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ABSTRACT

A study of methods to predict the freezing and thawing times of both

regular and irregular shaped foods was made.

Experimental thawing data for foods found in the 1literature, were
limited in value because the experimental conditions were not
sufficiently accurately measured, described and controlled to allow
meaningful testing of thawing time prediction methods to be made. A
comprehensive set of 182 experimental measurements of thawing time were
made over a wide range of conditions wusing regular shapes made of
Tylose, a food analogue, and of minced lean beef. Freezing and thawing
experiments for irregular shapes were also carried out because of the
paucity of published experimental data. Using twelve different two-
and three-dimensional irregular shaped objects 115 experimental
freezing and thawing runs were conducted. Combining experimental
results with reliable published experimental data for freezing, a data
set comprising 593 experiments was established against which prediction

methods were tested.

The partial differential equations that model the actual physical
process of heat conduction during freezing and thawing can be solved by
the finite difference and finite element methods. Testing of the
finite element method has not been extensive, particularly for
three-dimensional shapes. Therefore a general formulation of the
finite element method for one-, two- and three-dimensional shapes was
made and implemented. Both numerical methods accurately predicted
freezing and thawing times for regular shapes. Sufficiently small
spatial and time step intervals could be used so that errors arising
from the implementation of the methods were negligible compared with
experimental and thermal property data uncertainties. Guidelines were
established to choose space and time grids in application of the finite
element method for irregular shapes. Adherence to these guidelines
ensured that prediction method error was insignificant. A simplified
finite element method was formulated and implemented. It had 1lower

computation costs but was less accurate than the general formulation.



Abstract iii

No accurate, general, but simple method for predicting thawing times
was found 1in the literature. Four possible approaches for a generally
applicable, empirical prediction formula were investigated. Each could
be used to predict experimental data for simple shapes to within +11.0%
at the 95% level of confidence. This accuracy was equivalent to that
displayed by similar formulae for freezing time prediction, and was
only slightly inferior to the accuracy of the best numerical methods.

All four methods are recommended as accurate predictors.

For multi-dimensional shapes there were two existing geometric factors
used to modify slab prediction methods - the equivalent heat transfer
dimensionality (EHTD) and the mean conducting path length (MCP). New
empirical expressions to calculate these factors for regular shapes
were developed that were both more accurate and more widely applicable
than the previous versions. Principles by which EHTD and MCP could be
determined accurately for any two- or three-dimensional shapes were
established. The effect of the first and second dimension were
accurately predicted but lack of sufficient data (due to high data
collection costs) prevented accurate modelling of the effect of the

third dimension for some irregular shapes.
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1 INTRODUCTION

Low temperature is one of the most important and common means of food
preservation. For New Zealand, whose economy 1is based on primary
industries and export of perishable products to distant markets, this
is especially true. Freezing, cold storage and subsequent thawing are
all operations on the frozen food chain in which losses of food quality
can be significant. Important roles for the food engineer are
therefore to design, operate and control -equipment that maintains

product quality whilst keeping processing costs low.

Low temperature preservation can, at best, only maintain food quality
levels so there has been extensive research into factors affecting food
quality during freezing, cold storage and thawing. The physical,
chemical and biological changes that occur during these processes have
been related to the temperature history of the food and the process
conditions used. For some foods, data suggesting optimal sets of
conditions and equipment to minimise damage to the food product have
been found. To design and optimise equipment for 1low temperature
preservation of food the food engineer must be able to predict freezing
and thawing rates for these conditions. Both operating and capital
costs can be reduced if simple and accurate methods to do this are

available.

In the past, freezing has been more important commercially than thawing
as thawing has been predominately a domestic practice. Extensive
research into the physical aspects of freezing has produced methods to
predict freezing times that are satisfactory for many practical
situations. However, 1in general, these methods are either specific to
individual food products or apply only to simple regular geometries.
Many frozen foodstuffs are irregular in shape so further research is
warranted to develop, test and validate a general method that predicts

freezing times for a wide variety of shapes.

Recently, with greater quantities of goods being frozen and greater
emphasis on further processing of frozen products, thawing has become

an important industrial process. A simplistic approach 1is to treat
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thawing as the reverse of freezing, but the validity of this approach
is questionable as it has not been proven that accurate thawing
predictions will be obtained. As for freezing, much of the research
into thawing rate and time prediction has been for individual products.
There remains the need for research to find a general method for
prediction of thawing times. Ideally, the method would be similar to
those used to predict freezing times. It may incorporate the same
techniques to account for product geometry. This would allow the
entire area of prediction of phase change in foods to be considered as

a whole.

If accurate prediction of freezing and thawing under a wide range of
conditions and geometries can be achieved this would enable more
efficient process equipment design within the cold chain and hence
would reduce costs. Therefore the present research into prediction of
thawing times and into the effect of product shape on both freezing and

thawing rates is clearly needed.



2 LITERATURE REVIEW

Phase change in foods is a complex process. Most research into methods
for prediction of rates of phase change has wused simplified model
systems for analysis. It 1is therefore convenient to consider the
literature sub-divided according to the type of simplification made.
Initially the process of phase change in foods is examined and

described and the phase change problem formulated.

2.1 PHASE CHANGE IN FOODS

Foodstuffs are a complex system of water, solutes and macromolecules
but are often considered for engineering purposes as two fractions; an
aqueous solution and a solid component. Phase change in foods involves
intricate interactions between the aqueous and solid fractions. 1In
many so-called "high moisture" solid foods (for example - meat,
vegetables and fish) the water is bound in a solid matrix and there is
almost negligible migration of water during freezing or thawing. Phase
change involves mainly the aqueous part changing from ice to water or
vice versa, with the solid being relatively inert. The interactions in
the food cause continuous freezing point depression as ice separates
from the aqueous phase, so latent heat is released or absorbed over a
range of temperatures during phase change (Rolfe 1968 p.184, Dickerson
1977).

The thermal conductivity and specific heat capacity of water vary by a
factor of about three from those of ice. Latent heat is released or
absorbed as water changes phase, whilst the solid fraction is
essentially unchanged. Therefore the thermal properties of food are
highly dependant on the fraction of ice in the food (Mellor & Seppings
1976, Heldman 1982). The latent heat can be "lumped" together with the
sensible heat to give an "apparent" (effective) specific heat capacity
(Comini & Bonacina 1974). For a typical solid high moisture food the
relationship between 1ice fraction, thermal conductivity, apparent
specific heat capacity and enthalpy as a function of temperature are
shown in Figs. 2.1 to 2.4 (Mellor 1978). The area under the peak in
the specific heat capacity curve, excluding the sensible heat
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contribution, is the latent heat component.

Freezing and thawing processes differ considerably. In freezing of
food there 1is a quite distinct initial freezing temperature (Tif)' at
which ice first starts to form. Above this temperature thermal
properties are relatively constant and below this temperature rapid
changes occur as the ice fraction increases. These changes in
properties decline as 1less 1liquid water remains, until only "bound"
water is left (Moran 1930, Riedel 1961, Rolfe 1968 p.186, Comini &
Bonacina 1974). At lower temperatures further ice formation is limited
and properties are relatively constant at the so called frozen phase
values. In thawing the temperature region where phase change occurs is
entered slowly and thermal properties change gradually. As more latent
heat is absorbed and more ice melts, freezing point depression is
reduced so T;e is approached. The majority of latent heat is absorbed
at temperatures just below Tif giving a final rapid change in thermal
properties. This effect 1is 1indicated by the height and slope of the
apparent specific heat capacity and enthalpy curves for typical foods
(Figs. 2.3 and 2.14).

In freezing some non-equilibrium behaviour has been observed (Cleland
et al 1982). Supercooling of the food below T;r prior to initial ice
crystal nucleation has probably occurred. This type of effect is
unlikely in thawing as there is no equivalent nucleation process and
the latent heat 1is gradually absorbed 1initially, over a large

temperature range.

2.2 PHASE CHANGE FORMULATION

2.2.1 Governing Partial Differential Equations

Physically, phase change in foods is defined as heat conduction in a
solid. This 1is governed in a three-dimensional volume, V, by the

partial differential equation:

9T 23 aT 0 aT 0 oT
C— == | W — | + = | Kk — | +'== | kiz| + @ (2.1)
ot  ox [ ox ] oy [ oy ] 9z [ 0z ]
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where C = volumetric specific heat capacity (J m3 oc”ly
= £ ,(T,material)
T = temperature (°C or K)
= time (s)
K - thermal conductivity (Wm™! ecTh

= f,(T,material)
X,yY,2 = distance in the three axial directions (m)
Q = internal heat generation (W m™3)
= f,(T,material)
Non-linearity arises from the temperature variable thermal properties
and the complex nature of the boundary conditions applied. Approximate
methods must therefore be used, or simplifying assumptions made, to
enable an analytical solution to be found. One such assumption is that
the latent heat is transferred at a wunique temperature (Tif) and
thermal properties undergo a step change in values at this temperature
(Carslaw & Jaeger 1955, p.282). The formulation becomes that of a
moving boundary (Stefan) problem and the position of the phase change

front (boundary) is determined by Eq. (2.1) subject to:

+

oV, + oT oT oT
L — =k dy 9z — 1, + 9x 9z — 1 + 0x 3y — 1,

At ax y Y 3z N
- oT oT oT
-k [ dy 9z m 1, + 9x oz = 1y + 9x 9y = 1, ] v (2.2)
at the boundary between the solid and liquid phases
where L = latent heat (J m3)
Vl = volume of material in unfrozen state (m3)

1 = directional cosine to outward normal

Although this assumption of a unique phase change temperature 1is true
in some common phase change situations such as ice formation and
melting, freezing and thawing of pure liquids and pure metal casting,
it is not true for phase change in most solid, high moisture foods.
The possibility of deriving simple prediction methods by using this
assumption has been explored extensively. However the methods derived

can only be approximate for phase change in food.
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2.2.2 Initial and Surface Boundary Conditions

In freezing and thawing of foods a variety of initial and surface
boundary conditions can apply. Mathematically, Eq. (2.1) is subject to

the first kind of boundary condition (prescribed surface temperature):

T =T, on surface, S,, for t>0 (2.3)

the second kind of boundary condition (prescribed surface heat flux):

x X ay y oz

the third kind of boundary condition (convective and radiative cooling

oT oT oT
kK| — 1, +— 1, +— 1, ] = ¢ on surface, S,, for t>0 (2.4)

or heating):

oT oT aT
Kk 3; 1, + 5; ly + = 1. = dcon* %paq ON Surface, S,, for t>0 (2.5)

the fourth kind of boundary condition (arbitrary surface temperature):

T =T, on surface, S,, for t>0 (2.6)
and the initial condition:
T =T, in volume, V , for t=0 (2.7)
where Ta = ambient medium temperature (°C)
¢ = prescribed heat flux (W m™2)
= £, (t,position)
¢oon = CONvective heat flux (W m2)
= heon(Tae™T)
$pag = radiative heat flux (W m™2)
= Npag(Tap~T)
Noon = convective heat transfer coefficient (W m-2 °C—1)
= f (t,position)
Tac = convective ambient temperature (°C)
= f¢(t,position)
hnaq = radiative heat transfer coefficient (W m ™2 °C—1)
= 0e(T2,.+T2) (T, .+T)
T,r = radiative ambient temperature (°C or K)
= f_(t,position)
€ = radiation emissivity
= f,(material)
Ty = surface temperature (°C)
= fq(t,position)
T, = initial temperature (°C)

in
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= f,,(position)

2.2.2.1 Applicability of Boundary Conditions The first and fourth

kind of boundary conditions can be considered as a special case of the
third where hcon*“ and Tac=Tw or Tac‘Ta’ In practice because some

surface resistance to heat transfer always exists, h is not

con
infinitely large so the first and fourth boundary conditions are seldom
the best boundary descriptions possible. In most food freezing or
thawing situations radiation is not a major means of heat transfer so
it is conveniently grouped with convection 1in the third kind of
boundary condition. The second kind of boundary condition infrequently
occurs and is seldom used even under highly controlled and accurately
measured experimental conditions. The third kind of boundary condition
is the most physically realistic boundary condition 1in food phase

change processes.

2.2.2.2 Initial Conditions Both uniform and non-uniform initial

temperature conditions occur in practice. To derive a simple
analytical type of solution a uniform initial temperature distribution
must usually be assumed. Numerical solutions can handle either uniform
or non-uniform 1initial conditions. Use of a mean bulk temperature
(Loeffen et al 1981) allows the effect of a non-uniform initial
temperature distribution on a freezing or thawing time to be
approximated, if a simple method using a uniform initial temperature is

used for calculations.

The release of 1latent heat over a range of temperature presents
problems in defining the onset of thawing. The initial thawing point
unlike the initial freezing point, Tif' is not well defined for food.
Choice of 1initial temperatures (Tin) of less than -10°C throughout the
material to be thawed, will ensure that the process includes all
significant latent heat transfer for common foods. For freezing the
equivalent restraint is that T1n must be greater than or equal to Tif’
Because of the aqueous nature of food and freezing point depression,
Ti¢ will always be less than or equal to 0°C. Significant superheating
above Tif for freezing or subcooling below =10°C for thawing, is normal
in commercial practice because of prior processing or storage

conditions so these conditions are seldom limiting.
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2.2.3 Completion of Phase Change

To complete the definition of freezing and thawing processes an end
point must be defined (Cowell 1974). If the assumption of a moving
boundary is made the end point is clearly when the phase change front

reaches the thermodynamic centre of the object.

The non-distinct phase change region for foods precludes this
definition. The best alternative is to consider the process complete
when the thermodynamic centre reaches a certain temperature, or when a
certain mass average temperature 1is reached (Purwadaria & Heldman
1983). The disadvantage of using a mass average temperature end point
is that the mean bulk temperature is difficult to measure or estimate
in practice without extensive temperature data (Khatchaturov 1958). 1In
contrast using a specified final thermodynamic centre temperature as
the end point means:

- the phase change operation is generally conservatively designed as
the mass average temperature is less limiting than the thermodynamic
centre temperature

- a choice of final centre temperature can be made to approximate any
desired equilibration temperature

- unless the thermodynamic centre moves (Fleming 1970) there is no
doubt that phase change is complete throughout the material when the
centre reaches the endpoint temperature

- this means of determining the end point is the most common and easy
to use.

For these reasons it was used in the present work.

For freezing, a number of final centre temperatures have been wused ;
-5°C (Rolfe 1968 p.197, Cowell 1974, James et al 1976), -10°C
(Khatchaturov 1958, I.I.R. 1972 p.36, Cleland 1977, de Michelis &
Calvelo 1983) and -18°C (Moleeratanond et al 1982, de Michelis &
Calvelo 1983, Hung & Thompson 1983). The process time obviously
lengthens as the final thermodynamic centre temperature is lowered. A
freezing time prediction method would ideally take account of these
changes. Methods with this capability are available (Cleland & Earle
1984b). The best choice of the final thermodynamic centre temperature

is made to ensure that all significant latent heat release takes place
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above it, and that it 1is commensurate with the subsequent storage
temperature. The endpoint temperature of -10°C was chosen for the
present work as it meets these requirements and the bulk of published

freezing data are for this temperature (Cleland & Earle 1984a).

For thawing, an obvious choice for the final centre temperature is 0°C.
Large non-equilibrium effects are unlikely to occur so phase change
must be complete at this temperature, even if the food behaves closely
to pure water, as Tif is always less than or equal to 0°C. Further, in
most thawing situations thawing throughout the material is demanded
(for example, so the material can be divided or used immediately in
further processes), yet the lowest mass average temperature is desired
to minimise post-thawing quality losses (James et al 1976). A
temperature of 0°C meets both these criteria. Above 0°C only sensible
heat effects need to be considered. If predictions to other final
centre temperatures are required, then similar methods to those
available to adjust freezing time predictions for different final

temperatures can probably be used.

2.2.4 Symmetry Conditions

In geometric shapes where there is an axis of rotational symmetry the
formulation can be restated axisymmetrically. Equations (2.1),(2.4)

and (2.5) become:

T 3 oT 9 aT
e e | P R—=] = | Pk — | #7%Q (2.8)
ot ar ar oy ay
[ 9T dT ]
rPk | —1,+—1,|=r?y (2.9)
| or y Y
and
a [ o AT | a
where r = radial distance from axis of rotation (m)
a = 1 for cylindrical co-ordinates

= 2 and terms in y are deleted for spherical

co-ordinates.

At all boundaries with no other boundary condition defined the symmetry

(no net heat transfer) boundary condition is assumed to apply:
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oT oT oT
kK [ —1, +—1,+—1,|=0 on surface, S4, for t>0 (2.11)

2.3 SOLUTIONS USING THE ASSUMPTION OF A UNIQUE PHASE CHANGE
TEMPERATURE

To attempt analytical solution of phase change problems it is usual to
assume that phase change occurs at a unique temperature (Tif) and that
thermal properties undergo a step change at this temperature, from
constant frozen values to constant, but different, unfrozen values (or
vice versa). Even with this moving boundary assumption the phase
change problem 1is still mathematically non-linear and no general

analytical solution has been found.

To facilitate analysis further physical assumptions and limitations are
necessary arising both from the mathematics and from the physical
properties of foods. Generally the density difference between the
phases is ignored and a uniform initial temperature distribution is
assumed. Only simple geometric shapes (slabs, infinite cylinders,
spheres, infinite rods and rectangular bricks) are considered. Also
analysis is often restricted to the simpler first and second boundary
conditions and the initial condition that the material is at the phase
change temperature (no superheating for freezing or subcooling for
thawing). Variation of boundary conditions with time is generally not
examined except by numerical methods or some form of time-averaging
technique. All of these assumptions reduce the range of applicability
of the resulting solution. Many of the solutions are not appropriate
for food freezing or thawing processes, although they may be in other
phase change situations such as pure metal casting, or melting and
solidification of pure substances. In addition some analytically
derived solutions may require numerical evaluation by computer so there
are both physical assumptions and numerical truncation or rounding
errors in these cases. In contrast, finite difference and finite
element numerical methods require no physical assumptions although they
introduce numerical errors. The lack of physical assumptions make the

latter group the preferred methods if numerical solution 1is required.
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The common assumption of phase change at a unique temperature and a
step change in thermal properties leads to methods that have been shown
to poorly predict freezing processes in foods (Cleland 1977). Bankoff
(1964), Muehlbauer and Sunderland (1965), Bakal and Hayakawa (1973),
Ockenden and Hodgkins (1975), Cleland (1977), Hayakawa {1977), Wilson
et al (1978) and Crank (1981) all review solutions making use of this

assumption.

2.3.1 Exact Solutions

Exact solutions for phase change assuming a wunique phase change
temperature are sSummarised in Table A.1. The semi-infinite slab
geometry description and the boundary conditions used in all of these
solutions virtually never occur 1in practical food phase change
situations, so these exact solutions are of 1little practical value
(Cleland 1977). All other solutions to phase change problems involve
the use of mathematical techniques and approximations as well as

simplifying physical assumptions.

2.3.2 Approximate Solutions for Slabs

For slabs the approximate analytical solutions can be classed 1into
three groups: heat balance integral and variational techniques,
perturbation and series solutions, and other analytical approaches.

These are summarised in Table A.Z2.

2.3.2.1 Heat Balance Integral and Variational Techniques The heat

balance integral (integral profile) technique of Goodman (1964) and the
variational technique of Biot (1957) reduce the set of partial
differential equations defining the problem into a set of simpler
ordinary integro-differential equations. In both me thods an
approximation to the temperature profile in each phase is assumed. The
method is sensitive to choice of the appropriate temperature profile
(Goodman 1961). It is difficult to predict the accuracy achieved by a
particular profile (Langford 1973). Bell (1978) subdivides the region
and solves for each section simultaneously, while Albin et al (1976)
study six stages in the phase change process, in attempts to increase

the accuracy of the method. Most solutions are restricted as they



Literature Review 14

consider only the first or second kind of boundary condition and the
semi-infinite rather than the finite slab, they require numerical
evaluation, or they apply only where the initial temperature is equal
to the phase change temperature. The only solutions for the third kind
of boundary condition that do not require numerical integration are
those due to Goodman (1958), for a semi-infinite slab where initial
superheating or subcooling are ignored, and Hrycak (1963, 1967) who
extends this to the case with superheating or subcooling for both a
homogeneous and stratified semi-infinite material. Hrycak applies the
quasi-steady state assumption (linear temperature profile between the
surface and the internal moving phase change boundary) and assumes that
the movement of the phase change front and the heat penetration front

are proportional.

2.3.2.2 Perturbation and Series Solutions The basis of this group of

solutions is to assume a series solution and fit the terms to the
initial and boundary conditions. The more complex boundary condition
of the third kind is analysed but numerical integration or computer
calculation are required because these analytical solutions are tedious
to use due to their complexity. Alternatively, a 1less accurate
solution is obtained when only the first few terms in the series are
taken. To apply these methods to food freezing and thawing the
assumption that initial temperature 1is equal to the phase change

temperature must be made which is a major disadvantage.

2.3M2.3 Other Analytical Approaches A number of mathematical

techniques such as embedding, integral transformations, analytical
integration and simplifying assumptions such as assuming the solution
to be of the form that the distance the phase change front has moved is
proportional to the square root of time, have been used to arrive at
simple formulae or sets of ordinary differential equations requiring
numerical integration. These are approximate solutions to the phase
change problem. Ozisik (1978) describes the formulation of the phase
change problem as a heat conduction problem with a moving heat source
and the use of Green's functions to solve it. Some other solutions
given in Table A.2 use a co-ordinate transformation due to Landau
(1950) that immobilises the phase change front. Plank (1913) and
London & Seban (1943) make the quasi-steady state heat conduction



Literature Review 15

assumption, that sensible heat capacity in the phase between the outer
surface and the phase change front is negligible. The temperature
profile in this region 1is therefore 1linear and a simple analytical
solution is obtained for the third kind of boundary condition but with
the material 1initially at the phase change temperature. Both these
assumptions will tend to yield low predictions of phase change times.
Rutov (1936) considered the sensible heat capacity of the phase change
material after phase change and derives a correction factor to account
for it. Cochran (1955) and Kreith & Romie (1955) both considered the
sensible heat capacity lumped at a mid-point in the slab, but were
unable to arrive at a simple solution except for unduly restrictive
boundary conditions. Kern (1977) and Glasser & Kern (1978) derive
bounds for the solution by considering the effect of the quasi-steady
state assumption and approximating the integration, by assuming
different temperature profiles between the surface and the moving

boundary.

2.3.3 Approximate Solutions for Radial Geometry

Many of the approximate techniques used to get solutions for slabs have
been extended to the case of radial heat flow in infinite cylinders and
spheres, but retain the same problems when applied to food phase
change. These solutions are 1listed in Table A.3. For a boundary
condition of the third kind with no initial superheating or subcooling
Plank (1913), London & Seban (1943), Koromi & Hirai (1970), Shih & Chou
(1971), Shih & Tsay (1971), Tien (1980), Seeniraj & Bose (1982) and
Hill & Kucera (1983) have derived solutions. Chuang & Szekely (1972)
solve for fusion of infinite cylinders with the initial temperature not
equal to the phase change temperature and the third kind of boundary
condition, but the method requires numerical integration of the

resulting ordinary differential equation.

2.3.4 Approximate Solutions for Multi-Dimensional Shapes

Where the geometry is complex so that heat transfer is in more than one
direction, development of even approximate analytical solutions is very
difficult. Solutions have been limited to dealing with objects of

regular geometric configurations. These solutions are mostly of
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limited practical importance because of the 1initial and boundary

conditions used. Table A.4 summarises available methods.

Solutions of practical importance for foods are those due to Plank
(1941), Tanaka & Nishimoto (1959, 1960, 1964) and Shamsundar (1982).
All use the quasi-steady state assumption and assume that the surface
of the object is isothermal. The general approach is to find geometric
factors that modify solutions for slabs. Plank finds appropriate
factors for phase change in infinite rod and rectangular brick shapes
subject to the third kind of boundary condition and the initial
temperature equal to the phase change temperature, by assuming that the
moving boundary remains parallel to the outer surface. Tanaka &
Nishimoto extend this analysis for conical shapes, finite cylinders and
trapezoidal bodies. Shamsundar employs a similar approach for the same
problem but allows different configurations of the phase change front
to be considered. Using mathematically defined geometries, conduction
shape factors suggest simple analytic solutions similar to those of
Plank. Hahne & Grigull (1975) tabulate the conduction shape factors

for a wide range of regular shapes and assumed interface geometries.

However for most multi-dimensional shapes the temperature 1is not the
same over the surface at any time, and the shape of the interface will
change as phase change progresses, so the accuracy of the derived

geometric factors is subject to doubt.

2.3.5 Empirical Approaches

This group of solutions have resulted from recognition that even with
major simplifying assumptions analytical solution of phase change heat
transfer is sufficiently difficult that alternative approaches are
worthwhile. The approaches are varied in nature, and are described in
Table A.5.

Charm & Slavin (1962) modify Neumann's solution for the first kind of
boundary condition to make it applicable to the third kind of boundary
condition by adding a fictitious thickness to the object to account for
surface resistance to heat transfer. Churchill & Gupta (1977) define

an effective specific heat capacity value so standard exact analytical
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solutions for heat conduction without change of phase will approximate
melting or solidification. Baxter (1962), for slabs and infinite
cylinders and Tao (1968), for slabs, infinite cylinders and spheres,
studied freezing subject to the third kind of boundary condition but
with no superheating or subcooling using finite differences. Their
results are displayed as regression equations and charts. Baxter's
solution is similar in form to Plank's equation. Shamsundar &
Scrivisan (1979) and Shamsundar (1981) derive a similarity rule so
numerical results can be applied over a wide range of conditions

without additional computations.

None of these solutions apply where latent heat is not released or

absorbed at a unique temperature as is the case for foods.

2.3.6 Use of Analogues and Graphical Methods

Before the use of versatile digital computers became common and
powerful numerical methods were available, analogue and graphical
solutions for phase change were used. Using electrical analogues
London & Seban (1943), Cochran (1955), Kreith & Romie (1955) and Horvay
(1960) investigated sensible heat effects neglected by the quasi-steady
state assumption using a lumped heat capacity method. Liebman (1956)
and Stephan (1969) also worked with electrical analogues for phase
change heat transfer while Hashemi & Sliepcevich (1967b) developed a
diffusion analogue. Some graphical methods for phase change are due to
Ede (1949), Keller & Ballard (1956), Heiss (1958), Longwell (1958),
Sunderland & Grosh (1961) and Sokulski (1972Db).

Graphical and analogue methods for solving freezing and thawing
processes are no 1longer important because of the relative ease and

accuracy of using numerical methods on digital computers.

2.3.7 Numerical Solutions

Mathematical approximations to Eqs. (2.1) to (2.11) can be made using
the finite difference method (Dusinberre 1945) or the finite element
method (Turner et al 1956). The third kind of boundary condition and
initial superheating or sSubcooling are easily modelled, though many
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solutions consider only simpler conditions.

A number of methods to determine the position of the phase change front
have been used. Fox (1975) and Crank (1981) review these methods and
describe the principles behind the techniques. Briefly, they can be

divided into six groups.

(a) Normal finite difference or finite element approximations to
Eq. (2.1) are wused throughout the object except for the section
which has just reached the phase change temperature. The nodes
representing these regions are artifically held at the phase change
temperature until the calculated accumulation or removal of heat is
equivalent to the 1latent heat. Then the phase change front moves
into the next section and normal approximations using the thermal
properties of the new phase are reinstigated. Researchers who used
the finite difference method include Dusinberre (1949), Tao (1967),
Charm (1971), Charm et al (1972), Roshan et al (1974) and Tarnawski
(1976). Zienkiewicz et al (1973) and Rolphe & Bathe (1982) used
the finite element method. A refinement of this method where the
position of the phase change front within each region is predicted
and temperatures near the front are estimated by interpolation
gives more accurate temperature profiles with 1less oscillatory
behaviour (Murray & Landis 1959, Seider & Churchill 1965, Teller &
Churchill 1965, Padmanabhan & Subba Raji 1975, Forgac et al 1979,
Cichy et al 1981).

(b) A co-ordinate transformation (Landau 1950) is employed to give a
variable space grid that fixes the boundary (phase change front) at
one node. The movement of the front is calculated while normal
approximations are used in each phase. Iterative solution is often
necessary to fit all the specified conditions. Murray & Landis
(1959), Lotkin (1960), Heitz & Westwater (1970), Kroeger & Ostrach
(1974), Duda et al (1975), Saitoh (1978), Hsu et al (1981),
Heurtault et al (1982) and Moore & Bayazitoglu (1982) used finite
differences while Bonnerot & Jamet (1974) and Lynch & O'Neill
(1981) employed finite elements. This method gives more accurate
estimate of the front position than (a) but less accurate

temperature profiles (Murray & Landis 1959).
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(c) A variable time stepping scheme is used with a fixed space grid so

(d)

(e)

(f)

that the phase change front jumps a full nodal division with each
time step. An iterative approach is required to approximate the
boundary conditions with heat balances and temperature profiles
defined by Eq. (2.2) (Douglas & Gallie 1955, Goodling & Khader
1974, Goodling & Khader 1975, Sparrow et al 1976, Gupta & Kumar
1980, Yuen & Kleinmann 1980, Gupta & Kumar 1981).

The enthalpy transformation of Eyres et al (1946) is used to remove

the non-linearity due to the moving boundary so that Eq. (2.1)

becomes:
oH 9 oT 3 oT 3 oT
_— = — | Kk — | + — |k — |+ — ] k—]+q (2.12)
at ox ax ay ay oz 9z
where H = enthalpy (J m™3)
T
= J C dT
0

f,,(T,position)

Normal finite difference approximations to Eq. (2.12) can be used
throughout the region (Price & Slack 1954, Baxter 1962, Lockwood
1966, Shamsundar & Sparrow 1975). The method has been refined by
using interpolation to determine the temperature distribution and
interface position more accurately between space grid points
(Shamsundar & Sparrow 1976, Voller & Cross 1981a, 1981b, 1983, Bell
1982). Ichikawa & Kikuchi (1979) and Kikuchi & Ichikawa (1979)

used the similar method of variational inequalities.

The isotherm migration method transforms the problem from that of
determining the dependent variable, temperature, as a function of
position and time to that of determining the dependent variable,
position, as a function of time and temperature (Crank & Gupta
1975, Talmon & Davis 1981, Talmon et al 1981, Talmon et al 1983,
Gupta & Kumar 1984).

A variety of different schemes are used near the phase change front
to account for latent heat effects and the moving Dboundary
condition (Ehrlich 1958, Lazaridus 1970, Morrison 1970, Goodrich
1978, Ramakrishna & Sastri 1984). Wellford & Ayer (1977), Rubinsky
& Cravahlo (1981) and Raymond & Rubinsky (1983) use the finite
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element method and include special elements or nodes at the phase
change front that approximate the latent heat effect by a heat
source or sink distributed over the element. Allen & Severn (1962)
use a relaxation method and model latent heat release as moving

heat generation.

Except for the enthalpy transformation few solutions for food freezing
and thawing are based on these methods, as phase change in foods
departs substantially from the basic assumption of a wunique phase
change temperature. Other numerical methods can approximate latent
heat release or absorption over a range of temperature more closely and

have been used in preference.

2.4 SOLUTIONS FOR PHASE CHANGE OVER A RANGE OF TEMPERATURES

The second way that phase change in food can be taken into account is
by making mathematical allowance for phase change over a range of
temperatures. Phase change over a range of temperatures is the actual
situation occurring in food freezing and thawing. The most general
approach would take account of any variation in apparent volumetric
specific heat capacity, C, and the thermal conductivity, k, 1in
Eq. (2.1) meaning that no physical assumptions about the phase change
process need be made. For foods the apparent volumetric specific heat
capacity is defined at any temperature as:

C = f.H_ (2.13)

dt

Simpler semi-analytical and empirical approaches have also been taken.

Metal alloy solidification is a similar phase change process. It is
usually modelled by a two-phase zone of solid and liquid between two
phase change fronts moving through the material. This approach is
closer to the true physical situation during phase change in foods,
than the assumption of a unique phase change temperature, but is still
only approximate because it requires assumptions about the distribution

of latent heat across the phase change region.
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2.4.1 Approximate Analytical Solutions for Alloy Solidification

Approximate analytical solutions for alloy solidification are
summarised in Table A.6. In alloy solidification it 1is normally
assumed that 1latent heat 1is released uniformly over an extended
temperature range. Error will occur in using these solutions for phase
change in food because foods do not have constant latent heat release

with respect to change in temperature.
Muelbauer et al (1973) and Hayakawa & Bakal (1973) consider the third
kind of boundary condition but both solutions, though analytical in

nature, are complex and impractical to use.

2.4.2 Semi-Analytical Solutions

Many attempts have been made to modify existing analytical solutions to
take account of their limitations and give them 1less dependence on
assumptions made in their theoretical development. Plank's (1913)
equation for a finite slab not initially superheated or sSubcooled is
often used as a base for these modifications because of its simple
form, its application to a range of regular shapes (Plank 1941) and
because it is for the boundary condition of the third kind. Plank's

equation can be written as:

AH D D2
t = - | P—-+R = (2.14)
ITaTigl h
or in dimensionless form (Tchigeov 1958):
P R
Fo = + (2.15)
Bi Ste Ste
where AH = change in enthalpy during the process (J m—3)
Ta = ambient temperature (°C)
Tif = initial freezing temperature (°C)
P,R = geometric factors depending on object shape
D = full thickness or diameter (m)
h = surface heat transfer coefficient (Wm™2 oc™h)
Fo = Fourier number
= ut/02

Bi = Biot number
= hD/k
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Ste = Stefan number

C |Ty-Typ|/aH

thermal diffusivity (m? s7)
k/C

[*}
n

Various approximate methods have been employed to account for
non-constant thermal properties, sensible heat effects both above and
below the phase change temperature range and the non-isothermal 1latent
heat release or absorption. Some fit experimental data while others
attempt corrections based on theoretical grounds. Although sometimes
derived for a specific product or condition many of the methods can be
made to apply to a wider range of problems. Kinder & Lamb (1974) and
Cleland (1979) review the relative merits of these formulae for food

freezing.

Cowell (1967), Lotz (1974), Mascheroni & Calvelo (1982), De Michelis &
Calvelo (1983) and Pham (1984a) all divide the freezing process into
separate precooling, phase change and tempering periods. For the phase
change period versions of Plank's equation are used, whilst for the
other periods a variety of different techniques are used to calculate
the heat conduction without change of phase. Pham (1984a) writes
Plank's equation in a form analogous to Newton's law of cooling and
uses this for all three periods. For precooling and tempering, this is
the same as the lumped capacity method of Cochran (1955) and London &
Seban (1943) except that the position of the lumped heat within the
object is determined by the Biot number. For all these methods thermal
properties are chosen or calculated by averaging techniques to model
more accurately the true heat transfer conditions during each period.
For similar reasons Mott (1964), Fleming (1967), Sokulski (1972a),
Albin et al (1979) and Pham (1984a, 1984b) all suggested the use of a
weighted average freezing temperature or temperature difference in
solutions based on a unique phase change temperature, when phase change
is over a range of temperatures such as in food freezing and thawing.
Levy (1983b, 1983c, 1984) also considered the freezing and thawing
processes in three stages and defined effective heat capacities and
thermal conductivities for each stage for use in solutions for heat

conduction without phase change.
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Nagaoka et al (1955), Eddie & Pearson (1958), Levy (1958), Earle &
Freeman (1966), Fleming (1967), Frazerhurst et al (1972), Slatter &
Jones (1974) and Mellor & Seppings (1976) for freezing and Walker
(1970), Vanichseni (1971) and Vanichseni et al (1972) for thawing, all
propose modifications to Plank's equation in the form of multiplicative
factors. These generally aim to account for sensible heat effects that

Plank assumed negligible.

Khatchaturov (1958) and Golovkin et al (1974) give formulae based both
on fitting experimental data and analytical considerations.
Schwartzberg et al (1977) examines temperature profiles during phase
change for infinite and zero Biot numbers. Modifications at
intermediate values of Biot number are used to predict phase change
times. Sastry (1984) wused an enthalpy transformation and Goodman's
(1964) heat balance integral technique to approximate and solve the
change in enthalpy profiles with time during partial freezing and
thawing in slabs. Teider (1963), de Michelis & Calvelo (1982) and
Mascheroni et al (1982) developed methods to account for different

surface boundary conditions on each face during freezing of slabs.

2.4.3 Empirical Solutions

The difficulty in deriving a general solution to phase change that has
wide applicability, even with only a partial analytical basis, has
meant that many empirical approaches have been proposed. Some of these
are relatively general in their application, whilst others are very
specific to the food product and/or phase change conditions to which
they apply. These latter solutions may only interpolate experimental
data.

For freezing slabs, infinite cylinders, spheres and rectangular bricks
toa final temperature of -10°C Cleland (1977) and Cleland & Earle
(1976b, 1977a, 1979a, 1979b, 1982b) empirically modified the geometric
factors in Plank's equation by regression analysis of experimental
data. By a similar analysis of slab freezing data to a final
temperature of -18°C Hung & Thompson (1983) found different
modifications.
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Calvelo (1981) for thawing of slabs, Creed & James (1981) for thawing
of beef slabs, Hayakawa et al (1983a, 1983b) for freezing of finite
cylinder and infinite rod shapes and Succar & Hayakawa (1984) for
freezing of slabs give regression equations calculated from results

predicted by numerical methods.

Pham (198U4c) used a similar approach to Pham (1984a) but empirically
defines the average phase change temperature as a function of the final

thermodynamic centre temperature and the ambient temperature.

Differential forms of empirically developed versions of Plank's
equation allow Loeffen et al (1981) and Cleland & Earle (1982c) to
consider time variable boundary conditions by simple numerical methods.
A non-uniform initial temperature distribution was handled by

calculation with a mean initial temperature.

The empirical solutions are summarised in Table A.T.

For a range of regular shapes two recent studies (Cleland & Earle
1984a, Pham 1984c) have shown the methods to predict freezing times due
to Pham (1983, 1984a, 1984b, 198U4c) and Cleland & Earle (1982b) to be

accurate by comparison with a large composite freezing data set.

2.4.4 Numerical Methods

Direct numerical approximation of Eq. (2.1) is an approach requiring no
assumptions about the physical processes of freezing and thawing.
Errors may arise from imprecise thermal data, and from numerical
truncation and rounding errors. A wide range of numerical methods have

been used.

Those using the finite difference method include: simple explicit
schemes where k and C are combined and thermal diffusivity, a, is taken
as a function of temperature (Earle & Earl 1966, Cullwick & Earle 1971,
Bailey & James 1974, Heldman 1974a, Heldman & Gorby 1974, Chattopadhay
1975, James et al 1977, James & Creed 1980, Creed & James 1981b,
Heldman 1983), explicit solutions where k and C are taken as separate

functions of temperature (James et al 1979, James & Bailey 1980,
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Mascheroni & Calvelo 1980, de Michelis & Calvelo 1982, Mascheroni &
Calvelo 1982, Mascheroni et al 1982), explicit difference formulae
based on the enthalpy transformation (Eyres et al 1946, Price & Slack
1954, Albasiny 1956, Lockwood 1966, Cordell & Webb 1972, Joshi & Tao
1974, Shamsundar & Sparrow 1975, 1976), fully implicit and two time
level implicit schemes (Crank & Nicholson 1947, Albasiny 1960, Hashemi
& Sliepcevich 1967a, Fleming 1971c, Steinhagen & Myers 1983, Succar &
Hayakawa 1984) and three time 1level 1implicit solutions (Bonacina &
Comini 1971, Bonacina et al 1973, Comini & Bonacina 1974, Cleland &
Earle 1977b, 1979a).

Bonacina & Comini (1971) and Cleland & Earle (1984a) considered the
different finite difference schemes and concluded that the implicit
three time level scheme due to Lees (1966) 1is superior in terms of
accuracy. It 1is also stable and convergent. The three time level
scheme predicted freezing data to within about +#10% for slabs, infinite
cylinders, spheres and rectangular brick shapes (Cleland et al 1982).

Methods.for the infinite cylinder and sphere geometries are based on
the scheme proposed by Albasiny (1960). Where implicit methods are
used for two- and three-dimensional geometry a number of alternating
direction implicit schemes have been used (Douglas 1955, Peaceman &
Rachford 1955, Douglas & Rachford 1956, Brian 1961, Fairweather &
Mitchell 1965, Allada & Quan 1966, Fleming 1970, McKee & Mitchell 1971,
Bonacina & Comini 1973, Cleland & Earle 1979b). All the above schemes
are limited to shapes with regular configuration. Finite difference
schemes to model irregular geometry in two dimensions (Fleming 1971a,
Brisson-Lopes & Domingos 1979, Koskelainen 1979) and non-homogeneous

materials (Fleming 1971b) have been developed but are complex.

The finite element method has been widely used for problems with phase
change (Comini et al 1974b, Comini & Del Guidice 1976, Comini & Lewis
1976, Lewis & Bass 1976, Rebellato et al 1978, Frivik & Thorbergson
1981, Frivik & Comini 1982, Hayakawa et al 1983b, Purwadaria & Heldman
1983). The major advantages of the finite element method over the
finite difference method are that it 1is able to cope easily with
irregular geometries and heterogeneous materials (Arce et al 1983).

Complex boundary conditions are incorporated simply (Comini & Bonacina
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1974) and higher order (quadratic or cubic rather than linear)
approximations to temperature profiles can be used (Emery & Carson,
1971). Disadvantages of the finite element method are that the time
step is neccessarily shorter for stability and non-oscillation (Myers
1978, Bald 1981) and that the computer storage requirements and
processing time are greater (Yalamanchilli & Chu 1973) than for finite

differences.

Testing of the finite element method has demonstrated good accuracy of
prediction against experimental data for two-dimensional problems
considering freezing of roads (Frivik et al 1977), freezing of ice (Hsu
& Pizey 1981), freezing of food (Purwadaria 1980), thawing of fish
(Miki et al 1978) and freezing of fish (Miki et al 1982).

Finite elements are commonly employed to discretise in space, but both
the finite element method (Bruch & Zyroloski 1974, Chung 1981) and
finite difference schemes have been used in time (Donea 1974, Wood &
Lewis 1975). Using finite elements means higher order time
approximations can be used but significantly increases the size of the
computing problem. Where thermal properties are changing rapidly the
linear, centrally balanced, three time 1level Lees' scheme has been

found to be stable and convergent (Comini et al 1974b).

In numerical methods the calculated heat flow through the object
surface should equal the internal enthalpy change over the whole phase
change process. Close agreement (referred to as a heat balance) must
be achieved for a numerical method to be considered both accurate and
valid. To ensure a heat balance, a number of different methods to
calculate the thermal properties (especially in the latent heat peak
temperature range) have been proposed (Comini et al 1974b, Comini & Del
Guidice 1976, Lemmon 1979). Morgan et al (1978) suggest they may not
give benefits over direct evaluation. Cleland et al (1982), studying
numerical prediction of freezing, discovered that the better finite
difference and finite element methods are probably more limited by
thermal data uncertainty than numerical approximations. Both the
finite element method and the finite difference method for continuocusly
variable thermal properties can model a unique phase change temperature

by appropriate choice of the thermal property functions (Bonacina et al
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1973).

The boundary element method, which is similar to the finite element
method, has been proposed for non-linear transient heat conduction with
variable properties (Brebbia & Walker 1980). It has the advantage of
reducing the dimensionality of the problem and therefore the computing
requirements (Wrobel & Brebbia 1981), but will only be accurate for
shapes with large surface area-to-volume ratios (Wrobel & Brebbia
1979). It has not been used for heat transfer with phase change as it
has no proven advantages over the finite element method for this type

of problem.

2.5 THE EFFECT OF GEOMETRY ON FREEZING AND THAWING TIME PREDICTIONS

Apart from some finite difference methods and finite element schemes,
methods for freezing or thawing time prediction are nearly all
restricted to regular geometric configurations such as slabs, infinite
cylinders, spheres, infinite rods and rectangular bricks. Many food
products are not regular in shape sSo methods are required to take

account of irregular geometry.

By assuming (a) a geometrical description for the phase change front,
(b) that the surface temperature is constant but still time variable
over the surface and (c) that the quasi-steady state assumption 1is
applicable in the phase between the surface and the phase change front,
Plank (1941), Tanaka & Nishimoto (1959, 1960, 1964) and recently
Shamsundar (1982) derived geometric factors to account for the object
configuration for many regular shapes. Where the second assumption is
true and the phase change front is parallel to the surface, the factors
depend directly on the surface area times thickness-to-volume (AD/2V)
ratio. Rutov (1936) and Mott (1964) both extended the idea to using
the ratio of product surface area times thickness-to-volume as an index
of the shape in calculations for all geometries. This approach is
accurate for slabs, infinite cylinders and spheres with the third kind
of boundary condition as the surface is always isothermal, irrespective
of Biot number. Cleland & Earle (1982a, 1982b) show it is not accurate
for other shapes when the Biot number is non-zero. Pham (1984b) used

the same general approach but includes a correction to the Biot number
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based on the "mean heat conducting path" (MCP) from the centre to the
surface of the object. A method to calculate the mean conducting path
length is given for freezing of rectangular brick shapes based on fit
to experimental data. Sokulski (1972a) uses the AD/2V ratio but only

considers a section of the object near the thermodynamic centre.

Cleland & Earle (1982b) define EHTD (equivalent heat transfer
dimensionality) as the ratio of the freezing time for a slab of
equivalent thickness to the freezing time of the shape 1in question,
under the same initial and boundary conditions. The value of EHTD is
calculated from the ratios of dimensions for rectangular brick shapes
or from experimental data but 1is, 1like Pham's method, essentially
equivalent to the area times thickness-to-volume ratio with a

correction for Biot numbers greater than zero.

Both the EHTD and MCP concepts gave accurate predictions of
experimental data for freezing of rectangular bricks when applied in
conjunction with an accurate prediction method for freezing of the
simple slab shape. Neither method has a totally theoretical basis, but
both consider the limiting cases of Bi+0 and Bi+=. Goodness of fit to
experimental data was also used in their derivation. Both EHTD and MCP
have been postulated as suitable for irregular shapes, but this has not

been verified.

A common method to account for geometry in phase change of irregularly
shaped foods has been to approximate the shape by the closest simple
shape (slab, infinite cylinder, sphere) and define an equivalent
diameter or thickness. This method 1is of 1limited use as the
appropriate correlation for equivalent diameter is specific for each
product type and requires experimental data to determine it accurately.
Often the equivalent diameter is chosen to include correction for
errors in the prediction method used, as well as the effect of shape on
heat transfer. A general model to account for geometric effects within
a calculation method is superior to an experimental correlation for a
particular product, as it is not restricted by product type. Table A.8

lists researchers who use equivalent diameters for irregular shapes.
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For heat conduction without phase change, Smith et al (1967), Smith et
al (1968), Clary et al (1968), Smith & Nelson (1969) and Clary et al
(1971) defined a geometry index for irregular shapes calculated from an
ellipsoidal model shape that has equal orthogonal cross-sectional areas
to the anomalous shape that it replaces. This 1index has not been

tested for phase change problems.

2.6 PHYSICAL PARAMETERS REQUIRED FOR CALCULATION OF PHASE CHANGE
IN FOODS

2.6.1 Thermal Property Data

The thermal properties required to predict phase change in food include
thermal conductivity, k, volumetric specific heat capacity, C, 1latent
heat content, L, phase change temperature, Tif' and specific heat
generation, Q. No method to predict freezing or thawing times for
foodstuffs can be accurate if the food thermal properties required by
the method cannot be obtained accurately, or are not representative of
the whole product. There has been a great deal of research, reviewed
by Woolrich (1966), Woodams & Nowry (1968), Morley (1972), Mellor
(1976, 1978, 1979, 1980), Polley et al (1980) and Meffert (1984), into
thermal property data required to calculate phase change for foods. A
complied set of data for meat (Morley 1972) demonstrates some
inconsistencies in the thermal property data. Similar inconsistencies

in data could be expected for other foods.

Collection of thermal property data is tedious and expensive because of
the variability of foodstuffs in composition and structure and the wide
range of temperature for which data is required. Data for frozen food
are especially difficult to determine because it 1is difficult to

maintain the appropriate  experimental conditions.

Because of these difficulties, numerous attempts have been made to
mathematically model food properties and hence derive calculation
methods for the thermal properties. Data that can be determined
simply, cheaply and accurately such as initial freezing temperature,
composition, average unfrozen thermal conductivity and specific heat

capacity and the bound water fraction are used as input data for these
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models. The simplest models sum the effect of the solid and 1liquid
component parts (Comini et al 1974a, Lamb 1976, Dickerson 1977, Lentz &
Van Den Berg 1977, Mascheroni et al 1977, Levy 1981, Levy 1982a). An
alternative is to predict the water and ice fraction from freezing
point depression equations and relate this to the changes in properties
from unfrozen values (Heldman 1974b, Heldman & Gorby 1975, Schwartzberg
1976, Schwartzberg 1977, Mascheroni & Calvelo 1980, Heldman 1981,
Heldman 1982, Mascheroni & Calvelo 1982, Larkin et al 1984). A third
approach is to use empirical or regression equations to fit the data
(Levy 1979, Chang & Tao 1981, Ramaswamy & Tung 1981, Levy 1982b, 1982c,
1983a). All three approaches are claimed to lead to data of similar

accuracy to that obtainable by direct measurement.

Numerical methods based on approximating Eq. (2.1) need extensive
thermal data over the full temperature range whereas many simple
methods do not. Complete thermal property tables, simplified 1linear
approximations to the actual data (Bonacina et al 1974, Comini et al
1974a, Bonacina & Comini 1976, Tao 1975) and systems based on the above
property prediction methods have all been wused in numerical methods

with good reported accuracy.

Meffert (1984) and Hsieh et al (1977) investigated the error in thermal
property data and its effect on prediction accuracy. Considering that
error on individual values of any property can be as high as 40% the
error can be substantial in any subsequent predictions of freezing and

thawing.

2.6.2 Surface Heat Transfer Coefficients

One of the most difficult parameters to determine independently in food
freezing and thawing processes that involve the third kind of boundary
condition is the surface heat transfer coefficient between the ambient
medium and the product surface. Arce & Sweat (1980) review techniques
to estimate, and give data for, surface heat transfer coefficients in

many food heat transfer situations.

There are many correlations (McAdams 1954) but these tend to be medium,

product, and situation specific, and of doubtful accuracy. Measurement
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in situ is a better proposal as the actual heat transfer conditions are
more closely represented and any variation due to equipment will be
taken into account. Some transient methods are discussed by Cleland &
Earle (1976a) and Earle & Cleland (1979). Some researches have used
metal transducers (Fleming 1967, Kopelman et al 1970, Earle 1971,
Cowell & Namor 1974). Users of such devices cannot be sure of the
correlation between the surface heat transfer coefficient measured for
the transducer and those for the actual foodstuff or material. Others
workers have used the actual food under similar experimental conditions
and have chosen the surface heat transfer coefficient to fit solutions
for heat transfer without phase change (Charm 1963, Baker & Charm
1969), or to give the best fit of surface and centre temperature
predictions using finite difference methods (Beck 1969, Bonacina &
Comini 1972, Chavarria & Heldman 1984). Comini (1972) shows that
surface temperatures are most sensitive to change in the surface heat
transfer coefficient and hence advocates their use in an optimal
experimental design. For measuring surface heat transfer coefficients
to irregular shapes only metal transducers are can be used without the
need for complex trial and error computer analysis by the finite
element method. For similar reasons in situ transient determinations
are limited to regular geometric shapes. Variation of the surface heat
transfer coefficient over the surface is common with variable geometric
configurations and in conditions such as air flow (Purwadaria 1980).
Local variations of the surface heat transfer coefficient can be
significant but are very difficult to measure. Often an average value

must be determined or estimated.

2.7 SUMMARY

There are a large number of solutions to the problem of heat conduction
with phase change for regular geometric shapes. Most analytical and
some numerical solutions are based on the assumption that phase change
occurs at a unique temperature. None of these have been proven
accurate for food where phase change is over a range of temperatures.
Other common limitations of methods are that they do not consider the
most common and useful third kind of boundary condition, do not account
for initial temperature not being at the phase change temperature, and

are derived for semi-infinite rather than finite geometric shapes.
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Modified analytical and empirical solutions retain the simple
analytical form, have less detailed thermal data requirements than more
rigorous methods, but tend to be product or situation specific. Within
this group, those formulae of a general nature have been tested against
experimental freezing data and some have shown acceptable accuracy.
There has been no extensive testing of simple prediction methods for

thawing .

The finite difference numerical method is of proven accuracy for
freezing of regular shapes. The finite element method has been
formulated and shown to be superior to the finite difference method for
predicting phase change in two-dimensional irregular shapes. Neither
numerical method has been tested extensively for thawing of food iﬁ
regular shapes or for freezing or thawing of foods of irregular

geometry due to the lack of suitable experimental data.

Simple analytical methods to allow calculations for irregular shapes
have been proposed, but no significant testing or refinement against
experimental or numerically calculated data over a range of conditions

has been carried out.
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3 RESEARCH OBJECTIVES

Ultimately, verification of the accuracy of any method to predict
freezing and thawing times must be made by comparison with accurate
experimental freezing and thawing data (Heldman 1983, Cleland & Earle
1984a). The most wuseful data set would be large and diverse in order
to differentiate between error due to imprecise knowledge and control
of the phase change conditions (experimental error), error due to
uncertainty in thermal property data (data error) and inaccuracy
arising from assumptions or approximations made in the derivation of

the prediction method (prediction error).

For freezing of regular shapes such as slabs, cylinders, spheres and
rectangular bricks Linge (1973), Cleland (1977), de Michelis & Calvelo
(1983), Hayakawa et al (1983a), Hung & Thompson (1983) and Succar &
Hayakawa (1984) have published major data sets for a variety of
foodstuffs and food analogues, frozen under a range of conditions.
Cleland & Earle (1984a) and Pham (1984c) used an amalgamated data set
from these sources to test freezing time prediction methods for regular
shapes. This study showed that accurate freezing time prediction

methods existed for these shapes.

Data given for irregular shaped objects tend to be product specific.
In virtually all cases published in the literature, detailed
geometrical descriptions have not been given and consistency 1in size
and shape during experiments was not controlled. For example, in the
freezing and thawing of mutton carcasses the size and shape information
is often limited to the relevant weight range (Earle & Fleming 1967,
Vanichseni et al 1972). This information is generally not sufficiently
detailed to test prediction methods other than product specific

empirical formulae.

The restricted nature of published data led to the formulation of the

first two aims of the present research:

(1) to collect thawing data for the basic slab, infinite cylinder,
sphere and rectangular brick shapes

(2) to collect freezing and thawing data for other (irregular) shapes.
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This expansion of the data base was necessary to facilitate testing of
thawing time prediction methods for simple shapes and prediction
methods applicable to irregular geometries for both freezing and

thawing.

Table 3.1 gives the desirable attributes of any method for food
freezing and thawing time prediction discussed by Slatter & Jones
(1972), Cleland (1977) and Cleland & Earle (1977a). The methods
available are conveniently divided into two broad groups for further
study:

Group (I): Formulae requiring only hand calculation

Group(II): Numerical methods requiring computer calculation.

These groups differ slightly from those used in Sec. 2.3 and 2.4. Many
engineers do not have the specialised knowledge to implement numerical
methods. They will not use Group II methods unless they are available
as computer packages. Such people therefore must often rely on the
simple formulae (Group 1I). The greater sophistication of numerical
methods may justify their use if complex conditions are to studied and
more detailed design information 1is required. Often imprecise
knowledge of the phase change conditions and uncertainty in thermal
data mean that the more complex numerical methods are no more accurate

in practice than Group I methods.

Conditions usually imposed in the derivation of Group I methods are
listed in Table 3.2. If any of these conditions are violated Group I
methods can only be applied to practical problems by taking appropriate
averages for the phase change process. In contrast Group II methods

are applicable whether these assumptions are made or not.

Provided the eight assumptions 1in Table 3.2 are met, freezing or
thawing times are influenced by the seven major factors listed in Table
3.3. The accuracy and usefulness of any experimental data collected is
dependent on the ability to measure these parameters, to control
accurately the experimental environment and to meet the conditions 1in
Table 3.2. The data sets collected were designed so that all important
parameters could be examined. These data enabled the third, fourth and
fifth aims of the current study to be considered. These were to:

(3) assess the accuracy of both Group I and Group II methods for
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prediction of thawing times for regular shapes
(4) assess the accuracy of Group II methods for prediction of freezing
and thawing times for irregular shapes and
(5) investigate the possibility of developing a Group I method to
predict freezing and thawing times for irregular shapes.
A decision was made to limit the current study to situations where the
eight conditions 1listed 1in Table 3.2 apply. This decision was made
because of time and resource limitations. Despite this restriction a
wide range of practically important problems can still be covered.
Future work may investigate situations not limited by these

assumptions.

Table 3.1 Desirable Attributes of Freezing and Thawing Time Prediction
Methods

(a) Sufficient accuracy over a wide range of conditions

(b) Simple and cheaply processed calculations

(c) Applicability to a wide range of biological materials of various
sizes and shapes

(d) Applicability to the practically important third kind of boundary
condition in situations where there is superheating or subcooling

(e) Minimal need for detailed thermal property data

(f) Prediction of heat flow and temperature profiles as functions of
time

(g) Use of a unified approach for both freezing and thawing.

(h) Applicability where boundary conditions are time and position

variable
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Table 3.2 Conditions Required For Derivation of Simple Freezing and

(a)

(b)
(c)

(d)
(e)
(f)
(g)
(h)
(1)

Thauigg Time Prediction Formulae

That the boundary and initial conditions are constant with

and/or position

Homogeneous materials

time

That the third boundary condition describes the heat transfer at

the boundary adequately and that radiation effects
insignificant

No internal heat generation

Isotropic materials

Negligible density change during phase change

Internal heat transfer by conduction only

No mass transfer, such as evaporation, at the surface

That the object retains its physical integrity during the

change process.

Table 3.3 Factors Affecting Freezing and Thawing Times

(a)
(b)
(c)
(d)
(e)

(f)
(g)

Thermal properties of the material
Size of the object
Initial temperature of the material

The ambient heating or cooling temperature

are

phase

The surface resistance to heat transfer as defined by the surface

heat transfer coefficient

The geometric configuration of the object

The final temperature at the thermodynamic centre at the completion

of the phase change process.
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4 NUMERICAL METHOD FORMULATIONS

It was neccessary to develop some numerical freezing and thawing time
prediction methods beyond what has been reported in the literature in

order to meet the fourth research objective defined in Chap. 3.

4.1 INTRODUCTION

Numerical methods to predict rates of phase change processes in foods

can be divided into three groups:

(a) the finite element method

(b) the finite difference method

(c) the approximate analytical methods that require numerical
integration or are too complex for hand calculation.

The latter group have few advantages over the other two and have the

major disadvantage that wusually severely limiting physical

approximations are made. Therefore this group of numerical methods was

not considered further. Only numerical methods that account for phase

change by considering continuously temperature variable thermal

properties were considered as they are physically the most realistic.

The alternative numerical methods treating phase change as a moving

boundary problem by assuming a unique phase change temperature do not

approximate phase change in foods very closely and are therefore

inferior (Cleland 1977).

Advances in computing technology have meant that costs for computer
computation power and data storage are now relatively low so numerical
methods become attractive compared with simple analytical methods. The
availability of comprehensive programs 1is increasing so detailed
knowledge of computer programming and of the numerical techniques are

not neccessarily required to use these methods.

Numerical methods have been advocated as a standard method for
prediction of phase change against which all other prediction methods
should be compared, because numerical methods are the closest to an
"exact" prediction method that exists (Heldman 1983). Comparisons with

numerical methods should only complement, not replace, comparisons with
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actual experimental freezing and thawing data (Cleland & Earle 1984a).
A numerical method can only be accurate if it has been correctly
formulated and, implemented and if reliable data are used. Comparisons
with experiments are necessary to assess these factors. The finite
difference method is 1limited by practical constraints to use for
regular shaped objects sSuch as slabs, infinite cylinders, spheres,
infinite rods and rectangular bricks. For these shapes fixed regular
grids can be wused for the finite difference approximations and
comparatively simple schemes developed. For irregular shapes more
complex finite difference schemes and irregularly spaced grids can be
used (Fleming 1971c). These are more complex to implement on computers

than finite element methods.

Numerical methods require no physical assumptions about the phase
change process but make numerical approximations. For complex boundary
conditions, irregular shapes, non-homogeneous materials and where
temperature profiles change rapidly with position, the finite element
method is able to make more exact approximations than the finite
difference method. For these reasons only the finite element method

has been used extensively for irregular shapes (Comini et al 1978).

4,2 THE FINITE ELEMENT METHOD

Although the finite element method has been widely wused for phase
change (Comini et al 1978) none of the published applications of the
finite element method to phase change considered three-dimensional
problems, and only 1limited testing of some two-dimensional finite
element codes against experimental data has been carried out
(Sec. 2.4.4). A simple problem specific program was available for
three-dimensional heat transfer (Lim 1975) but a general finite element
program was not. Therefore a general formulation for heat conduction
in three-dimensional geometry was developed and programmed (Cleland et
al 1984).



Numerical Method Formulations 39

4,2.1 Finite Element Method Formulation

The finite element method can be formulated for heat transfer with
change of phase in a three-dimensional object by using the Galerkin
weighted residual method for spacewise discretization of Egs. (2.1) and
(2.8) (Zienkiewicz 1971, Segerlind 1976). Incorporating the boundary
conditions (Eqs. (2.3) to (2.6) and (2.9) to (2.11)) using Green's
theorem, yeilds the n simultaneous differential equations to be solved
implicitly for the temperatures at the n nodal points defined
throughout the region. Written in matrix form the solution becomes
(Zienkiewicz & Parekh 1970, Comini et al 197ub):

KT(t) + CT(t) = F (4.1)
where K = thermal conductance matrix
T = vector of nodal temperatures as a function of time

thermal capacitance matrix

m Q
I

thermal forcing vector

The typical matrix elements are:

oN; ON oN; ON. oN.: OoN.
Kyj = I I e | 23 2l 4 o 0 g oA ] o
Ve X 39X ay 3y 9z 0z
+ I Js (hoon * hpagq) Nj Nj W ds, (4.2)
e
Bg =L JV QNj; Wav+ L IS ¢ Ny W dS,
e 2e
# I Js (MesiTac * Degalar) Ny W 4S, (4.4)
le
where W = 2qr for cylindrical co-ordinates

= Nnrz for spherical co-ordinates
= 1 otherwise
I\IUN‘j = shape functions for the ith or jth node in the element
or surface undergoing integration.

Equation (4.1) can be approximated by finite differences or finite
elements and solved for future times given the appropriate initial
condition. Using finite elements in the fourth (time) dimension
greatly increases the size of the problem for computer implementation
but does allow non-linear estimation in the time domain. Use of finite
differences in the time domain is more common. The three time level,

linear, finite difference scheme proposed by Lees (1966) is well proven
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for phase change problems (Comini & Bonacina 1974):

i+ 1 ki

g r -1 K [11_1 b s it J - gl (4.5)
2At 3
It has the advantage over other finite difference schemes that it is
centrally balanced so only central time values of the K and C matrices
and F vector are required. Therefore iterative time stepping
algorithms are not needed to incorporate correct values of the
temperature and time dependent thermal properties, and the boundary
conditions. The Lees' scheme has been shown to be unconditionally

stable and convergent in the context of finite element analysis (Comini
et al 1974b).

By using the temperature-dependent apparent specific heat capacity and
thermal conductivity (such as Figs. 2.2 to 2.3) this numerical method
will closely model the true physical process during phase change if
data are accurate. To account for both changes in thermal properties
over each element volume with time and the possible time dependence of
the boundary conditions, the integrations shown in Eqs. (4.2) to (4.4)
must be repeated for each time step, and K, C and F re-evaluated. In
in

Eqs. (4.2) to (4.4) the summations are taken for each element, V,,

the element region, and for each element surface, S or Sse' on which

2e
Eq. (2.3) or (2.4) is specified. The spatial arrangement is chosen so
that within each element or on each surface the variables k, C, Q, ¢,

h e, T and Tar are no longer dependent on position. In physical

con? ac
terms, this means that no element covers a region made up of more than
one material type, and that boundary surfaces are chosen so that

boundary variables ¢, h and T,. can be assumed constant for

con® & Tac
that surface, but not neccessarily the same as for other boundary
surfaces. Knowledge of these variables is often subject to significant
uncertainty. Therefore from a practical viewpoint the above
limitations should not be restrictive. The dependence on temperature

of k, C, Q, h.,4» and on time of h fle and Tar at each of the

con» ® Ia
surfaces, remains.

The full numerical integration of Eqs. (4.2) to (4.4) requires a 1large
computation effort at each time step. Therefore a simpler formulation

is also proposed in which Eqs. (4.2) to (4.4) become:
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Ki'zkej Eiib_‘j+_a.§iibij+a_Ni§j W dv
J Vel 3x 3x 3y 3y 3z @z
% (2 [Mors * Bruei)s g NiNjwas, (4.6)
e
Fi=£QeINinV+£¢eJ Ny W ds,
ve Sze
* T (BosnTan * Beaalarle Js Ny W ds, (4.8)
le

This requires the further assumptions that within each of the elements
or across each of the element surfaces for which the summations are
made, that the properties k, C, Q and hrad are constant with respect to
temperature, but that these values can change from one time step to the
next. Even though this is not physically accurate, if a value of these
properties that is representative of the whole element or element
surface can be determined, and if the elements are not large this
approach may be sufficiently accurate for many purposes. Given that
the time step 1is controlled so that temperature changes per time step
are small, the major disadvantage of this simpler formulation 1is that
the properties are not re-evaluated at each integration point. 1In the
full formulation evaluation at each integration point helps account for
property variation over the element region so that oscillatory
behaviour, especially near the phase change temperatures where thermal
properties change rapidly, is less likely (Cleland et al 1984). The
advantage of the simpler formulation is that the integrations shown in
Eq. (4.6) to (4.8) need only to be calculated for the first time step.
Thereafter the constant values resulting from the integration can be
stored and multiplied element by element (and surface by surface) by
the appropriate properties, and the summation completed. This requires
far less computation time and computer memory than for the full

formulation.

The choice of formulation must take into account the trade-off between
loss in accuracy and savings in computation costs. As computation
costs are usually far less than the cost of data preparation (Segerlind
1976), the savings may be quite small. Also uncertainties in thermal
properties and boundary condition data are substantial (Sec. 2.6).
Provided numerical errors are small compared with physical

uncertainties no worthwhile increase in prediction accuracy will occur
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by making the method more sophisticated. The simplified method uses
this fact and possibly increases numerical error, but may not lead to
significantly poorer predictions of experimental values. If there was
a significant increase 1in error it would be expected to be a maximum
when the temperature gradients across the elements were largest in the
temperature range where phase change occurs, In thawing, this
corresponds to high surface heat transfer coefficients, initial
temperatures close to the phase change temperatures and ambient
temperatures greatly different from the phase change temperatures
(Cleland et al 1982).

4,2.2 Computer Implementation

Both the formulations given by Eqs. (4.1) to (4.8) were programmed in
Fortran 77. The full codes are given in App. D which also includes
data preparation notes. The programs use numerical integration of the
element matrices and a Gaussian elimination algorithm for symmetric,
positive definite, banded matrices with back substitution as the
equation solver. Most of the computer process time to run these
programs is due to estimation of thermal properties and numerical
integration of the element matrices. Therefore wuse of a more
sophisticated and efficient technique to solve the system of equations
is not justified. Computer memory requirements are high but can be
minimised by matching array dimensions closely to the problem size or
by using peripheral storage devices. The special features described

below are included in the programs.

The Lees' scheme makes a linear approximation by finite differences 1in
the interval (t-At) to (t+aAt). For a linear variation in temperature
the radiation heat transfer coefficient was accurately approximated by
the method of Comini et al (1974b):

hpag = ol (T+rd ) ((rh 2ol )2 (rl21-1i )2 (1l 4rl-2ri-t)

R ;(T;;‘-T;;1](Ti-Ti'1](Ti-1+Té;1)+[T1-Ti-1)2(T1+;T;;1-§Té;1)] (4.9)
in which only known values of temperature are used. This allows
central values of F to be used with good accuracy and an iterative
procedure (Frivik et al 1977) to solve Eq. (4.5) is not required. As
radiation is not a major form of heat transfer during food phase change

processes this method should be sufficiently accurate for most
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purposes.

In finite element analysis stable oscillations frequently occur
(Yalamanchilli & Chu 1973, Myers 1978). They can be accentuated when
using central values of F (Comini & Lewis 1976). Updating temperatures
at the end of each time step using the averaging procedure (Wood &
Lewis 1975):

TV o (T tart) (4.10)
or reducing the time step (Segerlind 1976) will reduce these
oscillations. Too small a time step 1is undesirable as computation
times are 1increased and computer rounding errors can become

significant.

The accuracy of Eq. (4.1) will be best if the variation of k, C, Q,

h h T and Tar with time over each time step is small or is

rad® "con' ®» ‘ac

reasonably linear. For most problems h T and T,. are

con® ®» ac
essentially constant with time, so that temperature dependence of k, C,

Q and hrad will be the larger contribution to inaccuracy.

A number of techniques have been used to find values of k, C and Q that
are representative when rates of change of these quantities with space
are large, such as near the phase change temperatures (Sec. 2.4.4).
These approaches may lead to erroneous results (Morgan et al 1978) so
direct evaluation of these properties as functions of temperatures is
used., Control of the time step, so that excessive temperature changes
over each time step cannot occur, 1is the ultimate strategy to give
accuracy. The time step control ensures proper heat balances across
elements and boundaries, helps reduce numerical oscillation and
therefore increases precision in the solution. Small temperature
changes per time step reduce the error in assuming that there is linear
variation in k, C, Q and h,,4 in the interval (t-At) to (t+At).
Therefore the use of values for K, C and F at the central time value,
Exy will be an accurate approximation. An automatic time step
adjustment (Comini et al 1974b) is useful to keep temperature changes
per time step low without greatly increasing computation time. This is

achieved by appropriate choice of values for the parameters AT and

min
ATmax' which are the maximum and minimum nodal temperature changes per

time step and are wused to decide when to adjust the time step. The
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most appropriate sizes of AT and AT are governed by the width of

min max
the peaks in the profiles of k, C and Q versus temperature (Morgan et

al 1978).

The accuracy of thermal property approximations and the numerical

method approximations can be checked by calculating the heat balance:

t,

apparent internal [ J H dv ] ¢
v

enthalpy change

1

[}

?ea%hflowh %ntgrnal Jt2 ( )
n rough + hea I dS., * J + ds, + I Q dv| dt
the surface generation £ Sf . S,¢c°n *rad # v

= 1.0 for balance (4.11)
A heat balance does not occur if property approximations are
insufficiently accurate, time step or spatial intervals are too large
or the numerical approximations used are not valid. For example, a
heat balance greater than 1.0 generally indicates that "jumping" of the
latent heat peak has occurred (Cleland & Earle 1977b) and that time
Similarly,

steps should be shortened by reducing both AT and AT

min max*
a heat balance 1less than 1.0 generally indicates that temperatures at
for some elements have "stayed on" the latent heat peak too 1long, and
that time steps and/or space intervals should be reduced. The first
case of "jumping" of the latent heat peak in the apparent specfic heat
capacity profile 1is a problem in freezing calculations because as the
temperatures drop below T;, the peak is suddenly encountered, whereas
the second case occurs most frequently in thawing calculations because

the latent heat peak suddenly disappears as temperatures rise above

Tir.

The programs can be used for heat transfer problems involving objects
of one, two or three-dimensions. The axisymmetric feature can be used
to simplify problems where one or more axes of rotational symmetry
exist. The elements used are based on the rectangular "Serendipity"
family (Zienkiewicz 1971). Linear or quadratic isoparametric and
superparametric elements are available. The high order elements reduce
the total number of elements necessary and allow curved element
boundaries to be used to model irregular geometries. The only specific
use of subparametric elements would be for regular shapes where a
quadratic temperature profile is required. As quadratic isoparametric

elements are capable of handling this case Jjust as well, without
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significant increases in computation times, subparametric elements are

not included in the programs.

All the boundary conditions given in the formulation (Sec. 4.2.1) can

be used, and any initial temperature distribution may be specified.

4.,2.3 Finite Element Method Testing

Testing of the finite element codes was made against experimental
freezing data and analytical solutions for simplified phase change
problems (Cleland et al 1984). The number of nodes and elements wused
was a compromise between the higher accuracy and 1less frequent
occurrence or smaller amplitude of oscillations achieved with a 1larger
number of nodes, and practical limitations on the computation time and
computer memory storage requirements (Segerlind 1976). Similarly, the
number of integration points used in the numerical integration of
element matrices was a balance between accuracy and computation time.
The use of three integration points in each direction was found to give
adequate accuracy in most cases. For the full formulation the
combination of number of nodes and type of elements (linear or
quadratic) was found to be less important as long as about eleven nodes
(and consequently either ten 1linear elements or five quadratic
elements) were used in each direction (Cleland et al 1984). For the
simpler formulation the number of elements is more critical as the
assumption of constant k, C and Q over each element becomes 1less
accurate for a few 1large quadratic elements rather than with more,
smaller linear elements. The benefit of being able to wuse a lower
number of quadratic elements 1is therefore lessened because the time
step must be decreased to maintain heat balances. Increasing the
number of nodes or elements for the full formulation or the number of
integration points for both formulations, above these suggested values,
gave only minor changes in predictions. Quadratic elements should be

used if the product surface is curved or irregular.

The exact solution due to Neumann (Carslaw & Jaeger 1959, p.282) for a
specified temperature boundary condition, the analytical solution for a
specified surface heat flux (Carslaw & Jaeger 1959, p.75) and a

numerical solution for the radiation boundary condition (Haji-Sheikh &
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Sparrow 1967) were used to test the programs for the range of boundary
conditions incorporated. Similar accuracy to that shown for other
finite element codes (Comini et al 1974b) was demonstrated (Tables 4.1
to 4.3). Both finite element formulations gave comparable
temperature/time profiles with those given by the finite difference
method for the same problems. For heat conduction in solids with the
third kind of boundary condition the only solution for
three-dimensional geometry is due to Newman (1936). Finite element
predictions using a coarse 6x6x6 node grid (Table 4.4) gave similar
prediction accuracy to a finite difference program for the identical
problem (Cleland & Earle 1979b). The thermal properties are constant
in this last problem and it is not difficult to solve the problem
numerically. Therefore this problem 1is more a check that the method
has been implemented correctly on the computer, rather than a check

that the method is accurate in general.

Comprehensive experimental data available for heat conduction with
phase change were 1limited to freezing of the regular shapes namely:
slabs (Cleland & Earle 1977a), infinite cylinders and spheres (Cleland
& Earle 1979a) and rectangular bricks (Cleland & Earle 1979b), subject
to the boundary condition of the third kind. Although the full
formulation could not be run on all the rectangular brick data due to
excessive computation times, the overall prediction accuracy compared
favourably with the finite difference prediction of this data (Cleland
et al 1984).

In all testing the simplified formulation gave similar results to the
full formulation though often smaller time steps were required to
achieve heat balances for quadratic elements. Computation times for
the three-dimensional problems with 216 nodes in a 6x6x6 grid of 125
evenly sized, linear isoparametric elements over 250 time steps were
about 15 000 sec. and 3 000 sec. for the two formulations respectively
on a Prime 750 computer. By comparison, the three-dimensional, Lees'
scheme, finite difference method program with a 6x6x6 node grid used
about 300 sec. computer process time for 250 time steps on a Prime 750

computer.
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Table 4.1 Comparison of Results From the Finite Element Method Programs

With Neumann's Solution! For Thawing of a Slab Subject to the
First Kind of Boundary Condition

1 1

- _ - = _ - -3 oo
D=1.0m kg =k; =1.0Wm ' o', Cg=Cy =1.0M m> <C

_ -3 - _ -
L = 75.0 MJ m™, T, = 15°C, T;, = -15°C.

1

%gg?gggge tneum2 tf‘emf‘2 tfems2
(m) (sec) (sec) (sec)
0.05 10400 10800 9700
0.10 42500 42700 38600
0.15 93400 95900 88900
0.20 166000 170800 162800
0.25 259300 264700 258000

! Carslaw & Jaeger (1959, p.282)
. theum = time calculated from Neumann's solution?, teemr = time

calculated from the full finite element formulation (Eqs. (4.2) to
(4.5)) and teong = time calculated from the simpler finite element
formulation (Egs. (4.5) to (4.8)). Latent heat was evenly
distributed over the temperature range from -0.25°C to 0.25°C, 21
nodes and 20 linear isoparametric elements were used in the finite

element programs.
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Table 4.2 Comparison of Results From the Finite Element Method Programs

With a Known Analytical Solution! For Cooling of a Slab
Subject to the Second Kind of Boundary Condition

D=1.0m k=1.0Wm ! o', c=1.0Mm3 oc™!, ¢ =100 wm™2,

Ty, = 100°C. Values of temperature (°C) are tabulated.

Slab Surface At 0.1m From Slab Surface
Eime) Analytical Numerical? Analytical Numerical?

sec

20 8u4.0U 83.83 92.09 92.90

4o 77.43 77 .28 86.04 85.90

60 72.36 72.24 81.22 81.10

80 68.09 67.98 77.09 76.99
100 64.32 64.22 73.43 73.34

! Carslaw & Jaeger (1959, p.75)

2 Both the full formulation (Eqs. (4.2) to (4.5)) and the simplified
formulation (Eqs. (4.5) to (4.8)) gave identical results, 21 nodes
and 20 linear isoparametric elements were used in the finite element

programs.
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Table 4.3 Comparison of Results From the Finite Element Method Programs
With a Numerical Solution! For Cooling of a Slab Subject to
the Third Kind of Boundary Condition Including Radiation

D=1.0m k =1.0Wm ' oc', c=1.0Mm3 o', n=1.0wmn? o',
€ =1.0, Tac = 0 K, Tar = 0 K. Values of Y are tabulated.
Slab Surface Slab Centre
Fo Numerical'! FEM? Numerical? FEM?
€oT3,D/k = 1
0.02 0.80 0.79 1.00 1.00
0.06 0.70 0.70 1.00 1.00
0.20 0.58 0.58 0.94 0.93
0.40 0.50 0.50 0.80 0.80
1.00 0.33 0.32 0.50 0.50
2.00 0.16 0.15 0.23 0.23
eoT3 D/k = 4
in
0.02 0.70 0.69 1.00 1.00
0.06 0.61 0.61 1.00 1.00
0.20 0.51 0.51 0.91 0.91
0.40 0.43 0.43 0.76 0.76
1.00 0.29 0.28 0.4y 0.45
2.00 0.13 0.14 0.20 0.21

! Haji-Sheikh & Sparrow (1967)

2 FEM = calculated from the element method, both the full formulation
(Eqs. (4.2) to (4.5)) and the simplified formulation (Eqs. (4.5) to
(4.8)) gave identical results.
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Table 4.4 Comparison of Results From the Finite Element Method Programs

With a Known Analytical Solution! For Cooling of a Cube
Subject to the Third Kind of Boundary Condition

Bi = 4.0. Values of Y are tabulated.

Centre of Face Centre of Cube
Fo Analytical! Numerical? Analytical! Numerical?
0.04 0.489 0.495 0.999 1.001
0.08 0.387 0.392 0.974 0.985
0.12 0.318 0.319 0.897 0.912
0.16 0.261 0.265 0.790 0.804
0.20 0.215 0.218 0.677 0.688
0.24 0.177 0.180 0.570 0.580

! Newman (1936)

2 Both the full formulation (Eqs. (4.2) to (4.5)) and the simplified
formulation (Eqs. (4.5) to (4.8)) gave identical results, a 216
(6x6x6) node grid and 125 linear isoparametric elements were used in

the finite element programs.
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The ability of the code to deal with curved irregular geometry in two
dimensions was confirmed by modelling the cylindrical shape with the
grid given in Fig. 5.15. Prediction accuracy was similar to that
obtained using regular one-dimensional axisymmetric elements. Although
the finite element code has not been proven for a truely irregular
shape, there 1is no reason why similar prediction accuracy cannot be
achieved if sufficiently detailed nodal grids are used, as the finite
element method does not treat regular shaped elements any differently

from irregularly shaped ones.

The two finite element programs were therefore considered to be
accurately formulated and correctly implemented. Hence they were
available as prediction methods that would be expected to give accurate
predictions of phase change 1in objects of irregular geometry.
Disagreement with experimental data 1is more 1likely to be due to
imprecise thermal and experimental data than to inadequacies 1in the
formulation or program. If prediction method error arises it is more
likely to be because practical limits on memory and computer process

time have meant that coarse space and time grids have been used.

4,3 THE FINITE DIFFERENCE METHOD

Development of the finite element method has meant that the finite
difference method is mainly used for prediction of heat transfer in
regularly shaped objects. For problems with regular shapes, finite
differences require 1less detailed program preparation and have lower
computation times. Bonacina & Comini (1971), Cleland (1977) and
Cleland & Earle (1977a) studied finite difference methods and found the
three time 1level 1implicit Lee's scheme to be the best for modelling
freezing of food. Computer programs using the Lee's scheme for
infinite slabs (Cleland & Earle 1977b), infinite cylinders and spheres
(Cleland & Earle 1979a), rectangular rods (Cleland 1977) and
rectangular brick (Cleland & Earle 1979b) shapes are available and were
subsequently used. These programs have been shown to be accurate to
within about +10% compared with experimental slab, infinite cylinder,
sphere and rectangular brick freezing data (Cleland et al 1982). They
also meet analytical checks. There is no reason why similar prediction

accuracy cannot be expected using these programs for thawing of food.
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The equivalent scheme for the finite cylinder geometry has not been

published and is therefore described here.

4,3.1 Finite Cylinder Finite Difference Scheme Formulation

For the finite cylinder geometry the general heat conduction equation

oT ) oT k aT ) oT
C—=— | K — | + =—+ — | kK — (4.12)
ot ar or r or Yy oy

Although the finite cylinder 1is three-dimensional, because it has an

is:

axis of rotational symmetry, it can be considered as two-dimensional.
Bonacina & Comini (1973) have shown how the Lee's scheme can be applied
to problems in two dimensions by using standard alternating direction
implicit procedures. Equation (4.12) can be approximated by a Lees'

scheme:
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Taking the radial direction first, the two sweeps of the alternating
direction implicit method are:

First sweep (in r direction):
ki J
i+1% mj _, 1 i+1%) i i i o mlEl¥ i m
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+
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Second sweep (in y direction):

R i 210t Lyt i i i
Tmr1b Kmj- J mj F mi* Y (Kmyse y Ky iﬂ Tm+1ﬁ kJ+J

- cl piat* Y[ kl, (Ti7) -7ith)od, (Ti 1ol ]] (4.15)

mj "mj mj+3it mj+1 "mj mj-3 mj-1
. . 2At v 2At *
where = ——, = ey and T are intermediate temperatures
3(ar) 3(Ay)

calculated by the alternating direction scheme that have no physical

significance.

Because of the symmetry only a quadrant of the axisymmetrical
two-dimensional grid needs be considered, with a space grid of (M+1) x
(J+1) nodes, where MAr=R and JAy=Dy/2. The third kind of boundary
condition is taken 1into account in a similar manner to that shown by
Cleland & Earle (1977b) for slabs and Cleland & Earle (1979a) for
radial geometry.

At the radial centre (m=0) the method of Albasiny (1960):

2
1 9T °T
r*0 = 3r  ar?

was used to avoid the singularity. The first sweep (Eq. (U4.14))

becomes:

i+1 i o B i u minrlh i
Tm'TJ[ 2X km*'iJ + ij [ijwx km+i3} TmﬂJ[2X km+ij]

§ i1 i oml ol -1 1 =1 1=
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setting km éJ_k and T =T at all time 1levels. The second

m+3 j m-1j "m+1j
sweep is unaltered from Eq. (4.15).
At the radial surface (m=M):

oT

h(T,-T,) = k — (4.18)
ar
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and the first sweep (Eq. (4.14)) becomes:
i+1%) i 1+1%) .1 i
Tm-1j[ X km‘ij] + TITU [Cnlj*x(km—}j"hAr)

i .i-1 i i i pi-1 i ol i
= CoiTmg * X[km_ij (Tm_u- Tos*Tm-15"Tmj ]] + X har (3T, =T )

i i ol i-1 _,pi-1y_, 1 i _+1 i-1_541i-1
+ Yl:kmj”(ij” Tmi*2Tni+1-2Tng ) Kmi-3(Tmj~Tmy-1+2Tmj 2ij_1)] (4.19)
while the second sweep is unaltered from Eq. (4.15). For both sweeps
the following corrections to the thermal conductivities along the

surface must be made, due to the reduced area for conduction:

> Moy i M-} i i oMAd ol
kmj+y = 2M% kmjey+ AlSOkp_y4 = _ﬁz'km+ij and Cpj = > Cpj-
At the surface in the y direction (j=J):
oT
h(T,-T,) = k = (4.20)
y

The first sweep is Eq. (4.14) and the second sweep is unaltered from

. i _Ai i oot i 1
Eq. (4.14) except for making ij-ij/Z, km+§j'km+ij/2’ km—ij'km-ij/Z'
because only half of the normal volume is associated with each surface
i if i i-1
node, and setting kp,,,=hay and ij+1=ij+1=ij+1=Ta'

At corners on the grid a combination of both of the appropriate changes

to the scheme given above are used.

4.,3.2 Computer Implementation and Testing

The finite cylinder finite difference program was checked against the
known analytical solution for the third kind of boundary condition and
constant thermal properties (Newman 1936). Table 4.5 shows that the
agreement of temperatures for a 10x10 grid is good. Although no data
for phase change in finite cylinders were available, freezing data for
infinite slabs (Cleland & Earle 1977a) and infinite cylinders (Cleland
& Earle 1979a) were used to test the program. Making either the
cylinder length dimension (for infinite cylinders) or the radial
dimension (for infinite slabs) very large in comparison with the other
dimension, heat transfer 1in these extended directions becomes
insignificant at the centre of the grid and the simpler geometry was
closely approximated. The experimental infinite slab freezing data was
predicted with a mean error of 0.8% and 95% confidence bounds of +12.2%

and the 1infinite cylinder experimental freezing data with a mean of
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-3.6% and 95% bounds of +9.6% using the thermal data given in Table
5.1. Individual predictions were identical to the results for the
specialised slab and infinite cylinder finite difference programs using
the same thermal data. It was concluded that this finite difference
scheme for a finite cylinder was as accurate as equivalent schemes for

other regular shapes.

In the above scheme it was chosen to do the first sweep in the radial
direction. The alternative with the first sweep in the y direction was
also derived. It has the same truncation errors as the scheme with the
radial sweep first and was found to not give significantly different
results over the range of problems and different cylinder radius to
length ratios used. Consequently the first scheme was retained because
the radial dimension is the more important in most problems, although

both are equally appropriate.

The program includes the heat balance and temperature updating
techniques discussed in Sec. 4.2.2 for finite element methods, in order
to prevent oscillation and to detect 1latent heat peak " jumping"
problems. To prevent oscillation during calculation of phase change
for infinite cylinders Cleland & Earle (1979a) defined:

kmj = 3(Kheys + Kooay) (4.21)
The same method was used in the finite cylinder program.

For eleven nodes in each direction and 1000 time steps a typical
computation time for this scheme written in Fortran 77 was 250 sec. on
a Prime 750 computer. By comparison, the full finite element
formulation (Eqs. (4.2) to (4.5)), wusing the same grid size, gave

computation times of about 1000 sec. for 1000 time steps.
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Table 4.5 Comparison of Results From the Finite Cylinder Finite

Difference Method Program With a Known Analytical Solution’

For Cooling of a Finite Cylinder Subject to the Third Kind of

Boundary Condition

Dp = 0.02 m, Dy = 0.02m k = 0.617 Wwm ' °C™', C =3.69 MJm 3 oc”'.

An 11x11 node grid was used. Values of Y are tabulated.

Edge of Finite Cylinder Centre of Finite Cylinder

{1me) Analytical! Numerical Analytical! Numerical
sec
h =30.0 Wm 2 o

100 0.625 0.624 0.936 0.934

300 0.398 0.397 0.626 0.625

500 0.260 0.259 0.409 0.407

700 0.169 0.169 0.266 0.265

900 0.110 0.110 0.174 0.173

h = 1000.0 W m 2 oc”!

15 0.038 0.037 0.959 1.000
45 0.012 0.014 0.904 0.934
75 0.007 0.006 0.718 0.7%1
105 0.004 0.004 0.524 0.5
135 0.003 0.003 0.370 0.383

! Newman (1936)
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5 EXPERIMENTAL PROCEDURE AND DATA COLLECTION

5.1 EXPERIMENTAL ERROR

Whenever any freezing or thawing time prediction method 1is compared

Qith experimental freezing and thawing data, some lack of agreement is

inevitable. This imprecision may arise from one of three sources:

(a) uncertainty in thermal property data for the material being frozen
or thawed (data error)

(b) imprecise knowledge and control of the freezing or thawing
conditions (experimental error) and

(c¢) inaccuracy arising from assumptions or approximations made in the
derivation of the prediction method (prediction method error).

Thermal property data uncertainty depends on the material used for the

experiments and is discussed 1in Sec. 5.2. To assess in isolation as

far as is possible the magnitude of the third source of inaccuracy, the

aim of any experimental procedure or technique is to keep experimental

errors randomly distributed and small in size.

The first of two sources of experimental error is the error arising
from imperfect control of experimental conditions. Many variables are
controlled to pre-set values. There is control error within each run
as well as control problems in attaining the same pre-set value in all
similar runs. The ability to reduce the control error can be measured
from the variability of replicate runs for the same set of nominal

experimental conditions.

Secondly, there is the error arising from imprecise knowledge of the
experimental conditions. Having controlled the experimental conditions
during each run the mean values must be measured. Uncertainty can
arise as a difference between the measured value of a parameter and the
unknown true value. The uncertainty can be reduced by replicate
determinations, but measurements are suspectible to systematic errors
which replicate determinations will not discern. Systematic error
cannot be easily quantified and can only be minimised by ensuring that
the measurement techniques used are valid and accurate. Sources of

systematic error include; unwanted edge heat transfer, instrument
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calibration errors and inhomogeneities in the phase change material due

to the presence of air voids or thermocouple wire.

Cleland & Earle (1984a) discuss the different sources of error commonly
encountered in phase change experimentation and give a check list that
enables the most probable sources of differences between experiments
and predictions other than the prediction method error to be assessed.
Experimental data are most useful 1if systematic error is negligible

compared with random errors, and the latter are minimised.

5.2 CHOICE OF PHASE CHANGE MATERIALS

The materials used for phase change experimentation must meet the
conditions listed 1in Table 3.2, be cheap and easy to use, give
reproducible results and should have accurately known thermal
properties. Food materials are rarely homogeneous, each sample can
only be used experimentally once or twice, and they tend to have a wide
variation in composition. Consequently thermal property data are often
imprecise. For these reasons analogues have commonly been used (Riedel
1960a, Lentz 1961, Frazerhurst et al 1972, Geuze et al 1972, Badari
Narayana & Krishna Murthy 1975, Albin et al 1979). "Karlsruhe test
substance" developed by Riedel (1960a) is probably the most successful
and widely used (Fleming 1967, Bonacina & Comini 1971, Bonacina &
Comini 1972, Bonacina et al 1974, Comini et al 1974a, Gorenflo & Mertz
1975, Cleland 1977, Hayakawa et al 1983b). Commonly known and referred
to as "Tylose", it 1is a 23% methyl-cellulose gel. Tylose is easily
moulded into different shapes and is homogeneous once equilibration has
occurred. It can be used repetitively for experiments without
deterioration, its density does not alter significantly as phase change
occurs, and it has well characterised thermal properties similar to
those of many high moisture foods (Cleland 1977). For these reasons
most of the experimental work was done with Tylose. The particular
Tylose used was MH1000, a product marketed in New Zealand by Hoechst
New Zealand Limited.

On mixing of the powdered material with water, rapid hydration of the
gel meant that initially it was non-homogeneous and some air

entrainment occurred in the final moulds. The water content of the gel
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equilibrated over a period of several days leading to a homogeneous
material. Air pockets within the gel tended to be very small (less
than 1 mm in diameter) and evenly distributed. By a visual examination
of the final gel, the voids volume was estimated as 1less than 0.5%,
whilst breaking the join of the Tylose with flat metal and plastic
surfaces showed an almost complete and even contact. The possible
effects on heat transfer of imperfect contact are discussed in
Sec. 5.4.3. It would be expected that other reseachers wusing Tylose
have had similar problems with air entrainment, yet no deviations from
the reported thermal properties have been noted. Therefore it was
considered that the uncertainty 1in thermal properties for Tylose was

not significantly increased by the presence of the air bubbles.

Errors in measuring components led to a moisture content of 77.0 + 0.2%
in the gel. Direct measurement of the moisture in the gel after
experimental work showed that except where 1liquid ingress occurred
during freezing or thawing by 1liquid immersion (discussed in 1later
sections for shapes where this was a problem), the final moisture was
within 0.5% of the original value.

Cleland & Earle (1984a) give the thermal conductivity and apparent
volumetric specific heat capacity versus temperature data for Tylose
based on the data of Riedel (1960a) and Comini et al (1974a). Other
versions of the thermal property data have been used. Cleland & Earle
(1979b) used a "flattened" version which enabled substantial savings in
computation times for numerical prediction methods, at a slight cost in
terms of loss of accuracy as large time steps could be wused without
"jumping" of the 1latent heat peak. Cleland et al (1982) tested a
hypothetical volumetric specific heat capacity curve which had some
supercooling effects incorporated into it. The Tylose thermal property
data used in Group II (numerical) methods in the present work are given
in Table 5.1. Comparisons with the original data from Riedel (1960a)
and data for minced lean beef are shown in Fig. 5.1 and 5.2. Values in
Table 5.1 were chosen to be an accurate representation of Riedel's
data, but the shape of the volumetric specific heat capacity curve was
altered so that when incorporated into the finite difference method and
finite element method programs, "jumping” of the latent heat peak was

less likely and 1large time steps still gave good heat balances. Most
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simple freezing and thawing time prediction methods need values of the
thermal property data for only the parts of the overall temperature
range where the change in thermal properties with temperature is small.
The thermal property data for Tylose used by Cleland (1977) were
adopted for Group I (simple) methods. These are given in Table 5.2 and

are consistent with Table 5.1.

To show whether experimental results obtained using Tylose were typical
of the freezing and thawing of real foods, experiments were also
conducted with minced 1lean beef. Multiple fat and moisture
determinations gave the composition of the minced lean beef as 74.9%
1.9% water and 3.1+ 1.1% fat. Meat as a material is less homogeneous
than Tylose, so published thermal property data vary significantly and
are not consistent with each other (Morley 1972). The thermal property
data used were derived from Riedel (1957), Morley (1972) and from the
composition factors of Comini et al (1974a) by Cleland & Earle (1982a).
These are shown in Tables 5.1 and 5.2 and Figs. 5.1 and 5.2. They are
probably less precise than the Tylose data.

5.3 TEMPERATURE MEASUREMENT AND CONTROL

All temperature measurements were made with 24 Standard Wire Gauge
(SWG) copper/constantan thermocouples (0.5 mm wire diameter, 0.9 mm
diameter including plastic insulation) connected to either a 12 point
Taylor Instruments "Multi-Scan Recorder" potentiometer operating on a
60 second print cycle or a 12 point Honeywell=-Brown recording
potentiometer operating on a 100 second print cycle with an optional
intermittent 15 minute delay between cycles. Both of these machines
were calibrated with the above thermocouple wire to within 0.3°C in the
range -50°C to 50°C.

Prior to thawing or freezing the objects of Tylose or minced lean beef
were kept in temperature controlled rooms for long enough to attain a
uniform temperature throughout. To reduce the variation in initial
temperature during the time from removal of objects from the constant
temperature areas to the start of the freezing or thawing process, the
objects were insulated. Except for the slab shapes where sheets of

0.05 m thick polystyrene foam board were used, the objects were wrapped
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Table 5.1 Thermal Property Data Used In Calculations By Numerical

Methods!
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! Linear interpolation was used.

H = 0.0 at -u4p.0°C.
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Table 5.2 Thermal Property Data Used In Calculations By Simple Formulae

Property Tylose Minced Lean Beef
kg (Wwm™'oecTh 1.65 1.55
kq (Wm™! ecT 0.55 0.50
Cq (MJ m™3 eoc”T) 1.90 1.90
c, (MJ m™3 oc™T) 3.71 3.65
L (MJ m~3) 209.0 209.0
£H (MJ m™3) 226.0 230.0
T (°C) -0.6 -1.0
Tipave (°C) -2.1 -2.5
kaye (W m ! oecTh 1.2¢

1.0,

! AH = enthalpy difference between 0°C and -10°C, kave = average
thermal conductivity during the phase change process, Tif,,o = Mmean

freezing or thawing temperature.
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Fig. 5.1 Thermal Conductivity Data For Tylose (A) and Minced Lean
Beef(B).
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Fig. 5.2 Apparent Volumetric Specific Heat Capacity Data For Tylose
(A, C) and Minced Lean Beef (B).
A, B - data from Table 5.1, C - data from Riedel (1960a).
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in insulation material and transported in containers lined with 0.02 m
thick polystyrene foam. Though the delays were as long as 10 minutes,
using this method the maximum measured difference in the initial
temperature of the objects from the mean value was found to be 2.0°C.
For slabs, because the insulation could be applied and held more
directly onto the surfaces, the temperature variations were only $0.5°C

about the mean value.

For variations in temperature of up to 10°C on either side of a mean
initial temperature the difference in predicted freezing time for slabs
was found to be 1less than 0.5% (Cleland 1977). Whilst this analysis
was carried out using finite difference simulation very similar results
would be expected if an experimental investigation was carried out, as
finite differences provide a sufficiently accurate simulation of the
freezing process. Errors of similar magnitude would be expected for
shapes other than slabs. For thawing the error due to initial
temperature non-uniformity would be expected to be smaller because the
enthalpy change for a 1°C variation in initial temperature is a lower
percentage of the total enthalpy change, compared with that for a 1°C
variation in 1initial temperature in freezing. The need to use a mean
initial temperature to represent a non-uniform initial temperature

therefore introduced negligible error.

The ambient heating or cooling medium was either water or 29% calcium
chloride brine held in a1 m3 insulated tank (Fig. 5.8). The medium
temperature was measured by two thermocouples; one prior to and one
after the experimental section. External circulation of the medium was
used for slab thawing experiments, in which case an additional
thermocouple was located in the return stream to the tank. In all
experiments there was no measurable difference in temperature between
the thermocouples because the circulation rate of the medium within the

piping and around the tank was sufficiently high.

The tank temperature was controlled by a RKC PN-41 "Blind Controller®
activating both refrigeration and heating systems. The thermal
capacity of the tank contents was large compared with the heat loss or

gain from the environment and from the object being frozen or thawed.
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This meant that the medium temperature would change only slowly with
time if 1left wuncontrolled during the experiment. The control system
was sufficiently precise that no variation of the temperature during

experiments was detectable with the recorders used.

Taking recorder calibration error into account, the overall error in

temperature measurement and control was estimated at less than +0.5°C.

5.4 THAWING OF SLABS

5.4.1 The Equipment

One-dimensional heat transfer in an infinite slab undergoing freezing
can be approximated by an insulated finite-sized slab 1in a plate
freezer (Cleland 1977). A similar arrangement shown in Fig. 5.3 was
used for thawing of slabs. Two plates were heated in series by water

! from the well mixed

pumped at a rate of approximately 1 kg s
temperature controlled tank (Fig. 5.8). Any thickness of slab could be
accommodated. Thermal contact between the slab surface and the plates
was kept the same for all experimental runs by compressing the plates
with pressure provided by 100 kg of weight over the plate area of

0.16 m2.

For each slab thickness a mould was made by cutting a 0.22 m diameter
hole in the centre of a 0.4 m x 0.4 m piece of polystyrene foam board
of the appropriate thickness. Two sheets of aluminium foil with one of
brown paper between were used to cover one side of the mould, and then
it was filled with Tylose or minced lean beef from the opposite side
taking care to avoid air entrainment. Copper/constantan thermocouples
were inserted, two at different positions on each surface, and three at
different positions at the centre thickness of the slab. All
thermocouples were run through isothermal regions (parallel to the slab
surfaces). Junctions were 1located near the middle of the 0.22 m
diameter material section to minimise errors due to heat conduction
along the wires and edge heat transfer effects. Two 1layers of
aluminium foil with one of brown paper between were then fixed to the
upper face to give a filled mould as shown in Fig. 5.4. The wrapping

added a small heat transfer resistance but prevented dehydration of the
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surface of the material. The brown paper, placed between the two
layers of aluminium foil so that it remained dry, provided structural
strength to the wrapping. The material was filled slightly above the
level of the polystyrene insulation to ensure the insulation would not

hinder contact between the plates and the surface of the slab.

5.4.2 Thickness Control and Measurement

The slab thickness was measured after equilibration over several days,
in both the frozen and unfrozen states. Prior to thawing experiments
the slabs were frozen in a plate freezer to ensure a flat surface for
good contact with the thawing plates, even when solid and inflexible,
and to give the required thickness. The thickness of the Tylose slabs
was found to vary by up to 0.5 mm across each slab. There was no
difference between the frozen and unfrozen measurements for Tylose as
the density did not change appreciably. Though the density change for
minced lean beef is of the order of 4% some of the variation in volume
caused the polystyrene surrounding the slab to compress and did not
affect the thickness to this full extent. The values taken 1in the
frozen and unfrozen states were found to differ by less than 0.5 mm
from the mean for meat. As the smallest slab thickness with minced
lean beef was 0.024 m the error associated with this measurement is
less than 2%. Because all thermocouples were placed towards the centre
of the 0.22 m diameter slab to avoid edge effects in heat transfer,

more emphasis was put on thickness measurements in this region.

5.4.3 Measurement and Control of Surface Heat Transfer Coefficients

In the plate thawing system wused the resistance to heat transfer
between the slab surface and the heating medium was small, there were
no significant radiation or mass transfer effects, and so the boundary
condition was adequately described by the third kind of boundary
condition. To alter the surface heat transfer coefficient (h) varying
numbers (0 to 10) of 1.5 mm thick, black "Insertion" rubber sheets were
placed on either side of the test slab between the plates shown in
Fig. 5.3. Different surface heat transfer coefficients were obtained

by altering the number of sheets of rubber.
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Four methods were used to measure h: (a) a finite difference
approximation method, (b) a heat balance method, (c) the Goodman plot
and (d) an analytical method. Details of the first three of these are
given by Cleland & Earle (1976a). Because surface temperature is most
sensitive to changes in the surface heat transfer coefficient (Comini
1972), these three methods are based on measurement of slab surface
temperature as it varies with time, The fourth method used the
analytical solution for heat conduction subject to the third boundary
condition, for constant thermal properties where there is no change of
phase (Carslaw & Jaeger 1959). The procedure involved calculating
values of the surface heat transfer coefficient that fitted

experimental values of the surface temperature as it changed with time.

The thermal diffusivity of frozen material (“s) is high so the
preheating time prior to phase change occurring during a thawing run is
too short to obtain accurate estimation of h by two of the four
methods. Also the majority of the heat transfer during thawing will be
with the surface of the slab thawed. In the short time the slab
surface was still frozen the rigid nature of the slab may have resulted
in imperfect contact with the plate surfaces giving effectively lower
surface heat transfer coefficients. For these reasons, separate
experiments conducted at temperatures greater than the initial freezing
point of Tylose were used to determine the surface heat transfer
coefficient rather than relying on preheating data. Above 0°C thermal
properties can be considered constant and all four methods could be

applied equally well.

A total of 33 runs using a variety of Tylose slab thicknesses, and
ambient and initial temperatures were used to determine h. If each of
the rubber sheets was incompressible and provided equal resistance to
heat transfer a 1linear variation of the resistance to heat transfer
(1/h) with the number of rubber sheets should occur (Cowell & Namor
1974). The maximum number of rubber sheets used was ten and the plate
to plate pressure was kept constant at a low value, so it 1is wunlikely
that significant variation 1in resistance either between the sheets or
due to the compression of the rubber occurred. The heat capacity of
the rubber 1itself may also affect experiments. By preheating the

rubber on the plates the amount of heat transfer required to change the
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rubber temperature was kept minimal compared with that needed to heat
the actual slab material in both thawing experiments and runs to
determine h. If the heating of the rubber was significant, the
estimated h values would be 1lower than those actually occurring and
would appear to vary with time. The later trend was not apparent for

any of the methods so this effect was considered negligible.

There was no significant differences between values of h calculated
from the four methods at the 95% 1level of confidence. Also the
difference in values was insignificant comparing experiments where the
slabs were cooled with those where they were heated. There was no
correlation of h with the slab thickneses or the ambient and 1initial
temperatures that were used in these runs. Figure 5.5 gives the least
squares regression line relating external heat transfer resistance
(1/h) to the number of sheets of rubber. Variation in the individually
measured h values showed that the error in the average estimates of h

for particular numbers of rubber sheets was 12.2%.

Because of the preparation of slabs by pre-freezing and the use of a
constant pressure, the variation in surface heat transfer coefficient
between regions on the surface of the slab was considered negligible.
Evidence to this effect was found from replicate surface thermocouples.
Variation in recorded temperature was less than 1.0°C in any thawing

run.

It is possible that surface heat transfer coefficients determined from
the separate experiments are not representative of h during thawing
runs. However the heat transfer conditions during the separate
experiments were similar to those during each thawing run, except for
the initial stages in the thawing runs where the slab surface was still
frozen. The slabs were initially frozen in a plate freezer and the
rubber sheets mounted between the plates and the slab itself had some
flexibility. Therefore the contact between the plates and the slab
surface was considered constant throughout the thawing experimental
runs. Further, predictions of surface temperature by numerical methods
were as good initially as they were later in the experimental runs.
This confirms that these estimates of h were representative of the

actual values throughout thawing. Using a number of separate runs
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Fig. 5.4 Construction of Test Slabs.
(a) a completed slab

(b) a slab with insulation removed.
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meant that h was determined accurately, yet as independently as

possible of the thawing time experiments.

To confirm that h values estimated in the separate experiments were
representative of values during thawing, some analysis during actual
thawing runs was done using all the methods discussed previously.
There was no difference in these results compared with the separate

experiments.

For the thawing of the minced lean beef slabs the surface heat transfer
was assumed to be the same as for the Tylose slabs. There was no
reason to suspect that h would be different because most of the
resistance to heat transfer was supplied by the rubber sheets, the same
slab construction was used and the weighting of the slabs ensured good

thermal contact for both materials.

5.4.4 Analysis of Heat Transfer in Slabs

In a true one-dimensional slab there is no heat transfer in the other
two dimensions. In practice this is impossible to achieve. To reduce
heat transfer 1in the other two directions three techniques were
employed:
(a) the other two dimensions were made larger than the slab thickness,
which is the critical dimension by at least a factor of 2.1:1
(b) each slab was surrounded on the edges by at 1least 0.09m of
polystyrene foam insulation, and
(c) the thermocouples were placed near the centre of each 0.22m
diameter slab.
For the worst case of a large slab being thawed slowly the effect of
edge effects due to heat transfer through the insulation are shown by
the analysis in App. B to decrease thawing time by 4.6%. This analysis
took the most pessimistic view of the situation. For a more typical
case the effect of edge heat transfer on thawing times was less than
1.0%. The slow nature of thawing means that edge heat transfer cannot
be avoided, so when data are interpreted it must be remembered that
some experiments with slabs were not truly one-dimensional. 1In only 6
out of 35 slab experiments was the effect on thawing times of heat
transfer through the edges, found to be more than 1.0%.
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Air entrainment and the resultant less than perfect thermal contact
were mentioned in Sec. 5.2. The latter problem did not occur in
experimental work with slabs because the weighting of the plates to
hold the slabs tightly in place ensured good contact. Pre-freezing the
slabs in a plate freezer meant that the protective layer of aluminium
foil was always tightly and completely bound to the frozen material.
Because air voids 1in the Tylose gel were small and uniformly
distributed their effect is only important if they affect the overall
heat transfer behaviour of a slab. Good prediction of experimental
surface and centre temperature profiles were obtained by numerical
methods for freezing (Cleland & Earle 1977b) and for  thawing
(Sec. 7.2). These results indicate that thermal properties used were
representative of the Tylose material including voids, thus implying
that the effect of the voids is negligibly small.

There are also errors consequent on the thermocouple placement within
each slab. All thermocouples were inserted parallel to the heat
transfer surface through supposedly isothermal regions. Therefore, the
only temperature gradient for conduction along the thermocouple wires
was due to heat transfer from edge effects, which has been shown above
to be generally small. Also the wire cross-sectional area is less than
0.1% of the area available for heat transfer due to side effects, so

overall the effect of the conduction along the wires was insignificant.

Of the total area normal to the direction of heat flow at each surface,
and at the centre, only 0.5% to 1.0% was covered by thermocouple wire
and their plastic insulation. As the greater resistance to heat
transfer provided by the plastic insulation against that of Tylose only
applies for this limited area the thermocouples did not affect heat
flow significantly. The thermocouple leads occupied less than 0.05% of
the gel volume so the heat capacity of the slab was not significantly

affected by their presence.

Temperature measurements were taken at the two most important places;
the surface and the centre of the slabs. The former is sensitive to
changes in the external heat transfer conditions and so was wused in
estimation of the surface heat transfer coefficient. The latter was

needed to measure the thawing time. Accurate placement of the
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thermocouples at the surface and centre while making the slabs is
difficult and migration of the thermocouples within the gel after
construction is possible. For these reasons more than one thermocouple

was used to measure each temperature.

It was impossible for a thermocouple to be above the slab surface
because of the plate configuration. Provided heat transfer |is
homogeneous across the surface, the fastest heating thermocouple will
be the best estimate of the surface temperature. A true estimate of
surface temperature would be given by a thermocouple just touching the
layer of aluminium foil, so any slower heating thermocouple is likely
to be below the surface. However in thawing there 1is no definitive
criterion to distinguish between differences in temperature due to
inhomogeneity and those due to thermocouple placement, such as the
supercooling behaviour observed in freezing by Cleland (1977). The
only other criterion that can be used 1is whether the surface
temperature profiles flatten noticably (plateau) 1in the latent heat
temperature range or not. Because the surface is the first region to
thaw and the temperature change can not be slowed by the presence of
latent heat addition in regions outside the surface, any thermocouples
right at the surface will tend to "slide" through the latent heat
temperature range rather than show the typical plateau effect
characterised by more central positions. Unfortunately, the speed that
the surface temperature passes through this temperature range is
dependent on the overall rate of heat transfer. As ambient
temperatures close to the thawing temperatures were often used it was
difficult to find a clear distinction between good and bad thermocouple
positioning. For other ambient conditions some differentiation could
be made. Figure 5.6 shows typical temperature profiles for different
thermocouples near the surface. Curve A is typical of a well placed
surface thermocouple. Its profile 1is barely affected by latent heat
release in the thawing temperature range, but has a plateau at a
temperature between this and the ambient temperature. Curve B is for a
less precisely positioned thermocouple. The temperature profile
flattens considerably due to latent heat before rising because the
thermocouple is below the surface. Curve C is for the very bad case
where the thermocouple is well below the surface and the rate of

temperature change with time is slowed markedly by the absorption of



Experimental Procedure and Data Collection 75

latent heat.

Clearly, this criterion does not completely distinguish between good
and bad surface thermocouple placements, especially where overall rates
of heat transfer are 1low. After deleting obvious badly placed
thermocouples it was found that individual thermocouples gave
measurements of the surface temperature of the slab that varied by less
than 1.0°C around their mean value. Typically one or two out of four
surface thermocouples were found to be poorly placed and were not used.
After experimentation placement was checked by dismantling the slabs.
The observed thermocouple positions compared well with those suggested
by the above analysis and in all cases at least one thermocouple was

well placed.

Heat transfer conditions on both faces of the slab were as equivalent
as possible so the geometric and thermodynamic centres should coincide.
Any thermocouple not exactly at the centre will change in temperature
more quickly than one at the centre. Provided heat transfer is
homogeneous across the slab surface and within the slab, the last
thermocouple to reach 0°C will give the best estimate of the slab

centre temperature and the most accurate estimate of the thawing time.

When food thaws most of the latent heat 1is absorbed at temperatures
Jjust below the initial freezing temperature (Ti¢). An abrupt change in
thermal properties occur at Tif' resulting 1in a sudden increase in
temperature. Consider a slightly misplaced centre thermocouple.
Thawing will not be completed throughout the slab when this
thermocouple reaches Tif‘ Hence a rapid change in the temperature will
not occur as heat transfer is still required to supply latent heat to
more central regions. The measured temperature tends to remain
relatively constant at some temperature just above Tif depending on how
far it is from the centre. When the last regions of the object thaw,
all the temperatures (even at the surface though the effect there is
less apparent) undergo a second increase in rate of temperature change
with time. This 1is because heat transfer is now required only for
sensible heating. The further from the centre the smaller this second
"break"™ in the temperature profile will be., A similar effect occurs in

freezing but 1is 1less noticable because the change from latent heat to
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sensible heat absorption is less distinct than that in thawing. James
et al (1976) used this principle to predict phase change times by only
measuring surface temperature. It can also be used to improve the
estimate of thawing times from thermocouples not placed accurately at
the centre. Where the slowest heating thermocouple did not '"break"
away from the 1latent heat temperature range and immediately head
asymptotically for the ambient temperature, this method was wused to
estimate the thawing time. Tangential extensions to the temperature
profile immediately prior to and immediately after the second "break"
point were drawn and the thawing time taken at the time indicated by

their intersection as shown in Fig. 5.7.

The error in estimating the thawing time by this breakpoint analysis
was investigated 1in two ways. Firstly, using experimental data where
one well placed centre thermocouple could be compared with another
centre thermocouple in the same slab. The time predicted using this
analysis on the second thermocouple was compared with the time for the
well placed thermocouple to reach 0°C. In all cases studied the
difference was less than 0.5% of the total time although the exact
distance the second thermocouple was from the actual thermodynamic
centre was unknown (dismantling of the slabs showed that all centre
thermocouples were within 5% of the total thickness from the geometric
centre of the slab). Secondly, finite element and finite difference
methods were wused so the effect of the error in the position of the
thermocouples could be studied quantitatively. The same effect was
shown. Using this method the predicted freezing times for a
thermocouple displaced 10% of the distance from the centre to the
surface were within 0.5% of the true values of 0°C at the thermodynamic
centre for the wide range of conditions studied. The effect of centre
temperature thermocouple placement was therefore not significant in
estimates of thawing time but must be considered when comparing
predicted temperture profiles. Only experimental runs that had good
centre and surface thermocouple positioning were used for temperature

profile comparison.

For objects with more than one dimension this same breakpoint analysis
will also apply. In fact, because for these objects less than 5% of

the volume is enclosed within a distance 5% from the thermodynamic
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centre the break effect will be magnified. Cleland (1977) showed that
a thermocouple placed 10% of a spheres radius in error, the measured
freezing time would be 0.6% in error even if the above analysis was not
used. Any error in placement of the centre thermocouple was highly
damped in its effect on freezing time, and did not significantly
increase the overall error. For slab thawing, the error for a 10%
displacement was found to increase as (Ta'Tif) increased but by wusing
the breakpoint method of analysis was only 0.1% for T,=13°C. The
breakpoint analysis was therefore used for all shapes investigated
where centre thermocouples were shown to be not accurately placed at

the thermodynamic centre.

An estimate of the experimental error arising from imprecise control of
experimental conditions for the slab experiments was determined from
replicate thawing runs. As far as possible, the replicates were
independent of each other including the construction of new slabs for
each run. After normalisation of the replicates the variability showed
that the experimental error arising from poor control corresponded to
95% confidence bounds of +5.2%. The total experimental error will be
higher than this due to uncertainty in measurement of the experimental

conditions and sources of systematic error.

5.5 THAWING OF INFINITE CYLINDERS

5.5.1 The Equipment

To obtain uniform heat transfer conditions at the surface for shapes
other than slabs a 1liquid immersion thawing system was used. Liquid
immersion gives much 1less variation of the surface heat transfer
coefficient and ambient temperature around an object than the air
thawing system which is also commonly used. A schematic diagram of the

liquid immersion tank is shown in Fig. 5.8.

The impeller circulated the thawing medium, water, around the
2.1 mx 07T mx 0.7 m insulated tank. The 1liquid passed over
refrigeration plates and then heating elements before flowing through
the experimental section (0.8 m x 0.5 m x 0.7 m) and back to the

impeller. Two mesh screens (aperature size 1 mm x 1 mm) provided
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sufficient head 1loss to equalise any unevenness in the liquid flow.
The circulation was sufficiently high that the tank acts as if it was a
perfectly mixed system. The temperature was controlled to within

+0.3°C in the range 0°C to 50°C for thawing experiments (Sec. 5.3).

Though the variation in surface heat transfer conditions should be
small in the liquid system, the test samples were oscillated throughout
the experiments to ensure that object orientation within the flow
stream did not affect uniformity of surface conditions. The objects
were turned through an angle of 300° every 30 seconds. The sample

oscillator is shown in Figs. 5.9, 5.10 and 5.12.

In order to approximate infinitely 1long cylinders, five different
lengths of cylindrical pipe 0.45 m to 0.50 m long were used. Steel
pipes of 0.1 m and 0.15 m nominal diameter and polyvinyl chloride (PVC)
plastic pipes of 0.05m, 0.1 m and 0.15 m nominal diameter gave
different heat transfer resistances due to the different wall materials

and thicknesses.

The cylinders were packed with Tylose and thermocouples introduced at
the centre and surface positions from each end through isothermal
regions. Two thermocouples at the centre and four at the surface were
used for each cylinder. To reduce end heat transfer effects,
polystyrene foam insulation caps of at least 0.05 m thickness were put
on the end of each cylinder and the cylinder clamped in the sample
holder for oscillation as shown in Figs. 5.9, 5.10 and 5.11. The
thermocouple entry points and the polystyrene caps were sealed to

prevent liquid contact with the Tylose.

5.5.2 Diameter Control and Measurement

There was no significant difference in diameter measurements between
the frozen and unfrozen states for the cylinders. Any density change
that occurred has a 1longitudinal effect that was absorbed by
compression of the polystyrene foam caps. The diameter was measured to

an accuracy of +0.5 mm.
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Fig. 5.8 Schematic Diagram of the Liquid Immersion Tank.
Approximate scale 1:15. A - heating elements, B - conling
plates, C - impellor for circulation, D - bafflie plate, E -

mesh screens, F - experimental section, G - insulated tank.
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Fig. 5.9 Schematic Diagram of the System Used To Hold and Oscillate the
Infinite Cylinders and Two-Dimensional Irregular Shapes in the
Liquid Immersion Tank. Approximate scale 1:5.
A - attachment to the sample oscillator, B - stand attached to
the immersion tank, C - clamp to hold the test object, D -

insulated caps, E - the test object, F - thermocouples.
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Fig. 5.10 The Sample Oscillator and Infinite Cylinder Thawing Equipment

Used in the Liquid Immersion Tank.
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Fig. 5.11 Schematic Diagram Showing the Arrangement of the Polystyrene
Foam Caps and Thermocouples Leads For Infinite Cylinder
Experiments. Not to scale.

A - polystyrene foam caps, B - thermocouple leads, C - pipe

wall, D - surface thermocouples, E - centre thermocouples.
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5.5.3 Measurement and Control of Surface Heat Transfer Coefficients

The difference in cylinder wall material and thickness gave some
variation in the surface heat transfer coefficient. To give greater
variation of h, and to reduce the surface heat transfer coefficient to
values more commonly encountered in air thawing systems, zero to four
sheets of rubber were glued to the outside of each cylinder. The
rubber used was the same as that used to alter h in the slab thawing
experiments. The same linear relationship between heat transfer
resistance and the number of rubber sheets used for slabs could not be
applied because of the curvature of the cylinder surface area and the
need for glue to permanantly attach the rubber. Consequently separate
estimates of the surface heat transfer coefficient were made for each
combination of pipe material, wall thickness and number of rubber

sheets.

For the same reasons as those outlined in Sec. 5.4.3 for slabs,
separate heating or cooling experiments without phase change were
necessary to accurately estimate h. To determine h for the ten
different combinations outlined above, a total of 29 runs were made.
Initially the three methods used by Cleland & Earle (1979a) were
applied. Similar to the methods used to determine h for slabs, these
methods all depended on the measurement of surface temperature as it
varied with time. It was found that the results were highly variable
and inconsistent. This was thought to be due the effect of imperfect
contact of the Tylose to the inside surface of the cylinder walls.
Imperfect contact was not a major problem in freezing experiments using
the same equipment (Cleland 1977) as the slight expansion of the Tylose
and contraction of tﬁe pipe wall material during freezing filled any
voids. In thawing, slight shrinking of the Tylose and expansion of the

pipe wall material occurred and this created voids.

Dismantling of the cylinders after experimentation showed that thermal
contact was better than 80%. Where perfect contact did not occur a
small gap was present between the bipe wall and the Tylose. These
voids were randomly distributed and 1ill-defined in size so it was

impossible to evaluate their individual effect directly. The best way
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to account for them was to use an average h value for the whole
surface. The mode of heat transfer across these voids would be natural
convection. If heat transfer across the gaps was by conduction only
then a 0.5 mm void would 1lead to a significant resistance of
0.025 m2 °C W—l. The actual heat transfer resistance due to natural
convection would be less than this, but how much less can not be easily

predicted.

Individual surface thermocouples would be affected by their proximity
to these voids. Hence the value of h estimated from surface
temperature measurements would be affected and may not be
representative of the true average value. Because there was no
criterion to chose which thermocouple most closely resembled the
average surface conditions the methods based on surface temperature

could not be relied on to give good estimates of h.

A method that considered the centre temperature was therefore used. By
using the centre temperature the effect of any variation 1in heat
transfer conditions at the surface was effectively averaged and the h
value was more representative of the true value. Localised variation
in h is not important if it is relatively small in magnitude and is
randomly distributed over the surface. This was probably the case with

the surface voids and imperfect contact.

The method used to estimate the surface heat transfer coefficient was
the heat penetration method (Arce & Sweat 1980). For long times the
analytical solution for heat transfer with constant thermal properties
and the third kind of boundary condition (Carslaw & Jaeger 1959) is
closely approximated by taking only the first term 1in the series
solution. The surface heat transfer coefficient can be calculated from
the slope of a plot of 1ln YC versus time (Charm 1963, Baker & Charm
1969, Kopelman et al 1970). An advantage of this method is that it is
independent of the exact position of the thermocouple within the
cylinder. 1If the centre thermocouple is not precisely located on the

central axis, this does not affect the estimation of h by this method.

An indication that the presence of voids was affecting surface

temperature readings was that the reading closest to the ambient medium
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temperature did not corrospond to the same thermocouple throughout the
run. The best estimate of the centre temperature was taken as the
thermocouple recording the temperature that was slowest to change
towards the ambient temperature. The two central thermocouples tended
to show temperature profiles consistently different from each other,
indicating that inhomogeneity was largely a surface problem and that
any effects of non-uniformity at the surface were highly damped in

their effect on heat transfer near the centre.

The rubber sheets gave a constant additional resistance to heat
transfer over the whole cylinder surface except for the joint necessary
down the length of the cylinder. The rubber was cut accurately so that
this joint was always 1less than 0.5 mm in width. For the smallest
cylinder this affected 0.3% of the surface area, which is
insignificant. Where multiple 1layers of rubber were glued on, the
joints were not overlapped so the change in surface conditions caused
by the joints were not compounded at one section of the cylinder
surface. The contact adhesive used gave extremely good contact between
rubber layers and the pipe walls with no air spaces so heat transfer

through the rubber layers was uniform.

Thawing experiments were carried out with the ambient medium
temperature in the range: 5.0°C to U45.0¢°C. Although the 1liquid
velocity around the tank was constant, some variation of the transport
properties of water and therefore the film heat transfer coefficient
may occur with temperature. In the temperature range used the changes
in liquid properties were small, and the bulk of the resistance to heat
transfer was in the pipe wall and sheets of rubber anyway. Hence there
was no statistically significant correlation of h with ambient

temperature.

Centre temperature profiles change less than surface temperatures for a
given change in h so there was a loss of measurement sensitivity. The
result was that individual h values differed by up to 20% from the mean
value in sets of replicate runs for the same cylinder and rubber
thicknesses. The uncertainty in the mean estimates of h were therefore

about +7.0% at the 95% level of confidence.
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5.5.4 Analysis of Heat Transfer in Infinite Cylinders

Some of the problems encountered in cylinder experiments were similar
to those found for slabs, The 1lengths of the test cylinders were
always greater than the diameter by a factor of at 1least three, and
insulating caps were used to minimise the effect of heat transfer along
the length of the cylinders. Using a similar analysis to that for
slabs (Sec. 5.4.4 and App. B) the end-effect heat transfer was found to
be negligibly small (0.2% decrease in thawing time) for the worst
situation used in thawing runs. The test cylinders therefore

approximated infinite cylinders very closely.

Apart from the problems at the surface, air voids that occurred in the
material were no larger or more common than those found for slabs, so
their effect would not be expected to be any more significant than the
effect of the internal voids for slabs. This was discussed in
Sec. 5.4.4, Voids at the surface of the cylinders and imperfect
contact predominantly affected the surface heat transfer and were
accounted for by the method discussed in Sec. 5.5.3. A consequence was
that the geometric and thermodynamic centre of the cylinder may not
have coincided. As surface voidage was evenly distributed across the
cylinder surfaces, averaging effects mean that the central axis of the
cylinders should coincide closely with the thermodynamic centre. It
will be shown below that even if the thermodynamic centre was misplaced

slightly, the thawing time is only minimally altered.

Errors due to inhomogeneity created by the presence of thermocouple
wires and heat conduction along these wires were of similar magnitude
to those found for slabs, and were similarly insignificant. Errors in
placement of centre thermocouples were assessed by the same methods
used for slabs. Centre thermocouple placement was more difficult than
for slabs so a greater variation in temperature was observed between
thermocouples. As shown in Sec. 5.4.4 quite large errors in
thermocouple placement can occur without significantly affecting
prediction of thawing time or centre temperature profiles. Placement
of thermocouples near the thermodynamic centre was therefore easily
assessed and did not significantly increase the overall error. The

breakpoint analysis outlined in Sec. 5.4.4 was used to increase the
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precision of thawing time predictions where centre thermocouples were
poorly positioned. For reasons discussed in Sec. 5.5.3 the fastest
changing individual surface temperature measurement did not necessarily
represent the average heat transfer conditions, and slower changes
could be due to placement below the surface as well as lower h values
in particular regions. Hence applications of the techniques of
Sec. 5.5.3 probably led to experimentally measured surface temperatures
nearer to the ambient temperature than those representing the average
heat transfer conditions. Predicted surface temperatures wusing the
average h value would therefore be expected to lie further from the

ambient medium temperature than the measured data.

The effect of the heat capacity of the rubber insulation and also of
the pipe wall material was greater than that discussed in Sec. 5.4.3
for slabs, because the rubber and pipe wall material could not be
preheated to the ambient thawing temperature due to it being
permanently attached to or part of each cylinder. The heat taken up by
the rubber and wall material was less than 3.0% of the total heat
transfer to each cylinder. Further, the estimate of the surface heat
transfer coefficient to the Tylose surface was determined in such a way
that only heat transferred through the insulating layers was taken into
account. Hence the main effect of heat taken up by the rubber and pipe
wall material would be to distort to some extent the measured Tylose
surface temperature early in the thawing process when the rubber and

wall temperatures were changing most.

No replicate runs were conducted for cylinder thawing due to
limitations in time, so direct measurement of the experimental error
was not made. The errors for cylinder thawing were of the same order
of magnitude as 1in the slab experiments, except for measurement and
control of the surface heat transfer coefficient. The experimental

error was therefore expected to be slightly greater than for slabs.
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5.6 THAWING OF SPHERES

5.6.1 The Equipment

Hollow metal balls were used to model spherical geometry. The three
sizes used were approximately 0.05 m, 0.1 m and 0.125 m in diameter.
The metals were stainless steel, copper and mild steel respectively.
Each of the spheres was made from two hemispheres for ease of
construction. Each hemisphere was packed with Tylose and two surface
thermocouples were inserted along isothermal paths around the
circumference. The two halves were then welded or soldered together
with a single thermocouple in the centre position. The disruption to
the surface of each sphere caused by the joint between the two
hemispheres affected 3.5% to 4.0% of the surface area. However the
joints were of similar thermal resistance to other parts of the
surface. The disruptions and problems caused by voids and imperfect
contact are only important because of their effect on the heat transfer

behaviour of the spheres and are discussed in Secs. 5.6.3 and 5.6.4.

A bolt was soldered or welded to the surface of each ball to enable a
connection to be made to the sample holder and oscillator. Because
both the bolt and the spheres were metal and only 0.04% to 0.2% of the
total surface area was affected, the effect on heat transfer was
considered negligible. A finished sphere and the sample holder are

shown in Fig. 5.12.

The same immersion thawing tank (Fig. 5.8) used for infinite cylinder
experiments was used for spheres. Oscillations of the samples was used

for the reasons outlined in Sec. 5.5.1.

Sealing the outside of each sphere along the joint between the
hemispheres to prevent 1liquid ingress was a problem, especially where
the thermocouple wires entered the metal shells. Slight water 1ingress
led to changes 1in the Tylose near the leak, and often resulted in
density changes and hence splitting of the spheres on freezing. To
prevent this problem and to give variations in surface heat transfer
coefficients (Sec. 5.6.3) layers of silicone rubber (Dow Corning 3110

RTV) were used to coat the spheres after construction. The rubber was
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Fig. 5.12 The Sample Oscillator and Sphere Shapes Used in the Liquid

Immersion Tank.
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applied in a liquid form and the spheres were rotated until the rubber
had cured to minimise variations in the rubber thickness. 1In spite of
theis precaution someome localised variation of rubber thickness did
occur. By applying multiple layers of rubber this variation was not
large and was randomly distributed. The effect on the surface heat

transfer coefficient is discussed in Sec. 5.6.3.

5.6.2 Diameter Control and Measurement

The construction of the spheres in two halves, the flexibility of the
hollow metal shells wused and the distortion in shapes due to water
ingress and the consequent density change, meant that the spheres were
not constant in diameter. Some variation in diameter occurred with
both position around the sphere and whether the spheres were in the
frozen or unfrozen state. Measured variations in diameter about the
mean value were +1.0 mm (1.8%) for the smallest sphere, +3.0 mm (2.7%)
for the medium sized sphere and +2.0 mm (1.6%) for the large sphere.
The sphere volume was measured by displacement of liquid and confirmed

that the average values were accurate.

5.6.3 Measurement and Control of Surface Heat Transfer Coefficients

The metal balls had low resistance to heat transfer, so most of the
change in h was due to the layers of silicone rubber used to coat and
seal the surface. Some variation was achieved by varying the number of

layers of rubber added.

The same problems with thermal contact and voids that were observed
with infinite cylinders (Sec. 5.5.3) occurred for spheres. In
addition, exact control of the rubber coating thickness was not
possible and 1irregularities in the metal Jjoint between the sphere
halves affected heat transfer. Therefore some variation in the surface
heat transfer coefficient over the surface was expected. Estimates of
h based on surface temperature measurement and the methods for radial
geometry of Cleland & Earle (1979a) did not provide consistent and
reliable results. For these reasons, the heat penetration method
(Charm 1963) was used to measure h using the centre temperature

profiles from independent heating and cooling experiments that involved
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no change of phase. As discussed for the infinite cylinder geometry in
Sec. 5.5.3 this method averages any random surface variation in h. The
only possible source of systematic variation was the joint between
hemispheres. The joining material was metallic in nature and therefore
had negligible additional resistance to heat transfer compared with the

other parts of the metal surface.

However, there were more sources of error in measuring and controlling
the surface heat transfer coefficient for spheres than for infinite
cylinders. A total of 32 runs were used to estimate the ten different
h values used in thawing experiments. Variations of measured h values
between relicate runs indicated that the measurement uncertainty in the

mean values of h was about #11.0%.

5.6.4 Analysis of Heat Transfer in Spheres

For spherical geometry there are of course no problems with end heat
transfer effects. There were errors due to inhomogeneities on the
sphere surface at the joint between hemispheres, unevenness in the
rubber coating, attachment of the bolt to allow connection to the
sample oscillator and those due to air voids and imperfect contact.
The extent to which these factors affected temperatures recorded by the
surface and centre thermocouples could not be easily assessed but would
be similar to that for infinite cylinders. The major effect was on
measured surface temperatures which was discussed in Sec. 5.6.3. The
position of the actual thermodynamic centre was probably not greatly
affected by non-homogeneity of surface conditions if they were randomly
distributed. Therefore the measured centre temperature and thawing

time were only slightly decreased in accuracy by these effects.

For spheres, the thermodynamic centre and the geometric centre coincide
at a single point so that only one thermocouple could be placed at this
position. Errors due to the inhomogeneity created by presence of
thermocouple wire and placement of thermocouples were similar to those
found for infinite cylinders, and similarly had insignificant effect on
prediction of thawing times. However, in spheres it was not possible
for the centre thermocouple to be inserﬁed along isothermal regions.

Heat conduction will only be significant along the wire, not along the
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insulation. As the cross-sectional area of the wire (3.6x10_7 m2) is
only 0.004% of the total surface area of the smaller sphere and the
thermal conductivity of the wire is about 200 times that of Tylose,
then up to 0.8% of the total heat flow may occur through the wires.
Overall, the effect of heat conduction along the central thermocouple

wire on thawing time was considered to be small.

Assessment of surface and centre thermocouple placements and estimation
of thawing time from experimental runs was made in the same way as that
used for infinite cylinders (Sec. 5.5.4). The coating of rubber wused
on the spheres was far less than that used for infinite cylinders, so
the effect of the heat taken up by the rubber and metal shells on the
overall heat transfer was insignificant. The volume of water that was
able to penetrate each sphere around the thermocouple 1leads was
extremely small and only affected the Tylose in the immediate vicinity
of the leak. The major result was some localised expansion when the
Tylose was frozen. This affected the dimensions and physical integrity
of the joints. An average diameter value for the spheres based on both
frozen and unfrozen states was used. Spheres in which the joints

became visibly damaged were remade before further use.

Overall, experimental error for spheres was of a similar magnitude to

that for thawing of infinite cylinders.

5.7 THAWING OF RECTANGULAR BRICKS

5.7.1 The Equipment

The 1liquid immersion thawing tank was used. Both metal and
polypropylene boxes were constructed (Fig. 5.13). All boxes had a bolt
attached to the 1id to hold them onto the sample oscillator in the same
way as that wused for spheres. The face of each box furthest from the
geometric centre was chosen to be the 1lid. This surface has the 1least
effect on heat transfer in the rectangular brick and the bolt affected
less than 0.1% of the total surface area, so in all cases the effect of

the bolt was insignificant.
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Construction of the metal boxes, from sheets of 1.2 mm thick mild
steel, required some overlapping of the metal to allow attachment of
the lid by screws as shown in Fig. 5.14d. For metal boxes the major
resistance to heat transfer at the surfaces is the liquid film heat
transfer coefficient. Also the overlapping occurred for less than 25%
of the 1lid area. Therefore the double metal layers at any overlaps
resulted in negligible additional heat transfer resistance. By welding
and bending corners, all edges of the metal boxes (Fig. 5.14b) closely
approximated a sharp cornered brick shape (Fig. 5.14a) except for the
lid.

The other boxes were made from polypropylene plastic sheet (5.0 mm
thick) with all the joints screwed together (Fig. 5.14c). The presence
of the screws altered the heat transfer resistance of less than 0.4% of
the surface area depending on the box. The effect of this was
insignificant and the corners approximated closely to the ideal type of

joint shown in Fig. 5.14a.
Thermocouples were positioned at the geometric centre of each brick and
at four to six different places on the surface. Where possible,

surface thermocouples were positioned at the centre of the brick faces.

5.7.2 Dimensional Measurement and Control

The dimensions of each rectangular brick were measured in both the
frozen and unfrozen states. Water 1ingress around the thermocouple
leads entry point in the 1id of some boxes resulted in some 1local
density changes and hence dimensional variability. Density change
during phase change was a slight problem for the minced 1lean beef
bricks. Allowing for these factors, plus box construction and
measurement imprecision, the dimensions were accurate to +1.0 mm for
all the Tylose and minced lean beef rectangular bricks. The effect of

water ingress on heat transfer is discussed in Sec. 5.7.A4.
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5.7.3 Measurement and Control of Surface Heat Transfer Coefficients

The metal and polypropylene bricks gave two different surface heat
transfer coefficient values. To further alter the surface heat
transfer coefficient, rubber sheets were glued to each face of the
rectangular bricks in a similar manner to that wused for infinite
cylinders. One layer of rubber was put on the metal boxes and two
layers on the polypropylene boxes. In this way four different values

of h were obtained for the rectangular brick geometry.

In a rectangular brick shaped object heat transfer at any point on the
surface can be treated as one-dimensional until the time that the heat
penetration fronts from one or both of the other two dimensions reaches
the point. This means that the methods used for the measurement of h
in slabs can be applied at some places on the surfaces of rectangular
bricks for short times. In Sec. 5.4.3 it was shown that the four
methods used for slabs were equally accurate. Therefore the most
convenient of these methods to use for short times, that based on
Goodman's heat balance integral technique (Cleland & Earle 1976a), was

the first method chosen to determine h.

The analytical product solution for heat conduction in three dimensions
with the third kind of boundary condition and constant thermal
properties (Newman 1936) was the second method used. A similar
computer program to that used to estimate h from surface temperature
profiles for radial geometry (Cleland & Earle 1979a) was used. The
program took values of time, surface temperature and positional
coordinates for the position of the thermocouple where the measurements
were made, and wused an 1iterative 1loop to predict the surface heat
transfer coefficient needed to attain that temperature, at that time,

and in that position.

Both methods are only applicable for times before the onset of phase
change. As this time is very short for thawing experiments, separate
heating and cooling runs were carried out with each rectangular brick
in the unfrozen state. There was no significant variation in estimated
h values between bricks of the same wall materials, between analyses

using different thermocouples in each brick, or as ambient medium



Experimental Procedure and Data Collection 94

temperature changed. The disagreement of the two methods was
statistically insignificant at the 95% level of significance.
Consequently, average values of h for each of the four combinations of
wall material and number of rubber sheets used, were calculated from

the replicate estimations.

Errors due to inconsistencies in heat transfer on each of the surfaces
of each rectangular brick were made negligible by using the liquid
immersion tank, oscillating the samples, and using the rubber sheets to
alter the surface heat transfer resistance. The mean predicted h value
for polypropylene boxes had 95% confidence bounds of +1.5% (no rubber)
and +2.1% (with two sheets of rubber). For the metal boxes the results
were less accurate than those for the polypropylene boxes because the
surface heat transfer coefficients were 1larger and consequently the
time for each heating or cooling experiment was shorter than for the
polypropylene bricks. The values of h were therefore based on less
data. The 95% confidence bounds for the mean values of +7.5% (no
rubber) and +4.4% (with one rubber sheet) for the metal bricks, reflect
this trend.

As for the slab experiments, the h values for runs with minced 1lean
beef were assumed to be the same as those measured for the Tylose
bricks. Mince lean beef undergoes significant density changes during
phase change and has a fibrous moist nature compared with the dry
gel-like nature of Tylose. Therefore air voids within the minced 1lean
beef were 1less 1likely and it was possible that the contact resistance
was different for the two materials. Hence the assumption of equal h
values may introduce some extra uncertainty for the mince lean beef

experiments.

5.7.4 Analysis of Heat Transfer in Rectangular Bricks

Errors in experiments for rectangular bricks arose from similar sources
to those for other shapes. Voids and ingress of water occurred to the
same extent as 1in spheres and would not be expected to be any more
significant for rectangular brick shapes than the radial case.
Similarly, any inhomogeneity caused by the presence of thermocouple

wires would have a negligible effect.
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Problems had been found with imperfect thermal contact for infinite
cylinders and spheres. Similar behaviour was not observed for the
rectangular bricks. Therefore surface temperatures and surface heat
transfer could be analysed in a similar manner to that used for slabs

without additional error.

Suitable isothermal regions for thermocouple lead location do not occur
in rectangular brick shaped objects. Thermocouples were introduced
through regions as near to 1isothermal as possible to minimise
conduction along the wires. Heat fluxes along the wires were therefore
similar to those that occurred for spheres. The volume of the brick
shapes used were much larger than the smallest sphere so the effect of

heat transfer along wires was insignificant.

Errors in placement of thermocouples were assessed in the same way as
for other shapes. Because surface heat transfer conditions were
equivalent on each face, the geometric and thermodynamic centres of the
rectangular bricks coincide at a single point and, similarly to a
sphere, only one thermocouple could be placed there. As shown for
other shapes (Sec. 5.4.4) the error in placement of the centre
thermocouple could be easily assessed by the breakpoint analysis and
does not significantly affect the accuracy with which thawing times

could be measured.

As was the case for spheres, the volume of the rubber coating and box
wall material for the rectangular bricks was sufficiently small
compared with the volume of the Tylose brick itself to make the effect

of the heat absorbed by the rubber and wall material unimportant.

For thawing of rectangular bricks the overall experimental error was
smaller than for thawing of infinite cylinders and spheres (because h
could be measured more accurately), and about the same as that for

slabs.
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Fig. 5.13 Typical Rectangular Brick Shapes.

(a) polypropylene box

(b) metal box with one layer of rubber

(c) polypropylene box on the sample oscillator (p. 97).
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Fig. 5.13 Typical Rectangular Brick Shapes.
(a) polypropylene box (p. 96)

(b) metal box with one layer of rubber (p. 96)

(c) polypropylene box on the sample oscillator

Fig. 5.14 Schematic Diagrams of Box Corner Types.

(a) ideal corner, (b) metal box corner

(c) polypropylene box corner, (d) metal box corner with 1lid.
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5.8 HEAT TRANSFER IN TWO-DIMENSIONAL IRREGULAR SHAPES

5.8.1 The Equipment

An infinite number of two-dimensional irregular shapes are possible.
The main concerns in choosing experimental shapes were to be able to
(a) accurately control and describe the shape, (b) control and measure
the surface heat transfer conditions and (c) prevent heat transfer in
the third dimension. It was considered that these could be best
achieved by using experimental techniques similar to those used for

thawing of infinite cylinders (Sec. 5.5).

The shapes were constructed from 0.4 m to 0.50 m lengths of 0.1 m and
0.15 m nominal diameter polyvinyl chloride (PVC) plastic pipes. These
pipes were heated until the walls became soft and pliable. They were
then moulded 1lengthwise around smaller diameter pipes and allowed to
cool. The new shape had, as closely as was possible, a consistent
cross-sectional shape along the length of the pipe. The cross-sections

of the various shapes produced are given in Fig. 5.15 to 5.21.

Heat transfer along the length of each object was minimised in a

similar manner to that used for infinite cylinders.

The irregular shaped objects were filled with Tylose or minced 1lean
beef from one end to a mid-point of their height. Thermocouples were
positioned at five or six locations throughout the objects at this
central level. This was done by drilling small holes in the PVC pipe
wall just large enough for a single thermocouple 1lead. By inserting
the copper and constantan leads through separate holes and reconnecting
and tensioning them within the object as shown in Fig. 5.22, the
thermocouple junction was accurately positioned. The thermocouple
leads were held in place and the holes in the pipe walls were sealed
with a small amount of epoxy resin. Packing of the object with Tylose
was then completed and the polystyrene foam end caps were placed in
position. The locations of the thermocouples for each shape are
indicated on Fig. 5.15 to 5.21. A filled test sample is shown in
Fig. 5.23.
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Fig. 5.15 Cross-section and Finite Element Method Grids For the
Two-Dimensional Irregular Shapes Numbers One and Five.
Scale A applies for Shape No. 1. Scale B applies for Shape
No. 5. * - nodes, ** - nodes corrosponding to thermocouples

positions, _ - element boundaries, =ss - planes of symmetry.

MASSEY UNIVERSITY
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Fig. 5.16 Cross-section and Finite Element Method Grid For the

Two-Dimensional Irregular Shape Number Two.

¥ - nodes, ** - nodes corrosponding to thermocouples

positions, - element boundaries.
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Fig. 5.17 Cross-section and Finite Element Method Grid For the

Two-Dimensional Irregular Shape Number Three.

¥ - nodes, ** - nodes corrosponding to thermocouples

positions, - element boundaries.
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Fig. 5.18 Cross-section and Finite Element Method Grid For the
Two-Dimensional Irregular Shape Number Four.
* - nodes, ¥* - nodes corrosponding to thermocouples

positions, - element boundaries.

Scale [cm]

Fig. 5.19 Cross-section and Finite Element Method Grid For the
Two-Dimensional Irregular Shape Number Six.

¥ - nodes, ** - nodes corrosponding to thermocouples

positions, _ - element boundaries.
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Fig. 5.20 Cross-section and Finite Element Method Grid For the
Two-Dimensional Irregular Shape Number Seven.
* - nodes, ** - nodes corrosponding to thermocouples

positions, - element boundaries.
Scale [cm]

Fig. 5.21 Cross-section and Finite Element Method Grid For the

Two-Dimensional Irregular Shape Number Eight.

¥ - nodes, ** - nodes corrosponding to thermocouples

positions, _ — element boundaries.
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Fig. 5.22 Schematic Diagram Showing the Method of Thermocouple
Insertion and Positioning Within the Multi-Dimensional
Irregular Shapes. Not to scale.
A - object wall, B - epoxy resin, C - insulated constantan

lead, D - thermocouple junction, E - insulatcd copper lead.

Fig. 5.23 The Sample Oscillator and Two-Dimensional Irregular Shape

Freezing and Thawing Equipment Used in the Liquid Immersion

Tank.
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The liquid immersion tank was used. Because both freezing and thawing
experiments were carried out, the tank contained 29% calcium chloride
brine. Accurate temperature control across the temperature range -40°C
to 50°C was achieved. The test samples were oscillated to minimise

local variations of the surface heat transfer coefficient.

5.8.2 Dimensional Measurement and Control

The rigid nature of the PVC pipes meant that no variation in shape or
size was measured during experiments. If any density change of the
Tylose or minced lean beef occurred during phase change, it resulted in
lengthwise change in volume which was absorbed by compression of the

polystyrene end caps.

There was some variation in the cross-sectional shape of each object
along its length. Cross-sectional profiles from each end of the object
were drawn and averaged to estimate the final shape and size for each
object (Fig. 5.15 to 5.21) as accurately as possible. Variations from
the mean shape were less than +1.0mm in dimensions and less than 1.0%

in perimeter and cross-sectional area.

The characteristic thickness for the irregular shapes 1is defined as
either the minimum thickness measured through the thermodynamic centre
or double the minimum distance from the thermodynamic centre to the
surface. For all the shapes it was found that only one thermodynamic
centre existed, because the surface conditions were uniform and the
geometries used were relatively uniform in shape. The characteristic
thicknesses determined from each definition were equal. The position
of the thermodynamic centre was found by analysis using the finite

element method (Sec. 4.2) for typical phase change conditions.

5.8.3 Measurement and Control of Surface Heat Transfer Coefficients

For the irregular shapes studied there were no satisfactory methods to
estimate the surface heat transfer coefficient directly from
experiments for each shape. The two-dimensional irregular shapes were

remoulded from PVC cylinders for which surface heat transfer
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coefficients can be determined (Sec. 5.5.3). As 1long as the 1liquid
film heat transfer conditions are equivalent at all parts of the
surface and the PVC wall thickness is constant over the whole surface,
then the surface heat transfer coefficient would be expected to be
approximately the same as that for the equivalent PVC cylinder. Use of
the liquid immersion system plus oscillation of the test samples
ensured that the liquid film heat transfer coefficient was constant to
all surfaces of all the objects. The PVC wall thickness was the same
for the remoulded shapes as for the original cylinders and did not vary
significantly at different positions on the surface of the irregular
shapes. Small random variations in wall thickness did occur due to
changes in the degree of curvature of the PVC and heat shrinkage. The
inside perimeters of the irregular shapes were measured to be within 1%
of the original cylinder wall perimeter for the 0.15 m cylinders and
within 2% for the 0.1 m cylinders, for all the irregular shapes.
Therefore variation in the PVC wall thickness due to stretching during

the moulding process had negligible effect on heat transfer.

Separate heating and cooling experiments with an unmoulded PVC cylinder
were used to estimate h for the other (irregular) shapes in a similar
manner to that wused 1in infinite cylinder thawing experiments
(Sec. 5.5.3). The curved surfaces of both the irregular shapes and the
cylinder gave the same problems with voids and imperfect thermal
contact at the surface, experienced for infinite cylinder and sphere
thawing. It was assumed that the effect of these factors were the same
for the irregular shapes as for the cylinder shapes so that the
estimated surface heat transfer coefficients were still representative.
Because Tylose packing conditions and the occurrance and distribution
of the surface voids were similar in both cases, there is no reason to

expect this assumption to be invalid.

To alter the surface heat transfer coefficient two layers of sheet
rubber were glued onto the surface of all the irregularly shaped
objects derived from the 0.1 m PVC pipes. The change in exposed
surface area as more packaging material is added is slightly different
for a cylinder and an irregular shape, so very small differences in h
values are possible, but these were within the tolerance of the

measurement system. The effect of the rubber and the above problems
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with imperfect contact are discussed fully in Sec. 5.5.3.

The heat penetration method, based on cylinder centre temperature
profiles, showed no statistically significant differences between
replicates within the 26 runs used to estimate the three different
values of h (for the 0.15 m PVC cylinder, the 0.1 m PVC cylinder and
the 0.1 m PVC cylinder plus two layers of rubber) at the 95% 1level of
confidence. The uncertainty in the mean values had 95% confidence
bounds of #12.7%, +7.1% and +2.8% for the above three values
respectively. The values of h were different from those for the 0.1 m
and 0.15 m PVC cylinders used in thawing (Sec. 5.5) because pipes of

different thicknesses were used.

The surface heat transfer coefficient for the minced 1lean beef
experiments was assumed to be the same as that determined for the
Tylose experiments with the same shape. As discussed in Sec. 4.8.3 for
rectangular bricks, this potentially leads to increased experimental
uncertainty for the minced lean beef experiments because this

assumption about h may not be valid.

5.8.4 Analysis of Heat Transfer in Two-Dimensional Irregular Shapes

Experiments for irregular shapes are subject to the same error to those
for regular shapes. Voids in the Tylose and inhomogeneity caused by
thermocouple wires had similar effects to those found in the infinite

cylinder experiments, and were similarly insignificant.

Error in thermocouple placement was not a major source of uncertainty
due to the way the 1leads were positioned and held 1in place.
Dismantling of the objects showed that the thermocouple junctions
remained within a 2 mm radius of the recorded position over a number of
runs. However, the method used to insert the thermocouples did lead to
errors due to heat conduction along the wires as they were not
introduced along isothermal paths. Typically, four thermocouples were
used to measure internal temperatures for each object. Only one of
these was located in close proximity to the thermodynamic centre.
Conduction along each thermocouple would be less than the 0.8% of the

total heat flow calculated for the centre thermocouple in the smallest
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sphere used for thawing (Sec. 5.6.4). The volume and surface area for
these two-dimensional irregular shapes were larger that those for the
smallest sphere. Though wup to four thermocouple wires conducted heat
towards the centre, because all but one of these were positioned well
away from the thermodynamic centre and the object volume and surface
areas were large, the effect of heat conduction along the thermocouple
wires was considered insignificant. Only 0.02% to 0.03% of the surface
area within the central 100 mm length of the pipes was affected by the
introduction of the thermocouple wire throught the walls. This 1is

insignificantly small.

Heat transfer along the length of the irregularly shaped objects will
be of the same order of magnitude as that for the equivalent
cylindrical shapes due to the insulating caps, the high ratio of length
to thickness wused and the central position used for temperature

measurement. In Sec. 5.5.4 this was shown to be insignificant.

The problem with imperfect contact of the Tylose with the PVC wall,
noted for infinite cylinder experiments, occurred. For infinite
cylinders it was analysed in the same manner by using centre
temperature profiles only to determine an average h for each object.
The effect of surface inhomogeneity, due to the imperfect contact, may
have been 1larger for irregular shapes if the presence of voids was not
evenly distributed over the surface. There was no evidence of this so
the approach wused for infinite cylinders when considering accuracy of

surface temperature profiles was adopted.

For irregular shapes the position of the thermodynamic centre is not
known, and in fact it may move during any freezing or thawing run
(Fleming 1970). For this reason, the position of one thermocouple was
located as close as possible to the predicted thermodynamic centre of
the objects, as determined by a finite element analysis (Sec. 4.2) for
typical experimental conditions. This may not be the exact
thermodynamic centre so when the temperature profiles were analysed,
the breakpoint analysis discussed in Sec. 5.4.4 was used to increase
the precision of the experimentally determined thawing time where
necessary. This analysis is as applicable to irregular shapes as it is

to regular shapes. When considering locations of other thermocouples
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it was not important where they were positioned as long as the position
was accurately known. A range of alternative positions were used to
provide a number of typical temperature profiles from throughout each

object.

For the two-dimensional irregular shape experiments an identical
procedure to that wused for thawing of regular infinite cylinders was
adopted. Although the uncertainty in measured surface heat transfer
coefficients was lower than for the infinite cylinder thawing
experiments, the inability to control h to the same value for all the
shapes introduced extra uncertainty. There is also an additional error
in measuring and controlling the geometry so the overall experimental
error was estimated to be of slightly greater magnitude than that for

infinite cylinder thawing.

5.9 HEAT TRANSFER IN THREE-DIMENSIONAL IRREGULAR SHAPES

5.9.1 The Equipment

Only three different three-dimensional objects were investigated due to
limitations in time and resources. Each was relatively wuniform in
shape, though irregular compared with slabs, infinite cylinders,

spheres, infinite rods or rectangular bricks.

The first shape was the frustum of a square pyramid shown in Figs. 5.24
and 5.28. It was constructed from polypropylene plastic sheet in
exactly the same manner a; that wused for rectangular brick shapes
(Sec. 5.7.1). The other two irregular three-dimensional shapes were an
ovoid (egg) shape and an fish shape smoothed to obtain a completely
convex surface,. To provide information about surface heat transfer
conditions, two similarly sized regular spheres were used. Casts of
each shape were made. For the egg shape, a two-dimensional
cross-sectional profile was drawn and a block of wood turned in a lathe
to this shape. The full wooden egg was set in plaster of paris so that
two identical halves could be moulded. The plaster provided a flat
surface to form a flange so the two halves could be joined together.
An albacore tuna was frozen and then cut in half lengthwise down the

backbone. A negative plaster of paris cast was then made of one half.
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From this positive fish shaped casts were reconstructed. The spherical
plaster of paris cast was made in the hollow metal hemispheres used to
make the 0.128 m diameter sphere for thawing of regular shapes. The

metal sphere was not suitable for moulding directly.

The casts were used to vacuum heat mould two halves for each object
from CAB ethyl acetate plastic sheet. The fish, egg and two sphere
moulds constructed were all of comparable size and curvature so that
the vacuum moulding of the plastic gave similar thicknesses of plastic
over each of the moulds. The casts had no concave sections so that
bridging of the plastic between ridges on the cast was not a problem

and the plastic mould closely resembled and fitted the original cast.

Each plastic half mould was filled with Tylose. Thermocouples were
introduced to various pre-determined points in a similar manner to that
used for two-dimensional irregular shapes. Holes were drilled in the
plastic for the individual copper or constantan wire leads. The wires
were joined and tensioned 1in the appropriate place in the shapes and
the holes sealed by epoxy resin. Six thermocouples; two on the
surface and four 1located internally, were used for each shape, except
for the two spheres which each had three surface thermocouples and one
at the geometric centre. One thermocouple was always placed as close
as possible to the thermodynamic centre estimated by finite element
analysis. The filled halves of the plastic objects were joined
together and the plastic flanges held together with a solvent glue and
screws. In this way the objects were totally sealed against liquid

ingress.
The three shapes are shown in Fig. 5.25 to 5.28. All the shapes had a
bolt attached through the flange to allow connection to the sample

oscillator. The liquid immersion tank was used.

5.9.2 Dimensional Control and Measurement

The measurements of the moulded plastic objects were taken directly
from the wood or plaster casts. The wooden egg closely followed the
mathematical relationship for an ovoid because it was turned to fit a

specific profile. Similarly, the moulds for the spheres and the
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frustum of the square pyramid were uniform or flat sided and could be
accurately measured. The fish shape was naturally derived and
irregular in all respects except for a 1lengthwise plane of symmetry
between the two halves. To accurately model it, the plaster cast was
cut and the cross-sections at thirteen evenly distributed points along
the length of the object mapped. The shape of the fish surface was
then interpolated between these cross-sections. It was found that each
of the cross-sections was closly approximated if a further vertical
axis of symmetry was assumed. Hence only one quarter of the fish was
modelled. Using these methods and because the plastic mould closely
resembled the original casts the error in determining the surface shape
and critical dimensions was considered to be +2 mm at any point for
both the fish and the egg, +1.0 mm for the spheres and +0.5 mm for the

pyramid.

The characteristic thickness was determined from the grids shown in
Fig. 5.24 to 5.27 once the thermodynamic centre was pinpointed by
finite element analysis for typical phase change conditions. The
measurements taken off the casts were confirmed by some measurements on
the actual test objects. There was no observable difference in size or

shape as the objects changed from the frozen to the unfrozen states.

5.9.3 Control and Measurement of Surface Heat Transfer Coefficient

The polypropylene pyramid was identical 1in all respects to the
polypropylene rectangular brick shapes constructed previously for water
immersion thawing (Sec. 5.7) and for brine immersion freezing (Cleland
1977), except for the irregularities 1in shape. The surface heat
transfer coefficient had been found to be equal in both the rectangular
brick freezing experiments using brine (Cleland 1977 ) and the thawing
experiments using water. The same h value was assumed to hold for the
polypropylene pyramid and no further experiments relating to it were
undertaken. The error in the value of h for the polypropylene pyramid
should be of the same order as that for thawing of the polypropylene
rectangular bricks (1.5%). The sample was oscillated in a similar

manner to that used for rectangular bricks.
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For the plastic mould shapes, h cannot be measured directly without
substantial difficulty. Hence the analagous regular spherical shapes
constructed from the same plastic material, and the methods of
Sec. 5.6.3, were used to measure h. Twelve separate heating and
cooling runs without phase change, both above and below the phase
change temperature range, for the two sphere shapes were undertaken.
None of the differences between runs, between values for the two
spheres or the correlation of h with temperature were statistically
significant at the 95% confidence level. The error 1in the average
value determined by the variablilty of replicates was #21%. It was
assumed that the h value determined in this way accurately represented
h for the egg and fish shapes as wall thicknesses were essentially the
same for all test objects, and the degrees of curvature were
approximately equivalent. Some plastic thickness variation was noted,
even between the two spheres moulded from identical casts, due to
factors that were not controllable. During moulding the plastic tended
to spread out thinly over some regions and accumulate at other parts.
The effect was relatively randomly distributed except near the flanges
for each half where the plastic was always thicker. Hence, there was
in practice some violation of the assumption that external heat
transfer was uniform on all surfaces of the test objects. No practical
way to avoid this problem was found, so it was decided to carry out the
experiments with the moulds as they were, and accept the consequential
loss of accuracy in calculations for which a constant h value was

assumed.

5.9.4 Analysis of Heat Transfer for Three-Dimensional Irregular Shapes

Sources of error for the three-dimensional irregular shapes were
similar to those for other shapes. Problems with voids, inhomogeneity
due to thermocouple wires, heat conduction along thermocouple wires and
errors in placement of thermocouples were similar to those for
two-dimensional irregular shapes and were consequently considered
negligible. Because a thermocouple could not necessarily be located
exactly at the thermodynamic centre (but wusually close by), the
breakpoint analysis was wused to accurately determine experimental

freezing and thawing times.
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The three-dimensional shapes meant that end heat transfer effects were
not a problem. Only the pyramid shape was affected by the presence of
a bolt inserted through the wall. As was the case for rectangular
brick thawing, the presence of this bolt was found to be insignificant.
Disruptions due to the modular nature of the plastic moulds affected
heat transfer. The flange retained on each half of the plastic moulds
allowed a strong join to be made and it also allowed the attachment to
the sample oscillator without further disruption to the object surface.
The flange for the plastic moulded shapes ran 1in a lengthwise
circumference around each shape. It therefore affected part of the
surface area but the regions on the surface closest to the
thermodynamic centre were only slightly affected. The effect of the
flange on the surface heat transfer was considered unavoidable. As has
been indicated, a lower degree of accuracy in these experiments was

accepted.

Imperfect contact was a similar problem for the plastic moulded shapes
to that which occurred for infinite cylinders, spheres and the
two-dimensionally irregular shapes. As before, it was considered that
the effect was equally frequent for all shapes and randomly distributed
over the surface so that the effect on surface or overall heat transfer
was not significant and could be accurately accounted for by an average
surface heat transfer coefficient. Finite element predictions for the
plastic shapes (Sec. 8.4) tend to show that surface heat transfer
conditions were not wuniform and that alternative means to control and
measure h would be needed if experiments with 1less wuncertainty were
considered essential. In spite of these problems, the shape of the
temperature profile for a thermocouple situated near the thermodynamic
centre (predicted by finite element analysis assuming uniform surface
heat transfer conditions), suggested that the non-uniformities at the
surface had not moved the thermodynamic centre much, and that thawing
times could be determined from this thermocouple by the breakpoint

analysis,

For three-dimensional irregular shapes the uncertainty associated with
controlling the surface heat transfer conditions by use of the plastic
moulding could not be assessed. However the error in measuring h was

large and there are further significant errors in measuring and
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modell ing the shapes of each object accurately. Other sources of
uncertainty are of the same order of magnitude to those in the other
experiments. Consequently, the overall experimental error for the
three-dimensionally irregular shapes moulded from plastic was larger
than for other shapes. This must be considered when comparing freezing
and thawing time prediction methods with the experimental data. The
exception was the polypropylene pyramid shape for which the overall
experimental error was of the same order of magnitude as occurred for

the thawing of rectangular bricks as the experimental techniques used

were almost identical.
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Fig. 5.24 The Pyramid Three-Dimensional Irregular Shape Finite Element
Method Grid.
Only a quadrant of the shape is modelled. The x,z and y,z
faces are planes of symmetry. Only the boundary surface
grids are shown. The x,y face is also a boundary surface.
Scale - in the x direction 1 division = 0.005 m, in the y
direction 1 division = 0.008 m and in the z direction 1

division = 0.016 m.
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Fig. 5.25 The Sphere Three-Dimensional Irregular Shape Finite Element
Method Grids.
(a) and (b) the one- and two-dimensional grids
¥ - nodes, ** - nodes corrosponding to thermocouple
positions, _ - element boundaries, = - planes of symmetry,
A - axis of rotational symmetry.

(c) the three-dimensional grid (p. 116).
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Fig. 5.25 The Sphere Three-dimensional Irregular Shape Finite Element
Method Grids.

(a) and (b) the one- and two-dimensional grids (p. 115)

(c) the three-dimensional grid. Only an octant is modelled.
The x,z and y,z faces are planes of symmetry. Scale for the
three-dimensional grid is 1 division = 0.00635 m.

(1) only the boundary surfaces are shown.

(11) an exploded view of the full sphere grid; each of the
three shells of elements are shown.

116
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Fig. 5.26 The Egg Three-Dimensional Irregular Shape Finite Element
Method Grids.
(a) the two-dimensional grid. * - nodes, ** - nodes
corrosponding to thermocouple positions, - element
boundaries, A - axis of rotational symmetry.
(b) the three-dimensional grid. Only a quadrant is modelled.
The x,y and x,z faces are planes of symmetry. Only the
boundary surface grid is shown. The full grid is an
elongated, double version of the sphere three-dimensional
grid (Fig. 5.25c). Scales: in the x direction 1 division =

0.0255 m, in the y and z directions 1 division = 0.0085 m.
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Fig. 5.27 The Fish Three-Dimensional Irregular Shape Finite Element

Method Grid. Only a quadrant is modelled. The x,y and x,z
faces are planes of symmetry. Only the boundary surface grid
is shown. The full grid is a distorted version of the egg
three-dimensional grid (Fig. 5.26b). Scales: 1in the x
direction 1 division = 0.060 m, in the y direction 1 division

= 0.007 m and in the z direction 1 division = 0.006 m.

(a) viewed from the tail, (b) viewed from the head.
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b

Fig. 5.28 The Sample Oscillator and Three-Dimensional Irregular Shapes

Used in the Liquid Immersion Tank.
(a) pyramid

(b) sphere

(c) egg (p. 120)

(d) fish (p. 120).
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Fig. 5.28 The Sample Oscillator and Three-Dimensional Irregular Shapes

Used in the Liquid Immersion Tank.
(a) pyramid (p. 119)

(b) sphere (p. 119)

(c) egg

(d) fish
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6 EXPERIMENTAL DESIGN AND RESULTS

6.1 INTRODUCTION

To investigate the accuracy of methods for predicting freezing and
thawing times for food, experiments must be conducted for a wide range
of conditions covering those that occur 1in practical freezing and
thawing situations. In Chap. 3 five objectives for the present work
were defined. The first two of these related to data collection so
that prediction methods could be assessed:

(1) to collect thawing data for the basic slab, infinite cylinder,

sphere and rectangular brick shapes

(2) to collect freezing and thawing data for other (irregular) shapes.
It was decided to consider each shape separately and to limit the range
of freezing and thawing conditions to situations described in Table
3.2. Essentially, this meant that the study was limited to homogeneous
materials and constant conditions. Even after these restrictions on
the range of conditions are applied, seven important factors affecting

freezing or thawing time can be identified (Table 3.3).

Pham (1983) used dimensional analysis to show that the six factors
other than shape can be related by seven dimensionless groups to the
freezing or thawing time. These are the Fourier number, the Biot
number, the Stefan number, the Plank number and three other

dimensionless numbers. The Fourier number:

kg t ky t
Fo = T for freezing, Fo = = for thawing (6.1)
s 1

takes account of the object size, the phase change time and the thermal
properties of the material in the state it will be in after the phase

change process has occurred. The Biot number:

hD hD
Bi = — for freezing, Bi = — for thawing (6.2)
%4 K
S 1
is the ratio of internal to external resistances to heat transfer. The
Stefan number:
AH

Cl(Ta'Tif)

Ste = for freezing, Ste = for thawing (6.3)
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accounts for the ambient medium temperature and relates the heat
transfer after the phase change process to that due to 1latent heat
release or absorption itself. The Plank number (Cleland & Earle
1976b):

Pk = Elfflﬂlfi&l for freezing, Pk = EEiElE:EiﬂZ for thawing (6.4)

AH AH

takes account of the initial superheating or subcooling and relates it
to the latent heat. Finally, three other numbers which take account of
the final temperature at the thermodynamic centre, Tfin' the initial

freezing temperature and other thermal properties of the food are:

Coq(Tye-T ) Ci(Tein~Ti¢)
N, = Zs” if fin'ror freezing, N, = 1 fin if° for thawing (6.5)
AH AH
€1 LT
N, =— and N, = = (6.6) and (6.7)
Cs Ks

In situations where it is assumed that all latent heat is released at a
unique phase change temperature the enthalpy change in the phase change
temperature region, AH, is defined as the latent heat of freezing or
thawing, whereas the enthalpy change between 0°C and -10°C is used in
all other cases. This definition ensures that AH includes the major
phase change effect yet is similarly defined and equally relevant for
both freezing and thawing analyses. For freezing, the very similar
definition of AH as the enthalpy change from Tir to -10°C has been used
(Cleland 1977). This definition leads to AH values only 1.0% different
from AH from 0°C to -10°C and is therefore treated as being equivalent
in this study. This definition 1is also commensurate with an
alternative used by Hung & Thompson (1983) where AH was taken as the
enthalpy change from Tin to Teine

Both Hayakawa et al (1983a) and Succar & Hayakawa (1984) performed
numerically based screening experiments that showed that for slab and
infinite cylinder freezing over a range of typically encountered
conditions only five parameters, described in terms of Bi, Ste and Pk
above, had a statistically significant effect on the freezing time
(Fo). Neither the thermodynamic centre temperature nor the ratio of
the unfrozen to the frozen thermal properties (N,, N,, N;) were
significant. Similar results would be expected for thawing. Cleland &
Earle (1984b) show that the effect on freezing time of different final

thermodynamic centre temperatures can be accurately related to the
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Stefan number in a simple manner. For these reasons, and those
outlined in Sec. 2.2.3 only freezing to a single final thermodynamic
centre temperature of -10°C and thawing to 0°C were investigated

experimentally.

Most foods, frozen or thawed inductrially are predominantly aqueous in
composition and consequently the initial freezing temperature, Tif' and
the ratios of the thermal properties, N, and N,, differ only slightly
for different foods (Table 6.1). For this reason only one typical
phase change material (Tylose) was used and the changes in N, and N,
were not considered of major practical importance. Some runs with a
food material, minced 1lean beef, were performed to see if any
noticeable effect due to N, or N, could be observed. A study
encompassing a range of materials (Cleland & Earle 1984a) showed little
deviation between predictions for the different food materials used,

confirming this reasoning.

The full functional dependence of the phase change time to a given
endpoint temperature, on the conditions considered in this work and the
thermal properties is therefore given by:

Fo = f (Bi, Ste, Pk, geometry) (6.8)
The variables that were manipulated in order to 1investigate this
relationship were the size, D, the surface heat transfer coefficient,

h, the ambient medium temperature, T the initial temperature, T;, and

ar
the object shape. To 1isolate the effect of geometry the other four
variables were varied independently for a variety of different shapes.
Table 6.1 shows typical values of these variables for common freezing
and thawing processes. An experimental design was sought 1in which
these variables were varied over as wide a range as possible within the

the limitations of the experimental equipment.

Orthogonal experimental designs in terms of Bi, Ste and Pk were not
feasible because of physical 1limitations 1in controlling the four
variables, especially h and D, to pre-selected values. The object size
and the surface heat transfer coefficients were, in most cases,
determined more by considerations such as the availability of the
appropriate types of container and their wall material, than Sy choice

to give a specified Biot number. Variation in Bi was therefore
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difficult to achieve and evenly spaced 1levels required for an
orthogonal design were not practicable. Consequently it was decided to
vary the Biot number as widely as possible by wusing different
combinations of container size and wall materials. The addition of
insulating rubber 1layers for some shapes gave some control and
variability of h.

At each level of Biot number Ta and Tin' and hence Ste and Pk, were
also varied to cover as wide a range and combinations of conditions as
possible. The basis for the experimental design in these cases were
either part or full factorial designs with two or three levels of T,
and Tine It was decided not to attempt to control these two variables
exactly to the pre-selected 1levels; provided a value close to the

pre-selected level was obtained, it was considered satisfactory.

6.2 THAWING OF SLABS

For experiments using Tylose it was chosen to vary h and D to give
seven approximately evenly spaced levels of Bi. At each of the extreme
values, experiments at a central level of both T, and Tin were
performed. At each of the five intermediate Bi 1levels a factorial
design with Ta and Tin e€ach at two levels plus one centrepoint was
conducted and some other runs at intermediate levels were made. Evenly
spaced levels of 1/Ste, corrosponding to Ta values of about 5°C, 13°C
and 45°C, and Pk with values of Tin of about -10°C, -20°C and -30°C
were used, with h varying from 13.2 Wm 2 oC™! to 172.7 W m 2 °¢~' and
D from 0.026 m to 0.105 m respectively. This design was considered to
give a satisfactory data base for assessment of thawing time prediction

methods.

The results of the full set of 35 slab thawing experiments including
replicates to estimate the experimental error are shown in Table 6.2.
Typical thawing temperature/time profiles are shown in Fig. 6.1. The
replicates were performed as independently from each other as possible
to give a true 1indication of variability due to experimental
techniques. The only variable that could not be measured independently
from the other slab experiments was the surface heat transfer

coefficient. Any additional uncertainty introduced by errors in
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measurement, and due to systematic error, could not be quantified from

the spread of replicates.

Six thawing experiments were conducted with minced 1lean beef for a
representative range of conditions to check that experiments with
Tylose gave results consistent with those for real foodstuffs, and that
N, and N, were not parameters significantly affecting prediction method
accuracy. Results for the minced lean beef experiments are given in

Table 6.8 and Fig. 6.17 is a typical temperature/time profile.

6.3 THAWING OF INFINITE CYLINDERS

For infinite cylinders the range of Biot numbers that could be
considered was physically 1limited by the cylinder diameters and pipe
wall materials and thicknesses used. By use of both metal and PVC
walled cylinders and the addition of rubber insulation a range of h
from 19.0 W m 2 °oc™' to 113.0 W m 2 o¢c™' was obtained in the 1liquid
immersion system. In combination with different cylinder diameters
this gave six approximate levels in Bi from 1.8 to 26.0. At each level
a similar design to that used for slabs was set up to cover a wide

range of ambient and initial temperature conditions.
The 34 experimental results for thawing infinite cylinders of Tylose
are given in Tables 6.3, and a typical thawing curve is shown in

Fig. 6.2.

6.4 THAWING OF SPHERES

Thirty-five thawing runs were conducted with Tylose spheres. A similar
design to that used for infinite cylinder thawing was used. The metal
walled spheres plus rubber coating gave surface heat transfer
coefficients from 41.9 W m 2 o' to 246.2 Wm 2 °C”'. For the three
sphere diameters used there were six levels of the Biot number in the
range 5.9 to 57.0.

Figure 6.3 gives a typical thawing temperature/time profile while the

full set of results are given in Table 6.4,
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6.5 THAWING OF RECTANGULAR BRICKS

The thawing time of a rectangular brick shaped object depends on its
geometry as well as the three parameters Bi, Ste and Pk. The shape of
a rectangular brick is defined by the ratio of each of the two 1longer
side lengths to the shortest (8, and g,). The shortest side length is
equal to the characteristic dimension (D) so the two shape factors, B8,
and g,, can be introduced. The experiments were designed to cover all

the five factors (Bi, Ste, Pk, B, and B,) as widely as was practicable.

For each of twelve differently shaped and sized boxes a 22 factorial
design in Ste and Pk plus a centrepoint (corresponding to values of T,
of 5°C, 13°C and 45°C, and Tin of -10°C, -20°C and -30°C) was
performed. The five runs for each brick were divided between two
levels of the Biot number (arising from the boxes both with and without
rubber sheets glued to the surface). The geometric factors, g, and g8,,

were varied from 1 to 4, this range covering practical applications.

The results for the 68 thawing experiments conducted are shown in Table
6.5. A typical thawing curve is shown in Fig. 6.4. Four thawing runs

were made with two different rectangular brick shapes using minced lean
beef. These results 1is given in Table 6.8 and a typical
temperature/time profiles is shown in Fig. 6.18.

6.6 TWO-DIMENSIONAL IRREGULAR SHAPES

Eight different two-dimensional objects were used; four were
constructed by distortion of a 0.1 m diameter PVC pipe, and four from a
0.15 m diameter PVC pipe. Six of the objects were irregular in shape,
while two were cylindrical (one for each pipe size). Figs. 5.15 to
5.21 show the cross-sectional geometries for these objects. For each

shape at least four freezing and four thawing runs were conducted.

For freezing three levels of the Stefan number (corresponding to values
of T, of about -20°C, -28°C and -35°C) and four 1levels of the Plank
number (corresponding to Ti, values of about 4°C, 10°C, 20°C and 30°C)
were used. A complete factorial design was not possible, The

combinations of Ste and Pk used for individual experiments were chosen
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so that the Ste and Pk levels were not statistically correlated over
the full data set. For thawing a similar design to that used for the
regular shapes was applied for Ta and Tin- The three values of h for
each combination of pipe wall thickness and rubber 1led to eleven

different levels of Biot number.

A total of 83 experiments were performed with Tylose. The results are
given in Table 6.6 and Figs. 6.5 to 6.12 shown typical temperature/time
profiles at different positions within each shape. As well, eight runs
were conducted with minced 1lean beef for two of the irregular shaped
objects. Table 6.8 gives the results of these experiments. Fig. 6.19

shows typical temeperature/time profiles for the minced lean beef runs.

6.7 THREE-DIMENSIONAL IRREGULAR SHAPES

Eighteen experiments were conducted with the three three-dimensional
irregular Tylose objects chosen for study. The shapes are shown in
Figs. 5.25 to 5.27. An additional six runs were performed using two
spheres. The experimental design used was similar to that used for
two-dimensional irregular shapes. Each shape was both frozen and
thawed over a range of ambient and initial temperatures. The Biot
number was completely pre-set for each shape by the material and size
of construction for each object. Table 6.7 gives the full set of

results. Figs. 6.13 to 6.16 show typical temperature/time profiles.
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Table 6.1 Typical Conditions in Food Freezing and Thawing Processes

128

Freezing Thawing
D (m) 0.001 to 0.5 0.001 to 0.5
h o (Wm 2 o ! 7 to 600 2 to 10 000
Bi 0.05 to 60 0.01 to 1000
T, (°0) -15 to -0 5 to 50
Ste 0.12 to 0.35 0.07 to 0.9
T,, (°C) 0 to 40 -10 to -35
Pk 0 to 0.6 0.06 to 0.3
Tein (°C) -10 to -30 0 to 10
N, 0.05 to 0.25 0.01 to 0.1
N, 1.7 to 2.0 1.7 to 2.0
N, 0.27 to 0.35 0.27 to 0.35




Experimental Design and Results 129

Table 6.2 Experimental Data For Thawing of Slabs of Tylose

Run D h T T t

Number x - -1 a tn exp
(m) (Wm °C ) (°C) (°C) (hrs)
T1 0.0260 13.2 12.8 -20.9 4.69
T2 0.0260 24.5 5.2 -29.4 5.63*
T3 0.0525 13.2 5.2 -11.4 19.32
T4 0.0260 24.5 u5.9 -8.3 0.90
TS 0.0525 13.2 b6.1 -28.6 3.89
T6 0.0525 13.2 12.8 =2085 10.33
T7 0.0260 50.U4 4.6 -26.3 3.49
T8 0.0525 24 .5 5.2 -10.7 13.20
T9 0.1000 13.2 5.9 -8.3 7.82*
T10 0.1020 13.2 43.0 10317 8.83
T11 0.0770 18.2 6.2 -26.8 5.11
T12 0.0525 29.5 12.8 -20.9 6.26*
T13 0.0770 37.3 5.2 -30.2 18.49
T14 0.0525 50.4 5.1 =-25.0 9.1
T15 0.0260 78.1 Soc -12.3 2.51,
T16 0.1000 24.5 12.8 -9.4 16.92
T17 0.0525 50.U4 46.0 -10.6 1.64
T18 0.0770 37.3 46.1 -24.7 3.72
T19 0.1000 24.5 45.8 -32.5 6.75
T20 0.0260 78.1 12.4 =2 T 1.42
T21 0.0525 50.4 13.4 =202 4.68
T22 0.0525 50.4 13.4 -24 .1 4,65
T23 0.0525 50.4 13.4 -23.6 4.60
T24 0.0525 50.4 13.4 -23.6 4.50
T25 0.0525 78.1 5.2 -28.9 7.58*
T26 0.1050 37.3 5.2 -10.4 29.33
T27 0.0770 50.4 us.7 SHIBES 2.99
T28 0.0280 172.7 43.0 -31.0 0.43
T29 0.0525 78.1 13.3 -22.5 3.91,
T30 0.1050 78.1 5.2 -28.8 23.62
T31 0.0770 78 .1 50 -14.2 14.39
T32 0.0770 78.1 us.7 -9.4 2.61
T33 0.1000 78 .1 6.2 -28.2 4.59
T34 0.0770 78.1 12.9 -21.0 T .25
T35 0.1050 172.7 13.4 -23.8 10.61

*
indicates a run in which edge heat transfer was calculated to be
greater than 1.0%.
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Table 6.3 Experimental Data For Thawing of Infinite Cylinders of Tylose

Run D h T T. t

Number a 4 exp
(m) Wm2oechy (o) (oC) (hrs)

C1 0.158 23.5 43.3 -14.0 7.34
c2 0.158 23.5 21.1 -20.6 12.43
C3 0.158 23.5 5.1 -28.4 34. 41
cl 0.156 90.7 u3.2 -11.9 5.31
c5 0.156 90.7 13.0 -13.6 12.30
cé6 0.156 90.7 5.1 -27.9 23.74
c7 0.156 43.5 40.3 -21.2 6.09
c8 0.156 43,5 11.9 -27.4 15.40
C9 0.156 43,5 8.2 -26.9 19.21
C10 0.156 43.5 5.3 -14.9 25.70
Cc1 0.106 113.0 43 .3 -10.7 2.47
Cc12 0.106 113.0 8.5 -20.2 7.94
C13 0.106 113.0 5.1 -28.8 11.36
C14 0.103 37.4 43.3 -30.5 3.26
C15 0.103 37.4 13.0 -14.5 7.25
C16 0.103 37.4 5.3 -10.6 13.89
c17 0.103 25.1 40.3 -10.6 3.79
c18 0.103 25.1 18.7 -14.1 6.63
C19 0.103 25.1 13.2 -14.4 8.84
Cc20 0.103 25.1 5.3 -31.2 16.73
ca21 0.103 19.5 43,9 -26.9 4.33
ca2 0.103 19.5 18.3 -14.9 7.54
ce3 0.103 19.5 5.8 -13.1 18.20
cay 0.051 b6.5 uy.0 -10.6 0.87
c25 0.051 46.5 8.5 -11.9 2.93
c26 0.051 46.5 5.1 -10.0 4,22
ca7 0.051 27.9 40.3 -11.8 1.30
c28 0.051 27.9 18.9 -26.5 2.49
c29 0.051 27.9 13.2 -18.5 3.00
C30 0.051 27.9 5.3 -28.0 5.96
c31 0.051 19.0 43.9 -28.1 1.64
c32 0.051 19.0 14.6 -18.2 3.76
C33 0.051 19.0 9.6 -28.2 5.03
C34 0.051 19.0 5.8 -12.1 7.15
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Table 6.4 Experimental Data For Thawing of Spheres of Tylose
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Run Dr h Ta Tin texp
Number 2>

(m) (Wm °C (°C) (°C) (hrs)

S 0.128 246.2 43.3 -9.7 2.26
S2 0.128 246.2 21.1 -25.3 3.92
S3 0.128 246.2 13.0 -19.7 5.42
Sy 0.128 74.8 44.0 -15.1 2.66
S5 0.128 74.8 18.3 -18.8 4,78
S6 0.128 74.8 11.9 -23.1 6.39
S7 0.128 T4. 5.3 -26.5 11.33
S8 0.128 51.6 43.3 =27.9 2.76
S9 0.128 51.6 22.0 -18.8 4. 31
S10 0.128 51.6 14.5 -20.3 5.81
S 0.128 51.6 5.1 =-15.5 12.26
S12 0.128 4.9 43.6 -20.3 3.13
S13 0.128 41.9 12.0 -33.0 7.63
S1y 0.128 41.9 5.5 174 12.82
S15 0.112 76.0 43.9 -14.5 1.89
S16 0.112 76.0 8.0 -13.9 5.96
S17 0.112 76.0 513 -28.0 7.87
S18 0.112 59.4 43.6 =27.1 2.02
S19 0.112 59.4 14.5 -16.6 4,05
S20 0.112 59.4 5.0 -18.2 9.02
S21 0.112 5.7 43.6 -30.2 2.43
S22 0.112 4s.7 8.9 -32.9 7.18
S23 0.112 5.7 > %) -17.4 9.67
S24 0.056 137.2 18.3 -16.9 0.86
S25 0.056 137.2 11.9 -13.4 1.15
S26 0.056 137.2 513 =235 2.08
S27 0.056 87.0 43.6 -14.2 0.58
S28 0.056 87.0 22.2 =20.3 0.87
S29 0.056 87.0 14.5 -14.8 1.1
S30 0.056 87.0 7.0 -22.8 1.88
S31 0.056 87.0 550 -24.7 2.33
S32 0.056 55 -5 43.6 -22.8 0.67
S33 0.056 57.5 22.3 -14.9 1.06
S34 0.056 57.5 12.1 =21.7 1.58
S35 0.056 5i 5 55 -16.3 2.67
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Table 6.5 Experimental Data For Thawing of Rectangular Bricks of Tylose

Run Dx D D h T T t

Number y A P a in exp
(m) (m) (m) (Wm = °C ") (°C) (°C) (hrs)
B1 0.075 0.075 0.075 41.0 43.2 -28.5 1.67
B2 0.075 0.075 0.075 41.0 5.2 -11.9 6.86
B3 0.075 0.075 0.075 23.7 39.1 =105 2.05
BY 0.075 0.075 0.075 23 .7 21.5 -25.3 3.22
BS 0.075 0.075 0.075 23.7 15.1 -23.7 4,07
B6 0.075 0.075 0.075 23 .7 5.8 -29.9 8.07
B7 0.104 0.125 0.152 41.0 45.0 -12.0 3.50
B8 0.104 0.125 0.152 41.0 13.8 -23.3 8.35
B9 0.104 0.125 0.152 41.0 52 -26.5 15.98
B10 0.104 0.125 0.152 23.7 39.1 -30.8 4.92
B11 0.104 0.125 0.152 23.7 S0l -12.4 17.65
B12 0.052 0.078 0.202 41.0 13.8 -22.5 3.45
B13 0.052 0.078 0.202 41.0 5.8 -26.4 6.88
B14 0.052 0.078 0.202 41.0 5.2 -12.4 6.84
B15 0.052 0.078 0.202 23.7 39.1 -11.6 2.05
B16 0.052 0.078 0.202 23.7 21.5 -32.0 3.42
B17 0.081 0.151 0.151 41.0 46 .1 -31.0 3.16
B18 0.081 0.151 0.151 41.0 13.8 -21.8 7.09
B19 0.081 0.151 0.5 1 41.0 5.2 -29.4 13.49
B20 0.081 0.151 0.151 23.7 39.1 -10.7 4.10
B21 0.081 0.151 0.151 23.7 5.7 -12.9 15.81
B22 0.054 0.127 0.201 41.0 45.6 -12.1 1.84
B23 0.054 0.127 0.201 41.0 5.2 -28.3 8.59
B24 0.054 0.127 0.201 23.7 21.6 -18.7 4,45
B25 0.054 0.127 0.201 23.7 15.1 =-17.7 5.72
B26 0.054 0.127 0.201 23.7 5.7 -10.5 10.66
B27 0.060 0.201 0.201 41.0 5.8 -32.0 11.92
B28 0.060 0.201 0.201 41.0 5.2 -31.0 11.50
B29 0.060 0.201 0.201 23.7 43.3 -11.9 3.13
B30 0.060 0.201 0.201 23.7 21.5 -16.9 5.U46
B31 0.060 0.201 0.201 23.7 13.9 =-17.2 T7.44
B32 0.060 0.201 0.201 23.7 5.7 -11.8 13.82
B33 0.109 0.156 0.207 281.0 42.9 -30.0 3.60
B34 0.109 0.156 0.207 281.0 24 .5 -11.8 5.29
B35 0.109 0.156 0.207 79.1 13.2 -23.8 9.63
B36 0.109 0.156 0.207 79.1 10.0 -27.9 11.80
B37 0.109 0.156 0.207 79.1 5.4 -12.1 17.00
B38 0.158 0.159 0.164 281.0 42.9 -12.0 4,53
B39 0.158 0.159 0.164 281.0 12.8 -27.9 10.54
B4O 0.158 0.159 0.164 281.0 5.6 -31.4 19.05
B41 0.158 0.159 0.164 79.1 §1.3 -30.0 5.75
B42 0.158 0.159 0.164 79.1 10.0 -21.7 14.70
B43 0.158 0.159 0.164 79.1 S.U -11.6 20.86

...continued
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Run Dx Dy Dz h Ta Tin texp
Number -2 -1

(m) (m) (m) (Wm ~ °C ') (°C) (°C) (hrs)

B4Y 0.081 0.093 0.196 281.0 42.9 -9.5 1.65
B4S 0.081 0.093 0.196 281.0 20.4 -12.0 2.89
B46 0.081 0.093 0.196 281.0 9.3 -11.0 552
B47 0.081 0.093 0.196 281.0 5.6 -10.6 7.40
B48 0.081 0.093 0.196 79.1 41.3 -29.2 2.35
B49 0.081 0.093 0.196 79.1 13.2 -12.1 5.07
B50 0.081 0.093 0.196 79.1 5.4 -29.2 9.25
B51 0.082 0.154 0.233 281.0 42.9 -29.5 2. 49
B52 0.082 0.154 0.233 281.0 12.8 -13.0 5.97
B53 0.082 0.154 0.233 281.0 5.6 -8.5 10.39
BS54 0.082 0.154 0.233 281.0 5.1 -10.9 11.39
BS5 0.082 0.154 0.233 79.1 41.3 -11.4 3.05
BS6 0.082 0.154 0.233 79.1 20.7 -22.8 5.18
BS7 0.082 0.154 0.233 79.1 5.4 -19.7 12.79
B58 0.079 0.079 0.156 281.0 43.3 -29.0 1 2355
B59 0.079 0.079 0.156 281.0 9.3 -10.0 4.39
B60 0.079 0.079 0.156 281.0 5.6 -22.0 6.02
B61 0.079 0.079 0.156 79.1 20.7 -11.0 2.97
B62 0.079 0.079 0.156 79.1 13.2 -21.5 4.29
B63 0.079 0.079 0.156 79 .1 5.4 -28.9 7.92
B64 0.086 0.303 0.306 281.0 14.6 -22.7 6.44
B65 0.086 0.303 0.306 281.0 5.6 -11.5 11.93
B66 0.086 0.303 0.306 79.1 41.3 -10.3 3.45
B67 0.086 0.303 0.306 79.1 13.2 -23.5 8 .43
B68 0.086 0.303 0.306 79.1 5.4 -27.4 15.99
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Table 6.6 Experimental Data For Freezing and Thawing of Two-Dimensional
Irregular Shapes of Tylose

Run Shape D h T T. t

Number Code 2 a n .
(m) (Wm*" °C ) (°C) (°C) (hrs)

In 1 0.1525 28.0 21.1 -15.2 9.95
12 1 0.1525 28.0 20.8 -16.6 10.60
I3 1 0.1525 28.0 13.7 -13.7 13.79
I4 1 0.1525 28.0 13.6 -17.2 16.12
I5 1 0.1525 28.0 5.6 -16.1 26.23
16 1 0.1525 28.0 -19.7 18.1 9.83
17 1 0.1525 28.0 -23.6 2.8 6.77
18 1 0.1525 28.0 -25.0 33.6 7.88
I9 1 0.1525 28.0 -27.0 19.4 7.34
110 1 0.1525 28.0 -30.6 2.7 5.82
In 1 0.1525 28.0 -33.9 19.4 5.45
I12 1 0.1525 28.0 -38.5 23.9 5.18
113 2 0.1115 28.0 40.6 -12.1 5.40
Iy 2 0.1115 28.0 20.3 -31.3 9.98
115 2 0.1115 28.0 13.7 -21.9 13.28
116 2 0.1115 28.0 13.6 -17.2 13.11
117 2 0.1115 28.0 5.6 -31.7 24.98
118 2 0.1115 28.0 -19.7 31.8 9.53
119 2 0.1115 28.0 -23.7 4.3 6.31
120 2 0.1115 28.0 -25.1 34.9 7.30
I21 2 0.1115 28.0 -26.9 20.0 6.70
122 2 0.1115 28.0 -38.6 1.8 3.96
123 3 0.1370 28.0 20.3 -11.2 10.17
124 3 0.1370 28.0 13.7 -19.9 14,47
125 3 0.1370 28.0 8.4 -19.4 18.69
126 3 0.1370 28.0 5.6 -18.4 27.32
127 3 0.1370 28.0 -19.8 19.5 9.31
128 3 0.1370 28.0 -26.9 20.1 7.13
129 3 0.1370 28.0 -30.5 32.8 6.90
130 3 0.1370 28.0 -38.5 13.4 4.63
I31 by 0.0990 28.0 20.1 -21.5 8.98
132 4 0.0990 28.0 13.7 -32.5 12.28
133 4 0.0990 28.0 8.4 -13.2 16.86
134 4 0.0990 28.0 556 =9.5 21.19
135 4 0.0990 28.0 -19. 18.1 7.82
136 by 0.0990 28.0 -27.1 19.9 6.17
137 4 0.0990 28.0 -38.6 19.1 k.04

...continued
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Run Shape D h T T. t

Number Code 2 -1 a = 0
(m) (Wm ™ °C ) (°C) (°C) (hrs)

138 5 0.1050 34.2 21.1 -15.7 5.13
139 5 0.1050 34.2 13 .6 -12.7 7.19
140 5 0.1050 34.2 8.5 -12.6 9.35
I 5 0.1050 34.2 5.6 -32.5 15.17
142 5 0.1050 34.2 -19.8 3.3 4.51
143 5 0.1050 34.2 -27.2 19.3 3.78
L4y 5 0.1050 34.2 -30.6 3.1 3.01
I45 5 0.1050 34.2 -39.0 32.4 2.
146 5 0.1050 20.3 5.3 -28.1 18.83
47 5 0.1050 20.3 -22.2 14.9 6.27
148 5 0.1050 20.3 =341 19.7 412
149 6 0.0850 34.2 40.4 -29.8 3.19
150 6 0.0850 34.2 20.2 -20.1 5) 48]
I51 6 0.0850 34.2 13.7 -20.9 7T.14
152 6 0.0850 34.2 5.5 -9.7 13.08
153 6 0.0850 34.2 -19.6 31.4 5.01
I54 6 0.0850 34.2 -26.9 20.0 3.55
155 6 0.0850 34.2 -30.6 22.0 3.21
156 6 0.0850 34.2 -39.1 2.3 2.05
157 7 0.0910 34.2 20.2 -31.6 5.24
158 7 0.0910 34.2 13.7 -21.4 7.32
159 7 0.0910 34.2 8.4 -29.4 9.06
160 7 0.0910 34.2 56 -28.4 13.60
I61 7 0.0910 34.2 -19.8 2.6 4.30
162 7 0.0910 34.2 -26.9 20.6 3.82
163 7 0.0910 34.2 -30.1 12.8 3.17
I64 7 0.0910 34.2 -38.8 28.4 2.58
165 7 0.0910 20.3 32.5 -28.7 4.55
166 7 0.0910 20.3 8.1 -26.6 12.18
167 7 0.0910 20.3 5.3 -11.6 16.81
168 7 0.0910 20.3 -21.3 19.9 6.56
169 7 0.0910 20.3 -29.9 3.3 3.77
170 7 0.0910 20.3 -34.1 20.4 3.87
In 8 0.0475 34.2 40.6 -11.9 1.76
172 8 0.0475 34.2 20.6 -11.4 3.01
173 8 0.0475 34.2 13.7 -20.2 4.43
I74 8 0.0475 34.2 5.6 -15.1 7.99
175 8 0.0475 34.2 -19.7 4.4 3.40
I76 8 0.0475 34.2 -27.1 19.4 2.65
177 8 0.0475 34.2 -38.7 18.3 1.70
178 8 0.0475 20.3 15.6 -12.1 4.70
179 8 0.0475 20.3 8.1 -11.2 7.69
180 8 0.0475 20.3 5.3 -27.6 1.77
181 8 0.0475 20.3 -22.1 2.9 3.87
182 8 0.0475 20.3 -29.6 33.7 3.48
183 8 0.0475 20.3 -34.1 34.5 3.1
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Table 6.7 Experimental Data For Freezing and Thawing of

Three-Dimensional Irregular Shapes of Tylose

136

Run Shape D h Ta Tin texp
Number 2

(m) (Wm = °C ) (°C) (°C) (hrs)
TI Pyramid 0.0825 41.0 21.0 =143,.5 4,52
TI2 Pyramid 0.0825 41.0 9.8 -15.6 7.65
TI3 Pyramid 0.0825 41.0 5.6 -28.2 12.28
TI4 Pyramid 0.0825 41.0 -25.6 35.8 3.62
TIS Pyramid 0.0825 41.0 -29.2 5.1 2.70
TI6 Pyramid 0.0825 41.0 -38.0 19.8 2.u8
TI7T Sphere 0.1270 51.4 12.8 -11.9 5.94
TI8 Sphere 0.1270 51.4 5.6 -20.9 11.14
TI9 Sphere 0.1270 51.4 -21.1 20.5 3.03
TIT0 Sphere 0.1270 51.4 -22.5 36.7 3855
TI11 Sphere 0.1270 51.4 -37.9 4.0 1.83
TI12 Sphere 0.1270 51.4 -38.1 30.7 1.99
TI13 Egg 0.1700 51.4 30.1 -14.9 5.62
TINA Egg 0.1700 51.4 12.8 -28.6 11.46
TI1S Egg 0.1700 51.4 Boll -12.0 21.22
TIN6 Egg 0.1700 51.4 -22.6 20.6 5.76
TI17T  Egg 0.1700 51.4 -29.1 34.9 4.55
TI18 Egg 0.1700 51.4 -38.6 19.6 4.11
TI19 Fish 0.1200 51.4 14.7 -13.0 8.29
TI20 Fish 0.1200 51.4 10.8 -13.7 10.48
TI21 Fish 0.1200 51.4 5.6 -28.4 18.76
TI22 Fish 0.1200 51.4 -21.9 5.9 4.13
TI23 Fish 0.1200 51.4 -29.1 34.4 3.65
TI24 Fish 0.1200 51.4 -38.5 16.3 2.81
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Table 6.8 Experimental Data For Freezing and Thawing of Slabs and
Multi-Dimensional Shapes of Minced Lean Beef

137

Run  Shape! D D D h T T. t
Number & Code y z - 1 a 1n exp
(m) (m) (m) (Wm “ °oC ") (°C) (°C) (hrs)
M1 Slab 0.024 13.2 5.8 -19.1 8.58
M2 Slab 0.024 50.4 26.9 -15.6 0.84
M3 Slab 0.047 18.2 8.0 =27.1 12.07
My Slab 0.047 78.1 15.8 =24 .4 2.85
M5 Slab 0.075 24 .5 43.2 =29.0 5.21
M6 Slab 0.075 172.7 9.3 -16.9 8.94
M7 Brick 0.152 0.153 0.154 41.0 27.0 -28.4 T.22
M8 Brick 0.152 0.153 0.154 41.0 8.4 -15.0 18.01
M9 Brick 0.076 0.077 0.300 41.0 13.0 =22.3 5.23
M10 Brick 0.076 0.077 0.300 41.0 5.8 -23.9 9.32
M11 2DI 3 0.1370 28.0 21.0 =27.1 10.07
M12 2DI 3 0.1370 28.0 8.1 -13.2 19.50
M13 2DI 3 0.1370 28.0 =29.1 18.8 6.27
M14 2DI 3 0.1370 28.0 =30.2 24 .5 6.33
M15 2DI 8 0.0475 20.3 13.9 -11.6 5.05
M16 2DI 8 0.0475 20.3 6.5 -16.3 8.75
M17 2DI 8 0.0475 20.3 -23.3 3.1 3.43
M18 2DI 8 0.0475 20.3 -37.8 32.2 2.59
! 2DI = two-dimensional irregular, code numbers from Table 6.6.
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Fig. 6.1 A Typical Temperature/Time Profile For Thawing of Slabs of
Tylose. Run T24, Dy = 0.0525 m, h = 50.4 W m 2 oC™',
Ta = 13.4¢C, Tin = -23.6°C. A - experimentally measured
temperatures, B - temperatures predicted by the full finite
element method formulation. Results for all the numerical
methods are all virtually identical.
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Fig. 6.2 A Typical Temperature/Time Profile For Thawing of Infinite
Cylinders of Tylose.
Run C22, D. = 0.103 m, h = 19.5 Wm 2 °C ', T, = -8.2°C,
Tin = -14.9°C. A - experimentally measured temperatures,
B - temperatures predicted by the finite difference method.
Results for the finite difference method and both finite |

element method formulations are all virtually identical.
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Fig. 6.3 A Typical Temperature/Time Profile For Thawing of Spheres of
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Tylose. Run S6, D. = 0.128 m, h = 74.8 W m 2 oC™'

Ta = 11.9°C, Tin = -23.1°C. A - experimentally measured

temperatures, B - temperatures predicted by the simplified

finite element method. Results for all the numerical methods

are virtually identical.
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Fig. 6.4 A Typical Temperature/Time Profile For Thawing of Rectangular

Bricks of Tylose. Run B7, Dy = 0.104 m, Dy = 0.125 m, D, =
0.152 m, h = 50.4 Wm 2 ™', T, = 45.0°C, T;, = -12.0°C.

A - experimentally measured temperatures, B - temperatures
predicted by the finite difference method, C - temperatures
predicted by the simplified finite element method, Tw =

temperature at the surface of the centre of the x,z face.
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Fig. 6.5 A Typical Temperature/Time Profile For Freezing or Thawing of

Temperature (°C)

the Tylose Two-Dimensional Irregular Shape Number One.

Run 17, h = 28.0 Wwm 2 oc™', T, = -23.6°C, T;, = 2.8°C.

A - experimentally measured temperatures, B - temperatures
predicted by the full finite element method, C - temperatures
predicted by the simplified finite element method. Calculated

using the two-dimensional grid in Fig. 5.15.
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Fig. 6.6 A Typical Temperature/Time Profile For Freezing or Thawing of

the Tylose Two-Dimensional Irregular Shape Number Two.

Run I16, h = 28.0 Wm 2 oc™', T, = 13.6°C, T;, = -17.2°C.

A - experimentally measured temperatures, B — temperatures
predicted by the full finite element method, C - temperatures
predicted by the simplified finite element method. Calculated

using the two-dimensional grid in Fig. 5.16.
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Fig. 6.7 A Typical Temperature/Time Profile For Freezing or Thawing of
the Tylose Two-Dimensional Irregular Shape Number Three.
Run 129, h = 28.0 Wm 2 oc"', T, = -30.5°C, T;, = 32.8°C.
A - experimentally measured temperatures, B - temperatures
predicted by the full finite element method, C - temperatures
predicted by the simplified finite element method. Calculated
using the two-dimensional grid in Fig. 5.17.
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Fig. 6.8 A Typical Temperature/Time Profile For Freezing or Thawing of

o
N -

the Tylose Two-Dimensional Irregular Shape Number Four.

Run I31, h = 28.0 Wm 2 oc™', T, = 20.1°C, Ty, = -21.5°C.

A - experimentally measured temperatures, B - temperatures
predicted by the full finite element method, C - temperatures
predicted by the simplified finite element method. Calculated
using the two-dimensional grid in Fig. 5.18.
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Fig. 6.9 A Typical Temperature/Time Profile For Freezing or Thawing of
the Tylose Two-Dimensional Irregular Shape Number Five.
Run I39, h = 34.2 Wm 2 oc”™', T, = 13.6°C, T;, = -12.7°C.
A - experimentally measured temperatures, B - temperatures
predicted by the full finite element method, C - temperatures
predicted by the simplified finite element method. Calculated
using the two-dimensional grid in Fig. 5.15.
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Fig. 6.10 A Typical Temperature/Time Profile For Freezing or Thawing of
the Tylose Two-Dimensional Irregular Shape Number Six.
Run 156, h = 34.2 Wwm™2 oc™', T, = -39.1°C, T, = 2.3°C.
A - experimentally measured temperatures, B - temperatures
predicted by the full finite element method, C - temperatures
predicted by the simplified finite element method.
Calculated using the two-dimensional grid in Fig. 5.19.
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Fig. 6.11 A Typical Temperature/Time Profile For Freezing or Thawing of
the Tylose Two-Dimensional Irregular Shape Number Seven.
Run 129, h = 20.3 Wm 2 °oC”', T, = 5.3°C, Ty, = -11.6°C.
A - experimentally measured temperatures, B - temperatures
predicted by the full finite element method. Calculated

using the two-dimensional grid in Fig. 5.20.
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Fig. 6.12 A Typical Temperature/Time Profile For Freezing or Thawing of
the Tylose Two-Dimensional Irregular Shape Number Eight.
Run I77, h = 34.2 Wm™2 oc”!, T, = -38.7°C, T;, = 18.3°C.
A - experimentally measured temperatures, B - temperatures
predicted by the full finite element method, C - temperatures
predicted by the simplified finite element method.

Calculated using the two-dimensional grid in Fig. 5.21.
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Fig. 6.13 A Typical Temperature/Time Profile For Freezing or Thawing of
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Fig. 6.14

IST
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1

the Tylose Three-Dimensional Irregular Pyramid Shape.

Run TIS, h = 41.0 W m~2 oc™!, T = -29.2°C, T;, = 5.1¢C.

A - experimentally measured temperatures, B - temperatures
predicted by the full finite element method, C - temperatures
predicted by the simplified finite element method.

Calculated using the three-dimensional grid in Fig. 5.24.

1 - at the centre of the x,y face (base) of the pyramid,

2 - 0.0765 m (mid-height) above position 1 (Fig. 5.24).

c

I L 1 ] )
0 2 4 6 8
Time (hrs)
A Typical Temperature/Time Profile For Freezing or Thawing of

the Tylose Three-Dimensional Irregular Sphere Shape.

Run TIS, h = 51.4 Wm 2 oc”', T, = 12.8°C, T;, = -11.9°C.

A - experimentally measured temperatures, B - temperatures
predicted by the full finite element method, C - temperatures
predicted by the simplified finite element method.

Calculated using the two-dimensional grid in Fig. 5.25b.
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Fig. 6.15 A Typical Temperature/Time Profile For Freezing or Thawing of
the Tylose Three-Dimensional Irregular Fish Shape.
Run TI20, h = 51.4 Wm 2 oc™', T, = 10.8°C, T;, = -13.7°C.
A - experimentally measured temperatures, B - temperatures
predicted by the full finite element method, C - temperatures
predicted by the simplified finite element method.
Calculated using the three-dimensional grid in Fig. 5.27.
4 - 0.213 m along the x axis from the tip of the head shown
in Fig. 5.27b, 5 - 0.085 m along the x axis from the tip of
the head shown in Fig. 5.27b, 6 - 0.021 m along the x axis
from the tip of the head shown in Fig. 5.27b and on the fish

surface 0.021 m in the y direction from the x axis.
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Fig. 6.16 A Typical Temperature/Time Profile For Freezing or Thawing of
the Tylose Three-Dimensional Irregular Egg Shape.
Run TI16, h = 51.4 W m 2 oc™!, T = -22.6°C, T;, = 20.6°C.
A - experimentally measured temperatures, B - temperatures
predicted by the full finite element method, C - temperatures
predicted by the simplified finite element method.

Calculated using the three-dimensional grid in Fig. 5.26b.

20—
i ...---.---..-------o--..-‘-..‘-_
e
o 0 smsse
é S essnssssssssaw
o]
®
Q.  —10- | |
E fgen

T
0 0.3 1 1.5 2.5 3 3.5

J 2
Time (hrs)

Fig. 6.17 A Typical Temperature/Time Profile For Thawing of Slabs of

Minced Lean Beef.
Run My, D, = 0.047 m, h = 78.1 Wm 2 oC™, T, = 15.8°C,
Tin = -24.2°C. A - experimentally measured temperatures,

B - temperatures predicted by the finite difference method.
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A Typical Temperature/Time Profile For Thawing of Rectangular
Bricks of Minced Lean Beef.
Run M8, D, = 0.152 m, Dy =0.153 m, D, = 0.154 m,
) =l -
h=U41,0Wm SR T, = g.u°C, Tip = ~15.0°C.
A - experimentally measured temperatures, B - temperatures

predicted bty the finite difference method.
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Fig. 6.19 A Typical Temperature/Time Profile For Freezing or Thawing of

a Minced Lean Beef Two-Dimensional Irregular Shape.

Run M14, two-dimensional irregular Shape No. 3,
h=28.0Wm2eC ', T, =-30.2°C, T, = 24.5°C.

A - experimentally measured temperatures, B - temperatures
predicted by the full finite element method, C - temperatures
predicted by the simplified finite element method.

Calculated using the two-dimensional grid in Fig. 5.17.
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7 PREDICTION OF THAWING TIMES FOR SLABS,
INFINITE CYLINDERS AND SPHERES

In Chap. 3 prediction methods were classified into those requiring only
hand calculation (Group I) and those requiring computer calculation
(Group II). The third objective for the present work set in Chap. 3
was to assess the accuracy of Group I and Group II methods for
prediction of thawing times for regular shapes. Chapter 7 reports
results for Group I and Group II methods applied to slabs, infinite
cylinders and spheres. Chapter 8 reports the results of Group II
methods applied to rectangular bricks as well as multi-dimensional
irregular shapes, whilst Chap. 9 considers Group I methods for

multi-dimensional regular shapes.

7.1 VERIFICATION OF A UNIFIED APPROACH FOR SIMPLE SHAPES

Plank (1913) derived an equation for the time to freeze or thaw slabs,

infinite cylinders and spheres. This equation suggests that the ratio

of times for phase change for the three shapes under identical

conditions and with the same characteristic dimension is 6:3:2. The

ratio arises from consideration of the relationship between volume and

surface area for each shape. However the equation requires that the

following conditions are met: '

(a) that phase change occurs at a unique phase change temperature

(b) that thermal properties are constant and

(c) that sensible heat effects are negligible compared with the 1latent
heat.

In freezing or thawing of biological materials not all these conditions
are met so the 6:3:2 ratio is not necessarily correct. However taking
the ratio as constant allows a single phase change time prediction
method for one of the basic shapes to be equally applicable to the

other two, which is a desirable feature of any prediction method.

Data are available for freezing of foods where latent heat is released
over a range of temperatures, thermal properties change with
temperature and sensible heat effects both above and below the freezing

temperature range are significant (Cleland & Earle 1977a, 1979a).
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Within the tolerance of the data, previous studies (Cleland & Earle
1982b, Pham 1984a) suggested that there was no evidence that the ratio
was not constant at 6:3:2. The predictions for all the shapes showed

no trends with changes in shape or freezing conditions (Pham 198lc).

The hypothesis that the ratio of tslab’tcyl:tsph is constant at 6:3:2
for both freezing and thawing of foods and that it is independent of
environmental conditions was tested more rigorously by use of numerical
methods. The Tylose freezing data (Cleland & Earle 1976b, 1977a,
1979a, 1979b) and the Tylose thawing data (Chap. 6) for the slab,
infinite cylinder and sphere shapes were predicted wusing the three
numerical methods discussed in Chap. 4 - the finite difference method
and the two finite element method formulations. For each experimental
run nine predictions were made - one for each combination of the three
numerical methods and the three geometry descriptions. Each prediction
was modified by the appropriate ratio and the percentage difference
from the experimental time calculated. For example, an infinite
cylinder experimental run was predicted by results from slab, infinite
cylinder and sphere versions of the three numerical methods multiplied
by 0.5, 1.0 and 1.5 respectively. The percentage differences were
calculated from:
predicted time - experimental time 100

percentage difference = . (7.1)
experimental time 1

The results for both the freezing and thawing data are summarised in
Table 7.1. The finite difference method and the two finite element
method formulations gave almost identical results so only the finite
difference results are presented. The ratios of numerically predicted
times: tslab/tsph' tslab/tcyl and tcyl/tsph were also examined for
each set of experimental runs. The mean values and 95% confidence
intervals were 3.02 $0.20, 2.01 $0.07 and 1.50 +0.05 respectively for
freezing and 3.00 +0.37, 2.00 $0.15 and 1.50 $0.07 respectively for
thawing.

The mean prediction accuracy was not significantly affected by the
choice of geometry description used in the numerical calculations.
Hence, on average, the ratio of 6:3:2 holds for both freezing and

thawing.
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Variations of the 6:3:2 ratio for individual experimental runs arose
from two factors - both the overall change in enthalpy from the initial
temperature to a specified final thermodynamic centre temperature and
the mean "effective" thermal conductivity differ with shape. These are
directly consequential on the different distribution of volume with
respect to displacement from the geometric centre in the three shapes,
which in turn affects the shape of the temperature/displacement
profile. These factors mean that the tslab‘tcyl’tsph ratio is
dependent on Bi, Ste and Pk.

For freezing the dependence of the ratio on Ste and Pk 1is weak. For
the ranges over which Bi, Ste and Pk vary 1in typical freezing
operations (Table 6.1), there is no need to take account of these
trends. The ratio can be considered constant at 6:3:2 without
introducing any significant additional uncertainty into the

predictions.

For thawing the effect of Pk is insignificant because values of Pk
typically encountered are small (Table 6.1). Also thermal conductivity
is high and temperature driving forces are large when the sensible heat
represented by Pk 1is transferred so this heat transfer is easily
achieved. Conversely, the sensible heat represented by Ste is
transferred more slowly as temperature differences and the thermal
conductivities are both lower at this stage in the thawing process.
Typically in thawing Ste varies over a wide range so the Ste effect is
larger. The Bi effect results from changes in the thermal conductivity
with temperature and variation of the surface temperature and
temperature/displacement profile at the end of the phase change process

as Bi changes.

Although discernible in the numerical results, the Bi, Ste and Pk
effects were sufficiently small compared with the experimental
uncertainty in the data set (Tables 6.2, 6.3 and 6.4) that they could
be ignored 1in the present work. By uée of thé 6:3:2 ratio all the
slab, infinite cylinder and sphere data could be grouped together for
analysis by a wunified approach. If more accurate thawing data were
available, parameters relating Bi; Ste and Pk to shape may be needed to

give accurate predictions for all three shapes.
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7.2 PREDICTION BY NUMERICAL METHODS

A wide range of numerical solutions to thawing problems were discussed
in Chaps. 2 and 4. The three time level Lees' finite difference scheme
and finite element method that accounted for thermal properties
continuously variable with temperature, were shown to be the best

numerical methods for prediction of phase change in foods.

Using the thermal data given in Table 5.1 the predictions by the finite
difference method and the two finite element formulations are compared
with the experimental slab, infinite cylinder and sphere thawing times
in Table 7.3. Typical predicted temperature profiles are shown in
Fig. 6.1 to 6.3. In all cases an evenly spaced 11 node grid (with 10
two node linear elements for the finite element methods) was used.
Numerical approximation error could be reduced by using a more refined
grid (and/or higher order elements for the finite element method).
Testing of different grid sizes was carried out for some runs but as
significantly different predictions did not result, the 11 node grid

was considered satisfactory.

The 95% confidence limits of the percentage differences (Eq. (7.1))
between the calculated thawing times and the experimental results for
all three shapes are -9.3% to 6.7% for the finite difference method,
-9.6% to 7.9% for the full finite element formulation (Eqs. (4.2) to
(4.5)) and -9.5% to 9.3% for the simplified finite element formulation
(Eqs. (4.5) to (4.8)). These uncertainty limits include contributions
from three sources - experimental error, thermal data error and errors

in the application of the numerical methods.

Applying the criteria of Cleland & Earle (1984a) to comparisons of the
numerical predictions with the experimental results showed no trends in
the data that might suggest major systematic experimental or thermal
data errors. The experimental error bounds could not be determined
accurately but were estimated to be between t5% and +10% (Chap. 5,
Table 12.2) for the slab, infinite cylinder and sphere thaﬁing
experiments. This 1is of the same order of magnitude as the total
limits for the numerical predictions, suggesting that only minimal

uncertainty has arisen in the application of the numerical methods.
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This was expected because relatively fine space and time grids could be
used (Chap. 4).

Some slab runs had a contribution from edge heat transfer that was
estimated to exceed 1% (Sec. 5.4.4, App. B). The predicted thawing
times calculated by the three numerical methods for these runs when
compared with the experimental data agreed to within 1.3% +8.4%, 0.2%
+8.8% and 0.2% 18.8% respectively. If edge heat transfer was
significant compared with sources of random error then the means of
these percentage differences should be noticably offset from the mean
of all the other percentage differences. It was concluded that the
extra experimental uncertainty in these runs had not significantly

increased the overall uncertainty.

Numerical methods, if formulated and implemented correctly, are the
closest to exact prediction methods. Therefore as there is no
significant and identifiable systematic trend or correlation in the
experimental data the error bounds of the numerical predictions are the
best estimate of the overall random experimental error (due to
uncertainty in control and measurement of experimental conditions).
Predictions better than those achieved by the numerical methods cannot
be expected if the same experimental and thermal data are used unless a
more exact or sophisticated form of the numerical methods 1is used
(Heldman 1983, Cleland & Earle 1984a). Comparing the numerical
predictions for each shape individually (Table 7.3) gives estimates of
the experimental error for the experiments with each shape. The
average 95% confidence bounds of the observed differences for the three
numerical methods are on average +7.1%, +5.0% and +11.3% for slabs,
infinite cylinders and spheres respectively. As expected the
uncertainty for slabs and infinite cylinders is lower than for spheres
as better control and measurements of the experimental conditions,
especially dimensions and surface heat transfer coefficients, were
possible (Chap. 5). The above uncertainty bounds are consistent with
experimental variability measured by summing that measured in replicate
experiments, and systematic error from other sources not evident from

the replicates (for example, measurement of h).

The mean prediction error arising from calculations by the simplified
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finite element method formulation was higher than for the other two
methods. This is due to the relatively crude way in which variations
in the thermal properties are incorporated into this method. For this
method increasing the number of nodes and elements did have some
benefits and reduced the difference 1in prediction compared with the
other methods. It is debatable whether the savings in computation
costs justifies this 1loss 1in accuracy as the decrease in computer
memory sSize requirements and increase in speed achieved by using the

simple formulation for one-dimensional work is small.

Centre temperature profiles were accurately predicted by all the
numerical methods though, for the reason outlined above, the simplified
finite element formulations performed 1least well in this respect.
Differences between predicted and experimental temperatures were more
likely to have arisen from uncertainty in thermocouple placement rather
than numerical method error. In Chap. 5 it was shown that thermocouple
placement was a major problem. It did not affect thawing time
prediction (because the breakpoint analysis was used), but did give
significantly different experimental temperature profiles from those

expected at the centre.

All three numerical methods tended to predict surface temperatures
consistently lower than those measured experimentally for the infinite
cylinder and sphere experiments. This was due to the problems with
thermal contact, air voids and thermocouple placement at the surface
for these shapes. As discussed in Secs. 5.5 and 5.6 the methods used
to estimate the average surface heat transfer coefficient only used the
centre temperature and not the surface temperature data. The
experimentally determined surface temperature was taken from the
thermocouple that exhibited the most rapid change in temperature. This
thermocouple was not necessarily representative of the true average
surface temperature. Numerical predictions made with the average
surface heat transfer coefficient therefore underestimated the rate of
change of the experimental values. For the slab shape the surface
temperature predictions were consistently more accurate as problems

with voids were avoided.

For the finite element methods some unexpected deviations of the
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temperature profiles were observed when elements were near the latent
heat temperature range. This occurred because of the way the finite
element methods incorporated the thermal properties and was an effect
of the integral nature of the finite element method, especially when
thermal property change with temperature are rapid (Cleland et al
1984).

7.3 PREDICTION BY SIMPLE FORMULAE

7.3.1 Existing Prediction Formulae

In Chap. 2 a 1large number of simple formulae for calculation of
freezing and thawing times in slabs, infinite cylinders and/or spheres
were discussed. Many of these formulae were not expected to be
accurate in the situations considered in this work. Solutions that
only take account of the first kind of boundary condition are not
suitable for general use as they give poor predictions except where the
surface heat transfer coefficient 1is extremely high. These types of
methods were therefore not considered any further. Similarly solutions

for the second kind of boundary condition were considered impractical.

Thawing times for the slab, infinite cylinder and sphere experimental
data were calculated using the methods that considered the third kind
of boundary condition and that seemed most likely to lead to reasonable
prediction accuracy. The percentage differences between the calculated
results and the experimental thawing times were found (Eq. (7.1)). A

summary of these values is given in Table 7.2.

Most of the methods tested assume that all the latent heat is absorbed
at a unique thawing temperature and that the frozen and unfrozen phase
have constant thermal properties (thermal conductivity and specific
heat capacity). For these methods the thermal conductivity of the
completely unfﬁozen material was used, and the latent heat component
was obtained by subtracting the sensible heat component from the total
enthalpy change between 0°C and -10°C. Except where a "mean" thawing
temperature was defined, the unique thawing temperature was taken as
the initial freezing temperature because this is well defined for most

foods and the rate of change of the ice fraction with temperature is at
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a maximium at this temperature. The choices of properties made fit the
concept of the analytical methods, are not ambiguous, and also use the
best known thermal data for most foods. The thermal property values

used are given in Table 5.2.

Some methods based on modifications to existing analytical formulae
define the thermal properties differently, generally to more closely
approximate the true thermal properties during the phase change
process. Commonly, the enthalpy change is defined to include sensible
heat effects, and average thermal conductivities and mean phase change
temperatures are used. In each such case the guidelines for thermal
property determination suggested by the proposer of the prediction

method were followed as closely as possible,

Some empirical formulae developed specifically for freezing time
prediction were also tested. If it was possible the analogous
empirical formula was developed for thawing. Generally the methods
that could be adapted were those with a more complete theoretical
basis. Other formulae were situation or product specific and could not

be made applicable.

Prediction methods that did not predict the experimental thawing data

well were limited in one or more of the following ways.

(1) Methods developed for semi-infinite slabs cannot be applied to
finite shapes if sensible heat effects prior to phase change are
significant. This is because heat transfer is calculated to occur
from a greater volume 1in the semi-infinite slab than is actually
present in the finite geometry (Geuze et al 1972, Cleland 1977).

(2) Methods assuming a unique thawing temperature (taken as equal to
the initial freezing temperature) lead to overprediction of thawing
time because much of the 1latent heat (as well as subcooling
sensible heat) is absorbed over a range of temperatures lower than
Tif' Therefore the actual temperature driving force for heat
traﬁsfer is greater than that used in calculations.

(3) Methods that used the unfrozen phase thermal conductivity during
the phase change process tended to overpredict the thawing times.
The true mean thermal conductivity during the thawing process is

greater than or equal to the unfrozen value so more heat transfer
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occurs in practice than calculated using the fully unfrozen value.
(4) Thawing time prediction methods ignoring sensible heat added to the
thawed region tend to underpredict.
(5) Methods ignoring the sensible heat added to the frozen region
underpredict. The extent of the underprediction from this cause is

less than that from (4).

Numerical methods that solve the governing partial differential
equation for heat transfer and take account of temperature dependent
thermal properties correctly model the thawing process physically and
therefore give predictions that are not affected by the above factors.
Comparison with the results for the numerical methods helps to identify
how well a prediction method performs in trying to give a physically
correct description of these factors and how they affect thawing time.
It is convenient to use the correlation coefficient (r) comparing

percentage differences in the manner of Cleland & Earle (1984a).

The methods and results in Table 7.2 were divided into nine groups.
The Group A methods are affected by the first of the above limitations
and are not accurate. Other methods that solve for the semi-infinite
slab do not account for initial subcooling and consequently predict

differently to Group A methods.

Plank's (1913) equation (Group B) was limited by the 1latter four
factors. The compensatory nature of (2) and (3) against (4) and (5)
means that the mean prediction error was +6.0%. However, the spread of
the predictions was large (ti43% at the 95% level of confidence) and the
correlation with the finite difference method results was 1low. This
indicates that the compensation was not consistent between rhns with
different conditions, rendering the equation unreliable. In freezing,
Plank's equation consistently underpredicted by 20% to 40% because the
equivalent problems to factors (2) to (5) all lead to underprediction

for that process.

The analytical methods due to Rutov (1936), Goodman (1958), Shih & Chou
(1971), Shih & Tsay (1971), Huang & Shih (1975a, 1975b), Kern (1977),
Glasser & Kern (1978), Yan & Huang (1979), Clyne & Garcia (1980), Cho &
Sunderland (1981), Soliman (1981) and Hill & Kucera (1983), and the
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empirical methods of Baxter (1962), Tao (1967, 1968) and Goodling &
Khader (1974), form Group C. They are all limited in similar ways to
Plank's equation except that they take account of the sensible heat in
the unfrozen phase. All methods within this group gave similar
prediction accuracy. The results for Goodman (1958) shown in Table 7.2
are typical of the whole group. The mean difference was higher than
that for Plank's equation and the spread is reduced because factor (U4)
was taken into account. The predictions are still poor because of the
other limitations.

Group D are the modified analytical methods (semi-analytical) that are
based on multiplicative factors to account for sensible heat effects
(factors (4) and (5)). They all tend to substantially overpredict

thawing times, and predictions tend to have a large spread.

Group E methods use either a mean phase change temperature (Mott 1964,
Fleming 1967), an average thermal conductivity (Mellor & Seppings 1976)
or both (Modified Plank) to take account of factors (2) and (3). Such
methods still do not take account of all the 1limitations 1in a
physically realistic manner sSo the spread of predictions was still

large.

The Group F methods break the phase change process into three stages
and attempt to approximate the heat transfer in each stage. They
perform better than Group D because they model the true physical
conditions more realistically. To remain simple these methods use some
averaging techniques. They .tend to overpredict the thawing times
usually because they do not take account of factors (2) and (3)

properly.

The empirical formulae developed for freezing (Group G) all tend to
overpredict thawing times as the empirical correction factors are not
appropriate for thawing. The method of Succar & Hayakawa (1984) was
not tested as it 1is possibly unnecessarily complex and yet was not

expected to be more accurate, than the other methods in this group.

The two empirical methods (Group H) specifically developed for thawing

time prediction gave the best prediction accuracy. Creed & James
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(1981) gave an empirical formula for thawing of slabs of boneless beef
based on both numerical predictions and experimental thawing data. It
gave prediction with 95% confidence bounds of -17.7% to 18.1%. The
method is product specific because it does not take account of
s? Cl' CS' AMH, Tif)- Also the

predicted thawing time is only valid for Tin=-30°C. Tylose has thermal

different thermal properties (kl, Kk

properties similar to those of beef and thawing time is only weakly
dependent on changes in initial temperature. Therefore the predictions
have a mean difference of zero but a significantly greater variability

than would occur if these factors were taken into account.

Calvelo (1981) presents an empirical formula based on Plank's equation
derived by regression analysis of numerical predictions for thawing of
beef slabs. Though kl and Cl are incorporated 1in the -equation, the
other properties (AH, Tif’ Kg» Cs) do not need to be specified and the
method is therefore product specific. As Tylose and beef have similar
thermal properties this method gave accurate predictions with error
bounds of -11.8% to 11.8% at the 95% 1level of confidence. The
correlation of the percentage differences with the finite difference
predictions was high, suggesting that all major sources of thawing time
variation are accounted for by this formula. The residual prediction
uncertainty, apart from that due to experimental error, was small in
magnitude and was not significantly correlated to any other individual

factor.

Within Group I, only the method due to Golovkin et al (1974) gave
reasonable prediction accuracy. As the predictions were no better than
those for some other simpler methods, and because the published

derivation is unclear, the method was not considered further.

7.3.2 Improved Prediction Methods

Of the existing methods tested, only three (Creed & James 1981, Calvelo
1981 and Pham 1984a) gave predictions of reasonable accuracy and
reliability (mean percentage difference close to zero and a low
standard deviation of the percentage differences). Further, they took
account of most of the sources of variation in thawing times and were

consequently highly correlated with results from numerical methods.
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The best methods were those due to Calvelo (1981) and Creed & James
(1981) but both have the disadvantage that they do not take account of
different thermal properties for different foodstuffs. Creed & James'
method was also independent of initial temperature. Pham's (1984a)
method has the advantage of having a predominately analytical basis.
It has a low standard deviation due to the three stage approach
considering all sources of thawing time variation but the mean

percentage difference was offset from zero.

Because all the existing methods have weaknesses it seemed worthwhile
to seek a new prediction method. Empirically modified forms of Plank's
equation similar to those found to be useful for freezing (Cleland &
Earle 1982b, Hung & Thompson 1983) were investigated because of their
simplicity and success for freezing time prediction. Also prediction
formulae similar to those of Calvelo (1981) and Pham (1984a, 1984c)
were investigated to see if they could be improved and made applicable
to a wider range of situations. The Creed & James' approach may have
yielded an accurate product-specific formula but was not considered as
suitable for development of a general formula compared with the other

methods.

The following four prediction formulae were found to be superior to

others tried. Their predictions are summarised in Table 7.3.

(a) Use of the basic form of Calvelo's (1981) solution but representing
it in terms of Fo, Bi, Ste and Pk so that all the thermal
properties are included. Analysis of the experimental data by

multiple non-linear regression gave the following prediction

equation:
AD 0.5 0.125 11-0248 0.2712 0.0610

Fo oy = 1-4 * ste Pk (7.2)
2V Bi Ste Ste

(b) Use of weighted multiple 1linear regression to find modified
formulae for the shape factors 1in Plank's equation in a similar
manner to that used by Cleland & Earle (1976b, 1977a, 1979a, 1979b,
1982b). The best formula developed was:

AD P R
0O — = + (7.3)
2V Bi Ste Ste
where P = 0.5 ( 0.7754 + 2.2828 Ste Pk )

R = 0.125 ( 0.4271 + 2.1220 Ste - 1.4847 Ste® )



(c)

(d)
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Other terms were statistically significant in this model but did
not lead to worthwhile reduction of the standard deviation of the
percentage differences between experimental and predicted thawing
times. These terms may have been fitting a systematic component of
the experimental error.

A three stage approach similar to Pham (1984a, 198ic). The best

prediction formula of this type was:

AD g AHi D hD
t — = 1 + (7.4)

2V | ATy2h by
where aH, = Cg (Tifave ~ Tin)
ATy = Ty = (Tyn * Tipaye)/?
k1 = ks
AH2 =L
AT, = T3 = Tirave
k, =0.25 kg *+ 0.75 k; = 0.83 for Tylose (Wwm™! ec™y
M3 = Cy (Taye ~ Tifave)
ATz =Ty = (Tave * Tirave)/2
k3 = kl
Taye = average final temperature (ec)
= Teip - (Tpqp - To)/(2 + Uk /n/D)
Tifave= Tye ~ 1.5 = -2.1 for Tylose (°C)

Prediction accuracy was sensitive to the values of the mean
freezing temperature, the average thermal conductivity in the phase
change period and the average final temperature. To retain the
analytical basis the values of the mean thawing temperature and the
average final temperature were calculated by the methods suggested
by Pham (1984a). For accurate predictions it was necessary to
empirically fit the value for the mean thermal conductivity in the
phase change period (k2). The weighted value for k, of 0.83
W m_1 "C-1 for the phase change period, although physically
reasonable, has no basis apart from convenience. Equation (7.4) is
closely related to the methods of Pham (1984a, 198l4c), which are
both of similar prediction accuracy for freezing. Equation (7.4)
was considered to be the empirical thawing equivalent of the Pham
(198U4c) freezing approach, rather than the equivalent of the Pham
(1984a) method as the latter has more substantial analytical basis.

Direct fitting of a correction to Plank's equation gave:
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i Ste Ste AH Ste
where AH* =enthalpy change from -10°C to Tave (J m-3)

AD 0.5 0.125] " 0.02L4 PK
FO — - + 0.8941 - ——— + 0.6192 =3 (7.5)
B

Equation (7.5) is similar in form to the freezing time prediction
method proposed by Pham (1983). The Pham prediction formula has
not been published in the literature. It is:
AD 0.5 0.125

;

0 — = + ][1 + 0.04 V(Bi Ste) + 1.27 V(Pk Ste)] (7.6)
2V i Ste Ste

All four possibilities gave accurate predictions and the predictions
take account of all major sSources of variation in thawing time as
indicated by the high correlation with the finite difference method.
All the methods are simple and have some physical basis though their

derivations were not analytical.

Further refinement of these methods may be possible. It 1is unlikely
that significant 1increase 1in prediction accuracy could be achieved
without introducing further terms (that could be fitting systematic
experimental error), or empirically fitting the equations separately
for each of the three shapes. For all four formulae above, the spread
of predictions for each of the three shapes was slightly higher than
for the numerical methods. This is because the unified approach using
the 6:3:2 ratio is not completely accurate. If data for each shape are
analysed separately, three slightly different forms of Eqs. (7.2) to
(7.5), specific for each shape, can be derived. The percentage
differences for these shape specific formulae have similar standard

deviations to the numerical methods for each shape.

The possibility must still exist that a different approach to any of
those investigated could conceivably lead to a more accurate formula,
but this is not considered likely.

Because Egs. (7.2) to (7.5) were derived for Tylose thawing data only,
they are restricted 1in pratice to those foods with thermal properties
similar to those of Tylose. This includes a wide range of medium to
high moisture foods and is not wunduly 1limiting. Other ranges of
applicability are:

0.6 < Bl < 57.3
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0.085 < Ste < 0.768
0.065 < Pk < 0.272

7.3.3 Comparison With Freezing Time Prediction Formulae

Methods similar in principle to Egs. (7.3) to (7.5) have been
successfully used for freezing time prediction (Cleland & Earle 1982b,
Pham 1983 (Eq. (7.6)), Pham 1984c). The main advantages of these types
of method are their simplicity, accuracy and minimal requirement for

thermal property data.

Zaritzky et al (1982) wused an approach for freezing similar to
Eq. (7.2), basing it on numerically predicted data. The method
predicted the data of Cleland(1977) poorly so multiple non-linear
regression was used to derive a more accurate formula of this type for

freezing:

0.5 0.125]0.9576 0.0550 0.0017Bi+0.1727Pk

AD
Fo — = 1.3179 + Ste 10 (7.7)
2V Bi Ste Ste

Equation (7.7) has a mean prediction error of 0.1% 17.3% at the 95%
confidence level and a correlation coefficient of 0.61 compared with
the finite difference method predictions errors, when tested against
the freezing data of Cleland & Earle (1977a, 1979a, 1979b). This
compares favourably with the prediction accuracy of the other proven
freezing time prediction formulae (Cleland & Earle 1982b, Pham 1983,
1984a, 1984c).

Cleland & Earle (1984a, 1984b) and Pham (1983, 1984a, 198U4c) showed
that their methods were superior to other recent freezing time
prediction methods due to Mascheroni & Calvelo (1982), de Michelis &
Calvelo (1983) and Hung & Thompson (1983) for a 1large composite
freezing data set. Consequently, the number of accurate simple
freezing time prediction methods for further study was reduced to four.
These were that of Cleland & Earle (1982b, 1984a), that of Pham (1983)
(Eq. (7.6)), that of Pham (1984c) and Eq. (7.7). The method of Pham
(1984a) was not considered further as it performs no better than the
Pham (1984c) method. Similarly Eqs. (7.2) to (7.5), which are the
thawing equivalent -of the these four freezing methods, were the only

simple thawing time prediction methods considered further.
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7.4  SUMMARY

Within the accuracy of the present freezing and thawing data, it was
valid to take the ratio of phase change times for slabs, infinite
cylinders and spheres to be constant at 6:3:2 justifying a wunified

approach for freezing and thawing time prediction for these shapes.

The three numerical methods (the finite difference method and two
finite element method formulations) that accounted for thermal
properties continuously variable with temperature, accurately predicted
thawing times for the three basic shapes. The numerical methods
predicted temperature profiles during thawing as accurately as could be
expected taking into account the imprecision of some of the measured
data.

No previously published simple prediction formula was both sufficiently
accurate and suitably expressed for it to be adopted as a general
thawing time prediction method. Four improved formulae (Eqs. (7.2) to
(7.5)), that gave comparable results with the numerical methods were
developed. Each of these formulae represents a different conceptual
approach in modifying the well-known Plank's equation in ways that had

been previously successful for freezing time prediction.

For both freezing and thawing, all the approaches yielded formulae that
are of similar accuracy and simplicity. All are limited more by the
accuracy of the data from which they were derived rather than the
inherent inaccuracy of the approach used. Within the 1limits of the
testing against experimental data, all of these approaches are of
comparable usefulness. It 1is wunlikely that significantly better

methods can be developed that retain the advantage of simplicity.

None of the four approaches can be recommended as being significantly
more accurate than the others for the three basic shapes. If a method
can be easily made compatible with techniques to account for more
complex geometry then this would be a useful feature. Therefore, the
choice between the four approaches for thawing time prediction is best
delayed until a fuller consideration of a range of geometric shapes is

made.
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Table 7.1 Summary of Percentage Differences Between Experimental

Freezing and Thawing Times For Simple Tylose Shapes and

Freezing and Thawing Times Calculated By Slab, Infinite

Cylinder and Sphere Versions of the Finite Difference Method

Data'! FDM? Corr® Mean Std Dev*® Min" Max*
Type Version FDM (%) (%) (%) (%)
S S 1.00 0.8 6. -14.6 9.&
© 0.98 —O.g 5. -14 0 T.
Freezings SP 0.92 -0. 5 -13.5 6.4
© S 0.97 -3.1 6.1 -15.9 .6
G 1.00 -3.6 4.7 -14.1 0]
Freezing?® SP 0.93 -3.4 4.3 -13.3 .8
SP S -2.6 5.4 -13.2 6.1
G -2.8 4.0 -11.8 2.6
Freezing® SP =2.2 3.5 -10.3 4.1
SHERSE S 0.93 =1.8 6.1 -13.9 9 ﬁ
G 0.97 -2.0 E 1 -14 .1 i
Freezing$ SP 0.93 -2.0 .6 -13.5 6.5
Unmod. 1.00 -1.4 5.4 -14.6 9.3
S S| 1.00 -0.8 g 5 -6.3 6.8
© 0.79 0.4 .0 -8.5 13.0
Thawing® SP 0.69 1.8 7.9 -9.7 17.7
¢ S 0.45 -2.4 4.9 -9.6
© 1.00 =22 2.4 -6.8
Thawing® SP 0.7 -2.4 3.6 -8.3
SP S 0.64 0.4 8.1 -13.7 13
C 0.92 -0.2 5.9 9.0 10
Thawing® SP 1.00 -0.9 55 -9 9
SmEMSP S 0.68 0.9 Sk T -13.7 13.7
© 0.86 -0.6 5k 1 -9.0 13.0
Thawing © SP 0.78 -0.6 6.1 -9.7 17.7
Unmod. 1.00 -1.3 4.0 -9.5 9.1

! S = slab (43 freezing and 35 thawing runs), C = infinite cylinder (30
freezing and 34 thawing runs), SP = sphere (30 freezing and 35
thawing runs).

2 Version of the finite difference method.

Correlation coefficient (r) compared wiﬁh the percentage differences

for the unmodified version of the finite difference method.

* Std Dev = standard deviation, Min = minimum, Max = maximum;

® Data from Cleland & Earle (1977a, 1979a, 1979b).

¢ Data from Tables 6.2, 6.3 and 6.4.
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Table 7.2 Summary of Percentage Differences Between Experimental

Thawing Times For Tylose Slabs, Infinite Cylinders and

Spheres and Thawing Times Calculated By Simple Prediction

Formulae
Data from Tables 6.2, 6.3 and 6.4,
Total of 104 runs - 35 for slabs, 34 for infinite cylinders

and 35 for spheres.

Group Method & Reference Mean Std Dev! Min! Max! Corr?
(%) (%) (%) (%) FDM
Neumann (1912) in Carslaw & 69.6 110.5 -68.8 411.7 -0.13
R Jaeger (1959), p.282
Charm & Slavin (1962) 173.0 142.6 16.5 536.6 -0.08
Hrycak (1963,1967) 168.9 147.0 6.9 343.0 -0.09
B Plank (1913) 6.0 21.4 -25.0 50.5 0.08
c Goodman (1958) 13.3 17.6 5.3 53.7 0.14
Nagaoka et al (1955) 79.1 165, 2 bs.4 122.6 0.33
Levy (1958), Eddie & 95.3 21.7 56.2 160.1 0.18
Pearson (1958)
Earle & Freeman (1966) 52.0 30.6 3.0 115.2 0.08
D Walker (1970) 38.2 17.9 7.9 86.3 0.15
Vanichseni (1972) 33.7 18.8 -2.8 78.1 0.14
Vanichseni et al (1972)
Frazerhurst (1972) 69.7 59.8 -10.3 304.7 -0.16
Slatter & Jones (1974) 29.6 17.0 0.3 T4.0 O0.14
Mott (1964) 12.3 15)-T -18.2 49,7 0.14
. Fleming (1967) 13.4 17.7 -16.7 48.7 0.15
Mellor & Seppings (1976) -4.0 14.4 -36.4 30.7 0.28
Modified Plank -19.9 13.3 -53.1 9.3 0.22
Cowell (1967) 34.5 19.9 3.4 85.5 0.09
. Lotz (1974) 13.8 21.3 -22.0 59.3 0.09
Mascheroni & Calvelo (1982) 15.5 16.8 -16.6 54.1 0.16
de Michelis & Calvelo (1983)
Pham (1984a) 14.7 7.2 0.6 35.0 0.54
Pham (1984c) 18.3 48.8 -51.4 136.5 0.00

.. .cONntinued
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Group Method & Reference Mean Std Dev! Min! Max! Corr?
(%) %) (%) (%) FDM

Cleland & Earle (1982b) 66.4 17.7 29.6 112.4 0.16

G Zaritzky et al (1982) 40.1 77.9 -64.2 208.0 -0.11
Hung & Thompson (1983) 92.2 26.6 14.7 134.2 0.23
Pham (1983) 53.6 18.4 21.9 100.7 0.14
Calvelo (1981) 0.0 6.0 -12.1 17.1 0.66

: Creed & James (1981) 0.2 9.1 -20.0 21.9 0.52
Khatchaturov (1958) 12.0 27 .4 -45.7 86.6 -0.02
Golovkin et al (1974) 7.8 10.5 -13.6 35.2 0.34

. Schwartzberg (1977) -86.1 4.6 -94.3 -71.8 -0.07
Churchill & Gupta (1977) -49.5 12.2 -73.5 -25.4 0.16
Levy (1984) -35.8 9.3 -64.8 -17.7 0.30
Sastry (1984) -57.4 10.7 -71.8 -33.0 0.31

! Std Dev = standard deviation, Min = minimum, Max = maximum.
2 Correlation coefficient (r) compared with the percentage differences
for the finite difference method.
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Table 7.3 Summary of Percentage Differences Between Experimental

Thawing Times For Tylose Slabs, Infinite Cylinders and

Spheres and Thawing Times Calculated By the Best Present

Methods

Method! Data? Mean Std Dev? Min? Max? Corr*
(%) (%) (%) (%) FDM

s,C,SP -1.% 4.0 -9. 9.1 1.00

FDM S -0. 3.5 -6.3 6.8 1.00

& -2.2 2.4 -6. 3.6 1.00

SP -0.9 59 -9.5 9.1 1.00

FEMe s,C,SP -0.9 4.4 -9.2 1.4  0.94

S -2.0 3.6 -7.0 6.5 0.99

Eqs. (4.2)-(4.5) € -1.7 2.2 -6.0 .6 0.97
SP 1.2 7100 -9.2 1.4 0.99

FEMs S,C,SP -0.1 4.8 -7.6 18.1 0.88

S -2.2 3.6 -7.6 ) 0.98

Eqs. (4.5)-(4.8) C -1.0 2.6 =5)-2 5.4 0.96
SP 2.9 5.9 -7.2 13.1 0.98

S,C,SP 0.1 5.7 -10.2 15.2 0.72

Eq. (7.2) S 0.4 6.0 -7.2 15.2 0.21
© -1.6 8.2 -7.7 3.2 0.66

SP 1.5 .9 -10.2 14,6 0.76

s,C,SP -0.2 4.9 -9.2 12.0 0.80

Eq. (7.3) S -0.2 4.5 1 (0] 10.2 0.72
C -1.8 2.3 -9.2 5.9 0. 61

SP 1.3 .0 -9.0 12.0 0.89

S,C,SP 0.0 5.4 -12.6 14,3 0.80

Eq. (7.U4) S 1.7 6.0 -7.0 114.% o.gz

C -1.1 2.1 -7.1 g, 0.

SP =0) o5 2 -12.6 10.7 0.90

s,C,SP 0.3 5.6 -10.2 10.3 0.76

Eq. (7.5) S 0.1 582 -8.8 1.1 0.72
o -1.3 g.9 -8.8 5.3 0.69

SP 2.1 .9 -10.2 14, 0.79

! FDM = finite difference method, F‘EMr = full finite element method

formulation, F‘E:Ms = gimplified finite element method formulation.
2 S = slab (35 runs), C = infinite cylinder (34 runs), SP
runs), data from Tables 6.2, 6.3, and 6.4,

sphere (35

Std Dev = standard deviation, Min = minimum, Max = maximum.

* Correlation coefficient (r) compared with the percentage differences
for the finite difference method.



168

8 PREDICTION OF FREEZING AND THAWING TIMES FOR
MULT-DIMENSIONAL SHAPES BY NUMERICAL METHODS

The fourth research objective set in Chap. 3 was to assess the accuracy
of Group II (numerical) methods for prediction of freezing and thawing
times of irregular shapes. Chapter 8 deals with part of the third
objective (assessment of the accuracy of prediction methods for regular
shapes) and the fourth objective. Results are reported for numerical

methods applied to both regular and irregular multi-dimensional shapes.

8.1 INTRODUCTION

The development of numerical methods that solve the governing partial
differential equation for heat conduction with temperature dependent
thermal properties for objects of any two or three-dimensional geometry
was discussed in Chap. 4. The finite difference method is 1limited by
practical considerations to regular shaped objects (infinite rods,
finite cylinders and rectangular bricks), whereas the finite element
method can take account of the more complex, irregular,
multi-dimensional geometries as well as the regular shapes. Thermal
property data wused in all the numerical calculations are listed in
Table 5.1.

8.2 PREDICTIONS FOR REGULAR SHAPES

The only experimental thawing data collected for multi-dimensional
regular shapes were those for Tylose rectangular bricks (Table 6.5).
The full finite element method formulation (Eqs. (4.2) to (4.5)) was
not used as computation costs were too high but the simpler finite
element method formulation (Eqs. (4.5) to (4.8)) and the finite
difference method were applied. Table 8.1 summarises the calculation

results.

Because of symmetry only an octant of each rectangular brick was
considered. Within this octant a 9x9x9 node grid was used in finite
difference method calculations. The finite element method calculations

used a T7x7x7 node grid with 216 evenly sized, 8 node, 1linear,
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isoparametric, brick shaped elements. A finer grid was not practicable

due to computation cost and computer memory size limitations.

Table 8.1 shows that the simplified finite element method formulation
had slightly greater off-set of the mean prediction error than the
predictions for the finite difference method. As was the case for the
simple slab, infinite cylinder and sphere shapes this difference was
thought to be due to the relatively crude way in which variations in
the thermal properties are incorporated 1into the simplified finite
element method. The three-dimensional geometry and the coarse nodal
grid used, accentuated this problem so the difference between the
finite difference method and the simplified finite element method Iis
greater than for slabs, infinite cylinders and spheres (Table 7.3).

Results for the full finite element method formulation would be
expected to be close to the finite difference method results (Cleland
et al 1984). For thirteen representative rectangular brick freezing
runs the full finite element method results were calculated as well as
the results for the other two numerical methods. The mean prediction
errors for these runs were -5.7% for the finite difference method,
-8.2% for the simplified finite element method and -6.3% for the full
finite element method respectively. The correlation coefficients for
the finite element method percentage differences with the finite
difference percentage differences for these thirteen runs were 0.96 and
0.99 for the simplified and full formulations respectively. Hence, if
the full finite element method had been used for the full set of data,
the results would have closely matched the finite difference method

results.

Predicted temperature profiles agreed closely with experimentally
measured profiles as 1illustrated in Fig. 6.4. A large part of the
difference between the predicted and measured temperatures was probably
due to uncertainty in thermocouple placement which was discussed in
Sec. 5.7.4. Both the finite difference method and the simplified
finite element method formulation predicted surface temperatures that
oscillated about the experimental values immediately after the phase
change temperature region. This was due to the discrete nature of the

numerical methods and for the simple finite element method formulation
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was magnified by the coarse element grid used for predictions.

The differences between predicted and measured thawing times were not
statistically correlated with any independent variable in the
experiments and displayed comparable accuracy with numerical
predictions for freezing of Tylose rectangular bricks (Cleland & Earle
1979b, Cleland et al 1984). Further the 95% confidence bounds for the
numerical methods are similar in magnitude to the estimated
experimental uncertainty (Sec. 5.7.4, Table 12.2). This suggests that
for the finite difference method and the full finite element method
formulation, most of the difference between the predictions and
experimental values was due to experimental uncertainty and not errors
in the implementation of the numerical methods themselves. That is,
the time steps and the space grid used yielded results negligibly
different from those that would have been obtained if finer grids had
been used. The only significant inaccuracy arising from the numerical
methods themselves was that introduced by the crude thermal property
estimation in the simpler finite element method formulation; this
indicates that care should be exercised in using it for rectangular

brick shapes.

8.3 PREDICTIONS FOR TWO-DIMENSIONAL IRREGULAR SHAPES

The experimental freezing and thawing times for the two-dimensional
irregular Tylose shapes are given in Table 6.6. Predictions were
carried out by both finite element method formulations using the grids
shown in Figs. 5.15 to 5.21. The grids were prepared from 8 node,
quadratic, isoparametric, rectangular elements. These elements allowed
curved boundaries to be approximated by quadratic functions. The grids
prepared ensured that at least five elements (11 nodes) existed between
the thermodynamic centre and the outside surface of each object, in all

directions.

The results summarised in Table 8.1 show that both the finite element
formulations gave accurate predictions of both freezing and thawing
times (within tolerances allowed for experimental error), for all the
shapes tested. The 95% confidence bounds for the percentage
differences of the full finite element formulation of =-9.7% to 10.3%
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are of similar magnitude to the estimated experimental error
(Sec. 5.8.4) indicating that most of the difference was explainable by
the experimental uncertainty. Again, the full finite element method
formulation used sufficiently small space and time intervals that
numerical approximation errors were negligible, but the simple finite
element method formulation did introduce significant inaccuracy by

crude thermal property estimation.

Predicted temperature profiles (Figs. 6.5 to 6.12) generally compared
well with those measured experimentally. Differences between predicted
and measured temperatures may have arisen due to uncertainty in
thermocouple placement for all the thermocouples. Also the possibility
of air voids, poor contact and therefore variations in the 1local
surface heat transfer coefficient meant that measured temperatures at
points on or near the surface had significant uncertainties associated
with them. The surface temperatures predicted by the simplified finite
element method formulation oscillated significantly compared with the
predictions for the full finite element method formulation. Again this
difference was attributed to the crude thermal property estimation in
the simple formulation and the relatively small number of quadratic

elements used in the grids for the predictions.

8.4 PREDICTIONS FOR THREE-DIMENSIONAL IRREGULAR SHAPES

Table 8.2 summarises the percentage differences between experimental
freezing and thawing times and the predictions by the two finite

element method formulations for the three-dimensional irregular shapes.

The grid used for the first shape (the frustum of a square pyramid) is
shown in Fig. 5.24. Because of the straight sides it is basically the
same 7x7x7 node grid used for the rectangular brick predictions, but
was distorted to the pyramid dimensions. Because of the
three-dimensional irregularity a full quadrant of the shape was
modelled. Consequently the grid was rather coarse with only three
linear elements between surface and centre along the height of the
pyramid. The experimental procedure for the pyramid was identical in
all respects to that used for the rectangular brick shape so it was
considered that the experimental conditions were controlled and
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measured to the same level of precision as in the rectangular brick
experiments, and that the same surface heat transfer coefficient

applied.

The predictions have similar spread to those for the rectangular brick
freezing and thawing but the mean was offset by about 10%. The low
standard deviation of the prediction errors suggests that the problem
is systematic, and not random. Two possible reasons are: (a) the
coarse grid leading to significant prediction inaccuracy and (b) the
assumption that h was the same for the pyramid and rectangular brick

shapes may not hold.

The amount of offset was greater for the freezing runs where Bi was low
suggesting that the second reason was an important contributor

according to the criteria of Cleland & Earle (1984a).

In the numerical calculations, freezing and thawing were considered
complete when the slowest cooling or heating node reached the desired
final temperature. If the true thermodynamic centre of the object does
not coincide with a node, at this time, then the object 1is not
completely frozen or thawed. Under-prediction of the time for the
complete process will result from this effect. The effect is smallest
for fine finite element grids, but for coarse grids the extra time
could be substantial. Further, linear elements magnify the problem
because they use 1linear approximation functions between nodes. The
true temperature profile and any local maximum or minimum values of the
temperature within each element cannot be modelled. Quadratic and
higher order elements allow more accurate approximations to the
temperature profile to be made and therefore give more accurate

predictions.

Finite element method calculations for the pyramid shape were affected
in the manner just described, as a coarse grid of linear elements was
used. Also the position of the thermodynamic centre could not be
accurately determined prior to grid preparation so the true
thermodynamic centre was not necessarily close to a node. Therefore
the observed under-prediction of freezing and thawing times was not

unexpected. Predicted temperature profiles were adequate considering
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these problems with the coarse grid and the experimental uncertainty in

thermocouple positioning (Fig. 6.13).

The other three shapes used were a sphere, an egg and a fish shape.
The sphere runs were used to provide information about the surface heat
transfer coefficient for the other two three-dimensional shapes moulded
in plastic. The sphere 1is a regular shape and can be modelled by a
one- or two-dimensional grid rather than three-dimensionally if the
axisymmetrical formulation of the finite element method 1is used.
However modelling the sphere with a three-dimensional grid allowed some
measure of the accuracy of the modelling of curved surfaces by the
finite element method to be made. The three different grids shown in
Fig. 5.25 were used: (a) an 1" node, 10 linear element,
one-dimensional grid; (b) a two-dimensional grid modelling a quadrant
of the cross-section (a circle) with 21, eight node, quadratic,
isoparametric, elements and (c) a 208 node, 27 element,
three-dimensional grid modelling an octant of the sphere. Due to the
limitations in computation power available and the high data
preparation time, the three-dimensional grid was coarse with only three
20 node, quadratic, isoparametric elements between the surface and the
centre. These were arranged in three expanding shells so that the
elements were all approximately the same size and none were too highly
distorted from the basic regular rectangular brick shape.

The results generated for the sphere shape using both the finer one-
and two-dimensional grids with the full finite element formulation were
very similar. The coarser three-dimensional grid results were
significantly less accurate. This was attributed to the coarse grid
rather than incorrect implementation of the three-dimensional part of
the program (Sec. 4.2.3). The three quadratic elements between the
centre and surface meant that the temperature profiles could be
modelled only approximately. The position of the thermodynamic centre
was known exactly for the sphere, and quadratic elements were used.
Therefore the problem with the coarse grid was less acute than for the
pyramid shape predictions and the amount of under-prediction for the
coarser three-dimensional grid, compared with the finer one- and
two-dimensional grids, was 1less than the under-prediction for the

pyramid shape.
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For the sphere shape the simplified finite element method formulation
gave comparable results with the full formulation, but where the
element size was larger in the two- and three-dimensional grids the
results had a 1larger variation attributed to the less representative
incorporation of thermal properties into the finite element scheme as
well as the coarse grid. For both finite element methods the freezing
and thawing time prediction accuracy as well as the prediction of
temperature profiles was similar to that achieved for the full set of
sphere thawing data analysed in Sec. 7.2. The experimental techniques
were similar, except for use of the plastic moulding, so similar

prediction accuracy was expected.

The egg shape has one axis of rotational symmetry so it could be
modelled by either a two- or three-dimensional grid. Both the finite
element method grids used are shown in Fig. 5.26. The two-dimensional
grid is similar to that use for the sphere shape except that it was
distorted to fit the elliptical shape and a half, rather than a
quarter, of the cross-sectional profile was modelled. The
three-dimensional grid used was also a distorted , double version of
the sphere three-dimensional grid. The full quadrant needed was
described by 54 twenty node, quadratic, isoparametric, rectangular
elements. The fish shape though irregular in all three dimensions was
closely approximated by a shape with two planes of symmetry so only a
quadrant was modelled. The grid is shown in Fig. 5.27. It is the same
basic three-dimensional grid used for the egg shape but the grid point
coordinates, especially for the surface nodes were modified to fit the

actual shape.

For the egg and fish shapes it was assumed that the surface heat
tranfer coefficient was the same as that measured on the moulded
plastic spheres (Sec. 5.9.3). The inaccuracy introduced by this
assumption was not easily assessed. Variations in plastic thickness
and the presence of air voids and poorer or better surface contact at
the surface of these objects may have contributed to the uncertainties.
This extra experimental uncertainty, plus the uncertainty due to
difficulties in measuring and describing these shapes mathematically,
as well as approximating the shape with a coarse finite element method

grid, meant that poorer predictions were expected for the egg and fish
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shapes than for the sphere and pyramid shapes.

For the egg shape the mean prediction error was close to zero so the
assumption that the surface heat transfer coefficient was the same as
it was for the sphere seemed reasonable. The higher standard deviation
of the predictions for the egg shape compared with the pyramid and
sphere shapes was mainly the result of the extra uncertainty in the
experiments rather than uncertainty due to the implementation of the
finite element method. If a finer grid had been used, the finite
element method would have introduced no significant prediction

inaccuracy.

Predicted temperature profiles for the egg shape (Fig. 6.16) were also
quite accurate and reflected the accuracy of the freezing and thawing
time predictions. Temperature profiles for some surface positions may
have been affected by any 1localised variation in h. Predicted
temperature profiles were affected by the coarse three-dimensional
grids used, and therefore displayed some oscillatory behaviour. As
expected, this was particularly obvious for the simple finite element
method formulation predictions, for positions near the object surface
and at temperatures close to the phase change temperature range
(Cleland et al 1984, Sec. 4.2.1).

For the fish shape the predictions were consistently high by 20% to 40%
but the standard deviation of prediction errors was comparable with
that for the egg shape. The off-set mean was probably caused by
systematic error in the surface heat transfer coefficient. The surface
heat transfer coefficient may not have been the same as that for the
sphere due to: (a) a thinner plastic thickness arising during moulding
and/or (b) better thermal contact between the Tylose and the plastic
mould for the fish shape than the sphere. As discussed in Sec. 5.9.4
these factors could not not be quantatively assessed as it was not
possible to measure h directly for the fish shape. However,
measurement of the plastic thickness showed variations of up to 15% of
the average total thickness over the surface of the fish shape and
differences of up to 10% in the thickness between the fish and sphere
shapes. It was unknown whether these observed variations were

sufficiently large to cause the differences between the predicted and
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measured freezing and thawing times. Because the finite element method
displayed accurate predictions for other regular and irregular shapes
it was considered unlikely that these differences were the result of

deficiencies in the finite element method or program.

Predicted temperature profiles for the fish shapes (Fig. 6.15)
reflected the accuracy of the predicted freezing and thawing times and
problems with the coarse element grid used. The finite element method
consistently under-predicted the changes in the temperature at all
positions in the fish shape. Temperature profiles for surface
positions would have been affected by any localised variation in the
surface heat transfer coefficient as well as the possible systematic
error in the h value, but the predicted values showed trends consistent

with a systematic underprediction of h.

8.5 FINITE ELEMENT METHOD USER GUIDELINES

Some guidelines for application of the finite element method were
established in Sec. U4.2. In the 1light of the testing against
experimental data it is possible to refine these. Adherence to the
guidelines will lead to predictions in which the error arising from the
numerical approximations is negligible compared with experimental and
data uncertainty. The guidelines are:

(a) to use at least 8 to 10 nodes and at least 5 elements between the
thermodynamic centre and the surface,

(b) to use the full finite element formulation if computational
limitations allow,

(c) to accurately predict the position of the thermodynamic centre
prior to grid preparation so that a node can be positioned
accurately near it, and

(d) to use sufficiently small time steps that the heat balance agrees
to within 2% (Sec. 4.2.2).

In almost all situations, using more refined grids and smaller time

steps than those suggested here, will only give small increases in

accuracy and reliability of the predictions and will probably not

justify the increase in computational costs.
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8.6 SUMMARY

The finite difference method used for regular two- and
three-dimens ional shapes predicted thawing times as accurately as it
predicted freezing times. The method could be implemented with

negligible inaccuracy arising from the numerical approximations used.

The spreads of the numerical method predictions were low for all data,
but mean prediction errors for some three-dimensional irregular shapes
were off-set from zero. This indicates that systematic data errors,
probably in estimation of surface heat transfer coefficients, were
important compared with random experimental uncertainty. Predicted

temperature profiles confirmed these trends.

The implementations of the finite element method used for both regular
and irregular multi-dimensional shapes do not 1lead to significant
inaccuracy in predictions provided the guidelines 1in Sec. 8.6 are
followed. Use of coarse grids and/or the simplified finite element
method formulation did 1lead to significant inaccurracy in the
predictions and therefore worsened overall agreement with experimental

freezing and thawing data.

Practical contraints on computation power means that users of the
finite element method will have to work close to the limits of grid and
method refinement for which prediction method uncertainty is

significant, so care must be exercised in using these methods.
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Table 8.1 Summary of Percentage Differences Between Experimental

Freezing and Thawing Times For Tylose Multi-Dimensional

Shapes and Freezing and Thawing Times Calculated By Numerical

Methods
Shape Type! Reference Method? Mean Std Dev? Min® Max?
(%) (%) (%) (%)
Cleland & FDM -4.4 6.6 -20.7 9.8
F Earle (1979Db)
Rectangular (72 runs) FEM -5.9 71 -24.1 9.8
Brick S
T Table 6.5 FDM 0.6 3.1 -6.0 7.9
(68 runs) FEMg -6.3 3.4 -12.9 1.2
- Table 6.6 FEMf 0.3 5.1 -11.4 11.3
" (83 runs) FEM, b2 6.1 -9.1 21.9
Two- Table 6.6 FEMf -1.0 4.5 -11.4 7.6
Dimensional F
Irregular (42 runs) FEMg 2.6 4.8 -9.1 12.0
T Table 6.6 FEMf 1s5 5.5 -T.1 11.3
(41 runs) FEMg 5.8 7.0 -6.7 21.9

! F = freezing, T = thawing.

2 FDM = finite difference method, FEMf = full finite element method
formulation (Eqs. (4.2) to (4.5)), FEMg = simplified finite element
method formulation (Eqs. (4.5) to (4.8)).

3 Std Dev = standard deviation, Min = minimum, Max = maximum.
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Table 8.2 Summary of Percentage Differences Between Experimental

Freezing and Thawing Times For Tylose Three-Dimensional

Irregular Shapes and Freezing and Thawing Times Calculated By
the Finite Element Method

Shape Grid! Method 2 Mean Std Dev!  Min! Max
(%) (%) (%) (%)
Pyramid 5 FEM¢ -10.3 6.7 -18.2 -2.0
(6 runs) FEMg -14.5 4.8 -20.2 -8.9
- FEMg =55 6.8 -12.1 5.3
FEMS -1.2 12.7 -16.1 13.9
Sphere - FEM¢ 0.6 7.0 -8.7 13.9
(6 runs) FEMg 7.7 8.3 -1.6 18.2
o FEMF 0.“ 6-7 -7-7 9.6
FEMS 2.6 6.5 -4.9 11.6
B FEMf 5.2 13.0 -12.9 25.1
Egg FEMg 9.8 14.9 -9.4 28.8
(6 runs)
- FEMf 3.7 13.8 -16.1 4.7
FEMg 16.4 18.7 -4 ug.y
Fish o FEHf 3513 8.9 20.8 by, 2
(6 runs) FEMg 33.5 16.3 8.6 58.4

! 1D = one-dimensional, 2D = two-dimensional, 3D = three-dimensional.
C FEMe = full finite element method formulation (Egs. (4.2) to (4.5)),
FEMg = simplified finite element method formulation (Egs. (4.5) to

(4.8)).

3 Std Dev = standard deviation, Min = minimum, Max = maximum.
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9 PREDICTION OF FREEZING AND THAWING TIMES FOR MULTI-DIMENSIONAL
REGULAR SHAPES BY SIMPLE METHODS

In Chapter 9 Group I (simple) methods for regular multi-dimensional
shapes are considered. This completes the analysis required for the

third research objective set in Chap. 3.

9.1 ANALYTICAL TREATMENT OF THE EFFECT OF GEOMETRY

For slabs, infinite cylinders and spheres the 6:3:2 ratio of freezing
and thawing times, which arises from the value of 2V/AD, was
successfully used to describe the effect of the geometry so that simple
prediction methods could be made universal for all three basic shapes.
Rutov (1936) and Mott (1964) proposed the use of the same 2V/AD ratio

for all shapes. The prediction equation becomes:

2V
t ‘Etslab (9.1)
where t = freezing or thawing time for the multi-dimensional
object of characteristic dimension D (s)
tslab = freezing or thawing time for a slab of
thickness D under equivalent conditions (s)
= surface area of the object (m2)
= volume of the object (m3)
D = characteristic dimension of the object (m)

= length of shortest dimension for regular
shaped objects.
For two- and three-dimensional regular shapes (infinite rods, finite
cylinders and rectangular bricks) an alternative approach was used by
Plank (1941) and Shamsundar (1982). They made the quasi-steady state
assumption and assumed both a particular shape for the phase change
front and that the surface was isothermal with respect to position.
This led to geometric factors to modify the basic slab formulae that
tend to 2V/AD as Bi+0 but included a small correction to the internal
conduction term, in the resulting analytical formula, for other Bi

values.
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For all two- and three-dimensional shapes (apart from infinite
cylinders and spheres) the surface is not isothermal with respect to
position unless Bi+0 or Bi»«w, In addition the phase change front shape
varies with time. Consequently the true geometric factors for
multi-dimensional shapes are in reality highly dependent on the Biot
number. As Bi-»0 the ratio of 2V/AD holds for all shapes. For higher
Bi values, some parts of the surface are more effective in transferring
heat to or from the centre than others. Therefore none of the
analytical developments based only on the area to volume ratio are
successful for freezing (Cleland & Earle 1982b). The complexity of the
heat transfer in multi-dimensional objects 1is such that an accurate

geometric factor is unlikely to be derived analytically.

9.2 FEASIBLE GEOMETRIC FACTORS

Alternative geometric factors have been developed, partly by fitting to

experimental data and partly by considering some known limiting cases.

Cleland & Earle (1982b) defined the equivalent heat transfer
dimensionality, EHTD, as:

t
EHTD = siab (9.2)

The formula for rectangular brick shapes:

2 2 2 Bi 0.625 0.625
EHTD = 1 + + + — * (9.3)
Bi+2 [B,(B,+1)  B,(B,+1) Bi+2 83 83

2

where 8, = ratio of second longest to shortest side length
= Dy/Dx
B, = ratio of longest to shortest side length
= D,/Dy
Dy = shortest side length (m)
Dy = second longest side length (m)
D, = longest side length (m)

was developed by fitting experimental data with Bi in the range 0.5 to
22.0. It does not conform to the limiting case that EHTD=AD/2V as Bi+0
but does fit published experimental data for rectangular bricks
undergoing freezing. It covers ranges of Bi, B8, and g, typically
encountered in practice. Used 1in conjunction with the freezing time

prediction formula for slabs due to Cleland & Earle (1982b) it
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predicted the experimental Tylose rectangular brick freezing data of
Cleland & Earle (1979b) with percentage differences with a mean of
-1.2% +11.4% at the 95% level of confidence.

Pham (1984b) used the 2V/AD geometric factor but modified the internal
conduction term in the simple prediction formula based on Plank's slab
equation by a factor called the "mean conducting path 1length", MCP.
MCP 1is based on the same principle as the corrections derived
analytically by Plank (1941) and Shamsundar (1982) but because it was
developed based on fit to experimental data it includes compensation
for effects such as the non-isothermal surface, that Plank and
Shamsundar ignored. For rectangular bricks the formula developed to
calculate MCP was:

i 1+ [[1.5/3l - 1]-u + [LL_ + 1_)(1 + i_il-d]-o.zs (9.4)

D B, B, Bi

For finite cylinders, an equivalent rectangular brick shape was defined

so that Eq. (9.4) could be used (Pham 1984c). Equation (9.4), combined
with the slab prediction method of Pham (1984a), predicted the Tylose
rectangular brick freezing data (Cleland & Earle 1979b) with 95%
confidence bounds of -13.0% to 13.0% and a mean prediction error close

to zero, which is similar to the results for EHTD (Pham 1984b).

MCP and EHTD are essentially equivalent geometric corrections to the
basic slab prediction methods but are incorporated into the simple
formulae in different manners. EHTD is a divisor and can be applied to
any slab prediction method by rearrangement of Eq. (9.2) to give:

- s1ab
EHTD

(9.5)

MCP can be directly incorporated into simple prediction formulae where
contributions due to external and internal resistance to heat transfer
can be separated (such as Plank's equation), by the relationship:

[- 4
Term Term D

v MCP
t K [ External Resistance , Internal Resistance ____] (9.6)

A more general form which allows it to be applied to any slab

prediction method is:

. 2v [ BimcF] [ B 0.7
= R b o A
slab up ¥ D 4
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The values for the two variables can be related by the equations:
AD Bi Bi MCP
EHTD = — |1 + —|/|1 + — —— (9.8)
2V y y D
and
MCP y AD 1 y
— = _+1 — —— " — (9-9)
Bi 2V EHTD Bi
EHTD and MCP defined by Eqns. (9.3) and (9.4) are both accurate
geometric factors for the rectangular brick shape with the intermediate
B and Bi values that occur in the rectangular brick freezing data from
which they were developed. For other conditions they may not be

accurate.

One possible approach for the current work was to seek to extend the
MCP and EHTD definitions to a wider range of geometries and
environmental conditions to enhance their versatility. If this was
successful then there would be 1little benefit in seeking to develop
completely different geometric factors. Therefore the approach taken
was to 1investigate the MCP and EHTD concepts in detail, and then to
assess whether their lack of fit to data was sufficiently great to

justify considering other alternative geometric factors.

If both MCP and EHTD can be made accurate for a wide range of
conditions and geometries then the choice between the two concepts must
be made by considering other criteria such as:

(a) conceptual understanding and simplicity

(b) ease and accuracy of calculation for a wide range of object

geometries.

Because the equations to calculate MCP and EHTD, such as Egs. (9.3) and
(9.4) are partly empirically developed it is possible that the second

criterion allows a distinction to be made.

9.3 VERIFICATION OF THE EFFECT OF ENVIROMENTAL CONDITIONS
ON GEOMETRIC FACTORS

As defined by Eqs. (9.5) and (9.7) EHTD and MCP are both related to the
ratio of tslab/t' For infinite cylinders and spheres it was found
(Sec. 7.1) that the dependence of this ratio on Bi, Ste and Pk was
sufficiently weak for both freezing and thawing that the variation
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could be ignored. For other multi-dimensional shapes the Bi effect
would be expected to be larger because the surface 1is not isothermal
with respect to position and the degree of approach to a constant
surface temperature is Biot number dependent. Where most of the
resistance is internal (Bi+w), surface area not directly adjacent to
the thermodynamic centre will have 1little effect on the change in
temperature at the centre. Conversely if most of the resistance is
external (Bi+0), then all the surface area of the object is equally

effective and no further correction to 2V/AD is needed.

Freezing and thawing times were calculated for different Bi, Ste and Pk
values using the finite difference and finite element methods.
Calculations were made for a range of different infinite rod, finite
cylinder and rectangular brick shapes as well as for the equivalent
slab shape so that the dependence of tslab/t on Bi, Ste and Pk could be

examined.

The finite difference method results for freezing and thawing of two
infinite rod shapes are shown in Table 9.1. These are typical for all
the shapes, for both freezing and thawing, and for both the numerical
methods used. For each of the shapes tested the effect of changes in
Ste and Pk, due to changes in T, and Tin' were far less than the effect
of changes in Bi for the ranges of conditions typically encountered in
practice. The Biot number effect must be taken into account but the
Ste and Pk effects are small. The Ste and Pk effects were most
important for thawing, and for that process changed tslab/t by less
than +5% over the full range of Ste and Pk values typically encountered
in practice. The initial approach was to ignore the Pk and Ste

effects.

9.4 DEVELOPMENT OF IMPROVED GEOMETRIC FACTORS FOR MULTI-DIMENSIONAL
REGULAR SHAPES

The analysis of the previous section confirmed that for regular
multi-dimensional shapes, accurate geometric factors can probably be
defined solely as functions of Bi and parameters that describe the
shape, without introducing significant error into the prediction
method:



Prediction of Freezing and Thawing Times 185

Geometric Factor = £ ( Bi, B,, B, ) (9.10)
The existing formulae for EHTD and MCP (Egs. (9.3) and (9.4)) were
curve-fitted to experimental data for freezing of rectangular brick
shapes which were both limited in range of 8,, B, and Bi, and affected
by experimental error. To develop an improved empirical geometric
factor better data were considered necessary. An alternative data set
that shows the geometry effect without masking by experimental
uncertainty was developed by using numerical prediction methods for

regular multi-dimensional shapes.

The numerical calculations were carried out over a wider range of
conditions than the published experimental data. Freezing times were
calculated for freezing of the infinite rod, finite cylinder and
rectangular brick shapes wusing the finite difference method. Biot
number was varied from 0.01 to 100.0, and 8, and g, from 1.0 to 10.0.
For the rectangular brick shape only the ten possible combinations
derived from g, and g, values of 1.0, 1.582, 2.50 and 4.0 were
investigated due to 1limitations in computation resources. The
equivalent slab shape freezing times were also calculated using the
finite difference method. Equations (9.2) and (9.9) were used to
calculate EHTD and MCP. Using the same prediction method for both the
multi-dimensional shapes and the -equivalent slab gives a systematic
error cancelling effect so that the results reflect almost entirely the
variations in geometric factors. Calculations for some runs using the
full finite element method formulation gave identical results to the
finite difference method, so the full finite element method formulation
was not used for the full set of data. As slight changes 1in the
geometric factors can occur with environmental conditions, all
calculations were made at intermediate Ste and Pk values to average
these effects. A full set of data was not calculated for thawing as a
trial of some representative calculations yielded very similar MCP and

EHTD values to those calculated for freezing.

The numerically calculated results are are tabulated in App. C (Table
C.1). Apart from some random error introduced by slight imprecision in
the numerical calculations, especially at extremes of the range of Bi,
the results showed a number of consistent patterns. Each shape was

considered to have three dimensions, taken in order of size. The first
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dimension was the characteristic dimension and had an effect equal to

that of a slab for infinite rods, rectangular bricks and squat

cylinders (finite cylinders with D. 2 Dy), and an effect equal to that

of an infinite cylinder for short cylinders (finite cylinders with Dr pS

Dy). The effect of each of the other dimensions on the ratio of

tslab/t for each shape could be separated. A number of trends were

evident

(a) the effect of the second dimension for infinite rods and
rectangular bricks was equal

(b) the effect of the second and third dimensions for the squat
cylinders (considering the thickness as the first dimension and the
diameter as two equivalent dimensions) were both the same, and were
equal to the effect of the second dimension in infinite rods and
rectangular bricks

(c) the effect of the third dimension in short cylinders (considering
the diameter as the first two dimensions and the height or length
as the third) was the same as the effect of the third dimension in
rectangular bricks, but was 1less than the effect of the second
dimension in infinite rods and rectangular bricks.

The value of tslab/t changed with Biot number. The value of Bi at

which the change with respect to Bi was greatest depended on the ratio

of dimensions :

(d) as B, or B, increased the change occurred at lower Bi values

(e) for high B, and B8, values as Bi+w, the values of MCP and EHTD both
tended to slab 1limits (for infinite rods, rectangular bricks and
squat cylinders) or infinite cylinder limits (for short cylinders)

(f) for low B, and B, values as Bi»», the values of MCP and EHTD both
tend to some other 1limits which are fractions of the values as
Bi-+0.

(g) as Bi»0 the values of MCP and EHTD both depend only on 2V/AD.

Using non-linear regression of the numerical data set, a number of
functions were developed to calculate EHTD and MCP for all the regular
shapes. The simplest forms that gave reasonable prediction accuracy

were:
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1 0.73
EHTD = G1 + G2 | f,,(8,) = + (1 -f£,,08))) 20

1 1

1 0.50
+ 63 | £,,08,) = + (1 - £,,(8)) =g (9.11)
B2 82.
and -
w1+ (2 = 61) £,..0 £,,(62,8,) ) 0.63 819-39 (1.34 gl-%3 - 1)

+ 63 f,.( £,,(63,8,) ) 0.63 Bi®*39 (1.51 gl-22 - 1)

+ [ 1 -, (r,,(c2,8,) + £,,(G3,8,))/(G2 G3 + 1) ) ] -

Gl + G2/ + G
. [ [ ( B\ 3/8,) ] -1 ] (9.12)

Gl + G2 0.73/822° + G3 0.50/83°07

2.3278" 1T/ (B1'-3% + 2.32/4"77)
£,,(G,8) = G 2.00/p'+92
£,..00  =x/(81"3% + x)

and the values of G1, G2 and G3 are given in Table 9.2.

where f ,(8)

The principles behind the methods to calculate EHTD and MCP were
developed from the above observed trends in the tslab/t data. For the
MCP concept the AD/2V ratio was incorporated independently (Eq. (9.7))
whereas for the EHTD concept it was included in the geometric factor
itself.

The geometric factor can be influenced by up to three dimensions for
any shape. Firstly, the effect of the first (characteristic) dimension
is added (G1 for EHTD and 1.0 for MCP). Where the characteristic
dimension can be measured in more than one dimension, the effect of
each of the additional dimensions 1is to increase the value of G1 by
one. The data in Table 9.2 illustrate this idea. The effects of each

of the other dimensions are then calculated and summed as needed.

As Bi+0 the effect depends on the AD/2V ratio only. For regular shapes
AD/2V = G1+G2/8,+G3/B, so for EHTD the additions are G2/8, and/or

G3/8,, while for MCP there is zero addition as the effect of AD/2V has
already been included.

As Bi+»» the effect of each dimension is less than that suggested by the
AD/2V ratio so the effect of each dimension 1s a fraction of G2/8,
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and/or G3/8, for EHTD and is greater than zero for MCP. The fractional
values, which are different for each dimension because the effect of
the third dimension is less than the effect of the second dimension,

are given by 0.73/81'50 and 0.52/83‘69 respectively for EHTD.

For MCP the final term calculates the modification to MCP required to
alter the effect of the AD/2V ratio. It is based on the fact that as
Bi+0, MCP + EHTD(Bi-+0)/EHTD(Bi-+e).

For the EHTD concept the expression is completed by a Biot number
weighting function that calculates the relative contribution of the
Bi+0 and the Bi+» terms in the effect of each dimension. The equation
can be written in general terms as:

EHTD = X, ( EHTDg; o ) + (1 - X, ) ( EHTDg;,, ) (9.13)
where X, = Biot number weighting function (0 s X, € 1). The Bi value
at which the maximum rate of change, from one term to the other, occurs
is dependent on the relative size of that dimension compared with the

characteristic dimension.

For the MCP concept the transition is more difficult to calculate as
MCP goes through a maximum value between the two Biot number extremes.
Therefore the expression includes an extra Biot number correction as
well as a Bi weighting function similar to that used for EHTD. Written
in general terms:

MCP = X, MCPg;,, *+ (1 = X, ) ( EHTDg;,y / EHTDpj,, ) (9.14)
where X, = Biot number weighting function (0 s X, s 1) and MCPg; ., is a

function including a term that increases as Bi increases.

Table 9.3 shows the adequacy of the fit to the numerical tslab/t data
of (a) the old EHTD formula (Eq. (9.3)), (b) the new EHTD formula
(Eq. (9.11)), (c) the old MCP formula (Eq. (9.4)) and (d) the new MCP
formula (Eq. (9.12)). The new versions of EHTD and MCP are significant
improvements over the older versions. This was expected because
Eqs.(9.3) and (9.4) were both developed from data for the rectangular
brick shape only and for a limited range of Bi, B, and B, values. The
inaccuracy in the improved MCP and EHTD formulae (about +3% at the 95%
level of confidence) 1is 1ikely to be 1insignificant compared with

experimental uncertainties. Therefore the introduction of further new
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terms into Egqs. (9.11) and/or (9.12) (or development of a new empirical
formula), to relate EHTD and MCP more closely to B,, B, and Bi would be
difficult to justify. It must be remembered that the Ste and Pk
effects (of up to +5%) have been ignored.

Equations (9.11) and (9.12) were fitted for Bi in the range 0.01 to
100.0 and B from 1.0 to 10.0 for finite cylinders and infinite rods,
and B, and B, from 1.0 to 4.0 for rectangular bricks. The range for
the brick shape may appear more restrictive. However, the relationship
of EHTD and MCP for rectangular bricks was found to be a summation of
the infinite rod and the finite cylinder terms. Therefore the finite
cylinder and infinite rod data provided information that allowed an
accurate form of the relationship for the rectangular brick shape to be
found that was applicable beyond the range of the data for the

rectangular brick shape itself.

9.5 TESTING OF IMPROVED GEOMETRIC FACTORS AGAINST EXPERIMENTAL DATA
FOR MULTI-DIMENSIONAL REGULAR SHAPES

By use of Egs. (9.5) and (9.7), both EHTD and MCP can be applied to any
slab prediction method. A number of accurate simple prediction
formulae for both freezing and thawing are available or were developed
in Chap. 7. All of these methods are of similar prediction accuracy
and calculate process times highly correlated with numerical method
predictions. Rather than test the geometric factors with each slab
prediction method individually, it was decided to initially use only
one slab prediction method. The finite difference method was chosen as

it best allows the geometry effect to be studied on its own.

The previous, and the improved versions of the expressions to calculate
MCP and EHTD were tested against the Tylose rectangular brick freezing
and thawing data (Cleland & Earle 1979b and Table 6.5). A summary of
the predictions is given in Table 9.4.

For Tylose rectangular brick freezing the mean prediction error was
off-set from zero for both the geometric factors. The full finite
difference method results also displayed an off-set mean prediction

error of the same magnitude. Cleland et al (1982) showed that this was
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probably due to non-equilibrium freezing rate effects not taken into
account in calculations by the finite difference method. Using the
finite difference method as the slab prediction method would therefore

be expected to lead to a similar off-set of the mean.

For freezing, the standard deviation of predictions was 1low, and the
correlation coefficient (compared with the full finite difference
method results) was high for both geometric factors. This verifies the
assumption that the Ste and Pk effects on tslab/t and hence EHTD and
MCP were sufficiently small to be ignored, and also provides
confirmation that for freezing the lack of fit of Eqs. (9.11) and

(9.12) has not decreased the overall agreement with experimental data.

For Tylose rectangular brick thawing, the mean prediction errors for
Eqs. (9.11) and (9.12) were not significantly different from zero.
However, the standard deviation of the prediction error was higher than
that for the full finite difference method predictions and the
correlation coefficient compared with the full finite difference method
results was 1low, for both the geometric factors. This suggests that
the inaccuracy arising from the improved EHTD and MCP formulae is
sufficiently large to be distinguished from the experimental
uncertainty. Two reasons exist. Firstly the rectangular brick thawing
experiments had less experimental wuncertainty than the rectangular
brick freezing data so the lack of fit is more discernible for thawing
but not for freezing. Secondly, it was shown 1in Sec. 9.3 that the

effect of Ste and Pk on ¢t b/t was as much as +5% during thawing.

sla
These effects were ignored by Egs. (9.11) and (9.12), so correlation of
prediction errors with Ste or Pk would indicate whether this was a
contributing factor. The correlation coefficients with Ste and Pk were
-0.73 and 0.06 respectively, indicating that neglect of the effect of

Ste was significant.

Although better predictions for thawing could be achieved by adding
terms involving Ste, especially, into Eqs. (9.11) and (9.12) this step
was not taken as the improvement would only be evident with very
accurate experimental data. In commercial practice, food engineers
making thawing time predictions cannot determine data to represent the

conditions as accurately as 1is possible in a research laboratory, so
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the extra terms would not be helpful to them.

An interesting facet of Table 9.4 is that overall the old MCP and EHTD
formulae perform as well as the new ones. This might suggest that the
introduction of the new formulae was not worthwhile. However, it must
be noted that the experimental data set does not cover as wide a range
of conditions or geometries as the numerical data set of Table 9.3.
The old EHTD and MCP formulae are inaccurate in parts of the wider
range of conditions and shapes covered by Table 9.3 so their wuse for
some B and Bi combinations, or shapes other than rectangular bricks,
could lead to substantial prediction errors. Therefore their
replacement by Eqs. (9.11) and (9.12) is justified because of the
reduced prediction inaccuracy risks, despite some additional

complexity.

9.6 TESTING OF IMPROVED GEOMETRIC FACTORS IN COMBINATION WITH
SIMPLE PREDICTION FORMULAE

The predictions of the improved geometric factors in combination with
the simple freezing and thawing time prediction methods of Sec. 7.3 are

summarised in Table 9.5.

For freezing they all perform similarly - those appearing to be better
due to 1lower standard deviations also have lower correlation
coefficients with the full finite difference method predictions. The
means are not off-set from zero like the finite difference mean, but
the standard deviations are of similar size to the finite difference
method standard deviation. The off-set mean for the finite difference
method predictions arises from the rate effects discussed by Cleland et
al (1982). The closeness of the standard deviation for the finite
difference method and those for the simple methods indicates that for
freezing time prediction any of the eight combinations in Table 9.5 can
be used without introducing significant prediction method uncertainty.

The situation for thawing time predictions was similar. All eight
method combinations are comparable, but the neglect of Ste and Pk
effects on EHTD and MCP has both lowered the correlation coefficient
with the finite difference method predictions, and led to the standard
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deviation being slightly higher than for the finite difference method.

Because Eq. (9.11) and (9.12) were developed from numerical data they
are applicable over a wide range of conditions. For all the regular
shapes considered the limits are:

0.0 < Bi < 100

1.0 < B, < 10

1.0 < B, < 10
The formulae may be applicable outside these ranges but at the expense
of reduced accuracy. However, virtually all practical food freezing

and thawing situations are covered.

9.7 SUMMARY

The effect of geometry on freezing and thawing times, even for regular
multi-dimensional shapes, 1s sufficiently complex that no accurate

geometric factor has been derived analytically.

There are two useful concepts to account for geometry - EHTD and MCP.
Formulae to calculate both geometric factors for freezing of
rectangular brick shapes under a limited range of conditions had been
previously developed by empirically fitting rectangular brick freezing

experimental data.

By fitting an alternative data set calculated by numerical methods,
improved formulae for MCP and EHTD were developed. These are accurate
for both freezing and thawing of an extended range of regular
multi-dimensional shapes, and for a wider range of conditions than the

original formulae.

Used in combination with accurate slab freezing and thawing time
prediction methods, both of the improved geometric factors gave good
fit to experimental data for freezing and thawing of rectangular
bricks. Neither of the geometric factors introduced significant

prediction uncertainty.

For prediction of freezing and thawing of regular shaped

multi-dimensional objects there were no grounds to recommend either of
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the two geometric concepts ahead of the other (similarly, none of the

slab prediction approaches stood out as being significantly more

accurate or simple to use).

Table 9.1 The Effect of Bi, Ste and Pk on the Ratio of Freezing and

Thawing Times For Infinite Rods To the Times For the

Equivalent Slab

B, Bi e - ts1ap’/t Effect of
1.0 0.1 -40.0 20.0 1.99

1.0 0.1 -30.0 20.0 1.99 Ste

1.0 0.1 -20.0 20.0 2.00

1.0 1.0 -40.0 5.0 1.85

1.0 1.0 -30.0 20.0 1.91 Ste and Pk
1.0 .0 -20.0 35.0 1.96

1.0 1.0 5.0 -10.0 1.93

1.0 1.0 20.0 -20.0 1.8 Thawing
1.0 1.0 35.0 -30.0 1.80

1.0 10.0 -30.0 5.0 1.69

1.0 10.0 -30.0 20.0 1.72 Pk

1.0 10.0 -30.0 35.0 1.75

2.0 0 -40.0 20.0 1.47

2.0 0.1 -30.0 20.0 1.48 Ste

2.0 0.1 -20.0 20.0 1.48

2.0 1.0 -40.0 5.0 1.26

2.0 1.0 -30.0 20.0 1.31 Ste and Pk
2.0 1.0 -20.0 35.0 1.35

2.0 1.0 5.0 -10.0 1.32

2.0 1.0 20.0 -20.0 1.2 Thawing
2.0 1.0 35.0 -30.0 1.23

2.0 10.0 -30.0 5.0 1.10

2.0 10.0 -30.0 20.0 1.11 Pk

2.0 10.0 -30.0 35.0 1.12
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Table 9.2 Constants For Prediction Of EHTD and MCP

Shape G1 G2 G3
Slabs 1 0 0
Infinite Cylinders 2 0 0
Spheres 3 0 0
Finite Cylinders 1 2 0

D. 2D

y
Finite Cylinders 2 0 1
D. =D
y
Infinite Rods 1 1 0
Two-Dimensional 1 1 0

Irregular Shapes
Rectangular Bricks 1 1 1
Three-Dimensional 1 1 1

Irregular Shapes
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Table 9.3 Summary of Percentage Differences Between Numerically

Calculated Freezing Times For Finite Cylinders, Infinite Rods

and Rectangular Bricks and Freezing Times Calculated By

Simple Prediction Formulae!l

Shape Geometric Equation Mean Std Dev? Min? Max?
Factor (%) (%) (%) (%)

EHTD (9.3) 3.8 T2 -7.0 24.8

All Data EHTD (9.11) -0.5 1.6 -7.0 5 X2
(270 runs) MCP (9.4) -2.4 9.2 el IaG) 25.0
MCP (9.12) =0.8 1.7 -7.0 4.1

Finite Cylinders  EHTD (9.3) 0.1 9 -6.6 7.8
D. € Dy EHTD (9.11) 0.4 8 -2.5 1.2
(63 runs) MCP (9.4) 1.3 10.5 -31.5 0.3
MCP (9.12) 0.5 1.3 =2.2 4.1

Finite Cylinders  EHTD (9.3) 6.4 9.0 -5.9 24.8
Dr 2 Dy EHTD (9.11) -0.5 2.3 -7.0 .0
(54 runs) MCP (9.4) -4.2 6.3 =25, 0.3
MCP (9.12) -0.7 2.1 -7.0 SRS

EHTD (9.3) 3.6 4.7 -2.9 13.8

Infinite Rods EHTD (9.11) -0.6 1 SN 2.4
(63 runs) MCP (9.4) 4,2 7.1 -1.2 25.0
MCP (9.12) =0.5 1.3 -4.2 2.1

Rectangular EHTD (9.3) 4.9 8.2 Siifolo) 24.4
Bricks EHTD (9.11) -0.5 1.7 4.4 5.3
(90 runs) MCP (9.4) 0.3 4.7 -7.6 12.5
MCP (9.12) -0.7 1.7 -6.0 3.1

! Using the finite difference method as the slab prediction method.

2 Std Dev = standard deviation, Min = minimum, Max = maximum.
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Table 9.4 Summary of Percentage Differences Between Experimental

Freezing and Thawing Times For Tylose Rectangular Bricks and

Freezing and Thawing Times Calculated Using Simple Geometric

Factors'!
Data Geometric Equation Mean Std Dev? Min? Max? Corr?®
Factor (%) (%) (%) (%) FDM
FDM *“ -4.4 6.6 -20.7 9.8 1.00
Freezing FEMS“ -5.9 7.1 -24.1 9.8 0.97
(Cleland & EHTD (9.3) =5.7 7.3 -23.0 9.8 0.90
Earle 1979b)
EHTD (9.11) -3.8 6.6 -21.3 9.2 0.86
(72 runs)
MCP (9.4) -6.0 5.5 -16.8 7.3 0.67
MCP (9.12)  -4.9 7.1 -22.7 10.9 0.89
FDM* 0.6 3.1 -6.0 7.9 1.00
FEMS“ -6.3 3.4 -12.9 1.2 0.66
Thawing
EHTD (9.3) =-3.5 5.4 -15.0 6.4 0.06
(Table 6.6)
EHTD (9.11) -2.2 5.3 -12.9 10.9 0.06
(68 runs)
MCP (9.4) -0.6 5.8 -12.6 13.7 -0.03
MCP (9.12) -3.4 5.2 -13.0 T.1 0.11

! Using the finite difference method as the slab prediction method.

2 Std Dev = standard deviation, Min = minimum, Max = maximum.

Correlation coefficient (r) compared with the percentage differences

for the full finite difference method.

“ FDM = full finite difference method, FEIMs = gimplified finite element
method.
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Table 9.5 Summary of Percentage Differences Between Experimental

Freezing and Thawing Times For Tylose Rectangular Bricks and

Freezing and Thawing Times Calculated By Simple Prediction

Formulae
Data Slab Prediction Geometric! Mean Std Dev? Min? Max? Corr?
Method Factor (%) (%) (%) (%) FDM
FDM*“ -4.4 6.6 -20.7 9.8 1.00
EHTD -0.1 4.9 -8.9 9.7 0.57
Eq. (7.7)
MCP -1.3 5.2 -11.0 8.0 0.66
Freezing
Cleland & EHTD 0.8 5.3 -9.0 15.5 0.49
(Cleland & Earle 1982b
Earle 1979b) MCP -0.4 S105) -10.5 12.7 0.59
(72 runs) EHTD -0.8 6.3 -16.4 11.2 0.91
Pham 198U4c
MCP -1.9 6.8 -17.9 13.4 0.94
Pham 198 EHTD -2.1 6.0 -15.9 11.2 0.87
(Eq. (7.6))
MCP =38 6.5 -17.4 10.8 0.89
FDM* 0.6 3.1 -6.0 7.9 1.00
EHTD -1.6 4.3 -9.1 11.5 0.28
Eq. (7.2)
MCP -2.8 y,2 -9.8 7.7 0.36
Thawing EHTD -2.3 5.3 -12.9 10.6 0.36
Eq. (7.3)
(Table 6.5) MCP =35 5.1 -13.4 6.6 0.42
(68 runs) EHTD -2.6 6.0 -15.6 11.9 0.35
Eq. (7.4)
MCP -3.9 55 -16.1 7.8 0.43
EHTD =145 4.3 -11.5 .9 0.35
Eq. (7.5)
MCP -2.4 4.4 -11.5 .3 0.40

! EHTD from Eq. (9.11), MCP from Eq. (9.12).

2 Sstd Dev = standard deviation, Min = minimum, Max = maximum.
Correlation coefficient (r) compared with the percentage differences
for the full finite difference method.

* full finite difference method.
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10 PREDICTION OF FREEZING AND THAWING TIMES FOR MULTI-DIMENSIONAL
IRREGULAR SHAPES BY SIMPLE METHODS

The previous three chapters have covered the third and fourth research
objectives set in Chap. 3 - assessment both of the accuracy of Group I
(simple) and Group II (numerical) prediction methods for regular shapes
and of Group II methods for irregular shapes. Chapter 10 is concerned
with the fifth objective - investigation of the possibility of
developing a Group I method to predict freezing and thawing times for

irregular shapes.

10.1 INTRODUCTION

No simple methods suggested for calculation of geometric factors from
first principles for freezing and thawing of irregular shaped objects
have proved accurate. Rutov (1936) and Mott (1964) wused the AD/2V
ratio as a shape factor but it is known that this is not accurate when
Bi«O. Smith et al (1967), Smith et al (1968), Clary et al (1968),
Smith & Nelson (1969) and Clary et al (1971) defined a geometry index
(the forerunner to EHTD), for the case of heat conduction without
change of phase and Bi-w. For irregular geometries they calculated
their geometry index from an ellipsoidal model shape that has equal
orthogonal cross-sectional areas and the same characteristic thickness
as those of the anomalous shape that it replaces. The orthogonal
cross-sections taken were generally the small and largest that pass
through the thermodynamic centre and lie in the same plane as the
characteristic dimension. It was unknown how this method would perform

for phase change and when Bizw,

For regular multi-dimensional shapes use of the concepts of EHTD and
MCP led to accurate methods to take account of geometry in freezing and
thawing time predictions. EHTD and MCP are calculated as functions of
the Biot number and the two other geometry parameters (8, and B,) that
describe the regular geometries. It was considered sensible to try to
extend the methods to calculate EHTD and MCP to irregular geometries.
It was decided to ignore any variation of these geometric factors with

Ste and Pk as this variation would probably be small compared with the
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Bi and shape effects (Sec. 9.3).

10.2 GEOMETRY PARAMETERS

Using Eqs. (9.2) and (9.9) the values of EHTD and MCP can be defined
from individual experiments for a particular shape (Cleland & Earle
1982b). However these determinations are both geometry and condition
specific and do not necessarily allow accurate and simple calculations
for other conditions or geometries. A major problem with developing
methods to determine EHTD and MCP from first principles is that apart
from D, A and V, there are few other easily measured parameters that

can be used to characterise all irregular shapes.

Even the characteristic (first) dimension, D, is not always
straightforward to estimate. For an irregular shape D is defined
either as (a) the smallest thickness measured by a 1line that passes
through the thermodynamic centre, or (b) twice the shortest distance
from the thermodynamic centre to the objects surface. The position of
the thermodynamic centre is not always obvious from examination of the
object and may move during the phase change process (Fleming 1970).
For most common shapes where surface boundary conditions are not
position variable (such as those considered in this work), the two

definitions of D are virtually equivalent.

Possibly useful measures of the effect of the second and third

dimensions are:

(a) The ratio between the maximum distance from the thermodynamic
centre to the surface and D/2.

(b) The ratio of the major axis length to the minor axis length for an
elliptical model cross-sections equal 1in area to the orthogonal
cross-sections of the anomalous shape (Smith et al 1967).

(c) The ratio of the volume of the object compared with the volume for
a infinite cylinder (two-dimensional shapes) or sphere
(three-dimensional shapes) of the same surface area.

These three parameters are highly correlated with each other as they

all measure in some way, the distortion of the shape from a infinite

cylinder or sphere. Each has some different properties so all three

were investigated to see if they could individually, or in combination,
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provide simple methods to calculate geomeric factors for irregular

shapes.

A fourth but, very different, way to describe an objects shape 1is to
define a regular shape that freezes or thaws in the same time as the
object under the same environmental conditions. For example, Pham
(1984¢c) defined an equivalent rectangular brick shape for finite
cylinders, but this 1led to wuncertainty in the shape factor and
consequently underprediction of freezing and thawing times, especially
at high Bi values (Table 9.3). This was because the size of the
equivalent brick (brick with the same freezing or thawing time) changes
with Biot number. Although this approach has proved successful for
some specifically studied irregular shapes by approximation to slabs,
infinite cylinders or spheres and defining equivalent diameters
(Sec. 2.5, Table A.8), it is unlikely to lead to a method that can be
applied systematically to a wide range of shapes with accuracy. It was
decided not to consider it further unless all of the other approaches

proved unsuitable.

10.3 DEVELOPMENT OF GEOMETRIC FACTORS FOR MULTI-DIMENSIONAL
IRREGULAR SHAPES

Both EHTD and MCP are defined for any shape as Bi+0 by the AD/2V ratio.
Therefore the requirement is to develop a method to <calculate the
change in these factors with Biot number, in as simple and as accurate
a manner as possible. The calculation method should only use easily
measured or estimated geometry parameters such as those discussed in
Sec. 10.2.

There are few experimental data for freezing and thawing of irregular
shaped objects available in the literature, for which the geometry and
conditions are sufficiently accurately described, measured and
controlled to allow their use in the present study. For this reason,
the method of analysis applied was the same as that wused for regular
shapes (Sec. 9.4). 1Initially only the ratios of numerically calculated
freezing and thawing times for the actual shape, and for the reference
slab were used in the development of the geometric factors. Only the

variations due to geometry and the effect of Bi were apparent in these
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data as mid-range Ste and Pk values were used. The choice of approach
was especially important for the three-dimensional irregular shapes
where there was the possibility of systematic sources of experimental

error in the experimental data (Secs. 5.9.3, 5.9.4 and 8.4).

Even though an infinite number of shapes are possible, due to
limitations in grid preparation time and computation resources,
numerical data were only calculated for the eight two-dimensional
objects and the four three-dimensional objects wused in experiments
(Figs. 5.15 to 5.21 and 5.24 to 5.27). Also computer process time
limitations meant that computations were not possible for the full
range of Bi values; only the important case where Bi+®» was calculated.
The data are given in Table C.2. To supplement the data base, the
numerical data for the regular shapes were also used (Table C.1). Any
method to calculate the geometric factor for irregular shapes should
also be applicable to regular shapes. However, lower accuracy compared
with the methods specific for regular shapes, described in Chap. 9,
would be expected because for the method to be universal, less detailed
information about the geometry can be incorporated. The regular shape
data both increased the range of geometry types and added information
about how the geometric factors behave at intermediate Bi values. The

composite data set was still limited in scope.

By curve fitting of the numerical data the following expressions were

found to be of reasonable accuracy, but as simple as possible:

L,D
EHTD = G1 + G2 [ Ei_ -1 ][ £,4(9) + (1 - £,,(v))/v1-4T )
1
o 2.75
+ G3 -1 | £0s(9) + (1 - £,4(90)/92° T2 ) (10.1)
2h,
and
MCP

'..

(2-G1) £,,( £,6(G2,9,) ) 0.65 B10:39 ( v1-39 - 1)

* G3 fl?( fxs(G3,Vz) ) 0.65 810'39 ( vl.26 - 1 ]

AD L.D L.D
—/( 61 v 62| < 1|9l M L g3 2E - 1| /v2T5 ) - 1]
2v 2A, 2A,

c [V - £, (£,6(G2,9,) + £,6(G3,V,))/(G2 G3 + 1) )] (10.2)

+

where £,,(v) = 3.56/v'-TT / ( B1!-3% 4+ 3.56/¢'-77 )
£,6(G,9) = G 3.08/¢ +90



Prediction of Freezing and Thawing Times 202

£.,00 =x7(Bi'"3%+x)

L,, L, = perimeter length of the first and second
orthogonal cross-sections (m)

A, A, = area of the first and second orthogonal
cross-sections (m%)

v = ratio of major axis length to minor axis length for
an ellipse modelling an orthogonal cross-section

v, = LA, /D2

v, = Up,/D?

and the values of Gl1, G2 and G3 are given in Table 9.2. Table 10.1
gives the geometry parameters used in Eqs. (10.1) and (10.2) for the
shapes used in this study (Tables 6.6 and 6.7).

These equations use the second of the shape parameters discussed 1in
Sec. 10.2 yet are still definite extensions of the methods developed in
Sec. 9.4 for regular shapes. The techniques are similar to that of
Smith et al (1967) in that the orthogonal cross-sections that pass
through the thermodynamic centre are used and the contributions to the
geometric factor calculated from each cross-section are summed (this is
also the case in Eqs. (9.11) and (9.12)). Due to the 1lack of data,
accurate fitting of all the coefficients was not possible so many of
the coefficients have been defined by analogy to the methods developed
for the regular shape geometric factors (for example,
3.08/V1'77 approximates 2.32/81‘77 and Bi1'3u is retained to give the
Biot number weighting functions in the equation for EHTD). Equations
(10.1) and (10.2) are very similar to Egs. (9.11) and (9.12) because V
is a parameter that 1is closely related to g for regular shapes.
However, this means that for shapes increasingly distorted from regular
shapes the accuracy may be reduced. All of the irregular shapes used
in the analysis were either relatively oval with no sharp contour
changes or were rectangular with square corners or edges; so this was

not a problem with this data set.

Table 10.2 shows the fit of Eqs. (10.1) and (10.2) to the numerical
data for regular shapes. Overall the agreement is good and is only
slightly inferior to that displayed by the specialised methods (Table
9.3).
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10.4 TESTING OF GEOMETRIC FACTORS AGAINST EXPERIMENTAL DATA FOR
MULTI-DIMENSIONAL SHAPES

Equations (10.1) and (10.2) can be used in conjunction with any of the
slab prediction method that had previously been used with Eqs. (9.5)
and (9.7), to predict freezing and thawing times for objects of any
shape. Table 10.3 summarises the predictions against the experimental
data of Cleland & Earle (1979b) and Tables 6.5, 6.6 and 6.7 for
rectangular bricks, two-dimensional irregular shapes and

three-dimensional irregular shapes.

10.4.1 Rectangular Brick Freezing and Thawing

The predictions were almost identical to those displayed for Eq. (9.11)
and (9.12) in Tables 9.4 and 9.5. This confirms that for regular
shapes, the general calculation methods for EHTD and MCP (Eqs. (10.1)
and (10.2)) are equivalent to the specialised methods (Eqs. (9.11) and
(9.12)), and do not add significant uncertainty to freezing or thawing

time predictions.

10.4.2 Freezing and Thawing of Two-Dimensional Irregular Shapes

For the two-dimensional irregular shape data the mean prediction errors
using Eq. (10.1) and (10.2) to describe geometry were slightly off-set
from zero for both the geometric factors, and for both freezing and
thawing. The standard deviation was low and the correlation
coefficient (compared with the full finite element method results) was
high. The magnitude of the 95% confidence bounds for the prediction
errors was similar to the estimated experimental error bounds for this
data (Sec. 5.8.4, Table 12.2). Hence for the two-dimensional irregular
shapes used (all of which had curved, oval surfaces) the lack of fit of
the geometric factors calculated by Eqs. (10.1) and (10.2) does not
significantly worsen the overall agreement with experimental data

although there is a slight shift of the mean.
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10.4.3 Freezing and Thawing of Three-Dimensional Irregular Shapes

In general the accuracy of predictions for the three-dimensional
irregular shapes was poorer than for the other shapes. This was
expected due to a higher experimental uncertainty for these shapes
(Sec. 5.9.4). The standard deviation of the predictions were similar
to those for the full finite element method results and the correlation

coefficient of the percentage differences were high.

However, the mean prediction errors displayed different trends to those
for the full finite element results (Table 8.2). For the pyramid shape
the mean prediction error was closer to zero compared with the
under-prediction shown by the full finite element method results. As
discussed in Sec. 8.4 the off-set for the numerical results was partly
caused by use of a coarse spatial grid for the calculations. The
simple slab prediction methods and Egs. (10.1) and (10.2) were not
affected by this problem so, as expected, for an accurate slab
prediction method the mean prediction error was not significantly

different from zero.

The same explanation applies for the sphere shape results. The
predictions for the full finite element me thod using a
three-dimensional grid were off-set from zero, but both the predictions
for the finite element method using a finer one-dimensional grid and

those for the simple prediction methods were not.

For the egg and fish shapes different trends were observed. The mean
prediction error was higher for the simple prediction methods than the
numerical methods for the egg shape, but lower for the fish shape. It
was difficult to assess whether the differences in the mean prediction
errors were apparent due to systematic error in the geometric factors
for these shapes, because the numerical calculations were influenced by
factors such as the coarse spatial grid (Sec. 8.4), or because the
predictions were affected by systematic error in the value of the
surface heat transfer coefficient used in calculations (Sec. 8.4). All

three reasons probably contributed in both cases.
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Because the predictions for the two-dimensional irregular shapes were
based on data for shapes with both rectangular and oval cross-sections
and were quite precise, it was considered that the effect of the second
dimension was accurately modelled by Eqs. (10.1) and (10.2) for both
ovoid and rectangular shapes. Therefore any uncertainty due to the
geometric factors for the egg and fish shapes was thought to be in the
modelling of the effect of the third dimension. This is not surprising
as there were very few data available to analysis the effect of the
third dimension in three-dimensional irregular shapes. The main reason
for this was the 1large computation costs involved in numerical
calculation for three-dimensionally irregular shapes. A typical
calculation using the full finite element method for the fish shape
took 150 000 sec. process time on a Prime 750 computer. This meant
that the analysis was forced to rely heavily on the rectangular brick
and finite cylinder shape data. These regular shapes have rectangular
cross-sections in the third dimension, not oval as found in the egg and
fish shapes. Consequently the coefficients in Eqs. (10.1) and (10.2)
fitted data for shapes with rectangular cross-sections in the third
dimension and do not seem to be as accurate for shapes with other
geometries. To develop more accurate methods to calculate the
geometric factors, EHTD and MCP, more data are required. If more
three-dimensional irregular shape data were available, including data
for shapes with oval cross-sections in the third dimension, it was felt
that the principles of the methods to calculate EHTD and MCP (Sec. 9.4)
would not need to be changed; only the values of the coefficients in
Eq. (10.1) and (10.2) (and possibly the geometry parameter used), would
alter to fit the data.

Overall, the off-set of the mean for the predictions wusing Eq. (10.1)
and (10.2) was not considered large in relation to the inaccuracy of
the experimental data and the lack of suitable data to develop and test
the geometric factor expressions for three-dimensional irregular

shapes.
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10.4.4 Comparison of Slab Prediction Methods

All of the five slab prediction methods (the finite difference method
plus the four simple formulae approaches), used in conjunction with the
expressions for EHTD and MCP gave adequate prediction accuracy. As
discussed for rectangular brick freezing (Sec. 8.2), use of numerical
slab methods 1lead to under-prediction compared with the other simple
slab prediction methods (Chap. 7). Otherwise the mean prediction error
was almost identical for all the slab prediction methods. The five
slab prediction methods also gave very similar standard deviations of
prediction errors and correlation coefficients with numerical method

predictions.

10.4.5 Analysis of Geometric Factors

The accuracy of the predictions obtained using the simple geometric
factors, EHTD and MCP, was sufficiently good for most of the shapes
tested that no further geometry parameters or geometric factor concepts

were investigated.

The expressions for EHTD and MCP gave almost identical freezing and
thawing time predictions for all shapes and could not be differentiated
by the accuracy criterion alone. The expression for EHTD was slightly
less complex in its final form than the expression for MCP. Because of
the peak in MCP values at intermediate Biot numbers it was more
difficult to find and curve-fit a suitable expression for MCP than it
was for EHTD.

It was difficult to assess the ranges of applicability of Eqgs. (10.1)
and (10.2) because of the large variety of geometries that are common
in practice. Their accuracy has been proven for two-dimensional shapes
with both oval and rectangular cross-sections so it seems reasonable to
suggest that the equations should apply equally well to most
two-dimensional objects. For three-dimensional shapes Eqs. (10.1) and
(10.2) have only been proven accurate for objects with rectangular
cross-sections in the third dimension. Therefore the limits of their
application should be to objects with this type of geometry. The

formulae can be wused for other shapes, but at the expense of reduced
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accuracy. The accuracy of Eqs. (10.1) and (10.2) for both two- and
three-dimensional objects with extreme distortion of geometry would be
expected to be lower. More refinement of the expressions for ETHD and
MCP can be justified, especially to make them applicable to a wider

range of three-dimensional geometries.

The way in which the equations for EHTD and MCP take account of the
effect of Bi was thought to be universally correct so the limits of
applicability with regard to this parameter are the same as for
Eqs. (9.11) and (9.12) for regular shapes:

0.0 < Bi < 100.

10.5 SUMMARY

The principles underlying the methods to calculate geometric factors
using the EHTD and MCP concepts were satisfactorily extended to
irregular geometries. 1In a similar manner to that wused for regular
shapes in Chap. 9 and by Smith et al (1967) for irregular shapes, the
effect of each dimension was calculated separately by considering each
of the orthogonal cross-sections that pass through the thermodynamic

centre. The parameter V=MA/n02

for these cross-sections was similar to
the parameter B used for regular shapes and allowed expressions to
calculate the two geometric factors to be developed along similar lines

to those used for regular shapes.

Used in conjunction with accurate slab freezing and thawing time
prediction methods the expressions developed for EHTD and MCP both gave
predictions of similar accuracy to those achieved by numerical methods
for rectangular bricks and two-dimensional irregular shapes. The
geometric factors did not add significant uncertainty to the

predictions for these shapes.

For the three-dimensional irregular shapes the accuracy of the
geometric factors was 1lower than for the two-dimensional irregular
shapes. This was attributed to less accurate modelling of the effect
of the third dimension rather than error in modelling of the effect of
the second dimension or because the principles of the calculation

method were 1inappropriate as the predictions for the two-dimensional
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shapes were accurate.

The methods developed are accurate for most two-dimensional objects but
are restricted to three-dimensional objects with rectangular
cross-sections in the third dimension. For these shapes the methods do
not add significantly to the prediction uncertainty. For other shapes

lower accuracy was apparent.

The present analysis was 1limited by the small data set, and by
difficulties in obtaining accurate experimental measurements especially
for three-dimensional irregular shapes. More data would enable more
accurate and universally applicable expressions to calculate EHTD and
MCP to be developed. Substantial computing costs would have to be

borne in order to do this work.
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Table 10.1 Parameters For Calculation of the Effect of Geometry For

Irregular Shapes

Shape'! D Vi 2 K2 A L v, A, L: Vs
& Code
(m) () () ()  (m) (m®)  (m)

2DI 1 0.1525 0.0183 0.479 0.0183 0.479 1.00

2DI 2 0.1115 0.0164 0.475 0.0164 0.475 1.68

2DI 3 0.1370 0.0177 0.475 0.0177 0.475 1.20

2DI 4 0.0990 0.0152 0.478 0.0152 0.478 1.97

2DI 5 0.1050 0.00866 0.330 0.00866 0.330 1.00

2DI 6 0.0850 0.00796 0.323 0.00796 0.323 1.40

2DI 7 0.0910 0.00811 0.324 0.00811 0.324 1.25

2DI 8 0.0475 0.00586 0.325 0.00586 0.325 3.30

Pyramid 0.0825 0.00136 0780 0.0103 0.416 1.93 0.0115 0.460 2.15

Sphere 0.1270
Egg 0.1700
Fish 0.1200

.00363 1175 0.0227 0.534 1.00 0.0320 0.652 1.41
.00u37 1625 0.0143 0.424 1.26 0.0488 1.076 4.31

o O o o

0.

.00107 0.0507 0.0127 0.399 1.00 0.0127 0.399 1.00
0.
0.

! 2DI = two-dimensional irregular shape, code number from Table 6.6.

2 For the 2DI shapes these values are for a 1.0 m long object.
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Table 10.2 Summary of Percentage Differences Between Numerically

Calculated Freezing Times For Finite Cylinders, Infinite

Rods and Rectangular Bricks and Freezing Times Calculated By

Simple Prediction Formulae'!

Shape Geometric Equation Mean Std Dev? Min? Max
Factor (%) (%) (%) (%)

EHTD (9.11) -0.5 1.6 -7.0 5. 2

All Data EHTD (10.1) -0.3 1.7 -6.8 5.7
(270 runs) MCP (9.12) -0.3 1.7 -7.0 4.1
MCP (10.2) -0.3 1.7 -6.9 4.2

Finite Cylinders  EHTD (9.11) -0.4 0.8 -2.5 1.2
Dn s Dy EHTD (10.1) -0.4 0.8 -2.8 1.2
(63 runs) MCP (9.12) 0.5 1.3 -2.2 4.1
MCP (10.2) 0.2 1.5 -4 y, 2

Finite Cylinders  EHTD (9.11) -0.5 2.3 -7.0 5.0
D. 2 D, EHTD (10.1) -0.3 2.5 -6.8 5.7
(54 runs) MCP (9.12) -0.7 2.1 -7.0 3.5
MCP (10.2) -0.5 2.2 -6.9 4.0

EHTD (9.11) -0.6 1.2 -3.7 2.4

Infinite Rods EHTD (10.1) -0.3 1.3 -3.7 2.6
(63 runs) MCP (9.12) -0.5 1.3 -4.2 2.1
MCP (10.2) -0.3 1.3 -4.2 1.9

Rectangular EHTD (9.11) =05 1.7 -4y 5.3
Bricks EHTD (10.1) -0.2 1.7 -4.3 5.6
(90 runs) MCP (9.12) -7 1 50 -6.0 3.1
MCP (10.2) -0.6 1.7 -6.1 3.9

! Using the finite difference method as the slab prediction method.

2 std Dev = standard deviation, Min = minimum, Max = maximum.
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Table 10.3 Summary of Percentage Differences Between Experimental

Freezing and Thawing Times For Tylose Multi-Dimensional

Shapes and Freezing and Thawing Times Calculated By Simple

Prediction Formulae

Data Slab Prediction Geometric! Mean Std Dev? Min? Max? Corr?
Method Factor (%) (%) (%) (%) FDM
FDM*“ -4.4 6.6 -20.7 9.8 1.00
EHTD -3.4 6.7 -21.1 9.6 0.86
FDM
MCP -4.9 7.2 -22.8 11.3 0.89
Rectangular EHTD 0.3 5.1 -8.5 10.1 0.56
Brick Eq. (7.7)
MCP -1.3 5.4 -11.1 8.3 0.65
Freezing
Cleland & EHTD 1.2 5.5 -8.7 15.9 0.48
(Cleland & Earle 1982b
Earle 1979b) MCP -0.4 5.7 -10.6 13.1 0.58
(72 runs) EHTD -0.4 6.4 -16.2 1.7 0.91
Pham 198lc
MCP -2.0 6.9 -18.0 13.9 0.93
Pham 1983 EHTD -1.8 6.1 -15.7 11.4 0.86
(Eq. (7.6))
MCP -3.3 6.6 -17.5 11.3 0.89
FDM* 0.6 3.1 -6.0 7.9 1.00
EHTD -1.6 5.4 -12.3 11.2 0.06
FDM
MCP -3.2 5.3 -12.8 6.8 0.10
Rectangular EHTD -1.0 4.3 -8.8 11.8 0.29
Brick Eq. (7.2)
MCP -2.6 4.2 -9.8 7.4 0.34
Thawing
EHTD -1.7 5.3 -12.7 10.8 0.36
(Table 6.5) Eq. (7.3)
MCP -2.2 5.1 -18.8 7.0 0.4
(68 runs)
EHTD -2.1 5.9 -15.4 12.1 0.36
Eq. (7.4)
MCP -3.7 5.3 -16.0 7.4 0.43
EHTD -0.6 4.4 1.1 8.2 0.35
Eq. (7.5)
MCP -2.2 4.6 -1.7 7.4 0.38

.s.continued
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Data Slab Prediction Geometric!' Mean Std Dev? Min? Max? Corr?
Method Factor ) (%) (8) (%) FDM
FEM*" -1.0 4,5 -=11.4 7.6 1.00
EHTD 2.5 4.6 -8.3 11.4 0.85
FDM
MCP 2.8 4,6 -8.3 11.8 0.84
Two-
Dimensional EHTD 3.9 5.1 -9.6 13,5 0.72
Irregular Eq. (7.7)
MCP 4.1 5.1 -8.9 14.0 0.72
Freezing
Cleland & EHTD 4.5 5.6 -9.6 16.8 0.83
(Table 6.6) Earle 1982b
MCP 4.7 5.6 -8.9 16.8 0.83
(42 runs)
EHTD 545 4.1 -5.0 14.1 0.86
Pham 198lc
MCP 5.8 4.1 -4,2 14.4 0.86
Pham 198 EHTD 3.5 5.0 -7.3 12.9 0.84
(Eq. (7.6))
MCP 3.8 5.0 -6.6 13,3 0.84
FEM*“ 185 5.5 -7.1 1.3 1.00
EHTD 5y 1 5.2 -6.7 19.0 0.79
FDM
T MCP 5.0 5.3 -6.7 19.2 0.80
wo-
Dimensional EHTD 5.2 5.2 -6.7 19.2 0.85
Irregular Eq. (7.2)
MCP 5.2 5.3 -6.7 19.3 0.86
Thawing
EHTD 5.6 5.4 -7.4 16.5 0.82
(Table 6.6) Eq. (7.3)
MCP 5.6 5.5 -7.4 16.7 0.83
(41 runs)
EHTD 6.4 5.6 -7.8 18.9 0.82
Eq. (7.4)
MCP 6.3 5.7 -7.8 19.1 0.83
EHTD 6.0 5.6 -5.1 20.2 0.86
Eq. (7.5)
MCP 5.9 5.7 -5.1 20.3 0.87
FEM* -10.3 6.7 -18.2 -2.0 1.00
EHTD 0.8 10.2 -12.8 13.2 0.89
FDM
MCP -3.9 9.7 -16.8 7.9 0.89
Eq. (7.7) EHTD 2.5 8.0 -9.0 12.0 0.91
or Eq. (7.2)
Pyramid MCP -2.3 7.6 -=-13.2 6.8 0.91
(Table 6.7) Cleland & EHTD 2.8 7.4 -6.5 11.1 0.95
Earle 1982b
(6 runs) or Eq. (7.3) MCP -2.0 7.0 -10.8 5.9 0.95
Pham 1984c EHTD 2.3 8.1 -8.3 13.2 0.93
or Eq. (7.4)
MCP -2.5 7.6 -12.5 7.8 0.93
Pham 1988 EHTD 2.6 9.3 -T7.0 15.9 0.95
(Eq. (7.6))
or Eq. (7.5) MCP -2.2 8.8 -11.3 10.5 0.95

...continued
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Data Slab Prediction Geometric! Mean Std Dev? Min? Max? Corr?
Method Factor ) (%) (%) (%) FDM
FEM* (3-Dal Grid) =55 6.8 -12.1 15.3 1.00
FEM* (1-Dal Grid) 0.4 6.7 S 9.6 0.91
EHTD 2.3 8.8 -13.1 13.6 0.72
FDM
MCP 2.1 8.8 -13.3 13.4 0.71
Eq. (7.7) EHTD 5.0 5.2 -1.6 13.7 0.92
or Eq. (7.2)
Sphere MCP 4.8 5.2 -1.8 13.5 0.92
(Table 6.7) Cleland & EHTD 6.9 7.6 -1.2 16.5 0.94
Earle 1982b
(6 runs) or Eq. (7.3) MCP 6.7 7.5 -1.4 16.2 0.94
Pham 198Uc EHTD 2.1 7.3 -6.9 14.5 0.94
or Eq. (7.4)
MCP 2.0 7.3 -7.1 14,2 0.94
Pham 1982 EHTD 3.6 7.4 -6.5 11.3 0.77
(Eq. (7.6))
or Eq. (7.5) MCP 3.5 7.4  =-6.7 11.1 0.77
FEM" 5.2 13.0 -12.9 25.1 1.00
— EHTD 14.4 4.3 -11.5 28.8 0.89
MCP 13.3 4.4 -12.8 27.9 0.89
Eq. (7.7) EHTD 17.2 12.7 -4,1 31.6 0.96
or Eq. (7.2)
Egg MCP 16.0 12.8 -5.4 30.6 0.96
(Table 6.7) Cleland & EHTD 20.5 13.5 3.0 39.8 0.97
Earle 1982b
(6 runs) or Eq. (7.3) MCP 19.3 13.5 1.6 38.8 0.97
Pham 198U4c EHTD 13.7 12.4 -6.9 30.2 0.98
or Eq. (7.4)
MCP 12.5 12.5 =-8.2 29.3 0.98
Pham 1982 EHTD 17.0 13.5 4,1 34,6 0.95
(Eq. (7.6))
or Eq. (7.5) MCP 15.8 13.6 -5.4 33.7 0.94

...continued
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Data Slab Prediction Geometric® Mean Std Dev? Min? Max? Corr?
Method Factor (%) (%) (%) FDM
FEM*“ 35.3 8.9 20.8 44,2 1,00
EHTD 15.3 7.3 6.2 24.6 0.88
FDM
MCP 12.3 7.0 2.5 20.4 0.89
Eq. (7.7) EHTD 17.9 7.1 7.7 28.5 0.72
or Eq. (7.2)
Fish MCP 14.8 6.3 5.9 24.1 0.79
(Table 6.7) Cleland & EHTD 19.1 10.3 2.9 34.8 0.67
Earle 1982b
(6 runs) or Eq. (7.3) MCP 16.0 9.3 1.1 30.2 0.73
Pham 198U4c EHTD i15.8 8.1 2.2 25.1 0.74
or Eq. (7.4)
MCP 12.3 7.3 0.5 20.8 0.80
Pham 1982 EHTD 18.1 7.4 4.8 25.3 0.96
(Eq. (7.6))
or Eq. (7.5) MCP 15.0 7.0 3.0 21.0 0.99

! EHTD from Eq. (10.1), MCP from Eq. (10.2).

2 Std Dev = standard deviation, Min = minimum, Max = maximum.
Correlation coefficient (r) compared with the percentage differences
for either the full finite difference method or the full finite
element method.

“* Full finite difference method or full finite element method.
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11 TESTING OF PREDICTION METHODS FOR OTHER
MATERIALS AND DATA SETS

11.1 INTRODUCTION

In Sec. 6.1 it was decided to exclude variation of N, (the ratio of the
unfrozen to the frozen volumetric specific heat capacity), and N, (the
ratio of the unfrozen to the frozen thermal conductivity), in the main
thawing experimental design as the effect of these factors was expected
to be small. However some testing was required to ensure that this was
the case. Also to complete the testing of freezing and thawing time
prediction methods, all available accurate experimental data - for as
many geometries, conditions and phase change materials as possible -

should be used.

In the literature no experimental thawing data for foods were found for
which the conditions and geometries were sufficiently accurately
measured, described and controlled for them to be used to test
prediction methods. However, in the present study fourteen thawing

experiments were conducted with minced lean beef (Table 6.8).

For freezing a comprehensive set of data for a range of regular
geometries, food materials and final thermodynamic centre temperatures
exists (Cleland & Earle 1984a, Pham 1984c). The only additional data
collected were four freezing runs wusing two-dimensional irregular
shapes of minced lean beef. The composite freezing and thawing data
set is described in Table 11.1.

11.2 NUMERICAL PREDICTION METHODS

It was expected that the finite difference and finite element numerical
methods would introduce negligible prediction inaccuracy when applied
to foods 1if the space and time step intervals used were sufficiently
small. However, an increase in thermal property data uncertainty
relative to Tylose data would be expected (Sec. 5.2). Also the nature
of food materials means that experimental error 1s 1likely to exceed

that for experiments wusing Tylose, which 1is a homogenous gel
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(Sec. 5.7.3)

The numerical methods to predict freezing and thawing times had
previously been compared with most of the composite data set for
freezing (Cleland & Earle 1984a) and for thawing of Tylose (Sec. 7.2
and Chap. 8). Numerical method predictions were made for the remaining
thawing data for minced 1lean beef and the more recently published
freezing data, (marked in Table 11.1), to complete the comparison. The
finite difference method was used for regular shapes and the finite
element method for irregular shapes. The thermal property data used
were those given by Cleland & Earle (1984a). For Tylose and minced
lean beef these are consistent with, although slightly different to,
the data in Table 5.1. The predictions are summarised in Table 11.2
(for thawing of minced lean beef) and Table 11.4 (for freezing of

multi-dimensional shapes).

Offset of the mean percentage difference between predicted and
experimental times from zero was significant for the two-dimensional
irregular shapes, for finite cylinder experiments carried out by de
Michelis & Calvelo (1983), and for all the data collected by Hayakawa
et al (1983a) and Succar & Hawakawa (1984). Consistent offset can
arise from systematic experimental error (particularly in estimates of
the surface heat transfer coefficient) or from thermal property data
used in calculations not truly representing the samples of the test

materials used.

For the two-dimensional irregular shapes the former was considered most
likely. Measured rates of temperature change with time were
consistently under-predicted by the finite element method throughout
both the freezing or thawing processes for both the shapes used
(Fig. 6.19). Although thermocouple placement error may have
contributed to occasional under-prediction, the under-prediction was
too consistent for this factor alone to explain the observed
temperature profiles. Hence the assumption made in Sec. 5.8.3 that
both the contact resistance between the Tylose and the mould wall and
the contact resistance between the minced lean beef and the mould wall
were equal, may not be correct. The difference may have arisen because

Tylose is a dry gel, whereas minced lean beef has a fibrous, moist
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nature (Sec. 5.7.3).

The other data sets for which offsets from zero were significant were
all taken from the 1literature. It was difficult to assess whether
inappropriate thermal data, or experimental inaccuracy caused the
problems in these data sets. 1In several cases surface heat transfer
coefficients were not determined independently of the freezing
experiments. It is very wunlikely that problems in the finite
difference or finite element method calculations were the cause as the
programs were tested rigorously (Chap. 4) and it has been demonstrated

in this study that they performed well for 90% of the whole data set.

The standard deviations of prediction errors were generally larger for
food experiments than for Tylose experiments (for example - Tylose slab
thawing, 3.5%; minced 1lean beef slab thawing, 5.9%). This reflects
the difficulties discussed previously in experimenting with food

materials (Sec. 5.2).

It should be noted that some individual sets of data are very small
(less than six runs), so prediction error means and standard deviations
calculated for these sets are less meaningful than those for large data
sets. Similarly, when simple prediction methods are evaluated in
Sec. 11.3, the correlation coefficients between these methods and the
numerical method prediction results for such small data sets should be

viewed in the same way.

11.3 SIMPLE PREDICTION METHODS

If the effects of N, and N, are unimportant, results calculated wusing
previously-recommended simple prediction formulae (Sec. 7.3.3) would be
expected to match results for the numerical methods (similar mean
prediction error and high correlation coefficients), as well as being
in general agreement with the experimental times. Very good agreement
with all of the experiments would not be expected in the light of the

poor numerical method predictions for some data.

Table 11.2 summarises the prediction accuracy for the four simple slab
thawing time prediction formulae (Eqs. (7.2) to (7.5)) wused in
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conjunction with the two geometric factors (Eqs. (10.1) and (10.2)) for
the minced lean beef data (Table 6.8). The thermal property data used
are given in Table 5.2. As both the mean and standard deviations of
the prediction errors are similar to those for the numerical methods it
was concluded that any inaccuracy arising from neglect of N, and N, was

sufficiently small to be ignored.

Cleland & Earle (1984a, 1984b) and Pham (1983, 1984c) used the data of
Cleland & Earle (1977a, 1979a, 1979b), de Michelis & Calvelo (1983) and
Hung & Thompson (1983) to test methods to predict freezing times. It
was considered worthwhile to calculate results equivalent to Table 1 of
Cleland & Earle (1984b) for Eq. (7.7), the one new freezing method
under consideration here. The results are given in Table 11.3. For
data to a final thermodynamic centre temperature other than -10°C, the
modification of Cleland & Earle (1984b) was used to correct the
prediction of Eq. (7.7) which is based on a final thermodynamic centre
temperature of -10°C. The thermal property data given by Cleland &
Earle (1984a) were used to be consistent with the previously published

results.

Since the previous studies, some new slab data have been published by
Succar & Hayakawa (1984). These are also included in Table 11.3. With
the thermal property data used, neither these nine runs, nor results
from the same laboratory for other shapes (Hawakawa et al 1983a) shown
in Table 11.4 could be predicted accurately by any of the methods
considered, including the finite difference method.

Comparison of Table 11.3 with Table 1 of Cleland & Earle (1984b) shows
that Eq. (7.7) was equally good as the best previously proposed methods
of Cleland & Earle (1984b), and Pham (1983, 1984a, 1984c) (Sec. 7.3.3).
Neither ignoring the effects of N, and N, nor using the method of
Cleland & Earle (1984b) to account for different final temperatures
significantly affected the prediction accuracy.

The four simple slab freezing and thawing time prediction approaches
discussed in this section and in Sec. 7.3, can all be extended to any
other shape by either of the geometric factors EHTD or MCP. Both

geometric factors have been tested for most of the Tylose
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multi-dimensional shape freezing and thawing data (Chap. 10 and Table
11.2). In Table 11.4, the prediction results of these simple
prediction methods are summarised for the remaining multi-dimensional
shape data from the composite data set of Table 11.1. Because all four
slab approaches are approximately equivalent, only one was used in this
analysis. The method of Pham (1984c) was arbitrarily chosen. Again,
the simple prediction method results closely follow the numerical
method predictions and agree as well as could be expected with the
experimental data. No significant difference 1in prediction accuracy
between MCP and EHTD could be discerned.

11.4  SUMMARY

Numerical freezing and thawing time prediction methods were slightly
less accurate for food materials than for Tylose due to larger thermal

property data and experimental uncertainties.

Simple slab prediction methods and geometric factors developed to
predict freezing and thawing times for Tylose have been shown to be
equally applicable to food materials and for a wider range of

conditions and shapes than previously considered.

The effects of N, and N, on freezing times were sufficiently small
compared with experimental wuncertainty, that no justification existed
for inclusion of terms involving N, and N, in the simple empirical
methods. Fewer test data exist for thawing, but there is no indication
from these that N, and N, are any more significant for thawing than for

freezing.
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Table 11.1 Composite Data Set For Testing of Freezing and Thawing Time

Prediction Methods

Type Source Material Shape! Final Centre No. of
Temperature Runs
(eC)
Table 6.2 Tylose Slab 0.0 35
Table 6.3 Tylose Cylinder 0.0 34
Table 6.4 Tylose Sphere 0.0 35
Table 6.5 Tylose Brick 0.0 68
Thawing Table 6.6 Tylose 2D1 0.0 41
Table 6.7 Tylose 3DI 0.0 1"
Table 6.8 Lean Beef  Slab 0.0 6"
Table 6.8 Lean Beef  Brick 0.0 u*
Table 6.8 Lean Beef  2DI 0.0 y*
Table 6.6 Tylose 2DI -10.0 42
Freezing Table 6.7 Tylose 3DI -10.0 13
Table 6.8 Lean Beef  2DI -10.0 u*
Tylose Slab -10.0 43
Cleland & Earle 1977a Lean Beef  Slab -10.0
Potato Slab -10.0
Freezing
Cleland & Earle 1979a Tylose Cylinder -10.0 30
Cleland & Earle 1979a Tylose Sphere -10.0 30
Cleland & Earle 1979b Tylose Brick -10.0 72
Tylose Slab -18.0 23
Lean Beef  Slab -18.0 9
Freezing Hung & Thompson 1983 Potato Slab -18.0 9
Ground Beef Slab -18.0 9
Carp Slab -18.0 9

...continued
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Type Source Material Shape! Final Centre No. of
Temperature Runs

(°C)

Lean Beef  Slab -18.0 5
de Michelis & Lean Beef Finite Cyl. -18.0
Freezing Calvelo 1983
Lean Beef Inf. Rod -18.0
Lean Beef Brick -10.0 17
*
Lean Beef Inf. Rod -15.0 6
Freezing Hayakawa et al 1983a *
Tylose Finite Cyl. -15.0 6
*
Freezing Succar & Tylose Slab Various 9
Hayakawa 1984
THAWING Total 238
FREEZING Total 355
FREEZING AND THAWING TOTAL 593

! 2DI = two-dimensional irregular shapes, 3DI = three-dimensional
irregular shapes.

*
Data not previously used to test prediction methods.
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Table 11.2 Summary of Percentage Differences Between Experimental

Thawing Times and Predicted Thawing Times For Minced Lean

Beef
Data Slab Prediction Geometric! Mean Std Dev? Min? Max? Corr?
Method Factor (3) (%) (%) (%) FDM
FDM*“ -4.5 5.9 -11.9 2.5 1.00
Slab Eq. (7.2) =Ty 8.5 -15.4 3.6 0.81
(Table 6.8) Eq. (7.3) -7.0 6.9 -16.0 1.1 0.91
(6 runs) Eq. (7.3) -6.4 7.9 -19.4 3.6 0.92
Eq. (7.5) -5.4 6.0 -10.6 2.5 0.96
FDM*“ 4.8 7.0 -3.0 17.3 1.00
EHTD 1.8 6.0 -3.5 10.1 1.00
Eq. (7.2)
MCP 1.8 6.0 -4 9.4 0.99
Rectangular
Brick . (1.3) EHTD 1.7 8.5 -5.3 14.1 0.99
(Table 6.8) a- 2t MCP 1.7 8.3 -5.9 13.4 0.99
(4 runs) EHTD -0.6 5.5 -6.1 6.3 0.97
Eq. (7.4)
MCP -0.7 585 - (/i) 5.6 0.93
EHTD 2.5 4.6 -2.1 8.6 0.94
Eq. (7.5)
MCP 2.4 4.3 -1.5 7.9 0.95
F EM* 13.8 3.0 9.5 16.2 1.00
EHTD 14.6 2.8 12.4 18.8 0.16
Eq. (7.2)
Two- MCP 14.8 2.8 12.5 18.9 0.16
Dimensional
Irregular EHTD 15.7 3.7 11.6 19.9 0.55
Bg: 7 B)
(Table 6.8) MCP 15.8 3.7 11.8 20.0 0.56
(4 runs) EHTD 17.0 3.3 13.5 21.0 0.76
. Eq. (7.4)
MCP 17.2 3.3 13.6 21.2 0.76
EHTD 16.9 1.4 15.4 18.5 0.81
Eq. (7.5)
MCP 17.0 1.4 15.6 18.7 0.82

! EHTD calculated from Eq. (10.1), MCP calculated from Eq. (10.2).

2 std Dev = standard deviation, Min = minimum, Max = maximum.

® Correlation coefficient (r) compared with the percentage differences
for either the full finite difference method or the full finite
element method.

* Full finite difference method or full finite finite element method.
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Table 11.3 Summary of Percentage Differences Between Experimental

Freezing Times and Predicted Freezing Times Calculated By

Eq.
Source Shape Material Geometric  Mean Std Dev? Min? Max? Corr?
Factor! No. (%) (%) (%) (%) FDM
Slab Tylose b3 0.8 2.8 -5.9 5.7 0.32
Cleland & Slab Lean Beef 6 2.9 4,0 -1.8 9.4 0.64
Earle 1977a
Slab Potato -0.5 2.2 -3.2 2.2 0.35
Cleland & Cylinder Tylose 30 -1.4 4,0 -9.8 5.3 0.81
Earle 1979a
Sphere  Tylose 30 0.5 4.0 -7.210.6 0.92
Cleland & EHTD 72 0.3 5.1 -8.5 10.1 0.56
Earle 1979b Brick Tylose
MCP 72 -1.3 5.4 -11.1 8.3 0.65
Tylose 23 -3.9 8.0 -24.8 .2 0.78
Lean Beef 9 -U4.8 9.0 -17.2 .3 0.89
Hung &
Thompsgn Slab Potato 9 -8.0 4.9 -16.5 0.0 0.20
1983
Ground Beef 9 2.8 15.8 =-21.6 22.2 0.93
Carp 9 -1.7 12.1 =-22.216.7 0.89
Slab Lean Beef 5 .y b6 -1.510.9 0.9
de Michelis
& Calvelo Finite EHTD 24 8.7 1.5 =-12.0 29.3 0.84
1983 Cylinder Lean Beef
Rod & MCP 24 7.4 10.8 =-12.3 29.0 0.87
Brick
Succar & Slab Tylose 9 31.5 8.3 23.0 43.1 1.00
Hayakawa
1984
! EHTD calculated from Eq. (10.1), MCP calculated from Eq. (10.2).

2 Std Dev = standard deviation, Min

minimum, Max

maximum.

3 Correlation coefficient (r) compared with the percentage differences

for the finite difference method.
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Table 11.4 Summary of Percentage Differences Between Experimental

Freezing Times For Multi-Dimensional Shapes and Freezing

Times Calculated By Simple Prediction Methods!

Source Shape Material Geometric Mean Std Dev?® Min® Max?® Corr*
Factor? (%) (% (%) (%) FDM
Infigite FDMS 2.7 3.9 -6.7 1.0 1.00
Ro
Lean Beef EHTD -5.3 9.8 -16.6 0.5 0.91
(3 runs)
MCP -5.6 9.7 -16.8 0.2 0.91
Finite FDM$ 13.6 9.3 6.1 25.6 1.00
de Michelis Cylinder
& Calvelo Lean Beef EHTD 14,4 8.3 10.6 30.0 0.97
1983a (4 runs)
MCP 18.2 8.9 10.1 29.7 1.00
Reggangular FDMS3 8.6 6.5 4.2 17.7
1
Brick
Lean Beef EHTD by, .9 =-12.6 13.6 0.84
(17 runs)
MCP 2.8 .0 -12.5 10.0 0.89
Ingigite FDMS 23.8 8.0 14.9 37.9 1.00
o
Lean Beef EHTD 28.8 8.2 19.5 43.0 1.00
(6 runs)
Hayak?wa MCP 28 .4 8.3 18.9 42.7 1.00
et a
1983 Finite FDM?® 66.9 19.9 45.2 91.5 1.00
Cylinder
Tylose EHTD 80.8 21.5 57.5 107.3 1.00
(6 runs)
MCP 80.9 22.3 56.8 108.2 1.00
FEMS 10.8 2.2 8.2 13.5 1.00
2DI ¢
Table 6.8 Lean Beef  EHTD 12.5 1.8 10.5 14.6 0.46
(4 runs)
MCP 13.2 2.3 10.7 15.9 0.37
! Using Pham's (198l4c) slab prediction method for freezing.
2 EHTD calculated from Eq. (10.1), MCP calculated from Eq. (10.2).

3 Std Dev = standard deviation, Min =

minimum, Max =

maximum.

“ Correlation coefficient (r) compared with the percentage differences
for either the full finite difference method or the full finite

element m

ethod.

5 Full finite difference method or full finite element method.

2DI = two-dimensional irregular shapes.



225

12 OVERALL EVALUATION OF FREEZING AND THAWING
TIME PREDICTION METHODS

12.1 INTRODUCTION

In Chaps. 7, 8, 9, 10 and 11 a number of prediction methods were
evaluated against a 1large composite data set of 593 freezing and
thawing runs. Table 12.1 summarises the overall performance of the
best numerical methods (the finite difference method for regular shapes
and the finite element method for irregular shapes) and the four best
simple slab freezing and thawing time prediction approaches (used in
conjunction with both simple geometric factors). It was decided to
exclude from Table 12.1 the data against which all the prediction
methods performed badly. This decision was made so that these
experimental runs did not unduly influence the comparison of prediction
methods. Only 33 runs were excluded. These were the data of Hayakawa
et al (1983a), Succar & Hayakawa (1984) plus the egg and fish
three-dimensional irregular shapes (Table 6.8). Detailed comments on
why poor predictions arose for these runs are given in Secs. 10.4 and
IRIP2E

It was also considered useful to compare prediction method performance
to estimates of the random experimental uncertainty. 1In this study an
estimate of the experimental uncertainty could only be derived for the
experimental work of Cleland (1977) and the present work. Table 12.2
compares the estimated random experimental uncertainty with the 95%
confidences bounds for the prediction errors of both the best numerical

and simple prediction methods, for each shape tested.

Important sources of random experimental error were discussed 1in

Sec. 5.1. In order to obtain a good estimate of the experimental

error, expressed as a 95% confidence bound, the following calculation

procedure was used:

(a) the spread of replicate slab experiments was assessed - this was
used to estimate the uncertainty arising from control in all of the
experiments,

(b) a component was added for the surface heat transfer coefficient.
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The importance of error in h 1is a function of the Biot number.
Plank's equation suggests a weighting of U4/(Bi+l4) so this was used,
(¢) further allowances were added for multi-dimensional irregular
shapes where the experimental techniques and problems with
measuring and controlling the geometries suggested greater
uncertainty than that found for the slab experiments.
It was considered that all other sources of random experimental error
were negligibly small. Thermal data wuncertainties and systematic
experimental error were not included in the estimates. The 95%
confidence bounds based on fit to experimental data for the four best
simple slab prediction approaches were averaged to give the data in
Table 12.2 as all four approaches gave predictions with very similar

offset and spread of prediction errors (Table 12.1).

12.2 NUMERICAL PREDICTION METHODS

Throughout the testing against experimental data (summarised in Tables
12.1 and 12.2) it has been shown that the finite difference and finite
element numerical methods do not introduce significant prediction
uncertainty provided that they are correctly formulated and
implemented. The users of these methods need to meet the guidelines
for space and time step intervals established in Sec. 8.5 for the

finite element method.

The difference between the prediction error 95% confidence bounds for
the numerical methods and the estimated random experimental uncertainty
bounds in Table 12.2 give in most cases an indication of the thermal

property uncertainty.

The off-set mean error for the rectangular brick freezing data and the
larger numerical prediction error bounds for both the slab and
rectangular brick freezing data are most probably the result of
freezing rate effects that the numerical method calculations did not
take into account (Cleland et al 1982). The 1larger spread of
prediction errors and the off-set mean for the three-dimensional
irregular numerical predictions have probably arisen as a result of
being forced to wuse coarse spatial grids. They could also reflect

substantial systematic experimental errors (particularly in measurement
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of the surface heat transfer coefficient and in describing and

measuring the object geometries).

12.3 SIMPLE PREDICTION METHODS

All four empirical approaches gave similar prediction accuracy for the
composite data set for both freezing and thawing. The simple method
predictions all generally matched the numerical method predictions, and
the mean prediction errors were not significantly off-set from =zero.
For freezing the formulae for the two approaches of Calvelo (1981) and
Cleland & Earle (1976b) (Eq. (7.7) and Cleland & Earle (1982b)), were
not quite as highly correlated with the numerical method results as the
other approaches; probably because these formulae were based on

curve-fitting to a smaller data set than the other formulae.

In Table 12.1 it can be observed that the standard deviations for
simple freezing time prediction methods were very similar to the
numerical methods standard deviations, but a small difference occurred
for thawing. Numerical methods were :4.9%, but the best simple methods
were about 16.1%. This suggests that for thawing a small simple
prediction method uncertainty does exist. It has almost certainly
arisen from neglect of the effect of Ste 1in deriving empirical
equations for EHTD and MCP (Sec. 9.5). The decrease in prediction
method accuracy is small, and can only just be observed with a large,
accurate experimental data set. Whilst new terms for the Ste effect
could be 1included in MCP and EHTD for thawing this would destroy the
unified approach to take account of geometry. Further, the practising
food engineer would not obtain significantly better predictions because
data uncertainties 1in industrial practice far exceed those in the

research laboratory.

Table 12.2 shows that the confidence bounds for the simple methods are
consistent with the numerical predictions and with the experimental
error bounds. Hence, there is no evidence in this table that simple
prediction method inaccuracy is significant compared to experimental or

thermal property data error.
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The accuracy of all four approaches was such that development of other
empirical methods was not considered worthwhile. It is unlikely that
significantly better prediction accuracy could be achieved unless
better experimental data are collected. Marginal increases in accuracy
could be achieved 1if further terms were added, but at the risk that a

systematic component of the experimental error was being fitted.

Two ways of calculating each of the geometric factors, EHTD and MCP,
were proposed - Eqs. (9.11) and (9.12) for EHTD and MCP respectively
for regular shapes and Eqs. (10.1) and (10.2) respectively for
irregular shapes. For regular shapes the latter equations to calculate
EHTD and MCP (Eqs. (10.1) and (10.2)) gave almost equal values as
Eqs. (9.11) and (9.12). Therefore only Eq. (10.1) (EHTD) and
Eq. (10.2) (MCP) were compared directly.

The two geometric factors gave virtually identical overall prediction
accuracy for the composite data set as well as almost identical
individual predictions. The formula for EHTD (Eq. (10.1)) was less
complex than the formula for MCP because the MCP function goes through
a maximum value at intermediate Biot number values, which was difficult
to curve-fit in a simple manner. It was found easier to fit the EHTD
relationship first and use the inter-relationship between EHTD and MCP
to derive the MCP equations.

There may be no need for other geometric concepts because both EHTD and
MCP seem capable of giving sufficient accuracy for a wide range of
shapes. The proposed calculation formulae are 1least accurate for
calculating the effect of the third dimension 1in irregular shapes.
This situation has arisen more from the sparsity of suitable data, than
from inappropriate principles 1in the geometric factors themselves.
Collection of the necessary data would be expensive, but no problems in
modifying the EHTD and MCP equations are envisaged because all the
present work has shown that the principles on which they are based are
sound. Table 12.1 includes few data with irregular third dimensions so

this one area of weakness is not apparent in it.

If the detailed comparisons in Chaps. 7 to 10 are examined it can be

seen that each of the simple approaches has data sets on which it
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performs relatively better, and data sets on which its performance 1is
poor compared with the other three approaches. Table 12.1 shows that
there is nothing systematic in these observations for the full data set
so all four simple approaches and both geometric factors can be used
with equal confidence. All eight individual freezing and eight thawing
time prediction methods are therefore recommended as suitable for
general use. Engineers may have preferences amongst them. Possible
criteria are discussed in Sec. 12.4. Should very accurate predictions
be required users may wish to make predictions by more than one method,
and take an average. This procedure also helps guard against the
possibility of calculation error as predictions disagreeing by more

than a few percent have almost certainly arisen from user error.
The choice between the geometric factors 1is probably best made by
individuals on the basis of ease of understanding of the concepts.

Some may find EHTD easier to visualise and others MCP.

12.4 OTHER ATTRIBUTES OF SIMPLE PREDICTION METHODS

The desirable attributes of a freezing or thawing time prediction
method other than accuracy are listed in Table 3.1. All four simple
approaches investigated had some of these attributes. Each approach
led to freezing and thawing time prediction formulae with similar forms
so that a wunified approach for freezing and thawing time prediction

could be used.

In terms of simplicity, none of the approaches was significantly
better. For all four approaches, most of the time required to obtain a
prediction would be sSpent estimating representative environmental
conditions and thermal property data, rather than in using the formulae
themselves. Sample calculations for all of the approaches are given in

App. E.

Comments can be made on some of the slab methods. The freezing
formulae of Pham (1984c) uses a variable, the mean freezing
temperature, that does not take physically realistic values in
calculations. The approach of Pham (1983) for freezing assumes that

the basic form of Plank's (1913) equation correctly models phase change



Evaluation of Prediction Methods 230

in foods without superheating or subcooling, which in reality it does
not do (Sec. 2.3.2.3). Otherwise the four approaches led to formulae
that are physically realistic. The method of Pham (1984c) for freezing
builds on an earlier method Pham (1984a) which had a more complete
physical and analytical basis. It proved 1impossible to extend the
earlier method to thawing without incorporating empirical terms
(Eq. (7.4) in Sec. 7.3.2). Therefore for the present analysis,
Eq. (7.4) was regarded as the thawing equivalent of the approach of
Pham (1984c) for freezing because both are empirical methods, and the

approach of Pham (1984a) was not considered further.

12.5 COMPARISON OF NUMERICAL AND SIMPLE PREDICTION METHODS

Comparisons of the merits of numerical methods and simple formulae for
freezing and thawing time predictions are made by Cleland (1977),
Cleland & Earle (1977a, 1984a) and Heldman (1983). Briefly, numerical
methods have the advantages of flexibility and reliability for a wide
range of conditions, whereas simple methods are 1less complex, easier
and less costly to wuse 1in calculations, have fewer thermal property

data requirements but have a more restricted range of applicability.

Tables 12.1 and 12.2 show that the numerical and simple prediction
methods gave comparable prediction accuracy. The simple method results
deviated from the numerical results for only three sets of data, but
these deviations can be explained. Firstly, the numerical results for
slab and rectangular brick freezing were particularly affected by rate
effects (Cleland et al 1982). Secondly, coarse spatial grids were used
in the calculations for three-dimensional irregular shapes, and this
introduced numerical method error. Thirdly, the lack of suitable data
meant that the simple methods geometric factors were not as accurate
for three-dimensional irregular shapes as they may have been with an

extended data set.

12.6 NON-CONSTANT ENVIRONMENTAL CONDITIONS

In Chap. 3 it was decided that the entire field of freezing and thawing
time prediction could not be covered comprehensively. The present

study therefore considered only phase change with constant conditions
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and concentrated particularly on the effect of shape. Future research
may address the accuracy of freezing and thawing time predictions under

time and/or position variable environmental conditions.

Until such research is carried out the most appropriate ways to handle
non-constant conditions with simple methods are those described by
Cleland (1977) in the case of non-uniform 1initial temperature, and
Loeffen et al (1981) and Cleland & Earle (1982c) in the case of time
variable h and T,. The problem of a position variable surface heat
transfer coefficient introduces another 1level of complexity. Teider
(1963), de Michelis (1982) and Mascheroni et al (1982), describe ways
to handle only the simplest case of a slab with different h values on

each face.

Numerical methods, by comparison with simple formulae, are very
versatile and can take account of any of these time or position
variations directly, but at the expense of more complex computer

implementation and more expensive computations.

12.7 SUMMARY

The accuracy of the finite difference and finite element methods for
freezing and thawing time prediction were limited more by inaccuracy in
the thermal data and experimental uncertainty than uncertainty due to
the methods themselves provided that the guidelines to ensure

sufficiently small spatial and time steps are obeyed.

All four simple empirical approaches in combination with both EHTD and
MCP are accurate freezing and thawing time predictors, performing very
similarly to the numerical methods. None of the methods had attributes
that particularly recommended it so all are advocated as suitable for
routine use. The highest level of precision is probably obtainable by

averaging prediction from more than one of the methods.
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Table 12.1 Summary of the Percentage Differences Between Experimental

Freezing and Thawing Times From a Composite Data Set and

Freezing and Thawing Times Calculated By Numerical and
Simple Prediction Methods

Geometric Factor EHTD MCP
Slab Prediction Mean Std Dev! Corr? Mean Std Dev! Corr?
Method (%) (%) FDM (%) (%) FDM

FREEZING (328 runs)

Numerical? -0.8 7.9 1.00

Eq. (7.7) 1.0 7.3 0.70 0.5 7.3 0.73

Cleland & Earle 1982b 1.8 7.5 0.68 1.3 7.5 0.72

Pham 198lUc 1.8 7.4 0.80 1.3 7.6 0.81

Pham 1983 (Eq. (7.6)) 0.8 7.4 0.86 0.3 7.6 0.87
THAWING (232 runs)

Numerical? -0.1 4.9 1.00

Eq. (7.2) 1.0 6.1 0.64 0.4 6.2 0.64

Eq. (7.3) 0.8 6.2 0.67 0.2 6.3 0.67

Eq. (7.4) 1.0 6.7 0.64 0.5 6.8 0.65

Eq. (7.5) 1.4 6.2 0.67 0.9 6.4 0.66

! Std Dev = standard deviation, Min = minimum, Max = maximum.

2 Correlation coefficient (r) compared with the percentage differences
for either the full finite difference method or the full finite
element method.

3 The full finite difference method for regular shapes and the full

finite element method for irregular shapes.
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Table 12.2 Comparison of the Estimated Experimental Uncertainty Bounds

and the Means and 95% Confidence Bounds For the Numerical?

and Simple? Freezing and Thawing Time Prediction Methods

Data’ Type" Estimated?® Numerical Methods! Simple Methods?
Experimental
Uncertainty Mean CB® Mean CB®
(%) (%) (%) (%) (%)
F 4,27 0.8 +12.2 1.9 +8.7
Slab
T +5.3 -0.8 +7.0 0.5 +#10.9
F +6.57 -3.6 +9.5 -1.0 +8.4
Cylinder
T +6.1 -2.2 +4.7 -1.4 +6.8
F +7.07 -2.2 +6.9 -0.3 +7.9
Sphere
T 8.0 -0.9 £#11.1 1.1 +13.0
F +8.07 4.4 +13.1 -0.9 +12.0
Brick
T +5.4 0.6 +6.3 -1.9 +9.8
2D1 F,T +8.9 0.3 +10.2 50 1 +10.5
3DI°ReCt F,T 9.6 -10.3 +13.4 0.2 +15.9
Oval F,T +14.3 1.7 +40 .2 12.3 +21.6

! The finite difference method for regular shapes and the full finite

element method for irregular shapes.

Average of the four best slab prediction methods, results were nearly

identical using either EHTD or MCP as the geometric factor.

® pata from Cleland 1977 and Tables 6.2, 6.3, 6.4, 6.5, 6.6, and 6.7.

*F = freezing, T = thawing.

S Estimated experimental uncertainty 95% confidence bounds.

CB = 95% confidence bounds of the predictions about the mean.

? Estimates given by Cleland (1977).

® 2DI = two-dimensional irregular shapes, 3DI = three-dimensional
irregular shapes, Rect = rectangular cross-sections in third

dimension, Oval = oval cross-sections in the third dimension.
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13 CONCLUSIONS

The data measured in the present work represent a major addition to the
sets of accurately measured and controlled experimental data for
freezing and thawing of foods. The 297 experiments include 182 for
thawing of regular shapes and 115 for both freezing and thawing of

irregular shapes.

Of the numerical methods available those that take account of the
continuously temperature-variable thermal properties model the true
physical behaviour during freezing and thawing of foods most closely.
Testing showed that these methods were accurate predictors of

temperature/time profiles.

The finite difference method is restricted by practical considerations
to use for regular shapes. Testing against experimental data indicated
that provided sufficiently small space and time steps were used in a
correctly formulated and implemented computer program, the prediction
method uncertainty in predicting freezing and thawing times of regular

shapes was insignificant.

The finite element method was formulated and implemented in a computer
program that was able to solve heat conduction with phase change for
multi-dimensional regular and irregular shapes. Computation costs were
high. A simplified finite element method formulation was derived that
considerably reduced costs but should be used cautiously because of the
crude way 1in which thermal property variations are incorporated.
Quantitative guidelines were developed for application of the two
finite element method formulations to freezing and thawing problems
where there are limits to computing resources. Comparison of predicted
phase change times with experimental data for both regular and
irregular shapes showed that adherence to these guidelines ensured that

prediction method uncertainty was negligible.

No accurate simple method to predict thawing times that was not product
specific was found in the literature. For thawing of slabs, infinite
cylinders and spheres, four simple but generally applicable formulae

were developed. They were all equally accurate with 95% confidence
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bounds of -11.0% to +11.0% when compared with experimentally determined
thawing times.

The two existing concepts to take account of the effect of geometry on
freezing and thawing times, EHTD and MCP, were both increased in
accuracy and extended to cover a wider range of multi-dimensional
geometries, Used in conjunction with accurate simple prediction
methods for slabs, they gave prediction accuracy similar to that of the
numerical methods. For two-dimensional shapes the 95% confidence
bounds of the percentage differences for the prediction compared with
the experimentally measured freezing and thawing times were -=5.0% to
+15.5%; for three-dimensional shapes with rectangular cross-sections
the bounds were -12.5% to +9.5%; but for three-dimensional shapes with
oval cross-sections the bounds were wider and off-set further from zero
at -U4% to 37%.

Refinement of the methods to calculate EHTD and MCP so as to increase
the accuracy for some three-dimensional shapes was prevented by lack of
suitable data. However the principles underlying the methods to
calculate EHTD and MCP are considered valid so further data would
enable the coefficients in the equations to be more accurately fitted
for a wider range of shapes. Improvement of the empirical EHTD and MCP
expressions for the effect of the third dimension for irregular shapes

is an area in which future work might be most valuable.

When compared with the composite experimental freezing and thawing data
set for a range of materials, geometries and conditions, both the
numerical and simple prediction methods gave accurate predictions.
None of the four simple slab prediction method approaches has any
advantage that particularly recommended it so all are advocated as
suitable for routine use. Both EHTD and MCP gave virtually identical
predictions for multi-dimensional shapes. Users may wish to base the
choice of which to use on their conceptual understanding of the
principles involved. In practice it would be expected that any of the
prediction methods advocated in this study would be limited more by the
accuracy of data to be used in the predictions, than by limitations in

the accuracy of the methods themselves.
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NOMENCLATURE

constant for radial geometry
surface or cross-sectional area

= hD/k, Biot number

hD/ks, Biot number for freezing

hD/kl, Biot number for thawing
specific heat capacity
volumetric specific heat capacity

thermal capacitance matrix

thickness, diameter or characteristic dimension

percentage error

equivalent heat transfer dimensionality

arbitrary function
finite difference method
finite element method
thermal forcing vector

= kt/CDz. Fourier number

= kst/CsDZ, Fourier number for freezing

= klt/ClDz, Fourier number for thawing

constants for calculation of EHTD and MCP

surface heat transfer coefficient
enthalpy

number of nodes in x direction
number of nodes in y direction
thermal conductivity

thermal conductance matrix
direction cosine to the outward normal
latent heat capacity

edge or perimeter length

position in r direction

number of nodes in r direction
mean conducting path length
number of nodal points

shape function

236

J kg~ oc”!

Jm 3 oc!

%

Wm?2 og!

Jm3

Wm ! o™
m"3

m

m



Nomenclature 237

=
[

] = Cq(T{¢=Tpin)/8H for freezing
Ci(Tpin~Ti¢)/bH for thawing
Cl/Cs
N3 - kl/ks

geometric factor in versions of Plank's equation

=
N
]

O
x
[

C |Tin~Tigl/tH, Plank number

o
x
i

= Cl(Tin'Tif)/AH' Plank number for freezing

Cs(Tif'Tin)/AH' Plank number for thawing

internal heat generation W m“3
distance in radial direction m
half thickness or radius m

geometric factor in versions of Plank's equation

w ™ W I O

surface area m

Ste C |Typ-T,|/8H, Stefan number

Ste = Cq(T;p-T,)/AH, Stefan number for freezing

C,(T,-T;¢)/AH, Stefan number for thawing

time s or hrs
temperature °C or K

vector of nodal temperatures °C or K

volume m3

T < p§ 3

factor for axisymmetric finite element integrations

distance in x direction m

»

Biot number weighting function for EHTD and

MCP calculations
X constant in the FDM schemes

distance in y direction m
Y fractional unaccomplished temperature change

= (T=T)/(T=Ty,)
Y constant in the FDM schemes

z distance in z direction m

R ratio of side lengths for regular shapes

AH enthalpy change between 0°C and -10°C J m-3

<<

ratio of major axis length to minor axis length

for an ellipse

- 4a/mD2

g Stefan-Boltzmann constant Wm
- 5.67x1078



m

p density

a thermal diffusivity

) heat flux

A change in

3 summation of

Subscripts

a ambient value

ac ambient convective value

ar ambient radiative value

ave average value

(6] centre value

con value for convection

cyl value for cylinder

e element or surface value

exp experimental value

f for freezing

£ full method

fdm value predicted by the finite difference method
fem value predicted by the finite element method
femf full finite element method formulation
fems simplified finite element method formulation
fin final value

i denotes position of node in x direction
i value for ith node

if value at initial freezing point

in initial value

J denotes position of node in y direction
J value for jth node

k denotes position of node in z direction
1 unfrozen phase value

m denotes position of node in r direction
r value in the radial direction

rad value for radiation

s frozen phase value

s simplified method

Nomenclature

surface radiation emissivity
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slab value for slab

sph value for sphere

t for thawing

W value at a wall or surface

X value in the x axial direction
y value in the y axial direction
z value in the z axial direction

1,2,3 indicates relative time, state or case

Superscripts
i indicates time level in numerical methods
+ at values just greater than

= at values just less than
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APPENDIX A

SUMMARY OF PUBLISHED SOLUTIONS
TO PHASE CHANGE PROBLEMS

A.1 ABBREVIATIONS USED IN TABLES A.1 TO A.8

! Geometric shapes: SS = semi-infinite slab, S = slab, C = infinite
cylinder, SP = sphere, 1D = one-dimensional, 2D = two-dimensional, 3D

= three-dimensional.

2 BC = boundary conditions: 1 = first kind, 2 = second kind, 3 = third

kind, 4 = fourth kind, R = radiation.

E Tin = initial condition. = means intial temperature is equal to the
phase change temperature and =+ means initial temperature is not equal

to the phase change temperature.

* Num Eval = numerical evaluation required for solution. Y = yes, N =

no, P = probably.

S HBI = heat balance integral method, VT = variational technique, PER =
perturbation method, QSS = using the quasi-steady state assumption,
EM = embedding technique, AI = analytical iteration method, IT =
integral transformation, MHS = solved as heat conduction with a
moving heat source, APT = assumes interface position proportional to
the square root of time, LRT = latent heat released or absorbed over

a range of temperatures, DHG = discontinuous heat generation.

¢ Form Soln = form that the solutions takes, CH = chart, G = graph, N =

nomogram, RE = regression based best fit equation.

7 Type: F = freezing, T = thawing.

® Comments include product type and ambient media, EXP = based on

experimental data, FDM = based on finite difference method results.
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9 Basic Shape = reference regular geometric shape that the actual

irregular shape

note!.

is

related to by the equalivalent diameter. See

A.2 ANALYTICAL SOLUTIONS TO PHASE CHANGE USING THE ASSUMPTION OF A

UNIQUE PHASE CHANGE TEMPERATURE

Table A.1 Exact Analytical Solutions Assuming a Unique Phase Change

Temperature

Reference Shape! BC? T;,® Num* Method and Comments®
Eval
Stefan in SS 1 = N
Carslaw & Jaeger
1959, p.282
Neumann in SS 1 # N Churchill & Evans 1971
Carslaw & Jaeger tabulate functions.
1959, p.282
Danckwerts 1950 SS 1 * N Density of phases different.
Evans et al 1950 SS 2 = P Series solution.
Landau 1950 SS 2 = N Ablation, transformation to

immobilise boundary.




Appendix A

Table A.2 Approximate Analytical Solutions
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For Slabs Assuming a Unique

Phase Change Temperature

3 Num"

Reference Shape! BC? T;, Hun
va

Method and CommentsS$

Heat Balance Integral and Variational Technique

Goodman 1958 ss 1,2,3 = N

Goodman & S 2 # P
Shea 1960

Goodman 1961 SS 1,2 = N

Poots 1962b S 1 = P

Hrycak 1963 SS 3 2 N

Goodman 1964 SS 1,2 = N

Libby & SS 1 = Y
Chen 1965

Lappadula & SS 1 = N
Mueller 1966

Siegel & SS 3 * Y
Savino 1966

Hrycak 1967 SS 3 * N

Hills & SS 3 = Y
Moore 1967

Cho & SS,S 1 * N
Sunderland 1969

Hills 1969 SS 1,2 = Y

Hills & SS 3 = Y
Moore 1969 -

Imber & SS 1 = Y
Huang 1973

Chung & Yeh 1975 S 3,R - Y

Albin et al 1976 S y *

Chung & Yeh 1976 SS 2 = Y

Bell 1978 SS 1 = Y

Bell 1979b S 1 *

El-Genk & SS 1 =
Cronenberg 1979

Yeh & Chung 1979 S 3,R * Y

HBI, ablation, QSS.

HBI, series expansion.

HBI, different temperature
profiles.

HBI, series solution.

HBI, QSS, phase front «
penetration distance.

HBI
HBI

VT
HBI, AI
See Hrycak 1963, stratified

media.
HBI

HBI, APT

HBI

HBI

ggééngegt¥ temperature
HBI, VT

HBI, six stages.

HBI, C & k temperature
dependent.

HBI, subdivides region.
HBI, subdivides region.
HBI

VT

«sscOntinued
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Reference Shape! BC?  T;.® Num* Method and Comments®
Eval
Hale & SS 1 = Y HBI
Viskanta 1980
O'Callaghan S 2 * Y HBI
et al 1980
Yuen 1980 SS 1,2,3 * Y HBI
Chung et al 1983 SS 2 * Y HBI, two stage ablation.
Jayaram & SS 2 = Y HBI, series solution.
treider 1983
Gau & S 1 = Y HBI
Viskanta 1984
Perturbation and Series Solutions
Jackson 1964 S 2 2 P Series solution.
Westphal 1967 SS 3 ® P  Series solution.
Duda & S 1 # N PER
Vrentas 1969
Lock et al 1969 SS 4 # N PER
Pedroso & SS 1 = Y PER, C & k temperature
Domoto 1973b dependent.
Pedroso & SS 3 = Y PER
Domoto 1973d
Huang & SS 1,8 = N PER
Shih 1975a
Huang & SS 3 = N PER
Shih 1975b
Weinbaum & S 1 # N PER
Jiji 1977
Yan & Huang 1979 S 3,R = P PER
Soliman 1981 SS 3 = P PER
Solutions Using Other Approaches
Plank 1913 = N QSS
Rutov 1936 = N Modified Plank 1913 for
sensible heat removal.
London & S 3 = N See Plank 1913.
Seban 1943
Cochran 1955 1 = N QSS, lumped capacity method.
Kreith & 3 = See Plank 1913.
Romie 1955
Chan et al 1983 SS 3 * P QSS, temperature profile

approximated by isothermal
boundary.

.eoCcONntinued
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Reference Shape! BC? T;,® Num* Method and Comments?
Eval
Boley 1961 ss,S 3 - P EM, ablation, series
solution.
Boley 1963 S 2 * P EM, ablation, short times.
Boley 1968 S 1,2,3 = P EM, ablation, short times.
Patel & SS y = Y EM, short times.
Boley 1969
Hamill & SS 1 # N Al
Bankoff 1964
Beaubouef & SS 1 = N Al
Chapman 1967
Savino & SS 1 = N Al
Siegel 1969
Hamill & SS 1,2 = N IT, solution bounded.
Bankoff 1963
Selim & S 1,2,3 = Y IT
Seagrave 1973a
Kern 1977 SS 3 = N IT, considers effect of QSS.
Glasser & SS 3 = N See Kern 1977, solution
Kern 1978 bounded.
Chuang & SS 3 # Y MHS, ablation, Green's
Szekely 1971 functions.
Hirai & SS 3 . P APT
Komori 1971
Komori & S 3 * P APT
Hirai 1972
Cho & SS 1 * Y APT, k temperature
Sunderland 1974 dependent, density of
phases different.
Mikhailov 1976 SS 1 2 N APT, moisture migration.
Ha*ashi & SS 1 * N APT
omori 1979
Clyne & SS 3 = N APT, virtual adjunct
arcia 1980 method.
Cho & SS 3 = N APT, temperature profile

Sunderland 1981 same as for no phase change.
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Table A.3 Approximate Analytical Solutions For Radial Geometry Assuming

a Unique Phase Change Temperature

Reference Shape' BC? Ty’ Eum; Method and CommentsS?
va
Poots 1962b C,SP 1 = P HBI, series solution.
Langford 1966 SP 2 = N  HBI, known interface
velocity at zero time.
Albin et al 1979 SP y # Y HBI, six stages.
Bell 1979a ( 1 = Y HBI, subdivides region.
Bell 1979b © 1 * Y HBI, subdivides region.
Tien 1980 (¢ 3 = Y HBI
Lunardini 1981 C 1 B Y HBI
Pekeris & E 1 = N Series solution.
Slichter 1939
Pedroso & SP 1 = N PER
Domoto 1973a
Pedroso & SP 1 = N PER
Domoto 1973c
Riley et al 1974 C,SP 1 = N  PER
Jiji & o 1 * N PER
Weinbaum 1978
Seeniraj & C,SP 3,R = Y PER
Bose 1982
Hill & Kucera 1983 SP 3 = N Series solution.
Plank 1913 c,SP 3 = N QSs
London & c,SP 3 = N See Plank 1913.
Seban 1943
Lederman & © 2 # Y EM, ablation.
Boley 1970
Shih & Tsay 1971 © 3 = N Al
Shih & Chou 1971 SP 3 = N Al
Theofanous & SP 1 = N Al
Lim 1971
Selim & c,SP 1 = Y IT
Seagrave 1973b
Chuang & (© 3 » Y MHS, ablation, Green's
Szekely 1972 functions.
Cho & SP 1 = N APT
Sunderland 1970
Komori & C 3 = P APT
Hirai 1970

Boles & Ozisik 1983 C 2 » N APT
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Table A.4 Approximate Analytical Solutions For Multi-Dimensional Shapes

Assuming a Unique Phase Change Temperature

Reference Shape! BC? T;.® Num“* Method and Comments?
in Eval
Poots 1962a 2D 1 = Y HBI, series solution.
Riley & 3D 1 = Y HBI, cuboid.
Duck 1977a
Riley & 2,3D 1 = Y HBI, rectan%ular prisms,
Duck 1977b ellipses, ellipsoids.
Plank 1941 2,3D 3 = N QSS, isothermal surface,

surface & interface
parallel, rod & brick.

Tanaka & 3D 3 = N See Plank 1941, conical &
Nishimoto 1959 square pyramid shapes.

Tanaka & 3D 3 = N See Plank 1941, bricks &
Nishimoto 1960 finite cylinders.

Tanaka & 3D 3 = N See Plank 1941, trapezoids.
Nishimoto 1964

Shamsundar 1982 2,3D 3 = N See Plank 1941, but surface

& interface not parallel,
uses shape factors of Hahne
& Grigull 1975.

Jiji et al 1970 2D 1 # Y MHS, Green's functions,
corner.

Rathjen & 2D 1 # Y MHS, Green's functions,
Jiji 197 corner.

Budhia & 2D 1 = Y MHS, Green's functions,

Kreith 1973 wedge.
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Table A.5 Empirical Solutions Assuming A Unique Phase Change

Temperature
Reference Shape! BC? Tina Num® Method®’” and Comments®
Eval
Charm & SS 3 # N Adds fictitious thickness to
Slavin 1962 mgdéfy method of Neumann
1912.

Baxter 1962 s,C 3 = N RE, F, FDM

Tao 1967 C,SP 3 = N CH, F, FDM

Tao 1968 s,C,SP 3 = N RE, F, FDM

Everington & S 1 * N G, T, correction to

Cooper 1972a Neumann 1912,
Goodling & s,C,SP 3,R = N CH, F, FDM
Khader 1974
Churchill & 1,2,3D 1,2,3 # P Derive an "effective" C
Gupta 1977 value that is used to modify
solutions for heat
conduction without phase
change.

Albin et al 1979 SP 4 * N RE, F, based on
analytical results.

Shamsundar & 1,2,3D 1,2,3 # Y QSS, isothermal surface

Srinivasan 1979 assumed, similarity rule
S0 less numerical results
are required.

Shamsundar 1981 1,2,3D 1,2,3 * Y See Shamsundar & Srinivasan
1979, density of phases
different.

Voller & ; 1 # N RE, F, FDM

Cross 1981b
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A.3 SOLUTIONS FOR PHASE CHANGE OVER A RANGE OF TEMPERATURES

Table A.6 Approximate Analytical Solutions For Alloy Solidification

Reference Shape! BC? T;,® Num* Method and Comments®
Eval
Tien & SS 1 = N HBI, LRT, DHG
Geiger 1967
Tien & SS y = Y HBI, LRT, DHG
Geiger 1968
Tien & S y = Y HBI, LRT, DHG
Koump 1968
Cho & SSI NS 1 * N HBI, APT, LRT, DHG
Sunderland 1969
Geuze et al 1972 SS,S 1 = Y HBI, LRT
Hayakawa & S 3 ® P HBI, six stages, LRT
Bakal 1973
Muelbauer S 3 * P HBI, six stages, LRT
et al 1973
Hayashi SS 1 * N APT, five stages, LRT, DHG
et al 1979
Ozisik & © 2 * N Solid fraction depends on

Uzzell 1979 temperature or distance, DHG
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Table A.7 Empirical Solutions For Phase Change Over a Range of

Temperatures
Reference Form® Type’ Comments®
Soln
Cowan 1958 CH F EXP, poultry immersed in brine or
glycol. »
Lorentzen & CH F EXP, beef carcasses in air.
Rosvik 1959
Merritt & G T EXP, fish in water & air.
Banks 1964
Slavin 1964 N F Fish in air, based on the method of
Nagaoka et al 1955.
Earle & CH F EXP, lamb & mutton in air.
Fleming 1967
Fleming 1967 CH F EXP, lamb brains & kidneys in
brine & air.
Kassai 1969 G EXP, beef & pork legs in air.
Everington 1971 EXP, beef blocks in vacuum steam.
Everington & EXP, food in vacuum steam.
Cooper 1972b
Frazerhurst CH F EXP, fancy meats immersed in glycol.
et al 1972
Bailey & CH T EXP, FDM, pork legs & meat blocks in
James 1974 air, water & vacuum steam.
Bailey G T EXP, FDM, Eork legs in air, water
et al 1974 & vacuum steam.
Hewitt et al 1974 RE EXP, fish in plate freezer.
Scott 1975 G,RE T EXP, fish in water.
Cleland & RE EXP, food slabs.
Earle 1976b
Cleland 1977 RE F EXP, food slabs, cylinders, spheres
and bricks.
Cleland & RE F EXP, food slabs.
Earle 1977a
James et al 1977 CH T EXP, FDM, beef quarters in air.
Cleland & RE EXP, food cylinders and spheres.
Earle 1979a
Cleland & RE F EXP, food bricks.
Earle 1979b
Creed et al 1979 CH,RE T EXP, lamb carcasses in air.
Durbin et al 1979 G T EXP, lamb & mutton carcasses in air.
James et al 1979 CH EXP, FDM, boxed meat blocks in air.

...continued
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Reference Form® Type’ Comments®
Soln
James & G T EXP, FDM, beef blocks in air
Bailey 1980 & vacuum steam.
James & CH T EXP, FDM, beef fore & hind quarters
Creed 1980 air, water & vacuum steam.
Calvelo 1981 RE FDM, meat slabs.
Creed & CH,RE T EXP, FDM, beef blocks in air, water
James 1981 vacuum steam.
Loeffan et al 1981 RE F Differential form of Cleland & Earle
1979b for time variable conditions.
Cleland & RE F EXP, food slabs, cylinders, spheres
Earle 1982b and bricks.
Cleland & RE F Differential form of Cleland & Earle
Earle 1982c 1982b for time variable conditions.
Moleeratanond N,RE F EXP, boxed beef blocks in air.
et al 1982
Zaritzky RE F FDM, beef liver slabs.
et al 1982
Hayakawa RE F Predicted by finite element methods
et al 1983a for food in finite cylinders & rods.
Hung & RE F EXP, food slabs.
Thompson 1983
Pham 1983 RE F EXP, food slabs, cylinders & spheres.
Succar & RE F FDM, food slabs.
Hayakawa 1984
Pham 1984c RE F EXP, food slabs, cylinders, spheres

and bricks
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Table A.8 Solutions Using Equivalent Diameters to Account For Irregular

Shape
Reference Basic® Type’ Comments®
Shape

Nagaoka c F Fish, elliptic shape.

et al 1955
Eddie & Brick F Fish.

Pearson 1958
Levy 1958 G F Fish.
Earle & (¢ F Lamb & mutton carcasses.

Fleming 1967
Tao 1968 Cc,SP F Food, relate to nearest basic shape.
Fleming 1970 (G F Lamb carcass.
Kouwenhoven 1972 SP T Poultry.
Vanichseni Brick T Lamb shoulders.

et al 1972
Bailey & SP T Pork legs.

James 1974
Bailey et al 1974 SP T Pork legs & meat blocks.

James et al 1977 c,SpP T Beef hind- & fore-quarters.
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APPENDIX B

ESTIMATION OF EDGE HEAT TRANSFER IN
SLAB THAWING EXPERIMENTS

In slab thawing experiments a number of measures were taken to minimise
all heat transfer other than that which is one-dimensional between the
slab faces. Each slab was surrounded by at 1least 0.09 m of
polystyrenne foam board insulation on the other two sides. The Tylose
slab itself was at least 2.1 times greater in width than it was thick.

Even with these measures some unwanted edge heat transfer is
inevitable, especially where the temperature driving forces are small,
the slab is thick, the surface heat transfer coefficient is low and the
thawing process 1is therefore 1long. The 1insulation was largely
effective in preventing heat transfer from the room conditions to the
slab. However, heat transfer also occurred from the plates directly to
the insulation and thence to the side faces of the slabs. This effect
was thought to have significant effect on thawing times of the slabs so

an investigation was made to predict this effect.

This effect could not be studied experimentally so simulation by the
finite element method was used. The finite element method can deal
with heat transfer 1in both the Tylose and in the insulation.
Calculations were made with the grids shown in Fig. B.1. The two cases
were (a) the 1ideal slab situation with only one-dimensional heat
transfer (perfect insulation) and (b) where heat transfer through the
insulating material was possible. The difference between the predicted
thawing times was considered to be due to the unwanted edge heat

transfer.

In the simulation the most pessimistic view that the contact resistance
between the thawing plate and the polystyrene foam insulation surface
was the same as that between the plate and the Tylose surface was
taken. In the actual situation it should be greater because of the
porous nature of the polystyrene and because the Tylose thickness was

slightly larger than the surrounding insulation. Most of the contact
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pressure was therefore between the Tylose and the plate. The extent to
which the actual contact resistance from the plate to the insulation
was greater than that from the plate to the Tylose could not be
measured or estimated, but gives a further safety factor when

interpreting the results of this investigation.

The conditions investigated were those used in the slab thawing runs
(Sec. 6.2). For the runs most affected by edge effects the conditions
used and the calculated thawing times, both assuming perfect insulation
and with the possibility of heat transfer through the insulation, are
given in Table B.1. The results show the six cases where the
difference in thawing time was greater than 1.0%. The effect of the
edge heat transfer quickly reduced for higher ambient thawing
temperatures, higher surface heat transfer coefficients and smaller
slab thicknesses. Consequently, for the other slab thawing experiments
the simulated thawing times were 1less than 1.0% different. These
results confirm that although the edge heat transfer was not negligible
in all cases, for most of the slab thawing experiments it was small
enough to be tolerated. Particular care must be taken in interpreting
results for Runs T3, T16 and T3.
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Table B.1 Results of the Finite Element Method Simulation of Edge Heat

Transfer During Thawing of Slabs

*

*

Run D h i Tin texp 195 L E?
(m) (W m 2 ecly (ec) (ec)  (hrs) (hrs)  (hrs) (%)
T26 0.1050 37.3 5.2 -24.7 29.33 29.43 28.09 4.6
T3 0.0525 13.2 S5h2 -11.4 19.32 20.85 20.23 3.0
T16 0.1000 24.5 12.8 -9.4 16.92 16.37 15.91 2.8
T10 0.1020 13.2 43.0 -13.7 8.83 9.29 9.10 2.0
T30 0.1050 78 .1 S0t -28.8 23.62  23.51 23 .07 1.9
T13 0.0770 37.3 5.2 -30.2 18.49 18.12 17.87 1.4
* t, = thawing time calculated from the finite element method using the
grid given in Fig. B.1la, = thawing time calculated from the finite

element method using the grid given in Fig. B.1Db.

'E

percentage difference between the thawing times predicted by

finite element analysis with perfect insulation (t,) and that with

imperfect insulation (t,) at the slab edges.
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Vertical Scale [cm]

Vertical Scale [cm]

Fig. B.1

The Finite Element Method Grids Used To Investigate the Effect
of Edge Heat Transfer During Thawing of Slabs of Tylose.

¥ - nodes, ** - nodes where temperature recorded, _ ~ element
boundaries, = - planes of symmetry, A - axis of symmetry.
Shaded regions show elements representing polystyrene,

k =0.03 Wm?2 o', c=3.388M m3 oc”'. Horizontal axis
scale is variable depending on the slab thickness modelled.
(a) a perfectly insulated slab

(b) an actual slab.
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APPENDIX C

GEOMETRIC FACTOR DATA FOR MULTI-DIMENSIONAL SHAPES

Table C.1 Results of Finite Difference Method Calculations To Determine

Geometric Factors For Multi-Dimensional Regular Shapes

Using Tylose thermal property data (Table 5.1), D = 0.0165 m or
0.165 m, T, = -30.0°C, T;, = 20.0°C, Tg;, = -10.0°C.
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Table C.1 continued...
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Table C.1 continued...
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Table C.1 continued..
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Table C.1 continued...
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Table C.2 Results of Finite Element Method Calculations To Determine

Geometric Factors For Multi-Dimensional Irregular Shapes

Using Tylose thermal property data (Table 5.1), h+0.0 W m 2 oc”! or

- g5-1 i ] _
h = 1000.0 W m < °C™', T, = -30.0°C, T;, = 20.0°C, Tp;, = =10.0°C.

Shape! Bi EHTD MCP
& Code
0.0 2.00 1.00
2DI 1
92.4 2.00 1.00
0.0 1.61 1.00
2DI 2
67 .6 1.34 1.20
0.0 1.84 1.00
2DI 3
83.0 1.70 1.08
0.0 1.56 1.00
2DI U4
60.0 1.24 1.27
0.0 2.00 1.00
2DI 5
63.6 2.00 1.00
0.0 1.73 1.00
2DI 6
165 1.51 1.16
0.0 1.82 1.00
2DI 7
55.2 1.65 1.11
0.0 1.32 1.00
2DI 8
28.8 1.05 1.30
0.0 2.37 1.00
Pyramid
50.0 1.48 1.72
0.0 3.00 1.00
Sphere
77.0 3.00 1.00
0.0 285 1.00
Egg
103.0 2.49 1.11
0.0 2.23 1.00
Fish
2rT 1.26 1.82

! 2DI = two-dimensional irregular shape, code from Table 6.6, geometry

parameters are given in Table 10.1.
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