were consistent with previous research, but were more 

comprehensive. The effects on measured NMFGM damage of the presence of separated 

fat in foam or as churned fat have hardly been described by previous workers. Results 

for the effects of preheating and evaporation on NMFGM damage are new, and 

challenged the findings of previous research. 
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The need to improve the flexibility and practicality of the SLI and PSZ tests, so they 

can be used as widely as possible to gain a comprehensive picture ofNMFGM damage 

across many dairy processes, was identified. Studies should be made to connect the 

results of the particle size zoning and selective lipolysis tests with product quality and 

process efficiency data from industrial sites. 
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Chapter 1 
Introduction 

Virtually all of the fat in milk is found in the form of spherical globules, the disperse 

phase of an emulsion in milk plasma. Each g lobule is surrounded by a native milk fat 

g lobule membrane (NMFGM) composed of mostly surface-active lipids and proteins. 

The NMFGM constitutes approximately 2% of fat g lobule mass and therefore less than 

I % of the total solids in milk but has an essential role in the stability of the emulsion. 

The NMFGM acts as a barrier between the core fat and the milk plasma. This barrier 

resist s such phenomena as: 

• Linkages between, or coalescence of, fat g lobules, and consequent changes in milk 

fat globule size distribution. 

• Enzymes that attack milk fat to convert them into free fatty acids (FF As). 

The compos it ion of the NMFGM is very d ifferent fro m the two phases it separates -

g lobular fat and milk p lasma (Mulder & Walstra , 1974). Most glo bular fat is in the for m 

of triacy lglycerols. NMFGM fat cons ists mostly of phospholipids. M ilk plasma includes 

proteins in the form of casein micelles, colloida lly dispersed serum (whey) proteins a nd 

enzyme, but the NMFGM is largely unique. The NMFGM protein has an amino acid 

pattern similar to that of the apica l cell-membrane of the lactating ce ll (Keenan et a l. , 

1970). 

The unique composition of the NM FGM makes it a sig nificant component. Its function 

however, makes it a critical component! If the NMFGM is breached ( i.e. if N MFGM 

da mage has occurred) the above mentioned phenomena result, and the quality of the 

milk is reduced. McPherson & Kitchen ( 1983) asserted that "Thus many current 

problems of the dairy industry are directly related to an understanding of this unique 

membrane system." 

The NMFGM is easily damaged during handling operations such as milking, storage at 

the farm and transportation. Even the s imple process o f chilling the milk can lead to 

changes in the NMFGM such as loss of phospho lipids (Anderson et al. , 1972) and 
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alterations to the protein composition (Thompson et al., 1961). Breaches of the 

NMFGM can lead to phys ical changes such as disruption of fat globules, with 

subsequent difficulties in separation into cream and skim milk, and chemical changes 

such as lipolys is, with consequent formation of off-flavours. Any uncovered fat globule 

surface resulting from damage to the NMFGM is almost instantly covered by serum 

proteins and casein micelles (Walstra et al. , 1999). It is therefore useful to differentiate 

between the NMFGM, which consists mainly of phospholipids and proteins derived 

from the apical membranes of secretory cells of the cow, and the milk fat g lobule 

membrane found in processed milk, which also contains serum proteins and casein 

mice lles. 

In New Zealand, around 13 billion litres of milk are processed each season at 29 

manufacturing sites (http:/ /www. fon terra. com/content/a boutfonterra/factsand fi gures/default. jsp, 

March 2004). This equates to an average of over 2 million litres processed at each site 

in New Zealand every day of the season. This high throughput, coupled with the 

tendency for milk to lose its qua lity rapid ly over time, means that even small delays in 

production can result in s ignificant financial loss to the industry. 

The New Zealand dairy industry has put considerable effort into making itself as cost­

effective, and its products as attractive to customers, as poss ible, including efforts to: 

• Maximise milk quality entering factories. 

• Reduce microbia l contamination in factories. 

• Minimise product losses through the reprocessing of waste streams and fine 

particulates. 

• Maximise the sizes of factories and therefore reduce capita l costs. 

• Minimise transportation costs. 

This has made the New Zealand dairy industry highly mechanised. 

Evidence of this mechanisation can be seen in many parts of the New Zealand dairy 

industry. On farms, it is typified by the universal use of pipe line milking machines, and 

storage of milk in large s ilos, often of up to 28,000 litres in the case of farms with large 

herds. Milk tankers transport the milk from the farm and can carry up to 27,000 litres at 

one time (http ://meadowfresh.net.nz/about mil k/from moo to vou.php, 2004). However, in some 
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parts of the country, the milk is transported very long distances by train, from 

intermediate storage sites to the factories. New Zealand dairy factories are among the 

largest in the world, many having multiple storage silos in excess of 250,000 litres 

individual capacity, with considerable use of pumps to transport the milk around the 

factory. 

With the push for mechanisation and larger factories, potentially significant financial 

losses may be created through loss of product quality resulting from rough handling of 

the milk. While the handling of raw milk on dairy farms has been studied to some 

extent, very little attention has been paid to raw and pasteurised milk in factory 

processing steps following farm handling. Such processes include, in addition to 

pasteurisation, storage, pumping, separation, and thermal processes such as preheating 

and evaporation. 

Various authors have highlighted the potentially harmful effects of poor milk handling, 

during process operations, that damages the milk fat. Such effects include fouling of 

heat exchangers, poor cream separation and flavour defects. These effects result in loss 

of product and poor milk and cream quality. While no formal cost analysis has been 

applied to these effects, it is clear they do cost money, and given the size of the New 

Zealand dairy industry must be taken seriously. Damage to the NMFGM in process 

operations within factories was the focus of the present work. 

The work began with the aim of usmg existing NMFGM damage measurement 

techniques to assess NMFGM damage in milk powder manufacturing processes, 

because milk powders constitute over 30% of all New Zealand dairy products. 

(http://www.fonterra.com/content/aboutfonterra/factsandfigures/default.jsp, 2004 ), and very little 

research has been conducted on the impact of milk powder manufacturing operations on 

the milk powders. It was hypothesised that incremental increases in NMFGM damage in 

individual operations within the milk powder manufacturing process would contribute 

to an overall loss of milk powder quality. 

However, it became clear over time that the NMFGM damage measurement tests based 

on the measurement of lipolysis, which were initially chosen, were not reliable enough 
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to allow a valuable survey ofNMFGM damage in some situations. Hence, much of the 

early work could only highlight the weaknesses of the existing tests. 

Therefore, the first objective of this project was to develop a technique for the 

measurement ofNMFGM damage. 

A second objective was to identify and analyse the factors that affect damage to the 

NMFGM using the measurement techniques devised. 

The final objective was to make case studies of the damage occurring in a number of 

key operations or equipment found in milk powder plants where the factors identified in 

reaching the second objective could be found. 

Therefore, this thesis is an account of an ongoing journey that began with concepts on 

NMFGM damage that ultimately had to be redeveloped before the original aim of the 

work could be pursued. 
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