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Abstract
Grapevine  water  status  (GWS)  assessment  between  flowering  and  veraison  plays  an  important  role  in  viticulture  management  in  terms  of

producing high-quality  grapes.  Although satellites  and uncrewed aerial  vehicles  (UAV)  have successfully  monitored GWS,  these platforms are

practically  limited  because  data  transfer  is  delayed  due  to  post  processing  and  UAV  operation  is  weather  dependent.  This  study  focuses  on

addressing two issues: the unreliability of GWS estimation using satellite images with low-moderate spatial resolution and the inaccessibility of

real-time  satellite  data.  It  aims  to  predict  the  temporal  variation  of  GWS  based  on  a  prediction  model  using  spectral  information  (calibrated

PlanetScope (PS)  images),  soil/topography data (apparent  electrical  conductivity,  elevation,  slope),  weather  parameters  (rainfall  and potential

evapotranspiration),  cultivation practices (irrigation,  fertigation,  plucking, and trimming),  and seasonality (day of the year)  as predictors.  Stem

water potential (Ψstem) was used as a proxy for GWS. Two-stage calibration, including an initial calibration of UAV images with measured Ψstem

and a subsequent calibration of satellite images with calibrated UAV data, was applied to calibrate the PS images. Three machine learning models

(random forest regression, support vector regression, and multilayer perceptron) were used in the calibration and modeling process. The results

showed that a two-stage calibration can generate reliable reference data, with a root mean square error of 113 kPa and 59 kPa on the test sets

during  the  first  and  second  calibration  stage,  respectively.  The  prediction  model  described  the  temporal  variation  of  block  Ψstem  when

compared  with  the  measured  Ψstem.  In  the  similarity  analysis,  the  Pearson  correlation  coefficient  was  0.89  and  0.87  between  predicted  and

reference Ψstem maps across  four  dates  for  the two study vineyards.  This  study supports  the concept  of  developing an approach to  predict

grapevine Ψstem, which would enable growers to acquire Ψstem variation in advance during the growing season, leading to improved irrigation

scheduling and optimal grape quality.
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 Introduction

Plant  water  status  is  widely  recognized  as  an  important
factor  in  attaining  a  high-quality  grape  due  to  its  role  in
vegetative  growth,  partitioning  mechanism,  berry
development,  and  metabolic  composition[1−4].  However,
grapevine water  status (GWS) exhibits  spatial  variability  across
vineyards  under  a  homogeneous  irrigation  regime,  leading  to
variation in berry development and quality[5,6]. Management of
the  spatial  variability  of  GWS  across  vineyards  can  potentially
benefit  growers  due  to  berry  quality  optimization[7,8].  To  help
achieve  optimization  of  quality,  provision  of  spatial  (across
vineyards)  and  temporal  (along  growing  season)  GWS
monitoring  maps  would  be  very  useful  to  the  vineyard
managers.

Electromagnetic  reflectance  obtained  from  remote  sensing
(RS)  platforms,  such  as  satellites  and  uncrewed  aerial  vehicles
(UAVs), has gained popularity for acting as proxies for GWS. RS
techniques enable spatial monitoring of GWS within vineyards,
so  its  application  can  be  applied  to  develop  site-specific
irrigation  or  assist  in  decision-making  for  irrigation

management.  Compared  to  satellites,  UAVs  mounted  with
sensors  have  the  relative  advantages  of  flexibility  in  flight
scheduling,  imagery  with  a  higher  spatial  resolution  (at
centimeter-scale),  and  lower  cost  of  operation.  However,  UAV
surveys  are  confined  to  smaller  areas  due  to  the  short  flight
endurance  imposed  by  their  payload[9].  This  may  lead  to  the
introduction  of  non-negligible  uncertainty  in  the  radiometric
quality  of  orthoimages  resulting  from  mosaicking  a  large
number  of  tiles[10].  Satellites,  compared  to  UAVs,  are  superior
when mapping at a larger scale within a single acquisition on a
regular  basis,  guaranteeing  radiometric  homogeneity  for  all
pixels  in  the  scene[10].  Nevertheless,  when  considering  crops
with discontinuous layouts, such as vineyards, satellite imagery
with  low  to  moderate  resolution  cannot  be  reliably  used  for
plant  status  description  due  to  the  biased  assessment
originating from the presence of inter-row vegetation and bare
soil[11,12].  Although  there  are  some  satellites  (e.g.  GEOSAT-2,
GeoEye-1, WorldView-3) that offer images with high resolution
and can be used for  field  monitoring in  viticulture,  the cost  of
image  acquisition  makes  it  impractical  in  the  application  of
irrigation  scheduling  that  needs  regular  monitoring.  The
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challenge when using RS tools  for  timely monitoring of  highly
dynamic  phenomena,  such  as  GWS  monitoring,  is  to  obtain
data that not only has high spatial and temporal resolution but
also is affordable and timely accessible.

Pla et al.[13] used UAV data as reference to calibrate Sentinel-
2  imagery  to  quantify  damage  in  rice  crops.  This  study
demonstrated  that  the  calibration  approach  can  serve  as  a
viable  and  cost-efficient  alternative  to  retrieve  biophysical
variables  at  large  scales.  Revill  et  al.[14] later  developed  a  two-
stage method for the calibration of satellite vegetation indices
(VIs)  to  approximate  crop  leaf  area  index  by  calibrating  UAV
images  with  ground  measurements,  followed  by  calibrating
satellite  images  with  calibrated  UAV  data.  This  new
methodological  framework  provides  an  opportunity  to
integrate  the  advantages  of  both  satellites  and  UAVs  by
utilizing UAV data to help bridge ground truthing and satellite
images. This will enable variables of interest to be retrieved at a
larger scale, while removing the spectral response of the inter-
row elements during the calibration process. This will enhance
the  reliability  of  the  use  of  satellite  data  for  plant  status
monitoring. Based on the study of Revill et al.[14], Bukowiecki et
al.[15] transferred this  approach to green area index estimation
based  on  the  data  collected  over  four  growing  seasons.  The
satellite-based prediction model  achieved a  high performance
(coefficient  of  determination  of  0.82).  Mazzia  et  al.[16] used  a
convolutional  neural  network  to  refine  satellite-based
normalized difference vegetation index maps by utilizing UAV-
derived information. They found the refined maps could better
describe  crop  status  in  terms  of  correlation  analysis  and
ANOVA,  in  comparison  to  the  raw  satellite  images.  However,
the  delivery  of  satellite  imagery  to  the  end  user  is  not  in  real-
time after  the fields  are sensed.  There are often delays  in  data
transfer to the ground station, handling, and distribution to the
user,  while  some  processes  (such  as  geometric,  radiometric,
and  atmospheric  corrections)  are  needed  before  image
analysis[17]. In addition, the application of satellite imagery over
open  fields  is  weather-dependent  and  illumination  sensitive.
Cloud and fog interference is a common restriction imposed on
the  usability  of  satellite-based  data  for  crop  monitoring.  This
requires  the  user  to  wait  for  the  next  revisit  of  data
acquisition[18,19]. These constraints are likely to compromise the
practicability  of  the  satellite  imagery  for  growers  and
viticulturists, despite the satellite images being calibrated with
ground truthing.  Thus,  there is  a clear requirement to develop
tools  for  GWS  forecasting  to  promote  precision  irrigation  and
thus berry quality.

To  potentially  address  the  inaccessibility  of  satellite-based
data  caused  by  unfavorable  weather,  one  way  is  to  develop  a
GWS prediction model using a soil water balance. As GWS is an
integrative  response  to  soil  moisture  availability,  water  usage
by  plants,  evaporation,  atmospheric  transfer,  and  canopy
structures[20],  there  is  a  potential  to  simulate  the  changes  in
GWS  along  a  growing  season  by  using  these  variables  as
predictors.  Precipitation,  irrigation,  and  fertigation  replenish
soil  water  content,  thus  positively  impacting  GWS[21].
Evapotranspiration  (quantifying  the  net  loss  of  water  vapor
from  evaporation  and  plant  transpiration)  accounts  for  the
dynamics  and  interrelationships  of  weather  components,
vegetation  expression,  and  soil  properties[22].  Soil  properties
and  topography  have  persistent  effects  on  the  spatial
distribution  of  soil  water,  which  determines  the  soil  moisture

availability  to  plants,  and  thus  may  influence  GWS[23].
Cultivation  management,  such  as  leaf  plucking  and  trimming,
alters  canopy  vigor,  shoot  distribution,  and  total  leaf  area,
leading  to  the  regulation  of  water  consumption  level  by
grapevines[24].  Seasonality, noted as day of the year (DOY), has
been found to explain a large part of the variability in GWS[25].

Machine  learning  (ML)  models  have  recently  been
extensively  used  in  RS  applications  due  to  their  ability  in
modeling  both  linear  and  non-linear  relationships[26].  These
models can be applied to multi-dimensional problems, so they
can  potentially  simulate  spectral,  spatial,  and  temporal
variabilities between images from different platforms, as well as
the  complex  relationships  between  GWS  and  predictors.
Previous  studies  have  shown  the  potential  of  using  UAV  or
satellite-derived  VIs  to  assess  GWS[12,23,27−32].  However,  these
assessments  were  mostly  limited  to  identifying  the
relationships  between  UAV-based  or  satellite-based  data,  and
GWS,  without  considering  the  need  for  real-time  monitoring
which  is  constrained  by  the  time  required  for  post-processing
and  associated  weather-dependent  issues.  Most  of  the  RS
platforms  are  currently  not  able  to  provide  real-time
information  which  is  especially  important  in  the  context  of
dynamic  GWS  monitoring.  This  study  aims  to  provide  GWS
prediction  based  on  two-stage  calibrated  satellite  images,
which caps off  the two previous studies[33,34] with a prediction
tool to assist  growers and viticulturists  in irrigation scheduling
or  related  management  decisions  for  vineyards.  Wei  et  al.[33]

focused  on  identifying  the  most  related  spectral  features  with
changes  in  GWS,  and  it  turned  out  that  they  dispersed  across
multiple  spectral  bands  and  needed  to  be  computed
collectively using multivariate models. Wei et al.[34] highlighted
the importance of ancillary variables (vegetation data, temporal
trends,  weather  parameters,  and  soil/terrain  characteristics)  in
helping  a  multispectral  sensor  describe  the  variation  of  GWS.
The  procedures  of  this  study  undertaken  were  (i)  using  two-
stage  calibration  (based  on  ML  models)  to  acquire  calibrated
satellite  images  exhibiting  GWS  estimations  for  a  series  of
acquisition  dates  across  the  first  growing  season.  (ii)
developing a GWS prediction model  by regressing against  the
calibrated satellite images acquired in the first growing season
using  ML  models.  (iii)  evaluating  this  prediction  model  by
validation  with  a  second  set  of  ground  measurements
independently collected in the second growing season. To the
authors’  knowledge,  this  is  the  first  study  that  a  two-stage
calibration  approach  has  been  employed  to  calibrate  satellite
images  for  developing  GWS  prediction  models  based  on
ancillary  information  collected  in  the  first  growing  season,
along  with  independent  evaluation  with  data  collected  the
second growing season.

 Materials and methods

 The Context of the Study Vineyards and Study periods
The  study  vineyards  are  located  at  Martinborough  in  the

Greater Wellington Region (lower North Island) in New Zealand
(NZ).  Both  vineyards  are  sited  on  a  complex  of  recent  alluvial
soils  overlying  gravels,  located  close  to  the  Ruamahanga  and
Huangarua  Rivers  (Fig.  1).  The  study  site  contains  two
commercial  vineyards  owned  by  Palliser  Estate,  named
Wharekauhau  and  Pencarrow.  Our  study  areas  in  these  two
vineyards  are  6.6  and  6.7  ha,  respectively.  Pinot  Noir  was
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chosen as the target variety in this study, due to its requirement
for relatively precise GWS management. The Pinot Noir vines in
both  vineyards  were  planted  in  the  vineyards  in  1998−2000
and  two-cane  vertical  shoot  positioned.  Inter-  and  intra-row
planting space is 2.2 × 1.6 m for Wharekauhau and 2.2 × 1.8 m
for  Pencarrow.  The  annual  growth  cycle  of  grapevine  in  NZ
comprises  budburst,  shoot  growth,  and  flowering
(September–November),  fruit  set  and  veraison
(December–February),  followed  by  berry  development  and
harvesting  (March–May).  From  flowering  to  veraison,  the
management  of  GWS  critically  determines  the  final  berry
quality[35,36]. The study periods span 15th November 2020 to 2nd

February  2021  for  the  first  growing  season  (2020/2021)  and
23rd November  2021  to  21st January  2022  for  the  second
growing season (2021/2022). This study focused on cultivation
practices,  including  irrigation,  fertigation,  plucking,  and
trimming, due to their potential effects on GWS. Both vineyards
are drip-irrigated, with the distance between drippers being 0.6
m.  The  drip  rate  is  1.2  L/hr  for  the  drippers  in  Wharekauhau,
and 1.3 L/hr for the drippers in Pencarrow. The irrigation events
took place for 2.5 hours on each irrigation date. Fertigation was
applied to  provide additional  nutrients,  and lasted for  6  hours
on each date of fertigation. Leaf plucking was implemented to
remove  80%  of  the  leaves  at  one  side  of  the  canopy  to  allow
sprays  better  access  to  grapevines.  Trimming  was  carried  out
on top of, and on both sides of, canopies to control vegetative
growth.  Weather  information  and  cultivation  practice  events
are displayed in Fig. 2.

 Measured data
Stem water potential (Ѱstem) was chosen as an indicator for

GWS  because  it  has  been  reported  as  a  comprehensive
expression  for  early  water  deficit  in  vines  during  the  day[37].
Several healthy vines were sampled in grids to assess variability
across the vineyards for each measurement date (Table 1) using

two mature and fully expanded leaves from the middle part of
each sampled canopy. These leaves are more representative of
the  canopies.  A  pressure  chamber  (model:  610,  MPS,  Albany,
NY, USA) was used between 13:00 and 15:30 to acquire Ψstem
(kPa).  Prior  to  the  measurement,  the  sampled  leaves  were
covered  with  sealable  plastic  bags  for  approximately  1  h.  The
mean value of  the two leaf  measurements per vine represents
the canopy Ψstem. A total of 85 and 63 separate canopies were
sampled  in  the  first  and  the  second  growing  season,
respectively. Each of their trunk locations was recorded using a
global  navigation  satellite  system  (GNSS)  with  real-time

 
Fig. 1    Location of study vineyards (Source: Esri, USGS).

 
Fig.  2    Total  daily  potential  evapotranspiration  and  total  daily
rainfall  provided  by  an  on-site  weather  station,  with  cultivation
practices implemented during the two growing seasons.
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kinematic  (RTK)  correction  (model:  GPS1200+,  Leica
Geosystems AG., Heerbrugg, Switzerland).

 UAV-based data
UAV images were collected between 11:00 and 13:00 under

cloudless conditions to minimize the impacts of sun angle and
shadow. UAV flights and Ѱstem measurements were operated
on  the  same  dates  to  ensure  comparability  (Table  1).  The
reflectance, with a spatial resolution of 0.05 m, was recorded by
a DJI Phantom 4 multispectral UAV (DJI, Shenzhen, China) with
six built-in sensors, including blue (450 ± 16 nm), green (560 ±
16 nm),  red (650 ± 16 nm),  red edge (730 ± 16 nm),  and near-
infrared  (840  ±  26  nm)  regions.  An  integrated  sunlight  sensor
on  the  top  of  the  UAV  records  irradiance  in  the  same  bands
captured  by  the  multispectral  sensor  during  the  flight.  This
information  enables  UAV  images  to  be  normalized  and  allows

for  comparison  between  images  taken  under  different
illumination  conditions.  Pix4Dmapper  (Pix4D  SA,  Lausanne,
Switzerland) was used to apply photogrammetric processing to
the UAV data to generate digital  surface models (DSM),  digital
terrain  models  (DTM),  and  reflectance  maps.  To  increase
imagery  spatial  accuracy,  several  ground  control  points  were
obtained  by  GNSS-RTK  for  each  vineyard,  and  post-imagery
alignment  was  performed  in  ArcGIS  Pro  2.9  (ESRI,  Redlands,
California, USA).

The vineyards are characterized by discontinuous vegetation
surfaces,  requiring separation of  canopy pixels  from grass  and
soil pixels to obtain pure information of grapevines. As there is
a height difference between grapevines and their surrounding
components,  canopy  height  can  be  acquired  by  subtracting
DTM  from  DSM,  then  creating  binary  imagery  to  exclude
background  pixels.  There  are  16  vegetation  indices,  chosen
according to the frequency of usage in viticulture[38],  shown in
Table  2 and  calculated  based  on  pure  canopy  pixels  using
"zonal statistic as table" in ArcGIS Pro.

 Satellite-based data
PlanetScope  (PS)  imagery  was  chosen  for  this  study  mainly

due  to  its  high  spatial  and  temporal  resolution.  PS
Constellation, owned by Planet, is composed of approximately
200 "Dove" microsatellites, operating in sun-synchronous orbits
and able to provide daily land surface imagery at nadir for the
entire  Earth,  passing  the  equator  between  9:30−11:30  (local
solar  time)[54].  The  product  used  in  this  study  is  PS  Analytic
Ortho  Scene  Surface  Reflectance,  which  consists  of  level  3B
images  recorded  by  instrument  PSB.SD  in  coastal  blue
(431−452 nm), blue (465−515 nm), green I (513−549 nm), green
II  (547−583  nm),  yellow  (600−620  nm),  red  (650−680  nm),  red
edge  (697−713  nm),  and  near-infrared  (845−885  nm)  bands.
These  images  are  acquired  with  a  ground  sample  distance  of
3.7−4.1  m  and  then  resampled  to  3.0  m  for  distribution.  This
product is  orthorectified to remove geometric  distortions,  and
its  positional  accuracy  is  less  than  10  m  RMSE  at  the  90th

percentile. Radiometric corrections are applied to convert pixel
values to at-sensor radiance, while atmospheric corrections are
implemented  to  acquire  surface  reflectance  values.  Although
PS  imagery  is  superior  in  terms  of  spatiotemporal  resolution,
there  is  radiometric  inconsistency  due  to  cross-satellite
differences in spectral response, radiometric quality, and orbital

Table 1.    Details of data acquisition for measured Ψstem, DJI Phantom 4
multispectral UAV imagery, and PlanetScope satellite imagery. The orange
outlines  indicate  the  UAV-satellite  image  pairs  used  in  the  second
calibration. UAV is uncrewed aerial vehicle.

Acquisition Date Data Source Time Gap (day)

15/11/2020 Satellite −
16/11/2020 Satellite −
27/11/2020 Measured/ UAV −
02/12/2020 Satellite −
04/12/2020 Measured/ UAV

1
05/12/2020 Satellite
15/12/2020 Satellite −
17/12/2020 Satellite −
31/12/2020 Satellite −
04/01/2021 Satellite −
14/01/2021 Measured/ UAV/ Satellite 0
15/01/2021 Satellite −
22/01/2021 Measured/ UAV

1
23/01/2021 Satellite
26/01/2021 Satellite −
01/02/2021 Measured/ UAV

1
02/02/2021 Satellite
23/11/2021 UAV −
29/11/2021 Measured/ UAV −
09/12/2021 Measured/ UAV −
11/01/2022 Measured/ UAV −
21/01/2022 Measured/ UAV −

Table 2.    List of vegetation indices used in this study.

Vegetation Index Formula Reference

Red Edge Chlorophyll Index (NIR/Red edge) − 1 [39]
Difference Vegetation Index NIR − Red [40]
Enhanced Vegetation Index 2.5 × (NIR − Red)/(NIR + 6 * Red − 7.5 × Blue + 1) [41]
Excess Green Index 2 × Green − Red − Blue [42]
Green Normalized Difference Vegetation Index (NIR − Green)/(NIR + Green) [43]
Modified Chlorophyll Absorption Ratio Index ((Red edge − Red) − 0.2 × (Red edge − Green)) × (Red edge/Red) [44]

Modified Soil Adjusted Vegetation Index (2 × NIR+1 − ((2 × NIR + 1)2 − 8 × (NIR − Red))1/2)/2 [45]
Modified Triangular Vegetation Index 1.2 × (1.2 × (NIR − Green) − 2.5 × (Red − Green)) [46]
Normalized Difference Red Edge Index (NIR − Red edge)/(NIR + Red edge) [47]
Normalized Difference Vegetation Index (NIR − Red)/(NIR + Red) [48]
Normalized Difference Green/Red Index (Green − Red)/(Green + Red) [40]
Optimized Soil Adjusted Vegetation Index (NIR − RED)/(NIR + Red + 0.16) [49]
Red: Green Ratio Red/Green [50]
Simple Ratio NIR/Red [51]
Transformed Chlorophyll Absorption Reflectance Index 3 × ((Red edge − Red) − 0.2 × (Red edge − Green) × (Red edge/Red)) [52]
Visible Atmospherically Resistant Index (Green − Red)/(Green + Red − Blue) [53]
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configuration[55,56].  This  heterogeneity  was  addressed  in  this
study  by  incorporating  the  radiometric  variability  in  the
modeling  processes.  PS  Images,  covering  the  study  vineyards
and  obtained  on  13  different  days  over  the  study  period  in
2020/2021,  were  selected  for  further  analysis  after  cloud  and
cloud shadow screening (Table 1).

 Soil and Terrain Data
An  EM38-MK2  is  an  electromagnetic  induction  (EMI)-based

sensor (Geonics Ltd.,  Mississauga, Ontario,  Canada).  The return
reading,  apparent  soil  electrical  conductivity  (ECa),  is
considered  a  function  of  soil  texture,  soil  solution,  and  soil
water  content[57].  ECa was  used  as  a  proxy  to  estimate  the
spatial  variation  of  GWS[58].  In  this  study,  the  EM38-MK2  was
operated  in  the  vertical  dipole  mode,  with  the  instrument
taking integrated ECa measurements at about 1.5 m depth. An
EMI  survey  was  undertaken  by  towing  the  EM38-MK2  at  the
back  of  an  all-terrain  vehicle,  with  a  Trimble  Yuma  tablet
(including  an  onboard  GPS  receiver)  to  geo-reference  all  ECa

points  (mS/m).  The  vineyards’  subsurface  infrastructure  was
confirmed  with  the  vineyard  manager  to  ensure  there  was  no
interference  from  buried  metal  objects.  ECa points  were
measured  approximately  every  3−10  m  along  transects  that
were 10 m apart. Point values less than 0 mS/m were removed
before  interpolation.  The  geostatistical  interpolation  method,
Empirical Bayesian Kriging, was used to convert point data into
a raster with 1 m resolution.

Elevation  (m)  for  the  vineyards  was  obtained  from  the
'Wellington  LiDAR  1m  DEM  (2013−2014)'  layer  provided  by
Land  Information  New  Zealand  data  service
(https://data.linz.govt.nz/).  This  digital  elevation model  (in  1  m
resolution)  was  created  by  aerial  LiDAR  for  the  Greater
Wellington  region  (captured  between  2013  and  2014).  Slope
(degree) information was derived based on elevation.

 Meteorological and Temporal Data
Weather  data  was  recorded  by  the  on-site  weather  station

(175.4741,  −41.2247  WGS84)  established  by  HARVEST.com
(http://harvest.com/).  The  variables  captured  include  rainfall
(mm) and potential  evapotranspiration (PET; mm). Rainfall  was
assumed  to  be  homogeneous  across  the  two  vineyards.  PET,
based on the recordings collected by the weather station, was
provided  by  HARVEST.com.  PET  represents  the  energy-driven
water demand for evapotranspiration by a short green crop[59].
The temporal dependence of GWS on dates through the season
was represented by DOY.

 Regression Modeling
Random  forest  regression  (RFR),  support  vector  regression

(SVR),  and multilayer perceptron (MLP) were employed for the
image  calibration  model  and  Ѱstem  prediction  model  in  this
study.  They  were  implemented  using
"RandomForestRegressor",  "SVR"  and "MLPRegressor"  from the
sklearn  library  in  Python  3.9.  As  the  performance  of  models  is
influenced  by  their  hyperparameters,  hyperparameter  tuning
was  undertaken  beforehand  to  prevent  overfitting.  This
enabled  these  ML  models  to  exploit  their  potential.  Grid
searching on the training set with 10-fold cross-validation was
used  to  search  for  the  best  set  of  hyperparameters.  The  test
dataset was set aside during hyperparameter tuning and model
training.  These  hyperparameters  would  then  be  used  on  the
test  set  for  evaluation  of  the  model’s  generalization
performance.  This  technique  was  carried  out  using

"GridSearchCV"  from  the  sklearn  library  in  Python.  For  each
modeling  in  the  two-stage  calibration  and  prediction  model,
samples were split as training and test sets using a 70/30 ratio.
The split was implemented and stratified according to the date
of measurement, to ensure that both training and test sets had
corresponding  percentages  of  samples  for  each  date.  The
splitting  process  was  undertaken  using  "train_test_split"  from
the  sklearn  package  in  Python.  All  predictor  variables  were
standardized  to  have  mean  values  equivalent  to  0  and  a
standard deviation of 1 before modeling.

 Evaluation
To  compare  the  performance  of  the  image  calibration

models  and  the  Ѱstem  prediction  models,  root  mean  square
error  (RMSE)  values  were  computed  by  applying  the  trained
models  with  optimized  hyperparameters  to  the  test  set.  The
models with the lowest RMSE were chosen for further analysis.
To  measure  the  similarity  of  Ѱstem  between  predicted  maps
(obtained from the Ѱstem prediction model) and the reference
maps  (acquired  in  2021/2022),  comparisons  were  conducted
cell by cell using Pearson correlation. The closer the value of the
correlation  coefficient  (r)  to  ±1,  the  stronger  the  linear
relationship.  This  correlation  was  implemented  using
"pearsonr" from the scipy library in Python.

 Processing Workflow
To  develop  the  Ѱstem  prediction  model,  two-stage

calibration  modeling  was  carried  out  (Fig.  3).  It  was  assumed
the  measured  Ѱstem  data  accounts  for  spatial  and  temporal
variation  of  Ѱstem  across  the  two  vineyards  over  the  study
periods,  and  the  relationships  between  Ѱstem  and  spectral
data  are  stable.  First,  0.05m  resolution  UAV  images  were
calibrated  using  measured  Ѱstem  data  collected  during
2020/2021  (n  =  85)  and  2021/2022  (n  =  63),  respectively  (Fig.
3a).  The  calibrated  0.05m  UAV  images  (Fig.  3b)  were  used  as
reference images for the calibration of satellite images and the
validation of the Ѱstem prediction model. The calibrated 0.05m
UAV  images  acquired  during  2020/2021  (n  =  4),  representing
Ѱstem  estimation,  were  subsequently  downscaled  to  3m
resolution  for  spatial  matching  with  the  satellite  images  (Fig.
3c), by spatially averaging the pixel values in the corresponding
cells  of  the  PS  3m  grids.  Next,  these  downscaled  3m  UAV
images (n = 4) were used to calibrate the PS images obtained in
2020/2021  (Fig.  3e).  All  calibrated  PS  images  (n  =  13; Fig.  3f)
obtained in the study period during 2020/2021 were then used
to develop the Ѱstem prediction model (Fig. 3). The developed
model  (Fig.  3)  was  then validated by  the  downscaled 3m UAV
images (n = 5) acquired during 2021/2022 (Fig. 3i). These were
generated  by  spatially  aggregating  the  calibrated  0.05m  UAV
images acquired in 2021/2022 (Fig. 3).

 Calibration of 0.05m UAV Images
Prior  to  the  first  calibration,  models  were  developed  by

regressing  the  corresponding  16  VIs,  DOY,  ECa,  elevation,  and
slope  against  measured  Ѱstem  data  using  RFR,  SVR,  and  MLP
(Fig. 3a). For each grapevine trunk position, the mean values of
ECa,  elevation,  slope,  and  16  vegetation  indices  based  on  the
pure  canopy  pixels  within  0.5  m  distance  of  the  trunk  were
computed  for  modeling.  The  acquisition  of  specific  canopy
pixels  was  carried  out  by  overlapping  the  buffer  zones  (using
recorded trunk location as the center of a circle with a radius of
0.5  m)  with  the  binary  raster  of  canopy  height  described  in
section 2.3.
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The models with the best performance (in terms of RMSE on
the  test  sets)  were  developed  separately  for  the  first  growing
season  (2020/2021)  and  the  second  growing  season
(2021/2022). These models were then used to calibrate the UAV
images acquired during 2020/2021 (n = 4) and 2021/2022 (n =
5)  (Fig.  4a),  respectively,  to  obtain  calibrated  UAV  images
exhibiting  Ѱstem  estimation  across  the  vineyards  at  0.05m
resolution (Figs 3b; 4b).

 Generation of Downscaled 3m UAV Images
To  proceed  with  the  second  calibration  for  UAV-satellite

image pairs (Table 1), image co-registration is an essential step.
Since UAV images are more spatially accurate due to correction
by ground control points, it is a good practice to register the PS
images  onto  the  UAV  images.  In  ArcGIS  Pro,  the  UAV  images
were  first  resampled  from  0.05  m  to  3  m  resolution  and  were
then  used  as  reference  images  for  the  alignment  of  the  PS
images. All PS images were then re-aligned with the resampled
3m  UAV  images  using  "Snap  Raster".  Grids  of  the  3  m  pixels
were  generated  by  vectorizing  the  reference  images  using
"Raster  to  Point"  and  "Create  Thiessen  Polygons".  As  the  pixel
size  of  the  PS  images  (3  m)  was  an  integer  multiple  of  that  of
the UAV images (0.05 m), every PS pixel corresponded to 3,600
UAV pixels after co-registration.

To remove the pixels  that  did not represent grapevines,  the
canopy  polygons  were  created  based  on  the  binary  raster  of
canopy height obtained in section 2.3 using "Raster to Polygon"
for each UAV survey day. These canopy polygons were used to
clip  the  corresponding  calibrated  UAV  images  obtained  in

section 2.9.1 to acquire canopy pixels representing grapevines
(Fig.  4c).  Those UAV canopy pixels  residing in  the same cell  of
the  3m  grids  were  averaged  using  "Spatial  Join".  Nine
downscaled 3m UAV images (four images in 2020/2021 and five
images in 2021/2022) were created (Fig. 3c & d); Fig. 4d). These
downscaled UAV images, representing Ѱstem variability across
the  vineyards  at  3  m  resolution,  served  as  references  for  the
calibration  of  PS  images  in  2020/2021  (Fig.  3e)  and  for  the
validation of Ѱstem prediction in 2021/2022 (Fig. 3i).

 Calibration of satellite images
For  the  second  calibration,  models  were  developed  by

regressing  28  normalized  difference  spectral  indices  (NDSIs)
derived from every pixel  of  the PS images (n = 4;  indicated by
orange outlines in Table 1) against the reference Ѱstem values
derived from the 3m calibrated UAV images (n = 4) acquired in
2020/2021  using  RFR,  SVR,  and  MLP  (Fig.  3e).  NDSIs  were
computed using all possible pairwise-band combinations in the
PS  images  using  "combinations"  from  the  itertools  package  in
Python.  The  UAV-satellite  image  pairs  had  at  most  one  day
apart in acquisition date to minimize spectral differences (Table
1). The developed models with the best performance (in terms
of  RMSE  on  the  test  sets)  were  used  to  calibrate  all  the  PS
images  (n  =  13)  acquired  during  2020/2021.  The  series  of
calibrated  satellite  images  (Fig.  3f),  representing  Ѱstem
estimation  at  3  m  resolution,  was  subsequently  used  as  the
response variable in the development of the Ѱstem prediction
model.

 
Fig. 3    Overview of the workflow. UAV is uncrewed aerial vehicle; DOY is day of the year; NDVI is normalized difference vegetation index; ECa is
apparent electrical conductivity; PET is potential evapotranspiration.
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 Development of Ѱstem Prediction Model
Ѱstem  prediction  models  were  developed  by  regressing

DOY,  NDVI,  ECa,  elevation,  slope,  total  daily  rainfall,  total  daily
PET,  irrigation,  fertigation,  plucking,  and  trimming  events,
against the reference Ѱstem values derived from the calibrated
satellite  images  (Fig.  3g).  NDVI  was  selected  because  it  is  a
widely  used  proxy  for  vegetation  performance  which  can
partially  explain  the  variation  in  GWS[60].  The  underlying
assumption  of  the  Ѱstem  prediction  model  is  that  ECa,
elevation,  and  slope  are  static  during  the  growing  seasons  by
taking  advantage  of  the  temporal  stability  in  the  spatial
patterns of both NDVI and ECa

[61,62]. NDVI needs to be collected
at the beginning of each growing season. During any period in
the  growing  season,  managers  then  rely  on  weather  forecasts
for estimating total daily irrigation and PET as well as expected
cultivation  practices  (including  irrigation,  fertigation,  plucking,
and trimming) to predict the variation of Ѱstem in vineyards.

NDVI, ECa, elevation, and slope were computed based on the
pure canopy pixels within each cell of the 3 m grids. Total daily
rainfall,  total  daily  PET,  irrigation,  fertigation,  plucking,  and
trimming on each day of the 30-day period before the date of
Ѱstem  prediction  were  used  as  independent  predictors.
Plucking  and  trimming  events  were  noted  using  one-hot
encoding (1 to mark the event and 0 if the event did not occur).

The total number of predictor variables was 125 (Table 3).

 Results

 Results Variation of Measured Ѱstem Values
Both  vineyards  were  visited  nine  times  over  two  growing

seasons,  from  flowering  in  late  November  to  veraison  in  late
January. Figure  5 displays  the  variability  in  Ѱstem  collected
from 148 canopies at the two vineyards, and the distribution of
the measurements on each date. The maximum and minimum
observation  of  Ѱstem  is  1344  and  310  kPa  in  2020/2021,  and
1086  and  293  kPa  in  2021/2022,  respectively.  Overall,  there  is
an  increasing  trend  of  dehydration  in  GWS  with  time  for  both
growing  seasons,  indicating  the  increasing  presence  of  water
deficit  in  the  grapevines.  The  only  exception  is  an  increase  in
hydration  on  9th December  2021  (compared  to  the  previous
measurement) due to rainfall events before sampling (i.e.,  38.8
mm  on  6th  December  2021  and  11  mm  on  7th  December
2021).  In Fig.  5,  the height  of  the box (the difference between
the  upper  quartile  and  lower  quartile)  represents  the  spatial
variation  of  Ѱstem  on  one  date  across  the  relevant  vineyard.
This  difference  increased  as  the  survey  proceeded,  implying
spatial  variation  within  the  vineyards  became  more
pronounced  as  water  deficit  increased.  The  mean  values  of

a

c d

b

 
Fig.  4    An  illustration  of  generating  a  downscaled  3m  UAV  image  for  each  UAV  survey  date.  4a:  the  UAV  image  is  presented  as  RGB
composites, with measured Ѱstem presented as yellow points. 4b: the calibrated 0.05m UAV image exhibiting Ѱstem estimation. 4c: the green
pixels are pure pixels representing grapevines after clipping pixels of interrow, overlaid with 3m red grids. 4d: the downscaled 3m UAV image
after spatial aggregation of pixels in red grids.
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Ѱstem obtained at Pencarrow were lower than those obtained
at Wharekauhau on most of the measurement dates.

 Modeling Performance
The  regression  modeling  was  conducted  for  the  two-stage

calibration  (Fig.  3a & e)  and  the  development  of  the  Ψstem
prediction  model  (Fig.  3g)  using  RFR,  SVR,  and  MLP.  The  ML
models  with  the  best  performance  (in  terms  of  RMSE  on  the
test  sets)  were  chosen  (Table  4).  The  RMSE  of  the  test  sets  for
two-stage  calibration,  ranging  from  59  to  113  kPa,  indicates
that  the  estimation  obtained  from  the  calibration  models  is
well  correlated  with  measured  Ψstem  (first  calibration)  and
reference  Ψstem  (second  calibration; Fig.  3c).  Therefore,  the
calibrated  satellite  images  (Fig.  3f)  should  serve  as  a  robust
reference as response variables for  Ψstem prediction (Fig.  3g).

The  RMSE  of  the  test  sets  for  Ψstem  prediction  is  31  kPa,
suggesting  the  prediction  model  adequately  captured  Ψstem
variability in 2020/2021. The scatter plots (Fig. 6) show that the
data distribution for each regression model is closely clustered
around the 1:1 line.

 The Accuracy of the Spatial and Temporal Patterns of
Ψstem Prediction

An  important  goal  of  this  study  was  to  validate  whether  a
Ψstem  prediction  model  based  only  on  the  first-season  data
(2020/2021)  can  be  used  to  predict  Ψstem  changes  in  the
second  season  (2021/2022).  The  similarity  analysis,  between
Ψstem  prediction  maps  (obtained  from  the  best  prediction
model)  and  the  Ψstem  reference  maps  (obtained  from  3m
calibrated  UAV  images  in  2021/2022)  was  conducted  using
Pearson correlation for each vineyard. The values of r represent
the  degree  of  consistency  between  predicted  and  reference
maps  across  multiple  survey  dates,  with  p-values  showing  a
significant association (Table 5).

Figure  7 shows  Ψstem  prediction  alongside  measured
Ψstem  values  (collected  by  grid  sampling  throughout  the
study  periods  in  2021/2022)  during  the  season  for  both
vineyards.  Ψstem  predictions  were  normalized  for  better
visualization.  Both  Ψstem  prediction  series  for  both  vineyards
appear  to  intercept  with  each  of  the  spreads  of  measured
Ψstem  data  approximately  at  their  average  value,  except  for
the  last  measurements  at  Wharekauhau  vineyard.  Note  that
higher  Ψstem  values  indicate  more  dehydrated  vines.
Measured  Ψstem  values  are  assumed  to  represent  the  total
variability  of  each vineyard.  Thus,  this  result  indicates  that  the
temporal  patterns  in  2020/2021  captured  by  the  Ψstem
prediction  model  can  provide  good  temporal  predictions
during the study period in 2021/2022.

Descriptive  statistics,  including  mean,  standard  deviation
(SD),  and coefficient of  variation (CV),  are presented in Table 6
to  help  assess  the  2021/2022  datasets  of  measured  Ψstem

Table 3.    A summary for the predictors used in developing the Ѱstem prediction model. DOY is day of the year; NDVI is normalized difference vegetation
index; ECa is apparent electrical conductivity; PET is potential evapotranspiration.

Predictor Note Number

DOY The number is added on along the growing season. 1
NDVI Collected in late November for the 2020/2021 and 2021/2022 seasons separately. 1
ECa − 1
Elevation − 1
Slope − 1
Total daily rainfall The rainfall amounts on each day of the 30-day period beforehand was used as a predictor. 30
Total daily PET The PET amounts on each day of the 30-day period beforehand was used as a predictor. 30
Irrigation and Fertigation The water input amounts, either sourced from irrigation or fertigation, on each day of the 30-day

period beforehand was used as a predictor.
30

Plucking and Trimming The occurrence of the events on each day of the 30-day period beforehand was used as a predictor. 30

 
Fig.  5    Box  plot  of  measured  Ψstem  collected  during  two
growing seasons at Pencarrow (n = 86) and Wharekauhau (n = 62)
vineyards.  X  symbols  refer  to  the  average  values  on  the  survey
dates.  Horizontal  lines in the boxes refer to median values on the
survey dates.

Table 4.    Results of modeling performance. UAV is uncrewed aerial vehicle; Ψstem is stem water potential; RMSE is root mean square error.

Modeling Purpose Regression Model Data Size of Measured or
Reference Ψstem

RMSE of the Training
Set (kPa)

RMSE of the Test Set
(kPa)

Calibration of UAV images acquired in
2020/2021 (Fig. 3a)

Multilayer
perceptron

85 96 113

Calibration of UAV images acquired in
2021/2022 (Fig. 3a)

Random forest
regression

63 121 106

Calibration of Satellite images (Fig. 3e) Random forest
regression

42,234 47 59

Prediction of Ψstem (Fig. 3g) Random forest
regression

151,580 25 31
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values,  reference  Ψstem  values  obtained  from  3  m  calibrated

UAV  images,  and  predicted  Ψstem  values  generated  by  the

Ψstem prediction model.  The statistics indicate that measured

Ψstem values  (CV >  10%)  were  more  heterogeneous  than the

Ψstem values in the corresponding 3m calibrated UAV datasets

(4% > CV > 2%) and the prediction datasets (CV < 2%). Thus, the

tendency to exhibit extreme Ψstem values decreases from the

3  m  calibrated  UAV  datasets  (n  =  42234,  Ψstem max =  867,

Ψstem min =  473)  to  the  prediction  datasets  (n  =  151,580,

Ψstem max = 694, Ψstem min = 550) compared to the measured

datasets (n = 63, Ψstem max = 1,086 kPa, Ψstem min = 293 kPa).

Although  there  are  differences  in  the  absolute  values  and

variability of Ψstem for the three datasets, they approximately

follow  the  same  temporal  patterns  over  the  study  period  in

2021/2022 (Fig.  8).  This  indicates  that  both 3m calibrated UAV

datasets  and  Ψstem  prediction  datasets  are  more  reliable

predictors of the temporal patterns of Ψstem, rather than their

absolute values.

 Discussion

 Reference Ψstem Data Generated by Two-Stage
Calibration

To generate reference Ψstem data for subsequent prediction
modeling,  two-stage  calibration  was  employed  to  calculate
Ψstem  data  from  satellite  images  based  on  measured  Ψstem
data using RFR,  SVR,  and MLP.  Satellite images (obtained from
PS in  this  study)  have advantages  over  UAV data  or  measured
data,  in  terms  of  higher  coverage  during  one  acquisition  and
regular  acquisition  periods.  Therefore,  satellite  images  are  a
better  source  in  terms  of  providing  observations  on  a  regular
basis.  However,  when  assessing  vertically-oriented  grapevine
status  with  discontinuous  layouts,  the  utilization  of  low-to-
moderate  satellite  resolution  is  often  challenging  due  to  the
biased  estimation  resulting  from  pixels  with  mixed  signals[10].
To  address  the  issue  of  mixed-signal  pixels,  two  calibration
events  were  applied  to  scale  the  measured  measurements  up
to  data  at  the  3  m  satellite  level.  UAV-based  data  served  a
critical  role  in  this  approach  as  it  enhanced  spectral  purity  by
removing non-grapevine pixels and provided a large number of
0.05m  reference  data,  which  was  then  spatially  aggregated  to
ensure  scale  matching  between  satellite  data  and
measurements[13,14]. The performance (in terms of RMSE on the
test  sets)  of  the  first  and  the  second  calibration  for  the  data
acquired in 2020/2021 was 113 and 59 kPa, respectively (Table
4).  These  results  supported  the  appropriateness  of  this  two-
stage  calibration  approach  in  generating  large  reference
datasets (n = 151,580), compared to the measured samples (n =

a b

c d

 
Fig. 6    Scatter plots between predicted Ѱstem and measured or reference Ѱstem (kPa) for the training and test sets of 6a: the calibration of
UAV images acquired in 2020/2021. 6b: the calibration of UAV images acquired in 2021/2022. 6c: the calibration of satellite (PS) images. 6d: the
prediction of  Ѱstem in 2020/2021.  Red dashed lines  are  1:1  lines.  Samples  from the two study vineyards are  considered collectively  in  each
regression model.

Table  5.    Results  of  similarity  analysis,  presented  by  the  Pearson
correlation  coefficient  (r),  represent  the  consistency  between  predicted
and  reference  Ψstem  maps  across  four  survey  dates  for  the  two  study
vineyards.

Pencarrow Wharekauhau

r 0.89* 0.87*

Significance levels are noted as * when p ≤ 0.001
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Fig.  7    The temporal  patterns  of  normalized Ψstem prediction (lines)  during the growing season in  2021/2022,  with  the measured Ψstem
measurements (points) for Pencarrow (7a) and Wharekauhau (7b). The shaded bands bordering the lines encompass one standard deviation.

Table 6.    Summary statistics for predicted Ψstem, Ψstem acquired from 3m calibrated UAV images, and measured Ψstem for each survey date at the
Pencarrow and Wharekauhau vineyards. UAV is uncrewed aerial vehicle; SD is standard deviation; CV is coefficient of variation.

Survey Date Vineyard Data Source Mean SD CV

29th November 2021 Pencarrow Predicted Ψstem 609 5.59 0.92
Ψstem from 3m calibrated UAV 562 18.11 3.22

Measured Ψstem 585 113.93 19.47
Wharekauhau Predicted Ψstem 603 9.26 1.53

Ψstem from 3m calibrated UAV 565 21.86 3.87
Measured Ψstem 528 87.31 16.55

09th December 2021 Pencarrow Predicted Ψstem 593 5.03 0.85
Ψstem from 3m calibrated UAV 547 15.19 2.78

Measured Ψstem 400 64.25 16.05
Wharekauhau Predicted Ψstem 580 8.95 1.54

Ψstem from 3m calibrated UAV 548 17.42 3.18
Measured Ψstem 453 82.18 18.14

11th January 2022 Pencarrow Predicted Ψstem 662 4.84 0.73
Ψstem from 3m calibrated UAV 681 19.53 2.87

Measured Ψstem 672 204.27 30.39

21st January 2021 Pencarrow Predicted Ψstem 670 6.73 1.01
Ψstem from 3m calibrated UAV 717 22.86 3.19

Measured Ψstem 803 233.27 29.03
Wharekauhau Predicted Ψstem 668 10.35 1.55

Ψstem from 3m calibrated UAV 740 24.67 3.34
Measured Ψstem 957 99.35 10.39
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85), for later modeling purposes.

 Predicted Ψstem Data Generated by Ψstem Prediction
Model

The  Ψstem  prediction  model  was  developed  using
calibrated  PS  images  acquired  in  2020/2021  as  response
variables, and using NDVI, ECa, elevation, slope, DOY, irrigation,
fertigation,  plucking,  and  trimming  events,  daily  total  rainfall,
and  daily  total  PET  as  predictors.  The  need  for  this  Ψstem
prediction  model  was  demonstrated  by  the  number  of  PS
acquisition  images  in  this  study.  As  the  revisit  period  of  PS  is
daily,  there  should  potentially  be  80  images,  with  surface
reflectance assets, proper ground control, and standard quality,
available  over  the  study  periods  during  2020/2021  (15th

November  2020  to  2nd February  2021).  Nevertheless,  there
were  only  20  images  available  to  download,  with  only  13
images (the longest time gap between acquisition dates being
17  days)  suitable  for  analysis  (after  eliminating  those  images
contaminated  with  cloud,  haze,  or  cloud  shadow).  Bellvert  et
al.[63] have suggested access to five to six points of information
acquisition  over  the  season  for  vineyard  irrigation  scheduling
when considering cost efficiency. To avoid inaccessible satellite
data  caused  by  weather  or  technical  problems,  the
development of a GWS prediction model is desirable.

The  trained  model  performed  well  on  the  test  set  of  data
obtained in 2020/2021, with an RMSE of 31 kPa on the test sets
(Table 4).  From the two-stage calibration to Ψstem prediction,
it appears the accuracy of modeling was higher as the data size
of  measured or  reference Ψstem increased,  resulting from the
two-stage calibration.  This  confirmed that  ML models  develop
more  robust  relationships  with  fewer  overfitting  issues  when
they  are  trained  with  more  samples[64].  The  superior
performance of RFR with calibration and prediction modeling is
probably  because  RFR  is  robust  to  multicollinearity[65].
Multicollinearity  was  evident  in  the  datasets  of  this  study,
originating  from  VI  computation  based  on  the  same  spectral
band,  and  temporal  autocorrelation  between  the  rainfall  and
PET data series.

In this study, the model was further evaluated with the data
independently  collected  during  a  second  growing  season
(2021/2022)  to  test  its  generalization  performance.  The  model
reflected  the  trends  of  changes  of  Ψstem  in  response  to
measured  Ψstem.  The  predicted  temporal  patterns  became
more hydrated in early December compared to late November
but  exhibited  increasing  water  deficit  as  the  growing  season

proceeded, which is comparable to measured Ψstem data (Figs
5 and 7).  Similarity  analysis  (in  terms  of  r)  indicated  that
temporal patterns were well depicted by the prediction models
for both vineyards (Table 5). It should be noted that the model’s
prediction  capability  was  evaluated  using  calibrated  UAV
images  (reference  maps)  instead  of  using  measured  Ψstem.
The reason for this is the output of the prediction model is 3-m
spatial  resolution,  and  each  pixel  corresponds  to  multiple
grapevines.  Thus,  the  outputs  cannot  be  directly  compared
with  individually  measured  Ψstem.  Besides,  PS  images
acquired  in  2021/2022  cannot  be  used  for  evaluation  because
background information (soil and grass) is included. Therefore,
the  prediction  model  was  evaluated  using  the  calibrated  UAV
images  that  approximated  the  measured  Ψstem  assumed  to
represent  the  total  GWS  variability  across  the  study  vineyards
(RMSE  =  106  kPa).  The  results  of  similarity  analysis  may  be
attributed to the observed similarity in PET variability over the
two  seasons  (Fig.  2).  As  ET  is  a  critical  component  in  the  soil
water  balance  contributing  to  Ψstem[66],  the  similarity  of  ET
from different seasons may lead to a similarity in the temporal
variation of Ψstem over different years. Another reason for the
similarity  is  that  cultivation  practices  were  applied  within
similar  timeframes  during  each  growing  season,  so  their
impacts were still  within the prediction range of  the model.  In
addition, both NDVI-defined and ECa-defined zones have been
reported  to  support  spatial  assessment  of  GWS[58,67],  further
increasing the prediction capabilities of the model.

The  prediction  model  established  the  temporal  variation  of
Ѱstem  based  on  DOY,  30-day  total  daily  rainfall,  30-day  total
daily PET, 30-day irrigation, 30-day fertigation, 30-day plucking,
and 30-day trimming, while accounting for the spatial variation
of  Ѱstem  based  on  NDVI,  ECa,  elevation,  and  slope.  Although
temporal patterns of Ѱstem were tested with promising results,
it  should  be  noted  that  the  relative  pattern  of  values,  rather
than their  absolute values,  should be the focus of  attention in
this study. Therefore, sampling for Ψstem prediction should be
undertaken at the beginning of each growing season for model
calibration, so as to enhance the precision and practicability of
the model for use in irrigation scheduling.

 Limitations and Directions for Future Research
The weakness of the prediction model in this study lies in its

empirical  approach,  so  it  is  unable  to  provide  a  reliable
prediction  if  the  inputs  are  beyond  the  range  of  observed
variability.  Field  measurements  are  needed  to  validate  the

a b

 
Fig. 8    Box plots of predicted Ψstem values, Ψstem values acquired from 3m calibrated UAV images, and measured Ψstem values for each
survey date at the Pencarrow (8a) and Wharekauhau (8b) vineyards. UAV is uncrewed aerial vehicle, and Ψstem is stem water potential.
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prediction  model  with  data  collected  from  additional
phenological  stages,  growing  seasons,  and  sites,  to  enhance
the  model’s  scope.  In  addition,  due  to  the  selection  of  3m
resolution satellite images, high heterogeneity of GWS within a
cell  of  grids  would  be  averaged  and  exhibit  less  variation  in
Ψstem, thus introducing bias into calibration and modeling.

In its current form, this prediction model will only be able to
predict  Ψstem  at  vineyard-block  scale  during  the  growing
season,  rather  than provide  a  spatial  map of  Ψstem each day.
One  reason  is  that  weather  predictors  (including  daily  total
rainfall, and daily total PET) were assumed to be evenly spatially
distributed across the two vineyards. Predictors accounting for
spatial variation (including NDVI, ECa, elevation, and slope) are
static during modeling and are determined before the growing
seasons. Despite these limitations, this prediction model is still
a potentially practical  tool  for viticulturists since the block size
of  the  results  can  be  adjusted,  by  increasing  the  number  of
weather sensors or stations, to suit the size of zones that need
different irrigation management.

Subsequent  research  is  suggested  to  explore  new  predictor
variables  that  are  cost-effective  to  acquire  and  can  serve  as
spatio-temporal  proxies  for  Ψstem.  Weather  parameters,
recorded  spatially  and  continuously  by  wireless  sensor
networks  across  vineyards,  could  be  one  of  these  potential
predictors.  Further  research work should examine the number
and type of field measurements required and protocols needed
for vineyard sampling to contribute to model calibration at the
beginning of the growing season. The impact of the quality of
weather forecasts on the performance of the prediction model
also  requires  investigation.  This  will,  potentially,  allow  the
model  to  become  a  more  reliable  prediction  tool,  providing
daily  Ψstem spatial  maps in  advance throughout  the growing
season.

 Conclusions

This study demonstrated the potential application of using a
two-stage  calibration  approach  for  calibrating  satellite  images
to  provide  reference  stem  water  potential  (Ψstem)  data.  The
potential  of  establishing  a  Ψstem  prediction  model  based  on
day  of  the  year,  normalized  difference  vegetation  indices,
apparent  electrical  conductivity,  elevation,  slope,  rainfall,
potential  evapotranspiration,  irrigation,  fertigation,  plucking,
and  trimming  events,  was  also  demonstrated.  Collection  of
ground  truthing  is  required  for  model  calibration  at  the
beginning of the growing season. The prediction model can be
improved on a daily basis if  predictors that account for spatio-
temporal  variability  in  Ψstem  are  provided,  such  as  spatially
recorded  weather  information.  This  tool  has  the  potential  to
benefit  vineyard  managers  with  improved  irrigation
management  and  quality  optimization  by  providing  Ψstem
predictions  at  vineyard-block  scale  during  growing  seasons,
when  the  model  is  properly  calibrated  and  coupled  with
accurate weather forecasts.
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