Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Time Series Analyses of Inflation in New Zealand

A THESIS PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED STATISTICS AT MASSEY UNIVERSITY

PETRUS BERNARDUS VAN DER LOGT

March, 2005

ABSTRACT

Modelling of the economy has become increasingly important over the years. It serves two main purposes. It enables forecasts and it can be used for the evaluation of various economic policies. Economic models come with various degrees of size and statistical complexity. Models can be of a qualitative or of a quantitative nature. The soundness of the statistical techniques that are used for quantitative models is critical. In recent years a number of such techniques have been developed. This thesis will evaluate some on existing economic New Zealand time series.

Inflation plays a main role in everyday life and it has been of major ongoing concern to the New Zealand governments in recent times. These governments have instructed the Reserve Bank of New Zealand (RBNZ) to set monetary policies to ensure certain targets are met. The RBNZ achieves this to a large degree by setting the Official Cash Rate which is the major determinant of the interest rates that are used by the banks.

This thesis will consider some theoretical aspects of time series analysis. In particular the Dickey-Fuller tests and cointegration analysis are considered. Also some theoretical aspects of inflation are considered. Examples are given of aspects of New Zealand life other than the interest rates that may also affect the current inflation rates.

The time series that were analysed could be categorised as inflation indices, monetary aggregates, interest rates and gross domestic product. The thesis attempted to evaluate the time series in such a manner that there was little room for an analyst's bias. This was mainly achieved by developing a standardised approach to the analysis of these series. A number of interactions between the time series were evaluated and some were identified as being suitable for further research with the ultimate aim of developing a small model of the New Zealand economy. Another aim was to evaluate some aspects of economic policy where possible given the small number of time series that were used. Granger

Causality tests seemed to show the effect of economic policy, where the interest rates affect the inflation rates. However, this was not further supported by cointegration analyses. There are various possible explanations for this. It was surmised that the standardised way of analysis may not have identified this relationship where it existed.

The analyses showed that at times the results of the statistical tests were inconsistent. This applied to the Dickey-Fuller tests as well as the cointegration analyses. In some cases unit root models with significant coefficients for the deterministic components were identified. Further analysis would show that the deterministic components were not significant after all. However, the resulting models without these components did not have a unit root. The cointegration analyses invariably showed a number of Vector Error Correction Models with significant cointegration equations. Since their economic implications would be quite different at times there was a reason for concern.

In conclusion there are some worrying problems when the methodology is used for existing short New Zealand data series. However, at times some plausible results were shown as well. Suggestions for further research were made.

ACKNOWLEDGEMENTS

There have been a number of people contributing to this thesis in various ways. I would like to thank them for enabling me to carry out these studies and in particular:

My supervisors Dr Geoff Jones and Professor Larry Rose for their constructive comments, stimulating discussions and guiding me in the right direction.

My wife Rae and my son Hamish for their support at home and their ongoing understanding when I was not available.

TABLE OF CONTENTS

	Page
Abstract	ii
Acknowledgements	iv
Table of Contents	v
List of Figures	х
List of Tables	XV
Notations	xix

Chapter 1: GENERAL INTRODUCTION

1.1	The importance of inflation	1
1.2	Current issues in New Zealand	1
1.3	The use of statistical techniques to analyse inflation	2
1.4	The structure of this thesis	3

Chapter 2: STATISTICAL METHODS OF TIME SERIES ANALYSIS

2.1	Introduction	6
2.2	Linear stochastic models	6
2.3	Unit root processes	10
2.4	Univariate model identification	15
2.5	Structural breaks	20
2.6	Vector Autoregressive (VAR) models	21
2.7	Granger Causality	23
2.8	Cointegration and Vector Error Correction Models	24
2.9	Vector Error Correction Model identification	29
2.10	Impulse Response Functions	31

2.11	Variance Decomposition	32
2.12	Concluding comments	33
2.13	References	35

Chapter 3: ECONOMIC ASPECTS OF INFLATION

3.1	Recent history of inflation in New Zealand	36
3.2	Inflation theories	36
3.3	Some factors currently affecting inflation in New Zealand	33
3.4	References	34

Chapter 4: TIME SERIES ANALYSES OF INFLATION

Introduction	41
Consumer Price Index (LOGCPI)	41
Consumer Price Index, not log transformed (CPI)	46
CPI excluding credit services (LOGCPIX)	50
CPI non-tradable inflation (LOGCPINT)	53
CPI tradable inflation (LOGCPIT)	57
Labour costs (LOGLC)	61
Hourly earnings (LOGHE)	64
Summary of DF tests	68
Granger Causality of tradable and non-tradable inflation	69
Cointegration analysis of tradable and non-tradable inflation	69

Chapter 5: TIME SERIES ANALYSES OF MONETARY AGGREGATES

Introduction	74
LOGM1	76
LOGM2 reduced (LOGM2R)	80
LOGM3R reduced (LOGM3RR)	82
Granger Causality of inflation and monetary aggregates	85
Cointegration analysis of LOGCPI and LOGM1SA	87
Cointegration analyses of LOGCPI and LOGM2R	92
Cointegration analysis of LOGCPI and LOGM3RR	96
Cointegration analysis of LOGCPI, LOGM1SA and LOGM2R	100
Cointegration analysis of LOGCPI, LOGM1SA, LOGM2R and LOGM3RR	109
Discussion	111
References	111

Chapter 6: TIME SERIES ANALYSES OF INTEREST RATES

Introduction	112
Call Deposit Rate (CD)	113
Six Month Deposit Rate (SMD)	116
Summary of DF tests	119
Granger Causality of inflation and interest rates	121
Cointegration analysis of CD and SMD	123
Cointegration analyses of LOGCPI and CD	128
Cointegration analyses of LOGCPI and SMD	132
Cointegration analyses of LOGCPI, CD and SMD	137
Discussion	142

Chapter 7: TIME SERIES ANALYSES OF GROSS DOMESTIC PRODUCT

Introduction	143
Expenditure-based real GDP, seasonally adjusted (LOGEGDPSA)	144
Production-based real GDP, seasonally adjusted (LOGPGDPSA)	148
Granger Causality of GDP, inflation and interest rates	151
Cointegration analysis of LOGEGDPSA and LOGPGDPSA	153
Cointegration analysis of LOGCPI and LOGEGDPSA	158
Cointegration analysis of LOGCPI and LOGPGDPSA	163
Cointegration analysis of LOGCPI, LOGEGDPSA and LOGPGDPSA	168
Cointegration analysis of LOGCPI, LOGEGDPSA and LOGM1SA	171
Cointegration analysis of LOGEGDPSA and CD	180
Cointegration analysis of LOGEGDPSA and SMD	185

Chapter 8: THEORETICAL CONSIDERATIONS OF INFLATION IN AN ECONOMY WHERE VARIOUS CURRENCIES ARE USED CONCURRENTLY

Introduction	191
A conceptual discussion of the concurrent use of	
multiple currencies in a small open economy	
(A paper presented at the New Zealand Association of	
Economists Conference in Auckland, 2003)	
Abstract	
	192
Introduction	193
Reasons for using foreign currencies	105
Reasons for using foreign currencies	195
Transaction costs	195

1

2

2.1

viii

2.2	Insurance against sudden depreciation	196
2.3	Immigrants and returning citizens	196
2.4	Purchase and sale of expensive assets	197
2.5	Hedging and speculation	197
2.6	Currency risk premium	198
2.7	Reporting of profits and losses	198
2.8	Protection of capital against erosion due to inflation	198
3	Reasons for not using foreign currencies and some	199
	practical issues	
4	Impact on monetary matters	200
4.1	Seignorage	200
4.2	Inflation targeting	201
4.3	Monetary aggregates	201
4.4	Effects on the NZ dollar	201
4.5	Surplus/deficit of NZ dollars in the foreign exchange	202
	market	
4.6	Financial markets and foreign debt	202
4.7	Exchange rates as shock absorbers	203
4.8	Competitive depreciation	203
5	One country, one currency, one inflation rate	203
6	Discussion	204
7	References	204
Chapter 9:	GENERAL DISCUSSION	206
APPENDIX		212

ix

LIST OF FIGURES

		Page
Figure 1.1	Schematic overview of factors affecting inflation that are	4
	evaluated in this thesis	
Figure 2.1	Time series with no drift $(a_0 = 0)$ and no trend $(a_2 = 0)$, a_1	12
	= 0.6	
Figure 2.2	Differenced time series with no drift $(a_0 = 0)$ and no trend	12
	$(a_2 = 0), a_1 = 0.6$	
Figure 2.3	Time series with drift ($a_0 = 2$), no trend ($a_2 = 0$) and $a_1 =$	12
	0.6	
Figure 2.4	Differenced time series with drift ($a_0 = 2$), no trend ($a_2 =$	13
	0) and $a_1 = 0.6$	
Figure 2.5	Time series with drift ($a_0 = 2$), trend ($a_2 = 5$) and $a_1 = 0.6$	13
Figure 2.6	Differenced time series with drift $(a_0 = 2)$, trend $(a_2 = 5)$	13
	and $a_1 = 0.6$	
Figure 2.7	Time series with no drift $(a_0 = 0)$ and no trend $(a_2 = 0)$, a_1	13
	= 1	
Figure 2.8	Differenced time series with no drift $(a_0 = 0)$ and no trend	13
	$(a_2 = 0) a_1 = 1$	
Figure 2.9	Time series with drift ($a_0 = 2$), no trend ($a_2 = 0$) and $a_1 = 1$	14
Figure 2.10	Differenced time series with drift ($a_0 = 2$), no trend ($a_2 =$	14
	0) and $a_1 = 1$	
Figure 2.11	Time series with drift ($a_0 = 2$), trend ($a_2 = 5$) and $a_1 = 1$	14
Figure 2.12	Time series with drift ($a_0 = 2$), trend ($a_2 = 5$) and $a_1 = 1$	14
Figure 4.1	Time series of LOGCPI	42
Figure 4.2	Simulated graphs of (4.2)	45
Figure 4.3	Time series and differenced time series of CPI	46
Figure 4.4	Time series and differenced time series of LOGCPIX	50
Figure 4.5	Time series and differenced time series of LOGNT	53

Figure 4.6	Time series and differenced time series of LOGCPIT	57
Figure 4.7	Time series and differenced time series of LOGLC	61
Figure 4.8	Time series and differenced time series of LOGHE	64
Figure 4.9	Time series and differenced time series of LOGCPIT and	69
	LOGCPINT	
Figure 4.10	Residuals of VECM of LOGCPINT and LOGCPIT	71
Figure 4.11	Impulse Response Function of VECM of LOGCPINT and	72
	LOGCPIT	
Figure 4.12	Variance Decomposition of VECM of LOGCPINT and	73
	LOGCPIT	
Figure 5.1	Time series and differenced time series of LOGM1	76
Figure 5.2	Time series and differenced time series of LOGM2R	80
Figure 5.3	Time series of and differenced time series LOGM3RR	82
Figure 5.4	Time series and differenced time series of LOGCPI and	87
	LOGMISA	
Figure 5.5	Residuals of VECM of LOGCPI and LOGM1SA	89
Figure 5.6	Impulse Response Function of VECM of LOGCPI and	90
	LOGM1SA	
Figure 5.7	Variance Decomposition of VECM of LOGCPI and	90
	LOGM1SA	
Figure 5.8	Time series and differenced time series of LOGCPI and	92
	LOGM2R	
Figure 5.9	Residuals of VECM of LOGCPI and LOGM2R	94
Figure 5.10	Impulse Response Function of VECM of LOGCPI and	95
	LOGM2R	
Figure 5.11	Variance Decomposition of VECM of LOGCPI and	95
	LOGM2R	
Figure 5.12	Time series and differenced time series of LOGCPI and	96
	LOGM3RR	
Figure 5.13	Residuals of VECM of LOGCPI and LOGM3RR	97
Figure 5.14	Impulse Response Function of VECM of LOGCPI and	98

xi

LOGM3RR

Figure 5.15	Variance Decomposition of VECM of LOGCPI and	99
	LOGM3RR	
Figure 5.16	Time series and differenced time series of LOGCPI,	100
	LOGM1SA and LOGM2R	
Figure 5.17	Residuals of VECM of LOGCPI and LOGM1SA and	101
	LOGM2R	
Figure 5.18	Impulse Response Function of VECM of LOGCPI,	103
	LOGM1SA and LOGM2R	
Figure 5.19	Variance Decomposition of VECM of LOGCPI, LOGM1SA	104
	and LOGM2R	
Figure 5.20	Residuals of VECM of LOGCPI, LOGM1SA and LOGM2R	106
Figure 5.21	Impulse Response Function of VECM of LOGCPI,	107
	LOGM1SA and LOGM2R	
Figure 5.22	Variance Decomposition of VECM of LOGCPI, LOGMISA	108
	and LOGM2R	
Figure 5.23	Time series and differenced time series of LOGCPI,	109
	LOGM1SA, LOGM2R and LOGM3RR	
Figure 6.1	Time series and differenced time series of CD	113
Figure 6.2	Time series and differenced time series of SMD	116
Figure 6.3	Time series and differenced time series of CD and SMD	123
Figure 6.4	Residuals of VECM of CD and SMD	125
Figure 6.5	Impulse Response Function of VECM of CD and SMD	126
Figure 6.6	Variance Decomposition of VECM of CD and SMD	127
Figure 6.7	Time series and differenced time series of LOGCPI and CD	128
Figure 6.8	Residuals of VECM of CD and LOGCPI	130
Figure 6.9	Impulse Response Function of VECM of LOGCPI and CD	130
Figure 6.10	Variance Decomposition of VECM of LOGCPI and CD	131
Figure 6.11	Time series and differenced time series of LOGCPI and SMD	132
Figure 6.12	Residuals of VECM of LOGCPI and SMD	134
Figure 6.13	Impulse Response Function of VECM of LOGCPI and SMD	135

Figure 6.14	Variance Decomposition of VECM of LOGCPI and SMD	135
Figure 6.15	Time series and differenced time series of LOGCPI, CD and	137
	SMD	
Figure 6.16	Residuals of VECM of LOGCPI, CD and SMD	140
Figure 6.17	Impulse Response Function of VECM of LOGCPI, CD and	141
	SMD	
Figure 6.18	Variance Decomposition of VECM of LOGCPI, CD and SMD	142
Figure 7.1	Time series of LOGEGDP	144
Figure 7.2	Time series and differenced time of LOGEGDP after	144
	seasonal adjustment	
Figure 7.3	Time series of LOGPGDP	148
Figure 7.4	Time series and differenced time of LOGPGDP after	148
	seasonal adjustment	
Figure 7.5	Time series and differenced time series of LOGEGDPSA and	153
	LOGPGDPSA	
Figure 7.6	Residuals of VECM of LOGEGDPSA and LOGPGDPSA	155
Figure 7.7	Impulse Response Function of VECM of LOGEGDPSA and	156
	LOGPGDPSA	
Figure 7.8	Variance Decomposition of VECM of LOGEGDPSA and	157
	LOGPGDPSA	
Figure 7.9	Time series and differenced time series of LOGCPI and	158
	LOGEGDPSA	
Figure 7.10	Residuals of VECM of LOGCPI and LOGEGDPSA	160
Figure 7.11	Impulse Response Function of VECM of LOGCPI and	161
	LOGEGDPSA	
Figure 7.12	Variance Decomposition of VECM of LOGCPI and	161
	LOGEGDPSA	
Figure 7.13	Time series and differenced time series of LOGCPI and	163
	LOGPGDPSA	
Figure 7.14	Residuals of VECM of LOGCPI and LOGPGDPSA	165
Figure 7.15	Impulse Response Function of VECM of LOGCPI and	166

LOGPGDPSA

Figure 7.16	Variance Decomposition of VECM of LOGCPI and	166
	LOGPGDPSA	
Figure 7.17	Time series and differenced time series of LOGCPI,	168
	LOGEGDPSA and LOGPGDPSA	
Figure 7.18	Time series and differenced time series of LOGCPI,	171
	LOGEGDPSA and LOGM1SA	
Figure 7.19	Residuals of VECM (7.17) of LOGCPI, LOGEGDPSA and	173
	LOGMISA	
Figure 7.20	Impulse Response Function of VECM (7.17) of LOGCPI,	174
	LOGEGDPSA and LOGM1SA	
Figure 7.21	Variance Decomposition of VECM (7.17) of LOGCPI,	175
	LOGEGDPSA and LOGM1SA	
Figure 7.22	Impulse Response Function of VECMs of LOGCPI,	178
	LOGEGDPSA and LOGM1SA	
Figure 7.23	Variance Decomposition of VECMs of LOGCPI,	179
	LOGEGDPSA and LOGM1SA	
Figure 7.24	Time series and differenced time series of LOGEGDPSA and	180
	CD	
Figure 7.25	Residuals of VECM of CD and LOGEGDPSA	182
Figure 7.26	Impulse Response Function of LOGEGDPSA and CD	183
Figure 7.27	Variance Decomposition of LOGEGDPSA and CD	183
Figure 7.28	Time series and differenced time series of LOGEGDPSA and	185
	SMD	
Figure 7.29	Residual analysis of VECM of LOGEGDPSA and SMD	187
Figure 7.30	Impulse Response Function of VECM of LOGEGDPSA and	188
	SMD	
Figure 7.31	Variance Decomposition of VECM of LOGEGDPSA and	188
	SMD	

LIST OF TABLES

		Page
Table 2.1	Summary of impressions of the graphs relating to the three	16
	models	
Table 2.2	Summary of the Dickey-Fuller tests (from Enders (1995, p.	17
	223)	
Table 2.3	Johansen Cointegration test. Cointegration Equation and VAR	29
	specification as enabled by EViews	
Table 2.4	Cointegration analysis of CD and SMD	30
Table 2.5	Standard error and t statistic provided in EViews	31
Table 4.1	RSS and information criteria of Dickey-Fuller models of	43
	LOGCPI	
Table 4.2	Summary of the Dickey-Fuller tests of LOGCPI	43
Table 4.3	Chow Breakpoint Test of DF Model 1 of LOGCPI	44
Table 4.4	Chow Breakpoint Test of DF Model 2 of LOGCPI	45
Table 4.5	RSS and information criteria of Dickey-Fuller models of CPI	47
Table 4.6	Summary of the Dickey-Fuller tests of CPI	47
Table 4.7	Chow Breakpoint Test of DF Model 1 of CPI at 1989:3	48
Table 4.8	Chow Breakpoint Test of DF Model 2 of CPI at 1989:3	48
Table 4.9	RSS and information criteria of Dickey-Fuller models of	51
	LOGCPIX	
Table 4.10	Summary of the Dickey-Fuller tests of LOGCPIX	51
Table 4.11	RSS and information criteria of Dickey-Fuller models of	54
	LOGNT	
Table 4.12	Summary of the Dickey-Fuller tests of LOGNT	54
Table 4.13	Summary of additional Dickey-Fuller tests of LOGNT	56
Table 4.14	RSS and information criteria of Dickey-Fuller models of	58
	LOGCPIT	

Table 4.15	Summary of the Dickey-Fuller tests of LOGCPIT	58
Table 4.16	Chow Breakpoint tests of DF Model 1of LOGCPIT	59
Table 4.17	Chow Breakpoint test of DF Model 2 of LOGCPIT	59
Table 4.18	RSS and information criteria of Dickey-Fuller models of	62
	LOGLC	
Table 4.19	Summary of the Dickey-Fuller tests of LOGLC	62
Table 4.20	Chow Breakpoint Tests of DF Model 1 of LOGLC	63
Table 4.21	RSS and information criteria of Dickey-Fuller models of	65
	LOGHE	
Table 4.22	Summary of the Dickey-Fuller tests of LOGHE	65
Table 4.23	Chow Breakpoint test of DF Model 2 of LOGHE at 1989:4	66
Table 4.24	Summary of DF models of inflation indices	68
Table 4.25	P values of Granger Causality analysis of tradable and non-	69
	tradable inflation	
Table 4.26	Cointegration analysis of LOGCPINT and LOGCPIT	70
Table 5.1	Chow Breakpoint Test of DF Model 1 at 1994:1	76
Table 5.2	Summary of the Dickey-Fuller tests of LOGM1	77
Table 5.3	Summary of the Dickey-Fuller tests of LOGM1SA	79
Table 5.4	Summary of the Dickey-Fuller tests of LOGM2R	81
Table 5.5	RSS and information criteria of Dickey-Fuller models of	81
	LOGM2R	
Table 5.6	RSS and information criteria of Dickey-Fuller models of	83
	LOGM3RR	
Table 5.7	Summary of the Dickey-Fuller tests of LOGM3RR	83
Table 5.8	Chow Breakpoint Tests of LOGM3RR	84
Table 5.9	P values of Granger Causality analysis of monetary	85
	aggregates and inflation rates	
Table 5.10	Cointegration analysis of LOGCPI and LOGM1SA	88
Table 5.11	Cointegration analysis of LOGCPI and LOGM2R	93
Table 5.12	Cointegration analysis of LOGCPI and LOGM3RR	96
Table 5.13	Cointegration analysis of LOGCPI, LOGM1SA and LOGM2R	101

Table 5.14	Correlation coefficients of the residuals of the VECM of	102
	LOGCPI, LOGM1SA and LOGM2R	
Table 5.15	Correlation coefficients of the residuals of the VECM of	105
	LOGCPI, LOGM1SA and LOGM2R	
Table 5.16	Cointegration analysis of LOGCPI, LOGM1SA, LOGM2R	109
	and LOGM3RR	
Table 6.1	RSS and information criteria of Dickey-Fuller models of CD	114
Table 6.2	Summary of the Dickey-Fuller tests of CD	114
Table 6.3	Chow Breakpoint Test of DF Model 1 of CD at 1998:1	115
Table 6.4	RSS and information criteria of Dickey-Fuller models of SMD	117
Table 6.5	Summary of the Dickey-Fuller tests of SMD	118
Table 6.6	Chow Breakpoint Test of DF Model 1 of SMD at 1998:1	118
Table 6.7	Chow Breakpoint Test of DF Model 3 of SMD at 1998:1	119
Table 6.8	P values of Granger Causality tests of interest and inflation	121
	rates	
Table 6.9	Cointegration analysis of CD and SMD	124
Table 6.10	Cointegration analysis of LOGCPI and CD	129
Table 6.11	Cointegration analysis of LOGCPI and SMD	133
Table 6.12	Cointegration analysis of LOGCPI, CD and SMD	138
Table 7.1	RSS and information criteria of Dickey-Fuller models of	146
	LOGEGDPSA	
Table 7.2	Summary of the Dickey-Fuller tests of LOGEGDPSA	147
Table 7.3	RSS and information criteria of Dickey-Fuller models of	149
	LOGEGDPSA	
Table 7.4	Summary of the Dickey-Fuller tests of LOGEGDPSA	149
Table 7.5	P values of Granger causality tests of GDP, interest rates and	152
	inflation	
Table 7.6	Cointegration analysis of LOGEGDPSA and LOGPGDPSA	154
Table 7.7	Cointegration analysis of LOGCPI and LOGEGDPSA	159
Table 7.8	Cointegration analysis of LOGCPI and LOGPGDPSA	163
Table 7.9	Cointegration analysis of LOGCPI, LOGEGDPSA and	169

LOGPGDPSA

Table 7.10	Cointegration analysis of LOGCPI, LOGEGDPSA and	172
	LOGMISA	
Table 7.11	Cointegration analysis of LOGEGDPSA and CD	181
Table 7. 12	Cointegration analysis of LOGEGDPSA and SMD	185

NOTATIONS

Abbreviations of statistical terms

* (**)	denotes rejection of the hypothesis at the 5% (1%) significance level
AIC	Akaike Information Criterion
ACF	Autocorrelation function
ADF	Augmented Dickey-Fuller test statistic
Adj. R^2	Adjusted R-squared value
CE	Cointegrating Equation
DF	Dickey-Fuller
GC	Granger Causality
IRF	Impulse Response Function
n	Sample size
k	number of parameters
р	P-value
RSS	Residual Sum of Squares
SC	Schwartz Criterion
SD	Standard Deviation
SE	Standard Error
Т	Number of usable observations
VAR	Vector Autoregression
VD	Variance Decomposition
VECM	Vector Error Correction Model
γ	Coefficient of ADF test statitic
τ	Various τ statistics (See Chapter 2)
ϕ	Various ϕ statistics (See Chapter 2)

Abbreviations of economic terms

CD	Call Deposit Rate
CPI	Consumer Price Index
CPINT	CPI Non-Tradable Inflation
CPIT	CPI Tradable Inflation
CPIX	CPI excluding credit services
EGDP	Expenditure-based real Gross Domestic Product in 1995/96 million dollars
GDP	Gross Domestic Product
HE	Average Hourly Earnings
LC	Labour Cost Inputs
M1	Notes and coins held by the public plus chequeable deposits, minus inter- institutional chequeable deposits, and minus central government deposits.
M2	M1 plus all non-M1 funding (call funding includes overnight money and funding on terms that can of right be broken without break penalties) minus inter-institutional non-M1 call funding.

M3	Notes and coins held by the public plus NZ dollar funding minus inter-M3 institutional claims and minus central government deposits.
M3(R)	Same as M3, less funding from non-residents.
M2R	M2 – M1
M3RR	M3(R) – M2
NT	CPI Non-Tradable Inflation
OCR	Official Cash Rate
PGDP	Production-based real Gross Domestic Product in 1995/96 million dollars
RBNZ	Reserve Bank of New Zealand
SMD	Six Month Deposit Rate
Т	CPI Tradable Inflation

Prefix or Suffix

Time series may have undergone some statistical manipulations. This is usually indicated by a prefix or suffix

A	Suffix for CPI adjustment
D	Prefix for differenced time series
LOG	Prefix for logarithmic transformation
SA	Suffix for seasonal adjusted
Δ	Prefix for differenced time series

Note that in some cases a transformed time series may be displayed in equations without its prefix or suffix. This was done to keep the equation concise and it will be explained when it occurs.

Typeface

Italics Bold in cointegration tables Bold in equations Denotes time series Denotes optimal model according to SC and AIC Denotes significant coefficients based on availability of relevant statistics. Note that the standard error is not always available (see Table 2.5)

CHAPTER 1

GENERAL INTRODUCTION

1.1 The importance of inflation

"Inflation is the one form of taxation that can be imposed without legislation" (Quote from Milton Friedman)

Inflation is the increase of price levels. It can be measured for a multitude of baskets of goods and services. Examples of inflation measures are the commonly used Consumer Price Index (CPI) and the Producers Price Index (PPI). Inflation means that the basket of goods and services becomes more expensive when expressed in nominal dollars as time goes by. Nominal dollars are dollars used currently, without any inflation adjustment.

There is a perception that inflation is bad. Since inflation will generally not be the same for all goods and services, the relative prices for the different goods and services may change. This may be a beneficial process from a resource allocation perspective. It is not surprising that people will regard inflation as negative if they pay more for their goods and services and they are on fixed incomes. From a rational perspective, this negative perception should not be the case if their income increases at a level that compensates for inflation, ie if their purchasing power is maintained. Successive New Zealand governments have arguably made considerable attempts to keep inflation within certain bounds but their objective has not been a zero rate of inflation.

Inflation can lead to a redistribution of income and wealth. Interest rates are of particular relevance. A lender will be worse off and a borrower will benefit if interest rates do not include sufficient compensation for inflation. The use of tax brackets where higher tax rates apply if income exceeds certain nominal levels are a clear reason why inflation is perceived as a negative event.

Even if there is compensation for inflation, there may still be a negative perception since inflation will create uncertainty regarding the purchasing power of incomes and investments or debt. This is especially the case for high levels of inflation and there can be little doubt that high inflation is undesirable. What precisely determines the optimal level of inflation is not a trivial question.

1.2 Current issues in New Zealand

In the 1980's New Zealand experienced high inflation rates. Since then various governments have been committed to reduce the inflation rates to lower levels and to keep it at these levels. The interest rates that currently (February 2004) exist seem to be considered low if one

considers the flourishing market for houses and mortgages. Similarly they are beneficial for those who wish to borrow for investment in plant and equipment.

The Reserve Bank of New Zealand (RBNZ) sets the Official Cash Rate (OCR) which determines the interest rates charged by banks to their customers. The main criterion of the RBNZ is to ensure that the CPI remains within certain bounds as agreed to with government. If the RBNZ believes that the CPI will become too high it will increase the OCR thereby reducing demand. If, on the other hand, it believes the CPI will become too low it will lower the OCR. Currently (2004) the RBNZ believes the housing market is overheating and is putting too much pressure on the inflation rates. Consequently there is an incentive for the RBNZ to increase the OCR.

The combination of interest rates and expected inflation are important factors for establishing the exchange rates. An increase of the exchange rate will be detrimental to exporters and beneficial to importers. At the time of writing (2004) the US dollar has depreciated considerably in recent months in value against many currencies including the NZ dollar. Much of the international trade is carried out with US dollars and consequently many exporters would like to see a decrease in the OCR.

The two conflicting pressures described above results in the RBNZ's unenviable position. Whatever its decision, there is likely to be severe criticism. It raises the question whether the reliance on one tool only (the OCR) to deal with multiple objectives is too limited.

1.3 The use of statistical techniques to analyse inflation

The analysis of historic data seems a prerequisite for making rational decisions. In this case statistical techniques will be used to analyse inflation rates and other variables that may influence inflation. These variables include monetary aggregates, interest rates and the Gross Domestic Product. Without a doubt there are other factors that affect inflation as well. Examples are the exchange rate and unemployment. However a full analysis of all possible factors that affect inflation is beyond the scope of this thesis.

Time series analysis will be used to analyse the datasets. Initially analyses will be carried out at the univariate level and they will be followed by multivariate analyses to evaluate possible interactions.

An important aspect of time series analyses is whether they are stationary or not. A full explanation will follow in a later chapter but crudely speaking lack of stationarity means that the mean and variance of the series vary over time. In the late 1970's techniques were developed to evaluate this aspect. Since the late 1980's a number of techniques have been developed to analyse the interaction of time series that are not necessarily stationary.

The explanation in some publications of a number of the currently used time series techniques is not always clear and what appear to be mistakes may at times be detected. These mistakes may be 'typographical' but they may also be the result of a theory that sometimes appears confusing (at least to the author of this thesis). The time series that are commonly used in the area of econometrics are generally of short duration. This combined with the small power of some of the tests, results in difficulties when attempting to analyse these series. Like other

statistical tests, the tests discussed in this thesis require assumptions of a statistical nature before they can be used. In addition diagnostic checking is required to ensure that the results are valid. Therefore there are a number of issues that need to be addressed before one can confidently draw conclusions regarding economic time series that are valid from a statistical perspective. This thesis attempts to describe in a clear and consistent way some of these issues and will analyse some time series taking these limitations into account. It does not claim to be able to give a definitive conclusion on what is wrong and what is right.

The findings of the analyses will depend heavily on the assumptions made. Where possible these assumptions will be explicit. An issue arises where the data are collected under certain policy regimes. If these regimes change, the findings of the analyses may no longer be applicable. In a sense the existing policies, where not clearly described as variables, are implicit assumptions. This means that one has to be careful when generalising results.

Once the analyses have been performed the results can be used for developing models. The two main purposes of these are policy analysis and forecasting. Policy analysis allows the evaluation of 'what-if' scenarios while forecasting attempts to predict what the future will bring. It has been claimed that generally a model can only be used for either of these two purposes but not for both at the same time.

1.4 The structure of this thesis

The key questions in relation to inflation are:

- What causes inflation?
- What is the appropriate level of inflation?
- · How can the appropriate level of inflation be achieved on an ongoing basis?

In order to answer the last question one should, at least, attempt to answer the first question. The main purpose of this thesis is to find an answer to the first question. There are no guarantees that the approach taken will provide the answers, if only because other factors that might drive inflation are not analysed in this thesis. However, it is maintained that the approach taken is a minimum requirement to deal with questions relating to inflation.

The key research questions for this thesis fall in two categories: They are the statistical ones and the economic ones.

Various economic models exist. The key economical research questions are:

- 1 Can equations be found that could serve as a backbone for a small model of the New Zealand economy for the period in question?
- 2 Can economic and monetary policy be seen reflected in the data sets (eg do interest rates rise as inflation rises)? More importantly perhaps is the question whether economic or monetary policies are successful.

The statistical techniques discussed in this thesis are used widely. The key statistical research questions are:

1 How well do standard cointegration techniques work under practical conditions? Policy changes that may affect relationships and trends of time series occur relatively frequently in practice. Consequently it will often be more appropriate to evaluate short time series rather than long ones. New Zealand series of approximately ten years are used to evaluate this issue.

2 Can an automated approach involving the examination of a large number of possible models produce sensible results? Sensible can be interpreted as meaning that the results of the various models should not contradict each other. In addition the final result of a model, ie a group of equations, should preferably cover the area of interest in a coherent manner

Sometimes data analysis is performed and only a limited number of the possible models will be displayed. This thesis attempts to demonstrate the large number of options that might be possible at times. The drawback of the selective approach of only showing a limited number of models is that they may be heavily influenced by the analyst's economic views. Alternative equally plausible models may be ignored unintentionally; the analyst just did not test for it. Therefore different views of economic theory might lead to different admissible models according to some commonly used statistical techniques.

The analysis will be performed in the New Zealand context. The emphasis of the thesis will be on the use of certain statistical techniques when analysing economic time series. Although economic theory will be considered the focus will mainly be on the use and limitations of these statistical techniques. This is because it will provide insights into the validity of conclusions when statistical techniques are evaluated in-depth.

Figure 1.1 Schematic overview of factors affecting inflation that are evaluated in this thesis

The following two chapters will discuss theoretical aspects of time series analysis (Chapter 2) and of inflation (Chapter 3). Chapter 4 will analyse inflation time series. Chapter 5, 6 and 7 will evaluate monetary aggregates, interest rates and GDP respectively. This will first be at a univariate level followed by multivariate techniques. Figure 1.1 provides an overview of the interaction of these variables.

Currently the understanding of inflation in New Zealand relies heavily on this country having its own currency, the New Zealand dollar. International communications are continually improving and differences between countries are becoming increasingly smaller. If currency substitution (ie the use of other currencies for trade within New Zealand) became a commonly accepted practice, the dynamics of inflation might change. A final chapter is dedicated to currency substitution and various ramifications for the New Zealand economy.