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Abstract 

Gauss' Theorema Egregium contains a partial differential equation relating the 

Gaussian curvature K to components of the metric tensor and its derivatives. Well­

known partial differential equations such as the Schrodinger equation and the sine­

Gordon equation correspond to this PDE for special choices of Kand special coordinate 

systems. The sine-Gordon equation, for example, can be derived via Gauss ' equation 

for K = - l using the Tchebychef net as a coordinate system. 

In this thesis we consider a special class of Backlund Transformat ions which corre­

spond to coordinate transformations on surfaces having a specified Gaussian curvature. 

These transformations lead to Gauss ' PDE in different forms and provide a method for 

solving certain classes of non-linear second order partial differential equations. 

In addition, we develop a more systematic way to obtain a coordinate system for a 

more general class of PDE, such that this PDE corresponds to the Gauss equation. 
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Chapter 1 

Introduction 

I.I General 

The dynamics of interfaces, surfaces, fronts are an important ingredients in numerous 

nonlinear phenomena arising in classical and quantum physics, and in some cases the 

dynamics can be modelled by nonlinear partial differential equations (PDEs) that de­

scribe the evolution of surfaces in time. As a result of this relationship , the study of the 

connection between certain types of surfaces and nonlinear PDEs has been one of the 

classical problems of differential geometry. Curvature, for example, plays an important 

part in a number of problems of physics and mathematics associated with manifolds. 

Often, one has to solve nonlinear PDEs in order to explain the physical phenomena, 

but solution techniques for nonlinear PDEs are fairly specialized and rare. One of 

these techniques, a coordinate transformation method, loosely speaking, known as the 

Backlund Transformation method, is of interest in this text. It is known [7] that a 

Backlund transformation may be regarded, in geometrical language, as a transformation 

of a surface S into a new surface S, where S is a solution of a given PDE, but where 

the transformed surface S may either be a solution of the original PDE or of some 

other differential equation. Backlund transformations, in essence, preserve invariant 

properties between two differential equations and their solutions, and they relate these 

equations to one another through a representation of surfaces with the same curvature 

in some known coordinate systems. They can thus be useful for finding a solution to a 
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given differential equation by relating it to another differential equation with a known 

solution. In recent times, interest in these transformations have persisted due to their 

connection with the sine-Gordon equation and its associated soliton theory. 

1.2 A Brief Description 

The first chapter contains the general introduction and a review of the literature per­

taining to the work in this thesis, followed by some definitions and fundamental equa­

tions which will be used in the following chapters. In section 1.3 we review some basic 

definitions which arise in differential geometry. In subsection 1.3.2, the Gauss equation, 

which plays a central role in our discussions, is presented. We then illustrate how some 

well known PDEs such as the Schrodinger equation, the sine-Gordon equation, the 

Liouville equation and the Monge-Ampere equation can be generated from the Gauss 

equation by the appropriate choice of coordinates. In section 1.4 we show how the 

covariant transformation equations can be used to determine the Backlund transfor­

mations between two coordinate systems, where each coordinate system represents a 

specific PDE. 

Chapter 2 consists of two major sections. In section 2.1 we look mainly at the solu­

tion techniques and Backlund transformations developed for various classes of second 

order quasi-linear partial differential equations [26). In subsection 2.1.1 we first show 

how a certain class of second order quasi-linear PDEs of the hyperbolic type can be 

solved. As an example, a family of solutions for the sine-Gordon equation is derived. 

The Cauchy problem is then discussed and the sine-Gordon equation is used as an il­

lustration. Further, we establish that the solution obtained for the Cauchy problem of 

the sine-Gordon equation corresponds to a Beltrami surface. Our approach in deriving 

solutions through Backlund transformations is further illustrated through an example, 

where a soliton solution of the sine-Gordon equation is used to derive a solution to 

the Schrodinger equation. Subsections 2.1.2 and 2.1.3 deal with some classes of sec­

ond order quasi-linear PDEs of the parabolic type and the elliptic type, respectively. 

Illustrative examples are given wherever appropriate. 

In section 2.2, we show how the same technique used in section 2.1 can be imple­

mented to solve a fully non-linear second order PDE, the Monge-Ampere equation, 
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and further discuss the solution to the Cauchy problem for this equation. Finally, 

we discuss some relationships among the sine-Gordon, the Monge-Ampere and the 

Schrodinger equations, which Backlund transformations elucidate and discuss briefly 

how a more general class of Monge-Ampere equation can be solved using Backlund 

transformations. 

The topics in Chapter 3 pertain to a systematic way of obtaining a coordinate system 

corresponding to a more general class of PDEs which can be interpreted as the Gauss 

equation. This complements the material in Chapter 2, where we established some 

useful solution techniques via Backlund transformations for some classes of PD Es. It is 

noted that in generalising the technique to include a non-constant Gaussian curvature 

function , we extend significantly to class of PDEs for which this solution method is 

available. 

Section 3.1 provides a brief introduction to the remainder of Chapter 3. Section 3.2 

deals with the preliminaries required for the sections to follow . We also provide with a 

brief review of the literature pertaining to the material in Chapter 3 in this section. 

In section 3.3 a complete characterisation is given for the class of differential equa­

tions of type 

( 
ou oku) 

Ut = F K(x , t), u, ox , . .. , oxk . 

Illustrative examples such as the generalised Burgers equation and the generalised KdV 

equation are provided to show how we can, in principle, determine the coordinate 

systems for these types of equations. 

Section 3.4 consists the complete characterisation for the class of differential equa­

tions of type 

( 
ou &ku) 

Uxt = F K(x , t) , u, ox , ... , &xk . 

Once again , we provide illustrative examples to show how we can determine the coor­

dinate systems for these types of equations. The generalised sine-Gordon equation and 

the generalised sinh-Gordon equation are used as examples. 

In Chapter 4, we conclude the thesis by summing up particular results and proposing 

certain matters which need further investigation. 
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1.3 Some Geometrical Aspects 

In this section, we review some basic definitions which arise in differential geometry 

[7, 34, 35]. Let S be a surface in E 3
, Euclidean 3-space, and let r be a curve on S. 

If (u, v) denote curvilinear coordinates on S, then the curve r can be described by an 

implicit relationship of the form 

cp(u, v) = 0. 

N 

r/ 
. ·U 

. . . . 
.... ~::./· .. ···_:::.:· ········ ... ········_:::.:,..···· ··:.-.::-"=· 

.·· .·· .· 

. :;:.~: i::·;·::~.;;-: :::~;'.~>~(:. .. :. :.:• ,/. 
. . . _.( . 

. _/· ::.>/ _ •. -· . _/'/::./: 

r 

0 

Figure 1.1 : The surface S and the curve r 

The curve r defined above can also be given in parametric form: 

u = u(t), V = v(t). (1.1) 

Let r be the position vector of a point P on the curve. Then the vector d r / dt = r, 
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given by 

(1.2) 

is tangent to the curve and therefore to the surface (cf. Fig.1.1) . Here the subscripts 

u and v denote partial differentiation with respect to u and v respectively. Equation 

(1.2) can also be written (in a form independent of the choice of parameter) as, 

dr = rudu + rvdv. (1.3) 

If Q is in a neighbourhood of Pon the curve, then the distance ds , between P and Q 

on the curve can be expressed as 

I= ds 2 = dr.dr = Edu2 + 2Fdudv + Gdv 2
, (1.4) 

where 

(1.5) 

The quadratic form in equation (1.4) is called t he first fundam ental form for the surface 

s. 
The functions E , F and G depend on u and v and are called the components of the 

m etric tensor or the components of the first fundamental form. 

The quantity 

Ir u I\ r v I = H = J EC - F 2 
, (1.6) 

corresponds to the differential area element. The angle 0 between the coordinate curves 

is 
F 

vlfc" (1.7) 

If t is the unit tangent vector at P to the curve r on the surface S and N is the unit 

surface normal, then the curvature vector of r at P , k, can be decomposed as 

d t / ds = k = kn + kg , 

where kn is parallel to N and orthogonal to kg (see Fig. 1.2). 

The vector kg is called the tangential curvature vector or geodesic curvature vector and 
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Figure 1.2: The normal and tangential curvature vectors 

the vector kn is called the normal curvature vector. The latter can be expressed by 

where K,n is known as the normal curvature. The normal curvature is given by 

K,n = 
e du2 + 2j du dv + g dv2 

Edu2 + 2Fdudv + Gdv2 

where, in terms of vector triple products, 

f 
= (r~LV) ru , rv) 

H ' 

(1.8) 

(1.9) 
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The numerator of equation (1.8), written as 

I I= - dr.dN = e du2 + 2f du dv + g dv 2 (1.10) 

is defined as the second fundamental form. The functions e, f and g are known as the 

components of the second fundamental form. 

1.3.1 Gaussian and Mean Curvatures 

The normal curvature given in equation (1.8) , when considered in the direction ,\ = 
du/ dv is 

e + 2f >. + g >.2 

E + 2F >. + G >.2 

Extrema for "'n w.r.t ,\ are characterized by 

and this condition implies 

II f +g>. e+f>. 
K,n = J = F + G,\ = E + F>. · 

The above equation indicates that 

(Fg - GJ) >-.2 + (Eg - Ge)>.+ (Ef - Fe ) = 0, 

(1.11) 

which determines two directions dv / du, in which "'n obtains an extreme value, unless I I 

vanishes or unless I I and I are proportional. One value must be maximum, the other a 

minimum. These directions are called the directions of principal curvature or curvature 

directions and the corresponding values for "'n denoted by "'i and "'2 are defined as the 

principal curvatures. 

The quantities 

(1.12) 
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and 
eg -j2 

K = K1K2 = ----
EG-F2 

(1.13) 

are invariants, and are called respectively the mean curvature and the Gaussian curva­

ture of the surface. 

1.3.2 The Gauss Equation and some well-known PDEs 

A key result in classical differential geometry is Gauss' Theorema Egregium [34], which 

asserts that the Gaussian curvature depends purely on the components of the first 

fundamental form. Specifically, we have the Gauss Equation: 

(1.14) 

This equation will play a central role in our discussion. Many nonlinear and, some 

linear PDEs of interest , correspond to the Gauss equation on a surface of prescribed 

curvature parametrized in an appropriate coordinate system. In certain coordinate 

systems the Gauss equation takes a particularly simple form. Well known partial 

differential equations such as the Schrodinger equation, the sine-Gordon equation, the 

Liouville equation and the Monge-Ampere equation are the classical examples[4, 18]. 

We illustrate below how these PDEs can be generated from the Gauss equation by the 

appropriate choice of coordinates. 

1.3.2.1 The Schrodinger Equation 

Our first example is the Schrodinger equation, 

1Puu + K(u, v) 'Ip = 0, 

which, as will be seen, corresponds to the Gauss equation for surfaces of Gaussian 

curvature K(u, v) in geodesic polar coordinates. 

In a neighbourhood of every point on a smooth surface, a geodesic polar coordinate 

system exists[34]; hence, we can always construct such a local coordinate system for 
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the surface with Gaussian curvature K(u, v). For a geodesic polar coordinate system 

E = l and F = 0, equation (1.4) reduces to 

ds2 = du2 + Gdv2
, 

and equation (1.14) becomes, 

K(u, v) _ c-112 ( 0 112)v.v.. 

Using H = -JG we have, 

Huv. + K(u , v) H = 0. (1.15) 

The solution to Schrodinger's equation (1.15) thus corresponds to the differential area 

element for a surface of curvature K ( u, v) in the geodesic coordinates. 

1.3.2.2 The sine-Gordon Equation 

When E = G = l, the coordinate system forms a Tchebychef Net [6, 34], which exists 

for sufficiently smooth surfaces[34], and equation (1.4) becomes, 

ds2 = du2 + 2Fdudv + dv2
. 

If 0 is the angle through which the coordinate vector rv. must be turned to bring it into 

coincidence with rv then we have, 

F = cos0 

(from equation (1.7)). Now equation (1.14) takes the form 

K - l (~ .F) 
- Jl - F 2 H v. v 

i.e. 

Buv = -K(u, v) sin 0. (1.16) 

This is a second order hyperbolic PDE for the function 0, with u constant and 
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v = constant as the characteristics. For K(u , v ) = -1, we get the familiar sine-Gordon 

Equation, 

0uv = sin0 . (1.17) 

1.3.2.3 The Liouville Equation 

Let E = G = 0 so that , the coordinate curves are the minimal lines. We note that this 

makes the surface representation complex. Equation (1.14) becomes, 

(lnF)uv + KF = 0 

i.e . 

<I>uv + K eq, = 0, (1.18) 

where 

For K = constant , equation (1.18) corresponds to the Liouville Equation. 

1.3.2.4 The Monge-Ampere Equation 

Consider a surface described by 

r = (u , v , Z(u , v )) . 

Then the components E , F and G of the first fundamental form , for graphical coordi­

nates will be given by 

E = 1 + Z~ , F = Zu Zv , G = 1 + Z; , 

and thus equation (1.4) becomes 

ds2 = (1 + Z~)du2 + 2ZuZvdudv -=I,- (1 + Z;)dv2
• 
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The Gauss equation (1.14) reduces to 

K(u v) = Zuu Zvv - Z~v 
' ( 1 + Z~ + Z;) 2 

' 
(1.19) 

which also can be written as 

2 ( 2 2)
2 

Zuu Zvv - Zuv - K(u , v) l + Zu + Zv = 0 

which is an equation of the Monge-Ampere type. 

Certain partial equations can thus be interpreted as statements of Gauss' Theorem on 

a surface of curvature Kin an appropriate coordinate system. This observation moti­

vates a strategy for solving these equations based on Backlund transformations which 

correspond to curvilinear coordinate transformations on the surface defined intrinsically 

by K. 

1.4 Gauss Equation and Backlund Transformations 

Given a PDE, the idea here is to first find a coordinate system such that the PDE cor­

responds to the Gauss equation for a surface of known Gaussian curvature. Then we 

seek another PDE that can be solved, and determine a coordinate system such that this 

PDE corresponds to the Gauss equation for the same Gaussian curvature. Using the 

covariant transformation equations for the two determined coordinate systems yields a 

system of non-linear PDEs. Solutions to this system define the Backlund transforma­

tions between the two coordinate systems, thus enabling us to obtain solutions to the 

given PDE by transforming the known solution of the other PDE. 

In order to further describe this method, let us consider two partial differential equations 

'D(</>) = 0 and £(x) = 0 which are of the same order. Assume that the PDE 'D(</>) = 0 

is the given equation to be solved and the other is a PDE with a known solution. 

Further, we assume that these two PDEs can be identified as the Gauss equation with 

the same K, and that the corresponding components of their first fundamental forms 

are E , F, G and E, P, G respectively. Let the respective coordinates be (u, v) and (x , y) 
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(see Fig. 1.3). 

Coordinate System I 

E 

G 

(u,v) 

Coordinate System II 

A 
G 

(x,y) 

12 

Figure 1.3: Coordinate transformation from coordinate system I to the coordinate 
system II. 

From the tensor formula, 
fJXl fJXm 

!Jij = g1m fJXi . fJXj , (1.20) 

for coordinate transformations, where gu = E , g12 = g21 = F , g22 = G, 9n = E, 
912 = 921 = fr , 922 = G and then by using the specific values for 9i/s and g1m's we 

obtain the system 

E Ux Uy + F ( Ux Vy + Vx Uy) + G Vx Vy 

and 
2 2 -E Uy , + 2F Uy Vy + G Vy = G. 

fr 

(1.21) 

(1.22) 

(1.23) 

We need to solve this system of non-linear PDEs to determine the required Backlund 

transformations. 

When applying the method described above in solving a PDE, we are aware of the 

fact that we may have difficulties, first in identifying the given PDE as the Gauss equa­

tion; i.e., to determine the corresponding coordinate system, and then in solving the 

system of PDEs which determines the Backlund transformations. The latter could be 

relatively harder than the original problem. Further, it should be noted that, imposing 
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different initial conditions on this system of PD Es yields different Backlund transforma­

tions. This shows that all the solutions to the given PDE cannot be obtained by using 

one set of Backlund transformations , and thus we only end up with certain classes of 

solutions. This certainly is a weakness in our method, especially when we are looking 

for all possible solutions. 



Chapter 2 

Some second order PDEs and 

Gauss' Equation 

14 

In this chapter we develop the technique outlined in Chapter 1 and apply it to specific 

types of PDEs. In the first section we show how a certain class of second order quasi­

linear PDEs of the hyperbolic type can be solved. As an example, we obtain a family 

of solutions to the sine-Gordon equation. The Cauchy problem is then discussed and 

the sine-Gordon equation is used as an illustration. Also, we analyse the possibilities 

of tackling some classes of second order quasi-linear PDEs of the parabolic type and 

the elliptic type. 

In section 2.2, we show how the same technique can be implemented to solve a 

fully non-linear second order PDE, the Monge-Ampere equation and then discuss the 

solution to the Cauchy problem for this equation. There are interesting relationships 

among the sine-Gordon equation, the Monge-Ampere equation and the Schrodinger 

equation which the Backlund transformations expose. 

2 .1 Solving a class of second order quasi-linear PDEs 

Consider a surface with local coordinates u and v, and suppose the coefficients of the 

first fundamental form E, F and G are of the form 

E = E(¢) , F = F(¢) , andG = G(¢), (2.1) 
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where rp is some function of u and v and 

H 2 = EG - F 2 > 0. (2.2) 

Under this assumption, the Gauss equation (1.15) becomes 

¼ { 4F,p H 2 r/Juv - 2G ¢ H 2 <Puu - 2Eq; H 2 <Pvv 

= 0. (2.3) 

This is a PDE of the form 

Gq;r/Juu - 2F,p<Puv + Eq;</>vv + 2K H 2 + 8(u, V, </>, <Pu, <Pv) = 0 , (2.4) 

where 

and 

0 ( 
,1..) = _ { G,pE,pG + E(G,p)2 

- 2G,pF,pF - 2 H 2 G,p,p} 
1 u, V' '+' 2 H2 ' (2.6) 

0 ( 
,1..) = _ { G,pEq;E + G(E,p)2 

- 2Eq;Fq;F - 2 H 2 E¢,p} 
2 u, v, '+' 2 H2 ' (2.7) 

0 ( 
,1..) = {F,pEq;G + Fq;Gq;E - 2F(F¢)2 

- 2 H 2 F¢¢} 
3 u, V' '+' H2 . (2.8) 
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Equation (2.4) is of the form 

A¢uu + 2B¢uv + C¢vv + D = 0 , (2.9) 

and is thus a second order quasi-linear PDE, with coefficients A , B and C depending 

on u, v and ¢, and D depending exclusively on u, v, ¢, <Pu and <Pv· 

If B 2 - AC does not change sign, equation (2.9) can be classified into one of three types: 

hyperbolic, parabolic, and the elliptic, corresponding to B 2 
- AC > 0, B 2 

- AC = 0, 

or B 2 - AC < 0 respectively. Equation (2.4) is thus: 

(i) hyperbolic iff (F¢) 2 
- E¢G¢ > 0; 

(ii) parabolic iff (F¢) 2 
- E¢G¢ = 0; and 

(iii) elliptic iff (F¢) 2 
- E¢G¢ < 0 . 

We shall discuss below the necessary and sufficient conditions required for equation 

(2.4) to be of one of these forms, and then investigate the possibilities of obtaining 

solutions through Backlund Transformations for each of these types. 

2.1.1 Equations of Hyperbolic Type 

Consider a second order quasi-linear hyperbolic PDE of the type 

<Puv = f(</>, <Pu , <Pv)-

Equation (2.4) will be of this form if Fifa =I= 0 and either 

(a) E¢ = G¢ = 0 or 

(b) G¢<Puu + E¢<Pvv = 0. 

(2.10) 

We shall discuss the above two cases separately, and find the conditions which should 

be imposed on equation (2.10). 

2.1.1.1 Case(a): E¢ = G¢ = 0 

If E¢ = G tP = 0 then E and G are constants. 
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By an appropriate scaling of the coordinates u and v we can make E and G equal and 

without loss of generality take E = 1 and G = 1. Thus we use a Tchebychef net to 

represent the given PDE (2.10). 

So, for these choices of E and G equation (2.4) reduces to 

-2F ,;.. + 2K(l - F2) + [-2F(F4,)2 - 2(1 - F2)F¢¢],;.. ,;.. = 0 
tf>'f'uv (l _ F 2) 'f'u'f'v , 

i.e. 
KH

2 
1 { F(F¢)

2
} 

</>uv = ~ - F4> F4>4> + H 2 <Pu<Pv, (2 .11) 

(since F4> # 0). Equation (2.11) is of the form 

</>uv = M(</J) + A(</>)</Ju</>v, (2.12) 

where 

(2.13) 

and 

(2.14) 

These equations indicate that, if a second order quasi-linear hyperbolic PDE is of the 

form (2.12) , then it can be identified as Gauss ' equation, where the ( u, v) coordinate 

system corresponds to a Tchebychef net (E = 1, G = 1 and F = F(¢)), on a surface 

of curvature 
K = M(¢)F¢ 

(1 - F2 ) ' 

where the function F can be determined from (2.14). 

Let :E (see Fig. 2.1) denote the surface described by the position vector function r(u , v). 

Then 
E 1, 

G 1, and (2.15) 
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r 

0 

Figure 2.1: Surface I: described by the vector r( u, v). 

But 

= cos X, 

where x( ¢) is the angle between the coordinate lines on the surface; thus, 

F = cos x(ef>), (2.16) 

since llrull = llrvll = 1. Consequently, 

F<P - sin x(ef>) x'(<I>), 
(2.17) 

F<P<P = - sin x(<I>) x"(<I>) - cos x(<I>) (x'(</>)) 2
, 

and substituting these expressions into (2.14) we have 

x" A(</>)=--. 
x' 

(2.18) 

Therefore, 

ln x' = - j A(</>)d</> + ln lei, 
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where c is a constant of integration, and so 

x1 ( </>) = c exp ( - / A ( </>) d </>) . 

Thus, 

x(</>) = c j exp (- fo</J A(() d() d</> + c1, (2.19) 

where c1 is some constant of integration. In terms of x(</>), the Gaussian curvature is 

K = - _M ( </>) x' ( </>) . 
sm x( </>) 

We can thus identify the PDE given by equation (2.12) with a surface defined intrinsi­

cally by the quantities 

M(</>) I 

E = l , F = cos x(</>), G = 1 and K = - . (</>) X (</>). (2.20) 
smx 

Note that if A ( </>) = 0 then we have 

x(</>) = >..¢ + >..1, 

and so, 

F = cos(>..¢ + >-..1), 

where >.. and .X1 are arbitrary constants. From (2.19) we have 

and from equation (2.12) 

Xu= .Xexp (- / A(</>)d<f>) </>u, 

Xv = A exp ( - / A ( </>) d </>) </>v , 

(2.21) 

Xuv = A exp ( - / A(</>) d </>) { <f>uv - A(</>) <Pu </>v} _ A exp ( - / A(</>) d </>) M ( </>) . 
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Hence solving equation (2.19) for ef;, we have a PDE of the form 

Xuv = M1(x). (2.22) 

We can thus reduce a PDE of the form of (2.12) to one of the form (2.22) by using the 

transformation defined by (2.19). Hence it is sufficient to limit the investigation to the 

case when A(<f;) = 0. 

If A(¢)= 0, equation (2.12) reduces to 

<Puv = M(<f;) , (2.23) 

and from (2.20) and (2.21), 

E = l, F = cos ( >. ¢i + >. 1 ) , G = 1 K = - >. M ( <P) 
' ' sin ( >. ¢i + >. 1 ) 

(2.24) 

The constants ).. and >. 1 correspond respectively to the magnification and the shift of 

the angle between the characteristics. Since >.1 is merely the reference point from which 

the angles are measured, we can choose >. 1 = 0. Using the transformation 

X = >.¢, 

which involves the magnification factor >., we may transform (2.23) to a PDE of the 

form 

Xuv = M1 (x). 

Thus without loss of generality we may choose ).. = l. Choosing ).. = l and >.1 = 0 we 

identify a PDE of the form (2.23) as Gauss' equation on a surface I; with 

M(<f;) 
E = l F = cos ,1.. G = 1 K = - --

' 'P, ' sin ef; · (2.25) 

We shall now derive a transformation on I: from a geodesic coordinate system (x, y) to 

the ( u, v) coordinate system (Tchebychef net). 

Let E, P and G be the coefficients of the first fundamental form in the geodesic coor­

dinate system. In geodesic coordinates E = l and P = 0. Moreover, Gauss' equation 
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becomes the Schrodinger equation 

Hxx + K(x, y) fI = 0, (2.26) 

where H2 = EC - F2 = G. 

If we can determine a coordinate transformation between geodesic coordinates and 

Tchebychef net coordinates, and if we can solve this Schrodinger equation, then we can 

find a solution to (2.23). 

Geodesic coordinates Tchebychef net coordinates 

A 

E=1 

A 

G=? 

A 

F=O F = cos <I> 

G = 1 

Figure 2.2: Coordinate transformation from geodesic coordinate system to the Tcheby­
chef net coordinate system. 

The usual tensor properties (where 911 = E, 912 = 921 = F , 922 = G, 911 E , 

912 = 921 = F, 922 = G) yield the following relations between the coordinates: 

x; + H2 y~ = l , (2.27) 

~ 2 
XuXv + H YuYv = F = cos</>, (2.28) 

x; + H2 y; = l. (2.29) 

The general solution to the above system of PDEs provides the required coordinate 

transformations between the two coordinate systems. Solving this system could be 

formidable. Thus we look at one specific solution which we can be determined by 

assuming, 

{ 
~2 }1/2 

Xu = Xv = l - H ( X, y) and y~ = y; = l (2.30) 
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provided Yu =I= Yv· From the last equation we define a transformation implicitly by 

x = l - H 2 
( x , y) du + f ( v) J { A }1/2 (2.31) 

and 

y = u - v , (2.32) 

where f ( v) satisfies, 

a{/( A )1/2 } { A2 }1/2 J' ( V) + a V l - H 2 
( X , y) du = l - fl ( X , y) . (2.33) 

Clearly this transformation is non-singular since the Jacobian is non- zero. i.e. 

Xu Yv - Xv Yu = - 2 J (1 - H2
) =/= 0. 

We also note that fI < l unless K = 0, i.e. , M(¢) = 0. 

We are aware of the fact that, by choosing particular solutions as described above for 

the system of PD Es (2.27)- (2.29), we restrict ourselves into obtaining only special 

classes of solutions of the PDE (2.23) and not its general solution. 

Equations (2.28) and (2.30) imply that 

F = cos ¢ = ( 1 - 2 H2
) , 

hence 
A ¢ 

H = sin 2. 

The derivatives of fI with respect to x are thus 

and 

A 1 ¢ 
Hx = - COS - <Px 

2 2 

(2.34) 

(2.35) 

Substituting fI and Hxx into the Schrodinger equatiGn (2.26), and after some simplifi-
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cation we obtain 

<Pxx - 1 tan~ (¢x) 2 = M(</>) sec2 
~- (2.36) 

Equation (2.36) is a second order PDE which does not have the y derivative terms and 

can be treated as a second order ODE. The two arbitrary 'constants' of integration will 

be arbitrary functions of y . The ODE 

d
2
¢ 1 qJ (d</>) 2 

qJ - - - tan - dx = M ( ¢>) sec2 
-
2 dx2 2 2 

can be solved by the use of the substitution 

We have that 

dqy 
- =p. 
dx 

d2 ¢> d (d</>) d d</> dp 
dx2 = dx dx = d</> (p) · dx = pd</> ' 

and (2.37) thus reduces to 

dp 1 </> 2 <P -l - - - tan -p = M ( ¢) sec - p . 
d¢> 2 2 2 

Let 

z = p2 

then equation (2.39) reduces to the linear first order ODE 

dz </> 2 ¢> 
- - tan - z = 2M ( ¢>) sec - . 
d</> 2 2 

To solve this, we find the integrating factor 

exp ( j - tan ~ d ¢) = cos2 ~ , 

and reduce equation (2.41) to 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 
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Therefore, 

(2.44) 

Now the combination of (2.38), (2.40) and (2.44) yields, 

d</> </> {! }1/2 p = dx = 2 sec 2 M ( </>) d </> + c1 (y) , 

and so we have 
l J cos .ce 

x = 2 {J M(</>)d</> :c1(Y)}1;2d</> + c2(Y) (2.45) 

where c1(y) and c2 (y) are arbitrary functions of y. 

Now (2.45) defines a relationship 

µ(x, y, </>) = 0 (2.46) 

between x, y and </> and by assuming that one set of values x0 , y0 , </>o can be found to 

satisfy (2.46) and that , near (x0 , y0 , ¢0), µ and its first partial derivatives are continuous 

and t # 0, the implicit function theorem[22] states that in a region of the xy plane 

containing (x0 , y0 ) , there is precisely one differentiable function 

</> = a(x,y) (2.47) 

which reduces (2.46) to an identity and is such that </>o = a (x0 , y0 ). 

Under these assumptions, we now have from (2.35) and (2.47) that, 

' 1 
H = sin 2(a (x , y)) (2.48) 

and so 
1 

Xu = Xv = cos 2(a (x, y)). (2.49) 

Noting that a(x, y) contains the two arbitrary functions c1(y) and c2 (y), and that 

y = u - v we have 
ax 
au 

ax l a V = , COS 2 ( Q ( X, U - V)) . (2.50) 
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From the above expression we can, in principle, determine x in terms of u and v, say, 

x = (3(u,v). 

Hence, there is a coordinate transformation 

and since 

this transformation is invertible: 

X (3 (u , v) }, 
y u-v 

o(x,y) -/- O 
a (u, v) 

u = 1 (x , y) } _ 
V = c5 (x,y) 

Hence the general solution to the given PDE (2.12) is 

</> = a (x , y) 

a(f3(u, v), u - v) 

where u and v are given by (2.52) . 

(2.51) 

(2.52) 

(2.53) 

The above method shows that at least formally, a solution can be obtained; however, 

the method involves some inversions, which may prove formidable. We should also note 

that the functions c1 and c2 depend on y ( or u - v) . In the next section we consider as 

an example, the sine-Gordon equation, since this is of the form (2.23), and investigate 

the possibilities of solving initial value problems. 

2.1.1.2 Example: sine-Gordon equation 

The sine-Gordon equation 

<Puv = sin ¢, (2.54) 
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is of the form (2.23) with M(¢) = sin ¢ and K = - l; hence, (2.45) becomes 

l J cos~ 
X = - 2 

1 2 d q> + C2 (y) 
2 { - COS q) + C1 (y)} / 

(2.55) 

where c1 (y) and c2 (y) are arbitrary functions of y . 

Using some trigometrical identities (2.55) can be expressed as 

(2.56) 

The substitution 

t = sin ( ~) 

puts (2.56) into the form 

(2.57) 

so 

X = ln (2.58) 

Substituting fort , and solving for ¢(x , y) we obtain 

,j,(x,y) = 2 sin- 1 { Jci(Y~ - 1 
sinh{x - c2 (y)}} (2.59) 

or 

sin~= { Jci(Y)
2 

- 1 sinh{x - c2(y)}}. 
Hence from (2.35) 

H = { Jci(Y)
2 

- 1 
sinh {x - c,(y)}}. (2.60) 
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The expression for iI obtained above can be easily verified to be a solution of the 

Schrodinger equation, 

Hxx - H = 0. 

Now from equations (2.30) and (2.60) we have 

Xu = Xu = { 1 - ( ci(y;- l) Sinh2 (x - c,(y)) r2

, (2.61) 

thus , 

J I 

{ 1 - (ci(~-1
) sinh2 (x - c2(y))} 

112
dx = u + p(v) 

and 

J l 
-------------

11
..,-
2 

d X = V + a-( u) 
{ 1 - (ci(~l- 1

) sinh2 (x - c2 (y))} 

where p( v) and a-( u) are arbitrary functions of v and u respectively. 

If we consider the first equation of the above two, and make a substitution 

. Jc1(Y) - 1 . sm0 = 
2 

smh(x - c2(y)) (2.62) 

we get 

u + p(v) = m j 1 
112 d0 

{ 1 + m 2 sin 2 0} 
(2.63) 

where 

(2.64) 

Therefore 
k 

u + p(v) = 2 F (a , k) 
k 

2 sn - l ( sin a , k) , (2.65) 

where 

and Fis an elliptic function of the first kind[l2, 21]; this implies that p(v) depends on 
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the arbitrary functions c1 and c2 and is such that 

and moreover 

From equation (2.65) we have 

sn (¾ (u + p(v))) = sma 

and so by using equation (2.66) we get 

x = tanh- 1 
{ ksn ( ¾(u + p(v)) , k)} + c2(Y) 

where y = u - v . 

(2.66) 

(2.67) 

(2.68) 

Hence, from (2.59), (2.67) and (2.68) (after some algebraic manipulations) we obtain 

the following family of solutions for the sine-Gordon equation: 

·-l{ sn(i(u+p(v)) ,k ) } cp(u, v) = 2 sm 1; 2 
{1+ (1~:2)cn2 (f (u+ p(v)),k )} 

(2.69) 

where k is an arbitrary function of u - v, and p(v) is an arbitrary function of v. 

2.1.1.3 Initial Value Problems 

In this section we consider the Cauchy Problem [17] for equations of the form (2.12). 

The Cauchy Problem: 

The Cauchy Problem for equation (2.12) consists of solving this PDE for given ini­

tial data along a non-characteristic curve. Let A be a smooth curve with no self­

intersections, defined in the plane in parametric form by u = U(t) and v = V(t). 
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Let 

¢u = P and ¢v = q 

and suppose that on A the Cauchy Data are 

¢ = <P (t), p = P (t), and q = Q (t). (2.70) 

V 

A 

0 u 

Figure 2.3: A smooth non-intersecting curve A in the u - v plane. 

For compatibility it is required that 

~ (t) = P (t) u (t) + Q (t) v (t). 

Then the following system of equations is satisfied along A: 

<Puv - f (<P(t), P(t),Q(t)) 

lJ (t) ¢uu + V (t) ¢uv F (t) 
lJ (t) <Puv + V (t) <Pvv Q (t). 
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Since the determinant of the coefficients of the above system is 

0 1 0 

U V 0 

0 U V 

-UV, 

we note that the Cauchy data are non-characteristic if 

. . 
U =I= 0 and V =I= 0 . 

We use the sine-Gordon equation as an example to illustrate the above initial value 

problem. 

Example: sine-Gordon Equation 

To solve the Cauchy problem for the sine-Gordon equation (2 .54) , we shall take 4> as 

in (2 .59) (using (x, y) geodesic coordinates) rather than as in (2.69) which uses the 

Tchebychef net ( u, v). The calculations for ¢u and <Pv are easier this way. 

Recall from equation (2.59), that 

¢, = 2 sin- 1 
{ Jc,(y~ - 1 

sinh{x - c,(y)} } ; 

therefore, 

2 Jc1(Y) - 1 <Px = 1 2 cosh(x - c2(y)), 
{ 1 - ( ci(~)-l) sinh2(x - c2(y))} / 2 

(2.71) 

and 

2{Jci(~)-l cosh(x-c2(y))(-c;(y)) +sinh(x-c2(y)) ~½c~(y)} 
2 C] (y) -1 

2 

{ 1 - (ci(~)-l) sinh2 (x - c2(y)) }112 

{- 4 (~) cosh(x - c2 (y)) c;(y) + sinh(x - c2(y)) c~(y)} 

2 Jci(~)-l { l - ( ci(~)-l) sinh2 ( X - c2(Y)) }112 (2.72) 
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Recall from (2.51) and (2.61) that 

and 

Yu = l , Yv = - l. 

Hence 

and 

where </>y is as in (2.72). 

Adding the expressions for <l>u and <l>v yields 

~ 
<l>u + <l>v = 4 y ~ cosh (x - c2(y)) 

and subtracting them gives 

{-4 (ci(1- 1
) cosh(x - c2(y)) ~(y) + sinh(x - c2(Y)) c~(y)} 

</>u - </>v = 1/ 2 
Jc1(~)-1 { 1 - (ci(~)-1) sinh2 (x - c2(Y))} 

Suppose that the initial conditions in the ( u, v) coordinate system(Tchebychef net) 

<l>u = P(t) and ¢v = Q(t) are transformed to Pi(t) and Q1(t) in the (x, y) (geodesic) 

coordinate system. Then from the last two expressions we have by substitution that 

(2.73) 
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and 

{- 4 ( ci(y~)-l) cosh(xo - c2(Yo)) c~(yo) + sinh(xo - c2(Yo)) c~ (Yo)} 

-Jci(y~)-l { 1 - ( ci(Y~)-l) sinh2 
( Xo - c2(Yo))} 

112 

(2.74) 

where x 0 (t) and y0 (t) correspond to the initial curve in the (x, y) geodesic coordinate 

system. 

From equation (2.73), 

(2.75) 

and using the identity cosh2 0 - sinh2 0 = l this becomes 

(2.76) 

Equation (2.75) implies 

-1 { Pi+ Q1 } c2(Yo) = Xo - cosh V . 4 c1(yo)-l 
2 

(2.77) 

Equation (2.76) indicates that 

(2.78) 

and differentiating equation (2. 77) with respect to y0 implies 

I ( ) Pi + Ql I ( ) 
~ Yo = 

2 1; 2 C1 Yo 
16 ( c1(Y~)-l) { ( P1 ~Qi) _ ( ci(y~)-1)} 

(2.79) 

Next we substitute the expressions given in equations (2.75), (2 .76), (2.77) (2.78) and 

(2.79) into equation (2.74), and after some simplifications we get , 
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c; (yo) ( Qi _ A) { [ ( C1 (y~ + I ) _ (1 : Q1 )' l [ (1 : Q1 )' _ ( C1 (y~ - I ) l r 
( Q 1 _ Pi) m _ ( ( A : Q1 )' _ c1 ~o)) l [ ~ + ( ( A : Q1 )' _ c1 ~o)) l r 
(Q1 -A) n- ( (P1 :Qi)' - ct)rr 

- (A~ Qi) { I - ( (A
2
::,t )' -c1(y0irr 

{ 2} 1/2 A l-(B-c1(Yo)) , (2.80) 

where 

and B = (Pi+Q1)2 
2\/'2 

(2.81) 

Equation (2.80) is a first order ODE which can be solved for c1 (y0 ) , and so c2 (y0 ) can 

be determined from equation (2.73). Hence, the Cauchy Problem for the sine-Gordon 

equation can be reduced to solving a nonlinear first order ODE and inversions. 

For example, suppose A is denoted in the Tchebychef net coordinate system by 

u + v = c0 (constant) , (2.82) 

and on A, 

q> = <I>o , p = Po and q = Qo (2.83) 

where <I> 0 , P0 and Q0 are constants. It can be shown using equation (2.53) that the 

initial conditions given in equation (2.83), when transformed to the geodesic (x , y) 

coordinates, have the same form. i.e. 

(2.84) 
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where <I> 1 , Pi and Q1 are constants. Then A and B (given in equation (2.81)) are 

constants and so, solving for c1 (y0 ) using equation (2.80) and making a substitution 

(2.85) 

we obtain 

c~(Yo) = - cos0. 0'. 

Substituting the last two expressions in equation (2.80) gives 

0' = A , 

i.e. 

0 = Ay0 + C; (2.86) 

thus 

To determine C , we recall that ¢ = <I> 1 on A. Using the expressions for c1 (y0 ) , c2 (y0 ) 

and equation (2.59), gives 

C = sin- 1 
{ 2 sin2 

(~
1

) - 1} - Ay0 . (2.87) 

Hence, in general , 

c1 (y) = B - sin( A y + C) , (2.88) 

and from equations (2.77) and (2.87) , we find that 

c2(Y) = xo - cosh-
1 J (B _ l) _ s~(Ay + C). (2.89) 

A solution to the Cauchy Problem for the sine-Gordon equation in geodesic coordi­

nates is given by equation (2.59), where c1 (y) and c2 (y) are defined by equations (2.88) 

and (2.89) respectively. To get a solution in terms of the original coordinates we can 

use equations (2.32) and (2.45) to express x and yin terms of u and v. 
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Derivation of the Beltrami Surface 

Though it is perhaps not obvious, this solution corresponds to a Beltrami surface 

[28] (see Fig.2.4). Recall that the Beltrami surface is a surface of revolution described 
by 

r = ( sin X cos Y, sin X sin Y, cos X + ln tan 1) , 
where the (X, Y) coordinates correspond to the lines of curvature. 

Figure 2.4: B eltrami surface in the (X, Y) coordinate system 

The coefficients E, F and G of the first fundamental form are 

E = cot2 X, F = 0, G = sin2 X , 

and thus H = JEG - F 2 = cos X. 
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(X, V) coordinates Tchebychef net coordinates 

2 
E = cot X 

2 
G=sin X 

(u,v) 

A 

F = cos qi 

A 

G = 1 

Figure 2.5: Coordinate transformation from (X, Y) coordinate system to the Tcheby­
chef net coordinate system. 

A transformation between the (X, Y) coordinate system and the Tchebychef net ( u , v ) 

coordinate system is defined by the system 

X~ cot2 X + Y; sin2 X = 1 , 

2 · 2 ~ XuXv cot X + YuYv sm X = F = cos ¢, 

X; cot2 X + r:2 sin2 X = 1 . 

One solution to this system can be determined under the assumption that 

Choosing 

Y=u-v, 

equations (2.90) and (2.92) give 

Xu = X v = sin X. 

A suitable transformation is defined by (2.93) and 

u + v = ln I csc X - cot X I . 

(2.90) 

(2.91) 

(2.92) 

(2.93) 

(2.94) 
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This non-characteristic curve in the ( u, v) coordinates (Tchebychef net) can be taken 

as the initial curve for the Cauchy Problem of the sine-Gordon equation. Also, we have 

from equations (2.95) and (2 .96) that 

(2.98) 

where c1 , c2 and c3 are constants. 

The last two equations are the same initial conditions as in equations (2.82) and (2.83). 

Since the Cauchy data are analytic, the Cauchy-Kowalewski theorem [9] guarantees a 

unique solution. Thus, the solution which we had for the Cauchy Problem of the sine­

Gordon Equation corresponds to a Beltrami surface. 

Further Illustration 

If we take a known soliton solution of the sine-Gordon equation, (2.54), 

¢ = 4 tan - l ( exp ( u + v + b)) , (2.99) 

where b is a constant, then from equation (2.35) we obtain 

iI = sech ( u + v + b) , 

and thus from equation (2.30), we get 

Xu= Xv= tanh(u+v+b). 

Since y = u - v, we have Yu= 1 and Yv = -1. Now using the identities [11] 

Yv 
Ux = ' (XuYv - XvYu) 

Yu 
Vx = ' 

(XvYu - XuYv) 

we obtain expressions for Ux and Vx as 

Ux = Vx = 2coth(u + v + b). 



CHAPTER 2. SOME SECOND ORDER PDES AND GAUSS' EQUATION 39 

Since 
A A A 

Hx = HuUx + HvVx, 

we obtain after substitution and some simplifications, 

Hx = sech(u + v + b). 

Similarly using 

we get 

Hxx = sech(u + v + b), 

which clearly illustrates that iI = sech(u + v + b) is the corresponding solution to the 

Schrodinger equation (2.26) , where K = -l. 

Further, solving 

Xu = X v = tanh(u + v + b) 

and choosing the arbitrary functions of integration appropriately, yields the coordinate 

transformation for x as 

x = ln Jcosh( u + v + b) J . 

The above illstration clearly indicates that we can generate classes of solutions to either 

of the equations by using our technique with known solution to one of the equations. 

In this case having 

(2.100) 

equation (2.4) becomes 

<Puv = M(</>) +A(</>)</>;+ B(</>)</>; + C(</>)<Pu<Pv (2.101) 

where 

M(</>) 
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Thus we have to solve a system of two partial differential equations (equations (2.100) 

and (2.101)) , where obviously, both E and G are functionally dependent on the un­

known function ¢. This condition makes it more difficult to solve this system and 

hence to determine the required coordinate system for the interpretation of the Gauss 

equation. Therefore we refrain from further pursuing this case. 

2.1.2 Equations of Parabolic Type 

Consider a second order quasi-linear parabolic PDE of the type 

<Puu = f(<P , <Pu, <Pv)-

Equation (2.4) will be of this form if G,p # 0 and either 

(a) E,p = F,p = 0 or 

(b) E,p<Pvv - 2F,p<Puv = 0. 

2.1.2.1 Case(a): E,p = F,p = 0 

If E,p = F,p = 0 then equation (2.101) will be of the form 

where 

<Puu = N(</)) + A(</))¢; 

N(¢) = -2KH
2 

G,p 
1 {EG

2 

} and A(¢)= G,p 2Ht - G,p,p . 

(2.102) 

(2.103) 

(2.104) 

Equation (2.103) is a second order ODE in ¢, which can be solved using standard 

methods[13]. 

Example: 

Consider the PDE 

Then we have 

N(¢) = 1 and A(¢)= -1. 
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Since E¢ = F¢ = 0, we may choose 

E=F=l. 

Solving (2.104)) for G and K , we obtain 

G = 1 + e2
¢ and K = - l. 

Finally we solve the given problem by using the methods adapted in equations (2.38)­

(2.45) and obtain the solution 

where c1 and c2 are arbitrary constants. 

2. 1.2.2 Case(b): E¢<Pvv - 2F¢<Puv = 0. 

In this case, we end up with the system of PDEs 

and 

<Puu = M(¢) +A(¢)¢~+ B(¢)¢; + C(¢)¢u<Pv 

where 
M(¢) = -2KH

2 

G¢ 
1 {EG

2 

} and A(¢) = G¢ 2Ht - G¢<P . 

(2.105) 

(2.106) 

This scenario is similar to that we had in the second case for the hyperbolic PDEs. Due 

to the same reasons described in that particular case, we are unable to further pursue 

this case. 
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2.1.3 Equations of Elliptic Type 

Consider a second order quasi-linear elliptic PDE of the type 

<Puu + <Pvv = f ( <P, <Pu, <Pv) · (2.107) 

Equation (2.4) is of this form if 

and in this case equation (2.4) reduces to 

<Puu + <Pvv = M(</>) +A(</>)(¢>~+¢>;) (2.108) 

where 

M(¢>) = -2KH2 and A(¢)= (~;:). 

Note that for a real coordinate system to exist A(¢>) =f:. 0, we define implicitly a new 

coordinate system by taking 

E=G=g(ef>) and F=l 

where g(ef>) is given by (using the expression for A(¢)) 

1 ± J1 + 4A(¢)2 
g(</>) = 2A(¢) 

Hence we have our new coordinate system defined by 

-M(¢>) 
E=G=g(</>) , F=l, and K= 2{g(¢)2-l}. 

(2.109) 

(2.110) 

As we have done before in section (2.2.1) we consider the coordinate transformations 

between the geodesic coordinate system and the coordinate system defined above, by 

using the transformation equations, 

(2.111) 
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A 2 
Xu Xv + H Yu Yv = F = l, (2.112) 

Geodesic coordinate system 

A 

E=1 

A 

G=? 

A 

F=O 

x; + H2 y; = g(</)). (2.113) 

New coordinate system 

E = G = g( <!>) 

F=1 

Figure 2. 7: Coordinate transformation from geodesic coordinate system to the new 
coordinate system. 

One solution to the above system of equations (2.111)- (2.113), which we shall use in 

the sequel can be determined by assuming, 

{ 
-2 }1/2 

Xu = Xv = g(</>) - H (x, y) and y~ = y; = l 

provided Yu #- Yv· From the last equation we define a transformation implicitly by 

X = J {g(</)) - H2 (x , y) }112 
du + fi(v) 

and 

y = u - v, 

where Ji ( v) satisfies, 

f{ (v) + :v {J (g(</>) - H2
(x, y)) 

112 
du} { 

- 2 }1/2 g(</>) - H (x , y) , 

and H becomes 

fI = ~{g(</>) -1}1/2. 
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Thus from equation (2.112) we have 

_ _ 1 { )}1/2 
Xu - Xv - y12 1 + g(q; · (2.114) 

As we have described in section (2.2.1), we find the first and second derivatives of fI 

with respect to x and then by substitution we obtain from the Schrodinger equation 

(2.26) , a PDE 
¢xx = {2(g - l)g" - (g')

2
} (¢x)2 + 2M(¢) 

2(1 - g)g' (g + l)g' 

which can be treated as a second order ODE, as it does not have the y derivative terms. 

The ODE 

where 

d2¢ (d¢)2 
dx2 = a(¢) dx + /3(¢)' 

2(g - l)g" - g'2 

a(¢)= 2(1 - g)g' 
and /3(¢) = 2M(¢) 

(g + l)g' 

is solved using the same techniques as used in section (2.1.1); thus , 

1 e- J a (¢)d¢ 

X = - J 1 2 d qJ + Q2(y) 
2 { J 2/3( ¢ )e-2 J a(¢)d¢ dq; + Q1 (y)} / 

where q1 (y) and q2 (y) are arbitrary functions of y. 

Now (2.117) defines a relationship 

µ(x,y ,¢) = 0 

(2.115) 

(2.116) 

(2.117) 

(2.118) 

between x, y and ¢ and by assuming that one set of values x0 , y0 , ¢0 can be found to 

satisfy (2.46) and that, near (x0 , y0 , ¢0), µ and its first partial derivatives are continuous 

and ~ =/= 0, the implicit function theorem states that in a region of the xy plane 

containing (x0 , y0 ), there is precisely one differentiable function 

qJ=T(x,y) (2.119) 

which reduces (2.117) to an identity and is such that ¢0 = T(xo,Yo). 
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Under these assumptions, we now obtain 

fI = ~{g('r(x , y)) - 1}1
/

2
, (2.120) 

and so, 
ox _ ox _ l 1/ 2 
OU - av - 'v'2 {l + g(r(x, u - v))} (2.121) 

where ¢ = r(x , y) = r(x, u - v) (since y = u - v). 

Since from equation (2.116) we will be able to determine x in terms of u and v, say, 

x = rJ( u, v), we finally obtain the general solution of the PDE (2.106) as 

</> = r(rJ(u, v), u - v). 

Next we shall consider some examples of the above discussed type of PDE and analyse 

the possibilities of finding the general solution. 

2.1.3.1 Example 1: 

First let us consider the equation 

4( </>2 + 4) { 2 2} 
ef>uu + ef>vv = <f>2 ( ef>2 + 8) <f>u + <f>v 

of the form (2.107), then we have 

Also we have 

which implies 

4(</>2 + 4) 
M(</>) = 0 and A(</>)= </>2(</>2 + B) . 

1 ( 2 E=G=g(</>)= 4 </> +4), F=l and K = 0 

a(</>)= 0 and /3(</>) = 0 

(2.122) 
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from equation (2.116). Hence from equation (2.115) we obtain 

which yields 
1 

X = -(-) { q> - Q2 (y)} · 
Q1 y 

By substituting the expression for ¢ obtained above into equation (2.114) we get 

1 { 2 }1/2 
Xu= Xv= 

2
\/'2 (q1(y)x + Q2(Y)) + 8 

which yields 

/ 
v'2 

--------
1
-12 dx = u + p0(v), 

{(q1(y)x + Q2Y) 2 + 8} 
(2.123) 

and 

/ 
v'2 

--------11-,-2 
dx = v + o-0 (u), 

{(q1(y)x + Q2Y) 2 + 8} 
(2.124) 

where p0 (v) and o-0 (u) are arbitrary functions of v and u respectively. 

If we consider equation (2.123) and make the substitution 

we obtain 

4 It+ v't
2 + 8 I u + Po ( v) = - ln v'2 , 

Q1 2 2 
(2.125) 

which implies that p0 ( v) depends on the arbitrary functions q1 and q2 and is such that 

Equation (2.125) implies that 
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and therefore since y = u - v, 

1 { r,;. . [ql ( U - V) l } x = qi(u _ v) 2v 2smh 4 (u + p0 (v)) - q2 (u - v) . 

Hence the general solution for the PDE in equation (2.120) is 

r,;. . { ql ( U - V) } ¢>( u, v) = 2v .t smh 
4 

( u + Po ( v)) . 

2.1.3.2 Example 2: 

The equation 

<P ( 2 ) 4(¢>
2 

+ 4) { 2 2} 
<Puu +ef>vv = l6 <P +8 + ¢,2(¢,2+8) <Pu+<Pv 

is of the form (2.108), where we identify 

Hence we get 

which implies 

4(¢>2 + 4) 
and A ( ¢>) = ¢>2 ( ¢>2 + 8) . 

1 2 
E=G=g(</>)= 4(¢> +4), F=l 

-1 
and K= -

2¢, 

a(¢>) = 0 and /3(¢>) = 1 

from equation (2.116). Hence from equation (2.115), 

where r 1 and r2 are arbitrary functions of y = u - v. 

(2.126) 

Using the same procedure as in Example 1 we obtain the general solution for the PDE 

(2.122) as 
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2.2 Solving a class of second order non-linear PD Es 

In this section we consider a class of Monge-Ampere equation [1, 23, 41] and discuss 

a method for constructing solutions. We first identify the Monge-Ampere equation as 

the Gauss equation and then reformulate it as the sine-Gordon equation via Backlund 

transformations. The sine-Gordon equation may be solved by the methods discussed 

in the previous sections, and this will yield the corresponding solution to the Monge­

Ampere equation. It will be shown that instead of solving the Monge-Ampere equation, 

we can solve a transformed equation-a first order non-linear PDE using the solution of 

the sine-Gordon equation. 

2.2.1 A class of Monge-Ampere equation 

Consider a surface described by 

r = (X, Y, Z(X, Y)). 

The components of the first fundamental form (1.4) are 

E = l + Z} , F = Z x Zy , G = l + zt , 

and the components of the second fundamental form (1.11) are 

Zxx 
e- --;::===== - J1 +Zl, + Z~ ' 

f = Zxy 
J1 + Zl, + Z~ ' 

and 
Zyy 

g - --;:===== 
- J1+z1+z~-

In terms of this parametrization, the Gaussian and the mean curvatures are 

K _ Zxx Zyy - Zl,y 
- (1 + Zl, + Z~ )2 

(2.127) 
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and 
1-l = Zxx(l + zi) - 2Zx Zy Zxy + Zyy(l + Z1,) 

2 (1 + z1 + zf )312 
(2.128) 

We note that the Gauss equation reduces to equation (2.127) for graphical coordinates. 

Further, when substituting K and 1-l in the linear Weingarten relation [36] 

K + 2b1-l + c = 0 (2.129) 

where b and c are arbitrary constants, we obtain 

Zxx Zyy - Z1,y + b Zxx(l + Zf) - 2Zx Zy Zxy + Zyy(l + Z1,) + c = O. 

(1 + z1 + Zf )
2 

2 (1 + z1 + zi)312 

For the choice of b = 0 and c 

equation (2.130) reduces to 

(2.130) 

1 equation (2.129) describes a pseudosphere and 

Zxx Zyy - Z1,y 

(1 + Zl + Zf )2 
-1. (2.131) 

2.2.1.1 A special class of Monge-Ampere equation and Backlund transfor­

mations 

In this section we consider a special case of the Monge-Ampere equation, equation 

(2.131) and discuss some solution techniques by using Backlund transformations. 

If the surface is described in Tchebychef net coordinates ( u, v) the components of the 

fundamental form are E = l , F =cos¢ and G = l , where¢ is the angle between the 

coordinate curves on the surface (section 2.1.1.2). For a pseudosphere with K = -l, 

Gauss's equation yields the sine-Gordon equation (1.18). 

In graphical coordinates, the Gauss equation produces the Monge-Ampere equation 

(2.131). These two PDEs are evidently connected by a Backlund transformation and, 

once such a transformation is known, the Monge-Ampere equation can be solved if the 

sine-Gordon equation can be solved, (and vice-versa). 

The Backlund transformation is essentially a transformation on the solution surface 

from graphical to Tchebychef net coordinates. Interpreting the tensor formulae given 
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in equation (1.20) as 
ax1 axm 

gij = 91m 8Xi oXJ 

for coordinate transformations we obtain the system of nonlinear first order PDEs 

(1 + p2 )XuXv + pq(XuYv + X v Yu) + (1 + q2)YuYv = COS</>, 

(1 + p2)X; + 2pqXvYv + (1 + q2 )Yv2 = 1 , 

where p = Zx and q = Zy. 

Graphical Coordinates Tchebychef net Coordinates 

A 2 I'. 

E=1+Z F=ZZ 
X X Y E:1 

I'. 2 
G = 1 +Z G = 1 

y 

(2.132) 

(2.133) 

(2.134) 

Figure 2.8: Coordinate transformation from graphical coordinate system to the Tcheby­
chef net coordinate system. 

Let 

M=(~ffe) , 
~~ 

and 

where i = u, v. Then the system (2.132)-(2.134) transforms to the system 

XuXv + (l + p2 + q2)YuYv = COS</>, 

x; + ( 1 + P2 + q2) y; = l. 

(2.135) 

(2.136) 

(2.137) 
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Here (x, y) corresponds to geodesic coordinates since E = 1, P = 0 and G = (l+p2+q2). 

Also we note that 

( ;. ) = M, ( :: ) (2.138) 

where 

We now have a Backlund transformation between the (X, Y) and the (x , y) coordinate 

systems. Next, we shall derive a transformation between the geodesic and the Tcheby­

chef net coordinate systems (see Fig.2.9). We note that solutions to the system of PD Es 

(2 .135)-(2.137) will provide us with such a transformation. Since we have already dealt 

with a similar system in section 2.2.1 , it motivates us to choose the following set of 

solutions to this system. 

Let 

y=a(u- v) (2.139) 

where -1 <a< 1, a=/- 0, and 

{ 
2 2 2 } 

112 
Xu = X v = 1 - a (1 + p + q ) . (2 .140) 

Note that the Jacobian 

o(x, y) { 2 2 2 }1/ 2 
o(u, v) = XuYv - XvYu = -2a 1 - a (1 + p + q ) =f. O; 

hence the transformation between the (x , y) geodesic and the (u, v) Tchebychef net 

coordinate systems is non-singular, provided that a2 (1 + p2 + q2 ) =f. 1. 

Now by substituting (2.139) and (2.140) in (2.136) we get 

cos¢> = 1 - 2a2 (1 + p2 + q2
) 

or 

(2.141) 
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Graphical Coordinates 

A 2 A 
E=1 +Z F=Z Z 

X X Y 

A 2 
G=1+Z 

y 

I 

(X,Y} ,' , , , 
I 
I 
I 
I 
I 
I 

\ 
\ ,' 

\ , 
\ , 

_.-----------

- -

Tchebychef net Coordinates 

E = 1 F=COS $ 

G = 1 

I 
' , ', , 

\ , 

I 

\ (u,v} 
I 
I 
I 
I 
I 

I 
I 

' I 
', I E=1 F=O 

\ ,' 
\ , ,..., 

'~ 
(x,y) ~ 

' \ 
' ',, ........ 

-
G = 1 

,,,.,,,~ 

--- ---

Geodesic Coordinates 

, , 

I 
' (x,y} 

I 
I 

Figure 2.9: Coordinate transformations between graphical , geodesic and Tchebychef 
net coordinate systems. 

Equation (2.141) is a first order non-linear PDE which can be solved for Z(X, Y) , a 

solution to the Monge-Ampere equation, provided that we have the solution </> ( u , v) 

of the sine-Gordon equation, in terms of X and Y. That is, we have to relate both 

set of transformations (given in (2 .138) and (2.139)-(2.140) respectively) , the transfor­

mations between graphical-geodesic ((X, Y) - (x , y)) and the geodesic-Tchebychet net 

( ( x, y )-( u , v) ) and thus determine the corresponding transformation between graphical­

Tchebychef net ( (X, Y) - ( u, v)) coordinate systems. 

We note from (2.140) that 
</> 

Xu = X v = COS - . 
2 

(2.142) 

If we denote 

A= 
Jp2 + q2 

p 
and B q 

-Jp2 + q2 
(2.143) 
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then we have 

A2 + B 2 = l 

and from (2.138) we find 

and 

By solving (2.145) and (2.146) for A and B we get 

A = XuYu - YuXu 
x2 + y2 u u 

XuXu + YuYu 
and B = ----­

x2 + y2 u u 

Similarly from (2.147) and (2.148) we obtain 

A = X vYv - Yvxv 
x2 + y2 

V V 

and B = X vXv + YvYv 
x2 + y2 

V V 

Substituting (2.149) in (2.144) yields 

xz + y2 = x2 + y2 u u u u 

and similarly by substituting (2.150) in (2.144) gives us 

X 2 y2 2 2 
v + v = Xv+ Yv · 

(2.144) 

(2.145) 

(2.146) 

(2.147) 

(2.148) 

(2.149) 

(2.150) 

(2.151) 

(2.152) 

Now by equating the two different expressions for A and B in (2.149) and (2.150) we 

have 
XuYu - YuXu XvYv - YvXv 

x2 + y2 x2 + y2 u u V V 

(2.153) 

and 
XuXu + YuYu XvXv + YvYv 

x2 + y2 x2 + y2 u u V V 

(2.154) 
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First by substituting 

cf> 
Xu= Xv= cos 2 , Yu= a and Yv = -a 

in equations (2.151),(2.152), (2.153) and (2.154), and then by comparing them we 

determine that 
cf> 

Xu= Xv= -cos 2, Yu= a and Yv = -a (2.155) 

a solution to the system (2.151)-(2.154), where A and B become 

2acos '1. a2 - cos2 '1. 
A=± 2 and B= 2 

a2 + cos2 '1. ' a2 + cos2 '1. · 2 2 

We note that particular choices of solutions for coordinate transformations similar to 

what we have here, will not help us obtain the general solution to the original problem, 

but only help us find a special class of solutions. From (2.155) it is evident that given 

cf>( u, v), a solution to the sine-Gordon equation we can determine X and Y in terms of 

u and v. In other words, we determine the required Backlund transformations (say) 

X = a(u,v) } 
Y = (3 (u, v) 

(2.156) 

and since the Jacobian J = 2a cos ( ! ) =I= 0 for solutions of the sine-Gordon equation 

such that cos(!) =/= 0, the transformations in (2.155) are invertible and thus we obtain 

u = ,(X, Y) } . 
v = o (X, Y) 

Hence using (2.157) we can write (2.141) as a first order non-linear PDE 

) 
2 2 1 . 2 (<P(X, Y)) 0 (X, Y, Z, p, q = p + q + 1 - a

2 
sm 

2 
= 0, 

where 

<P(X, Y) = ¢(,(X, Y) , o(X, Y)). 

(2.157) 

(2.158) 
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Equation (2.158) can, in principle, be solved using characteristics [33] which helps us 

to write (2.158) as a system of five ODEs 

X'(t) =Gp= 2p, (2.159) 

Y'(t) = 0q = 2q, (2.160) 

Z'(t) = p0P + q8q = 2(p2 + q2
), (2.161) 

p'(t) = -0x - p0z = -0x, (2.162) 

and 

q'(t) = -0y - q0z = -0y, (2.163) 

where 0 z = 0. Solving this system of OD Es will enable us to determine the solution 

Z = Z(X, Y) for the Monge-Ampere equation (2.131). 

Next we shall illustrate how a solution of the sine-Gordon equation can be used to 

determine a solution to the Monge-Ampere equation in the form of (2.131). 

Example: A class of solutions 

The function 

</J = 4tan-1 (e(u+v)) (2.164) 

is a (soliton) solution of the sine-Gordon equation (2.54). ow 

¢ 1 - tan2 P. 
cos - = 4 

, 
2 1 + tan2 P. 

4 

and by using (2.164) we obtain 

<p 
cos 2 = -tanh(u + v); (2.165) 

hence, equation (2.155) indicates that 

Xu= Xv= tanh(u + v) (2.166) 
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and thus 

X = ln lcosh(u + v)I . 

Further, we have 

Y=a(u-v). 

Equation (2.168) implies that 

and (2.165) implies that 

consequently, 

sin ~ = sech(u + v); 

sin2 P.. = e-2x. 
2 

Equation (2.158) thus reduces to 

G(X,Y, Z,p, q) = p2 +q2 +l- \e-2x = 0, 
a 

with characteristic equations 

and 

Equation (2.174) yields 

X'(t) =Gp= 2p, 

Y'(t) = Gq = 2q, 

Z'(t) = pGP + qGq = 2(p2 + q2) , 

p'(t) = -Gx = -Gx = -~ e-2x 
a2 

q'(t) = -Gy = -Gy = 0. 

q(t) =constant= c1 (say) 

and so, from equation (2.171) we obtain 

(2.167) 

(2.168) 

(2.169) 

(2.170) 

(2.171) 

(2.172) 

(2.173) 

(2.174) 

(2.175) 

(2.176) 
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where c2 is an arbitrary constant. Now from equations (2.170) and (2.173) we have 

4 
X"(t) = 2p'(t) = -- e-2x 

a2 

which is a second order ODE in the form 

from which we obtain a solution 

1 _ 1 { 1 - [ af3 Sech ( yC3 ( t + C4)) r } 
X(t) = -tanh 4 

2 1+[af3sech(y'C3(t+c4))] 

where c3 and c4 are arbitrary constants. Equation (2.177) implies 

X'(t) = Jcj'tanh (Jcs(t + c4)) , 

and equation (2.170) implies that 

yC3 
P = -

2
- tanh (Jcs(t + c4)) . 

Hence (2.172) reduces to 

and therefore 

(2.177) 

yC3 { [tanh ( y'C3(t + c4)) + ll } Z(t) = - ln -----,---~- - 2 tanh (Jcs(t + c4)) +2cit+c5 (2.178) 
4 tanh ( y'C3 ( t + c4)) - 1 

where c5 is a constant. 

Hence we have solved the system of five ODEs (2.170)- (2.174), which has generated 

five arbitrary constants c1 , c2 , c3 , c4 and c5 , and thus we have determined a solution to 

the Monge-Ampere equation which corresponds to the soliton solution (2.164) of the 

sine-Gordon equation. 
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The elimination of the parameter t and some of the arbitrary constants in equations 

(2.176), (2.177) and (2.178) yields the general solution [33] of the Monge-Ampere equa­

tion which corresponds to the solution of the sine- Gordon equation given in (2.164). 

A relationship amoung the Monge-Ampere equation, sine-Gordon equation 

and the Schrodinger equation 

Monge-Ampere Equation 

A 2 A 

E=1+Z F=Z Z 
X X y 

A 2 
G:1+Z 

y 

Graphical Coordiflates (X,Y) 
I 
I 
I 
I 
I 
I 
I 
I 
\ 
\ 

\ 
\ 

\ I 
\ I 

' I 

' ' ',...; 

----------
- . 
E = 1 F:O 

-
G = 1 

... __________ _ 

sine-Gordon Equation 

G = 1 

Tchebychef net ~oordinates (u,v) 

I 
I 

Schrodinger Eq ation 
' I I ,, 

\ I I 

------------
', ,, ,'' 

\, ,,.,,:,, E = 1 
v' I 

-F=O 

I : 
I \ 

I \ 
I \ 

,," ', 
I ', 

G = 1 

.... ___________ _ 

' ' ' 

,,,,," 
,, 

' 

I 

\ 
\ 
\ 

I 
I 

I 
I 

Geodesic Coordinates (x,y) Geodesic Coordinates (x,y) 

Figure 2.10: Relationships among the sine-Gordon equation, the Monge- Ampere equa­
tion & the Schrodinger equation. 

The method described in section 2.2.1 requires a solution to the sine- Gordon equa­

tion or in other words we have to solve the sine-Gordon equation to find solutions 

to the Monge-Ampere equation. Solving the sine-Gordon equation using Backlund 

transformations has already been discussed in previous sections where the Backlund 

transformations were defined from the ( u, v) Tchebychef net to the geodesic coordinate 

system, and then we had to solve the Schrodinger equation in order to get solutions to 

the sine-Gordon equation. Fig.2.10 depicts the situation. 
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Initial value problems: The Cauchy problem 

Suppose we have to find a solution of the Monge-Ampere equation which passes through 

a curve r defined by 

X=a(s) , Y=J3(s) , Z=i(s) , (2.179) 

such that XY =J 0, then, we have to actually use these initial conditions to solve 

equation (2.158) and find the unique solution to the Monge- Ampere equation. 

We solve the system of ODEs (2.159)-(2.163) subject to the initial conditions for X , Y 

and Z as 

Xo = a(s) , Yo= /3 (s), Zo = 1(s) , (2 .180) 

in the solutions 

X = X(Po , qo , Xo , Yo , Zo , to , t ), etc. (2.181) 

The corresponding initial values of p0 , q0 are determined by the relations 

i '(s) = Po a'(s) + qo J3'(s) 

and 

e{a(s) ,J3(s),1(s),Po , qo} = 0. 

If we substitute these values of X 0 , Y0 , Z0 , p0 , q0 and the appropriate value of to in 

equation (2.162) , we obtain X , Y, Z in terms of the two parameters t , s such that 

(2.182) 

Eliminating s , t from these three equations yields the required solution in the form , 

w(X, Y, Z) = 0. 
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2.2.1.2 A more general class of Monge-Ampere equation and Backlund 

transformations 

Let us now consider the more general class of Monge-Ampere equation in the form given 

in equation (2.126). Since to every surface satisfying a linear Weingarten relation we can 

find a pseudosphere with Gaussian curvature K = -1 among its parallel surfaces[38], 

there will exist a geometrically tractable transformation from the familiar Monge­

Ampere equation (2.127) to the generalised Monge-Ampere equation (2.126). Now 

suppose that we have a solution to the Monge-Ampere equation for the pseudosphere. 

Then we can use the Backlund transformations we have developed in section 2.2.1.1 

to get a solution to the sine-Gordon equation (2.54) or vice versa. Once we have the 

solution to the sine-Gordon equation we can use known Backlund transformations[36] 

to get it into the lines of curvature. But using the concept of parallel surfaces we know 

that the new fundamental components will be in terms of the lines of curvature for the 

parallel surface. Also we know the Backlund transformations to get this in terms of the 

characteristics(which corresponds to the Tchebychef net) coordinates. Thus, we have 

a solution to the generalised sine-Gordon equation, and from this we can determine 

the corresponding solution of the generalised Monge-Ampere equation. Fig.2.11 given 

below illustrates this concept. 
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Graphical Coordinates 

Monge-Ampere Equation 

Parallel Surfaces 

Generalised 

Monge-Ampere Equation 

Graphical Coordinates 

Lines of Curvature 

Tchebychef net Coordinates 

sine-Gordon Equation 

Parallel Surfaces 

Generalised 

sine-Gordon Equation 

Tchebychef net Coordinates 

Figure 2.11: Relationships between the sine-Gordon, the generalised sine- Gordon, the 
Monge-Ampere and the generalised Monge-Ampere equations. 
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In Chapter 2 we identified some coordinate systems which enable us to interpret 

the Gauss equation as some well known partial differential equations such as the 

Schrodinger equation, the sine-Gordon equation, the Liouville equation and the Monge­

Ampere equation. We used this interpretation to investigate some of the connections 

between these equations and solutions techniques using coordinate transformations. 

We have yet, however, to address the matter of how a given partial differential 

equation can be interpreted as the Gauss equation. That is, given a PDE, is there a 

systematic way to obtain a coordinate system such that the PDE corresponds to the 

Gauss equation? We address this question here for a more general class of PDEs. 

In the next section we describe briefly some of the work carried out by Chern, 

Tenenblat, Kamran, Jorge and Sasaki[4, 15, 16, 31, 32], who developed a technique 

to determine coordinate systems in which certain types of evolution equations such as 

the Korteweg-de Vries(KdV) equation, the modified Korteweg-de Vries(MKdV) equa­

tion and the sine-Gordon equation describing pseudospherical surfaces(p.s.s) can be 

interpreted as the Gauss equation. 

In section 3 and 4 we extend this technique to a more general class of PDEs and 
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illustrate through examples how to determine the coordinate systems for these types 

of equations. 

3. 2 Preliminaries 

In this section, we first summarise the essential concepts of how Sasaki[31, 32] used 

the language of exterior differential forms[8] to interpret the AKNS formulation of 

the inverse scattering method(the ISM)[27] for evolution equations. Then we look at 

Chern 's and Tenenblat's[4] formulation of a definition(based upon this interpretation 

of Sasaki's) , for a differential equation to describe a pseudospherical surface. 

Given a non-linear PDE, Sasaki showed the basic steps in the AK S method consisted 

of: 

(a) setting up an appropriate 2x2 linear scattering(eigenvalue) problem in the "space" 

variable in which the solution of the non-linear equation plays the role of the potential; 

(b) choosing the "time" dependence of the eigenfunctions in such a way that the eigen­

values remain invariant as the potential evolves according to the non-linear equation; 

( c) solving the direct scattering problem at the initial "time" and determining the 

"time" dependence of the scattering data; 

( d) doing the inverse scattering problem at later "times" , namely reconstructing the 

potential from the scattering data. 

He then summarises the essence of the first two steps as follows: 

Find three one forms w1 , w2 and w3 consisting of independent and dependent vari­

ables and their derivatives, such that the non-linear equation is given by 

e = dn - n A n = o (3.1) 

where 

and Tr n = 0. 
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Based on this interpretation, Chern and Tenenblat formulated the following definition 

for a differential equation to describe a pseudospherical surface as follows: 

Definition 3.2.1 Let M be a two-dimensional differentiable manifold parametrised by 

coordinates x, t. A differential equation for a real function u(x, t) describes a pseudo­

spherical surface(p.s.s) if and only if there exist differentiable functions fa /3, 1 ~ a ~ 

3, 1 ~ (3 ~ 2, depending on u and its derivatives, h 1 = rJ ( a parameter) , such that the 

1-forms 

Wa = f 0:1 dx + fo:2 dt 

satisfy the structure equations 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

of a p.s.s. Here w1 and w2 are the forms which determine the metric on M , and w3 is 

the connection form. 

In the above definition Chern and Tenenblat had chosen h 1 = rJ( a constant param­

eter), so that the problem may be reduced to the inverse scattering problem considered 

by Ablowitz et al. in [27], where rJ corresponds to the spectral parameter. 

Note that equations (3.3) and (3.4) are the structure equations which determine 

the connection form w3; equation (3.5) corresponds to the Gauss equation. In the 

pseudospherical case the Gaussian curvature of M is -1. 

The above definition led Chern and Tenenblat to perform a complete classification 

of the evolution equations of the form 

( 
au aku) 

Ut = F u, ax ' ... ' axk 

which describe p.s.s. Further they gave a geometrical method for constructing Backlund 

transformations and conservation laws for these equations. The classification and so-

1 u tion by inverse scattering of equations of more general type than the above equa-
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tion, which describe pseudospherical surfaces were considered in subsequent papers 

[15, 2, 25], still under the assumption that h 1 is a constant parameter. 

In [15], Jorge and Tenenblat did a complete classification for equations of the type 

Utt = F ( U , Ux, Uxx , Ut) 

gave similar results to those of Chern and Tenenblat in [4]. Further, Jorge and Tenenblat 

applied their theory to show that the Liouville equation, 

Utt+ Uxx = tJ e2u, 

which is associated with minimal surfaces, also describes a pseudospherical surface. It 

is noted that in the above equation o is a constant. 

In [16], Kamran and Tenenblat generalised the results of Chern and Tenenblat by 

classifying the evolution equations of the form 

( 
ou oku) 

Ut = F u, ox ) ... ) oxk 

which describe pseudospherical surfaces, without making any assumption that h 1 is a 

constant parameter or any other a priori assumptions. Further, they have proved a 

local existence theorem to the effect that given any two differential equations describing 

pseudospherical surfaces (not necessarily evolutionary) , such that one of the functions 

fij is an invertible function of u only, there exists locally a smooth mapping transforming 

any generic solution of one equation into a generic solution of the other. 

Poznyak and Popov [29] used the work of Sasaki, Chern and Tenenblat to describe 

a number of problems related to a certain geometrical approach. This geometrical 

approach is to interpret differential equations and to base them as relations that are 

generated in some way by special coordinate nets on surfaces with prescribed Gaussian 

curvature. 

The generalization by Poznyak and Popov motivates us to analyse more general 

classes of differential equations which may correspond to surfaces of variable Gaus­

sian curvature K(x , t). We thus focus first on extending definition 3.2.1, and then on 

devising a method whereby the functions fa /3 can be determined for the general case. 
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A straightforward extension of definition 3.2.1 is as follows: 

Definition 3.2.2 Let M be a two-dimensional differentiable manifold parametrised 

by coordinates x, t. A differential equation for a real function u(x, t) describes a sur­

face of Gaussian curvature K(x, t) if and only if there exist differentiable functions 

f o:/3 , 1 ::; a ::; 3, 1 ::; {3 ::; 2, depending on u and its derivatives, h 1 = TJ ( a 

parameter), such that the 1-forms 

W1 = f ll dx + fi2 dt 

satisfy the structure equations 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

of a surface of Gaussian curvature K(x, t). Here w1 and w2 are the forms which deter­

mine the metric on M, and w3 is the connection form . 

It follows from this definition that for each non-trivial solution u of the differential 

equation, one gets a metric defined on M, whose Gaussian curvature is K(x , t). We 

note that M is a p.s.s. whenever K = -1. 

3.3 Characterisation I 

In this section, we consider differential equations for u(x, t) of the form 

( 
ou oku) 

Ut = F K(x , t), u, ox ' ... ' oxk (3.12) 

which correspond to surfaces of variable Gaussian curvature K(x, t) in some coordinate 

system. It is assumed that the functions f o/3 depend on u , i:, ... , $, 1 ::; a ::; 3, 1 ::; 

{3 ::; 2, except that h 1 = TJ is a constant. 
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We first obtain necessary conditions on the functions fo. /3 in Lemma 3.3.1. In particular, 

it is shown that J11 and h 1 depend only on u. By imposing a generic condition on f11 

and h 1 we obtain Theorem 3.3.2. The non- generic cases are given by Theorems 3.3.3, 

3.3.4 and 3.3.5. Our proof techniques follow those of Chern et. al. 

From now on we will use the following notation: 

and 

Lemma 3.3.1 Let 

OU 
Zot = ~ -' ut 

zo ,t = F (K(x , t), u , z0, z1 , ... , zk) 

(3.13) 

(3.14) 

(3.15) 

be a differential equation which corresponds to a surface of variable Gaussian curvature 

K(x , t), with associated 1-forms w0 = fo. 1 dx + f 02 dt , 1 :Sa :S 3, where h 1 = r, is a 

parameter. If f 0 13 are functions of zo, z 1 , z 2 , ... , zk then 

f -J -0 11 ,z; - 31 ,z; - , (3.16) 

(3.17) 

f -o 22,Zk-1 - l (3.18) 

(3.19) 

Moreover, 
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k-1 

-F fu ,z0 + L Zi+1 fi2 ,z; + (TJ h 2 - h2h1) = 0 (3.20) 
i=O 

k-2 

L Zi+l f 22,z; + (!12 h 1 - fuh2) = 0 (3.21 ) 
i=O 

k-1 

-F hi,zo + L Zi+l h2,z; + K (Ju h2 - T/ fi2) = 0 (3.22) 
i=O 

Proof: Since 

we have for O ::; i ::; k - 1 

dzi I\ dt = zi+1 dx I\ dt (3.23) 

and 

dz0 I\ dx (
EJzo EJzo ) 
ax dx + at dt I\ dx 

zo t dt I\ dx 
' 

- zo t dx I\ dt 
' 

-F dx I\ dt , (3.24) 

from equation (3.12). 

Substituting (3.6), (3.7) and (3.8) in (3.9) we have 

i.e. 
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The above equation can be written as 

k k 

L fn,z; dzi A dx + L fi2 ,z; dzi A dt + (TJ h2 - h2f31)dx A dt = 0, 
i=O i=O 

which implies that 

k 

fn ,zo dzo A dx + L f n ,z; dzi A dx + fi2,zk dzk A dt 
i=l 

k-l 

+ L fi2 ,z, dzi A dt + (TJ h2 - h2h1)dx A dt 
i=O 

Substituting (3.23) and (3.24) in (3.25) we obtain 

k 

- fu ,zo F dx A dt + L fn ,z; dzi , A dx + !12,zk dzk A dt 
i=l 

k-1 

+ L h2,z, Zi+l dx I\ dt + (TJ h2 - h2h1)dx I\ dt 
i=O 

and this reduces to 

k 

f 12,zk dzk A dt + L f 11,z; dzi A dx 
i=l 

Equating the coefficients on both sides of equation (3.26) yields 

fn,z; = 0, l:Si:Sk, 

k-l 

-F fu ,z0 + L Zi+l fi2,z, + (TJ h2 - h2f31) = 0, 
i=O 

and 

o. 

0 , 

o. 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 
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Now substituting (3.7), (3.8) and (3.6) in (3.10) we obtain 

After some manipulations and substitutions this last equation reduces to 

By equating the coefficients on both sides of (3.31) , we obtain 

and 
k-l 

L Zi+l h2,z; + (- fuf32 + fi2h1) = 0. 
i=O 

Finally, substituting (3.6) , (3.7) and (3.8) in (3.11) we obtain 

which, after substitution and some manipulations reduces to 

k 

L h1,z; dzi I\ dx + h2,zk dzk I\ dt 
i=l 

( 

k-1 ) 
+ -Fh1,z; + ~ Zi+1h2,z; + K(x, t) (fuh2 -TJ fi2) dx I\ dt 

Equating the coefficients on both sides yields 

h1,z; = 0 , , 1 :S i :S k , 

k-l 

(3.31) 

(3.32) 

(3.33) 

o. (3.34) 

(3.35) 

-F h1,z0 + L Zi+l h2,z; + K(x, t)(fnh2 - T/ fi2) = 0. (3.36) 
i=O 
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By taking the partial derivative w.r.t zk of both sides of equation (3.33) we obtain 

which yields 

From (3.33) and (3.36) it is obvious that if fn ,zo = 0 and hi,zo = 0 simultaneously, 

then (3.12) cannot be the necessary and sufficient condition for the Wo: to satisfy the 

structure equations of a surface with Gaussian curvature K(x, t). 

Thus we have 

Hence the lemma. D 

Next we introduce the notation 

L= Ju 
fn ,zo 

P= fn,zo 

fn ,zozo 

and 

h1 H = -K fn h1 

fs1,zo h1 ,zo fn ,zo 

fs1 ,zo 

f31 ,zozo 
M = fi1,zo + K f{1 ,zo , 

k-2 

B = L Zi+ l h2,z; · 
i=O 

For L =I- 0 we define AJ recursively as follows: 

Ak-1 = 0 
' 

and for O :S j :S k - 2, 

(3.37) 

(3.38) 

(3.39) 

k-1 1 1 
j - " H 1 ( L H) AJ+l ( P M) B f H A - - ~ Zi+l AZi + L Z1 zo + 1J + L -Zi + 1J Zj+l + 22,Zj+l • 

i=O 
(3.40) 
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We consider the generic case when H L i=- 0 in Theorem 3.3.2. The non- generic cases 

will be discussed in Theorems 3.3.3 - 3.3.5. 

Theorem 3.3.2 Let Jc,.13 , l ~ a ~ 3, 1 ~ fJ ~ 2, be differentiable functions of 

z0 , z1 , ... , zk such that (3.16)-(3.19} holds, except that h 1 = TJ , a non-zero constant. 

Suppose H L i=- 0. Then 

zo,t = F (K(x, t), zo, z1 ... , zk) 

corresponds to a surface of variable Gaussian curvature K(x, t), with associated I-forms 

we,. = Jc,. 1 dx + Jc,.2 dt if and only if 

and 

(3.42) 

(3.43) 

where Ju , h 1 , h 2 satisfy the following differential equation: 

For O ~ j ~ k - l , 

where 6jo = 0 if j i=- 0 and '500 = l. 

Proof: ( ===}) Suppose zo,t = F (K(x, t), u, z0 , z1 , ... , zk) describes a surface with Gaus­

sian curvature K(x, t). 
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Then from Lemma 3.3.1 it follows that (3.20)- (3.22) is satisfied. Noting that by hy­

pothesis fn ,zo =/- 0 and h1 ,zo =/- 0 simultaneously, (3.20) X h1,z0 -(3.20) x fn ,zo simplifies 

to 

k-1 

L Zi+ l U12,z;h1 ,z0 - h2,zJn,z0 ) + T/ (f32 h1,z0 + K f1dll ,zo) + h2H = 0, (3.45) 
i=O 

where His defined in (3.37). Using (3.39), equation (3.21) can be written as 

B - fuh2 + fi2h1 = 0. (3.46) 

Considering (3.20) x h 1 -(3.22) x fn we obtain 

k-1 

FL+ L Zi+l U12,z;h1 - h2,zJu) + TJ (f32h1 + Kfi2fn) - h2 (ff1 + KH1) = 0, 
i=O 

(3.47) 

where L is defined in (3.37). 

Taking the partial derivative w.r.t zk of both sides of (3.46) we get 

f12 ,zk-I f31 ,zo - f32 ,zk -I fn ,zo = 0, (3.48) 

and taking the partial derivative w.r.t zk - l of both sides of (3.46) we obtain 

(3.49) 

where we have used the results 

f -f -o ll,Zi - 31,z; - l (3.50) 

of Lemma 3.2.1. 

Solving (3.48) and (3.49) for fi2 ,zk_1 and h2,zk-I we obtain 

f _ fn ,zo B 
12,Zk-l - L Zk-1 , f = hi,zo B 

32 ,Zk-l L Zk -1 . (3.51) 
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Now, taking the Zk-l derivative of (3.46) we obtain 

Substituting the expressions given in equation (3.51) in the above yields 

(3.52) 

where M is defined in (3.38) . 

Taking the partial derivative w.r.t zk_ 2 of both sides of (3.46) one gets 

(3.53) 

Then solving (3.49) and (3 .52) for fi 2h _ 2 and h2,zk_2 produces 

1 ( k-2 ) f11 ,zk- 2 = - L fuA - fn ,zo Bzk_ 2 , (3.54) 

and 

(3.55) 

where Aj is defined in (3.40). 

Recursively taking the Zj+ i derivative of (3.45) and the Zj derivative of (3.46) for 

1 S j S k - l ,we obtain 

(3.56) 

and 

(3.57) 

Now by taking the z1 derivative of (3.45) we get 

fi2 ,zohl ,zo - h2,zofll ,zo + A0 = 0. (3.58) 
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Writing (3.45) in the form of 

k-2 

L Zi+l U12,zJ31,zo - h2,zJll,zo) + Zk (!12,zk-1hl,zo - h2,zk_J11,zo) 
i=O 

and by substituting (3.48) yields 

k-2 

L Zi+l (f12,zJ31,zo - h2,zJll,zo) + TJ (hd3I,zo + K f1d11,zo) + h2H = 0. 
i=O 

The above can be expressed as 

1 k-2 j 
~ i 22 

- L.., Zi+1A + -H = 0. 
TJ i=O TJ 

Solving (3.46) and (3.59) for f11 and h 2 yields 

!11h2 1 (-!11 ~ i ) 
fi2 = -- + H -- L.., Zi+IA + h1,z0 B , 

TJ TJ i=O 

and 

hi!22 1 (hi~ i ) h2 = -- - H - L.., Zi+1A + K fn,z 0 B . 
TJ TJ i=O 

(3.59) 

(3.60) 

(3.61) 

Using equations (3.47) , (3.56), (3.57), (3.60) and (3.61) , after some manipulations we 

obtain 

1 k-1 1 ( L ) k-2 B f 
F= LLZi+1Bz; + HL -z1-+Jf1+Kff1 LZi+1Ai+ HL(z1M+TJL)+z1....E., 

i=O TJ i=O TJ 
(3.62) 

In order to get the differential equation given in (3.44), we first differentiate both sides 

of equation (3.60) w.r.t Zj and obtain 

_ 1 1 8 ( j 11 k-
2 

i ) 1 aH 
fi2,zj - - f11h2,zj + H ~ -- L Zi+lA + h1,zoB - H2 ~, 

TJ uZJ TJ i=O uZJ 



CHAPTER 3. PDES, COORDINATE SYSTEMS & THE GAUSS EQUATION 76 

which simplifies to 

f f11 f f11 (~ Ai) h1 ,zo B 
12,Zj = - 22,Zj - H L., Zi+l + ~ Zj • 

'T/ 'T/ i=O Zj 

(3.63) 

Similarly, by taking the Zj derivative of (3.61), after some simplifications we obtain 

f h1 f h1 (kL-2 
Ai) K hi,zo 

32 z · = - 22 z · - H Zi+ 1 + H B z · , ] 'T/ , ] 'T/ . ] 
i=O Zj 

(3.64) 

Considering (3.64) x fu ,z0 -(3.63) x h1,zo and using equations (3.56) , (3.57), (3.63) and 

(3.64) we obtain 

hi ,zo (f AJ f B ) !11,zo (f AJ f B ) L 11 - 11 ,zo Zj - L 31 - 31,zo Zj 

-f (m. f _ ill ("'k-2 . Ai) + h1,,0 B ) 31 ,zo T/ 22,zj T/ H L...,i=O Zi+l Zj H Zj 

+ f (fu f _ .fu_ (°"k-2 . Ai) + Kfu,zo B ) 
11 ,zo T/ 22,zi r,H L..., i =O Zi+l Zj H Zj , (3.65) 

i.e. 

1 ( 2 2 ) H f31,zo + K fu ,zo B zi, (3.66) 

which reduces to (3.44). The necessary part of the theorem is thus proved. 

( ~) Conversely, assume that F, fi 2 and h2 are given by the expressions in equations 

(3.41)-(3.44). 

Suppose / 11 , h 1 , h 2 satisfy the expressions given in (3.16)-(3.18), then the 1-forms w0 

satisfy the structure equations of the surface of Gaussian curvature K ( x, t) , provided 



CHAPTER 3. PDES, COORDINATE SYSTEMS & THE GAUSS EQUATION 77 

that F satisfy the equations (3.20) and (3.22). i.e. F satisfies 

k-1 

-F fu,zo + L Zi+1 Ji2 ,z; + (77 h2 - h2h1) = 0 (3.67) 
i=O 

and 
k-1 

-F h1,zo + L Zi+l h2,z; + K(x, t) (!11 /22 - 77 fi2) = 0. (3.68) 
i=O 

Since we have 

f -J -0 11,z; - 31,z; - , 

and h2,zk_ 1 = 0, we can write (3.62) as 

k 

L fu ,z; dzi I\ dx + fi2, zk dzk I\ dt 
i=O 

0. (3 .69) 

But from the structure equation we have relation (3.25), which could be written as 

k 

!11 ,zo dzo I\ dx + L !11,z; dzi I\ dx + fi2 ,zk dzk I\ dt 
i=l 

(

k-1 ) 
+ ~ !12,z; + (77 h2 - f22f31) dx I\ dt 

Subtracting equation (3.69) from equation (3.70) yields 

!11 ,zo dzo I\ dx + fu ,z0 F dx I\ dx = 0, 

i.e. 

(dz0 - Fdt) I\ dx = 0, 

which implies 

Zot = F. 
' 

Thus the sufficient part is proved and hence the theorem. D 

0. (3.70) 
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In the non-generic case either 

Case(i): L = 0 or 

Case(ii): L #- 0 and H = 0. 

For Case(i), we have that 

f11h1,zo - hif11,zo = 0 

which, for a non-trivial solution, can be classified into the following sub-cases: 

Sub-case(a): f11 = 0 or h1 = 0 

and 

Sub-case(b): fu. = fu which implies h1 h1 

where >. is independent of z0 . 

Theorems 3.3.3 and 3.3.4 deal with sub-cases (a) and (b) respectively. 

From Case(ii), we have that H = 0 and thus 

K f11f11,zo + h1h1,zo = 0 

which implies 

where c #- 0, and c does not depend on z0 . 

This case is discussed in Theorem 3.3.5. 

Theorem 3.3.3 Let f o:/3, 1 ::; a ::; 3, 1 ::; /3 ::; 2, be differentiable functions of 

z0 , z1 , ... , Zk such that (3.16)-(3.19} holds, except that h 1 = r,, a non-zero constant. 

Suppose fn = 0 and h1 #- 0 or f11 = 0 and h 1 #- 0. Then 

zo,t = F (K(x, t), zo, z1, ... , zk) 
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corresponds to a surface of variable Gaussian curvature K(x, t), with associated 1-forms 

Wo: = !0:1 dx + f 0:2 dt if and only if 

J -o 22,Zk-2 -

and 

F = l I: Zi+l ((f Zj+1 (JB) ) + (i22hi)z;) 
T/ h1,zo i =O J=O 31 z· 

J Zi 

T/KB 
+ h1h1,zo' 

if h1 # 0 or 

1 k-1 ( ( k-
2 

( B) ) ) T/ KB F= f LZi+l -I:zj+l -1 +U22!11)z; - ff , 
T/ 11,zo i=O J·=o 31 z · 11 11,zo 

J Zi 

if fn # 0. 

1 ( k-
2 

( B) ) fi2 = - - L Zi+l -f + h2!11 , , 
T/ i=O 11 ~ 

B 
h2 = -

!11 

(3.71) 

(3.72) 

(3. 73) 

(3.74) 

(3.75) 

(3.76) 

Proof: (==?) Suppose zo,t = F (K(x, t), u, z0, z1 , ... , zk) describes a surface with Gaus­

sian curvature K(x, t). Then from Lemma 3.3.1 it follows that (3.20)-(3.22) is satisfied. 

Substituting j 11 = 0 (by hypothesis) in (3.20)-(3.22) we obtain 

k-1 

L Zi+l f12,z; + T/ h2 - f2d31 = 0, 
i=O 

(3.77) 

(3.78) 
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and 
k-1 

-F h1,z0 + L Zi+l h2,z; - KT/ fi2 = 0. 
i=O 

Taking the partial derivative of (3. 77) on both sides w.r.t zk yields 

f -0 12,Zk-l - l 

and by taking the partial derivative of (3. 78) on both sides w.r.t zk-l we obtain 

Hence we have 

From equation (3. 78) we get 
B 

li2 = - -
h1 ' 

and from equation (3.77), we obtain 

1 (k-2 ( B) ) h2 = - LZi+l -f + h2h1 
TJ i=O 31 z; 

Substituting (3.81) and (3.82) in (3.79) yields 

F h1,zo = ~ Zi+l (! (I: Zj+l (fB) + h2h1)) z.· + TJJK
31
B, 

i=O TJ j=O 31 Zj • 

which reduces to 

k-1 (1 (k-2 ( B) ) 1 ) Fh1,z0 = L Zi+l - L Zj+l -
1 

+ - (h2h1t; 
i=O TJ 1=0 31 Zj z; TJ 

TJKB 
+-!-, 

31 

from which we obtain the required expression for F given in equation (3.71). 

(3.79) 

(3.80) 

(3.81) 

(3.82) 

The proof of the expressions given in equations (3.74)- (3.76) can be obtained in a 

similar fashion by substituting h 1 = 0 (and Ju -=/- 0) in equations (3.20)-(3.22). 
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( ¢=) The converse is a straightforward computation similar to that in the converse 

part of Theorem 3.3.2. D 

Theorem 3.3.4 Let f 013 , l :::; a :::; 3, 1 :::; /3 :::; 2, be differentiable functions of 

z0 , z1 , ... , zk such that (3.16)-(3.19) holds, and h 1 = TJ , a non-zero parameter. 

Suppose h 1 = >. fu -=j:. 0, where>. does not depend on z0 . Then 

zo,t = F(K(x , t), zo, z1, ... , zk) 

corresponds to a surface of variable Gaussian curvature K(x , t), with associated l-forms 

Wa = fa1 dx + fa2 dt if and only if 

( a) h 2 does not depend on zi , 0 :::; i :::; k, h 2 = >. f12 , and 

F = -fl (t Zi+if12,z; + A(TJ Ji2 - f11h2)) 
11,zo i=O 

whenever >.2 + K = O; or 

(b) h2,zk_ 2 = 0, and 

(3.83) 

F = l 
(>.2 + K)fu,z0 

(
k-1 ( ( k-2 ( B ) ) ) KB) L Zi+l - L Zj+I -f + (>.2 + K) (f22fu\; + "]__f ' 
i=O T/ J=O 11 Zj z; 11 

1 (1 k-
2 (B) >-.B) 

!i2 = (>.2 + K) - ~ Zi+l -f - -f 
TJ i=O 11 z; 11 

1 (>- k-
2 

( B) KB) 
h2 = (,~2 + K) - ~ Zi+l -f + -f 

TJ i=O 11 z; 11 

whenever >.2 + K -=j:. 0. 

+ f11h2 
1 

T/ 

(3.84) 

(3.85) 

(3.86) 

Proof: (==}) Suppose zo,t = F (K(x, t), u, z0 , z1 , ... , zk) describes a surface with Gaus­

sian curvature K(x, t) . Then from Lemma 3.3.1 it follows that (3.20)-(3.22) is satisfied. 



CHAPTER 3. PDES, COORDINATE SYSTEMS & THE GAUSS EQUATION 82 

Substituting h 1 = ). fu in (3.20)-(3.22), we obtain 

k-1 

-F fu ,z0 + L Zi+l fi2,z; + (rt h2 - A hdu) = 0, (3.87) 
i=O 

(3.88) 

and 
k-1 

-AF fu ,z0 + L Zi+l h2,z; + K(fu h2 - 7] fi2) = 0 (3.89) 
i=O 

respectively. 

(a) Suppose ).2 + K = 0. 

Considering -l x(3.88)+>.. x(3.90) , we obtain 

k-1 

L Zi+1(>. fi2 ,z; - h2,zJ + A(7J h2 - ). h2fu) - K(fuh2 - 7] fi2) = 0, 
i=O 

which can be written as 

k-1 

L Zi+l (>. fi2 ,z; - h2,zJ + 7J(A h2 + K f12) - (>..2 + K)fuf22 = 0. (3.90) 
i=O 

Substituting ).2 + K = 0 in (3.90) we obtain 

k-1 

L Zi+l (>. fi2 ,z; - h2,zJ - 7J ).(). fi2 - h2) = 0. (3.91) 
i=O 

Taking the partial derivative of (3.91) on both sides w.r.t zk we obtain 

which reduces to 

>.J -f -o 12,Zk-l 32,Zk-l - (3.92) 

upon substituting fi2,zk = h2,zk = 0 by Lemma 3.3.1. 
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The Zk-l derivative of (3.92) yields 

which reduces to 

>.J -f -0 12,Zk-2 32,Zk- 2 - (3.93) 

upon using (3.92). Continuing this process, taking successive derivatives of (3.91) with 

respect to Zk- 2 , Zk-3, ... , z2, z1, we finally obtain 

>- !12 - f 32 = 0. 

Substituting (3.94) into (3.88), we obtain 

i.e. 

which implies 

B=O, 

k-2 

L Zi+1h2,z; = 0, 
i=O 

/22,z; = 0, , 0~i<k-2. 

But from Lemma 3.3.1 we already have that 

f -J -o 22 ,Zk - 22,zk - 1 - . 

Hence we have 

/22,z; = 0, , 05:i<k , 

i.e. /22 does not depend on zi, for 0 ~ i < k. 

Now by substituting (3.94) in (3.87), we obtain 

k-1 

F fu,z 0 = L Zi+l fi2 ,z; + (77 A fi2 - A h2fu) 
i=O 

which yields the required result (3.83). 

(3.94) 
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(b) Suppose >.2 + K -I 0. 

Considering Kx (3.87)+>. x (3.89) , we have 

k-l 

-(>.2 + K)F fn ,zo + L Zi+l (K fi2 ,z; + A h2,zJ + K TJ(/32 - A fn) = 0. (3.95) 
i=0 

Taking the zk derivative of (3.90) once again yields 

>.J -f -o 12,Zk-l 32,Zk- l -

upon substituting fi2,zk = h2,zk = 0 by Lemma 3.3.1. 

Taking the Zk-l derivative of (3.88) yields 

Substituting (3.96) and fn ,zk-i = 0 (from Lemma 3.3.1) , we obtain 

From (3.88), we now obtain 

which yields 

B 
>.fi2 - h2 = -­

/11 

k-2 k-2 ( B) L Zi+1(>..Ji2,z; - h2,zJ = - L Zi+l -
1 i=0 i =O 11 ~ 

But , by using (3.96), we have that 

k-1 k-2 
L Zi+ 1 ( A fi2,z; - h2,zJ = L Zi+ 1 ( A fi2 ,z; - h2,zJ · 
i=0 i=0 

Hence 
k-1 k-2 ( B) L Zi+l (>. fi2,z; - h2,zJ = - L Zi+l -

1 
· 

i=0 i=O 11 z; 

(3.96) 

(3.97) 

(3.98) 

(3.99) 



CHAPTER 3. PDES, COORDINATE SYSTEMS & THE GAUSS EQUATION 85 

Substituting (3.99) in (3.90), we now obtain 

Solving (3.98) and (3.100) simultaneously for fu and !32 , we obtain 

and 

1 ( 1 k-
2 

( B ) >.. B) 
!12 = (>..2 + K) - L Zi+I -f - -f 

T/ i=O 11 Zi 11 
+ f11h2' 

T/ 

1 (>.. k-
2 

( B ) KB) >.. 
f32 = (>..2 + K) - ~ Zi+I -f + -f + - f11h2 , 

T/ i=O 11 z; 11 T/ 

respectively, which are the required results (3.85) and (3.86). 

(3.100) 

Finally, by substituting (3.98) and (3.100) in (3.95), we obtain the expression for F 

given by equation (3.84). 

Hence the necessary part. 

( {==) The converse part is a straightforward computation similar to that in the converse 

part of Theorem 3.3.2. D 

For the next Theorem we need to introduce the following notation: 

, 0~j<k-2 (3.101) 

Theorem 3.3.5 Let fo:f3, l ~ a ~ 3, 1 ~ /3 ~ 2, be differentiable functions of 

zo,z1 , ••• ,zk such that (3.16)-(3.19) holds, except that h 1 = T/, a non-zero constant. 

Suppose that jJ1 + K jf1 = c, where c =I= 0 and c does not depend on zi, and that L =I= 0. 

Then 

zo,t = F(K(x, t), zo, z1, ... , zk) 

corresponds to a surface of variable Gaussian curvature K(x, t), with associated I-forms 
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w0 = f 01 dx + fa:2 dt if and only if 

where fi 2 and h 2 are functions of fn , hi, h 2 which satisfy, for l :S j :S k - l, 

and f u, h 2 , h2 satisfy the differential equation, 

k-l 

- L Zi+1Bz;+1 + B = 0. 
i=O 

(3.102) 

(3.103) 

(3.104) 

(3.105) 

(3.106) 

(3.107) 

Proof: ( ===}) Suppose zo ,t = F (K(x, t), u, z0 , z1 , ... , zk) describes a surface with Gaus­

sian curvature K(x, t). Then from Lemma 3.3.1 it follows that (3.20)-(3.22) is satisfied. 

Also by hypothesis we have H = 0. i.e. 

fsif31,z0 + Kfufu ,z0 = 0. (3.108) 

Considering K fn x (3.20)+ h 1 x (3.22) and substituting (3.108) we obtain 

k-l 

L Zi+1(Kf11f12,z; + h1fs2,zJ + K77 (fufs2 - f11h1) = 0, 
i=O 

i.e. 
k-l 

L Zi+1(Kfufi2,z; + fsif32 ,zJ + K77B = 0, (3.109) 
i=O 
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where B is given in (3.39). 

Considering h 1 x (3.20)- j 11 x (3.22), we obtain 

k-1 

F (- hif11,zo + f11h1,zo) + L Zi+l (hif12,zi - f11h2,zJ 
i=D 

o. (3.110) 

By substituting ff1 + K jf1 = c and L from (3.37), equation (3.110) reduces to 

k-1 

LF + L Zi+1(hif12,z; - f11h2,zJ + 7] (hif32 + K f11f12) - h2c = 0. (3.111) 
i=D 

Taking the partial derivative of (3.109) on both sides w.r.t Zj+l we obtain 

(3.112) 

and taking the partial derivative of (3.88) on both sides w.r.t Zj for j = k - l , k -

2, . . . , 2, 1, we get 

which reduces to 

(3.113) 

since f 11,zi = h1,zi = 0, for 1 ::; i ::; k from Lemma 3.3.1. 

Solving equations (3.112) and (3.113) simultaneously for fi 2,zi and h2 ,zi we obtain 

(3.114) 

and 
K 

h2,zi = ~ (f 11Bzi - rJ h1Bzi+1 ) , (3.115) 

respectively, for 1 ::; j < k - l. 
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Taking the z1 derivative of (3.109), we obtain 

which can be written as 

(3.116) 

Considering (3.109), we have 

k-1 

K'T}B = - L Zi+1(Kf11f12,z; + hif32,zJ 
i=O 

k-1 

- (Kf11Ji2,zo + hif32,zo)z1 - L Zi+1(Kf11f12,z; + hif32,zJ 
i=l 

k-1 

Z1KTJBz1 - L Zi+1(Kf11f12,z; + fsif32 ,zJ- (3.117) 
i=l 

The last step follows from the substitution of (3.116). Substituting (3.114) and (3.115) 

in (3.117) , after some simplifications we obtain 

k-1 

- L Zi+1 B z;+ 1 + B = 0, 
i=O 

a differential equation satisfied by the functions f11 , h 1 and h 2 . 

Now from (3.111) , we have 

k-1 

LF = - L Zi+1(hif12,z; - f11h2 ,zJ - 'T/ (fsif32 + Kf11Ji2) + h2c. 
i=O 

But, from (3.88) , we obtain for 1 :S i :S k - 1, 

(3 .118) 

(3.119) 

Hence, substituting (3.119) in (3.118) yields the required expression for F given in 

equation (3 .102), and thus the necessary part. 
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( <===) The converse part is a straightforward computation similar to that in the converse 

part of Theorem 3.3.2. D 

3.3.1 Illustrative Examples 

In this section we apply the above results to some examples to determine the compo­

nents of the first fundamental form. Recall that the components of the first fundamental 

form E , F, G can be determined in terms of fo.fJ, l ~ a~ 3, 1 ~ /3 ~ 2, viz. 

F = f11h2 + hif22, 

G = ff2 + fi2 · 

Example 1: Generalised Burgers Equation 

(3.120) 

(3.121) 

(3.122) 

Using the notations given in (3.13) and (3.14), a generalisation of the Burgers equation 

is 

Ut = (1 + K(x , t) + u)ux + Uxx, 

which can be written as 

zo,t = (1 + K(x, t) + zo)z1 + z2. 

With k = 2, Theorem 3.3.2 implies 

Zo fu= 2 , 

and 

T/ h2 = 2 Zo , , 

T/ h2 = -- Zo 2 . 
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Hence the components of the first fundamental form E, F , G are given by 

F=-+- -+u r/u u (u
2 

) 
2 4 2 X l 

and 

(

u2 Ux) 2 T/2 2 
G= 4+2 +4u . 

Example 2: Generalised KdV Equation 

A generalised KdV equation 

Ut = (l + K (x, t) + 6u)ux + Uxxx 

can be written as 

zo,t = (1 + K + 6zo)z1 + Z3. 

With k = 3, Theorem 3.3.2 implies 

and 

/J1 = -1- Zo, 

Hence the components of the first fundamental form E , F, Gare given by 

E = (1 - u) 2 + TJ 2
, 

F = (l - u)(-Uxx + TJUx - T}
2 U - 2u2 + TJ 2 + 2u) + T} (TJ3 + 2TJU - 2ux) , 

and 

G = (-Uxx + TJUx - TJ2 U - 2u2 + TJ 2 + 2u) 2 + (TJ3 + 2TJU - 2ux) 2
. 
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Example 3: Generalised MKdV Equation 

A generalisation of the MKdV equation is 

Ut = ( 1 + K(x, t) + ~u2
) Ux + Uxxx , 

which may be written as 

zo,t = ( 1 + K + ~z~) z1 + z3. 

With k = 3, Theorem 3.3.3 implies 

Ju= 0, fi2 = -TJ Z1 , 

h1 = TJ , 

and 

h1 = ZQ 

Hence the components of the first fundamental form E , F , G are given by 

E = T/2 , 

and 

3.4 Characterisation II 

In this section, we characterise equations of the type 

z 1,t = F(K(x, t) , zo, z 1, .. . , zk) (3.123) 
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which correspond to a surface of variable Gaussian curvature K(x , t). 

Theorem 3.4.1 Let lcr f3, 1 ~ a ~ 3, 1 ~ /3 ~ 2, be differentiable functions of 

z0 , z1 , . . .. ....... , zk except that Ju = 0, h 2 = 0, and h 1 = rJ , a non-zero parameter. 

Then 

z1,t = F(K(x, t), zo, z1, ... , zk) 

corresponds to a surface of variable Gaussian curvature K(x , t), with associated I-forms 

Wcr = Jeri dx + lcr2 dt if and only if 

and 

F = - K rJ ( b sin az0 + d cos azo) 
a 

li2 = b sin az0 + d cos azo, 

h2 = b cos az0 - d sin azo, 

where a =I- 0 and b, d do not depend on Zi, 0 ~ i ~ k. 

Proof: Since 

we have, for 0 ~ i ~ k - l , 

dzi I\ dt = zi+1 dx I\ dt 

and 

dz1 I\ dx (
8z1 8z1 ) 
ox dx + fJt dt I\ dx 

Z1 t dt I\ dx , 

(3.124) 

(3.125) 

(3.126) 

(3.127) 

(3.128) 
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-Z1tdX/\dt , 

-F dx I\ dt, 

from equation (3.123). 

Substituting (3.6), (3.7) and (3.8) in (3.9), we have 

which reduces to 

since !11 = h2 = 0 and h1 = r,. i.e. 

~ 8fi2 
~ ozi dzi I\ dt - (hif22)dx I\ dt = 0. 

The above equation can be written as 

k-l 

fi2,zk dzk I\ dt + L fi2,z; dzi I\ dt - hd31 dx I\ dt = 0. 
i=O 

Substituting (3.128) and (3.129) in the above equation yields 

Equating the coefficients on both sides of equation (3.130) yields 

and 
k-l 

L Zi+l fi2,z; - f22fs1 = 0 · 
i=O 

(3.129) 

(3.130) 

(3.131) 

(3.132) 
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Now substituting (3.6), (3.7) and (3.8) in (3.10) , we obtain 

After some manipulations and substitutions this equation reduces to 

By equating the coefficients on both sides of (3.133), we obtain 

and 
k-1 

L Zi+l h2,z; + Ji2h1 = 0 · 
i=O 

Finally, substituting (3.6), (3.7) and (3.8) in (3.11) , we obtain 

which, after substitution and some manipulations reduces to 

k 

L h1 ,z; dzi I\ dx - (K77 fi2 + F h1,z1 )dx I\ dt = 0. 
i=2 

Equating the coefficients on both sides yields 

h1,z; = 0 , i # 1, 

Taking the partial derivative of (3.132) on both sides w.r.t Zk yields 

(3.133) 

(3.134) 

(3.135) 

(3.136) 

(3.137) 

(3.138) 
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which reduces to 

f -o 12,Zk-l -

since !22 ,zk = h1 ,zk = 0. 

Taking the partial derivative of (3 .135) on both sides w.r.t zk we obtain 

which reduces to 

f -o 22,Zk-l - l 

since h1 ,zk = fi2 ,zk = 0. 

The partial derivative on both sides of (3.132) w.r.t zk-l yields 

which reduces to 

f -o 12,Zk-2 - l 

Taking the partial derivative of (3.135) on both sides w.r.t Zk-l we obtain 

which reduces to 

f - 0 22,Zk-2 - l 

since f31,zk-l = fi2 ,zk - l = 0. 

Continuing this process of taking the derivatives of (3.132) and (3.135) with respect to 

Zk-2, Zk - 3 , ... , z2 , we finally end up with 

f -J -o 12,z, - 22,z, - , 1 ~ i leq k. (3.139) 

Now, taking the double derivative of (3.132) with respect to z1 , we obtain 
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which implies 

(3.140) 

where a and e are independent of Zi for 0 ::; i ::; k. 

By substituting (3.139) and (3.140) in (3.132) one obtains 

which can be written as 

(3.141) 

Similarly by substituting (3.139) and (3.140) in (3.135) one obtains 

zif22,zo + (az1 + e)f12 = 0 

which can be written as 

(3.142) 

Taking the partial derivatives on both sides of (3.141) and (3.142) w.r.t z1 , and then 

by using (3.139) we obatin 

fi2 ,z0 - ah2 = 0 , 

and 

h2,z0 + afi2 = 0 

respectively and thus 

e = 0. 

Taking the partial derivative of (3.143) on both sides w.r.t z0 we obtain 

f 12,zozo - af 22,zo = 0, 

which, when substituting (3.144) yields 

fi2,zo zo + a2 
fi2 = 0 , 

(3.143) 

(3.144) 

(3.145) 

(3.146) 
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a differential equation for fi 2. Solving (3.146) we have 

fi2 = b sin azo + d cos azo , 

where b, d do not depend on zi, 0 :s; i :s; k. Similarly by taking the partial derivative 

of (3.144) on both sides w.r.t z0 and then by substituting (3.143) , we get a differential 

equation for h 2 which yields 

h2 = b cos az0 - d sin azo . 

We note that if a = 0 then w3 = 0, contradicting the fact that w3 is the connection 

form. Hence a i=- 0. Finally, substituting the expressions for fi 2 and hi,z1 in equation 

(3.138) yields 
KTJ . 

F = -- (bsm az0 + d cos azo), 
a 

which is the required result, and hence the necessary part follows. 

( ~ ) The converse part is a straightforward computation similar to that in the con­

verse part of Theorem 3.3.2. D 

Using arguments similar to the above theorem, we can prove the following results. 

Theorem 3.4.2 Let f c,.f3, l :s; a :s; 3, 1 :s; /3 :s; 2, be differentiable functions of 

zo, z1, ... , zk except that fi2 = 0, fi3 = 0, and h 1 = TJ, a non-zero parameter. Then 

z1,t = F(K(x , t), zo, z1, .. . , zk) 

corresponds to a surface of variable Gaussian curvature K(x, t), with associated I-forms 

Wo = Jc,.1 dx + f 02 dt if and only if 

and 

F = - K TJ (b cosh az0 + d sinh azo) 
a 

(3.147) 

(3.148) 
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h2 = b sinh az0 + d cosh az0 , 

h2 = b cosh az0 + d sinh az0 , 

where a =f. 0 and b, d do not depend on zi , 0 ::; i ::; k. 

3.4.1 Illustrative Examples 

(3.149) 

(3.150) 

In this section we shall look at examples which illustrate the above two theorems by 

providing us with the required coordinate systems. 

Example 1: Generalised sine-Gordon Equation 

Using the notations given in (3.13) and (3.14) , the generalised sine-Gordon equation 

Uxt = -K(x , t) sin u 

can be written as 

z1,t = -K(x , t) sin zo. 

Using Theorem 3.4.1 with the choices of 

a= 0, b = ~ ) 

T/ 

we obtain 

fu = 0, 

and 

and C = 0 , 

f 
1 . 

12 = - Sln Zo , 
T/ 

1 
h2 = - COS Zo , 

T/ 

Hence the components of the first fundamental form E, F, G are given by 
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F = cos z0 = cos u , 

and 

respectively. 

Example 2: Generalised sinh-Gordon Equation 

Using the notations given in (3.13) and (3.14), the generalised sine-Gordon equation 

Uxt = -K(x, t) sinh u 

can be written as 

z 1,t = -K(x, t) sinh z 0 . 

Using Theorem 3.4.2 with the choices of 

a= l, b = 0 , 

we obtain 

and 

h1 = 0, 

1 
and 'C = - ,, 

!i2 = 0 , 

1 
fz2 = - cosh z0 , 

T/ 

h2 = ! sinh z0 • 
T/ 

T/ 

Hence the components of the first fundamental form E, F, Gare given by 

E = T/2 + Zi = T/2 + u; ' 
F = cosh z0 = cosh u , 
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and 
1 

G = 2 cosh2 u 
7J 

respectively. 
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Chapter 4 

Conclusions 

In this thesis, we exploited classical differential geometry, to find Backlund transfor­

mations and hence solve certain classes of non-linear partial differential equations. The 

observation that certain partial differential equations can be interpreted as a statement 

of Gauss' theorem in an appropriate coordinate system is fruitful and produces some 

useful strategies for solving PDEs based on Backlund transformations. 

In Chapter 1 we outlined some basic concepts from differential geometry, especially 

the Gauss equation which plays a central role. In this chapter we outline a strategy 

for solving a given a PDE. Essentially, if we can determine a coordinate system such 

that the PDE corresponds to the Gauss equation for a surface of known Gaussian 

curvature, and if another (simpler) PDE can be found that also corresponds to the 

Gauss equation for the same Gaussian curvature, then the covariant transformation 

equations can be used to determine (in principle) the Backlund transformations between 

the two coordinate systems. If we can solve the latter PDE then we can obtain solutions 

to the original PDE by transforming the known solution of the other PDE. 

The above strategy has some stumbling blocks. Firstly, given a PDE, we need 

to determine a coordinate system such that it corresponds to the Gauss equation. 

Secondly, we need to identify the Gaussian curvature of the surface and find a simpler 

PDE to solve. Thirdly, we then need to solve the system of PD Es which arise from the 

covariant transformation equations. Fourthly, we need to consider potential restrictions 

on the initial data for the system. 
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In Chapter 2 we focused on a simple, specific case and used the sine-Gordon equa­

tion to illustrate the ideas. Chapter 2 thus served to introduce our techniques for 

determining a family of solutions ((2.69)) to the sine-Gordon equation. Even though 

we were successful in deriving a family of solutions, we had to ackowledge the fact 

that our method involved some inversions, which proved tedious and in some instances, 

formidable. Moreover, the family of solutions depended crucially on the solution to the 

transformation equations, which without initial data is not unique. 

To further illustrate the techniques we solved a simple Cauchy problem for the 

sine-Gordon equation. The solution to this problem corresponds to a Beltrami surface 

(though perhaps not obvious) and provides a simple geometrical example. We also in­

vestigated a soliton solution ( (2.99)) to the sine-Gordon equation and derived a solution 

to the Schrodinger equation through Backlund transformations. 

An investigation for case(b) in sections 2.1.1.4 and 2.1.2.2 for the classes of second 

order quasi-linear PD Es of the hyperbolic type and the parabolic type , was not fruitful 

because the systems of PD Es were prima facie harder to solve than the original problem. 

We did not investigate these cases further , but it would be worthwhile to find a solution 

technique for these cases . 

The motivation to solve a class of second order quasi-linear PDEs of the elliptic 

type considered in section 2.1.3 was provided to the effect that a transformation some 

what similar to the one used in the case for the sine-Gordon equation might work. 

Near the end of Chapter 2 we investigated a class of fully nonlinear PDEs, in 

particular the Monge-Ampere equation, which can be interpreted as the Gauss equation 

if the surface is parametrised in graphical coordinates. More complicated non-linear 

PDEs also could be attacked using our techniques, and the initial value problems can 

be reduced to problems involving the solution of a first order ODE. The key, however 

is to find a suitable geometrical interpretation as a statement of Gauss' theorem. 

In section 2.2.1.2 we briefly visited the concepts relating to a solution technique for 

a more general class of Monge-Ampere equation based on parallel surfaces. This is one 

other area which signals further work. 

In Chapter 3, we considered the crucial problem of determining a coordinate sys­

tem such that the given PDE corresponds to the Gauss equation. The discussion in 

Chapter 3 was devoted to a reasonably detailed investigation of this question. In this 
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chapter we extended the work of Chern et. al. to surfaces of non-constant Gaussian 

curvature. This enables us to apply our techniques to a more general class of second 

order PDEs. The material in Chapter 3 focused primarily on finding a systematic way 

to determine a coordinate system for a given PDE. 

The motivation for the complete classification investigated in section 3.3, for differ­

ential equations of th-; form 

( 
ou oku) 

Ut = F K ( X' t)' u, ox' ... ' oxk 

was not only due to the fact that we were trying to answer the above query, but also 

that we were trying to extend our solution techniques to third order PDEs such as the 

generalised KdV equation 

Ut = (l + K(x, t) + 6u)ux + Uxxx· 

The characterisation in section 3.4 focused on the PDEs of the form 

( 
ou oku) 

Uxt = F K(x, t) , u , ox ' ... , oxk , 

which includes the generalised sine-Gordon equation and the generalised sinh-Gordon 

equation. 

Although we did not investigate specific examples of some of the generalised classes 

of PDEs discussed in Chapter 3, we note here that the methods detailed in Chap­

ter 2 could potentially shed some light on solution families for these more complicated 

PDEs. The crux of the problem is to solve the transformation equations which may 

be more formidable than the original equation. Nonetheless if specific solutions to the 

transformation equations can be found , then at least some families of solutions can be 

identified. There is certainly scope for further investigation here. 
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Errata 

Page Line Reads as Corrected to 

1 1 ... are an important ... . ... are important ..... 

3 11 ... to class .... . ... to classes ..... 
14 ... provide with a ... . ... provide a .... 
22 ... consists the .. . .. consists a ... 

7 7 
du dv 

dv du 

11 6 ... partial equations ... partial differential 
equations 

15 3 .. Gauss equation ( 1.15) ... Gauss equation (1.14) ... 

24 4 p = .... = 2 sec .... p = .... = '12 sec ..... 

6 x= 1 ..... x= 1 ..... 
2 --./2 

26 2 x= 1 ..... X = 1 ..... 
2 --./2 

38 last line Ux = Vx = 2 coth ..... Ux = Vx = coth ..... 

40 13 .... equation (2.101) ... . .. equation (2.4) .... 

41 14 M(<)>) = .... M(<j)) = .... , A(<)>)= 01 , 

G41 
B(<)>) = 02 and C(<)>) = 03 

G41 G41 

42 17 .. . in section (2.2.1) ... ... .in section (2.1.1) .... 

44 1 Thus from equation (2.112) Thus we have ..... 
3 .. .in section (2.2.1) ... . . .in section (2.1.1) .... 
18 . . . satisfy (2.46) ... .... satisfy (2.118) ... 
last line .. reduces (2.11 7) ... . ... reduces (2.118) .... 

45 7 ... PDE (2.106) ... . .. PDE (2.107) .... 

47 3 . . . equation (2.120) ... ... equation (2.122) ... 
18 (2.122) as (2.126) as 

48 15 ... form (1.11) .... . ... form (1.10) .... 



Page Line Reads as Corrected to 

49 17 ... (section 2.1.1.2). . .. (section 2.1.1.1). 
18 ... equation (1.18). . .. equation (1.17). 

51 10 ... in section 2.2.1, ... .. .in section 2.1.1, 

56 5 Equation (2.168) ... Equation (2.167) ... 

68 13 from equation (3.12). from equations (3.12) and 
(3.14) . 

69 12 ... equation (3.26) yields .. . equation (3.27) yields 

70 15 h1,zk= 0 .... f32,Zk = 0 .... 

74 1 . . . derivative of (3.46) ... ... derivative of (3.45) ... 
9 f11,Zk-2 = ..... .. F12,Zk-2 = ...... 

77 7 ... write (3.62) as ... write (3 .26) as 
14 ... + f11 ,ZoF dXAdx = 0 , ... + f11 ,ZoF dxAdt = 0, 

78 21 .. . or f11 = 0 and f31 -:t- 0. ... or f11 -:t- 0 and fJ 1 = 0 . 

82 8 -1 x (3.88) +Ax (3.90), .. -1 x (3.89) +Ax (3.87), .. 


