Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

CROSS-SECTIONAL AND LONGITUDINAL ANALYSES OF THE EFFECTS OF AGING ON MEMORY IN HEALTHY YOUNG, MIDDLE-AGED, AND OLDEST-OLD ADULTS

A thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Psychology at Massey University, Palmerston North, New Zealand

ALLISON LAMONT

2006

To my mother, Jeanie Paton, now 90 years of age, an indomitable Scotswoman whose remarkable memory ignited my curiosity in just what does happen to memory during the aging process

Abstract

While a growing body of research indicates that older adults typically perform more poorly on many types of memory tasks than do younger adults, relatively little research has addressed the question of whether this trend continues unchanged into the late ninth and tenth decades of life. Such decrements in memory have been reported as linear declines from early adulthood up until about 80 years of age. Questions arise as to whether such memory declines slow or accelerate in very advanced aging, and to what extent differences are due to aging, per se, or variables that intervene between age and memory.

To address these two questions, six memory types – verbal recall, nonverbal recall, short-term memory, working memory, face recognition, and prospective memory – were examined using both cross-sectional and longitudinal methodologies. The six types of memory and the influence of verbal processing speed, nonverbal processing speed, and intelligence were examined in mixed-gender groups of 20 - 40 (n = 40, M = 30.7, SD = 5.52), 50 - 70 (n = 44, M = 59.2, SD = 4.94), and 85+ year olds (n = 42, M = 87.8, SD = 2.43), at two points, the second occurring two years after the first. Each participant completed tests of word recall, geometric shapes recall, short-term memory (digit span), working memory (letter-number sequencing), face recognition, and prospective memory. Additionally, there were two processing speed tasks (Identical Pictures and Finding As), and the National Adult Reading Test of verbal fluency was used to estimate intelligence. The Mini-Mental State Examination and the Beck Depression Inventory (BDI-II) were used to screen for dementia and depression, respectively.

At Time 1 testing the 85+ participants showed declines in all memory types (compared to the 20 - 40 year olds). Nonverbal recall (66.2% lower than the young group), working memory (46.2%), verbal recall (45%), and prospective memory (38.2%) produced the largest differences, short-term memory (12.3%) and face recognition (14.7%) the least. Two years later, the 85+ years old participants had shown further declines, relative to the 20 - 40 years group. Nonverbal recall (72.3% lower than the young group), prospective memory (63.2%), working memory (55.3%), and verbal recall (54.7%) continued to produce the largest decrements, with short-term memory (18.9%) and face recognition (19.8%) the least. The results for the young and middle participants

did not change appreciably between Time 1 and Time 2. The difference between unadjusted scores and scores adjusted for intelligence, verbal processing speed, and nonverbal processing speed, increased markedly between Time 1 and Time 2 testing for the oldest-old participants.

These findings support the view that while memory declines may be approximately linear from age 20 to 80 years, there is a sharp decline in most types of memory after the age of 85 years, recall and working memory suffering the most. Intelligence and processing speed have an effect on some types of memory, but age is by far the largest contributor to memory decline. Furthermore, as expected, all memory types declined over the two-year period, with prospective memory, verbal recall, nonverbal recall, and working memory showing the greatest declines. Short-term memory and face recognition declined at a noticeably slower rate.

Acknowledgements

First and foremost, I wish to express my thanks to my supervisors, Associate-Professor John Podd, Dr. Stephen Hill, and Dr. Julie Bunnell. From the moment I contacted Dr. Podd asking him to supervise my research, he was instrumental in gathering the team who would be enthusiastic and supportive throughout the research process. I am deeply grateful for the generous sharing of knowledge, expertise, and encouragement I have received. Thank you, especially, Dr. Podd for your unique combination of exacting academic standards, statistical 'know-how', academic curiosity, and a sense of humour which has lightened the journey for me many a time.

Special acknowledgement must be made to the participants, who bought this piece of work to life. It was a delight to work with people who were fully supportive of what I was doing. I was grateful to participants who gave of themselves amidst busy schedules of work and study. It was a particular pleasure to spend time with many of our oldest citizens. I appreciated their generosity in sharing their time, stories, and numerous cups of tea! I was touched by their willingness in allowing me to investigate what was often a source of worry to them – their memory. I especially appreciated the oft-expressed belief of the older volunteers that together we were making a contribution to understanding the process of aging. Thank you.

Thank you to Malcolm Loudon of Massey University who took my ideas and diagrams and turned them into a splendid computer-based geometric shapes test, and likewise built other test materials into computer software programmes. Thank you, too, to Hung Ton of Massey University for his willing assistance in all matters relating to the compilation and provision of the test battery. You are both much appreciated.

Thank you to my mother, Jeanie Paton, for her constant support. My mother was invaluable to me in her capacity of proof-reader for this research, and in her unwavering belief in me. I am grateful, too, to my children and grandchildren as they have understood and accommodated my absorption in the research process.

Table of Contents

iii
v
vii
ix
xiii
xv
xviii
xix

Chapter One

A BRIEF HISTORICAL SURVEY OF MEMORY AND MEMORY RESEARCH	1
The Influence of Ebbinghaus	3
Other Early Research	5
Influential Landmarks in Recent Memory Research	6
The Computer Revolution	6
Multi-System Models	9
The Atkinson-Shiffrin Model	10
Levels-of-Processing	12
The Baddeley and Hitch Model	14
Schacter and Tulving	17
The Need for Clarification of Terminology	19

Chapter Two

MEMO	RY AND AGING IN HEALTHY ADULTS	25
	Inter-Individual and Intra-Individual Change	26
	General Decline versus Task Specific Decrements	28
	Are Age-Associated Declines in Memory Inevitable?	29
	Sensory Memory	31

Short-Term Memory	31
Long-Term Memory	32
Differing Rates of Change	34

37

Chapter Three

MEMORY AND THE OLDEST-OLD

Who are the Oldest-Old?	38
The Scarcity of Memory Research Investigating the Oldest-Old	38
Advanced Age as a Variable in Memory Research	39
Longitudinal Aging Studies	44
The Seattle Longitudinal Study	45
The Duke Longitudinal Study	45
The Canadian Victoria Longitudinal Study and the Swedish	
Kingsholmen Project	47
The Berlin Aging Study	48
The Relationship Between Cognitive Decline and Mortality in the	
Oldest-Old	50

Chapter Four

EXPLANATIONS FOR AGE DIFFERENCES IN MEMORY	59
Cognitive Explanations	60
Reduced Processing Resources	60
Speed of Processing	61
Working Memory and the Role of the Central Executive	67
The Pole of Attention	60

	69
The Neurobiological Substrates of Memory	70
The Aging Brain	71
PET and fMRI Studies	71
Working Memory	73
Episodic Memory Encoding	74
Episodic Memory Retrieval	75
The Role of the Hippocampus	75
Demyelination	78
Neurochemical Studies	78

Chapter Five

THE PRESENT STUDY

Verbal Recall	81
Nonverbal Recall	85
Short-Term Memory	88
Working Memory	89
Face Recognition	91
Typical face recognition studies	93
Age differences in face recognition research	93
The age of stimulus faces	95
Prospective Memory	96
Methodological Issue	101
Cross-sectional Versus Longitudinal Research	101
The Present Study	103
The Expectations of the Present Study	105

Chapter Six

IETHOD 1	107
Participants	107
Experimental Design and Analyses	108
ANCOVA Analyses	110
Standard Multiple Regression Analyses	110
Procedure	111
General Procedure	111
Measures	113
Health and Demographic Data	
Structured Screening Interview	113
Mini-Mental State Examination (MMSE)	113
Beck Depression Inventory – Second Edition (BDI-II)	116
SF-36 Health Survey	117
National Adult Reading Test – Second Edition (NART)	119
Memory Tasks	
Recall – Verbal	120
Recall – Nonverbal	121
Delay in Verbal and Nonverbal Recall	123

81

Forward Digit Span	124
Letter-Number Sequencing Task	124
Face Recognition	125
Prospective Memory Tasks	127
Processing Speed Measures	128
Identical Pictures	129
Finding A's	130

133

Chapter Seven

Cross-sectional Analyses	
Memory Types Time 1 Testing	133
Memory Types Time 2 Testing	137
Covariates at Time 1 Testing	140
Multiple Regression Analysis at Time 1	145
Covariates at Time 2 Testing	147
Multiple Regression Analysis at Time 2	153
Longitudinal Analyses	156
Subsidiary Analyses	
Delay in Verbal and Nonverbal Recall Tasks	160

Chapter Eight

DISCUSSION	
Cross-sectional Analyses at Time 1 and Time 2 Testing	166
Longitudinal Analyses at Time 1 and Time 2 Testing	174
Cross-sectional Analyses of Covariates	177
Effects of the Retained Covariates on Memory	
Verbal Recall	179
Nonverbal Recall	181
Short-Term Memory	184
Working Memory	184
Face Recognition	185
Prospective Memory	189
Overall Effects of the Covariates	
The Longitudinal Effects of the Covariates	191

The Effect of Age	192
Delay	194
Towards a Theory of Aging and Memory in Normal, Healthy Adults	195
Limitations and Future Directions	203
Attrition Rate	207
Summary and Conclusions	208

REFERENCES	211
------------	-----

APPENDICES

Appendix A:	Information sheet	263
Appendix B:	Consent form	267
Appendix C:	Structured screen interview	269
Appendix D:	Mini Mental State Examination	271
Appendix E:	Beck Depression Inventory – Second Edition	275
Appendix F:	SF-36 Health Survey	279
Appendix G:	The National Adult Reading Test	285
Appendix H:	Words used in the verbal recall task	287
Appendix I:	The Shapes Test – stimuli, development, and scoring criteria	289
Appendix J:	The Digit Span subtest from the WAIS-III	301
Appendix K:	The Letter-Number Sequencing Task from the WAIS-III	303
Appendix L:	Sample Stimulus Face from the Face Recognition Task	305
Appendix M:	ANOVA for all memory types at Time 1 testing	307
Appendix N:	ANOVA for all memory types at Time 2 testing	311
Appendix O:	Mixed design ANOVA with Time as the within groups factor,	
	and Age as the between groups factor	315
Appendix P:	ANCOVA for all memory types at Time 1 testing	319
Appendix Q:	ANCOVA for all memory types at Time 2 testing	323
Appendix R:	Raw Data for all memory types, covariates, and screening tests for all age groups	327

List of Tables

Table 1.1	A glossary of terms commonly used to describe memory types	20
Table 1.2	A glossary of terms commonly used in memory research	21
Table 6.1	Means (<i>SD</i>) for the demographic characteristics of participants at Time 1 testing	108
Table 6.2	Experimental tasks (in order of presentation) and associated functions	112
Table 7.1	Mean raw scores (and <i>SD</i> s) and possible score for all memory tasks at Time 1 testing as a function of age	134
Table 7.2	The percentage decline in the middle and oldest-old groups relative to the young group in all memory tasks at Time 1	135
Table 7.3	The mean difference for all memory tasks for young (=1), middle (=2), and oldest-old (=3) participants at Time 1 testing	136
Table 7.4	Mean raw scores (and <i>SD</i> s) and possible score for all memory tasks at Time 2 testing as a function of age	137
Table 7.5	The percentage change in the middle and oldest-old groups relative to the young group in all memory tasks at Time 2	138
Table 7.6	The mean difference for all memory tasks for young (=1), middle (=2), and oldest-old (=3) participants at Time 2 testing	139
Table 7.7	Pearson correlations between the potential covariates collapsed across age, at Time 1 testing ($n = 126$)	140
Table 7.8	Pearson correlations between all potential covariates and all memory tasks collapsed across age at Time 1 testing ($n = 126$).	141
Table 7.9	F test, significance, partial eta squared, and power statistics for the covariates of intelligence, and verbal and nonverbal processing speed for all memory types at Time 1	142
Table 7.10	Adjusted mean scores and standard error for all memory tasks across young, middle, and oldest-old participants at Time 1	143
Table 7.11	The percentage change between unadjusted and adjusted scores at Time 1 for all memory tasks as a function of age	144
Table 7.12	The adjusted R ² , percentage of variance accounted for by the model, significance, and unique variance accounted for by the covariates, at Time 1	146

Table 7.13	Pearson correlations between the potential covariates collapsed across age, at Time 2 testing ($n = 126$)	147
Table 7.14	Correlations between all potential covariates and all memory types collapsed across age at Time 2 testing $(n = 126)$	148
Table 7.15	F test, significance, partial eta squared, and power statistics for the covariates of intelligence, and verbal and nonverbal processing speed, and age, for all memory types at Time 2	150
Table 7.16	Adjusted mean scores and standard error for all memory tasks across young, middle, and oldest-old participants at Time 2	151
Table 7.17	The percentage change between unadjusted and adjusted scores at Time 2 for all memory tasks as a function of age	151
Table 7.18	The difference between Time 1 and Time 2 for the percentage of change between unadjusted and adjusted scores on all memory tasks for the oldest-old group	152
Table 7.19	The adjusted R^2 , percentage of variance accounted for by the model, significance, and unique variance accounted for by the covariates, at Time 2	154
Table 7.20	Comparison of the percentage of significant unique variance contributed to the six memory types by the covariates at Time 1 and Time 2	154
Table 7.21	Raw mean scores for all memory tasks (and <i>SD</i> s) at Time 1 and Time 2 as a function of age	156
Table 7.22	The percentage change between the mean raw scores at Time 1 and Time 2 testing for all memory types as a function of age	157
Table 7.23	The raw score means (and <i>SD</i> s) for the verbal recall task for all groups immediately after study, and at 10-minutes and 7-day delay	161
Table 7.24	The number of participants in the oldest-old group scoring 0 in the verbal recall task at Time 1 and Time 2	162
Table 7.25	Means (and <i>SD</i> s) for the nonverbal recall task for all groups immediately after study, and at 10-minutes and 7-day delay	162
Table 7.26	The number of participants in the oldest-old group ($n = 42$) scoring 0 in the nonverbal recall task at Time 1 and Time 2	163

Appendices Tables

Table H.1	Words and frequency of words used in the verbal recall task	288
Table I.1	The results of pilot testing of the shapes test for the young and old groups, for recall immediately after study, and at 10-minute delay and 7-day delay periods	292
Table R.1	Key to test titles used in all raw data tables	328
Table R.2	Raw data for the Young group (20 – 40 years) for all tests at Time 1 and Time 2 testing	329
Table R.3	Raw data for the Middle Group (50 – 70 years) for all tests at Time 1 and Time 2 testing	333
Table R.4	Raw data for the Oldest-old group (85+ years of age) for all tests at Time 1 and Time 2 testing	341

List of Figures

Figure 7.1	Standardised z-scores for all types of memory tasks for all groups at Time 1	134
Figure 7.2	Standardised <i>z</i> -scores for all types of memory tasks for all groups at Time 2	138
Figure 7.3	The mean test scores at Time 1 after correcting for the covariates against uncorrected scores for all memory tasks and all age groups	145
Figure 7.4	Standardised <i>z</i> -scores for intelligence, nonverbal processing speed, and verbal processing speed at Time 1 and Time 2	149
Figure 7.5	The mean test scores at Time 2 after correcting for the covariates against uncorrected scores for all memory tasks and all age groups	153
Figure 7.6	Time 1 and Time 2 <i>z</i> -scores for all memory tasks as a function of age	158

PREFACE

There may be no more pressing intellectual need in our culture than for people to become sophisticated about the function of memory.

Hampl (1996, p. 211)

Memory is at the very core of human existence. Everything from daily activities to the smallest perception, thought, or reflection involves the memory. Our every action, speaking, writing, opening a door, driving a car – all mobilise and depend on memory.

One of the most remarkable and far-reaching demographic development in the last century has been the 'greying' of populations. By 2051, it is anticipated there will be 1.18 million people aged 65 years and over in New Zealand, representing an increase of 165% since the year 2000. Within this demographic group, the number of people aged 85+ years is expected to rise to 320,000 by 2051 (Statistics New Zealand, 2004). While there has been an explosion of research on memory over the past two decades, there has been little investigation of the changes in memory of healthy, community-dwelling individuals, particularly those over 85 years of age.

The automatic linking of age and forgetting may well play a significant role in shaping the stereotypes of aging. Writing in 1793 (Partington, 1996, p. 376), Samuel Johnson has said:

There is a wicked inclination in most people to suppose an old man decayed in his intellects. If a young or middle-aged man, when leaving a company, does not recollect where he laid his hat, it is nothing; but if the same inattention is discovered in an old man, people will shrug up their shoulders, and say, 'His memory is going'.

However, existing alongside the biased expectations, clearly memory deficits do occur with advanced aging. To clarify how memory is affected by aging, it is imperative intensive research effort is carried out. Nevertheless, despite the urgency of the need the bias against older people has existed even within experimental endeavour, including leaving them out altogether. Although a large body of research literature now exists on all aspects of memory, few studies have included individuals in their late ninth and tenth decades of life. Of the studies which have included the oldest-old, many of them are directed toward memory deficits which are a result of pathologies such as Alzheimer's disease, Parkinson's disease, and so on. Few studies have been carried out on healthy people who have reached these advanced ages.

The main purpose of the present research is to examine six specific types of memory across the adult life span, with a particular focus on adults who have reached 85 years of age and over. The choice of the memory types to be studied was a difficult one. There are a plethora of memory aspects which could have been chosen. The final decision – verbal recall, nonverbal recall, short-term memory, working memory, face recognition, and prospective memory – was made because these memory types are integral to the continued independence and to efficient cognitive functioning in advanced old age.

The choice to incorporate both cross-sectional and longitudinal methodology in the research design was made in order to access a balanced picture of memory ability during advanced aging. Hartley, Harker, and Walsh (1980) note that a reliance on cross-sectional methods has resulted in research findings that describe age differences rather then age changes, and Schaie (1980) suggests that the role of cohort effects are likely to influence results when reliance is placed only on cross-sectional data, although cross-sectional investigation remains the most common method of investigating memory to date. To the present time, little investigation which incorporates cross-sectional and longitudinal data on the oldest-old has been carried out.

The inclusion of a longitudinal design brings its own difficulties when investigating individuals who are in their late 80s and 90s. An inter-test interval of two years was chosen. While this may be viewed as a short time for a longitudinal study, when life expectancy is reduced to single digits a balance needs to be drawn between an expected attrition rate due to declining health or death, and capturing memory change over time.

The mixed design of the current study, while allowing for a comprehensive observation of both differences and changes in memory across the life span, presented difficulties in the choice of statistical analyses. Analysis of covariance (ANCOVA), widely used in memory research, was chosen so that the main effects and interactions of the independent variables could be assessed after dependent variable scores were adjusted for differences associated with the covariates (Tabachnik & Fidell, 2001). However, while this provided the necessary adjusted scores for the six types of memory, it did not answer the question of how much unique variance was associated with each of the chosen covariates. Thus, the decision was made to run a second analysis, multiple regression. These two analytical methods nicely complement one another, and together allowed for an in depth examination of certain memory changes across ages and across time. xxii