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Abstract

Gauss’ Theorema Egregium contains a partial differential equation relating the
Gaussian curvature K to components of the metric tensor and its derivatives. Well-
known partial differential equations such as the Schrédinger equation and the sine-
Gordon equation correspond to this PDE for special choices of K and special coérdinate
systems. The sine-Gordon equation, for example, can be derived via Gauss’ equation
for K = —1 using the Tchebychef net as a codérdinate system.

In this thesis we consider a special class of Backlund Transformations which corre-
spond to codrdinate transformations on surfaces having a specified Gaussian curvature.
These transformations lead to Gauss’ PDE in different forms and provide a method for

solving certain classes of non-linear second order partial differential equations.

In addition, we develop a more systematic way to obtain a coordinate system for a
more general class of PDE, such that this PDE corresponds to the Gauss equation.
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Chapter 1

Introduction

1.1 General

The dynamics of interfaces, surfaces, fronts are an important ingredients in numerous
nonlinear phenomena arising in classical and quantum physics, and in some cases the
dynamics can be modelled by nonlinear partial differential equations (PDEs) that de-
scribe the evolution of surfaces in time. As a result of this relationship, the study of the
connection between certain types of surfaces and nonlinear PDEs has been one of the
classical problems of differential geometry. Curvature, for example, plays an important

part in a number of problems of physics and mathematics associated with manifolds.

Often, one has to solve nonlinear PDEs in order to explain the physical phenomena,
but solution techniques for nonlinear PDEs are fairly specialized and rare. One of
these techniques, a coordinate transformation method, loosely speaking, known as the
Baicklund Transformation method, is of interest in this text. It is known [7] that a
Bécklund transformation may be regarded, in geometrical language, as a transformation
of a surface S into a new surface S, where S is a solution of a given PDE, but where
the transformed surface S may either be a solution of the original PDE or of some
other differential equation. Béacklund transformations, in essence, preserve invariant
properties between two differential equations and their solutions, and they relate these
equations to one another through a representation of surfaces with the same curvature
in some known coordinate systems. They can thus be useful for finding a solution to a
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given differential equation by relating it to another differential equation with a known
solution. In recent times, interest in these transformations have persisted due to their
connection with the sine-Gordon equation and its associated soliton theory.

1.2 A Brief Description

The first chapter contains the general introduction and a review of the literature per-
taining to the work in this thesis, followed by some definitions and fundamental equa-
tions which will be used in the following chapters. In section 1.3 we review some basic
definitions which arise in differential geometry. In subsection 1.3.2, the Gauss equation,
which plays a central role in our discussions, is presented. We then illustrate how some
well known PDEs such as the Schriodinger equation, the sine-Gordon equation, the
Liouville equation and the Monge-Ampere equation can be generated from the Gauss
equation by the appropriate choice of coordinates. In section 1.4 we show how the
covariant transformation equations can be used to determine the Béicklund transfor-

mations between two coordinate systems, where each coordinate system represents a
specific PDE.

Chapter 2 consists of two major sections. In section 2.1 we look mainly at the solu-
tion techniques and Bécklund transformations developed for various classes of second
order quasi-linear partial differential equations [26]. In subsection 2.1.1 we first show
how a certain class of second order quasi-linear PDEs of the hyperbolic type can be
solved. As an example, a family of solutions for the sine-Gordon equation is derived.
The Cauchy problem is then discussed and the sine-Gordon equation is used as an il-
lustration. Further, we establish that the solution obtained for the Cauchy problem of
the sine-Gordon equation corresponds to a Beltrami surface. Our approach in deriving
solutions through Backlund transformations is further illustrated through an example,
where a soliton solution of the sine-Gordon equation is used to derive a solution to
the Schrodinger equation. Subsections 2.1.2 and 2.1.3 deal with some classes of sec-
ond order quasi-linear PDEs of the parabolic type and the elliptic type, respectively.
[Nlustrative examples are given wherever appropriate.

In section 2.2, we show how the same technique used in section 2.1 can be imple-
mented to solve a fully non-linear second order PDE, the Monge-Ampere equation,
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and further discuss the solution to the Cauchy problem for this equation. Finally,
we discuss some relationships among the sine-Gordon, the Monge-Ampeére and the
Schrodinger equations, which Backlund transformations elucidate and discuss briefly
how a more general class of Monge-Ampeére equation can be solved using Backlund
transformations.

The topics in Chapter 3 pertain to a systematic way of obtaining a coordinate system
corresponding to a more general class of PDEs which can be interpreted as the Gauss
equation. This complements the material in Chapter 2, where we established some
useful solution techniques via Backlund transformations for some classes of PDEs. It is
noted that in generalising the technique to include a non-constant Gaussian curvature
function, we extend significantly to class of PDEs for which this solution method is
available.

Section 3.1 provides a brief introduction to the remainder of Chapter 3. Section 3.2
deals with the preliminaries required for the sections to follow. We also provide with a

brief review of the literature pertaining to the material in Chapter 3 in this section.

In section 3.3 a complete characterisation is given for the class of differential equa-
tions of type

k
ug=F (K(x,t),u, s 2 u)

9z’ dzk

[llustrative examples such as the generalised Burgers equation and the generalised KdV
equation are provided to show how we can, in principle, determine the coordinate
systems for these types of equations.

Section 3.4 consists the complete characterisation for the class of differential equa-
tions of type

Ou oFu
ug = F | K(z,t),uy—,...,— ] .
xt ( ( ) 33: 35,""
Once again, we provide illustrative examples to show how we can determine the coor-
dinate systems for these types of equations. The generalised sine-Gordon equation and
the generalised sinh-Gordon equation are used as examples.

In Chapter 4, we conclude the thesis by summing up particular results and proposing
certain matters which need further investigation.
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1.3 Some Geometrical Aspects

In this section, we review some basic definitions which arise in differential geometry
(7, 34, 35]. Let S be a surface in E® Euclidean 3-space, and let I' be a curve on S.
If (u,v) denote curvilinear coordinates on S, then the curve I' can be described by an

implicit relationship of the form

¢(u,v) =0.

0]

Figure 1.1: The surface S and the curve I

The curve I" defined above can also be given in parametric form:
u = u(t), v = v(t). (1.1)

Let r be the position vector of a point P on the curve. Then the vector dr/dt = r,
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given by
P =TIyt + Ty9, (1.2)
is tangent to the curve and therefore to the surface (cf. Fig.1.1). Here the subscripts

u and v denote partial differentiation with respect to u and v respectively. Equation

(1.2) can also be written (in a form independent of the choice of parameter) as,
dr = rydu + r,dv. (1.3)

If @ is in a neighbourhood of P on the curve, then the distance ds, between P and Q
on the curve can be expressed as

I = ds® =dr.dr= Edu® + 2F dudv + Gdv?, (1.4)

where

B o=ttty F= 8, G S5 (1.5)

The quadratic form in equation (1.4) is called the first fundamental form for the surface

g.

The functions E, F and G depend on u and v and are called the components of the
metric tensor or the components of the first fundamental form.

The quantity

IruAxy| = H =vVEG - F? | (1.6)

corresponds to the differential area element. The angle 6 between the coordinate curves
is
W 8 F

rlr.l  VEG

If t is the unit tangent vector at P to the curve I' on the surface S and N is the unit
surface normal, then the curvature vector of I at P, k, can be decomposed as

cos =

(1.7)

dt/ds = k = k, + ky,

where k;, is parallel to N and orthogonal to k, (see Fig. 1.2).

The vector k, is called the tangential curvature vector or geodesic curvature vector and



CHAPTER 1. INTRODUCTION 6

0

Figure 1.2: The normal and tangential curvature vectors

the vector k, is called the normal curvature vector. The latter can be expressed by
ki =nm: N,

where £, is known as the normal curvature. The normal curvature is given by

edu® + 2f dudv + gdv®

e 1.8
"= Ed® + 2F dudv + Gdv? (1.8)
where, in terms of vector triple products,
(rumrmrv) (rumrutrv) (rmhrua rv)
_ = Yuw Twly) o _ T Tw o) 1.9
e ? f H ) g H ( )

H
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The numerator of equation (1.8), written as
II = —dr.dN = edu® + 2fdudv + gdv® (1.10)

is defined as the second fundamental form. The functions e, f and ¢ are known as the
components of the second fundamental form.

1.3.1 Gaussian and Mean Curvatures

The normal curvature given in equation (1.8), when considered in the direction A\ =
du/dv is

L o B +2f A+ g)?

" E+2F)\+ G\

Extrema for x, w.r.t A are characterized by

= Kn(A). (1.11)

din/dA =0,

and this condition implies

I1I  f+gA e+ fA
K = —— = =

I F+G)N E+FX)

The above equation indicates that
(Fg—Gf) X2 + (Eg—Ge) A + (Ef — Fe) = 0,

which determines two directions dv/du, in which k, obtains an extreme value, unless I/
vanishes or unless /7 and I are proportional. One value must be maximum, the other a
minimum. These directions are called the directions of principal curvature or curvature
directions and the corresponding values for k,, denoted by x; and k, are defined as the
principal curvatures.

The quantities
Eg—-2fF +eG

1
H:—(&1+&2)- 2(EG—F2)

2

(1.12)
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and "
eg— f

EG - F?

are invariants, and are called respectively the mean curvature and the Gaussian curva-

K= K1 Rg = (113)

ture of the surface.

1.3.2 The Gauss Equation and some well-known PDEs

A key result in classical differential geometry is Gauss’ Theorema Egregium [34], which
asserts that the Gaussian curvature depends purely on the components of the first
fundamental form. Specifically, we have the Gauss Equation:

1 F 1 2 1 F
K(wv) =5z (g5 5 - EGu)ﬁ (5P — 5 B ﬁﬁﬂ)v)‘ (14)

This equation will play a central réle in our discussion. Many nonlinear and, some
linear PDEs of interest, correspond to the Gauss equation on a surface of prescribed
curvature parametrized in an appropriate coordinate system. In certain coordinate
systems the Gauss equation takes a particularly simple form. Well known partial
differential equations such as the Schrédinger equation, the sine-Gordon equation, the
Liouville equation and the Monge-Ampeére equation are the classical examples[4, 18].
We illustrate below how these PDEs can be generated from the Gauss equation by the
appropriate choice of coordinates.

1.3.2.1 The Schrodinger Equation

Our first example is the Schrodinger equation,
Yuu + K(U,U)'ﬁb =0,

which, as will be seen, corresponds to the Gauss equation for surfaces of Gaussian
curvature K (u,v) in geodesic polar coordinates.

In a neighbourhood of every point on a smooth surface, a geodesic polar coordinate

system exists[34]; hence, we can always construct such a local coordinate system for
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the surface with Gaussian curvature K(u,v). For a geodesic polar coordinate system
E =1 and F =0, equation (1.4) reduces to

ds? = du® + Gdv?,
and equation (1.14) becomes,
K(u,v) = =G V2 (GY?)y,.

Using H = v/G we have,
H,, + K(u,v) H = 0. (1.15)

The solution to Schrodinger’s equation (1.15) thus corresponds to the differential area
element for a surface of curvature K (u,v) in the geodesic coordinates.

1.3.2.2 The sine-Gordon Equation

When E = G = 1, the coordinate system forms a Tchebychef Net 6, 34], which exists
for sufficiently smooth surfaces[34], and equation (1.4) becomes,

ds® = du® + 2Fdudv + dv®.

If @ is the angle through which the coordinate vector r, must be turned to bring it into
coincidence with r, then we have,

F = cosf
(from equation (1.7)). Now equation (1.14) takes the form

1 1
® = V1- 2 (EF“)v

1.e:
0o = —K(u,v) sinf. (1.16)

This is a second order hyperbolic PDE for the function 6, with u = constant and
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v = constant as the characteristics. For K(u,v) = —1, we get the familiar sine-Gordon
Equation,

fup = sinf. (1.17)

1.3.2.3 The Liouville Equation

Let E = G = 0 so that, the coordinate curves are the minimal lines. We note that this

makes the surface representation complex. Equation (1.14) becomes,
(InF)y, + KF=0

l.e.

where

For K = constant, equation (1.18) corresponds to the Liouville Equation.

1.3.2.4 The Monge-Ampere Equation
Consider a surface described by

r = (4,9, Z(u,v)).

(1.18)

Then the components E, F' and G of the first fundamental form, for graphical coordi-

nates will be given by

E=1+2%, F=2,2,, G=1+22,

and thus equation (1.4) becomes

ds? = (1 + Z2)du® + 22, Z,dudv + (1 + Z2)dv?.
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The Gauss equation (1.14) reduces to

Zuu Zvv = thm
1+ 22+ 72)%’

K(u,v) = (1.19)

which also can be written as

ZiwZow = 22, — K(u,9) (1+ 22+ 22) =0

which is an equation of the Monge-Ampére type.

Certain partial equations can thus be interpreted as statements of Gauss’ Theorem on
a surface of curvature K in an appropriate coordinate system. This observation moti-
vates a strategy for solving these equations based on Béacklund transformations which

correspond to curvilinear coordinate transformations on the surface defined intrinsically
by K.

1.4 Gauss Equation and Backlund Transformations

Given a PDE, the idea here is to first find a coordinate system such that the PDE cor-
responds to the Gauss equation for a surface of known Gaussian curvature. Then we
seek another PDE that can be solved, and determine a coordinate system such that this
PDE corresponds to the Gauss equation for the same Gaussian curvature. Using the
covariant transformation equations for the two determined coordinate systems yields a
system of non-linear PDEs. Solutions to this system define the Backlund transforma-
tions between the two coordinate systems, thus enabling us to obtain solutions to the
given PDE by transforming the known solution of the other PDE.

In order to further describe this method, let us consider two partial differential equations
D(¢) = 0 and £(x) = 0 which are of the same order. Assume that the PDE D(¢) =0
is the given equation to be solved and the other is a PDE with a known solution.

Further, we assume that these two PDEs can be identified as the Gauss equation with
the same K, and that the corresponding components of their first fundamental forms
are E,F,G and E, F, G respectively. Let the respective coordinates be (u,v) and (z,y)
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(see Fig. 1.3).

Coordinate System I Coordinate System II

(W,v) (x,y)

Figure 1.3: Coordinate transformation from coordinate system I to the coordinate
system II.

From the tensor formula,
oxX! axm™

i = Gim === 1.20
LT ) (1.20)
for coordinate transformations, where g, = E, g1 = g = F, g = G, g1y = E,
G12 = Gu = F, g2 = G and then by using the specific values for g;;’s and g’s we

obtain the system

Evl +2Fu v, + Gv2l = E (1.21)
Euguy + F (uz vy + vzuy) + Gz, = F (1.22)

and
Eul,+2Fuyv, + Gv2 = G. (1.23)

We need to solve this system of non-linear PDEs to determine the required Backlund
transformations.

When applying the method described above in solving a PDE, we are aware of the
fact that we may have difficulties, first in identifying the given PDE as the Gauss equa-
tion; i.e., to determine the corresponding coordinate system, and then in solving the
system of PDEs which determines the Backlund transformations. The latter could be

relatively harder than the original problem. Further, it should be noted that, imposing
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different initial conditions on this system of PDEs yields different Bécklund transforma-
tions. This shows that all the solutions to the given PDE cannot be obtained by using
one set of Backlund transformations, and thus we only end up with certain classes of
solutions. This certainly is a weakness in our method, especially when we are looking
for all possible solutions.



14

Chapter 2

Some second order PDEs and

Gauss’ Equation

In this chapter we develop the technique outlined in Chapter 1 and apply it to specific
types of PDEs. In the first section we show how a certain class of second order quasi-
linear PDEs of the hyperbolic type can be solved. As an example, we obtain a family
of solutions to the sine-Gordon equation. The Cauchy problem is then discussed and
the sine-Gordon equation is used as an illustration. Also, we analyse the possibilities
of tackling some classes of second order quasi-linear PDEs of the parabolic type and
the elliptic type.

In section 2.2, we show how the same technique can be implemented to solve a
fully non-linear second order PDE, the Monge-Ampeére equation and then discuss the
solution to the Cauchy problem for this equation. There are interesting relationships
among the sine-Gordon equation, the Monge-Ampeére equation and the Schrodinger
equation which the Backlund transformations expose.

2.1 Solving a class of second order quasi-linear PDEs

Consider a surface with local coordinates u and v, and suppose the coefficients of the
first fundamental form F, F' and G are of the form

E = E(¢), F = F(¢), andG = G(¢), (2.1)
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where ¢ is some function of v and v and
H?>=EG - F? > 0. (2.2)
Under this assumption, the Gauss equation (1.15) becomes
i {4F; H? ¢yp — 2G4 H? $yy — 2E5 H? &y
+ (GoEyG + E(Gy)* — 2G4F4F) (6u)® — 2 H? Gps(0u)?
+ (G4E4E + G(By)? — 2E4FF) (¢0)* — 2 H? Eg(95)?
—  2(FoByC + F4GoE — 2F(Fy)? + 4 H?) Fosduty
- 4K(EG — F?)?} ={. (2.3)
This is a PDE of the form
G¢r¢uu - 2Fw¢'uv o i Ecquvu + 2K H2 i G)(u,v,qb, (.bus év) — 0 . (24)
where
O(u, v, @, du, ) = O1(u, v, 0)(du)” + O2(u,v,8)(6v)? + O3(u, v, d)dudy,  (2.5)
e G4E4G + E(Cy)? — 2G,FyF — 2 H2G
el(u’v,(ﬁ) — __{ @ ¢ + ( ¢') = ¢ ¢ = ¢¢}‘ (26)
2 H?
i _ 2
&0, 5= ~ {GoEsFE + G(Ep)* — 2E4F4F —2 H* Egy} ’ @27)
2H?
. g _ 2
&,l0.9,8) = {F$E4G + F4G4E — 2F (Fy)* — 2 H* Fyy} _ (2.8)

H2
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Equation (2.4) is of the form
Adyy + 2Boyy + C¢vv +D =0, (29)

and is thus a second order quasi-linear PDE, with coefficients A, B and C depending
on u,v and ¢, and D depending exclusively on u, v, ¢, ¢, and @,.

If B2 — AC does not change sign, equation (2.9) can be classified into one of three types:
hyperbolic, parabolic, and the elliptic, corresponding to B> — AC > 0, B> — AC =0,
or B? — AC < 0 respectively. Equation (2.4) is thus:

(i) hyperbolic iff (F4)? — EGs > 0;

(i) parabolic iff (F3)? — E4Gy = 0; and

(iii) elliptic iff (Fy)? — EyGy < 0.

We shall discuss below the necessary and sufficient conditions required for equation
(2.4) to be of one of these forms, and then investigate the possibilities of obtaining
solutions through Bécklund Transformations for each of these types.

2.1.1 Equations of Hyperbolic Type

Consider a second order quasi-linear hyperbolic PDE of the type
¢uv = f((ﬁ, (?-(’u: év) (210)

Equation (2.4) will be of this form if F,; # 0 and either
(3.) Ed? = G¢ =1 or
(b) qu(:t’uu +E¢¢vv = 0.

We shall discuss the above two cases separately, and find the conditions which should
be imposed on equation (2.10).

2.1.1.1 Case(a): E;, =G4 =0

If E, = G4 = 0 then E and G are constants.
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By an appropriate scaling of the coordinates u and v we can make E and G equal and
without loss of generality take £ = 1 and G = 1. Thus we use a Tchebychef net to
represent the given PDE (2.10).

So, for these choices of E' and G equation (2.4) reduces to

” [—2F(F,)* — 2(1 = F?)Fyq]

= — F? =
2F 3¢y, + 2K (1 — F?) =) Gudy = 0,
B KH? 1 F(F,)?
_ ) @
o= = {F¢¢+ o }cbm, (2.11)
(since F # 0). Equation (2.11) is of the form
Qsm: = M(Qﬁ) + A(¢)¢u¢r: (212)
where seiy _
M(¢) = 3 e i (2.13)
Fy
and 1 F(F,)?
e Rl

These equations indicate that, if a second order quasi-linear hyperbolic PDE is of the
form (2.12), then it can be identified as Gauss’ equation, where the (u,v) coordinate
system corresponds to a Tchebychef net (E =1, G =1 and F = F(¢)), on a surface
of curvature ;
K = M) Fs
(1 —F%’

where the function F can be determined from (2.14).

Let £ (see Fig. 2.1) denote the surface described by the position vector function r(u, v).

Then
ety = B = 1,

Il

Tly: = & 1, and (2.15)

£yly = K.
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>
Figure 2.1: Surface ¥ described by the vector r(u,v).
But
W
lIrull llry| ’
where (@) is the angle between the coordinate lines on the surface; thus,
F = cos x(9), (2.16)
since ||ry|| = ||ry]| = 1. Consequently,
Fy = —sin x(9) X'(9),
(2.17)
F4p = —sin x(¢) x"(¢) — cos x(¢) (X'())?,

and substituting these expressions into (2.14) we have

"

Ag) =-%

Therefore,

mr=—]mww+mm,

= (2.18)
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where ¢ is a constant of integration, and so

X(6) = cexp (- [ 4(¢)do) .

Thus,
x@) = ¢ [exp (- [" AQ)dC) d6 + e, (2.19)
0
where ¢, is some constant of integration. In terms of x(¢),the Gaussian curvature is
M(g) ,
(@ ¥

We can thus identify the PDE given by equation (2.12) with a surface defined intrinsi-
cally by the quantities

_ _ _ __ M@ .,
E =1, F=cosx(¢), G=1land K = XD X' (o) - (2.20)
Note that if A(¢) = 0 then we have
X(¢) = Aé + A1,
and so,
F = cos(A@ + \y), (2.21)

where ) and ), are arbitrary constants. From (2.19) we have

xu = Aexp (= [ A6)d9) .,

Xv = Aexp (—fA(¢)d¢) by,

and from equation (2.12)

Xuw = Aexp (= [ 4(6)d6) {bw — A6) u6s} = Aexp (— [ A(¢)d6) M(4).
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Hence solving equation (2.19) for ¢, we have a PDE of the form
Xuv = MI(X) . (222)

We can thus reduce a PDE of the form of (2.12) to one of the form (2.22) by using the
transformation defined by (2.19). Hence it is sufficient to limit the investigation to the
case when A(¢) = 0.

If A(¢) = 0, equation (2.12) reduces to

Ouw = M(9), (2.23)

and from (2.20) and (2.21),

AM(9)

B2l 5= ook duls 8= by B =

(2.24)
The constants A and A; correspond respectively to the magnification and the shift of

the angle between the characteristics. Since ), is merely the reference point from which
the angles are measured, we can choose A; = 0. Using the transformation

X = Ad,

which involves the magnification factor A\, we may transform (2.23) to a PDE of the

form
Xuv = MI (X) .

Thus without loss of generality we may choose A = 1. Choosing A = 1 and A\; = 0 we
identify a PDE of the form (2.23) as Gauss’ equation on a surface ¥ with

M(¢)

sing

E=1 F=cos¢p, G=1, K = — (2.25)

We shall now derive a transformation on ¥ from a geodesic coordinate system (z,y) to
the (u,v) coordinate system (Tchebychef net).

Let E, F and G be the coefficients of the first fundamental form in the geodesic coor-
dinate system. In geodesic coordinates £ = 1 and F = 0. Moreover, Gauss’ equation
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becomes the Schrodinger equation
H,, + K(z,9) H = 0, (2.26)
where H2 = EG — F? = G.

If we can determine a coordinate transformation between geodesic coordinates and
Tchebychef net coordinates, and if we can solve this Schrédinger equation, then we can
find a solution to (2.23).

Geodesic coordinates Tchebychef net coordinates

Figure 2.2: Coordinate transformation from geodesic coordinate system to the Tcheby-
chef net coordinate system.

The usual tensor properties (where g;3 = E, g1o = g1 = F, g2 = G, §u1 = E,
G12 = gn1 = F, §3» = G) yield the following relations between the coordinates:

2+ By =1, (2.27)
Ty Ty + H? Yully = F = cosg, (2.28)
2 + H%y?2 = 1. (2.29)

The general solution to the above system of PDEs provides the required coordinate
transformations between the two coordinate systems. Solving this system could be
formidable. Thus we look at one specific solution which we can be determined by
assuming,

i = Ty = {1 - Jr':IQ(:I:,:t,;r)}U2 and g=9y2=1 (2.30)
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provided vy, # ¥,. From the last equation we define a transformation implicitly by

5 = f {1 - Be,9)}"” du + f(v) (2.31)
and
Yy =% — 9, (2.32)
where f(v) satisfies,
fl) + 53; {f (1 - Bz,9))"” du} = {1 - 2@y} (2.33)

Clearly this transformation is non-singular since the Jacobian is non- zero. i.e.
Tyl — ToYu = _2V(1 == -FI:Z) # 0.

We also note that # < 1 unless K = 0, i.e., M(¢) = 0.

We are aware of the fact that, by choosing particular solutions as described above for
the system of PDEs (2.27)- (2.29), we restrict ourselves into obtaining only special
classes of solutions of the PDE (2.23) and not its general solution.

Equations (2.28) and (2.30) imply that
F =cos¢ = (1 —2H?, (2.34)

hence

H = sin

. y ¢
2 (2.35)

The derivatives of H with respect to x are thus

W .
Hz—zcosqux
and 1 5 g 5
5 1 ¢ 1.¢ ;
Hm—2cosz¢'m 4sm2(q§z).

Substituting H and H,, into the Schrédinger equation (2.26), and after some simplifi-
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cation we obtain 5

1 o
Tz t ‘
¢ — — tan 5

5 tan o (62)% = M(p) sec? (2.36)

Equation (2.36) is a second order PDE which does not have the y derivative terms and
can be treated as a second order ODE. The two arbitrary ‘constants’ of integration will
be arbitrary functions of y. The ODE

¢

1 do\’
5" 5 an% (5) = M(9) seczg (2.37)

can be solved by the use of the substitution

do
— = 2.38
I =P (2.38)
We have that
Po _ 4 (do) _d . db_ dp
dr? ~ dz \dz)  do " dz ~ Pdo’
and (2.37) thus reduces to
dp 1 [0} 2® _4
P 2ta.n 5P M (o) sec 5P (2.39)
Let
5= pt (2.40)
then equation (2.39) reduces to the linear first order ODE
dz ¢ 0 @
S E & = F 2.41
PP tan o z 2M () sec 5 (2.41)
To solve this, we find the integrating factor
® _ 29
exp (f tan 5 dQS) = COS 5 (2.42)

and reduce equation (2.41) to

0% {z cos® %} = 2M(9). (2.43)
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Therefore,

o 2sec2§ { / M($)dé + cl(y)}. (2.44)

Now the combination of (2.38), (2.40) and (2.44) yields,

p = g% = 25ec§ {/ M(¢)do +cl(y)}lf2 ,

and so we have

_ 1 cos £ )
*= 3] Tawae syttt oW (245)

where ¢;(y) and cy(y) are arbitrary functions of y.

Now (2.45) defines a relationship

wz,y,8) =0 (2.46)

between z,y and ¢ and by assuming that one set of values zg, yo, ®o can be found to
satisfy (2.46) and that, near (zg, ¥o. @o), 1 and its first partial derivatives are continuous
and gﬁ # 0, the implicit function theorem[22] states that in a region of the zy plane
containing (zg, o), there is precisely one differentiable function

¢ = a(z,y) (2.47)
which reduces (2.46) to an identity and is such that ¢y = a (zo, %o)-

Under these assumptions, we now have from (2.35) and (2.47) that,

H= sin%(a (z,y)) (2.48)
and so
By = Ty =008 %(a (z,9)) . (2.49)

Noting that a(z,y) contains the two arbitrary functions ¢;(y) and c2(y), and that
y = u— v we have

dx Oz 1
crehale i ,cosi{a(x,u—v)). (2.50)
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From the above expression we can, in principle, determine z in terms of u and v, say,
z = fB(u,v).

Hence, there is a coordinate transformation

(2.51)

= u-v

= ﬁ(u,v) }

and since

this transformation is invertible:

i = ] N
. } | (2.52)

= 6(z,y)

Hence the general solution to the given PDE (2.12) is

¢ a(z,y)

= aB(u,v),u—v) (2.53)

where u and v are given by (2.52).

The above method shows that at least formally, a solution can be obtained; however,
the method involves some inversions, which may prove formidable. We should also note
that the functions ¢; and ¢, depend on y (or u — v). In the next section we consider as
an example, the sine-Gordon equation, since this is of the form (2.23), and investigate
the possibilities of solving initial value problems.

2.1.1.2 Example: sine-Gordon equation

The sine-Gordon equation
Guy = sin @, (2.54)
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is of the form (2.23) with M(¢) = sin ¢ and K = —1; hence, (2.45) becomes

92
cos
do + ¢ 2.5b
-2 f {—cosrp+cl )}U2 2(v) (2:55)

where ¢; (y) and c»(y) are arbitrary functions of y.

Using some trigometrical identities (2.55) can be expressed as

2
s (%) dé + cay). (2.56)

=3/ /(@ )+sin2 (2)

The substitution

puts (2.56) into the form

SO

2
t + \/( —U—“”’,_,"‘) + 12

z= In \/m == + c2(y)- (2.58)
2
Substituting for ¢, and solving for ¢(z,y) we obtain
_ | eify) =1
o(z,y) = 2 sin — sinh {z — c2(y)} (2.59)

or

sin% = {”c](y)T—l sinh {z — cz(y)}}.

H= { %)2;1— sinh {z — CQ(y)}} (2.60)

Hence from (2.35)
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The expression for H obtained above can be easily verified to be a solution of the
Schrodinger equation,
'I:“{II = ﬂ = O-

Now from equations (2.30) and (2.60) we have

1/2
Ty = Ty = {1 = ('C_L@%:—];) Sinh2($ - CQ(y))} ’ (261)
thus, ¢
dz = u +
[ {1 - (2%=1) sinh? (s - q(y))}l/2 e
and

1
/ {1 - (—-U-—c’ %_1) sinh? (z — cz(y))}lf2

where p(v) and o(u) are arbitrary functions of v and u respectively.

dz = v + o(u)

If we consider the first equation of the above two, and make a substitution

aly) -1

sinfl = 5 sinh(z — ¢;(y)) (2.62)
we get i
+ plv) = m df 2.63
ol ‘[ {1 + m2 sin? 9}”2 ( )
where 38
= {Cl(y)T‘l} _ (2.64)
Therefore " "
u + p(v) =§F(a,k)=§sn‘1(sina,k), (2.65)
where

k = m(1 + m?)~V/?

and F is an elliptic function of the first kind[12, 21]; this implies that p(v) depends on
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the arbitrary functions ¢; and ¢; and is such that

P(v) = % {g sn~! (sina, k)}

and moreover

a=sin"! {% tanh (z — CQ('y))} ; (2.66)
2
k=vomTT (2.67)

From equation (2.65) we have

sn (% (u + p(v)]) = sina

and so by using equation (2.66) we get

z = tanh™ {kSn (%(u + p(v)), k) } + e(y) (2.68)

where y = u — v.

Hence, from (2.59), (2.67) and (2.68) (after some algebraic manipulations) we obtain
the following family of solutions for the sine-Gordon equation:

(2.69)

é(u,v) = 2sin™* { i (%(Hp(v)), k) }

{1 + U_fi‘—’_i cn? (%(u + p(v)), k)}”g

where k is an arbitrary function of u — v, and p(v) is an arbitrary function of v.

2.1.1.3 Initial Value Problems

In this section we consider the Cauchy Problem [17] for equations of the form (2.12).
The Cauchy Problem:

The Cauchy Problem for equation (2.12) consists of solving this PDE for given ini-
tial data along a non-characteristic curve. Let A be a smooth curve with no self-
intersections, defined in the plane in parametric form by v = U(t) and v = V().
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Let
¢, =p and ¢, = ¢

and suppose that on A the Cauchy Data are

¢=2(t), p=P(t), and ¢=Q(f). (2.70)

Figure 2.3: A smooth non-intersecting curve A in the u — v plane.

For compatibility it is required that
() =P@R)U@)+Q@1)V(1).
Then the following system of equations is satisfied along A:

. ' O = f(@(t),P(t),Q(t))
U(t) dun + V (t) Pus P(t)
U (t) Quv + 1% (t) v = Q (t) ’
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Since the determinant of the coefficients of the above system is

o © o

10
Vo|=-UV,
u v

we note that the Cauchy data are non-characteristic if
U#0 and V # 0.

We use the sine-Gordon equation as an example to illustrate the above initial value
problem.

Example: sine-Gordon Equation

To solve the Cauchy problem for the sine-Gordon equation (2.54), we shall take ¢ as
in (2.59) (using (z,y) geodesic coordinates) rather than as in (2.69) which uses the
Tchebychef net (u,v). The calculations for ¢, and @, are easier this way.

Recall from equation (2.59), that

¢ = 2sin? { ﬂg%—_l sinh {z — c;;(y)}};

therefore,

= £ aly) -1 - |
Oz = {1 _ (ﬂ%ﬂ) sinhz(:c _ CQ(y))}Uz \/T COSh(-’L' Cg(y))1 (2_71)

and
ci(y)—1 _ = s = 1 1
. ?{ 53— cosh(z — ¢(y))(—c5(y)) + sinh(z 62(1r))f=2 e 26’1(3!)}

{ 1 — (Jﬂ)—cl _1) sinh? (z — ¢3(y)) }1,:2

2
{—4(2%=2) cosh(z — c2(y)) &(y) + sinh(z — e2(v)) cL(v) }
2/ {1 — (291 sink? (3 - c;(y)) } '

(2.72)
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Recall from (2.51) and (2.61) that

and

Hence

and

where ¢, is as in (2.72).

Pu

Pv

1/2
e iy = {1 y (C“’;—‘l) sk (i _w))} ?

Yu =1 % =-1

P2 Tu + PyYu

2\/@00511(1‘ —ca(y)) + oy
GzTy + OyYy

9,/ a1 cosh(z — c2(y)) — oy

2

Adding the expressions for ¢, and ¢, yields

and subtracting them gives

Ou + 0 = 4

aly) —1
9

L

cosh (z — ex(y))

{-4(29) cosh(z — caly)) (y) + sinh(z — c2(y)) ch(v) }

BT {1~ (24=1) sink® (2 — ex9) }

Suppose that the initial conditions in the (u,v) coordinate system(Tchebychef net)
¢, = P(t) and ¢, = Q(t) are transformed to P;(t) and @, (¢) in the (z,y) (geodesic)
coordinate system. Then from the last two expressions we have by substitution that

Ph+Q =4

ci(yo) —1 cosh (g — ¢2(%0)) ;

(2.73)
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and

{—4 (21821 cosh(zo — e2(y0)) ch(yo) + sinh(zo — ca(yo)) & (w0)]

P, — -
1= G clgygl*l {1 = (ﬂy—g)_—l) sinh® (2o — c2(yo0)) }Uz

(2.74)
where zo(t) and yo(t) correspond to the initial curve in the (z,y) geodesic coordinate
system.

From equation (2.73),

cosh(zg — ca(yo)) = ﬁ;t—?_il-, (2.75)
2
and using the identity cosh?# — sinh? # = 1 this becomes
5 1/2
{ Pi+g1) B (c;gyo)-i)}
inh(zo — ¢2(y0)) = > —— (2.76)
sin 0 2\%0)) = \/c; e 2.
7
Equation (2.75) implies
1) B+ =
¢a(yo) = o — cosh™ {:,l_lm_;f-l_f} _ (2.77)
2

Equation (2.76) indicates that

s (%) s = oa i) = (C‘(y“?) “) 9 (Pl ‘Z@Y (2.78)

and differentiating equation (2.77) with respect to y, implies

&(w0) = Skl - (2.79)

i i) {{Aga — (i)

2 4 2

Next we substitute the expressions given in equations (2.75), (2.76), (2.77) (2.78) and
(2.79) into equation (2.74), and after some simplifications we get,
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; 2 2 _ 1/2
o = @-m{[() - (52259 - (5=
= ( _P) _:E__ P1+Q1 Q_Cl(y{)) l P1+Q1 Q_Cl(yo)) }1;2
_Q112(4)__2)2+(4)2
1 Pi+@i\* aw)) i
= (Ql—Pl){Z_(( 4 )‘ 2 )}

) 9y 1/2
(P — Q1) P +@
el (28 )]

= A{1- B -aw)?}”, (2.80)

where

. B -G _(P+ ?

Equation (2.80) is a first order ODE which can be solved for ¢ (), and so ¢2(yo) can
be determined from equation (2.73). Hence, the Cauchy Problem for the sine-Gordon

equation can be reduced to solving a nonlinear first order ODE and inversions.

For example, suppose A is denoted in the Tchebychef net coordinate system by
u+ v = ¢ (constant), (2.82)

and on A,
¢6=%, p=F and ¢g=@Q (2.83)

where ®¢, Py and Qp are constants. It can be shown using equation (2.53) that the
initial conditions given in equation (2.83), when transformed to the geodesic (z,y)
coordinates, have the same form. i.e.

$=®,, p=P and ¢g=Q (2.84)
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where ®,, P, and @, are constants. Then A and B (given in equation (2.81)) are

constants and so, solving for ¢;(yo) using equation (2.80) and making a substitution
B — Cl(y(}) = sinf (285)

we obtain

¢1(yo) = — cosf.6'.
Substituting the last two expressions in equation (2.80) gives
¢ = A,

i.e.
0 = Ay, + C; (2.86)
thus
c1(y) = B — sin(Ayy + C).

To determine C, we recall that ¢ = ®; on A. Using the expressions for ¢;(vo), c2(¥o)
and equation (2.59), gives

&= sin"l{Qsin2 (%) —1} — A (2.87)

Hence, in general,
ci(y) = B —sin(Ay + C), (2.88)

and from equations (2.77) and (2.87), we find that

B
(B—1)—sin(Ay + C)

ca(y) = zo — cosh™* J (2.89)

A solution to the Cauchy Problem for the sine-Gordon equation in geodesic coordi-
nates is given by equation (2.59), where ¢;(y) and cy(y) are defined by equations (2.88)
and (2.89) respectively. To get a solution in terms of the original coordinates we can
use equations (2.32) and (2.45) to express z and y in terms of u and v.
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Derivation of the Beltrami Surface

Though it is perhaps not obvious, this solution corresponds to a Beltrami surface
[28] (see Fig.2.4). Recall that the Beltrami surface is a surface of revolution described
by

’ , . ’ X
I = (sm X cos Y, sin X sin Y, cos X + In tan ?)

2

where the (X,Y") coordinates correspond to the lines of curvature.

L N N N —— e — G A A EE

Figure 2.4: Beltrami surface in the (X,Y) coordinate system
The coefficients E, F and G of the first fundamental form are
E=cot?X, F=0, (= gin® X

and thus H = vVEG — F? = cos X.
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(X,Y) coordinates Tchebychef net coordinates

Figure 2.5: Coordinate transformation from (X, Y’) coordinate system to the Tcheby-

chef net coordinate system.

A transformation between the (X,Y’) coordinate system and the Tchebychef net (u,v)

coordinate system is defined by the system
X,f cot’ X + Yf sin?X =1,

X, X, cot? X + Y, Y, sin?X = F = cos ¢,
X2cot?X + Y2 sin?X = 1.

One solution to this system can be determined under the assumption that

Vi=¥'=1.
Choosing
Y =u— v,

equations (2.90) and (2.92) give

Xy = Xy =sin X.

A suitable transformation is defined by (2.93) and

u+v=In|csc X — cot X|.

(2.90)

(2.91)

(2.92)

(2.93)

(2.94)
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This non-characteristic curve in the (u,v) coordinates (Tchebychef net) can be taken
as the initial curve for the Cauchy Problem of the sine-Gordon equation. Also, we have
from equations (2.95) and (2.96) that

p=ei, Qu==ts and P,=1s, (2.98)
where ¢;, co and c3 are constants.

The last two equations are the same initial conditions as in equations (2.82) and (2.83).
Since the Cauchy data are analytic, the Cauchy-Kowalewski theorem [9] guarantees a
unique solution. Thus, the solution which we had for the Cauchy Problem of the sine-
Gordon Equation corresponds to a Beltrami surface.

Further Illustration
If we take a known soliton solution of the sine-Gordon equation, (2.54),
¢ = 4tan"'(exp(u+ v +b)), (2.99)
where b is a constant, then from equation (2.35) we obtain
H = sech(u +v +b),

and thus from equation (2.30), we get

Ty, = T, = tanh(u+ v +b).

Since y = u — v, we have y, = 1 and y, = —1. Now using the identities [11]

Yo Yu

U= ey ey
§ (ZTuyw — zuyu) (zvyu - muyv)

vx—

we obtain expressions for u, and v, as

Uz = v, = 2coth(u +v +b).



CHAPTER 2. SOME SECOND ORDER PDES AND GAUSS’ EQUATION 39

Since
FI,_ = ﬁﬂuz -+ I:L,vz,

we obtain after substitution and some simplifications,

~

H, =sech(u+v+b).

Similarly using

we get

H., = sech(u+v + b),

which clearly illustrates that H = sech(u + v + b) is the corresponding solution to the
Schrodinger equation (2.26), where K = —1.

Further, solving
T, = z, = tanh(u+ v +b)

and choosing the arbitrary functions of integration appropriately, yields the coordinate
transformation for z as
z = In |cosh(u + v + b)|.

The above illstration clearly indicates that we can generate classes of solutions to either

of the equations by using our technique with known solution to one of the equations.

2.1.1.4 Case(b): Gsduu + Esdpy = 0.

In this case having

G¢¢u‘u + E¢¢'uv =0 (2100)
equation (2.4) becomes
Ouw = M(9) + A(9) ¢}, + B(9)95 + C(6)$u6u (2.101)
where 12 o o
M(¢)=K =t B . g S8

F, °’ 2Fs’ = 2F,’ 2F,
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Thus we have to solve a system of two partial differential equations (equations (2.100)
and (2.101)), where obviously, both E and G are functionally dependent on the un-
known function ¢. This condition makes it more difficult to solve this system and
hence to determine the required coordinate system for the interpretation of the Gauss
equation. Therefore we refrain from further pursuing this case.

2.1.2 Equations of Parabolic Type

Consider a second order quasi-linear parabolic PDE of the type
éuu = f(GD, C.éu: d’v) (2'102)

Equation (2.4) will be of this form if G4 # 0 and either

(a) Es = Fy=0 or
(b) Et.f)ém: =2 qbéuv = 0.

2.1.2.1 Case(a): E, = F, =0

If Es = F, = 0 then equation (2.101) will be of the form

Ouu = Nr(qb) + A(@)Gﬁ (2103)
ey 2K H? 1 (EG3
S = ? _
N(¢) = G and A(¢) = G {2H2 G¢¢}. (2.104)

Equation (2.103) is a second order ODE in ¢, which can be solved using standard
methods|[13].

Example:

Consider the PDE

Then we have
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Since E4 = Fy = 0, we may choose

ty
I
T
I

Solving (2.104)) for G and K, we obtain

G=1+¢€* and K= -1.

Finally we solve the given problem by using the methods adapted in equations (2.38)-
(2.45) and obtain the solution

e(n_c‘)} - e_(u_CZ)
2 1

¢o=1In

where ¢; and ¢, are arbitrary constants.

2.1.2.2 Case(b): Eydyy —2Fsuy = 0.

In this case, we end up with the system of PDEs

E(béw = 2F¢¢uv =0 (2.105)
and
buw = M(0) + A(9)9% + B(d)82 + C(¢)budy (2.106)
where — _
_ 2 _ 1 6 _
M@ =25 a0) = & {3pE - cwl.

This scenario is similar to that we had in the second case for the hyperbolic PDEs. Due
to the same reasons described in that particular case, we are unable to further pursue
this case.
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2.1.3 Equations of Elliptic Type

Consider a second order quasi-linear elliptic PDE of the type

Guu + Oue = f(0, Su, 00). (2.107)
Equation (2.4) is of this form if

E; =Gy and Fy = 0,
and in this case equation (2.4) reduces to

Ouu + O = M(é) * A((,f))(ﬁ)i -+ Qﬁ) (2'108)

where (E+G)

Note that for a real coordinate system to exist A(¢) # 0, we define implicitly a new
coordinate system by taking

E=G=g(¢) and F =1 (2.109)

where g(¢) is given by (using the expression for A(¢))

< L J1 + 4A(¢)?
g = i

2A(9)

Hence we have our new coordinate system defined by

E=G=g(¢), F=1, and K:L@)) (2.110)

2{g(¢)> -1}

As we have done before in section (2.2.1) we consider the coordinate transformations
between the geodesic coordinate system and the coordinate system defined above, by
using the transformation equations,

2 + H?y? = g(¢)- (2.111)
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Ty Ty + fpyuyv = F=1, (2.112)

22 + H%y? = g(¢). (2.113)

Geodesic coordinate system

New coordinate system

Figure 2.7: Coordinate transformation from geodesic coordinate system to the new
coordinate system.

One solution to the above system of equations (2.111)- (2.113), which we shall use in
the sequel can be determined by assuming,

-~ 1/2
T =z, = {g(¢) — B*z,y)} " and 2=y =1

provided y, # y,. From the last equation we define a transformation implicitly by

z = f - H(z, y)}lf2 du + fi(v)

and

where f;(v) satisfies,

fi) + 2 { [ (50 - B )" du} = {o6) - B},

and H becomes
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Thus from equation (2.112) we have

o iy %{1 +9(@)}2. (2.114)

As we have described in section (2.2.1), we find the first and second derivatives of H
with respect to z and then by substitution we obtain from the Schrédinger equation
(2.26), a PDE
{2(¢ — 1)g" - (¢} 2M(9)

2(1-g)g' (9+1)g'
which can be treated as a second order ODE, as it does not have the y derivative terms.
The ODE

Gzz = (¢z)

2 2
L S (?) + B(9), (2.115)
where a(é) _ 2(9 o 1)9” = 9!2 arid ﬁ( ) L@ (2 116)
- 2(1-g)g' (9+1)g |

is solved using the same techniques as used in section (2.1.1); thus,

do + ga(y) (2.117)
([ 28(@)e 2l @%ag L@} "

where ¢;(y) and g2(y) are arbitrary functions of y.
Now (2.117) defines a relationship
wz,y,¢) =0 (2.118)

between z,y and ¢ and by assuming that one set of values zg, ¥, ¢o can be found to
Satisfy (2.46) and that, near (zo, yo, o), 4 and its first partial derivatives are continuous
a.nd 5 # 0, the implicit function theorem states that in a region of the zy plane
contalnmg (z0,¥0), there is precisely one differentiable function

¢ = 7(z,y) (2.119)

which reduces (2.117) to an identity and is such that ¢y = 7 (¢, ¥o)-
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Under these assumptions, we now obtain

i = Zslolr@) -1}, (2.120)
and so, - 5
= % 11 + glrle, u —u)) 2 (2.121)

where ¢ = 7(z,y) = 7(z,u — v) (since y = u —v).

Since from equation (2.116) we will be able to determine z in terms of u and v, say,
z = Y(u,v), we finally obtain the general solution of the PDE (2.106) as

¢ =71(9(u,v),u —v).

Next we shall consider some examples of the above discussed type of PDE and analyse
the possibilities of finding the general solution.

2.1.3.1 Example 1:

First let us consider the equation

4(p? +4)

(T8 {62+ 02} (2.122)

@buu =} c.bvv =

of the form (2.107), then we have

B _ 4(¢*+4)
M(¢) =0 and A(¢) = —¢2(¢2 T8
Also we have

E=ng(¢)=%(¢2+4), F=1 and K=0

which implies
a(¢) =0 and B(¢)=0
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from equation (2.116). Hence from equation (2.115) we obtain

¢ = q1(y)r + g2(y)

which yields
z=—{d-a@)}

By substituting the expression for ¢ obtained above into equation (2.114) we get

Ty =Ty = % {@@)z+a@) + 8}1;2

which yields

V2
| s aprapds = vt Al (3123)
and
/ B 734z = v + oo(u), (2.124)

{(a()z + q29)* + 8}
where po(v) and op(u) are arbitrary functions of v and u respectively.

If we consider equation (2.123) and make the substitution
t=aqT+ ¢

we obtain

t+ V2 +8
2v/2

which implies that po(v) depends on the arbitrary functions ¢; and ¢, and is such that

,()_i 4, t+ V2 +8
pov—av Q1n—2\/§ :

4
u+ po(v) = —In
Q1

; (2.125)

Equation (2.125) implies that

t = 2/2sinh {%(u + Po(v))}



CHAPTER 2. SOME SECOND ORDER PDES AND GAUSS’ EQUATION 47

and therefore since y = v — v,

T = q—[lh {2\/§SIHh [M(u i ,Oo(v))] - qz(u = U)} .

Hence the general solution for the PDE in equation (2.120) is
é(u,v) = 2V/2sinh {M(u 4 pg(v))} .

2.1.3.2 Example 2:

The equation

0

_ 9@ 42 4?+4) (2,
buu + S = 15(6”+8) + FF 0 {62+ 02} (2.126)
is of the form (2.108), where we identify
=2 A +4)
M(o) = 16(@) +8) and A(9) = P(FEi8)

Hence we get
E=G=g(¢) = (@ +4), F=1 and K= _—

which implies

a(@)=0 and B(¢) =

from equation (2.116). Hence from equation (2.115),

6=3{@-nm)?-nE)},

where r; and ry are arbitrary functions of y = u — v.

Using the same procedure as in Example 1 we obtain the general solution for the PDE
(2.122) as

o(u,v) = 5 { [2\'—:_31nh (4 (u +,o1(v))) - %[1 — Tl]r _ ‘r1} .
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2.2 Solving a class of second order non-linear PDEs

In this section we consider a class of Monge-Ampere equation [1, 23, 41] and discuss
a method for constructing solutions. We first identify the Monge-Ampére equation as
the Gauss equation and then reformulate it as the sine-Gordon equation via Backlund
transformations. The sine-Gordon equation may be solved by the methods discussed
in the previous sections, and this will yield the corresponding solution to the Monge-
Ampere equation. It will be shown that instead of solving the Monge-Ampeére equation,
we can solve a transformed equation-a first order non-linear PDE using the solution of

the sine-Gordon equation.

2.2.1 A class of Monge-Ampeére equation

Consider a surface described by
=X, Y, Z(X,Y)).
The components of the first fundamental form (1.4) are
E=1+42%, F=2xZy, G=1+2%,

and the components of the second fundamental form (1.11) are

g= ZXX
I+ 22 +2%

_ Zxy
V1+2%+ 23

and
Zyy

9= :
V1+2Z%+ 23

In terms of this parametrization, the Gaussian and the mean curvatures are

K= Zxx Zyy — Z%y
1+ 2% + 23)°

(2.127)
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and
H = Zxx(1+Z}) — 2Zx Zy Zxy + Zyy(1 + Z%)

2(1+ 2% + 23
We note that the Gauss equation reduces to equation (2.127) for graphical coordinates.
Further, when substituting K and # in the linear Weingarten relation [36]

(2.128)

K+ 2bH +c=0 (2.129)

where b and c are arbitrary constants, we obtain

Zxx Lyy — ngy bex(].-i—Z}?z) - 2Zx 2y Zxy +Zyy(1+z)2;)
1+ 2%+ 22)° (1 4 2% 4 L)1

+c=0.

(2.130)
For the choice of b = 0 and ¢ = 1 equation (2.129) describes a pseudosphere and
equation (2.130) reduces to

Ixx Zyy — Z%—y
1+ 2% + 22)°

=-1. (2.131)

2.2.1.1 A special class of Monge-Ampeére equation and Backlund transfor-

mations

In this section we consider a special case of the Monge-Ampeére equation, equation
(2.131) and discuss some solution techniques by using Bécklund transformations.

If the surface is described in Tchebychef net coordinates (u,v) the components of the
fundamental form are E = 1, F = cos ¢ and G = 1, where ¢ is the angle between the
coordinate curves on the surface (section 2.1.1.2). For a pseudosphere with K = —1,
Gauss’s equation yields the sine-Gordon equation (1.18).

In graphical coordinates, the Gauss equation produces the Monge-Ampére equation
(2.131). These two PDEs are evidently connected by a Béacklund transformation and,
once such a transformation is known, the Monge-Ampere equation can be solved if the
sine-Gordon equation can be solved, (and vice-versa).

The Béacklund transformation is essentially a transformation on the solution surface

from graphical to Tchebychef net coordinates. Interpreting the tensor formulae given
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in equation (1.20) as o
. OX gxm
% = dm 53 D7

for coordinate transformations we obtain the system of nonlinear first order PDEs

(1+9)X2 + 2pgX. Yy + 1 +¢H)Y2 =1, (2.132)
1+ )Xo Xy + pg(XuY, + X,Ys) + (1+ ALY, = cosg, (2.133)
1+p)X2 + 2pgX,Y, + (1+)Y2 =1, (2.134)

where p = Zx and ¢ = Zy.

Graphical Coordinates Tchebychef net Coordinates

Figure 2.8: Coordinate transformation from graphical coordinate system to the Tcheby-
chef net coordinate system.

g —p
M = ( Vrr+g?  \/p2+g? )

p q
\/pz_;_qz \/p2+qz

() -*(%)

where i = u,v. Then the system (2.132)-(2.134) transforms to the system

Let,

and

7 + 1+ +¢); = 1, (2.135)

2,2y + (L+9° + ¢®)yuyy = cosg, (2.136)

2+ (1+p°+¢%)y2 = 1. (2.137)
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Here (z,y) corresponds to geodesic coordinates since E = 1, F = 0 and G = (1+p?+¢?).

Also we note that
X -
( ) = M, ("“ ) (2.138)
¥; Yi

q P
My = ( et il ) = M.
\/p2+q2 ,\/p2+q2

where

We now have a Béacklund transformation between the (X,Y") and the (z,y) coordinate
systems. Next, we shall derive a transformation between the geodesic and the Tcheby-
chef net coordinate systems (see Fig.2.9). We note that solutions to the system of PDEs
(2.135)-(2.137) will provide us with such a transformation. Since we have already dealt
with a similar system in section 2.2.1, it motivates us to choose the following set of
solutions to this system.

Let
y=a(u—v) (2.139)

where —1 <a<1,a# 0, and

Ey =y = {1 —a2[1+p2+q2)}u2 ; (2.140)

Note that the Jacobian

d(z,y)

_ _ e i 9 2 23112 .
a(u’v) _xuy!-‘ .’}:vyu = 2&{1 a (1 +p +q )} 7é 0:

hence the transformation between the (z,y) geodesic and the (u,v) Tchebychef net
coordinate systems is non-singular, provided that a®(1 + p? + ¢%) # 1.

Now by substituting (2.139) and (2.140) in (2.136) we get
cos¢p = 1—2a%(1 +p® +¢%)

or
(1+p*+¢% = -Egsinz % . (2.141)
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Graphical Coordinates Tchebychef net Coordinates

Geodesic Coordinates

Figure 2.9: Coordinate transformations between graphical, geodesic and Tchebychef
net coordinate systems.

Equation (2.141) is a first order non-linear PDE which can be solved for Z(X,Y), a
solution to the Monge-Ampeére equation, provided that we have the solution ¢(u,v)
of the sine-Gordon equation, in terms of X and Y. That is, we have to relate both
set of transformations (given in (2.138) and (2.139)-(2.140) respectively), the transfor-
mations between graphical-geodesic ((X,Y") — (z,y)) and the geodesic-Tchebychet net
((z,y)—(u,v)) and thus determine the corresponding transformation between graphical-
Tchebychef net ((X,Y) — (u,v)) coordinate systems.

We note from (2.140) that
B == cosg : (2.142)

If we denote
e ey and B= ks (2.143)
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then we have

A4 B =1 (2.144)
and from (2.138) we find
Xy = Bzy + Ay, (2'145)
Y = =Agy + Byu: (2146)
Xy = Bz, + Ay, (2.147)
and
Y, = —Az, + By,. (2.148)

By solving (2.145) and (2.146) for A and B we get

= % and B = w (2.149)
Similarly from (2.147) and (2.148) we obtain
- M d B= w (2.150)
Tyt Yy Tyt Yy
Substituting (2.149) in (2.144) yields
X2+Y2 =22+92 (2.151)
and similarly by substituting (2.150) in (2.144) gives us
X2 472 =22442. (2.152)

Now by equating the two different expressions for A and B in (2.149) and (2.150) we

have
Xulu — YTy . Xoly — YoZy

2+y2 2+

(2.153)

and
XEI‘!.I. + Yuyu . XU:L.‘U + K’y?}

2+y2  22+y?

(2.154)
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First by substituting
xu:xv:cosa, Yu=a and yY,=-—a

in equations (2.151),(2.152), (2.153) and (2.154), and then by comparing them we
determine that 3
X, =X, =—cos '5, Y,=a and Y,=—a (2.155)

a solution to the system (2.151)-(2.154), where A and B become

2a cos % a? — cos? g
A= 5 =3 i and B = 5 )
a*+cos® £ a? + cos?

We note that particular choices of solutions for coordinate transformations similar to
what we have here, will not help us obtain the general solution to the original problem,
but only help us find a special class of solutions. From (2.155) it is evident that given
¢(u,v), a solution to the sine-Gordon equation we can determine X and Y in terms of

u and v. In other words, we determine the required Backlund transformations (say)

x = o) s

Y = fuv)

and since the Jacobian J = 2acos (%) # 0 for solutions of the sine-Gordon equation
such that cos (%) # 0, the transformations in (2.155) are invertible and thus we obtain

= Y
% = A E) | (2.157)
g = §(X,Y)
Hence using (2.157) we can write (2.141) as a first order non-linear PDE
©(X,Y,Z,p,q) =p*+¢+1- %Sin2 (q)();’ Y)) =0, (2.158)

where
®(X,Y) =¢(v(X,Y),8(X,Y)).
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Equation (2.158) can, in principle, be solved using characteristics [33] which helps us
to write (2.158) as a system of five ODEs

X'(t) =0, = 2p, (2.159)
Y'(t) = ©, =2, (2.160)
Z'(t) = pO, + ¢0, = 2(p* + ¢%), (2.161)
P'(t) = —Ox — pOz = —Ox, (2.162)
and
¢ (t) = —Oy — ¢0z = -6y, (2.163)

where ©z = 0. Solving this system of ODEs will enable us to determine the solution
Z = Z(X,Y) for the Monge-Ampére equation (2.131).

Next we shall illustrate how a solution of the sine-Gordon equation can be used to
determine a solution to the Monge-Ampere equation in the form of (2.131).

Example: A class of solutions

The function
¢ =4tan™? (e(”“’)) (2.164)

is a (soliton) solution of the sine-Gordon equation (2.54). Now

and by using (2.164) we obtain
¢ _ .
cos o = —tanh(u + v); (2.165)
hence, equation (2.155) indicates that

X, = X, = tanh(u + v) (2.166)
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and thus
X =In|cosh(u + v)| . (2.167)
Further, we have
Y =a(u—v). (2.168)
Equation (2.168) implies that
(u+v) = cosh™ (ex) ;
and (2.165) implies that
sin %5 = sech(u +v);
consequently,
sin’ g =g oE,
Equation (2.158) thus reduces to
O(X.Y,Z,p0) = P+ +1— e =0, (2.169)
with characteristic equations
X'(t)=0,=2, (2.170)
Y'(t) =6, =2q, (2.171)
Z'(t) = p©, +¢©, = 2(p* + ¢°), (2.172)
P B —% e (2.173)
and
qd(t) = -0y = -0y =0. (2.174)
Equation (2.174) yields
q(t) = constant = ¢, (say) (2.175)

and so, from equation (2.171) we obtain

Y(t) =21t + o

(2.176)
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where ¢, is an arbitrary constant. Now from equations (2.170) and (2.173) we have

-1t 4 -
X"(t) = 29/ (t) = == ™%

which is a second order ODE in the form

4
X”(t) =t — e 2X = 0,
a

from which we obtain a solution

14 [“—‘égsech (-\/C_g(t + c‘;))}ti

1
X(t) = = tanh™

2

{1 — [2fsech (/a5 + "'4))}4 } (2.177)

where ¢3 and ¢, are arbitrary constants. Equation (2.177) implies

X'(t) = /estanh (y/e3(t + ¢4)) ,

and equation (2.170) implies that

p= %tanh (Ves(t +cq)) -

Hence (2.172) reduces to

Z'(t) = 2(p* + ¢?) = %Stanh2 (VG (t+c)) + 262,

and therefore

N ” tanh (\/E(t + c.;)) +1
4 tanh (\/E(t - c.;)) -1

Z(t) = — 2 tanh (y/cs(t + c4))}+2cft+c5 (2.178)

where cs is a constant.

Hence we have solved the system of five ODEs (2.170)- (2.174), which has generated
five arbitrary constants ¢y, cs, ¢3, ¢4 and cs, and thus we have determined a solution to
the Monge-Ampere equation which corresponds to the soliton solution (2.164) of the
sine-Gordon equation.
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The elimination of the parameter ¢ and some of the arbitrary constants in equations
(2.176), (2.177) and (2.178) yields the general solution [33] of the Monge-Ampere equa-
tion which corresponds to the solution of the sine- Gordon equation given in (2.164).

A relationship amoung the Monge-Ampeére equation, sine-Gordon equation
and the Schrodinger equation

Monge-Ampere Equation

sine-Gordon Equation

Graphical Coordipates (X,Y)
I

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

Geodesic Coordinates (x,y) Geodesic Coordinates (X.,¥)

Figure 2.10: Relationships among the sine-Gordon equation, the Monge- Ampere equa-
tion & the Schrodinger equation.

The method described in section 2.2.1 requires a solution to the sine- Gordon equa-
tion or in other words we have to solve the sine-Gordon equation to find solutions
to the Monge-Ampere equation. Solving the sine-Gordon equation using Backlund
transformations has already been discussed in previous sections where the Backlund
transformations were defined from the (u,v) Tchebychef net to the geodesic coordinate
system, and then we had to solve the Schrédinger equation in order to get solutions to
the sine-Gordon equation. Fig.2.10 depicts the situation.
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Initial value problems: The Cauchy problem

Suppose we have to find a solution of the Monge-Ampere equation which passes through
a curve I' defined by

X=a(s), Y=58(), Z=7(s), (2.179)

such that XY # 0, then, we have to actually use these initial conditions to solve
equation (2.158) and find the unique solution to the Monge- Ampeére equation.

We solve the system of ODEs (2.159)-(2.163) subject to the initial conditions for X,Y
and Z as

Xo=a(s), Yo=p(s), Zo=7(s), (2.180)

in the solutions
X = X(pﬁt QO'JXUa %s ZO}tU'rt) , ete. (2181]

The corresponding initial values of py, gy are determined by the relations

7'(s) =pod(s) + 40 B'(s)
and
o {a(s), B(s), 7(s), po, g0} = 0.
If we substitute these values of Xy, Yo, Zo, po, @0 and the appropriate value of #; in

equation (2.162), we obtain X,Y, Z in terms of the two parameters t, s such that

X =Xi(t,s), Y=Yit,s), Z=2(ts). (2.182)

Eliminating s,t from these three equations yields the required solution in the form,

¥(X,Y,2) =0.
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2.2.1.2 A more general class of Monge-Ampeére equation and Backlund
transformations

Let us now consider the more general class of Monge-Ampeére equation in the form given
in equation (2.126). Since to every surface satisfying a linear Weingarten relation we can
find a pseudosphere with Gaussian curvature K = —1 among its parallel surfaces(38],
there will exist a geometrically tractable transformation from the familiar Monge-
Ampere equation (2.127) to the generalised Monge-Ampere equation (2.126). Now
suppose that we have a solution to the Monge-Ampere equation for the pseudosphere.
Then we can use the Backlund transformations we have developed in section 2.2.1.1
to get a solution to the sine-Gordon equation (2.54) or vice versa. Once we have the
solution to the sine-Gordon equation we can use known Bécklund transformations[36]
to get it into the lines of curvature. But using the concept of parallel surfaces we know
that the new fundamental components will be in terms of the lines of curvature for the
parallel surface. Also we know the Béacklund transformations to get this in terms of the
characteristics(which corresponds to the Tchebychef net) coordinates. Thus, we have
a solution to the generalised sine-Gordon equation, and from this we can determine
the corresponding solution of the generalised Monge-Ampére equation. Fig.2.11 given

below illustrates this concept.
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Graphical Coordinates

Tchebychef net Coordinates

Monge-Ampere Equation sine-Gordon Equation

I

i Bl e
Parallel Surfaces el e - R Parallel Surfaces

: -
e

Generalised Generalised

sine-Gordon Equation

Monge-Ampere Equation

Graphical Coordinates Tchebychef net Coordinates

Figure 2.11: Relationships between the sine-Gordon, the generalised sine- Gordon, the
Monge-Ampere and the generalised Monge-Ampere equations.
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Chapter 3

PDEs, Coordinate Systems & the

Gauss Equation

3.1 Introduction

In Chapter 2 we identified some coordinate systems which enable us to interpret
the Gauss equation as some well known partial differential equations such as the
Schrédinger equation, the sine-Gordon equation, the Liouville equation and the Monge-
Ampére equation. We used this interpretation to investigate some of the connections
between these equations and solutions techniques using coordinate transformations.

We have yet, however, to address the matter of how a given partial differential
equation can be interpreted as the Gauss equation. That is, given a PDE, is there a
systematic way to obtain a coordinate system such that the PDE corresponds to the
Gauss equation? We address this question here for a more general class of PDEs.

In the next section we describe briefly some of the work carried out by Chern,
Tenenblat, Kamran, Jorge and Sasaki[4, 15, 16, 31, 32], who developed a technique
to determine coordinate systems in which certain types of evolution equations such as
the Korteweg-de Vries(KdV) equation, the modified Korteweg-de Vries(MKdV) equa-
tion and the sine-Gordon equation describing pseudospherical surfaces(p.s.s) can be
interpreted as the Gauss equation.

In section 3 and 4 we extend this technique to a more general class of PDEs and
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illustrate through examples how to determine the coordinate systems for these types
of equations.

3.2 Preliminaries

In this section, we first summarise the essential concepts of how Sasaki[31, 32] used
the language of exterior differential forms|[8] to interpret the AKNS formulation of
the inverse scattering method(the ISM)[27] for evolution equations. Then we look at
Chern’s and Tenenblat’s[4] formulation of a definition(based upon this interpretation

of Sasaki’s), for a differential equation to describe a pseudospherical surface.

Given a non-linear PDE, Sasaki showed the basic steps in the AKNS method consisted
of:

(a) setting up an appropriate 2x2 linear scattering(eigenvalue) problem in the “space”
variable in which the solution of the non-linear equation plays the role of the potential;

(b) choosing the“time” dependence of the eigenfunctions in such a way that the eigen-

values remain invariant as the potential evolves according to the non-linear equation;

(c) solving the direct scattering problem at the initial “time” and determining the
“time” dependence of the scattering data;

(d) doing the inverse scattering problem at later “times”, namely reconstructing the
potential from the scattering data.

He then summarises the essence of the first two steps as follows:

Find three one forms w;,w> and wj; consisting of independent and dependent vari-
ables and their derivatives, such that the non-linear equation is given by

O=d2—QAQ=0 (3.1)

Q=(UJ1 wz)
Wy —Wwh

where

and Tr Q = 0.



CHAPTER 3. PDES, COORDINATE SYSTEMS & THE GAUSS EQUATION 64

Based on this interpretation, Chern and Tenenblat formulated the following definition

for a differential equation to describe a pseudospherical surface as follows:

Definition 3.2.1 Let M be a two-dimensional differentiable manifold parametrised by
coordinates z,t. A differential equation for a real function u(z,t) describes a pseudo-
spherical surface(p.s.s) if and only if there ezist differentiable functions fo5, 1 < a <
3, 1 < B <2, depending on u and its derivatives, fo = n(a parameter), such that the
1—forms

Wa = fa1dz + fao dt (3.2)
satisfy the structure equations
dw; = w3 A wy (3.3)
dwy = wy A ws (3.4)
dws = w1 A wa, (3.5)

of a p.s.s. Here w; and wy are the forms which determine the metric on M, and w; is
the connection form.

In the above definition Chern and Tenenblat had chosen f,; = 7n(a constant param-
eter), so that the problem may be reduced to the inverse scattering problem considered
by Ablowitz et al. in [27], where 7 corresponds to the spectral parameter.

Note that equations (3.3) and (3.4) are the structure equations which determine
the connection form ws; equation (3.5) corresponds to the Gauss equation. In the

pseudospherical case the Gaussian curvature of M is —1.

The above definition led Chern and Tenenblat to perform a complete classification
of the evolution equations of the form

ut:}.,( au. Bku)

A i g e
i 2 A -

which describe p.s.s. Further they gave a geometrical method for constructing Backlund
transformations and conservation laws for these equations. The classification and so-

lution by inverse scattering of equations of more general type than the above equa-
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tion, which describe pseudospherical surfaces were considered in subsequent papers
(15, 2, 25], still under the assumption that fy; is a constant parameter.

In [15], Jorge and Tenenblat did a complete classification for equations of the type
U = F (‘U., Uy, Ugy, ut)

gave similar results to those of Chern and Tenenblat in [4]. Further, Jorge and Tenenblat
applied their theory to show that the Liouville equation,

2
utt+uzz=6eua

which is associated with minimal surfaces, also describes a pseudospherical surface. It
is noted that in the above equation § is a constant.

In [16], Kamran and Tenenblat generalised the results of Chern and Tenenblat by
classifying the evolution equations of the form

k
U¢=F( Ou 6_%)

"0z’ Oz

which describe pseudospherical surfaces, without making any assumption that f5; is a
constant parameter or any other a priori assumptions. Further, they have proved a
local existence theorem to the effect that given any two differential equations describing
pseudospherical surfaces (not necessarily evolutionary), such that one of the functions
fi; is an invertible function of u only, there exists locally a smooth mapping transforming
any generic solution of one equation into a generic solution of the other.

Poznyak and Popov [29] used the work of Sasaki, Chern and Tenenblat to describe
a number of problems related to a certain geometrical approach. This geometrical
approach is to interpret differential equations and to base them as relations that are
generated in some way by special coordinate nets on surfaces with prescribed Gaussian
curvature.

The generalization by Poznyak and Popov motivates us to analyse more general
classes of differential equations which may correspond to surfaces of variable Gaus-
sian curvature K(z,t). We thus focus first on extending definition 3.2.1, and then on
devising a method whereby the functions f,s can be determined for the general case.
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A straightforward extension of definition 3.2.1 is as follows:

Definition 3.2.2 Let M be a two-dimensional differentiable manifold parametrised
by coordinates xz,t. A differential equation for a real function u(z,t) describes a sur-
face of Gaussian curvature K(z,t) if and only if there exist differentiable functions
fag,1 < a < 3,1 < B < 2, depending on u and its derivatives, fo; = n (a
parameter), such that the 1—forms

wy = fridz + frodt (3.6)
we =ndx + faodt (3.7)
wy = fa1dz + fadt (3.8)
satisfy the structure equations
dw; = w3 A wsy (3.9)
dws = wy A ws (3.10)
dwz = —K(z,t) wy A ws, (3.11)

of a surface of Gaussian curvature K(z,t). Here wy and w, are the forms which deter-

mine the metric on M, and w3 is the connection form.

It follows from this definition that for each non-trivial solution u of the differential
equation, one gets a metric defined on M, whose Gaussian curvature is K (z,t). We

note that M is a p.s.s. whenever K = —1.

3.3 Characterisation I

In this section, we consider differential equations for u(z,t) of the form

(3.12)

k
wu=F (K(:r,t), e L u)

u, a,...,—*axk
which correspond to surfaces of variable Gaussian curvature K (z,t) in some coordinate
system. It is assumed that the functions f,3 depend on u, g—;, G g%%, 1€y, 1%
B8 < 2, except that fy; = 7 is a constant.
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We first obtain necessary conditions on the functions f,s in Lemma 3.3.1. In particular,
it is shown that f1; and f3; depend only on u. By imposing a generic condition on fi;
and f3; we obtain Theorem 3.3.2. The non- generic cases are given by Theorems 3.3.3,
3.3.4 and 3.3.5. Our proof techniques follow those of Chern et. al.

From now on we will use the following notation:

Ou 0ku
20 = U, 21=a,...,2k @, (313)
and
ou
Zot = 5 (314)
Lemma 3.3.1 Let
Zog =T (K(2,t); U, 8y, Bi5e58k) (3.15)

be a differential equation which corresponds to a surface of variable Gaussian curvature
K (z,t), with associated 1—forms wq = fa1dx + faodt, 1 < a < 3, where fo =nisa

parameter. If fo5 are functions of zg, 21, 22, . . ., 25 then
fiz=fn,=0 1<:1<k (3.16)
fizz = fo2,2, = fa2,,, =0 (3.17)
fo2,5_, =0, (3.18)
flzl,zg i f??l,zo # 0. (3.19)

Moreover,
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k=1

—F fi1,20 + O zit1 fr2,5 + (0 fa2 — foafs1) = 0

=0

k—2
Z Zit1 22,2, + (fr2 far — fufae) = 0
1i=0

k-1

—F fa120 + D zip1 fr2s + K (fuu fo—nf12) =0

2=0

Proof: Since 5 5
Zi di ot 2;

dz,v = a—x E dt,

we have for0< i < k-1
dZi A dt=2i+1 dz A dt

and

62.'0 aZ{)
dzg N dz = (6 dz —aTdt)/\dx

= 2ot dt A dzx
= =20 dr A dt

= —Fdz A dt,

from equation (3.12).
Substituting (3.6), (3.7) and (3.8) in (3.9) we have

d(fndir -+ flgdt) = (f31d3} —+ fgzdt) N (?}‘ dr + fzzdt),

1.e.

i—j— A/\da:+ia 22
=08 i=0 32{

i A\ dt = (faofa1 —n fa2)dz A dt.

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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The above equation can be written as

k k
> fuzdz A de+ ) froz dzi A di+ (1 fao — foafar)dz A dt =0,

=0

=0

which implies that

k
fll,zo ng A de‘ =+ Zfll,z.- dz,; A d.’E - f12,zk dzk A dt

=1
k-1
+ Y fiandz A dt + (7fs2— fafu)dz A dt =

=0

Substituting (3.23) and (3.24) in (3.25) we obtain

k
—f“_‘ZO Fdz A dt + Zfll,z.- de' ,/\d.’C + fl2,zk dzk A dt

i=1
k-1
+ > fon zipds A dt + (1 fs2 — fofa)dz A dt

i=0

and this reduces to

#

k
f12,z;= dzp N dt + qu‘zi. dz; N\ dz
=1
k-1

—Ffiiz + Y zisrfizs + (0 fs2 — f22f31)) dr A di

i=0

Equating the coefficients on both sides of equation (3.26) yields

and

fll,z,-=0: 1535;97

k-1

=F fi12 + Z Ziy1 froz + (0 fa2 — faafa1) = 0,
i=0

fl?,zk = 0 L

0.

0,

0.

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
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Now substituting (3.7), (3.8) and (3.6) in (3.10) we obtain

d(n dx + fggdﬁ) = (fud.’E + f]gdt) A (f31d:c -+ f32dt).
After some manipulations and substitutions this last equation reduces to

k-1
foo,z dzx A dt + (Z Zisv1fo2z: + (—fr1fae + f12f31)) dz A dt =0.
=0

By equating the coefficients on both sides of (3.31), we obtain

f22,2k — 01
and

k—1
> zig1 fazs + (= funfaz + fiafz) = 0.
1=0
Finally, substituting (3.6), (3.7) and (3.8) in (3.11) we obtain
d(f31d.‘£ -+ f32dt) = —K(JI, t) (fud.'r + f]2dt) A (T} dx -+ fQth),

which, after substitution and some manipulations reduces to

k
Zf.‘il,z,- dz; A\ dz + faz,zk dzi A dt

=1

k-1
+ (—*Ffm,z,- + 3 zivifaos + K(z,t) (finfor — T}flz)) dz Adt =

=0

Equating the coefficients on both sides yields

f31,zk=07 f31,z,-=0: 1 1335}‘3:

k—1
=F fs1,2 + Z Ziv1 fao,5 + K(2,t)(fuifoe — 1 fi2) = 0.
i=0

(3.31)

(3.32)

(3.33)

0. (3.34)

(3.35)

(3.36)
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By taking the partial derivative w.r.t z; of both sides of equation (3.33) we obtain

k-1
= (Z Zis1 fooz + (= fr1fae + f12f31)) =0,

92 \iz

which yields
f22,zk_1 = 0’

From (3.33) and (3.36) it is obvious that if fi;,, = 0 and f31,, = 0 simultaneously,
then (3.12) cannot be the necessary and sufficient condition for the w, to satisfy the
structure equations of a surface with Gaussian curvature K(z,t).

Thus we have
f]?l,lo + f321,20 :/é 0.

Hence the lemma. O

Next we introduce the notation

-K
L= fu fa1 R fu  fa ’ (3.37)
fll,zo f31.2:0 f31520 fll,zo
| i T e o K, (3.38)
fll‘zozo f3l,zoza
and
k=2
B = Z Zi+1 f22,z,. % (339)
1=0

For L # 0 we define A’ recursively as follows:
AF =1

and for0< 5 < k-2,

E k-1 . 1 - 1
Al = _Zzi+1 A';:H i E (Z;Lzo +’-"}H) A'H.l -+ f(—zlP+ﬂM) BZ,'-H -+ fgg,zﬁ_lH.
i=0

(3.40)
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We consider the generic case when HL # 0 in Theorem 3.3.2. The non- generic cases
will be discussed in Theorems 3.3.3 - 3.3.5.

Theorem 3.3.2 Let fo3, 1 < a < 3,1 < B < 2, be differentiable functions of

20,21, .-, 2k Such that (3.16)-(3.19) holds, except that foy = 1, a non-zero constant.
Suppose HL # 0. Then

20t = F(K(I,t], 20,21+ .,Zk)

corresponds to a surface of variable Gaussian curvature K (z,t), with associated 1—forms
Wa = fa1dz + foz dt if and only if

1 k-1 1 i k-2 B fa2
Z zis1 By, + — 97 ( ?'? -+ f3 +Kfn) Zzz.HA - HL(le-{-nL) + 2= 5
(3.41)
and
g = fnnfzz +% (—;1;11 ’izzﬁlAi i f31,zoB) , (3.42)
fap = fsi?fzz = (% %i:zi.,.lfli +Kfll,zuB) , (3.43)

where f11, fa1, foo satisfy the following differential equation:
For0 < 3 <k-1,

L L= A - M
— PR L J 2
1?fzz,zj TJ ;:D (zm H)z + A HB" -~ H2(LP+ M?*)§;0 = 0, (3.44)

4]

where 050 = 0 if j # 0 and dpo = 1.

Proof: (=) Suppose zo: = F (K (z,1t), u, 20, 21,- .., 2k) describes a surface with Gaus-
sian curvature K(z,t).
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Then from Lemma 3.3.1 it follows that (3.20)- (3.22) is satisfied. Noting that by hy-
pothesis fi1;.., # 0and f3;,,, # 0simultaneously, (3.20) X f3;1,.,—(3.20) X f11,z, simplifies
to

k=1
> zivr (fr2, f31,0 — 32,2 f11,20) + 1 (Fa2faree + K fr2fir,z0) + fooH =0, (3.45)
i=0

where H is defined in (3.37). Using (3.39), equation (3.21) can be written as

B - fufs + fiz faa =0. (3.46)

Considering (3.20) % f3;1—(3.22) x f1; we obtain

k—1

FL + Y zis1 (fuozfo — faoeifr1) + 1 (fa2fa + K frafun) — foo (f3, + K ff1) =0,
1=0
(3.47)
where L is defined in (3.37).
Taking the partial derivative w.r.t z; of both sides of (3.46) we get
fl?,zk_1f3l,zg - f32,zk_1f11,20 — 0': (348)
and taking the partial derivative w.r.t zx_; of both sides of (3.46) we obtain
le,zk_1f3I = f32,z;,_1f11 = _sz_lt (349)
where we have used the results
fll,z; = f31‘z.- =0, 1<i<k (3-50)
of Lemma 3.2.1.
Solving (3.48) and (3.49) for fi2., , and fs2,,_, we obtain
f12,zk_1 = fll‘zosz_l ? f32,zk_1 e :f:aliB (3'51)

L T Zg—1"
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Now, taking the z;_; derivative of (3.46) we obtain

fa1,20012,200 — f11,20 32,200 = =70 (f31,zuf32,z;¢_1 4 Kfll,zofIQ,zk_,l) - fon2. H.

Substituting the expressions given in equation (3.51) in the above yields

Ui
f31,20f12,zk_2 - fll,zofSQ,zk_g = _EMsz-l - f22,z;,_.|H~,- (352)

where M is defined in (3.38).

Taking the partial derivative w.r.t z;_o of both sides of (3.46) one gets

farfizs. — S, =— B, . (3.53)

Then solving (3.49) and (3.52) for fio.,_, and f3z.,_, produces

1
fll‘zk-z = = 'E (fllAk_2 - fll,zo BZk—2) ? (3‘54)

and i
f32,zk_2 == == E (f3]_-!4k-_2 - f3l,zo Bzh_g) ] (355)

where A’ is defined in (3.40).

Recursively taking the z;;; derivative of (3.45) and the z; derivative of (3.46) for
1 < 5 € k-1 ,we obtain

1 ] -
f12.2j == f (fllAJ i fll,zo Bz,-) s (306)
and
I j ;
f32.zj = = E (f3lA - f31,zg Bz,-) . (307)

Now by taking the z; derivative of (3.45) we get

Jivssfaree — JooeTun e + A’ =0. (3.58)
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Writing (3.45) in the form of

k=2
Z Zi+1 (f12,z.'f31,zo = f32,z;f11,zg) + 2k (fl‘Z,zk_.Ifm,zo =2 f32,zk_1f11,zo)
1=0

+1 (f32f31,20 + K fiofir,z) + fo H = 0,
and by substituting (3.48) yields

k=2
Z Zit+1 (f12,z,—f31,z0 = f32,z;f11,zo) +1n (f32f31,z0 + K fiafi1,2) + f2H = 0.

=0

The above can be expressed as

1 k=2
fa2f31,20 + K fr2fi1,20 — o >z A+ f;2 = 0. (3.59)
i=0

Solving (3.46) and (3.59) for fi; and f3, yields

fi2 = fl;fzz 5 T ( :;H Zzz-HA + f31.20 ) . (3.60)
and e
_fafe 1 (fa S
fao = = I ( " ;Zp:—l/‘l +Kf11.ng) . (3.61)

Using equations (3.47), (3.56), (3.57), (3.60) and (3.61), after some manipulations we
obtain

1k 1 k-2
zzt+1 By HL (—21— + f31 + Kfn) ZZ:HA + (31M+??L) +Z1f22

(3. 52)

In order to get the differential equation given in (3.44), we first differentiate both sides
of equation (3.60) w.r.t z; and obtain

_ 1 1 0 fu 2 i 1 0H
f12,z,— = ?—?'fufzz,zJ + H 7 (— . gz,_HA + f31..0B | — g 6—23-’
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which simplifies to

fll fll

fi2.z = f22 gy = (Z Zz+1A) + fe};zﬂsz : (3.63)

Similarly, by taking the z; derivative of (3.61), after some simplifications we obtain

fa1 o =1 n f31,zoB
faoz = f22 iy T TI_H Z Zig1 + z - (3.64)
i=0 P

i

Considering (3.64) X f11..,—(3.63) X f31.,, and using equations (3.56), (3.57), (3.63) and
(3.64) we obtain

By (fud? = fuozBy) = 252 (4 = f1,2Bx,)

= ~foro (2 fras, — & (EhF 2014)_ + 2B,)

+ fize (% froay — L (THS zmA*)z + J—;}mBz}) ; (3.65)
ie.
(f11f31,20 — fa1f11,20) é;_ = Unfus ; fnfm'm)fzz,z,-
+ (fu1fa, zon;ffslfu ) (Z Z:+1Ai)z
2 (Fuso + K f2) By (3.66)

which reduces to (3.44). The necessary part of the theorem is thus proved.

(<=) Conversely, assume that F, f1» and f3, are given by the expressions in equations
(3.41)—(3.44).

Suppose fi1, fa1, foo satisfy the expressions given in (3.16)—(3.18), then the 1—forms w,
satisfy the structure equations of the surface of Gaussian curvature K (z,t), provided
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that F satisfy the equations (3.20) and (3.22). i.e. F satisfies

k-1
=F Mg Z 2ir1 froz + (0 faz — faofs1) = 0 (3.67)
1=0
and .
—F fa120 + D Zit1 fazs + K(z,t) (fi1 fa2 — 1 f12) = 0. (3.68)
=0

Since we have
fll,z"=f31,z,'=0} ]-stk

and fa.,_, =0, we can write (3.62) as

k
qu,zl.dz,‘ A dz + fiz,dz A di

i=0

k=1
e (_Ffll,zo a5 z 2§+1f12'zi + (7? f32 — fggf;;l)) deNdt = 0. (369)

1=0

But from the structure equation we have relation (3.25), which could be written as

k
fll,?-o dZo A d.’L‘ + Zfll.zi dz,; A dI +f12‘2k de A dt

i=1

k-1
" (Z froz + (0 f32 - f22f31)) de Ndt = @, (3.70)
1=0

Subtracting equation (3.69) from equation (3.70) yields
fll,zo dZ(} A dz + fll,zoF dz N\ dx = 0,
ie.
(dzp — Fdt) A dz =0,

which implies

20t = F.

Thus the sufficient part is proved and hence the theorem.O
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In the non-generic case either
Case(i): L=0 or
Case(ii): L # 0 and H = 0.

For Case(i), we have that
fi1fsrze — farfi1,20 =0

which, for a non-trivial solution, can be classified into the following sub-cases:
Sub-case(a): fi; =0 or f3; =0

and

Sub-case(b): %} — %} which implies

f].l =/\f31

where A is independent of zj.

Theorems 3.3.3 and 3.3.4 deal with sub-cases (a) and (b) respectively.

From Case(ii), we have that H = 0 and thus

K fiufinee + farfasie =0

which implies
fa+Kfh=c
where ¢ # 0, and ¢ does not depend on z;.

This case is discussed in Theorem 3.3.5.

Theorem 3.3.3 Let fop, 1 < a < 3,1 < B < 2, be differentiable functions of
20,21, -+, 2k Such that (3.16)-(3.19) holds, except that foy = m, a non-zero constant.

Suppose f11, =0 and f31 # 0 or fiy =0 and f3; # 0. Then

20,6 = F(K(x!t):zﬂazla .. .,Zk)



CHAPTER 3. PDES, COORDINATE SYSTEMS & THE GAUSS EQUATION 79

corresponds to a surface of variable Gaussian curvature K (z,t), with associated 1—forms
Wa = fa1dx + fo2dt if and only if

f22,zk_2 =0
and
1 3 nKB
T’?fsl = Zo ((Zo Zj+1 (fs )z,-)zi + (f22f31)z,.) + Foforn ! (3.71)
B
f2 = T’ (8:72)
fa=r (Z Zi1 ( 5 ) + f22f31) (3.73)
n $o1/.a
if fan #0 or
= k—2 B KB
"‘?fn . g ((—gzjﬂ (E) zj)z:. + (fzzfn)z‘.) = Pl 5 (3,74)
k-2
fl2 = % (‘* - Zi+1 (?’i—l) i} + fggfu) o (375)
B
fo = - (3.76)
if fu #0.
Proof: (=) Suppose 2o = F (K (z,1), u, 20, 21,...,2k) describes a surface with Gaus-

sian curvature K (z,t). Then from Lemma 3.3.1 it follows that (3.20)—(3.22) is satisfied.
Substituting f1; = 0 (by hypothesis) in (3.20)—(3.22) we obtain

> zis1 froz + 0 fs2 — foofs = 0, (3.77)

=0
B+ fiafa =0, (3.78)
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and
k—1

—F fa12 + Z Zit1 fa2,.;, — Knf12 = 0. (3.79)

i=0

Taking the partial derivative of (3.77) on both sides w.r.t z; yields
f12,zk_1 = 0!

and by taking the partial derivative of (3.78) on both sides w.r.t zx_; we obtain

sz—l = G.
Hence we have
f12,zk_1 = BZ,“_I — 0' (3-80)
From equation (3.78) we get
B
= ey 3.81
fi2 o (3.81)
and from equation (3.77), we obtain
(o= B
fa==|> zin (—) + foofar | - (3.82)
M \i=o0 f31 2

Substituting (3.81) and (3.82) in (3.79) yields

Ffa12,= Z Ziv1 | = Z Zj+1 (—) + fafa + 4 5
=0 m \j=0 fa1 5 . fa1

which reduces to

S, (1S, (B 1 KB
Ffaa=2 2z |~ Zj+1 (—) + =tlala), | + =
0 fa %), N fa1

i=0 n

J=

from which we obtain the required expression for F' given in equation (3.71).

The proof of the expressions given in equations (3.74)- (3.76) can be obtained in a
similar fashion by substituting f3; = 0 (and f;; # 0) in equations (3.20)—(3.22).
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(«<=) The converse is a straightforward computation similar to that in the converse
part of Theorem 3.3.2. O

Theorem 3.3.4 Let fo3. 1 < a < 3,1 < B < 2, be differentiable functions of
20,21, .-, 2k Such that (8.16)-(3.19) holds, and foy = 1, a non-zero parameter.

Suppose f31 = A f11 # 0, where A does not depend on z;. Then
20,t = F(K(l‘, t)'s 20y 215000y zk)

corresponds to a surface of variable Gaussian curvature K (z,t), with associated 1—forms
We = fa1dz + fao dt if and only if

(a) foo does not depend on z;, 0< i < k, fio=2Afi, and

F =

(Z Zirrfioz + A0 fr2 - f11f22)) (3.83)

=0

fll +20

whenever \?> + K = 0; or

ﬂ)) fQZnZk-z = 0, and

_ 1 k-1 Zixg -k-2z. E 5 ??KB
#= (A2 + K) f11.20 (g n (( J-Z:;:) 4 (fu)zj) A (f22f11)z‘) i fu ) '

zi

(3.84)
1 13 B AB\ | fufe

gad : 3.85
fra = (A?+K( (7)) - f“)+ Iz (3.85)
f - “fz (3) g o) g 2 ol (3.36)

32 = (/\2 +K i+1 f11 f - T,? 11J22 =

whenever A\ + K # 0.

Proof: (=) Suppose zo; = F (K (z,t), u, 20, 21,..., 2) describes a surface with Gaus-

sian curvature K (z,t). Then from Lemma 3.3.1 it follows that (3.20)—(3.22) is satisfied.
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Substituting fs; = A fi1 in (3.20)—(3.22), we obtain

k-1
& Jii gy F Z Zig1 fro + (0 faz — A faofu) =0, (3.87)
=0
B - fu(fs2— A fiz) = 0, (3.88)
and i
—AF fi1z + Y Zis1 faos + K(fuir fo—nf12) = 0 (3.89)
=0
respectively.

(a) Suppose A2+ K = 0.

Considering —1x(3.88)+A x(3.90), we obtain
k-1
Z zis1(A f12,2; — fao,2) + A0 fa2 — A faa fr1) — K(fiafoz — 1 fr2) =0,
=0

which can be written as

k=1
> zigt(A iz — fa2n) + 1A fa2 + K f12) — (A + K) fir fa2 = 0. (3.90)
=0

Substituting A> + K = 0 in (3.90) we obtain

k-1

> zit1(A fio — faze) — A frz — fa2) = 0. (3.91)

1=0
Taking the partial derivative of (3.91) on both sides w.r.t z; we obtain

Aoz — fa22e0 — N AA f12,2, — fa2.2,) =0

which reduces to
A f12,2k_1 - f32.z;,_1 =0 (392)

upon substituting fi2., = fs2, = 0 by Lemma 3.3.1.
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The z,_; derivative of (3.92) yields

Afog_, — fooz e = A froz, — f32,0,) =0,

which reduces to
)\ fl?,z.k_z - f32,2k._-2 = O (3‘93)

upon using (3.92). Continuing this process, taking successive derivatives of (3.91) with
respect tO Zg_2, Zk—3, ..., 22, 21, we finally obtain

Afiz— fr2=0. (3.94)

Substituting (3.94) into (3.88), we obtain

l.e.
k—2

Z z€+1f22,25 = 01
=0

which implies
f22,z;30s: US%SR‘—2

But from Lemma 3.3.1 we already have that

fo2,2e = fo2,2, = 0.

Hence we have
f2‘2,z,—=011 Oszsk!

i.e. far does not depend on z;, for 0 < 7 < k.
Now by substituting (3.94) in (3.87), we obtain

k-1
F fi1: = Z zit1 fiz + (A fiz — A faa f11)
=0

which yields the required result (3.83).
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(b) Suppose A% + K # 0.

Considering K % (3.87)+\ x(3.89), we have

k-1

-\ + K)Ffica+ Z Zit1 (K frzz + A faoz) + Kn(fsz — A fu) =0

1=0

Taking the z; derivative of (3.90) once again yields

)‘f12,zk-l - f32r’-k—l =0

upon substituting fi2., = fs2,;, =0 by Lemma 3.3.1.

Taking the zx_; derivative of (3.88) yields

forz s+ Fri(A frzz, — f32,20,) + (A fr2 — fa2) fi1,5,, =0

Substituting (3.96) and fi1.,_, =0 (from Lemma 3.3.1), we obtain

f22,zk__2 = 0'

From (3.88), we now obtain
B
Afio— faa=——
fi2 — fa T
which yields

k-2 B
Z Z§+1()‘f12,z; it f32 z‘ - Z A (fll)

=0

But, by using (3.96), we have that
k-1 k-2
Z Zis1(A fro, — fao,) = Z Zis1(A fro.e — faz.z)-
=0 i=0

Hence

k-1 B
> zipa(A fiz — fa2,n) = Z e (fn)

i=0

(3.95)

(3.96)

(3.97)

(3.98)

(3.99)
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Substituting (3.99) in (3.90), we now obtain

k-2
n(A fao + K f12) = Zzi+1 (%) + (W + K) fu1 f. (3.100)
=0 4

Solving (3.98) and (3.100) simultaneously for fi; and f33, we obtain

1 (1&  (BY _AB\ | fuf»
fw_()\?-{-K) (W%zﬁl(fn)z‘. f11)+ n

and s
1 A B KB
fa2 = m (5 Z Zi41 (f“) o ) + = fu1fae,

respectively, which are the required results (3.85) and (3.86).

Finally, by substituting (3.98) and (3.100) in (3.95), we obtain the expression for F
given by equation (3.84).

Hence the necessary part.

(<=) The converse part is a straightforward computation similar to that in the converse
part of Theorem 3.3.2. O

For the next Theorem we need to introduce the following notation:

EF1=0
k-1 ) L
- LaaBl (—zlz " n) Bi... ,0<j<k-2 (3.101)

Theorem 3.3.5 Let fop, 1 < o < 3,1 < B < 2, be differentiable functions of
20,21, - - -, 2k Such that (3.16)-(3.19) holds, except that f; = n, a non-zero constant.
Suppose that f3 + K f3, = ¢, where ¢ # 0 and c does not depend on z;, and that L # 0.
Then

20t = F(K(SE, t)a 204y 21y - - 1zk)

corresponds to a surface of variable Gaussian curvature K (z,t), with associated 1—forms
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Wo = fa1dT + fao dt if and only if

1

k—1
= I (Z Zit1Bz, — 21(f12,20f31 — fsz,zofn) —n(fa1fs2 + K fi1f12) + cf22) (3.102)
i=0

where fio and fip are functions of fi1, fa1, foo which satisfy, for 1 < j < k—1,

firwy = =% (FuBy + K 1By (3.103)
ity = = (FnBy = fBug) (3.104)
K fia 0 fu1 + fazz0f51 + Kn B, =0, (3.105)
—fufs2 + frizfsn + B =0, (3.106)

and f11, fao, foe satisfy the differential equation,
k—1

= sz'HBziH + B =0. (3107)
i=0

Proof: (=) Suppose zp; = F (K(z,t), u, 29, 21,...,2k) describes a surface with Gaus-
sian curvature K (z,t). Then from Lemma 3.3.1 it follows that (3.20)—(3.22) is satisfied.
Also by hypothesis we have H = 0. i.e.

fa1fa1,20 + K f11f11,20 = 0. (3.108)

Considering K f;; %(3.20)+ f31 x(3.22) and substituting (3.108) we obtain

k-1

Z zig1((K fuifrzz + fafaoz) + Kn(fuifse — fufa) =0,
1=0
ie. -
> zis1(K fiifrzs + fa1fae,) + KnB =0, (3.109)

i=0
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where B is given in (3.39).

Considering f3; %(3.20)— f1; X (3.22), we obtain

k-1
F(—fa1fir,z0 + frifarz) + 2 zisa (farfrze — Funfaz,z)

=0

+10 fa1faz — fafor — K fii(=n fro + foofu) = 0. (3.110)

By substituting f + K f4 = c and L from (3.37), equation (3.110) reduces to

k-1

LF+ 3 zim(fafize — fiifazz) + 0 (farfae + K fi1 fiz) — faoe = 0. (3.111)

i=0

Taking the partial derivative of (3.109) on both sides w.r.t z;;; we obtain

Kfllfl?,z_,— + f31f3‘2,z_,- + Kn BZJ;+1 = 0! (3-112)

and taking the partial derivative of (3.88) on both sides w.r.t z; for j = k — 1,k —
2,...,2,1, we get

B, — fufae; — faafi1z; + fiafarg + farfizz; =0,

which reduces to
B, = fufsz; — fafizz, (3.113)

since fi1,, = fa1;;, =0, for 1 < ¢ < k from Lemma 3.3.1.

Solving equations (3.112) and (3.113) simultaneously for fi.. and fs;,, we obtain

1
flz‘zj = _E (falej + anllej-i-l) ] (3.114)

and

f32,2j =

K
= (fuBz,- = T?falejH) ) (3.115)

respectively, for 1 < j < k—1.
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Taking the 2; derivative of (3.109), we obtain

K fi1fi2,20 + fa1f32,20 + Kn B,, =0

which can be written as

K firfi220 + fa1fa2.20 = —Kn B,,. (3.116)

Considering (3.109), we have

k-1
KnB = =Y ziu(Kfiifize + faifiz)
i=0
k-1
= _(Kfllfl.Q,zo ¥+ f31f32,zu)21 = Z zi+l(Kf11fl2.zi s o f31f32,z;)
=1

k-1
= z21KnB;, — Y zig1(K firfize + fafazz)- (3.117)
=i

The last step follows from the substitution of (3.116). Substituting (3.114) and (3.115)
in (3.117), after some simplifications we obtain
k-1
- Zzi+le;'+1 + B e 01
1=0
a differential equation satisfied by the functions fi;, f3; and fa.

Now from (3.111), we have

k-1
LF == ziu(faifizz — funfsez) — n(fsfse + K fi1 fi2) + fooc. (3.118)

i=0

But, from (3.88), we obtain for 1 < i < k —1,
Bz,; = _(f31f12,z,- - f11f32,2.;)‘ (3‘119)

Hence, substituting (3.119) in (3.118) yields the required expression for F given in
equation (3.102), and thus the necessary part.
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(<=) The converse part is a straightforward computation similar to that in the converse
part of Theorem 3.3.2. O

3.3.1 Illustrative Examples
In this section we apply the above results to some examples to determine the compo-

nents of the first fundamental form. Recall that the components of the first fundamental
form E, F, G can be determined in terms of fo3, 1< a <3, 1<8<2, viz.

E=fi+ 15, (3.120)
F = fiifi2 + forfo2 (3.121)
G=fH+f3- (3.122)

Example 1: Generalised Burgers Equation

Using the notations given in (3.13) and (3.14), a generalisation of the Burgers equation
1s

u = (1 + K(z,t) + u)uz + Usgy,
which can be written as

20t = (1+ K(z,t) + z0)21 + 2o.

With k£ = 2, Theorem 3.3.2 implies

2
o o R ., %3
f11_2a fiz 4+2,
f21=TL f22=gz031
and
- 7
fa1=-n, fa2 = *Ezo-
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Hence the components of the first fundamental form E, F, G are given by

2 2
n”u u(u
F o= =it
2—1-4(2+u,)
and "
u?  wu n?
g=lEe ) 42
(4+2 T

Example 2: Generalised KdV Equation

A generalised KdV equation
‘U,t = (]. ‘+‘ K(.’L‘, t) + 61}5)’&: + UIII

can be written as
20t = (14+ K + 629)2; + 23.

With k = 3, Theorem 3.3.2 implies

Fry =T =g f12=—zz+nzl—223—?’}220+220+??2:
£ =, for = =221+ 2020+ 177,
and
far=—1- 2, f32=—22+??21—233—??230—220_7?2'

Hence the components of the first fundamental form E, F, G are given by
E = (1——u)2+:q2,

F=(1-u)(~tzs +nuz — n’u—2u%+n>+2u) + n(n3 + 2nu — 2u,),

and
G = (—Ugs + DUz — P u— 2u® + 0% +2u)? + (93 + 2nu — 2u;)?.



CHAPTER 3. PDES, COORDINATE SYSTEMS & THE GAUSS EQUATION 91

Example 3: Generalised MKdV Equation

A generalisation of the MKdV equation is

3 2

U = 1+K($,t)+§u Uz + Ugzz,

which may be written as

3 2

Zot = 1+K+§zu z; + z3.
With £ = 3, Theorem 3.3.3 implies
fin =0, fiz=-nz,

1
fa =mn, f22:§nzg+n3=
and

1
faa=2 faa=—2z+ §Zg+7?220-

Hence the components of the first fundamental form E, F, G are given by

and

3.4 Characterisation 11

In this section, we characterise equations of the type

214 = F(K(z,t), 20, 215 - - » 2k) (3.123)
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which correspond to a surface of variable Gaussian curvature K (z, t).

Theorem 3.4.1 Let fop, 1 < a < 3,1 < B < 2, be differentiable functions of
By By wissiasnsa , 2, except that fi; = 0, fs32 = 0, and f3 = 1, a non-zero parameter.
Then

z1i = F(K (2, 1) 2008150545 2K)

corresponds to a surface of variable Gaussian curvature K (z,t), with associated 1—forms
Wa = fa1dx + fao dt if and only if

K
F= —% (bsin azy + d cos azp) (3.124)
and
fi2 = b sin azg + d cos azy, (3.125)
fao = b cos azy — d sin azp, (3.126)
a1 =az, (3.127)

where a # 0 and b,d do not depend on z;, 0< i< k.

Proof: Since

Bzi- 821

dzz- - Ed.’ﬂ = Edt
we have, for0< 7 < k-1,
dz; A dt = z;1dz A dt (3.128)
and
321 621
A = | — —dt| AN d
dz; A dz (3:1: dz + r ) T

= 21t dt A dz
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= =y dz A dt

= —Fdz A dt,
from equation (3.123).
Substituting (3.6), (3.7) and (3.8) in (3.9), we have

d(fud:r -+ fudt) = (fg]dl‘ + fggdt) A (T}d&: -+ fggdf)
which reduces to
d(fr2dt) = (fadz) A (ndzx + faodt)

since fi; = fs =0 and fo; = 7. ie.

= 91 _
. dzi A dt — (f31f22)d$ A dt=0.
=0 1

1

The above equation can be written as

k-1

fllzk dzp A dt + Z f12‘z; dzz' A dt — f22f31 dz A dt = 0.

1=0

Substituting (3.128) and (3.129) in the above equation yields

k-1

fl?.zk dzp A dt + (Z zi+1f12,z,— o f22f31) dz Adt = 0.

i=0

Equating the coefficients on both sides of equation (3.130) yields

f12,zk = 0 ]

and
k-1

Z Zit1 f12,z,- — foofs1 = 0.

=0

(3.129)

(3.130)

(3.131)

(3.132)
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Now substituting (3.6), (3.7) and (3.8) in (3.10), we obtain

d(ndz + frodt) = (fuds + fiadt) A (fardz + fedt).

After some manipulations and substitutions this equation reduces to

k-1

fa2,z dzi A dt + (Z Zit1fooz + f12f31) dz N dt =0.

=0
By equating the coefficients on both sides of (3.133), we obtain

f22,zk - 0 3

and

k=1
Z Zig1 fooz, + fiafan = 0.
1=0

Finally, substituting (3.6), (3.7) and (3.8) in (3.11), we obtain

d(fa1dr + faodt) = —K(z,t) (fundz + fiadt) A (ndz + foodt),

which, after substitution and some manipulations reduces to

k
Zf;g]_‘z‘. dZ,‘ A dz — (KT} f12 -+ Ff31’zl)d$ A dt = 0.
=2

Equating the coefficients on both sides yields

f31,z.-=0: %#13

F fa1., + Knfi2 = 0.

Taking the partial derivative of (3.132) on both sides w.r.t z; yields

12,20 — [a1fo2,2, — foofa1,5, =0

(3.133)

(3.134)

(3.135)

(3.136)

(3.137)

(3.138)
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which reduces to
f12,z;¢_1 — 0

since f22.zk = f31,z:, = 0.

Taking the partial derivative of (3.135) on both sides w.r.t z; we obtain

fo2,zu_y + farfizz + fizfarz, =0

which reduces to
f22‘7-k—1 == 01

since fs1,.,, = fi2,.. = 0.

The partial derivative on both sides of (3.132) w.r.t zx_; yields

12,20, — fa1fo2,2. ., — f2fa15., =0

which reduces to
fl?.z;,_.g == 05

since faz,_, = fa1,z_, =0.

Taking the partial derivative of (3.135) on both sides w.r.t z;_; we obtain

f22,2, + fa1f1220, + fr12f312,, =0

which reduces to
f22,zk_2 = 01

since fa1,z,_, = fi12,5,_; = 0.

Continuing this process of taking the derivatives of (3.132) and (3.135) with respect to
Zk—2, 2k—3, - - 5 22, we finally end up with

fr2: = fa2,., =0, 1< i legk. (3.139)
Now, taking the double derivative of (3.132) with respect to z;, we obtain

f31,21,z1 =0
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which implies
fa=az +e, (3.140)

where a and e are independent of z; for 0 < 2 < k.

By substituting (3.139) and (3.140) in (3.132) one obtains

21f12,20 — (@21 +€)f2r =0

which can be written as
(fm,zo - afzz)zz —efaa=0. (3-141)

Similarly by substituting (3.139) and (3.140) in (3.135) one obtains

21 fo2,20 + (@21 +€) f12 =0

which can be written as
(fo2.20 + afr2)z1 +€fr2=0. (3.142)

Taking the partial derivatives on both sides of (3.141) and (3.142) w.r.t z;, and then
by using (3.139) we obatin

fi2,50 —afe2 =0, (3.143)
and
Jo2,20 T af12 =10 (3.144)
respectively and thus
e=0. (3.145)

Taking the partial derivative of (3.143) on both sides w.r.t zy we obtain

f12,2{|20 - a’f22‘20 = 0':

which, when substituting (3.144) yields

fi2,z0m + @2 f12 =10, (3.146)
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a differential equation for fi,. Solving (3.146) we have
fi2 = b sin azg + d cos azg,

where b, d do not depend on 2;, 0< ¢ < k. Similarly by taking the partial derivative
of (3.144) on both sides w.r.t z; and then by substituting (3.143), we get a differential

equation for f;; which yields
faa = b cos azg — d sin azp .

We note that if a = 0 then w;z = 0, contradicting the fact that ws is the connection
form. Hence a # 0. Finally, substituting the expressions for fi» and f3; ., in equation
(3.138) vields

K
F = —Tn (bsin azy + d cos azp),

which is the required result, and hence the necessary part follows.

(<=) The converse part is a straightforward computation similar to that in the con-
verse part of Theorem 3.3.2. O

Using arguments similar to the above theorem, we can prove the following results.
Theorem 3.4.2 Let fo3, 1 < a < 3,1 < 8 < 2, be differentiable functions of
20,21, ..., 2 except that fio =0, f13 = 0, and fo, = n, a non-zero parameter. Then

21t = F(K(.’l’:, t)! 20521y - -y Zk)

corresponds to a surface of variable Gaussian curvature K (z,t), with associated 1—forms
Wa = fa1dxT + faodt if and only if

P = —% (bcosh azy + d sinh az) (3.147)

and
fu =az, (3.148)
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fa2 = b sinh azy + d cosh az, (3.149)
fa2 = b cosh azy + d sinh az, (3.150)

where a # 0 and b,d do not depend on z;, 0 < 1 < k.

3.4.1 Illustrative Examples

In this section we shall look at examples which illustrate the above two theorems by

providing us with the required coordinate systems.

Example 1: Generalised sine-Gordon Equation

Using the notations given in (3.13) and (3.14), the generalised sine-Gordon equation
Uy = —K(z,t)sin u

can be written as

z14 = —K(z,t) sin z.

Using Theorem 3.4.1 with the choices of

1
a=0, b=-, and e=10,
n
we obtain 1
fuu=0, fi2 = —sin 2,
n
)|
fa=mn, fa2 = ;?'COS 2y,
and

far=—2, faa=0.
Hence the components of the first fundamental form E, F, G are given by

E=1,
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F'= 008 z5'=CO8Y,

and

respectively.

Example 2: Generalised sinh-Gordon Equation

Using the notations given in (3.13) and (3.14), the generalised sine-Gordon equation
ug = —K(z,t) sinh u

can be written as
214 = —K(z,t)sinh z,.

Using Theorem 3.4.2 with the choices of

1
a=1, b=0, and g .
n
we obtain
fui ==, fiz=0,

1
fa1=mn, fao = ECOSh 29,

and g
faa =0, f32=55inh 2g.

Hence the components of the first fundamental form E, F, G are given by
E=n+2=n"+42,

F = cosh zp = cosh u,
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and

G = — cosh® u

respectively.
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Chapter 4
Conclusions

In this thesis, we exploited classical differential geometry, to find Backlund transfor-
mations and hence solve certain classes of non-linear partial differential equations. The
observation that certain partial differential equations can be interpreted as a statement
of Gauss’ theorem in an appropriate coordinate system is fruitful and produces some

useful strategies for solving PDEs based on Backlund transformations.

In Chapter 1 we outlined some basic concepts from differential geometry, especially
the Gauss equation which plays a central réle. In this chapter we outline a strategy
for solving a given a PDE. Essentially, if we can determine a coordinate system such
that the PDE corresponds to the Gauss equation for a surface of known Gaussian
curvature, and if another (simpler) PDE can be found that also corresponds to the
Gauss equation for the same Gaussian curvature, then the covariant transformation
equations can be used to determine (in principle) the Backlund transformations between
the two coordinate systems. If we can solve the latter PDE then we can obtain solutions
to the original PDE by transforming the known solution of the other PDE.

The above strategy has some stumbling blocks. Firstly, given a PDE, we need
to determine a coordinate system such that it corresponds to the Gauss equation.
Secondly, we need to identify the Gaussian curvature of the surface and find a simpler
PDE to solve. Thirdly, we then need to solve the system of PDEs which arise from the
covariant transformation equations. Fourthly, we need to consider potential restrictions
on the initial data for the system.
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In Chapter 2 we focused on a simple, specific case and used the sine-Gordon equa-
tion to illustrate the ideas. Chapter 2 thus served to introduce our techniques for
determining a family of solutions ((2.69)) to the sine-Gordon equation. Even though
we were successful in deriving a family of solutions, we had to ackowledge the fact
that our method involved some inversions, which proved tedious and in some instances,
formidable. Moreover, the family of solutions depended crucially on the solution to the

transformation equations, which without initial data is not unique.

To further illustrate the techniques we solved a simple Cauchy problem for the
sine-Gordon equation. The solution to this problem corresponds to a Beltrami surface
(though perhaps not obvious) and provides a simple geometrical example. We also in-
vestigated a soliton solution ((2.99)) to the sine-Gordon equation and derived a solution
to the Schrodinger equation through Bécklund transformations.

An investigation for case(b) in sections 2.1.1.4 and 2.1.2.2 for the classes of second
order quasi-linear PDEs of the hyperbolic type and the parabolic type, was not fruitful
because the systems of PDEs were prima facie harder to solve than the original problem.
We did not investigate these cases further, but it would be worthwhile to find a solution
technique for these cases.

The motivation to solve a class of second order quasi-linear PDEs of the elliptic
type considered in section 2.1.3 was provided to the effect that a transformation some
what similar to the one used in the case for the sine-Gordon equation might work.

Near the end of Chapter 2 we investigated a class of fully nonlinear PDEs, in
particular the Monge-Ampere equation, which can be interpreted as the Gauss equation
if the surface is parametrised in graphical coordinates. More complicated non-linear
PDEs also could be attacked using our techniques, and the initial value problems can
be reduced to problems involving the solution of a first order ODE. The key, however

is to find a suitable geometrical interpretation as a statement of Gauss’ theorem.

In section 2.2.1.2 we briefly visited the concepts relating to a solution technique for
a more general class of Monge-Ampere equation based on parallel surfaces. This is one
other area which signals further work.

In Chapter 3, we considered the crucial problem of determining a coordinate sys-
tem such that the given PDE corresponds to the Gauss equation. The discussion in
Chapter 3 was devoted to a reasonably detailed investigation of this question. In this
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chapter we extended the work of Chern et.al. to surfaces of non-constant Gaussian
curvature. This enables us to apply our techniques to a more general class of second
order PDEs. The material in Chapter 3 focused primarily on finding a systematic way
to determine a coordinate system for a given PDE.

The motivation for the complete classification investigated in section 3.3, for differ-
ential equations of th= form

o o
9z’ " Oxk

uy=F (K(:r,t), U, —

was not only due to the fact that we were trying to answer the above query, but also
that we were trying to extend our solution techniques to third order PDEs such as the
generalised KdV equation

w = (14 K(z,t) + 6u)us + Ugzs.

The characterisation in section 3.4 focused on the PDEs of the form

Ou 0 u
Ut =i (K(l’,t), u, a—z,,%) .

which includes the generalised sine-Gordon equation and the generalised sinh-Gordon

equation.

Although we did not investigate specific examples of some of the generalised classes
of PDEs discussed in Chapter 3, we note here that the methods detailed in Chap-
ter 2 could potentially shed some light on solution families for these more complicated
PDEs. The crux of the problem is to solve the transformation equations which may
be more formidable than the original equation. Nonetheless if specific solutions to the
transformation equations can be found, then at least some families of solutions can be
identified. There is certainly scope for further investigation here.
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