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Abstract 

Biological evolution fundamentally operates according to the basic principles of 

variation, heritability and selection, but it generates the astounding complexity of nature. 

One of the greatest challenges for evolutionary study is the interpretation of this 

diversity, and the ability to identify and communicate the underlying biological changes 

that are responsible. In this thesis, I consider the identification of evolutionary lineages 

using molecular and morphological data. I address the problem of confusing 

terminology regarding the evolutionary process, focussing on the concepts of 

anagenesis and cladogenesis, and the challenge of genetic introgression for taxonomic 

classification.

I investigate molecular and morphological variation in New Zealand true whelks.

There are many species of true whelks described, however their taxonomy is mostly 

restricted to the traditional examination of shell traits. Evolutionary relationships of true 

whelks inferred from DNA sequences indicate that neither New Zealand nor Southern 

Hemisphere true whelks are monophyletic, contradicting taxonomic hypotheses and 

expectations of geographic isolation. I focus on the siphon whelk genus Penion Fischer, 

1884, a diverse genus with extant species restricted to New Zealand and Australia. All 

extant species are genetically sampled for phylogenetic and allelic variation analysis. A

monophyletic clade is identified for New Zealand Penion. Results suggest the existence 

of a new species and indicate evolutionary relationships for some taxa not captured by 

the taxonomy.

Shell shape and size are studied using geometric morphometric analyses, 

confirming that these traits can distinguish taxa divided by deep evolutionary splits 

under both informed and naïve analyses. Morphometric variation is hierarchical, with 

closely related taxa being grouped together within large datasets including samples from 

multiple evolutionary lineages. Overall, morphometric results show reasonably strong

concordance with molecular evidence.

Evolutionary lineages in the fossil record are investigated using morphometric 

analysis within the context of previous molecular and morphometric findings. Results 

assist with the identification of fossils from two localities and suggest that multiple 

extinct species of Penion are misclassified. Variation in morphometric traits through 
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time is fitted to models of evolutionary change, and results indicate that the 

identification and selection of a lineage has a significant impact upon those results.
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A Penion Fischer, 1884 siphon whelk from Tasman Bay. 
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Preface 
The overall aim of this research project, Evolutionary lineages and the diversity 

of New Zealand true whelks, was to investigate the relationship between molecular and 

morphological variation for the identification of evolutionary lineages. New Zealand 

true whelks were used as a study system, and I focussed especially on the siphon whelk 

genus Penion Fischer, 1884, which is recognised to be taxonomically diverse.

Numerous extant endemic siphon whelk species are recognised in New Zealand, along 

with a rich fossil record. Penion shells exhibit a bewildering level of putative inter- and 

intraspecific morphological variation. The aim of this project was followed in several 

stages, which are presented in this thesis as seven independent research chapters 

(Chapters 1 – 7), with the findings summarised at the end. Most research chapters are 

followed by supplementary material (including error studies, and additional figures and 

tables), and taxonomic information is also summarised in Chapter 8 to assist with the 

interpretation of methods and results.

Research presented in this thesis was produced in collaboration with my 

supervisors (Mary Morgan-Richards, Steven A. Trewick, and James S. Crampton), but 

most sampling and laboratory work, and all data analysis and initial drafts of writing 

were my own work. Within chapters I use the personal pronoun ‘we’, but all work is my 

own. Mary, Steve and James provided invaluable insight and assistance with conception 

of the project aims, the design of methods and analyses, discussion of results, editorial 

guidance, and funding. For writing, I specifically chose many of the topics of research, 

surveyed the literature and wrote the first drafts of each manuscript with iterative 

feedback from co-authors. I conducted the majority of molecular sampling, with some 

assistance from Simon F.K. Hills and Mary. Most DNA extractions, PCR reactions, and 

necessary clean-up methods were conducted by myself with some assistance from 

Simon. I worked in cooperation with Michael R. Gemmell to develop the next-

generation sequencing method and analytical pipeline. I conducted all shell photography 

myself. Most specimens were borrowed from museum and university collections 

acknowledged within chapters, and Mary and I organised the loan of tissue specimens 

from abroad. High-throughput sequencing was conducted by the Beijing Genomics 

Institute, Hong Kong or the New Zealand Genomics Limited service. Bruce A. Marshall 

and Alan G. Beu advised with the taxonomic classification of specimens, as well as the 

identification of palaeontological provenance and the sex of individual snails.
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Chapter 1 is a literature review considering the meaning of the terms ‘anagenesis’ and 

‘cladogenesis’ from an evolutionary perspective. These terms are frequently used to 

discuss speciation and morphological change in the fossil record, and this chapter 

attempts to clarify the topic. The article was accepted for publication as: Vaux, F., 

Trewick, S.A., Morgan-Richards, M. (2016). Lineages, splits and divergence 

challenging the meaning of the terms anagenesis and cladogenesis. Biological Journal 

of the Linnean Society 117, 165 – 176.

Chapter 2 is a reply to a comment written in response to the published version of

Chapter 1. The chapter discusses the treatment of species as arbitrary concepts, and it 

addresses the significance of genetic introgression for the process of biological 

speciation and taxonomic classification. The chapter was published as: Vaux, F., 

Trewick, S.A., Morgan-Richards, M. (2016). Speciation through the looking-glass. 

Biological Journal of the Linnean Society (early access).

Chapter 3 is a molecular phylogenetic investigation of true whelks (Neogastropoda: 

Buccinidae or Buccinulidae) from the Southern Hemisphere. The aim of the chapter was 

to determine whether true whelks from the Southern Hemisphere, or at least New 

Zealand, are monophyletic and separate from lineages distributed in the Northern 

Hemisphere. The findings also provide new insight towards timing of speciation and 

dispersal in the siphon whelk genera Antarctoneptunea Dell, 1972, Kelletia Bayle, 1884

and Penion. The dataset contains newly sequenced mitochondrial genomes and nuclear 

ribosomal DNA sequences from numerous species of marine snail. I am hoping to 

submit an abbreviated version of this chapter to a peer-reviewed journal soon.

Chapter 4 is a molecular phylogenetic and restriction site associated DNA (RAD) 

sequencing investigation of the siphon whelk genus Penion. The aim was to produce a

comprehensive hypothesis for the evolutionary relationships of all recognised, extant 

species of Penion from Australia and New Zealand (Chapter 3 contains a subset of 

species). Analysis of single nucleotide polymorphic (SNP) variation for anonymous 

nuclear loci was used to investigate species delimitation, and to test phylogenetic 

concordance between mitochondrial and nuclear DNA. The dataset contains newly 

sequenced mitochondrial genomes and nuclear ribosomal DNA sequences from all 
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species of Penion. Results from this chapter are intended to be merged with those of 

Chapter 6, and will be submitted to a peer-reviewed journal for publication.

Chapter 5 is an investigation for evidence of secondary sexual dimorphism in the shells 

of Penion chathamensis (Powell, 1938) using geometric morphometric analysis. 

Neogastropod molluscs such as Penion are dioecious, but sexual dimorphism is an 

understudied topic of research. Our analysis of shell shape and size variation used a two 

dimensional, landmark-based geometric morphometric approach with sampling across 

the entire range of P. chathamensis. For comparison I also sampled shells across the 

entire range of P. sulcatus (Lamarck, 1816). This chapter was published as: Vaux, F., 

Crampton, J.S., Marshall, B.A., Trewick, S.A., Morgan-Richards, M. (2017). Geometric 

morphometric analysis reveals that the shells of male and female siphon whelksm 

Penion chathamenis are the same size and shape. Molluscan Research (early access). 

Chapter 6 is an investigation of variation in the shell morphology of all extant species of 

Penion. The aim was to establish if variation in shell morphology in Penion is 

concordant with the evolutionary relationships among species estimated from the 

molecular results of Chapter 4. The same two dimensional, landmark-based geometric 

morphometric method as in Chapter 5 was used to analyses shell shape and size. All 

extant species of Penion from Australia and New Zealand were sampled. Results from 

this chapter are intended to be merged with those of Chapter 4, and will be submitted to 

a peer-reviewed journal for publication.

Chapter 7 utilises the combined results of Chapters 3 – 6 as a context to analyse the 

fossil record of Penion in Australia and New Zealand. The chapter investigates variation 

in the shell morphology of fossils classified as extinct and extant species in comparison 

to modern shell sampling (covered in Chapter 6). The analysis follows the same 

framework to consider evolutionary lineages and speciation discussed in Chapters 1 and

2, and the method considers the concordance between molecular phylogeny and shell 

morphological variation in Penion (Chapters 3 and 4, 6), and the apparent absence of 

secondary sexual dimorphism in at least some species (Chapter 5). Since findings from 

every previous chapter are synthesised, Chapter 7 almost acts as a conclusion of the 

thesis. The same two dimensional, landmark-based geometric morphometric method as 

in Chapters 5 and 6 was used to analyses shell shape and size. Shells from all extinct 
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species of Penion from Australia were sampled, as well as a number of fossil species 

from New Zealand. This chapter has been prepared for publication but will not be 

submitted until the previous chapters have been published.

Chapter 8 summarises the taxonomy of living and fossil Antarctoneptunea, Kelletia and 

Penion, which were three genera of key interest for this thesis. Specifically, this section 

summarises the current, published taxonomy of the group and also suggests revisions

based on the results of Chapters 3 – 7. Importantly, this section also specifies the 

operative taxonomic units (OTUs) used for this thesis. Some taxa were not considered 

for this study as the examination of shells suggested that numerous fossil taxa were 

conspecific. These decisions were made independent of geometric morphometric and

molecular results. This chapter should be read for reference when the taxonomy and 

available fossil material for the three genera requires clarification in Chapters 3 – 7. The 

revisions summarised in this chapter are planned to be converted into a formal 

taxonomic review that will be submitted for publication.

At the end of this thesis I provide a brief summation of the overall results of Chapters 1 

– 8. I also suggest future research topics based on the results of this thesis.

Results from Chapters 1 – 6 were also included within conference presentations listed in 

Appendix I. 
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Two shells of Penion mandarinus (Duclos, 1832) from waters off of Australia. 
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