Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Synthesis and Characterisation of Pyrazine-

Based Ligands for the Analysis of Metal-Metal

Communication

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Science

in

Chemistry

at Massey University, Manawatū

New Zealand

Michael James Brown

2018

Acknowledgements

I would like to acknowledge and thank everybody within the Plieger and Rowlands groups for their assistance in and out of the laboratory, as well as the "dank bantz". Special mentions include Sidney Woodhouse for reading my thesis at least 23,796 times prior to submission; Rebecca (Becky) Severinsen for the guidance you have provided from day one; and Tyson Dais (my chemistry husband) for sharing his vast knowledge over wide range of chemistry. I would also like to acknowledge Jenna for her awesomeness (#jennaisawesome). Whilst you all had to endure my constant onslaught of puns, I considered it 'pun'ishment for being too 'pun'ctual with corrections to my 'pun'ctuation. To my co-supervisor Associate Professor Gareth Rowlands. Thank you for answering my barrage of questions and for not kicking me out of your office after the fifth visit within

ten minutes. Thank you for your support and guidance throughout the course of this project.

To my Supervisor Associate Professor Paul Plieger. Thank you for the constant positive energy you bestow onto everyone around you. Most importantly, thank you for allowing me to undertake an MSc project under your supervision and providing me with the necessary tools to obtain various life skills. I will always be a Plieger Pal.

I am grateful to Dr Martyn Coles at Victoria University, Wellington, New Zealand for analysing the L3 ligand crystals at Victoria University.

I would like to thank Dr Jason Price, who analysed the crystals of complexes **C3A** and **C3B** at the Australian Synchrotron, Victoria, Australia.

I would also like to thank Dr Joanne Harvey for allowing myself to use your ozonator near the beginning of this project. The success brought on from this inspired us to acquire an ozonator ourselves.

I would also like to thank François Laur for his efforts in assisting me in the synthesis of various Schiff base ligands. I would also like to thank Brodie Matheson for aiding me in the attempted synthesis of several compounds (in particular A2 and K1).

I would like to thank my friends for supporting me throughout this project. I love you all with varying portions of my heart.

I would like to thank the Potangaroa family for all of their guidance and support throughout the ups and downs of this research. The kai is also amazing as well.

To my brother and sisters, thank you for the support you have given me throughout this time. We did it. Thank you to my cousin Simon who helped me take well-needed breaks during the writing process with gaming sessions. I will beat you someday. To my mum and dad, thank you for everything you have done for me throughout the course of this project. It goes without saying that I would not have come this far without your love and support.

To my partner Tiriana Potangaroa, aka Nani. Thank you for putting up with me these last couple of years; I know I was not easy to deal with. Thank you for being so understanding and supportive, especially within the closing months of this project. To quote Six60 "you're so special to me, all that I want and need".

To people such as Caren August, David Lun, all of my previous lecturers at Massey University and too many others to name, thank you for everything that you have done. Pyrazine Pirate. Out.

İİ

Abstract

Pyrazine is an attractive molecule that has been incorporated as a bridging ligand between two metal centres. These complexes have been shown to exhibit both magnetic and electrochemical exchange between the metal centres through the pyrazine unit. Addition of functionality onto the 2 and 5 position of pyrazine can reinforce the coordination of 3d octahedral metal ions to the pyrazine ring.

The Schiff base condensation of A1 with various primary amine reactants produced three unique ligand systems. The confirmed synthesis of these ligands was verified with a variety of characterisation techniques. A single crystal structure was generated for one ligand system (L3), which revealed both imine – π stacking interactions, as well as alkane hydrogen – pyridine interactions.

Several complexations were attempted with the three ligand systems synthesised. Manganese and cobalt complexes were successfully synthesised with L3, the single crystal structures generated showed cyclohelicate triangles, which were unique at the time. The electrochemical analysis of these complexes in MeCN showed similar redox processes as was seen in the electrochemical analysis of L3. Signs of possible metal-metal communication within the cyclohelicate triangles was also noticed, with oxidation (and reduction) processes present. Further analysis is necessary to verify these interpretations, including magnetic analysis. Complexations with identical metal salts and L2 could not be characterised by SCXRD Other techniques such as mass spectrometry and conductivity measurements indicated the likely formation of a polymorphic – potentially cyclohelical structure with this ligand. Complexations with L1 incorporated the inclusion of a larger collection of metal salts. Unfortunately, due to time constraints, only three complexes were suitably characterised. From the various characterisation methods used, it was deduced that all three complexes were likely simple M_2L1 systems, where the coordination of the 6-coordinate 3d metal centres were accompanied by the coordination of either water, solvent, counterion or a combination of these.

Contents

Acknowle	dgementsi			
Abstract	Abstractiii			
List of Fig	gures and Schemes			
List of Ta	blesxiii			
Abbreviat	ionsxiv			
Chemic	al xiv			
Equipm	entxv			
Units				
Compo	und codesxv			
Literatu	re compound codesxvi			
Chapter 1	Introduction1			
1.1	Cyclohelicates			
1.1.1	Cyclohelicate squares and triangles1			
1.2	Magnetism			
1.2.1	Magnetic coupling 4			
1.2.2	Superexchange			
1.2.3	Characterisation of magnetism – SQUID			
1.3	Electronic coupling – Metal-Metal communication			
1.3.1	Robin and Day classification of mixed-valence complexes			
1.3.2	Measuring electrochemical properties – Cyclic voltammetry			
1.4	Creutz-Taube ion			
1.5	Pyrazine			
1.5.1	Pyrazine as a bridging ligand			
1.6	Examples of cyclohelicate squares and triangles with pyrazine bridging ligands 14			
1.6.1	Synthesis of cyclohelicate squares by Shen et al			
1.6.2	Synthesis of a cyclohelicate square by Hausmann <i>et al</i> 17			
1.6.3	Synthesis of cyclohelicate triangles by Hogue <i>et al</i>			
1.7	Summary			
1.8	Research aims and hypothesis			
1.9	Thesis outline			
Chapter 2	Ligand Design			
2.1	Schiff base			
2.2	Schiff base with pyrazine			
2.3	Summary			
Chapter 3	Synthesis of Schiff Base Precursors			

3.1	Introduction
3.2	Synthesis of pyrazine-2,5-dicarbaldehyde27
3.2.1	Synthesis of pyrazine-2,5-dicarbaldehyde – Das method28
3.2.2	Synthesis of pyrazine-2,5-dicarbaldehyde – Coufal method31
3.2.3	Synthesis of pyrazine-2,5-dicarbaldehyde – Hogue <i>et al</i> . method
3.3	Future work
3.4	Summary
Chapter 4	Synthesis of Ligands
4.1	Introduction
4.2	General protocol for the synthesis of Schiff base ligands
4.3	Characterisation of Schiff base ligands
4.4	Synthesis and characterisation of H_2L1 , $L2$ and $L3$ 40
4.5	Future work
4.6	Conclusions
Chapter 5	Synthesis of Complexes45
5.1	Introduction
5.2	General protocol for the synthesis of complexes45
5.3	Characterisation of complexes
5.3.1	Structural characterisation of complexes46
5.3.2	Electrochemical analysis of complexes48
5.4	Synthesis and characterisation of complexes with L3
5.4.1	Electrochemical analysis of C3A and C3B56
5.5	Synthesis and characterisation of complexes with L2
5.6	Synthesis and characterisation of complexes with L163
5.7	Conclusion
6 Cone	clusion70
Appendix	1 Synthesis of $L4 - L7$
A1.1	Synthesis of H_2L4 and H_4L5
A1.2	Conclusion73
A1.3	Synthesis of L6 and L774
A1.4	Conclusion
Appendix	2 Synthesis of Pyrazine-2,5-diacetaldehyde (A2) and 2,5-pyrazinyldiacetone (K1)
A2.1	Synthesis of pyrazine-2,5-diacetaldehyde (A2)80
A2.2	Synthesis of 2,5-pyrazinyldiacetone (K1)
A2.3	Future work

A2.4	Sum	mary	90
Appendix	3	General Experimental Section	91
A3.1	Expe	erimental generic description	91
A3.1	.1	Reagents and solvents	91
A3.1	.2	Synthetic methods	91
A3.1	.3	Characterisation methods	91
A3.2	X-Ra	ay crystallography	95
Appendix	4	Synthetic Methods	97
A4.1	Synt	hesis of A1 and precursors to A1	97
A4.1	.1	2,5-dimethyl-1,4-dioxidepyrazine	98
A4.1	.2	2,5-di(acetoxymethyl)pyrazine	. 100
A4.1	.3	2,5-distyrylpyrazine	. 101
A4.1	.4	Pyrazine-2,5-dicarbaldehyde (A1)	. 103
A4.2	Synt	hesis of H ₂ L1, L2 and L3	. 105
A4.2	.1	2,2'-[2,5-pyrazinediylbis(methylidynenitrilo)]bis(phenol) (H ₂ L1)	. 105
A4.2	.2	N,N'-(2,5-pyrazinediyldimethylidyne)bis(2-pyridinemethanamine) (L2)	. 106
A4.2	.3	N,N-(3,6-pyrazinediyldimethylidyne)bis(2-pyridineethanamine) (L3)	. 107
A4.2.4	Cr	systallisation attempts of H ₂ L1, L2 and L3	. 108
A4.3	Synt	hesis of complexes	. 109
A4.3	.1	Complexation with L3	. 110
A4.3	.2	Complexation with L2	. 112
A4.3	.3	Complexation with L1	. 113
A4.4	Synt	hesis of N-Boc protected 2-aminoethanol	. 116
A4.5	Synt	hesis of N-Boc protected 2-aminophenol	. 118
Reference	es		. 119
Additiona	l Spe	ctra	. 130

List of Figures and Schemes

Figure 1.1. The cyclohelicate square (A) and triangle (B) complex
Figure 1.2. 2D Molecular library with various building units for creating supramolecular
structures
Figure 1.3. Theoretical view of neighbouring electron spins in (a) paramagnetic, (b)
ferromagnetic and (c) antiferromagnetic upon exposure to magnetic field, B4
Figure 1.4. σ -type ferromagnetic (a), σ -type antiferromagnetic superexchange (b), and π -
type antiferromagnetic superexchange (c)
Figure 1.5. Magnetic susceptibility, χ vs temperature, T, showing typical ferro-, antiferro-
and paramagnetic slopes7
Figure 1.6. A three-electrode electrochemical cell9
Figure 1.7. The Creutz-Taube Ion, $[(NH_3)_5Ru]_2pz^{5+}$ where $pz = pyrazine11$
Figure 1.8. Calculated β-HOMO of the CT ion12
Figure 1.9. The three structural isomers of the diazine: Pyridazine (a), Pyrimidine (b) and
Pyrazine (c)
Figure 1.10. Framework of the ligand FL (left) and SCXRD structure of the cyclohelicate
square, FC ^H 15
Figure 1.11. Cyclic voltammogram of FC^{H} (top voltammogram, 1), FC^{Me} (middle
voltammogram, 2) and FC^{Br} (bottom voltammogram, 3)16
Figure 1.12. JL ligand structure (left) and SCXRD structure of the formed cyclohelicate
square JC·12.75MeCN (right)17
Figure 1.13. RL ligand structure (left) and SCXRD structure of the cyclohelicate triangle
(right). SCXRD structure shown is RC2
Figure 1.14. Directional-bonding approach for the synthesis of [M ₃ L ₃] triangles,
exhibiting conformational strain similar to cyclohelicate triangles RC1-2 19
Figure 2.1. Pyrazine with 2 and 5 positions indicated
Viii

Scheme 2.1. Mechanism for Schiff base condensation
Figure 2.2. The expected coordination of a transition metal (M) to a pyrazine ligand
(ligand L3 is shown as an example)25
Figure 2.3. Pyrazine with 2 and 5 positions labelled with R substituents
Scheme 3.1. Synthetic scheme for the synthesis of pyrazine-2,5-dicarbaldehyde (A1). 27
Figure 3.1. ¹ H NMR spectra of 2,5-dimethylpyrazine-1,4-dioxide (in D ₂ O) obtained from
the methods provided by Das et al. (top) and Klein et al. (bottom)
Scheme 3.2. Proposed mechanism for the acetylation of 2,5-dimethylpyrazine-1,4-
dioxide29
Figure 3.2. ¹ H NMR spectrum of 2,5-di(acetoxymethyl)pyrazine (CDCl ₃)
Scheme 3.3. General Knoevenagel condensation
Scheme 3.4. Criegee mechanism for the ozonolysis of 2,5-E,E-distyrylpyrazine
Figure 3.3. ¹ H NMR spectrum of pyrazine-2,5-dicarbaldehyde (A1) with assigned peaks
(CDCl ₃)
Scheme 3.5. The three-step reaction scheme reported by Hogue et al. to produce A1 from
2,5-dimethylpyrazine
Scheme 4.1. The general reaction scheme of a Schiff base condensation between
pyrazine-2,5-dicarbaldehyde (A1) and a primary amine
Figure 4.1. Assigned ¹ H NMR spectrums (top ¹ H NMR spectrum (H ₂ L1): DMSO-d ₆ ,
middle ¹ H NMR spectrum (L2): CDCl ₃ ; bottom ¹ H NMR spectrum (L3): CDCl ₃)41
Scheme 4.2. Tautomerism exhibited in L242
Figure 4.2. Molecular structure of L3
Figure 4.3. Packed structure of L3
Figure 5.1. A plot of the molar conductivity of coordination complexes in acetonitrile as
a function of the number of counterions per complex present

Figure 5.2. SCXRD generated molecular structure of [M ₃ L3 ₃](ClO ₄) ₆	52
Figure 5.3. SCXRD generated molecular structure of two neighbouring $[M_3L3_3]$ (ClO	94)6
viewed from the side (left) and the front (right)	52
Figure 5.4. Packed structure of triangle complex (viewed down the c-axis)	52
Figure 5.5. TGA plot of cobalt Triangle C3A	55
Figure 5.6. TGA plot of manganese triangle C3B	55
Figure 5.7. Cyclic voltammogram of L3	57
Figure 5.8. Cyclic voltammogram of C3A	58
Figure 5.9. Cyclic voltammogram of C3B	59
Figure 5.10. The unidentate (A), bidentate (B) and bridging (C) coordination fashion	of
acetate anions to a metal centre	66
Figure 5.11. The ligand H_2L1 with assigned hydrogens (bottom) and the comparison	of
the assigned ¹ H NMR spectrum of L1 (bottom spectrum) against the assigned ¹ H NM	ЛR
spectrum of the zinc acetate coordinated complex C1C (top spectrum)	67
Scheme A1.1. The general reaction scheme of a Schiff base condensation betwee	en
pyrazine-2,5-dicarbaldehyde (A1) and a primary amine	72
Scheme A1.2. Reaction scheme for the synthesis of L6 and L7	76
Figure A1.1. Assigned ¹ H NMR spectra of N-Boc protection of 2-aminoethanol and	2-
aminophenol	77
Scheme A2.1. Synthetic scheme for the synthesis of pyrazine-2,5-diacetaldehyde (A	\2)
and (K1)	79
Scheme A2.2. The keto, enol and enaminone tautomers of pyrazine-2,5-diacetaldehy	/de
	80
Scheme A2.3. General Wittig reaction scheme	81
Figure A2.1. ¹ H NMR spectrum of pyrazine dimethoxyvinyl ether crude product	82

Scheme A2.4. Reaction scheme for the lithiation and electrophilic substitution of an
amide on 2,5-dimethylpyrazine
Figure A2.2. ¹ H NMR spectrum of the crude product obtained from the lithiation with n-
BuLi and electrophilic substitution with DMF84
Scheme A2.5. General reaction scheme for the formation of a bisulfite adduct of an
aldehyde, followed by the hydrolysis back into the desired aldehyde compound
Figure A2.3. ¹ H NMR spectrum of the crude 2,5-pyrazinyldiacetone (K1) obtained from
the procedure by Paine et al. with assigned peaks (CDCl ₃)
Scheme A2.6. Mechanism for the base-promoted condensation of 2,5-dimethylpyrazine
with MeCN
Figure A2.4. ¹ H NMR spectrum of 2,5-pyrazinyldiacetone from the base-promoted
condensation of 2,5-dimethylpyrazine with MeCN, with assigned peaks (CDCl ₃)88
Scheme A2.7. Mechanism for the formation of the stable tetrahedral intermediate and the
desired carbonyl product brought on by the addition of an organolithium reagent to a
Weinreb amide
Scheme A2.8. Clavulanic acid (top structure) and its degradation products90
Scheme 3.1. Synthetic scheme for the synthesis of pyrazine-2,5-dicarbaldehyde (A1).97
Figure AS1. Assigned ¹ H NMR spectrum of 2,5-E,E-distyrylpyrazine
Figure AS2. Assigned ¹³ C NMR spectrum of L1 (DMSO $- d_6$)
Figure AS3. HMQC spectrum of L1 with solvent peak assigned (DMSO $- d_6$)131
Figure AS4. Assigned ¹³ C NMR spectrum of L2 (CDCl ₃)
Figure AS5. HMQC spectrum of L2 (CDCl ₃)
Figure AS6. Assigned ¹³ C NMR spectrum of L3 (CDCl ₃)
Figure AS7. HMQC spectrum of L3 (CDCl ₃)131

Figure AS	S8. Mass	spectrum of i	mpure 2	2-[2-(tert-b	utoxycarbonyla	amino)et	hoxy]acetic
acid ethyl	ester (step	iii in Scheme	A1.1)				
Figure	AS9.	Assigned	$^{1}\mathrm{H}$	NMR	spectrum	of	2-[2-(tert-
butoxycar	bonylamin	o)ethoxy]aceti	c acid e	thyl ester (s	step iii in Sche	me A1.1)131
Figure AS	10. Mass s	pectrum of im	pure A2			•••••	
Figure AS	11. Permis	sion to use Fig	gures 1.2	2 and 1.14 i	in this thesis fr	om Chał	crabarty, R.;
Mukherje	e, P. S.; Sta	ang, P. J. Chen	nical Re	views 2011	, 111, 6810	•••••	
Figure AS	12. Permis	sion to use Fig	gure 1.11	l in this the	sis from Shen,	F.; Hua	ng, W.; Wu,
D.; Zheng	, Z.; Huang	g, XC.; Sato,	O. Inorg	ganic Chen	nistry 2016 , 55	, 902	

List of Tables

Table 4.1. The synthesis and appearance of ligands H_2L1 , $L2$ and $L3$ with the selected
characterisation data used to verify the successful formation of these ligands40
Table 5.1. Comparison of selected bond angles (°) for compounds C3A, C3B, RC1 and
RC2
Table 5.2. CHN analysis data of C3A with expected molecular formulas for
$[Co_3L3_3](ClO_4)_6$ and $[Co_3L3_3](ClO_4)_6$. $5H_2O$
Table 5.3. Assigned peaks observed in the ATR-IR spectra and IR with KBr pellets
spectra of L2 , C2A and C2B 60
Table 5.4. Possible structures of C2A and C2B and the respective calculated molar
conductivity of C2A (0.0436 g) in MeCN (25 mL) and C2B (0.0456 g) in MeCN (25 mL)
Table 5.5. Complexations with L1 and various metal salts, with the respective solvent
system used, the colour changes observed and the complexation code
Table 5.6. Assigned peaks observed in the ATR-IR spectra and IR with KBr pellets
spectra of H ₂ L1, C1A, C1B and C1C65
Table A3.1. X-Ray data of crystals obtained for L3, C3A and C3B
Table A4.1. Crystallisation attempts of H ₂ L1, L2 and L3108

Abbreviations

Chemical	
A.R	Analytical reagent
Ac ₂ O	Acetic anhydride
Boc	Tert-butyloxycarbonyl protecting group
(Boc) ₂ O	Di-tert-butyl dicarbonate
CDCl ₃	Deuterated chloroform
ClO ₄ -	Perchlorate
Co(CH ₃ COO) ₂ ·4H ₂ O	Cobalt acetate tetrahydrate
Co(ClO ₄) ₂ ·6H ₂ O	Cobalt perchlorate hexahydrate
СТ	Creutz Taube
DME	Dimethoxyethane
DMF	Dimethylformamide
DMSO-d ₆	Deuterated dimethyl sulfoxide
Et ₂ O	Diethyl ether
EtOAc	Ethyl acetate
Fc	Ferrocene
Fe(ClO ₄) ₂ ·6H ₂ O	Iron perchlorate hexahydrate
НОМО	Highest occupied molecular orbital
HSAB	Hard-soft acid-base
IPA	Issopropyl alcohol
LDA	Lithium diisopropylamide
<i>m</i> -CPBA	Meta-chloroperoxybenzoic acid
MeOH-d ₄	Deuterated methanol
Mn(ClO ₄) ₂ ·6H ₂ O	Manganese perchlorate hexahydrate
$Mn(NO_3)_2 \cdot 4H_2O$	Manganese nitrate tetrahydrate
$Na_2S_2O_5$	Sodium metabisulfite
NBu ₄ ClO ₄	Tetrabutyl ammonium perchlorate
O ₃	Ozone
OsO4	Osmium tetroxide
Ph ₃ P=O	Triphenylphosphine oxide
(Ph ₃ PCH ₂ OCH ₃)Cl	Triphenylphosphine methoxymethyl ether

Pz	Pyrazine
S.M	Starting material
SeO ₂	Selenium dioxide
THF	Tetrahydrofuran
TLC	Thin layer chromatography
Equipment	
ATR-IR	Attenuated total reflectance – infrared spectroscopy
CE	Counter electrode
CV	Cyclic voltammetry
HMQC	Heteronuclear multiple quantum coherence
HPLC	High performance liquid chromatography
IR	Infrared spectroscopy
KBr	Potassium bromide
M.W	Microwave
NMR	Nuclear Magnetic Resonance
RE	Reference electrode
SCXRD	Single crystal X-ray diffraction
SQUID	Superconducting quantum interference device
TGA	Thermogravimetric analysis
WE	Working electrode
Units	
c	Concentration
μeff	Effective magnetic moment
χ	Magnetic susceptibility
к	Measured conductivity of sample
κ _s	Measured conductivity of solvent
o/n	Overnight
rt	Room temperature
Compound codes	
A #	Aldehyde (# = number code)
K#	Ketone (# = number code)
L#	Ligand (# = number code)
C#X	Complex ($\#$ = number code, X = letter code)

Literature compour	nd codes
FL ^X	Ligands as published by Shen <i>et al.</i> ($\mathbf{X} = $ letter code)
FC ^X	Complexes as published by Shen <i>et al.</i> ($\mathbf{X} =$ letter code)
JL	Ligands as published by Hausmann et al.
JC	Complex as published by Hausmann et al.
RL	Ligands as published by Hogue et al.
RC#	Complexes as published by Hogue <i>et al</i> . (# = number code)