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Abstract 
 
The aim of this investigation was the creation of a high precision volume 
measurement device using the Helmholtz resonator principle, the purpose of which 
was to measure, without interference, liquids, solids and particulate samples. A 
previous study by Nishizu et al. (2001) suggested they achieved an accuracy of about 
+1% of full scale, where full scale is 100% fill of the resonator chamber. Theory 
suggested that with careful design and measurement accuracy of approximately 
+0.1% should be achievable. 
 
A high precision resonator was designed using acoustic theory and drawn using 
SolidWorksTM computer aided design software. This was then built using a 
computerised numerical controlled milling machine. The resulting resonator was 
coupled to a 16-bit high-speed data acquisition system driven by purpose-made 
LabVIEWTM software. Using a resonant hunting method, repeatability was within 
+1mL for a 3L chamber and the accuracy was better than +3mL, which is +0.1% of 
full scale for liquid and solid samples. 
 
Testing of particulate material gave results indicating complex behaviour occurring 
within the resonator. Accuracy of sub-millimetre granular samples was restricted to 
approximately +1%, and fill factors to about 50%. This reduction in accuracy was 
caused by a combination of energy absorption and resonant peak broadening. Medium 
sized particles, between 1mm and 15mm allowed measurement accuracies of 
approximately +0.5%. Larger samples, greater than 15mm in diameter, gave results 
with comparable accuracy to water and solids tested.  
 
It was found that most materials required a post measurement curve fit to align 
predictive volume calculations. All samples were observed to have a predictive 
deviation curve with coefficients dependent on the material or general shape. This 
curve appeared to be a function of sample regularity and/or whether the sample has 
interstitial spaces. To achieve high measurement accuracy temperature compensation 
was required to negate drifts in sample measurement. 
 
Chamber mapping was conducted using a spherical solid moved to precise locations, 
then making a three-dimensional frequency map of the inside of a dual port resonator. 
This showed the length extension term for the moving mass of air in the port 
penetrates roughly three times further than theory suggests. However, the influence of 
this extra ‘tail’ was found to be negligible when calculating sample volumes. 
 
A new method of measuring volume was developed using Q profile shifting and 
ambient temperature information. Accuracies for this method were comparable to 
those found using the resonant hunting method. A significant advantage of the new 
method is a 2-3 second measurement time compared to approximately 40 seconds for 
the resonant hunting method. The Q profile shifting method allowed volume 
measurements on samples moving through a dual port resonator at speeds of up to 
100mm/s. 
 
Free fall measurements proved unsuccessful using existing methods, but variations in 
signal data for different sample sizes suggest the need for future investigation. 
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Follow-up studies may provide new interpretation models and methods for high-speed 
acquisition and analysis required to solve freefall measurements. 
 
Precise temperature (speed of sound) and flange factor (responsible for port length 
extension) relationships were evaluated. The correction factor for the speed of sound 
with temperature was found to be marginally different to established theory using the 
Helmholtz equation due to temperature secondary effects in the port length extension 
factor. The flange factor, which determines port length extension, for the 
configurations used in this investigation was experimentally found to be 
approximately 5% less than theoretical values. 
 
It was established that the sample to be measured must be within a certain region of 
the chamber for accurate volume measurements to be made. If the sample were larger 
than the bounded region the resonant frequency would no longer obey the Helmholtz 
relationship. This would thereby reduce the accuracy of the measurement. All samples 
irrespective of cross sectional area were found to alter the resonant frequency when 
they were over 85% of the chamber height. 
 
An equalisation method termed environmental normalisation curve was developed to 
prevent environmental and loudspeaker deficiencies from colouring Q profiles used in 
Q profile shifting procedures. This was undertaken as Q profile shifting relies on 
consistency in the Q profile. The environmental normalisation curve was able to 
equalise external factors to within +0.4dB. The environmental normalisation method 
could be used to post-process data or applied in real time to frequency generation. 
 
The controlled decent Q profile shifting technique was refined further to be used in 
continuous measurements in a single port resonator. Samples could theoretically be 
measured up to 15% of full-scale fill before resonant peak predictability would 
compromise accuracy. Measurement times were from one to three seconds, depending 
on environmental temperature stability. 
 
An alternative Helmholtz resonator was developed and investigated using an inverted 
port. This variant has potential applications for a seal-less chamber and port with 
rapid non-interference chamber access. Q factors for the inverted port resonator were 
found to be significantly less than tradition Helmholtz resonators. It is believed this is 
due to a larger boundary layer acoustic resistance occurring in the inverted port. 
 
A variable chamber resonator was designed and built as a further development of the 
Helmholtz resonator volume measurement system, as the uncertainty of measurement 
is a function of resonant chamber size. Therefore, using the variable chamber 
resonator the chamber size could be customised to the sample size. In this way the 
uncertainty of measurement could be minimised. The variable chamber resonator was 
used with both the resonant hunting method and the Q profile shifting method. 
 
Volume measurements on produce and minerals using the variable chamber resonator 
yielded results of similar accuracy to measurements on calibration samples. Each 
sample type displayed characteristics that would make specific calibration necessary. 
Both techniques were able to detect hidden void spaces, larger than 2% of the sample 
volume, and in punctured samples. Therefore, both methods may be viable for rapid 
sorting of produce and minerals. 
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1.1 Introduction 
 
Most people have experienced the sound of Helmholtz resonators without being 
aware of their underlying principle. Bottles and stringed instruments are perhaps the 
most common type of Helmholtz resonator. Bottles have the characteristic small 
opening into a large chamber. If air is blown across a bottle’s neck (port) a resonant 
frequency is emitted that is proportional to the dimensions of the vessel. 
 
A musical instrument such as a guitar has strings placed over an open cavity, the 
guitar body. The combination of guitar body and orifice act as a Helmholtz resonator 
with a low broad Q factor. Q factor is the quality factor of a given resonator and 
indicates the narrowness in frequency range over which the resonator will oscillate. It 
also indicates the amount of amplification occurring at resonance (See Basic 
Equations, No.24). The broad Q profile allows the range of tones generated by the 
strings to be nearly equally amplified. 
 
Resonators form part of our every day lives. A far larger class includes mufflers for 
cars, noise suppression in air conditioning systems and acoustic dampening in office 
workspaces. Most serve the purpose of suppressing an unwanted frequency by 
absorbing the sound within the resonant cavity rather than amplifying it. Acoustic 
resonators have been known of since the time of the Romans, and it seems probable 
they were created in one form or another even earlier. The Romans used small 
resonators for musical instruments and sound damping in their amphitheatres (Dessy, 
2001). 
 
The Helmholtz resonator is named after Herman L. F. von Helmholtz [1821-1894], 
who discovered its physical and mathematical secrets (Helmholtz, 1877). Early 
experimental resonators such as the type used by Helmholtz are shown in Figure 
1.1.1. These instruments consist of a bulbous chamber, a port on the underside and a 
small stem, Figure 1.1.2, for the user to press against their ear. When air passes over 
the port the chamber and port will resonate at a frequency determined by the physical 
characteristics of the instrument: the chamber volume, port length and port cross 
sectional area. Also important is the physical medium in the resonator and the speed 
of sound in that medium. 
 

 

Figure 1.1.1 Historical Resonators’ from Notre Dame Indiana, http://physics.kenyon.edu 
(last viewed May 2008) 
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      Listening tube, held to ear 
 
 
 
      Resonator Chamber 
 
 
 
      Port (neck) 
 

Figure 1.1.2 Cross section of historical resonator with listening orifice at rear of chamber. 

 
The fundamental Helmholtz equation specifies that the resonant frequency is 
proportional to the square root of the cross sectional area of the port divided by the 
resonator chamber volume and port length, Equation 1.1.1: 
 

pc

p

lV

sc
freq

π2
=         (1.1.1) 

 
where c is velocity of sound, sp is cross sectional area of throat/opening, Vc is volume 
of chamber and lp is length of the port 
 
Helmholtz resonators are a rich area for investigation, despite the fundamental 
equations of acoustics being put forward by Lord Rayleigh, (1877) almost a hundred 
years ago. This is due to non-linear effects and developments in new methods for 
reducing and understanding their complexity. 
 
The purpose of this study has been to investigate the use of Helmholtz resonators as a 
method for determining the volume of an object. The inclusion of an object into the 
resonant chamber has the effect of reducing the effective resonator volume. Hence, 
there is a direct link between the emitted resonant frequency and the volume of the 
object within the chamber. 
 
The practicalities of such a system allow for non-destructive, deformation free, 
volume measurements of liquids, solids and granular material within the chamber. 
Such measurements have historically proved difficult due to the time required for 
measurement. Classical pycnometers have been the most accurate way of performing 
interference and degradation free volume measurements. But, pycnometers are very 
slow devices taking typically between 3 to 5 minutes to make a single measurement. 
Pycnometers differ slightly in that they can measure skeletal object volumes when 
gases with appropriately small atomic sizes are used, for example helium and 
nitrogen. 
 
Using a Helmholtz resonator, a rapid and robust volume measurement system can be 
created which, in some instances, can be used instead of a pycnometer. Doing so 
avoids the pycnometer’s reliance on lengthy calibration procedures. There is also 
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potential for far greater reliability with an acoustical system, due to a minimum of 
moving parts and avoidance of special chamber conditions. 
 
This investigation aimed to rigorously evaluate the variables involved in accurately 
determining the volume of samples placed within a Helmholtz resonant chamber. A 
set of methods was developed to better understand the significance and magnitude of 
the variables likely to affect accuracy. These included chamber dimensions, port 
dimensions, sample location, sample shape, acoustic barriers, granular samples, 
dynamic measurements of moving samples and acoustic free-field coupling. Novel 
approaches in further increasing speed of measurement time were also tested. These 
included a resonant hunting procedure developed and described in Chapter 3 and three 
Q profile shifting methods, described in Chapter 4. 
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1.2 Literature Review: Volume 
measurement 

 
1.2.1 Experimental volume measurement using a Helmholtz resonator 
Nishizu et al. (2001) described a method for volume measurements using Helmholtz 
resonators. They used a three-port resonator driven by a loud speaker in the top port. 
The system also contained a belt conveyor, which was able to move samples through 
an inlet port and out an exit port, Figure 1.2.1. A microphone was placed in the 
loudspeaker port to provide resonant frequency information to a computer. 
 

 
Figure 1.2.1 Schematic of automatic continuous volume measurement system, Nishizu et al. 

(2001). 

 
The analysis for the three-port resonator is similar to that given in Appendix A, 
Section 12 and results in Equation (1.2.1). The chamber volume for the resonator is 
variable, changing by an amount determined by the sample volume w. The ports are 
considered to be equal diameter and length. The length extension term, Equation 
(1.2.2), is that described by Appendix A, Section 8. Manipulation of Equation (1.2.1) 
gives Equation (1.2.3), which describes the volume w, of an object placed in the 
resonant chamber. The resonant frequency is then measured to back-calculate the 
sample volume. 
 

))((

3

2 llwV

sc
freq

p

p

∆+−
=

π
      (1.2.1) 

 
where freq is resonant frequency; c is velocity of sound; sp is cross sectional area of 
the port; V is volume of chamber; w is the sample volume; lp is length of the port and 
where r the radius of the port 
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The system created by Nishizu et al. (2001) was required to make measurements as 
quickly as possible due to a moving conveyor belt transporting the samples. As a 
sample moves through the chamber various resonant properties of the chamber will 
change. A maximum entropy (Bayesian statistics) method of analysing the data was 
used to reduce the time required to build a frequency spectrum. Precision in the 
measurement of frequency spectrum usually requires a large number chirps. A chirp is 
a frequency range over which the sound is incrementally swept through. Chirps are 
used to pinpoint the resonant frequency. By statistically predicting only the allowable 
frequencies the resolution of the frequency spectrum was increased. However, the 
entropic method used by Nishizu et al. was not stated. 
 
When the sample enters and leaves a port that port becomes obstructed and the 
resonant frequency changes in proportion to the available port cross sectional area. 
Effects such as chamber volume geometry may become significant, as described in 
Chapter 2, Section 11, when the sample is inside the chamber. These two effects limit 
the internal region where the Helmholtz equation is valid. Nishizu et al. (2001) 
described this region as the ‘sweet spot’ within the resonator chamber. 
 
A Helmholtz resonator for volume measurements of fuel tanks under micro-gravity is 
one of the more esoteric uses of the acoustic resonance technique and was developed 
by Nakano et al. (2006). A sealed spherical chamber was used to house the fuel. A 
stem containing a loudspeaker was connected inside the chamber. The loudspeaker 
projected sound down this stem and into the cavity in which the fuel was stored, 
Figure 1.2.2.  

 
Figure 1.2.2 Schematic of Helmholtz resonator fuel tank designed to be used in micro-

gravity conditions, Nakano et al. (2006). 
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The micro-gravity resonator was partially successful with a cautionary note indicating 
further investigation was required. This may have been due to a variation in the way 
measurements were taken. In that particular application the speaker was used as the 
sound source as well as the microphone. The changing impedance of the speaker was 
used to indicate the resonant frequency. At the point of resonance the impedance will 
suddenly rise. When using the loudspeaker as a microphone caution is needed to 
ensure the natural resonance of the loudspeaker does not overlap with the range of 
resonance caused by the Helmholtz effect. 
 
1.2.2 Patent for Helmholtz volume measurement device 
Johnson Jr. (1995) made a US patent application, in which he described a Helmholtz 
resonator suitable for measuring a human’s volume, Figure 1.2.3a. The differences 
between his technique and others were the method of resonant stimulation and the 
negation of ambient humidity and temperature effects. The stimulation method relied 
on blowing air past the resonator port rather than applying a chirp (frequency scan) to 
isolate the resonant frequency. In principle the resonator is only induced to resonate at 
its fundamental frequency, which is proportional to the free chamber space. 
 
By incorporating a ¼ or ½ wave resonant whistle within the main chamber its 
frequency will be altered by temperature and humidity at the same rate as the 
Helmholtz resonator. By superimposing the frequencies of the two resonators the ratio 
between the two can be used to determine the volume displacement in the main 
chamber, Figure 1.2.3b. Johnson Jr. claims the accuracy of such a system could be 
expected to be +1% of the sample volume and the measurement time only 3 seconds. 

  
Figure 1.2.3  a) Helmholtz resonator designed for measuring a human’s volume. b) Super 

position of whistle frequency onto Helmholtz frequency (Johnson Jr., 1995).  

 
1.2.3 Experimental Helmholtz resonator with variable chamber size 
De Bedout et al. (1996) constructed a variable volume resonator in the hope of 
developing a system capable of adaptive noise control in ducting systems. They used 
a hinged wall capable of segmenting off a part of the resonator volume, Figure 1.2.4. 

a. 

b. 
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The wall was connected to a motor which was position monitored by a potentiometer. 
The combination of motor and potentiometer was able to give positional feedback and 
allow adaptive control. 
 

 
Figure 1.2.4  Variable volume Helmholtz resonator designed and implemented by De Bedout 

et al. (Left) top view, (right) side view (De Bedout et al., 1996) 

The system had a number of limitations which included: 1) non-ideal placement of the 
port and non-ideal internal shape of the resonator leading to significant deviations in 
resonant frequency prediction 2) the potentiometer was only capable of providing an 
approximate angle via its resistance 3) there was no temperature speed of sound 
compensation 4) no attempt to account for discrepancies in signal levels over the 
frequency range tested 5) the loudspeaker was not suitable for reproducing the low 
frequency range required of it. 
 
Despite the numerous shortcomings they were able to demonstrate an adaptive 
resonator could be built that was capable of attenuating the driving frequency up to a 
maximum value of 30dB, but more typically 20dB. Using acoustical theory a more 
carefully designed resonator system should be able to give uniform attenuation over 
the frequency range they intended it for. The addition of temperature compensation 
would also improve the initial positioning of the wall and allow far quicker closed 
loop control times. 
 
A determining factor in the development of this adaptive-passive noise control system 
was the prohibitively expensive digital signal processing systems of the time. This is 
no longer the case and therefore digital signal processing systems can achieve better 
results at significantly lower cost (See for example, Texas Instruments, Texas, USA). 
A digital signal-processing device would inject out of phase sound - active control - 
into the ducting system to negate unwanted noise. 
 
1.2.4 Pycnometers 
The principle of the pycnometer is based on Boyle’s ideal gas law. Boyle’s law states 
that pressure, volume, and gas temperature are all related by a simple formula: P0V =n 
Rc Temp, where Rc is a gas constant, n is the number of moles and P0, V and Temp are 
pressure, volume and temperature respectively. To measure the volume of a sample, 
pressure is applied to a sealed vessel at constant temperature. If the volume of the 
vessel (V1) is accurately known before the sample is inserted then the pressure change 
should be proportional to the vessel volume minus the sample volume (V2). This can 
be expressed as V2 = P1V1/P2. 
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Pycnometry has many benefits over the traditional Archimedes principle, which 
involves submerging the sample in a liquid. A disadvantage of the Archimedes 
principle is the possibility of water damage to the sample. Another disadvantage is the 
potential for air to be trapped in pores of the sample leading to a false volume 
measurement. 
 
An accurate pycnometer requires a well-sealed vessel and a very accurate pressure 
gauge. For non-skeletal volumes air can be used to pressurise the vessel instead of 
Helium. A difficulty with performing pycnometry is maintaining a constant vessel 
temperature since the pressure of the vessel is directly related to its temperature. A 
constant heat source might be required depending on how long it takes to measure the 
sample volume. 
 
When using a pycnometer the more space occupied by the sample in the chamber the 
greater the accuracy. This is apparent from the theory of operation, PV=nRT, as the 
pressure difference between empty and occupied space will be greater. This ensures a 
reading that approaches full scale for the pressure-measuring device. Theoretical 
calculations by Tamari (2004) suggest a practical range for chamber filling of 
between 0.4 and 0.7. 
 
For constant volume systems the accuracy is dependent on tank chamber and sample 
chamber size ratios, Figure 1.2.5. Tamari (2004) notes that the size of the tank 
chamber should be about 2/3 the size of the sample chamber. By using a smaller tank 
the initial pressure can be high and the final pressure significantly lower when 
compared with having them the same size. This will maximise the pressure step and 
allow for increased resolution. The uncertainty in the pressure measurement device 
will play an increasing role as the final pressure reduces. Hence, there are two 
conflicting requirements, achieve a large pressure step and maintain a high pressure 
within the sample chamber. 
 

 
Figure 1.2.5  Diagram of a constant-volume gas pycnometer. The sample-chamber and the 

tank, initially filled with gas at two different pr essures, are connected by 
opening valve ‘Z’(from Tamari 2004). 

 
When the valve ‘Z’ from Figure 1.2.5 is opened it will cause a sudden pressurisation 
of the sample chamber, which in turn will cause a rapid temperature rise. This 



 12

temperature step must be allowed to dissipate through the walls of the chamber before 
an accurate pressure reading can be achieved. 
 
Precision in pressure measurement is the biggest uncertainty that pycnometry faces, as 
noted by both Oppenheimer et al. (1997) and Tamari (2004). Oppenheimer observed 
that a 1% inaccuracy in pressure measurement leads to an approximate 4% 
uncertainty of the sample volume. According to Tamari 0.0006% to 0.00175% is the 
ultimate accuracy that could be achieved using a well-designed pycnometer. This is a 
theoretical calculation. But, the values he derives are based on ‘off the shelf’ high 
precision components. 
 
1.2.5 Commercial pycnometers 
Readily available commercial pycnometers, such as the AccuPyc 1330 (Made by 
Micrometics, USA), typically have very small chambers (providing increased 
accuracy), use helium gas and can take anywhere between three to thirty minutes per 
measurement, dependant on required accuracy. This type of pycnometer is suited to 
laboratories for measuring small complex shapes, powders or chemical samples. 
Agnew et al. (2003) created a much larger and more robust pycnometer for measuring 
biomass. However, the apparatus had a much-reduced accuracy due to poor filling 
ratios, a non-ideal tank to chamber ratio and gauge uncertainties. 
 
The Julius Kruttschnitt Mineral Research Centre (JKMRC) has developed a rapid 
commercial pycnometer for mineral sorting. Commercialisation and manufacture has 
since been licensed to UltraSort LTD, Australia. The JK pycnometer was designed to 
replace existing technologies for mineral sorting based on buoyancy measurements 
using heavy toxic liquids. As density is the variable of interest the JK pycnometer was 
equipped with a weighing device to allow densities to be calculated. The JK 
pycnometer is claimed to have an accuracy of +5% of sample volume and +4% of 
sample density. However, measurement times are not specified. 
 
1.2.6 Commercial methods for sorting produce and minerals 
The ability to sort fruit is a current problem in industries where fruit density is often 
associated with ripeness or sugar content. Several methods are frequently used to 
ascertain the fruit firmness, which can be correlated to density. These include low 
mass impact, acoustic firmness tests and drop impact tests. These tests usually attempt 
to measure the propagation speed of sound through the fruit and the impact 
parameters used to derive a firmness index (Shmulevich et al., 2003). 
 
The impact parameters are a function of peak amplitude after impact and the rise/fall 
time of the impact. However, impact tests do not give consistent results for firmness 
for most fruit as the shape of the fruit significantly affects the firmness parameters. 
Also, non-uniformities in density through the fruit affect these values (Sugiyama et 
al., 2005). Companies such as Toyoseiki in Japan and Aweta in Holland produce 
firmness testers. 
 
Optical scanning techniques are the usual non-destructive method for measuring fruit 
size (volume) in commercial installations. The individual fruit is rotated on a plinth as 
it is optically scanned. A computer program then assembles the images to give an 
approximate volume. This method is not sufficiently accurate to sort fruit by density 
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(having been weighed first). It is however able to size grade fruit and sort by colour. 
Aweta of Holland produces machines of this type. 
 
Buoyancy methods are currently used for mineral density measurements in mining 
applications. A mineral sample is immersed in progressively denser liquid until the 
sample is neutrally buoyant. This method is in the process of being phased out in 
Australia due to the high toxicity of the heavy liquids used. The JK pycnometer was 
created as an alternative and may eventually replace immersion methods. 
 
1.2.7 Spheres in a resonant cavity. 
A number of studies have been conducted on spheres in a resonant cavity, principally 
Barmatz et al. (1983), Leung et al. (1982) and Cordero and Mujica (2007). However, 
all have concentrated on closed cavities, described as a half wave resonator. Their 
models and measurements focused on a sphere’s position in relation to cavity length 
and how this changes the different modes of resonance (Eigen frequencies).  
Sometimes this was extended to include the influence of sphere radius to cavity radius 
ratios. All derive various solutions to the wave equation in attempts to better predict 
the change in resonant frequency for a given configuration. 
 
Leung et al. (1982) performed tests using rigid disks and differing sample materials 
for the solid spheres. Barmatz et al. (1983) also performed preliminary tests on 
spheres of different material. Both groups noticed no appreciable differences in 
acoustic behaviour for the different materials. The difference in acoustic impedance 
between dissimilar solids is generally tens of Megarayles, where 1rayl is 1kg/m2s. 
Aluminium and hard plastics are typically around 17x106rayls and steel 47x106rayls. 
However, the impedance of air is a mere 415rayls. Therefore, impedance coupling is 
very poor between a solid and air, with most of the acoustic energy reflected by 
scattering. 
 
Leung et al. (1982) found the behaviour of a disk in a resonant cavity tended to lower 
the resonant frequency in the vicinity of maximum amplitude velocity. The effect of a 
disk caused acoustic scattering without inducing a frequency shift caused by a volume 
change. In this way scattering effects could be isolated from volume effects. 
 
The Helmholtz resonator is significantly different from closed cavities given that the 
Helmholtz primary resonator frequency is independent of internal chamber 
dimensions. The exception to this is at higher frequencies where standing wave 
properties emerge due to half and quarter wave resonant activity. The chamber 
volume, port dimensions and the speed of sound determine the fundamental frequency 
of the resonator. Transcendental equations utilise chamber diameter and length for 
excessively long or wide chambers (See Chapter 2, Section 15). The Helmholtz 
equation assumes a lumped parameter analysis of the chamber and port, which is true 
if the pressures in both are equal. For a combined chamber and port length of less than 
1/16 the resonant wavelength the lumped parameter method has been found to be valid 
(Panton and Miller, 1975). 
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Literature review conclusions 

• There is little existing information on the use of Helmholtz resonators for 
volume measurements. 

• Generally pycnometers capable of high accuracy volume measurements are 
not robust or suitable for industrial applications. Those that are have tended to 
be inaccurate and slow. 

• Existing methods for measuring produce samples are not very accurate and are 
either prone to incorrect scanning (optical systems) or inconsistencies caused 
by non-uniformity in density (acoustic response tests). 

• Current methods for mineral density measurements (based on volume) involve 
highly toxic liquid chemicals. 

• Solids in a ¼ wave resonant cavity will cause frequency shifts in proportion to 
their location, their volume and the amount of scatter based on surface 
geometry. It is expected similar trends should be seen in a Helmholtz 
resonator, but to a lesser degree. 
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Chapter 2 
 

Helmholtz resonator theory 
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2.1Helmholtz resonator theory 
 
2.1.1 Traditional Helmholtz resonator theory 
The ideal resonator equation behaves like a mass spring system with defining 
constants such as stiffness, mass and an angular frequency, Equation (2.1.1). For most 
situations this simplification proves adequate to describe the Helmholtz resonator 
oscillatory system. The mass is the mass of air in the port, ρ0splp, and the spring 
stiffness is the compliance of the air in the port calculated in Appendix A, Section 10 
to be (ρ0c

2sp
2)/V, where ρ0 is the nominal air density, sp is the port surface area, lp is 

the port length, c is the speed of sound and V the volume of the chamber. Placing 
these into Equation (2.1.1) and cancelling gives the traditional Helmholtz resonator 
equation. 
 

p

p

Vl

s
c

mass

stiffness==ω       (2.1.1) 

 
This is an idealisation as the length lp should refer to the moving mass of air in the 
port only. But in reality this length is about 0.6 longer (See Appendix A, Section 8). 
Figure 2.1.1 shows simplified diagrams, comparing the physics of the resonator and a 
mass spring arrangement. This method is often referred to as the lumped parameter 
method in which the air in the port is considered incompressible (See Appendix A, 
Section 12). 
 
 
 
 
 
 
 
 
 
 

Figure 2.1.1 a) Simple ideal resonator showing moving mass of air in port compressing air in 
chamber volume and springing back due to the increased pressure in the 
chamber. b) Equivalent mass spring system. 

 
Making the substitutions, ω=2πfreq, allowing for a port length extension term, ∆l, to 
allow for the non-ideal behaviour of the port and adding a sample displacement 
volume (w). Equation (2.1.1) can be rewritten as Equation (2.1.2) for a sample volume 
inserted into the resonant chamber. 
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      (2.1.2) 

 
Equation (2.1.2) can be rearranged, Equation (2.1.3), allowing determination of w. 
This requires the chamber volume to be accurately measured and the resonant 
frequency of the empty chamber found. 

Mass 

 Air  Air 

a) b) 
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For a resonator of fixed dimensions the main variable is the frequency. If the 
frequency can be accurately measured it should be possible to calculate the size of the 
object in the chamber. This assumes a constant velocity of sound (c), which can be 
evaluated from the temperature, the ideal gas law and the ratio of molar specific heats 
(γ). Application of a narrow frequency sweep, chirp, will allow localisation of the 
resonant frequency. 
 
2.1.2 Chirp frequencies 
The time for one complete cycle of a given frequency decreases with increasing 
frequency. If a linear chirp was used the number of cycles produced with increasing 
frequencies would increase proportionately also. For this reason a logarithmic chirp is 
required to ensure even weighting to all frequencies being swept through. 
 
The time to complete one cycle (T) is the reciprocal of the frequency, T=1/freq. 
Therefore the sweep time (ST) for the frequencies being chirped through will be the 
integral of 1/freq, Equation 2.1.4. 
 

min

maxln
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min freq

freq

freq
ST

freq

freq
== ∫      (2.1.4) 

 
The rate of change in the in sweep will be the first derivative of 1/freq, Equation 
(2.1.5), which shows the rapid decline in time required for a complete cycle with 
increasing frequency. The rate of frequency change is an inverse parabola. To avoid 
the need for logarithmic chirps, narrow frequency scanning is preferable. This can be 
achieved with a roughing technique like that described in Chapter 3, Section 3.2.6. 
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2.1.3 Non-ideal behaviour in the port: length extension 
Work by Lord Rayleigh (1896), Chanaud (1993) and others have shown Equation 
(2.1.1) to be an idealisation. The port length is in reality extended by a factor 
determined by the port radius and the quantity of port flange material at each end of 
the port, Figure 2.1.2. 
 
 
 
 
 
 
 

Figure 2.1.2 Flange material will alter the virtual or effective port length. 

 

Chamber 

Port flange 
material 

Virtual flanged 
port length 
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The pressure within the resonator chamber is not equal at all locations, but is a 
function of the resonant frequency wavelength. Therefore, in a sufficiently long 
chamber it is possible to have both low and high-pressure zones co-existing. Non-
homogeneous pressure within the resonator chamber invalidates the lumped 
parameter assumptions used to generate Equation (2.1.1). 
 
Ingard (1953) stated that port end corrections, which is air moving beyond the 
physical port ends, are not as simple as those derived from the standard method of a 
piston in a planar surface. They are intimately related to the constraints occurring at 
the end of the port, the solutions to which are difficult to solve due to the required a 
priori  knowledge of the pressure distribution in the port. Part of the problem also 
stems from the small signal approximations used in generating the wave equation (See 
Appendix A, Section 2). These lead to singularities at point sources or edges. Ingard 
(1953) recommended using the non-linear terms that are normally omitted to 
eliminate this problem. 
 
Most standard texts, such as Blackstock (2000) and Kinsler and Frey (1962), derive a 
value of 8a/3π, where a is the radius of the port, for the length extension effects 
caused by an ideal piston in a plane surface. This can be equated with a moving mass 
of air in a flanged port. In reality the piston is seldom ideal and the flange at the port’s 
entrance is far from being an infinite plane. Coupled to this are the diffraction effects 
causing scattering and turbulence at the internal and external port ends.  
 
Typical Helmholtz resonators require two different end corrections to be used, one for 
the internal port and one for the external. Ingard (1953) warns that non-adherence to 
the end correction factors can lead to considerable error in calculating the resonant 
frequency. Ingard reports very good agreement between experiment and theory using 
standard end correction factors, despite the assumptions about non-ideal secondary 
effects. 
 
End corrections are required and valid for all cavity-like configurations and can be 
applied to ¼ wavelength and ½ wavelength organ tubes (Panton and Miller, 1975). In 
illustration of the significance of end corrections, consider a simple port chamber 
configuration with an internal flange. If the port length is 170mm with an internal 
radius of 22mm, a length correction ∆l of 30mm is required. This is calculated based 
on the end correction is for an internal flanged and external un-flanged port. Hence, 
the effective length for the port is 200mm, almost 20% more than the physical length. 
 
To better understand the length extension term Silva et al. (2008) have derived a 
number of equations and methods to try and align the Hermitian and causality 
conditions to length extension calculations. Instead of relying on static values often 
used to approximate the length extension term. Silva et al. (2008) state the Hermitian 
condition requires the reflection function (R) of a negative frequency must be equal to 
its complex conjugate, R(-ω)=R*(ω), where R* is the complex conjugate reflection 
function and ω the angular frequency. The causal condition given specifies impulse 
responses must be causally closed. 
 
Existing derivations do not obey these conditions in attempts to give readily usable 
values. The sacrifice is values that are only true for the system as the angular 
frequency approaches zero or ka is sufficiently small, less than 1, where k is the wave 
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number and a the port radius. The result is physically impossible values for large ka 
values. Despite this, Silva et al. (2008) acknowledge it is impossible to derive closed 
form solutions as the time domain solutions require knowledge of impedance values 
for the full range of frequencies (See Appendix A, Section 13). 
 
Results of Silva et al. (2008) for prediction and experimental values for the length 
extension were within 8% (ka<2) when the Hermitian and causality conditions were 
satisfied. This improved to better than 2% (ka<3) when the causality condition was 
ignored. The significant improvement in not applying closed conditions indicates 
length extension terms for a port still pose a difficulty in accurately defining the 
parameters determining the Helmholtz resonator. 
 
Kang and Ji (2007) conducted a numerical study into length correction of ducts in a 
cylindrical chamber, as occur between the Helmholtz resonator port and the chamber. 
They used 3D finite element models (FEM) and 2D analytical calculations to better 
understand the length correction term with regards to the resonator’s chamber 
dimensions and the port dimensions. From the 2D analysis they were able to derive an 
approximation expression. This expression could be used to calculate the length 
extension factor so as to be incorporated in the traditional 1D analysis model, 
Traditional Helmholtz equation, Equation (2.1.1). The derived expression has 
variables that include the chamber diameter (dc), the port diameter (dp) and the 
quantity of port extension into the chamber (Le), Equation (2.1.6), where δ is the 
length extension factor and a the port radius. 
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Analysis of the chamber length to chamber diameter ratio by Kang and Ji (2007) 
suggested this ratio did not influential the length correction term unless the ratio was 
less than 0.3. This would make for a very long thin resonator in which non-linearities 
in the pressure wave distributions would be much more significant, and would 
therefore violate the lumped parameter assumptions (See Appendix A, Section 12). 
 
Numerically, Kang and Ji (2007) found very good agreement between their FEM 
method and the 2D analytical model, within 1% for the values they considered. It was 
unfortunate that they did not conduct any experimental work to confirm their 
numerical results. It is therefore unknown as to how successful their models are in 
predicting length extension. 
 
The inclusion of one or more perforations in the port has been found to significantly 
alter the port length extension term, Peat (2008). Resonators with port perforations 
have been well known for many years and the benefits implemented successfully in 
muffler systems, mufflers being a type of Helmholtz resonator. However, the effect of 
the perforations in terms of mathematical analysis has been lacking. Traditionally the 
design of resonators with port perforations has been trial and error. 
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Peat (2008) performed a finite element analysis in combination with standard 
analytical impedance calculations to derive solutions based on the percentage of 
perforation per unit length and the total length containing perforations. The 
significance of Peat’s research has implications for leaks that may be present in the 
port of a resonant system. These can occur at the chamber port junction or in 
microphone fixtures on the exterior of the port. Peat found the port length correction 
factor was increased to 1.6 from 1.4 for an un-flanged resonator when a single hole 
making up only 5% of the circumference area was added. This represents a significant 
alteration to frequency prediction accuracy using the Helmholtz equation. Generally, 
the acoustic energy is very rapidly dissipated in a pipe containing any perforations. 
 
2.1.4 Non-ideal behaviour in the port: radiation resistance 
Lord Rayleigh (1896) discovered that the moving mass of air in the resonator port 
continues past the physical open ends by an amount determined by the cross sectional 
area (See Figure 2.1.1). Ingard (1953) repeated this work. The effective inertia of the 
moving mass of air, acting as an oscillating pneumatic slug, extends the port-air-mass 
beyond the ports physical boundaries. As noted by Kinsler and Frey (1962), a moving 
air mass has associated losses, which appear as acoustic radiation and frictional 
coupling with internal port surface (See Appendix A, Section 9). 
 
When ka is small, boundary layer losses are more prominent than the acoustical 
radiation energy losses from the external end of the port. They are an order of 
magnitude larger than the radiation resistance associated with the moving mass of air 
in the port (Kinsler and Frey, 1962). The exposed port acts as a hemispherical 
oscillator that has an acoustical coupling co-efficient related to the frequency. At low 
frequencies (ka<<1) the port behaves like a point source emanating sound in a 
hemisphere. As the frequency increases the sound is projected more like a planar 
source with low divergence (Blackstock, 2000). 
 
The assumptions used in deriving the radiation resistance are only valid for the 
transmission of sound into a semi-infinite medium, i.e. the constricted port into the 
unobstructed environment. Equations derived in Appendix A will need appropriate 
adjustments to account for incident, transmitted and reflected components if the sound 
is not radiated into free space. An important example of this is a closed tube; most of 
the energy is reflected minus the frictional viscous losses (See Appendix A, Section 
11). Hence radiation losses are minimal in such circumstances. 
 
In a study by Ganghua et al. (2008), the coupling efficiency of a small enclosure 
containing a Helmholtz resonator was investigated. The purpose was to gain a better 
understanding of energy reduction using various damping membranes in the port of 
the resonator. By selecting the appropriate acoustically resistive material, broad 
frequency energy attenuation could be achieved. 
 
Ganghua et al. (2008) found that a high energy absorbing membrane prevented 
effective coupling between the enclosure and the resonator. The resonator was not 
able to induce sufficient resonance to reduce the energy in the system it was mounted 
in. Using analytical solutions for the velocity and pressure distributions they were 
able to show there is an optimum damping coefficient for a given resonator and 
environmental coupling configuration. 
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The calculations of Ganghua et al. (2008) were designed to maximise the energy 
reduction to the enclosure housing the resonator. The resonator was designed to have 
a high Q factor and energy dissipation factor. The high Q factor allows energy to be 
extracted from the enclosure into the resonator and then dissipated in the port 
membrane. To calculate the optimal attributes of the resonator the coupling between 
enclosure and resonator must be analysed. 
 
Calculations and experiments by Ganghua et al. were able to show that for an un-
damped resonator most of the energy loss, in the form of acoustic resistance, is from 
acoustic radiation resistance and not viscous losses in the port. Hence, most of the 
energy is reradiated back into the enclosure. This is an important consideration for un-
coupled resonators with small internal port areas having remote stimulation.  
 
In a brief study by Iwase (2007) the velocity profile emanating from the port of a 
Helmholtz resonator was investigated using a velocity probe. He found the velocity 
profile was uniform right up to the edge of the port surface when measured at the port 
opening. As the velocity probe was moved upward and outward it showed rapid 
velocity dispersion, confirming the planar wave rapidly diverges into a hemispherical 
wave, as predicted by theory (See Appendix A, Section 4). 
 
Additionally, Iwase (2007) was able to map the length extension effect as the velocity 
profile decays with distance from the port opening. Results suggest smaller length 
extension effects of the port extended up to 50% of the port length. Standard 
acoustical theory (Blackstock, 2000) predicts for Iwase’s system, the bulk movement 
should be occurring at lengths less than 12% of the port length. In the study by Iwase, 
the effect of flanging material at the port opening was also confirmed. The addition of 
port flanging material was shown to significantly increase the coupling coefficient 
between the port and the environment. 
 
2.1.5 Non-ideal behaviour in the port: viscosity and turbulence 
In accordance with continuum mechanics (Fung, 1994) the mass of air moving within 
the port must have an air velocity of zero where the air meets the port surface, the no-
slip condition. This layer is a frictional loss of energy to the resonator. Despite this the 
velocity profile is nearly even across the port’s area and appears very much as a plane 
wave, Kinsler and Frey (1962), Blackstock (2000). The boundary condition where 
matching velocity at the port surface occurs is at the millimetre range (See Appendix 
A, Section 9).  
 
Kinsler and Frey (1962) suggest any port over 1cm diameter will not be significantly 
affected by this internal viscous frictional coupling. In theoretical calculations by 
Ingard (1953) on a Helmholtz resonator he calculated a boundary layer thickness of 
0.6mm for a resonator having a resonant frequency of 150Hz. This value is consistent 
with alternative methods used in Appendix A, Section 9. Exceptions can occur with 
large sound pressures where the air velocities can be very large. 
 
To some extent, the surface texture of the port plays a part in the viscous losses to the 
resonant system. The surface still appears as a smooth boundary so long as the 
coarseness of the surface is not a significant proportion of the cross sectional area. 
This is primarily due to the low viscosity of air. Ingard (1953) made use of porous 
materials within the port to add mechanical damping. Damping within the resonator is 
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common for noise suppression systems such as mufflers and air conditioning ducting. 
The effect of which is to lower and broaden the overall Q factor of the resonator (see 
also Section 2.1.4). Q factor being the quality of resonance (See Appendix A, Section 
3) 
 
Because Helmholtz resonators are often used in sound damping systems, a broad 
resonant peak having a low Q is required with high mechanical resistance over the 
frequency range for which it is intended. Resolvability in frequency requires a high Q 
factor to be achieved. For an un-damped resonator Q factors of between 30 and 40 are 
easily obtainable (Ingard, 1953). 
 
Ingard (1953) has stated that within the resonant system the power lost to viscous 
forces is to be derived from the integral of the friction caused by the port surface and 
the tangential wave velocity. The surface resistance is the product of the air viscosity 
density and the angular frequency. For this integral to be valid the surface must 
appear flat to the wave travelling across its surface. As the boundary layer has been 
shown to be much smaller than the dimensions of the port this assumption can be 
considered true. It is not true for small diameter ports, less than 1cm, or small port 
lengths such as a hole punched plate. There will also be some acoustic losses around 
the port ends. High friction losses also occur at the port edges, these all contribute to 
non-linearity in port behaviour. 
 
2.1.6 Non-ideal behaviour in the port: heat conductive losses 
Blackstock (2000) and Kinsler and Frey (1962) suggest the heat losses from a 
propagating wave in a free medium are of a similar magnitude to those caused by 
viscosity. As a sound wave propagates through the given medium a localised rise in 
temperature occurs with the rise in pressure. The converse is also true and during the 
rarefaction, a temperature decrease occurs. 
 
For a given system, the viscous losses experienced by moving air molecules will be 
small if the boundaries of that system are large compared to the wavelength. The 
losses associated with heat transfer in the form of non-ideal adiabatic effects will also 
be small and of a similar magnitude. In the case of a bounded system where the 
dimensions are small compared to the wavelength the effect of the viscous boundary 
layer will play a larger part in the dissipation of energy. This is not to say that the 
losses from either are large, but the relative magnitude of viscous to heat conduction 
will vary according to the system under investigation. 
 
The resonator is not a free and open system, and therefore does not mimic results for 
such open systems. Ingard (1953) has suggested the need for careful analysis of waves 
travelling in a finite system. He classifies two important subcategories, waves in an 
infinite tube and waves in a finite tube. Application of conservation of energy 
equations will vary in each case due to the phase relationships between pressure and 
particle velocity within the finite system. Thus, the velocity is far more significant 
than the pressure due to the boundary layer effects. As the wave velocity increases so 
does the boundary layer. Consequently at high sound pressure levels or very high 
frequencies the port appears more constricted than at low sound pressure levels (See 
Appendix A, Section 9). 
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2.1.7 Non-ideal behaviour in the port: relaxation time 
Relaxation time is the small instant in which the density change in a fluid is not equal 
to the pressure change. For example, a very rapid change in piston position will cause 
the air molecules to experience a sudden rise in density that is out of phase with the 
related pressure step. This represents a time lag, linked to the transients in which the 
system is able to bring itself back into equilibrium. 
 
The effect of the relaxation time is a non-linear speed of sound relationship. The 
speed of sound asymptotically increases proportional to an additional viscosity force, 
caused by the air’s time to reach molecular equilibrium. This applies to poly-atomic 
gases like air, (Kinsler and Frey, 1962). The sudden burst of energy into the gas is 
taken up by the modes in which the gas can absorb energy (translational, rotational 
and vibrational). 
 
The relaxation time for air is about 1.7x10-10 seconds. For this study the rate of rise of 
pressure is orders of magnitude slower than the relaxation time for air and hence 
relaxation times are not considered significant. Only at very high frequencies or 
extreme pressure amplitudes is the relaxation time important and is necessary to 
include it in theoretical calculations. 
 
2.1.8 Non-ideal behaviour in the port: non-linear effects 
Ingard (1953) has reported the presence of significant non-linear effects in the port of 
a resonator under certain conditions. The principle reason for this non-linearity is 
turbulence caused by particle displacement amplitudes to port length ratios. The ratio 
of these two variables determines how the onset of turbulence occurs, what proportion 
of the cross section will be laminar and whether jets occur at the port ends. The 
transition between different port behaviours occurs at when the port length and 
particle displacement distance are the same. ‘Particle’ in this instance refers to air 
particles not those described later in Chapter 3 for granular materials. 
 
At low sound pressure levels the port flow remains predominantly laminar even with 
increasing frequency. As the frequency and particle displacement grow, the onset of 
turbulence starts. If the frequency and amplitude is further increased acoustic jetting 
starts. This analysis can be contrasted with the normal Reynolds number approach for 
boundary layer determination (See Appendix A, Section 9). The oscillatory behaviour 
plays a significant role at large sound pressure levels and at high frequencies. 
 
Associated with non-linear resistance effects is non-linear reactance; the two are 
intimately related. The resistance caused by turbulence and/or acoustical jetting is 
energy taken from the mass reactance of the port. The oscillating mass of air in the 
port connected with the acoustic reactance is required to drive the turbulent effects, 
and is thus an additional loss to the resonator. This loss can be added to those of 
viscosity for the resonator. 
 
In this investigation the port lengths are large compared to the particle displacement 
and the frequencies low. Therefore, air movements within the port are in the linear 
region and non-linear effects caused by the onset of turbulence or acoustical jetting 
need not be considered. 
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2.1.9 Non-ideal behaviour in the port: port placement 
The port placement can affect the resonant frequency in two ways. The first is the 
inclusion and/or protrusion of the port from the resonator chamber. The second is the 
physical location of the port in terms of chamber symmetry, i.e. the proximity of the 
port to the chamber wall. 
 
Inclusion and protrusion effects have been extensively analysed and examined by 
Selamet and Lee (2003). They found that the resonant frequency decreases slightly as 
the port is shifted from a symmetric orientation, where the port length internal to the 
chamber is the same as that external, to an asymmetric one, where there is a 
difference in internal to external port length extension. 
 
Ingard (1953) and Chanaud (1993, 1997) reported on the effects of port placement in 
terms of its proximity to the chamber wall. As the port is moved closer to the wall the 
viscosity ‘felt’ by the mass of air varies at the port entrance and exit. This variation 
has a significant effect on the resonant frequency. 
 
The port centre displacement was analysed by Ingard (1953) with regard to the port’s 
eccentricity factor, the ratio of the port centre over the radius of the chamber (a/R), 
Figure 2.1.3, up to the theoretical maximum of 1. The ratio of unity is impossible due 
to the port having its own radius (r) which restricts the upper limit of a to R-r. 
Therefore, the maximum ratio of eccentricity is 1-r/R. Ingard’s investigation focused 
on how eccentricity affects port length extension. He noticed that ∆l (length 
extension) was a maximum when this ratio of a/R was zero and minimal when the 
port was hard up against the chamber wall. A port close to the chamber wall will have 
a lower effective length hence a higher resonant frequency and vice versa. 
 
        r 
 
 
       a 
 
 
 
 
       R 
 

Figure 2.1.3 Port placed eccentrically with respect to the chamber centre. 

 
Chanard (1997) furthered his previous work studying port location effects; the 1993 
investigation only included a few cursory calculations. Chanaud’s experimental and 
theoretical results were similar to those of Ingard (1953) using a cylindrical chamber 
with an eccentrically placed port. Chanaud’s results showed the classical Helmholtz 
equation was unable to predict variations in port placement. Chanaud also 
demonstrated by experiment, with an irregular rectangular chamber, the inability of 
the transcendental equations to predict resonant frequencies when the port location is 
eccentrically placed in the chamber. 
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2.1.10 Non-ideal behaviour in the port: port shape 
Tang (2003) and Selamet and Lee (2003) conducted two types of investigation into 
port shape, principally the effects of varying the port cross-section with height with 
conical ports. Ingard (1953) and Chanaud (1993) studied the relationships between 
port cross sectional shape and the effect these have on the resonant frequency. 
 
Tang’s development of the Helmholtz equation, 0)( 2 =+∇ Ak , for tapered conical 
ports and experimental evidence has shown an increase in the resonant frequency is 
predicted and observed. Tang’s analysis and experimental work includes only the 
cases where r i is smaller than ro, Figure 2.1.4. An increase in the resonant gain was 
also observed in Tang’s study, indicating a reduction in the acoustic impedance in the 
port. 
 
        ro 
 
   Chamber         r i 
 
 
 

Figure 2.1.4 Chamber with tapered conical port. 

 
Selamet and Lee (2003) also found that an r i value smaller than the ro value increased 
the resonant frequency. In addition they tested the case where r i is larger than ro, with 
again an increase in resonant frequency. In both cases increases in the resonant 
frequency and its resonant gain value occurred, compared with the standard un-
tapered port. 
 
Chanaud (1993) and Ingard (1953) noted port cross sectional shape has little effect on 
the resonant frequency. This is likely due to the port cross section being large enough, 
for the pressure wave travelling in the port, to be almost unaffected by the viscosity 
losses occurring at the port surface. In extreme situations where the port area is 
narrowed, the boundary layer will become significant and encroach on the bulk 
laminar flow. The other extreme is where a port dimension becomes a significant 
proportion of the wavelength; in such cases the lumped parameter approach is 
violated and no longer valid. 
 
2.1.11 Non-ideal behaviour: chamber and port length 
The pressure can be predicted at various chamber heights as shown in Figure 2.1.5, by 
considering the length of the chamber as occupied by a sinusoidal pressure wave at an 
instant in time. The dimensions are chosen such that the resonant wavelength is 
proportional to the length of the chamber. This situation is to be avoided in using the 
lumped parameter analysis of the Helmholtz resonator, which assumes equal pressure 
throughout the chamber and port. 
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        Port (neck) 
 
 
 
 
        Pressure wave 
 
        Chamber 
 

Figure 2.1.5 Sinusoidal representation of pressure within chamber occurring when 
dimensions of the resonator are a significant fraction of the resonant frequency 
wavelength.  

 
Panton and Miller (1975) have shown that the deviation caused by the wavelength (λ) 
induced pressure difference can be significant in predicting precise resonant 
frequencies. They suggest the length of the chamber should be kept to within 1/16λ 
rather than the more traditionally accepted value of ¼λ, if the lumped parameters 
assumptions of Equation (2.1.1) are to be valid. Chanaud also found this to be true in 
his 1993 study. See also Section 2.1.15 for analytical details of Panton and Miller 
(1975) study. 
 
Selamet, Dickey and Novak (1995) conducted a number of tests, extending the length 
of chambers to gauge the significance of wavelength to chamber dimensional effects. 
In their investigation Selamet et al. used the chamber length to chamber diameter ratio 
(l/d) to test non-ideal behaviour. In all cases the chamber volume was kept constant. 
They found in all non-classical transmission loss analysis, the resonant frequency 
decreases with increasing l/d. The maximum ratio of l and d tested was 23.92. At 
extreme ratios secondary ¼ wave resonator behaviour was observed in the port in 
addition to that caused by Helmholtz resonance. 
 
The classical Helmholtz equation was observed to be valid for l/d ratios of less than 
1.5 by Selamet et al. (1995). At larger ratios transcendental equations derived from 
transmission theory were needed to accurately predict resonant frequencies (See 
Section 2.1.15 and Appendix A, Section 11). Computational numerical methods were 
also used by Selamet et al., but only yielded accurate results when the grid size was 
small and only for extreme l/d ratios. 
 
In contrast to Panton and Miller (1975), Selamet et al. (1995) used a transmission loss 
apparatus in which the resonator was mounted at right angles midway along a non-
reflective duct (anechoic termination). Panton and Miller used a freestanding 
resonator and applied a sound source to the port entrance at a distance of 
approximately 1m. 
 
2.1.12 Non-ideal behaviour: chamber shape 
Alster (1972) conducted a thorough mathematical analysis of variations in chamber 
shape. The aim was to improve calculations of resonant frequencies for Helmholtz 
resonators having unusual chambers. In his paper he studied a range of chamber 
shapes including spheres, prisms, toroids and cylinders. A secondary purpose was to 
link mathematical descriptions of the Helmholtz resonator to those of the ¼ wave 
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resonator. Alsters inspiration for this investigation was discrepancies in the 
observations made by early acoustical pioneers such as Liscovius and Sondhauss, 
(cited by Alster, 1972). 
 
Liscovius and Sondhauss alleged that a resonator partially filled with water gave the 
same resonant frequency when the resonator was inclined at various angles. In 
contrast, modern replications of this experiment give variations of up to 30%, (Alster, 
1972). Therefore, it is argued, the classical resonator equation, Equation (2.1.1), is too 
simple to accurately describe the processes causing resonance. Alster then reasoned 
the chamber shape must affect the gas inside the chamber, as the water-filled 
resonator changed its frequency at changing chamber angle with all other variables 
held constant. 
 
Alster’s investigations have explicated the use of form factors for describing the 
velocity and force profiles within the chamber. If the chamber is sufficiently regular 
to allow description by a function, then a detailed procedural equation can be 
generated to describe the end effect of the internal port. Hence, the end correction 
factor, required for frequency prediction, can be applied where lp=l p’+l c+l o. The 
physical length of the port is lp, the length extension due to chamber effect is lc, and 
the length extension due to the port’s external opening is lo. 
 
It should be noted that Alster’s derivation assumed dimensions of chamber and port 
not greater than ¼λ of resonance and omits viscous forces. This is in keeping with 
general assumptions used in calculating resonant frequencies. With these cautions 
Alster was able to achieve accuracies of better than 1% when comparing predicted 
values with observation. 
 
2.1.13 Resonator chamber with many apertures 
The Helmholtz resonator need not consist of a single port. The theory describing the 
behaviour of a given resonator can be equally applied to the multi-port resonator. The 
lumped parameter conditions must still apply for validity of predicted frequencies. 
Ingard (1953) used two different multi-port configurations. The first consisted of a 
single rectangular port replaced with four smaller rectangular ports amounting to the 
same overall cross sectional area. The second was a single round port split into two 
smaller round ports of equal cross sectional area. In these instances the multiple ports 
were all in the same face. They were also close enough to have their inertial 
components, which extend beyond the port exit, interfered with each other. The effect 
of which was a considerable rising of the primary resonant frequency, mainly due to 
the end effects overlapping into neighbouring ports. The interference between the 
ports affected the length correction factor for each. Ingard  (1953) provides a detailed 
mathematical analysis of this effect. 
 
In instances where the ports are remote from each other the resonant frequency would 
be expected to be the same as that for the single port, with the equivalent cross 
sectional area. Because the length correction is a function of port radius the multi-port 
resonator’s resonant frequency would be expected to be larger by a factor determined 
by the port size difference. To illustrate this, compare the standard Helmholtz 
resonator Equation (2.1.7) with the multi-port Equation (2.1.8) in which sp1=sp2 and 
lp1=l p2. The denominator for the multi-port resonator is purely a function of the 
averaged port radius. The effect of which is to raise the resonant frequency, as ∆l for 
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the multi-port resonator will be considerably less than ∆l for the single port resonator. 
The cross sectional area for sp is the same as that of 2sp1. 
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Ingard (1953) also states that the expected Q factor for a multi-port resonator will be 
considerably less than that for a single port. By considering Equation (2.1.9) it can be 
seen that the expression for the Q factor is dependant on the length correction factor 
in the numerator (See Appendix A, Section 3). Therefore, as the length correction 
factor decreases with reductions in cross sectional area of the port, the Q factor is 
expected to decrease accordingly. 
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2.1.14 Analytical transmission and finite element analysis 
Boundary value and finite element analysis, also referred to as BEM – Boundary 
Element Method (Selamet and Lee, 2003), are two methods of gaining insight into the 
behaviour of the Helmholtz resonator. Selamet and Lee have employed both methods 
to better understand the complex interaction of pressure and velocity at three distinct 
regions within the resonator. These consist of the port volume, the region immediately 
surrounding the port in the chamber and the region in the chamber free of the port. 
Selamet and Lee used a symmetrical port configuration in which half the port 
protrudes into the chamber and half extends out of it. 
 
Using analytical methods Selamet and Lee (2003) solved the resonator problem using 
transmission theory for the three regions in both the one-dimensional axial and two-
dimensional analytical methods. They found the classical and one dimension axial 
methods gave poor predictive results, while the two dimensional and finite element 
analysis gave very good results. 
 
Selamet and Lee (2003) also found the finite element method was able to predict 
accurately the resonant frequency for tapered port configurations. Tapered port 
calculations become extremely unwieldy using transmission equations due to the 
progressive change in volume and surface area. Tang (2003) has attempted a 
simplified variation of this process with partial success (See Section 2.1.10). 
 
2.1.15 Transcendental equations for resonance frequency determination 
The classical Helmholtz resonator formula, Equation (2.1.1), is derived from the 
damped wave equation with an applied perturbation or forcing function (See 
Appendix A, Section 2). This equation typically gives results to within 5% with 
cautious use of both chamber and port lengths and avoidance of extreme asymmetry 
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in design. The advantage of the classical formula is a continuum of calculable 
frequencies for a range of resonator dimensions, but it does not allow for the chamber 
width to length ratio as discussed earlier. Lord Rayleigh (1896) further developed the 
transcendental resonator formula, Equation (2.1.10), in which intersections of two 
functions must be numerically resolved in order to determine appropriate frequencies 
at which the chamber resonates. 
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where k is the wave number (k=ω/c, c is the speed of sound), Lc is the chamber 
height, sc is the cross sectional area of the chamber, lp is the length corrected port, and 
sp is cross sectional area of the port. 
 
The transcendental equation is developed from wave transmission theory. The closed 
chamber end represents an infinite impedance and the port a reactive load (See 
Appendix A, Section 11). Because the transcendental equation makes use of the 
chamber length and cross sectional area, its use can be extended to ¼ wave open tube 
resonators. A natural limit is formed as the port cross sectional area approaches the 
chamber cross sectional area. By observing the limit as the port cross sectional area 
approaches zero the equation can also be used for closed tube resonators. Panton and 
Miller (1975) used these techniques to form a general set of solutions to acoustical 
resonators. Panton and Miller also derived the classical equation from the 
transcendental form by expanding out the first three cot(kLc) terms, Equation (2.1.11). 
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In Equation (2.1.11) the third term is almost negligible compared to the first two 
terms. If the first term in the expansion is substituted into Equation (2.1.10) the 
traditional Helmholtz formula results, noting that Lcsc is equal to the chamber volume 
Vc. By using the first two terms in the expansion, Equation (2.1.12) is acquired. 
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Cancelling, simplifying and using k=2πfreq/c gives a new and more accurate classical 
formulae, Equation (2.1.13), that does not require numerical methods to solve. 
Equation (2.1.13) is suited to resonators in which the chamber dimensions are greater 
than 1/16 of the wavelength.  
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An advantage of the transcendental equation is its ability to predict higher order 
resonant conditions caused by the interior dimensions of the chamber. Figure 2.1.6 is 
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included to illustrate the deviation caused by taking the first term, traditional, then the 
first and second term, improved traditional, and lastly the transcendental. The first 
two are unable to predict higher order harmonic terms due to their monotonic decay, 
but they show the classical and improved classical aptness for low values of kLc 
(kLc<1). 
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Figure 2.1.6 Three methods for determination of resonant frequency using traditional (1/kL), 

improved traditional ( 1/kL-[kL] /3) and transcendental (cot[kL]). 

 
Key concepts in Helmholtz resonator design 

• Frequency increment times can be kept linear for small frequency sweeps. 
• Port length extension is very difficult to calculate using theoretical techniques 

and is better found using empirical techniques. 
• Ensure low values of ka (wave number multiplied by port radius) to prevent 

excessive radiation resistance from the port. 
• Q factor can be improved by minimising internal friction resistance in the port 

and chamber. 
• Compromises are necessary to balance port surface area to Q factor. High 

surface areas increase boundary layer losses whereas high Q factors require 
long narrow ports. 

• Keep sound pressure levels and frequencies low to avoid turbulence and 
jetting in the port. 

• Keep the port centred in the chamber (non-eccentric) to allow predictable 
flange factor effects. 

• Chamber and port lengths should be kept under 1/16 of the resonant wavelength 
to avoid lumped parameter violations. 

• Chamber shape should be kept regular to prevent changing internal impedance 
with length. 

• Multiple ports should be avoided where possible as extra ports decrease Q 
factor and increase boundary layer losses in the port. 

• When using port and chamber lengths longer than 1/16 of the resonant 
wavelength either transcendental or improved Helmholtz equations should be 
used. 
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Chapter 3 
 

Resonance hunting for volume 
determination 
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3.1 Introduction and summary 
 
The focus of this investigation was the use of a Helmholtz resonator for volume 
determination. It was not to repeat research into fundamental properties of Helmholtz 
resonators. Ingard (1953), Chanaud (1993) and others have previously conducted 
much research on Helmholtz resonator geometries as described in Chapter two. Most 
acoustical work involves modelling using various idealisations. Inaccuracies and 
inconsistencies are still present even in models using small, finite element analysis of 
a well defined system, such as those conducted by Selamet and Lee (2003). Therefore, 
the focus in the methods developed has been empirical rather than theoretical. 
 
To date only a small number of studies have used resonators to measure volume. 
Therefore, a comprehensive method was required to investigate how resonance is 
affected by the inclusion of solid, liquid or granular material within the resonant 
chamber. Previous studies, such as Nishizu et al. (2001), used limited acoustical 
excitation methods and focused on a narrow configuration, in which accuracy was 
compromised to measurements of approximately +1%. 
 
An apparatus for testing factors affecting volume measurements using Helmholtz 
resonance was designed and built based on a thorough investigation of existing 
Helmholtz resonator literature and the mathematics describing acoustical systems. Of 
principle interest was creating resonators with a very high Q factor (Quality factor). 
The higher the Q factor the better the resolvability of frequency and hence 
determination of sample volume via the Helmholtz equation. To allow rapid 
determination of frequency, various resonant hunting methods were employed to 
reduce the scanning time. 
 
Accuracy and speed of measurement for a given system will depend on the method of 
application of an acoustic source. For this reason several novel approaches were used 
to ascertain their suitability for this investigation. When speed of measurement is an 
important factor there is insufficient time to sweep through a broad frequency range to 
isolate the resonant frequency. Methods involved exposing the resonant system to an 
array of frequencies either in succession, simultaneously or at a single frequency. 
 
Initial stages of the investigation were concerned with characterising the fundamental 
resonators in terms of repeatability, effects of the sound source, temperature and 
environmental considerations. Variations in resonator configurations were also tested 
to isolate factors contributing to resonator performance. These included symmetric 
and asymmetric ports, flange material at the port mouth and dual port resonators. 
 
The accuracy of volume measurement depends on temperature since the speed of 
sound changes significantly with temperature. Therefore, all frequency measurements 
were associated with a temperature, at the time of measurement. An appropriate 
temperature factor was used in calculated volumes to ensure accuracy under varying 
temperature conditions. Effects of air pressure and density tend to counteract each 
other in regard to effects on the speed of sound (Kinsler and Frey, 1962). 
 
Resonant volume measurements progressed to liquids, solids and granular materials 
after careful development of a resonant hunting procedure and detailed analysis of 
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contributing factors in resonator performance. Further investigative work was 
conducted on chamber mapping a dual port resonator with a spherical sample. This 
extends early work by Leung et al. (1981) and Barmatz et al. (1982) on chambers 
containing a rigid sphere. Nishizu et al. (2001) in their pioneering work describe a 
‘sweet spot’ measurement region in a Helmholtz resonator where port interference 
effects are negligible. 
 
In the interests of completeness, a number of experiments were developed to 
investigate air leaks on a resonant system. The Q factor is highly dependant on a 
sealed chamber. Any small air leak will cause significant acoustic resistance to the 
oscillatory pressure in the chamber. In a commercial application of this method it 
would be useful to identify such air leaks by their known effects on the resonant 
system. 
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3.2 Equipment and samples 
Software algorithms and functional block diagrams are given in Appendix B. Full 
mechanical drawings of all experimental apparatus are in Appendix E. 
 
3.2.1 Resonators 
A set of general purpose resonator components were manufactured to investigate 
resonant volume measurements. By designing interchangeable resonator end-plates 
and port-plates a wide variety of configurations could be tested. These included 
variable chamber volume sizes 1L, 2L and 3L, by substituting in different chamber 
tube lengths, variable port lengths by switching port plates (51mm and 170mm) and 
the dual port configurations by adding a second port plate, Figure 3.2.1. 
 

a)  b)  

Figure 3.2.1 a) Photo of standard single asymmetric port resonator with blanking plate on 
bottom face having a 3L chamber (140mm internal diameter), 170mm long port 
with an internal radius of 44mm and b) schematic diagram.  

Chamber end plates were O-ringed to seal against the chamber tube as well as the port 
plates. Any air leaks between these components would cause variability in the 
resonant frequency. Port plates and chamber end plates were fastened using a 
combination of threaded rod and threaded studs secured with wing nuts. The 
advantage of this system was rapid and easy switching of chamber sizes and port 
configurations. 
 
All parts were made of clear PerspexTM (150mm diameter, 5mm thick walled tube and 
12.5mm thick flats for end plates) to allow easy machining and visibility of samples 
within the chamber. Ports were made of extruded 50mm aluminium tube with a 3mm 
wall thickness giving an internal port diameter of 44mm. Chamber lengths were 
63mm, 127mm and 190mm to give chamber volumes of 1L, 2L and 3L respectively. 
An uncertainty analysis was undertaken in Section 3.4.1 to ascertain machining and 
part tolerances. 
 
Single port configurations were used to test a large range of sample types described in 
Sections 3.2.12 to 3.2.14. In these instances the sample was not required to pass 
through the port. Samples included granular material, liquids and solids of varying 
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shapes and surface textures. The single port chambers were also tested with 
symmetric and asymmetric port mountings, Figure 3.2.2, and two port lengths. 
 
 
 
 
 
 
 

Figure 3.2.2 A) Single170mm asymmetric port plate B) 51mm asymmetric port plate C) 
170mm symmetric port plate 

The dual port resonator could be assembled and used to investigate sample location 
effects within the chamber. A dual port resonator configuration with two short 51mm 
ports will keep the resonant frequency in the same range as the 170mm single port 
variation. The addition of an extra port will cause an effective increase in cross 
sectional area of the port. The main disadvantage of an increase in cross sectional area 
is a reduction in the Q factor of the resonator. Table 3.2.1 is presented to indicate 
possible assembly combinations for both single and dual port configurations. Q 
factors were calculated via Equation (No.25), Basic Equations. 
 

Chamber size (L) Port length (mm) Port type Predicted Q 

3 170 asymmetric 527 
3 170 symmetric 505 
3 51 asymmetric 139 
3 Dual 51 asymmetric 59 
3 Dual 170&51 asymmetric 149 
2 170 asymmetric 430 
2 170 symmetric 412 
2 51 asymmetric 113 
2 Dual 51 asymmetric 40 
2 Dual 170&51 asymmetric 122 
1 170 asymmetric 304 
1 51 asymmetric 80 
1 Dual 51 asymmetric 28 
1 Dual 170&51 asymmetric 86 

Table 3.2.1 Fourteen possible resonator combinations possible using available chamber 
sizes, port lengths and port types. 

3.2.2 Microphones 
PCB103A piezoelectric microphones were used in all experimental work. In single 
port configurations with a 0.17m port two microphones were used, the first spaced 
20mm from the port opening, and the second was centre-mounted in the chamber 
base, Figure 3.2.3. In dual port configurations the second microphone was placed in 
the same position in the second port, 20mm from the mouth of the port. This allowed 
comparison of both ports when an object was moving through the chamber. Data 
sheets for the PCB103A microphones are presented in Appendix E. 
 
The PCB microphone outputs were calculated using the measured voltage signals 
from the PCB microphones referenced to a 1-volt source. This gave signals in dB 

A 

B

C 
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using Equation (No.13), Basic Equations. This differs from Chapter 4 results, which 
are referenced to a calibrated source as described in Appendix D, giving microphone 
signals at standard dB levels.  

 
Figure 3.2.3 Microphone locations on resonant chamber, able to measure port frequency and 

chamber frequency independently. 

 
3.2.3 Data Acquisition (DAQ) Hardware 
A National Instruments PCI 6221 M series DAQ card was used for the signal 
generation and analysis from microphones and temperature sensors. It was also used 
to generate both white and pink noise used in broad-spectrum signal generation, 
Figure 3.2.4. The speaker was located 400mm from the resonator with the 
microphone opposite the speaker.  
 

 
Figure 3.2.4 A) Schematic of hardware components used in experimental setup. B) 

Resonator alignment and distance from speaker. 

3.2.4 Temperature sensors 
Speed of sound temperature compensation was provided by an inbuilt resistive 
temperature device (RTD) in the NI BNC-2120 connector block. The RTD was able to 
give linear temperature measurements to a precision of 0.1°C. Calibration of the 
temperature sensor was via a calibrated Hart Scientific RTD temperature meter model 
1502A. 
 
3.2.5 Software 
Software was specifically designed using National Instruments LabVIEW™ and used 
extensively in this investigation to generate and acquire frequency data. LabVIEW™ 
contains tools specifically for time dependent logging of frequency information (Fast 
Fourier Transforms - FFT) as well as detailed analytical tools for post processing 
results. Full details of software algorithms are give in Appendix B. 
 
In procedures requiring an accurate resonant frequency determination a three-stage-
hunting algorithm was developed. First pink noise was applied to the resonator to 
establish an approximate resonant frequency. Once determined, a 2Hz frequency 
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sweep was used to further isolate the resonant peak. Lastly, a very narrow 0.1Hz 
sweep was applied to detect the resonant frequency to a precision of 0.005Hz. 
 
Software was also developed to control a STP100 Stepper motor controller from 
PONTECH (San Dimas, California, USA) for the precise positioning of a sample in 
the dual-port resonator. 
 
3.2.6 Pink noise 
A method employed extensively by Chanuad (1997), to quickly locate the 
approximate resonant frequency, was to use broadband (pink) noise. Pink noise 
consists of random frequencies of equal power. It is different from white noise, which 
consists of random frequencies of random power. This method of using broadband 
noise was also used, but to a lesser extent, by Selamet, Dickey and Novak (1995) for 
rapidly analysing resonant frequencies. 
 
The advantage of using pink noise is equal power at any given frequency. Therefore, 
the frequency domain output looks roughly like a step function, equal power at all 
frequencies. Any resonance should then be observed as a peak in the frequency 
domain. 
 
3.2.7 Chirps – Frequency sweep 
The chirp, or frequency sweep, is a way of measuring the resonator’s response to a 
changing driving frequency or forcing function. This method is limited by the time 
required for the frequency determination, generally the longer the period of frequency 
stability the greater the accuracy of the measurement. Therefore, the speed at which 
the frequency is ramped from an initial frequency to the final frequency must be 
determined by the required frequency resolution. Frequency measurements are made 
using a Fast Fourier Transforms (FFT) algorithm. 
 
To avoid excessively long sweep times the sweep range must be kept to a minimum. 
If the rough size of the object can be determined by other means then the frequency 
range required to sweep is greatly reduced. For this reason, square wave and 
pink/white noise methods were used to rapidly gauge the approximate resonant 
frequency. A repeated ‘chirp’ over a successively narrow range was then applied to 
further improve the accuracy (resonant hunting). 
 
The time taken for a complete cycle at a given frequency is a function of the 
frequency itself. Therefore, the time spent at any given instant producing a frequency 
needs to be reduced with increasing frequency. For example, at 100 Hz one cycle 
takes 0.01 seconds, but at 1KHz it takes 0.001 second. 
 
3.2.8 Square wave 
One possibility for isolating the approximate volume was to apply a square wave 
containing odd harmonics of the fundamental. The fundamental frequency will 
determine the spacing between the harmonics. By inspecting the Fast Fourier 
Transform (FFT) a disturbance in the decaying peaks appears near the resonant 
frequency. Everywhere else the harmonics should be in a predictable regular decay 
pattern with increasing frequency. A perturbation in the square wave harmonic decay 
may be evident even when a small acquisition time is used to inspect the harmonics, 
Figure 3.2.5. 
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It is expected the harmonic peaks in the frequency spectrum will broaden as the 
acquisition time is decreased. This broadening should not alter the frequency peak 
location, only its resolvability. So long as the harmonics are sufficiently separated in 
frequency, the peaks need not be resolved to high precision. 

 
Figure 3.2.5 A) Decaying regular spacing of harmonic frequencies present in square wave. 

B) Expected amplification of harmonic near Helmholtz resonant frequency. 

 
3.2.9 Loudspeaker 
The primary sound source for this investigation was a full range, eight-inch, 
polycarbonate cone driver in an infinite baffle enclosure. The enclosure was optimally 
designed using Thiele (1971) and Small (1972) design parameters (See Appendix C). 
This ensured a reasonably flat response over the range of frequencies used, typically 
between 60Hz and 500Hz. The distance from the sound source to the resonator was 
kept to 0.4m. This is the distance at which the sound source behaves like a point 
source. The distance of equal intensity is proportional to kaSinθ, where k is wave 
number (m-1), ‘a’ is the speaker diameter (m) and θ the angle (radians) from the 
centre. Frequency and linearity response for the loudspeaker used are given in 
Appendix D. 
 
The enclosure was lined with sound absorbent polyester material and made from 
25mm thick medium density fibreboard. All joints were rebated to give maximum 
strength. Corners on all faces were rounded to eliminate secondary fringing effect that 
can cause interference patterns with the primary sound source. The loudspeaker was 
flush mounted with the face panel for the same reasons. 
 
3.2.10 Pulley apparatus 
A stepper-motor driven pulley system was designed to facilitate the moving of an 
object through the dual port resonator. The pulley system would allow the 
investigation of resonance as a function of sample position, both in the radial and 
axial orientations. The pulley apparatus was made with adjustable feet to allow easy 
levelling of the height. In addition the support arms at the rear of the mounting plate 
were made adjustable to facilitate correct angle between plate and base. 
 
Figure 3.2.6 shows the vertical orientation of the dual port resonator with pulleys 
above and below for correct sample alignment. Also shown is the pulley pinch roller 
assembly designed to maintain sample position during stepper transitions. The main 
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supporting back plate is approximately 500mm high and 400mm wide. The over all 
length of the dual port resonator is 300mm. 
 
 

 
Figure 3.2.6 Vertical arrangement of dual port resonator showing pulleys above and below 

to locate sample. 

 
A second function of the pulley system was to enable the investigation of off-centre 
effects of a sample at different radial distances as seen in Figure 3.2.7. The sample 
was stepped from the top of the chamber wall to the bottom at different horizontal 
locations. The chamber has small holes drilled into the sides (not shown in figure) to 
allow a fine steel cord to pass through. Other holes for alternative positions were 
blocked off. 
 

 
Figure 3.2.7 Horizontal arrangement of dual port 3L resonator showing pulleys above and 

below to locate sample. Also shown are placement holes for pulley support posts 
allowing multiple horizontal placements to be investigated. 
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The combination of vertical and horizontal measurements allowed a three dimensional 
map to be generated of object location effects within the chamber. Only radial and 
axial planes were investigated due to chamber symmetry. 
 
3.2.11 Stepper-motor 
The stepper-motor is of type Sigma Industries Model 20-2223D-24210 taken from an 
XY plotter and driven by a STP100 stepper-motor controller (San Dimas, California, 
USA), connected serially to the controlling computer. The stepper-motor is capable of 
400 steps per revolution. A total sample displacement of 250mm was required, which 
equates to 2.7 turns on a spindle 30mm in diameter. This results in step intervals of 
1mm. 
 
3.2.12 Solid samples 
Solid sample consisted of spherical and cube samples of varying size. All are given in 
their water equivalent displacements. Spherical sample sizes by volume were 1mL, 
2mL, 7mL, 9mL, 23mL, 42mL, 46mL, 118mL, and 278mL. The diameters of these 
spheres were 23.85mm, 25.40mm, 35.50mm, 41.63mm, 44.45mm, 60.85mm, and 
80.97mm respectively. Cube volumes were 2mL 18mL, 133mL, 215mL, 430mL, 
645mL and 860mL. By assembling combinations of the 215mL cubes the last three 
cube sizes could be acquired. 
 
Volume analysis of spheres and cubes was performed by weight rather than measured 
dimensions with the exception of chrome steel ball bearings, which were sufficiently 
regular to allow direct calliper measurement. Small cube samples (2mL to 133mL) 
were made of aluminium (density, 2699kg/m3), large cube samples (215mL to 
860mL) mild steel (density, 7874kg/m3). Spheres were a combination of chromed ball 
bearings (measured by diameter not density), glass marbles (density, 2520kg/m3), 
machined aluminium and mild steel. Spherical sample 1mL, 46mL, 118mL were 
chrome steel; spheres of 2mL, 9mL, 23mL were glass, the 42mL sphere was 
machined aluminium and the 278mL sphere was mild steel. Aluminium and Steel 
density sourced from Halliday et al., 1997. The glass marble density was measured 
using the buoyancy apparatus described in Chapter 4, Section 4.3.3. 
 
3.2.13 Granular samples 
Table 3.2.2 provides details on granular material bulk density, particle density and 
mean sizes. As seed and the plastic pallet varied considerably their values are given as 
approximate only. 
 

Sample type Bulk density 
kg/m3 

Particle density 
kg/m3 

Mean 
diameter mm 

Sand 1283 2540 0.166 

Small ballotini 1449 2473 0.261 

Large ballotini 1454 2489 0.713 

Panicum seed 688 1720* 1.5* 
Rape seed 662 1260* 2* 
Plastic pellets 592 1120* 3* 
Small marbles - 2520 15.83 
Large marbles - 2520 24.81 

Table 3.2.2 Bulk density and particle density information for granular materials. ‘*’ 
indicates approximate only. 
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3.2.14 Liquid samples 
Tap water was used as an example for liquid measurements due to it being readily 
available and having well defined characteristics. It is known to change in density 
with temperature by a small amount. This could cause errors when using it as a 
calibration medium. During various calibration conducted in Chapter 3 the 
temperature range was 10ºC to15ºC. Water for calibration was allowed to equilibrate 
with respect to temperature and de-gassed for two hours prior to use for calibration. 
Table 3.2.3 gives typical values for water density. For a temperature of 15ºC this 
could lead to a maximum uncertainty of +2mL at a chamber fill of 2L. Quantities of 
water were measured by weight using asset of Mettler PE6000 scales (+0.1g). 
 

Temperature ºC Density kg/m3 
10 999.7 
15 999.1 
20 998.2 
25 997.1 

Table 3.2.3 Change in water density with temperature (Lide, 1990) 

 
By using an O-ring sealed solid piston barrier the differences between a liquid surface 
and a solid surface could be analysed. The height of the solid piston could be 
manually adjusted to reproduce water fill heights. Therefore, the effect of surface of 
the water could be directly assessed. 
 
3.2.15 Acoustic barrier disks 
Steel flat (0.6mm) disks of varying diameter were used as acoustic barriers. They 
ranged in diameter from 20mm to 120mm (20mm, 40mm, 60mm, 80mm, 100mm and 
120mm). A 1mm diameter stem was used to support the disks in the resonant 
chamber. The stem had an interference fit and was inserted through a specific blank 
port plate mounted on the resonator base. 



 45

3.3 Methods 
3.3.1 Characterising the fabricated resonators 
A number of tests were needed to find the optimum resonator location with respect to 
the loudspeaker location. Base measurements of the resonant frequency for each 
port/chamber configuration were also taken, with no internal sample. The optimum 
location for the sound source is one where the port is not located in an interference 
lobe of acoustical loci caused by intrinsic characteristics of the loudspeaker used 
and/or the chosen frequency. Lobes are regions of equal sound intensity that radiate 
away from the loudspeaker (See Appendix C, Section 4). 
 
A number of tests were conducted using a broad frequency sweep with different 
environmental configurations. This was necessary, as the sound source is not coupled 
directly to the resonator. The environment in which testing was conducted can have 
secondary resonant properties that change with an open door or similar. 
 
The sound intensity attenuates at a rate proportional to 1/r2, where r is the distance 
from the sound source; hence even at short distances attenuation can be considerable. 
Other variables such as surrounding fixtures and surfaces provided moderate acoustic 
absorption and were maintained, where possible, throughout testing. Ambient sound 
levels for experiments were measured using a Realistic Sound Level Meter model 42-
3019 on the dB-C setting (Typical sound levels were between 80dB to 90dB). dB-C is 
a flat filter response to frequency, 50Hz to 10kHz, that indicates true sound level not 
perceived sound level such as dB-A and dB-B. 
 
The various resonator configurations were tested to ascertain how closely they 
matched theoretical calculations using the standard Helmholtz equation. These 
experimental values were then used as the standard values against which subsequent 
experimental work was checked. 
 
3.3.2 Repeatability of measurements using resonators 
Repeatability of base measurements needed to be established, as accuracy was 
important factor of this investigation. After finding the optimal sound source location, 
repeatability tests were carried out by assembling and disassembling the equipment in 
all possible experimental combinations to be used. 
 
Repeatability was extended further to include a number of calibration samples having 
well defined geometry  (See Section 3.2.12). These consisted of large cubic steel 
blocks that could be arranged in combinations from 216mL to 864mL. Repeatability 
was also checked using spherical steel and glass balls of sizes; 1.07mL, 7.06mL, 
22.45mL, 42.05mL, 45.83mL and a 278mL (See Section 3.2.10). Samples were 
placed in the centre of the chamber to maintain symmetry between the sample and the 
chamber. 
 
3.3.3 Temperature effects 
Temperature changes the speed of sound as described by Equation (3.3.1) (See also 
Appendix A, Section 1). To test whether this equation could be used directly with the 
existing Helmholtz equation a number of measurements of frequency and temperature 
were made over a range of steady state temperatures with an unchanged chamber and 
port. 
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where c0 is the speed of sound at a specific temperature, γ is the ratio of molar specific 
heats, p0 is the primary pressure, ρ0 is the primary density, Rc is the universal gas 
constant, Temp is the temperature in Kelvin and M the molar mass of air. 
 
From Equation (3.3.1) it can be seen that the speed of sound will be proportional to 
the square root of temperature in Kelvin. For convenience and ease of use in software 
algorithms the effect of temperature on the speed of sound can be approximated to a 
high degree of accuracy using the linear form 331.73+0.587Temp for temperature 
ranges between 8ºC to 24ºC. Therefore, a gradient 0.587Temp would be expected for 
changes in the speed of sound occurring within the port as measured by the PCB 
microphone. These measurements would allow comparison of theoretical and 
experimental temperature gradients using the Helmholtz resonator Equation (No.21) 
from Basic Equations. 

 
3.3.4 Calibrating the asymmetric single port resonator 
Calibration was conducted using the 3L resonator with a 170mm long asymmetric 
port (all port material external to the resonator). This configuration was the primary 
resonator used in the majority of experimental work that followed due to its large 
chamber size and high Q factor (Quality of resonance). The large chamber size 
allowed a bigger range of sample volumes to be studied and the high Q factor allowed 
measurements of resonance behaviour of samples having high sound absorption. 
 
Fill fractions and calibration were investigated by progressively filling the chamber 
with water (Figure 3.3.1). The water had the same ambient temperature as the 
experimental equipment and was allowed to equilibrate and degas for 2 hours prior to 
use. This was to minimise temperature differentials and to allow dissolved gases to 
escape. The calibration temperature was 15ºC indicating there should less than 3mL 
uncertainty due to changes in water density with two litres of fill. 
 
Using a Mettler PE6000 set of precision scales, 100mL amounts of water were added 
to the chamber and the resonant frequencies and temperature recorded. A fill fraction 
versus detected resonant frequency curve could then be plotted and compared to 
theory. Successful calibration results would allow theoretical back-calculation of a 
sample’s volume, when placed in the resonators chamber. See Basic Equations, 
Equation (No.22). 
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Figure 3.3.1 Photo (left)  and diagram (right) of water filling of 3L chamber with 170mm, 

asymmetric port used for volume calibration. 

 
A second testing method was carried out with the resonator in the horizontal position. 
Again water was used in filling the chamber in 100mL amounts. Being horizontal the 
fill level rapidly approached the port and limited the maximum volume to 1000mL. 
This test would reveal how obstruction of the internal flange affected the Helmholtz 
equation for calculating chamber displacement. These tests would also be used to 
assess the suitability of making measurements when the resonator is in the horizontal 
configuration. 
 
With the resonator again in the vertical orientation precision-machined angular steel 
blocks, two cubes of 216mL and one rectangular 432mL were used to provide linear 
volume increases. Sample volumes were made up from 0mL, 216mL, 432mL, 648mL 
and 864mL cubes. Sample volumes are given as their equivalent water displacement. 
Resonant frequencies and temperatures were measured and compared with theoretical 
calculations using the Helmholtz equation. The tests on these samples were repeated 
in reverse size order and resonant values compared with the first test data. 
 
With large solid objects, relative to the chamber size, the objects under test quickly 
approach the internal port entrance. This will cause the resonator to behave in a non-
linear fashion if samples are within the end correction length (See Appendix A, 
Section 8). This occurs when the moving mass of air in the port entrance becomes 
restricted. 
 
To validate water as a suitable calibration medium a solid Perspex piston was created 
that could be used to adjust the volume of the resonator chamber. This piston was 
adjusted to various heights and the volume compared with the data collected for the 
water calibration. If the water absorbed significant amounts of energy or produced 
significant quantities of water vapour within the chamber during resonance this test 
should reveal noticeable differences. However, the piston could not be moved with 
enough precision to allow millilitre comparisons, but would enable volume deviation 
trends to be compared. 
 

Water fill height 

Chamber 

Port 
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3.3.5 Effects of port symmetry 
The end of the port causes an increase in the effective port length by a factor 
determined by the port diameter and its termination type. If the internal port is flush 
with the chamber as in figure 3.3.2a, then the effective length should increase by 
approximately 8/3π times the port radius (Kinsler and Frey, 1962). In contrast, for an 
un-flanged port there ought to be an increase in effective length of about 0.6 times the 
port radius (Figure 3.3.2b). 
 
 
 
 
 
 
 
 

Figure 3.3.2 (a): Flanged internal and un-flanged external port, asymmetric. (b): Un-flanged 
internal and un-flanged external port, symmetric. 

 
The aim was to confirm the flanging effects of port configuration by comparing both 
internally flanged and un-flanged ports of 170mm in a 3L chamber with a 44mm port 
radius. This would complement experimental work by Chanaud (1993) and Selamet 
and Lee (2003) who investigated port geometries and port symmetries respectively. 
 
When using water for chamber filling, data were gathered on the resonant frequencies 
at various water heights using the symmetric and asymmetric port placements. 
Because of the port intrusion for the symmetric configuration only limited filling 
could be achieved before the water height approached the internal port. 

 
3.3.6 Effects of sample irregularities 
Kinsler and Frey (1962) suggested that resonance should not be a function of chamber 
cavity shape except at higher harmonic frequencies well above those tested for. To 
test this assumption a simple comparison of spherical and angular samples was 
conducted (See Section 3.2.12). Data gathered from measuring the volume of cubic 
steel calibration samples was compared to those using similar spherical volumes.  
 
To test the effects of an acoustic barrier six thin (0.6mm) flat disks of varying 
diameter, 14% to 86% of the chamber diameter (20mm to 120mm), were used in the 
resonant chamber and the change in resonant frequency recorded (Figure 3.3.3). To 
further investigate barrier effects, the resonant frequency was also monitored for each 
disk at eight heights ranging from 20mm above the chamber floor to 20mm from the 
interior port opening. In this way the affect of an acoustic barrier was analysed free 
from a volume induced frequency change. Measurements were made at constant 
temperature to further isolate only barrier effects. The resonator configuration 
consisted of a 3L chamber and a 170mm port with a diameter of 44mm. 
 

(a) (b) 
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Figure 3.3.3 A) Photograph of one of the six flat disks (20mm diameter) used to isolate 
surface area effects from volume effects. B) Diagram of resonator housing a disk 
of variable size and position. 

 
3.3.7 Measurement on granular materials 
It was unknown how granular materials in the chamber would affect the overall 
measurement accuracy. Nisizu’s (2001) study mentions the use of rice as a test 
material but gives little details of its effect on resonance. A number of granular 
materials were tested using the single 170mm long asymmetrical port and 3L 
chamber. These included sand (166µm mean size), rape seed (2mm mean size), 
panicum seed (1.5mm mean size), plastic pellets (3mm mean size), glass marbles 
(mean size 15mm and 24mm) and ballotini (mean size 261µm and 713µm). The 
plastic pellets were disk shaped, 3mm in diameter by 1.8mm high, but are expected to 
behave similarly to 3mm spheres. 
 
The quantity of attenuation/mm depth for each sample material can be calculated by 
comparing the port/chamber microphone levels. This would indicate how far the 
sound penetrates into the granular material. By using a large range of particle sizes it 
was hoped trends might be observed that would allow a lower limit of particle size to 
be predicted. Sound absorption and retransmission in granular material is an 
extremely complex phenomenon and it was not the aim of this investigation to 
conduct extensive research into these effects, merely to gauge the effect of acoustical 
penetration and suitability for resonant measurements. 
 
Steel disks, the diameter of the chamber, were coated in the previously mentioned 
granular materials and were attached to the top face of the Perspex piston used for 
variable chamber volume testing. The coatings were one layer thick to prevent any 
depth attenuation. A water-based glue (poly vinyl acetate, PVA) was used to adhere 
the materials to the disk. The purpose of these tests was the separation of granular 
surface effect from those of acoustic attenuation with granular bed depth. Three 
magnets within the piston allowed the coated metal disks to adhere to the piston 
surface. The piston was moved to a range of heights thereby replicating granular 
materials fill heights, Figure 3.3.4. 
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Figure 3.3.4 A) Photograph of the adjustable piston within chamber and B) Schematic 
diagram. C) Photo of embedded magnet within piston used for retaining steel 
coated disks. D) Photo of ballotini coated disk. 

 
The coated piston may then allow accurate volume measurements of small amounts of 
rapeseed, panicum and plastic pellets in the 1L resonator, independent of attenuation 
caused by the depth of the granular bed material. Using the 1L resonator achieves the 
best filling ratio for the small sample size. The particle volumes and density for these 
materials are unknown and only rough values can be gathered through manual 
measurements of a large number of individual particles. If a small volume of bulk 
particles could be measured and weighed, a more accurate volume and density may be 
determined for each. 
 
To this end 50mL of these three granular samples were placed in the 1L resonator 
with a 170mm asymmetric port. Using the smallest chamber would result in the 
highest accuracy for the small quantities of these materials. It was observed this 
quantity was sufficient to coat the base of the chamber without causing any bed depth 
attenuation. 
 
3.3.8 Effects of air leaks on resonant frequency and Q factor 
Air leaks were tested for using the 3L chamber and a 170mm asymmetric port having 
a 22mm internal radius. Ten 0.8mm diameter holes were drilled in the chamber walls, 
five on each side to function as air leaks. The holes were spaced at the centre, 32mm 
above and below the centre and 64mm either side of the centre. These locations would 
allow experimental testing of holes at different heights and interference between holes 
on opposing sides, Figure 3.3.5. 
 
Testing started with no air leaks and progressed from one to ten air leaks by adding 
additional air leaks on opposite sides starting at the top and moving downward. Q 
factor was recorded to aid in gauging the effect of air leaks on accuracy. A broadening 
resonant peak would lower the achievable accuracy. 
 
The holed 3L chamber was initially created to allow a thin steel cord to pass through 
that was used to support the ball in resonant chamber mapping. Air leak testing would 
determine whether it was necessary to block adjacent holes when testing was 
conducted in the ‘radial sample location experiments’ in Section 3.3.9. 
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To gauge the effects air leaks can have on a Helmholtz resonator, a resonator adaptor 
plate was made so the air leak hole size could be varied from 2mm diameter to 10mm 
diameter (2mm, 3mm, 4mm, 5mm, 6mm, 7mm, 8mm and 10mm). An adjustable disk 
allowed the unused holes to be blocked. As the adapter plate is 12mm thick, boundary 
layer effects are expected to be significant for the smaller air-leak sizes of 2mm to 
5mm (See Appendix A, Section 9). 
 
3.3.9 Effects of sample position on volume measurements 
A number of experiments were conducted to create a resonant frequency map of 
sample location within the chamber, using the pulley apparatus and the 3L dual 51mm 
port resonator. Static measurements at fixed locations would allow better 
understanding of dynamic volume measurements. 
 
A spherical aluminium ball sample of 41.63mL (43mm diameter) was adjusted in 
both the radial (one location at a time) and the axial direction through the chamber 
using the pulley apparatus and the 3L dual port resonator, Figure 3.3.5. The feed 
spindle diameter was chosen to give steps of 1mm for one step of the stepper motor 
(+0.12mm total uncertainty for any given position). Doing so allowed investigation of 
resonant trends with varying sample positions. 
 
 
 
 
 
 
 
 
 
 

Figure 3.3.5 (Left) five positions for a spherical sample moving through the resonator 
vertically. (Right) horizontally adjusted spherical sample. Both configurations 
are driven by a stepper motor to create resonant mapping characteristics for 
the dual port resonator. 

 
Of principal interest was the effect of object location on accuracy.  Changes of the 
resonant frequency when compared to its value in the central position would indicate 
a non-ideal measurement location. A location calibration procedure was performed at 
the start of each test so the repeatability of sample placement could be confirmed. 
This would negate any cable stretch and stepper motor slippage, which could cause 
possible uncertainty in sample location. At the end of each test the sample position 
was then rechecked at the initial position. 
 
The optimum measurement region within the chamber is the area where sample 
location does not change the resonant frequency. This virtual ‘bubble’ within the 
chamber also represents the largest object that can be measured. 
 
3.3.10 Controlled decent using a dual-port resonator and resonant hunting 
Initial free falling sample measurement experiments started with a controlled decent 
of the 41.63mL aluminium ball sample moving vertically through the dual 51mm port 

32mm 

32mm 
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3L chamber resonator at 1mm/s. Decent speeds were increased up to a controlled 
maximum of 100mm/s. Finally, complete free fall tests were conducted. 
 
The three step resonant hunting method was applied to the resonator to gauge how 
effective it was determining the sample volume, both in terms of accuracy and speed. 
Free fall response was then tested by allowing a 7.1mL (23.85mm diameter) steel ball 
bearing to free fall through the chamber while continuous measurements of frequency 
were taken utilising narrow band chirps. 
 
3.3.11 Measurement of port flanging effects 
An early study by Ingard (1953) indicated the need to determine precise values for 
length extension factors for the ports used. This was necessary to allow accurate 
calculation of the sample volume using the standard Helmholtz equation with length 
correction, Equation (No.22), Basic Equations. Flange material was added to the 
external port to vary the port length extension factor, Figure 3.3.6. A graphical 
mapping of port length extension to flange ratio was acquired by holding the 
environmental temperature constant and using flange to port diameter ratios ranging 
from 0.136 to 6.818. Port lengths of 51mm and 170mm were used to ascertain two 
different rates of change in length extension for varying flange diameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3.6 Flange material added resonator port. Flange material will alter the virtual or 
effective port length. 
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3.4 Results 
 
3.4.1 Characterising the fabricated resonators 
Early testing using square wave signals to locate the approximate resonant frequency 
proved unsuccessful as the odd harmonics regularly coincided with second and third 
harmonics caused by the chamber’s physical geometry and artefacts associated with 
the environment. This resulted in unusual dips and peaks occurring in the square wave 
harmonics. These were often larger in effect than the primary resonant frequency of 
the resonator. Therefore, this roughing method of locating the resonant frequency was 
abandoned in favour of the pink noise method. 
 
An uncertainty analysis of the 3L resonator components was undertaken (Figure 
3.2.1). The extruded tube diameter of the port had a variation of less than 0.1mm. The 
port length uncertainty was less than 0.1mm. Other manufactured Perspex 
components were created in a computerised numerical controller (CNC) lathe, which 
was able to machine details to a tolerance of better than 0.05mm. O-ring compression 
and chamber flexing were the main factors in repeatability discrepancies. The Perspex 
tube used for the chamber was 5mm, with +0.5mm in wall thickness and 140mm 
nominal internal diameter. The Perspex tube required significant flexing to fit it to the 
machined round end plates. O-ring compression in the end plates was not complete 
when assembled and resulted in +0.5mm height variation. This gives a worst-case 
volume uncertainty of +29mL or +0.42Hz for a 3L chamber. Measured uncertainty 
and repeatability results are included in Section 3.4.2.  
 
Ambient conditions played an important part in setting a base line from which results 
were collected. A number of early tests revealed changes in the resonator’s 
environment changed its response sufficiently to warrant careful replication of the 
environment for future measurements. The dimensions of the room used were 2.4m, 
3.3m and 2.4m, for width, length and height respectively. Results for changes made to 
the two doors within the room, open (O) and closed (C), are shown in Figure 3.4.1. 
Door A is 0.76m by 2m and door B is 0.72m by 2m. Results are presented at a 
constant temperature of 15ºC. An invalid measurement region exists between 90-
95Hz where signal levels are too low to be measured. 
 
A significant attenuation change occurred as measured in the resonator port caused by 
having a closed room to that of an open one, Figure 3.4.1. Environmental effects can 
be over-come with an anechoic terminated coupled resonator and sound source 
configuration. But these all require additions that can create undesirable secondary 
effects such as unusual port coupling effects encountered by Selamet, Dickey and 
Novak (1995). It is to be noted that only a change in amplitude occurred with an 
environment change, not a change in the resonant frequency. But for consistency of 
measurement the same environmental configuration was used throughout all 
experimental work that followed. Accounting for environmental factors led to the 
development of environmental normalisation curves presented in Chapter 4. 



 54

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

80 85 90 95 100 105 110

Freq (Hz)

A
m

p
lit

u
d

e 
(d

B
)

ACBC

ACBO

AOBC

AOBO

 
Figure 3.4.1 Attenuation in peak amplitude caused by changing experimental environment, 

where ‘A’ and ‘B’ are door A and B and ‘O’ and ‘C’ are open and closed. 3L 
chamber with a 170mm long, 22mm radius asymmetric port 

 
Frequency results were checked for a number of different resonator placements: 1) 
upright, 2) on its side, 3) port facing the loudspeaker and 4) the port 90 degrees from 
the loudspeaker. There was no significant difference in resonant behaviour between 
the resonator in the upright position and the horizontal position with the port at 90 
Degrees from the sound source. When the port was facing into the sound source a 
small reduction in the resonant frequency was observed. This reduction was typically 
about 0.1Hz less than the other configurations. 
 
Further tests with the resonator in the upright position showed that the resonator could 
be moved between 200mm and 600mm from the sound source with no detectable 
change in the resonant frequency. Additionally, changes in the ambient sound level 
incident at the port, from 74dB-C to 86dB-C, had no noticeable effect on the resonant 
frequency. This behaviour is consistent with the resonator located in the main 
acoustical lobe of the loudspeaker (See Appendix C, Section 4). 
 
Changes in microphone placement orientation with regard to sound source location 
showed no noticeable changes in either resonant frequency or its corresponding 
amplitude. These tests were at four rotational angles, 0, 90, 180 and 270 degrees, 
referenced to the loudspeaker at horizontal and with a port to loudspeaker distance of 
400mm. 
 
3.4.2 Repeatability of measurements using resonators 
Using the 3L chamber, ten assembly/disassembly tests were undertaken and the 
predicted volume with temperature compensation compared. These results gave a 
maximum variation of 3mL between the highest and lowest value. Ten repeat 
measurements were then taken of the empty chamber with a 1mL variation occurring. 
These measurements indicate better than predicted consistency between separate 
measurements and measurements involving disassembly of the resonator. 
 
A number of tests implemented with different chamber configurations revealed the 
highest Q factors were those using the 2L and 3L chambers. These experiments also 

Detection limit 
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gave information on the suitability of using a combination of two different port 
lengths. It was observed the 2L and 3L dual port resonators with different port lengths 
had lower Q factors than the 1L variation. 
 
Theoretical Q factor determination method detailed in Appendix A, Section 3, gave 
results an order of magnitude higher than those recorded through experiment. A Q 
factor of 527 is predicted for the first chamber in Table 3.4.1, but in experiment is 
found to be only 63.3. Similar non-agreement was true for the other variations tested. 
This is in contrast to the very good agreement of predicted resonant frequency with 
experimentally measured frequencies. The discrepancies in Q factor are most likely 
due to omissions in standard theory to include viscous acoustic resistive losses. 
 
Chamber size 

(l) 
Port length (mm) Port type Measured 

Q factor 
Predicted Q 

factor 
3 170 asymmetric 63.3 527 
3 170 symmetric 62.2 505 
3 51 asymmetric 53.0 139 
3 Dual 51 asymmetric 47.0 59 
3 Dual 170&51 asymmetric 41.3 149 
2 170 asymmetric 67.6 430 
2 170 symmetric 64.1 412 
2 51 asymmetric 41.0 113 
2 Dual 51 asymmetric 31.6 40 
2 Dual 170&51 asymmetric 40.8 122 
1 170 asymmetric 58.1 304 
1 51 asymmetric 38.8 80 
1 Dual 51 asymmetric 30.3 28 
1 Dual 170&51 asymmetric 49.5 86 

Table 3.4.1 Comparison of predicted Q factors, Equation (No.25), and actual measured Q 
factors, Equation (No.24), from Basic Equations. Q factors were evaluated for 
various chamber and port configurations at 20 degrees C 

 
Repeat tests on individual solid samples showed little variation between 
measurements. Spherical samples ranging in size from approximately 1mL to 280mL 
were each measured consecutively five times with only a 1mL variation. Rapid 
successive measurements ensured marginal temperature drift and allowed direct 
testing of the sound generation and acquisition system. Similar results were gathered 
using angular cubic samples ranging from 216mL to 864mL.  
 
There was a variation of approximately 7dB resonant peak amplitude over the range 
of different fill levels using water calibration data, Figure 3.4.2. The resonant peak 
amplitude is the signal strength as measured at the port at the systems resonant 
frequency. The resonant peak differs from the Q factor as the Q factor is derived from 
the two –3dB frequencies either side of the resonant peak frequency. Therefore, a 
change in resonant gain does not necessarily aversely affect the precision in 
determining the resonant frequency. 
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Figure 3.4.2 Resonant Frequency versus amplitude for increasing water fill level indicating 

changes in peak sound level. Tests used 3L chamber with 22mm radius, 
asymmetric, 170mm long port. 

 
3.4.3 Temperature effects 
Increases in air temperature cause an increase in the speed of sound, and therefore, 
will change the volume determined by the Helmholtz equation. The volume calculated 
using the Helmholtz equation, Equation (No.22), with correction via the temperature 
speed of sound Equations (No.23), is expected to remain constant with increasing 
temperature. If this assumption were true, other factors within the Helmholtz equation 
would be temperature insensitive. 
 
The temperature factor for the speed of sound, based on a linear fit, will determine 
how the resonator volume is calculated for a given temperature change. This is 
essential if temperature stability is to be incorporated in the software algorithms. A 
linear gradient of 0.587m/s/ºC can be determined over the narrow range of 8ºC to 
24ºC taking the first value of a Taylor expansion from the standard speed of sound 
temperature Equation (No.23). But, when measured indirectly from the Helmholtz 
equation a value of 0.534m/s/ºC was found. This assumed a constant port length 
correction with changing temperature, which may not be true. Over the temperature 
range of 8ºC to 24ºC an error of 14mL will result by using at temperature 
compensation gradient of 0.587m/s/ºC rather than the experimentally found value of 
0.534m/s/ºC. 
 
By taking measurements of the resonant frequency over a number of days at stable 
temperatures a plot of temperature versus speed of sound was made, Figure 3.4.3. 
This showed that calculating the speed of sound indirectly from experiment, using the 
Helmholtz equation, changes in proportion to 0.534m/s/ºC. Also presented are the 
standard values over this temperature range given by Equation (No.23), Basic 
Equations. The value 0.534m/s/ºC was used as an empirical temperature 
compensation value rather than the established value of 0.587 m/s/ºC. The 
temperature correction being the product of an additional variable β times c. The beta 
term, 0.91, is responsible for other temperature sensitive variables in the Helmholtz 
equation. These results were gained using a 3L chamber with 170mm long port. 
Similar results were gathered using the 51mm long port. 
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Figure 3.4.3 Empirical, using the Helmholtz equation, and standard theoretical speed of 

sound gradient for changes in ambient temperature for 3L chamber with 
170mm port. 

The collection of combined constants given by Equation (3.4.1), derived from 
Helmholtz equation, defined as alpha (α), should be constant with increasing 
temperature. Temperature dependence in α can be checked by plotting the measured 
resonant frequency over the speed of sound, as defined by Equation (No.23) from 
Basic equations, against temperature, Figure 3.4.4, which should also be equal to α. If 
α is not dependent on temperature the result is expected to be a horizontal plot. The 
slight negative gradient of α shows this may not true. Hence, there may be a minor 
temperature dependence in α that can be compensated for in using a temperature 
gradient not consistent with the theoretical value derived from Equation (No.23). The 
difference is likely to be caused by temperature dependence in the port length 
correction term ∆l. The value of 0.534 m/s/ºC was used rather than 0.587 m/s/ºC to 
allow for this subtle difference. 
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Figure 3.4.4 Changing value of the Helmholtz constants (α) for increasing temperature using 

a 3L chamber with 170mm port. 
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Another temperature effect on volume is the thermal expansion of the Perspex 
resonator. Typical reference values for Perspex’s thermal expansion coefficient are 
between 5x10-5/ºC and 10x10-5/ºC. For the temperature changes of 8 to 16ºC this 
represents a worst-case volume expansion of 1.45mL for a 3L chamber, far less than 
the uncertainties calculated for O-rings and chamber cylinder non-uniformity (See 
Section 3.4.1). 
 
Deviation volumes were plotted for the difference between volume measurements 
made with temperature compensation and ones without, Figure 3.4.5. Data collected 
in producing Figure 3.4.5 had a temperature variation of between +0.1ºC to +0.3ºC. 
By combining the Helmholtz equation and speed of sound equation the expected 
volume change is expected to be 1mL for every 0.1ºC change in temperature. This 
was calculated using a 3L resonant chamber with 170mm long, 44mm diameter port 
and Equations (No.22) and (No.23). 
 
Therefore, from an initial zeroing at the start of testing, the values should range 
between approximately 1 to 3mL from that of non-temperature compensated 
measurements. This increase can be seen in the un-compensated difference deviation 
data shown in Figure 3.4.5, despite limitations in volume determination of +3mL. 
This illustrates the need for precise temperature measurements if temperature drift in 
volume measurements is to be avoided. A 0.3ºC change in temperature represents 
doubling of the uncertainty from +0.1% to +0.2% of the chamber volume, and a 
halving of the potential accuracy. 
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Figure 3.4.5 Deviation difference in volume for increasing chamber fill between predicted 

volume using Helmholtz equation with and without temperature compensation. 
Tests used water, 3L chamber with 22mm radius, asymmetric, 170mm long 
port. 

 
3.4.4 Calibrating the asymmetric single port resonator 
Calibration using water to various chamber fill levels gave measured resonant 
frequency results close to those predicted using the Helmholtz equation with 
temperature compensation, Figure 3.4.6. Results for the water calibration showed they 
could be represented with a second order curve fit having a coefficient of 
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determination of 0.9979. Using a second order curve fit, Figure 3.4.7, overlaid on the 
experimental results allowed subsequent measurements to be made within 3mL of the 
actual values when measuring water. This represents an accuracy of better than +0.1% 
of full-scale fill (3L). 
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Figure 3.4.6 Calibration plot of water fill volume versus actual and predicted resonant 

frequency (Res Freq). Tests used 3L chamber with 22mm radius, asymmetric, 
170mm long port. 
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Figure 3.4.7 Second order curve fit of predicted volume deviation from actual volume. Tests 

used water, 3L chamber with 22mm radius, asymmetric, 170mm long port. 

 
Q factor is an important indicator of resonant strength. It was observed that the Q 
factor remained steady at approximately 60, Figure 3.4.8, up to a fill of 2.5L in a 3L 
chamber. The high Q factor provided additional evidence the water absorbed very 
little energy over the range of fills. A slight rise in the Q factor at ~2500mL may need 
further investigation as to is cause. 
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Figure 3.4.8 High Q factor for water calibration tests up to fill of 2500mL. Tests used 3L 

chamber with 22mm radius, asymmetric, 170mm long port. 

 
The asymmetric 170mm long, 44mm diameter port with 3L chamber configuration 
was implemented horizontally and 100ml amounts of water cumulatively added 
(measured by weight on a set of Mettler PE6000 scales). The horizontal tests revealed 
linear results up to 500mL, at which point there was a distinctive trend towards under 
prediction, Figure 3.4.9. This can be contrasted to results gained for a vertical 
chamber, which showed second order over prediction. At 800mL the level of the 
water was near the interior mouth of the port and it is likely that the assumptions 
made about an interior flange correction for the resonator were no longer valid. At 
1000mL the water was level with the port mouth and no further filling could be tested. 
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Figure 3.4.9 Comparison of vertical and horizontal volume deviation with water filling using 

3L chamber with 22mm radius 170mm long asymmetric port. 

 
A solid piston was used to simulate the water calibration tests with increasing 
chamber displacement. The piston was moved through a range of chamber heights 
from 25mm to 150mm at 25mm intervals. The uncertainty in height was +0.5mm, 
which equated to a volume uncertainty of +7.5mL. The large uncertainty made 
measurements approximate, but revealed very similar results to those obtained with 



 61

water. This verified the suitability using water as a volume calibration method. 
Volume deviation for the solid piston, Figure 3.4.10, showed almost identical second 
order behaviour as that for the water calibration data, Figure 3.4.7. 
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Figure 3.4.10 Parabolic curve fit of predicted volume deviation from actual volume using solid 

piston. Tests used 3L chamber with 22mm radius, asymmetric, 170mm long 
port. 

 
Q factor for the solid piston, like the water tests, also revealed an almost flat value of 
60 for fill values up to 2L at which point the Q factor rapidly declined, as was 
observed for the water calibration tests, Figure 3.4.8. The cause of the Q factor drop-
off at 2L is due to port interference effects as the chamber floor encroaches into the 
virtual port extension length (See Figure 3.3.6, Methods). 
 
Data gathered using 1L and 2L chambers with water filling behaved in a similar 
fashion to deviations in volume using the 3L chamber, Figure 3.4.11. As the water 
level approached the port all chamber volumes show a characteristic reduction in the 
deviation volume. This similarity in behaviour suggests there was very little 
absorption of sound by the water. 
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Figure 3.4.11 Deviation of predicted volume from actual volume using water fill data for 

various chamber volume sizes. Tests used 1, 2 and 3L chambers with 22mm 
radius, asymmetric, 170mm long port. 



 62

 
3.4.5 Effects of port symmetry 
Water calibration using a symmetric 170mm long, 22mm radius port and a 3L 
resonator gave similar results to those using an asymmetric port. The deviation of 
predicted volume from the actual volume, Figure 3.4.12, showed a similar second 
order trend to that seen in the asymmetric port data.  However, there was a greater 
scattering of the results and the parabolic trend showed a lesser maximum for the 
symmetric port (See Figure 3.3.2). The volume deviation maximum for the 
asymmetric port was about 70mL compared to only 20mL for the symmetric 
configuration. The cause is likely to be complex port flanging effects associated with 
non-linear internal flange behaviour. The acoustic coupling between an internally 
protruding port and chamber is more complex than a port that is flush with the 
internal chamber (See for example Kang and Ji, 2008). 
 
A scatter variation of +2.5mL over a 2.1L fill from an applied second order curve fit 
was observed using an asymmetric port. In comparison the symmetric port had a 
+3.5mL variation over 1.6L of fill. The symmetric configuration could only be filled 
to approximately 1.6L due to the protrusion of the port into the chamber, which 
limited the maximum fill. However, results show a larger influence of unpredictable 
elements for the symmetric port configuration than the asymmetric port. Port intrusion 
into the chamber and unacceptable scatter in frequency make the symmetric port 
unsuitable for accurate volume measurement. 
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Figure 3.4.12 Second order curve fit of predicted volume deviation from actual volume using 

symmetric port. Tests used water, 3L chamber with 22mm radius, symmetric, 
170mm long port. 

 
3.4.6 Effects of sample irregularities 
Cubic blocks and spheres displayed differences in their effect on the resonant 
frequency, independent of their equivalent volume displacement. Both initially have a 
near flat volume deviation, which rises with increasing sample volume. The sphere 
measurements show almost flat volume prediction up to ~100mL at which point a 
marked increase in over prediction occurs. The same behaviour was observed in the 
cubic block samples, except significant over prediction appeared at ~400mL, Figure 
3.4.13. 
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Volume prediction behaviour for these two sample types is distinctively different 
from that observed in the water calibration tests. Water tests showed volume deviation 
could be represented by a second order curve, Figure 3.4.7, whereas individual 
samples show an almost exponential rise in over prediction at a threshold determined 
by their surface regularity. This data suggests that the volume displacement type 
significantly affects the resonant frequency. The three distinct sample types change 
how the sound propagates in the chamber and hence the transmission properties of the 
chamber. 
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Figure 3.4.13 Curves of predicted volume deviation from actual volume using individual 

spherical samples and large cubic blocks. Tests used 3L chamber with 22mm 
radius, asymmetric, 170mm long port. 

 
A comparison was made of data from 1L, 2L and 3L chambers using various 
spherical samples, Figure 3.4.14. There was a visible difference in the volume 
deviation between the three chamber sizes used. As noted earlier the 3L chamber 
showed a rapid increase in over prediction of the sample volume for the largest 
sample tested. In contrast the 2L chamber showed good agreement between predicted 
volumes and the actual volumes. A local maximum in over prediction is evident, but 
this may not be significant as the uncertainty in measurement for the 2L configuration 
is +2mL. These uncertainties were found using water calibration for 1L and 2L 
configurations, Figure 3.4.11. The 1L chamber predicted volume data was also very 
close to the actual volumes of the samples measured, within 1mL. Restriction due to 
the chamber height limited the largest spherical sample that could be tested to 45mL 
for the 1L configuration. 
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Figure 3.4.14 Curves of predicted volume deviation from actual volume using 1, 2 and 3L 

chambers with individual spherical samples. Tests used 3L chamber with 22mm 
radius, asymmetric, 170mm long port. 

 
To test the effects of an acoustic barrier within the chamber a number of thin flat disks 
were tested at various heights to observe how the resonant frequency changed with 
their location, Figure 3.4.15. A distinct pattern emerged as the disk diameter was 
increased. Evidently all disks affected the resonant frequency, lowering it, as they 
approached the interior port. 
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Figure 3.4.15 Frequency deviation plot for various disks having different cross sectional area 

in 3L chamber with 170mm port. 

 
The height at which a disk adversely affected the resonant frequency is also 
associated with the disk’s size. Where adversely affected is taken to mean – changes 
the frequency by more than the uncertainty of measurement (+0.1%), derived from 
water calibration tests in Section 3.4.4. A plot of the maximum disk height, before a 
change in resonant frequency starts to occur was made, Figure 3.4.16. This suggests 
the cross sectional area of a disk becomes significant when the disk cross sectional 
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area exceeds 20% of the chamber cross sectional area. This assumes an upper height 
limit for the disk of approximately 85% of the chamber height. At which point all 
disks show interference with the port irrespective of it’s cross sectional area. The 
disks of 0% (disk free chamber) and 100% (segmented chamber) cross sectional area 
are also included to indicate theoretical limits. 
 
The effect of an acoustic barrier can be compared to the solids and water calibration 
data from Figures 3.4.13 and 3.4.7 respectively. The cubic block frequency deviation 
is less than the sphere deviation and the sphere deviation is less than the water. The 
increased planar surface area of the cubic blocks reduces the resonant frequency as 
might be expected from the disk data. The principal difference between the disks and 
the solids is the impedance each imparts on the system. The disk causes an impedance 
change by partitioning the chamber and creating a secondary cavity behind the disk, 
whereas the solid samples induce an impedance change, but not a secondary cavity. 
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Figure 3.4.16 Plot showing the maximum height a disk can extend into the chamber based on 

it’s cross sectional area percentage to that of the chamber’s cross sectional area. 

 
3.4.7 Measurement on granular materials 
Behavioural differences were apparent in the various granular materials tested using 
the asymmetrical, 170mm long, 22mm radius single port, 3L resonator. Experiments 
showed a marked difference between the larger particles, greater than 1mm and the 
smaller particles, less than 1mm. The interstitial porosity of a granular sample 
affected the overall accuracy in volume measurement and hence bulk density 
determination, Figure 3.4.17. The parity line is included to show the ideal 1:1 
relationship between predicted, using the Helmholtz equation, and measured volume. 
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Figure 3.4.17 Comparison of actual volume versus predicted particle volume for granular 

materials tested. Tests used 3L chamber with 22mm radius, 170mm asymmetric 
port. 

 
The plotted lines of predicted particle volume and actual particle volume of the 
marble samples had a direct linear correlation as was observed for the water 
calibration. However, the ballotini and sand samples showed significant deviation 
from predicted values. Predicted volume data also shows there is a significant 
difference between the small ballotini and the large. The volume for the large ballotini 
is under predicted and the small over predicted. Under prediction was also evident in 
results for rapeseed, plastic pellets and panicum using the particle density values 
derived when using the 1L resonator. 
 
Using the 1L resonator, an attempt at accurate volume measurements was made on 
small quantities of plastic pellets, rapeseed and panicum. This was performed by 
measuring a thin layer of each sample, having minimal interstitial spaces, on the 
chamber base (50ml of each, bulk volume). From which, particle density values for 
the plastic pellets, rapeseed and panicum were found to be 1.12g/cm3, 1.26g/cm3 and 
1.72g/cm3 respectively. 
 
The sand and the small ballotini show a decrease in the predicted volume for the 
highest fill factor. These final readings do not represent true resonant behaviour, as 
the Q factor is so low at these fill factors that just about all the incident energy is 
absorbed in the material. The detected frequencies are merely a complex interplay of 
the bed material and the chamber, not the chamber and the port. 
 
Volume measurements of the plastic pellets, rapeseed and panicum were all under 
their true volume, Figure 3.4.18, as was observed when measuring the large ballotini. 
The size of the particles determines the amount of measurement error. Larger particles 
showing less and smaller one more, down to a particle diameter limit of 
approximately 0.7mm (large ballotini). At particle sizes smaller than 1mm acoustic 
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interstitial viscous effects should have a significant affect on sound penetration into 
the bed material (See Appendix A, Section 9). Hence, there is expected to be a 
marked difference in volume measurement capabilities for the smaller diameter 
granular materials. The rapeseed, plastic pellets and large ballotini all display non-
linear trends at 66% fill. This represents an upper fill level where attenuation in the 
bed interferes with resonant behaviour preventing determination of the resonant 
frequency. 
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Figure 3.4.18 Comparison of actual volume versus predicted volume for plastic pallets 

agricultural granular materials tested. Tests used 3L chamber with 22mm 
radius, 170mm asymmetric port. 

 
The Q factor for both large and small marbles remained high even up to fills of 80%, 
1L absolute, Figure 3.4.19. A consistently high Q factor throughout measurements 
made determination of resonant frequency possible and resulted in good agreement 
between predicted and actual volume. Accuracy could be maintained at or close to 
+0.1% for samples containing particles larger than 16mm in diameter using 
appropriate curve fitting. 
 
In sharp contrast, the ballotini and sand samples show very rapid decline in Q factor at 
fills of only 30% by height, 400mL absolute. Q factors of less than ten are usually 
indicative of resonant behaviour no longer associated with just the chamber and port. 
Secondary resonance effects are most prominent in the sand and small ballotini 
samples and can be seen more readily in broad frequency sweep data, Figures 3.4.21 
and 3.4.22. Secondary resonant effects may be caused by complex coupling effects 
between the fill material and the chamber. 
 
Measurement accuracy is reduced in the sand and small ballotini samples due to high 
sound absorption and resonant peak broadening. Accuracy is dependant on locating 
the resonant frequency and as Q factor decreases the resonant peak broadens. Volume 
measurement accuracy is reduced to about +1% of full-scale fill because of the 
limited available filling, approximately 30%, and rapid reduction in Q factor. These 
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results may indicate bulk volume and not true particle volume as sound is effectively 
dispersed rather than being available to excite the chamber into resonance. 
 
Complete Q factor measurements were not made for panicum, rapeseed or the plastic 
pellets. Preliminary testing showed results that were midway between large ballotini 
and small marbles. A steady decline in Q factor occurs from approximately 60 
reducing to 10 at fills approaching 80% for these three granular samples. Tenable 
measurements of volume are still possible even with Q factor broadening, but 
reducing the measurement accuracy for these samples to about +0.5% of the chamber 
volume. 
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Figure 3.4.19 Q factor with increasing particle fill fraction. Using a 3L chamber, 22mm 

radius, 170mm asymmetric port. 

 
The attenuation through the granular samples, measured as the microphone 
differential between port and chamber, increased significantly as the particle size was 
decreased to less than 1mm. The large ballotini represents a threshold size at which 
the attenuation becomes large enough to make accurate volume measurements 
impossible. Figure 3.4.20 shows this marked increase in attenuation for the small 
ballotini and the sand samples. 
 
Attenuation for panicum, rapeseed and the plastic pellets fell in the region between 
the marbles and the large ballotini. These samples had only moderate attenuation with 
depth; as such they have low acoustic energy absorption. This makes them suitable for 
resonant measurements, as the chamber port interaction will tend to dominate 
maintaining a high Q factor. 
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Figure 3.4.20 Attenuation with increasing particle fill level for marbles, ballotini and sand. 

Using a 3L chamber, 22mm radius, 170mm asymmetric port. 

 
Sand at various fills was tested using a broad-spectrum frequency sweep to test for 
deviation in expected resonance behaviour. Resonance in the port is still prominent at 
a fills of over 25%, 416mL absolute volume, but is nonexistent at a 66% fill, 1086mL 
absolute volume, Figure 3.4.21.  
 
Measurements under the sand in the chamber, Figure 3.4.22, reveal resonance is 
severely reduced even at the first fill of 12%, absolute volume 208mL. By the time 
the fill fraction approaches 66% there is no resonant behaviour occurring beneath the 
sand. Incoming frequencies are converted to broadband noise with increasing fill in 
both the port and chamber. This is most likely due to frequency scattering and 
absorption effects caused by the sand. 
 
Broad-spectrum resonance tests were also carried out on ballotini, panicum, rapeseed 
and plastic pellets. These tests indicated active resonant behaviour at fills of 80% for 
all but the sand and small ballotini. It appears that the minimum interstitial space for 
useful resonance measurements is approximately 0.5mm for this particular resonator 
combination. For resonance to occur, sound waves must have a surface to reflect off. 
If this is not present the energy incident in the chamber is not available for sustained 
oscillation. 
 
The minimum interstitial space will be a function of the resonant frequency, 
approximately 70Hz in this instance, and sound pressure level. It is expected lower 
frequencies, less than 50Hz, will penetrate finer bed materials more readily. However 
viscous effects and boundary layer turbulence will need to be considered (See 
Appendix A, Section 9). 
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Figure 3.4.21 Broad spectrum frequency sweep as measured in the port with three fill 

fractions of sand. Using a 3L chamber, 22mm radius, 170mm asymmetric port. 
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Figure 3.4.22 Broad spectrum frequency sweep as measured in the chamber with three fill 

fractions of sand. Using a 3L chamber, 22mm radius, 170mm asymmetric port. 

 
Complex interactions take place in the resonator when granular samples are 
introduced. The acoustic resistance for a given granular material alters the resonant 
behaviour in a number of ways. This has an associated effect on Q factor and 
attenuation. Different materials will differ in the way they reflect and transmit sound 
energy due to their surface geometries and material properties such as density and 
elastic modulus. These attributes will ultimately decide the final accuracy of a given 
measurement.  
 
A plot of particle size versus gradient was undertaken, Figure 3.4.23, using the data 
gathered from linear curve fits of Figures 3.4.17 and 3.4.18. This plot shows good 
agreement between predicted volume and actual particle volume down to particles of 
2mm diameter. A transition into a different regime then takes place with a local 
minimum occurring at just less than 1mm. At particle sizes smaller than about 0.7mm 
a rapid increase in the volume over prediction occurs which can be associated with a 
large rise in acoustic absorption and the onset of a boundary depth beyond which 
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almost no sound penetrates. These observations suggest volume measurements may 
be transitioning from particle volume into bulk volume. The depth at which this is 
expected to occur will be determined by a crossing of the parity line as seen for the 
small ballotini and sand in Figure 3.4.17. The parity line indicates one to one mapping 
between prediction and actual particle volume. At a particular depth the sound energy 
in the bed material plays no part in the resonant behaviour of the chamber due to 
attenuation. This behaviour is observed in the small ballotini at fills of about 25% and 
12% for sand. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.1 1 10 100

Particle size (mm)

S
lo

p
e 

(-
)

 
Figure 3.4.23 Change in linear curve fitted slope for changing particle size. Using a variable 

3L chamber, 22mm radius, 170mm asymmetric port. 

 
By plotting Q factor as a function of particle size a logarithmic trend was observed, 
Figure 3.4.24. This data was collected at a fill of 25% using two marble sizes, both 
ballotini sizes and sand. Figure 3.4.24 shows how resonant peak broadening is related 
to accuracy. As the resonant peak broadens it becomes more difficult to isolate the 
resonant frequency. Q factors of between 50 and 60 can yield results of +0.1% full 
scale fill, those between 30 and 50 an accuracy of approximately +0.5% full scale fill 
and Q factors of less than 30 no better than about  +1% full scale fill. As the Q factor 
decreases there is a distinct broadening of the resonant peak. This broadening makes 
precise frequency determination increasingly more difficult, hence the reduction in 
accuracy. 
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Figure 3.4.24 Logarithmic trend of Q factor for changing particle size measured at 25% fill. 

Using a variable 3L chamber, 22mm radius, 170mm asymmetric port. 
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Comparative testing of Q factor and predictive deviation was undertaken using a 
Perspex piston and granular coated steel disks. Q factors remained high, about 60, for 
all coating materials including the bare piston, Figure 3.4.25. As the piston was driven 
into the chamber the Q factor remained in the 50 to 60 range, indicating strong 
resonant behaviour with very little acoustic absorption from the coating material. 
These results demonstrate acoustic resistance for granular materials is a product of 
granular material depth and not surface texture.   
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Figure 3.4.25 Comparative Q factor testing with various granular coated piston surfaces. 

Using a variable 3L chamber, 22mm radius, 170mm asymmetric port. 

 
A marked difference between the granular coated pistons was seen in the volume 
deviation data gained by comparing actual volume versus predictive volume. The un-
coated blank piston had the greatest deviation and the plastic pellets the smallest, 
Figure 3.4.26. These results show the surface of the piston affects the predictive 
capabilities for the resonant volume system. The effect on volume deviation due to 
particle size is not consistent as samples such as panicum and rapeseed exhibit quite 
different volume deviation trends despite having very similar particle size. The cause 
of this effect is expected to be differences in seed geometry, density and elastic 
modulus. 
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Figure 3.4.26 Experimental differences in volume predictive deviation due to piston coating 

materials. Using a variable 3L chamber, 22mm radius, 170mm asymmetric 
port. 

 
3.4.8 Effects of air leaks on resonant frequency and Q factor 
The addition of one or more small air leaks in a Helmholtz resonator significantly 
affects both the resonant frequency and the Q factor. A distinct linear trend was seen 
as the number of air leaks was increased from zero to ten, Figure 3.4.27. The resonant 
frequency increased by roughly 0.2Hz/leak, each air leak being 0.8mm in diameter 
and 5mm in depth. The increase in frequency for the smallest detectable change in 
volume is 0.01Hz (+3mL for the 3L chamber used in these tests with 170mm 
asymmetric port). Therefore, each leak is equivalent to an error in sample volume of 
60mL, twenty times the achievable accuracy of an air leak free chamber. 
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Figure 3.4.27 Observed linear increase in resonant frequency due to an increasing number of 

air leaks in the resonant chamber. Using a 3L chamber, 22mm radius, 170mm 
asymmetric port. 

 
A similar trend was also seen in the Q factor, which decreased logarithmically with an 
increasing number of air leaks, Figure 3.4.28. The decrease was proportional to –
14Log(n), where n is the number of leaks. The rapid decline in Q factor demonstrated 
the importance of a well-sealed chamber. Even a slight air leak represents a large 
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acoustic resistive loss to the system. The rapid decrease in Q factor also causes an 
associated loss in volume prediction capability, lessening the accuracy of any 
subsequent resonant measurements. 
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Figure 3.4.28 Data fitted with logarithmic decreasing Q factor due to an increasing number of 

air leaks in the resonant chamber. Using a 3L chamber, 22mm radius, 170mm 
asymmetric port. 

 
When the single air leak diameter was increased a rapid increase in the resonant 
frequency occurred that was more pronounced than that seen with the multiple smaller 
leaks, Figure 3.4.29. A second order rise in frequency indicated a discernible 
correlation between the leak diameter and resonant frequency. A correlation 
coefficient of 0.995 suggests extrapolation to large leak sizes should be possible. The 
regular frequency behaviour also suggests the resonant frequency should be 
predictable for systems containing known leaks sizes. 
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Figure 3.4.29 Data fitted with second order curve for rise in frequency with increasing leak 

diameter. 3L chamber with 170mm long port having 22mm radius. 

 
Changes in Q factor also could be fitted with a second order trend with increasing 
leak diameter, Figure 3.4.30, with a noticeable minimum occurring at the air leak 
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diameter of 6mm. A change in the pinch off region due to a boundary layer should 
occur after a threshold air leak size. It is expected at this size a secondary port effect 
should dominate rather than an acoustic loss associated with an air leak. This can only 
occur when the cross sectional area of the leak is large enough to allow a flow 
velocity consistent with the resonant frequency flow velocity present in the main port. 
This was tested and confirmed with the use of a 50mm leak diameter. However, the 
height of the 50mm diameter hole was inconsistent with the other heights, and is 
therefore not included in the data of Figure 3.4.30. 
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Figure 3.4.30 Q factor with increasing leak diameter fitted with a second order curve. 3L 

chamber with 170mm long port having 22mm radius. 

 
3.4.9 Effects of sample position on volume measurements 
With the 3L dual port resonator in the horizontal configuration a 42mL sphere was 
moved top to bottom in a radial direction in five separate locations along the 
chambers length. Unused holes were blocked off and the cord supporting the sphere 
seals the used holes, but a minor reduction in Q factor was observed due to the 
fractional leak around the cord-to-hole perimeter. The resultant mapping for the 
sphere’s location effects can be seen in Figure 3.4.31. This mapping shows that the 
sphere’s location has a minimal effect on the resonant frequency for the system unless 
it is placed near the port entrance. 
 
The non-interference distance of the sphere from the port is determined by the port 
length correction factor. The length correction factor is a displacement beyond the 
port, which the moving mass of air within the port extends to. The effect of the sphere 
either side of the port also affects the resonant frequency, due to it altering the flange 
effect of the junction between chamber end and the port (See Appendix A, Section 8). 
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Figure 3.4.31 Frequency chamber mapping using a 42mL aluminium sphere moved in the 

radial direction in 1mm steps at 5 positions along the chamber’s length. The 
frequency has been normalised and temperature corrected. Also shown is the 
3L chamber indicating orientation of mapping, width being radial movement 
and horizontal being chamber length. 

 
Axial configuration tests, when the sphere was near the port entrance or exit, showed 
the same behaviour in frequency reduction as was seen in the radial tests, Figure 
3.4.32. A flat steady frequency region was apparent for the main length of the 
chamber where the sphere is outside of the length correction and flange effect zones. 
This ‘flat region’ is further expanded as a change in volume plot, Figure 3.4.33, 
showing the interference effects of the sphere and port extend well into the chamber, 
contrary to what Figure 3.4.32 suggests. Therefore, the useable range in the chamber 
for making volume measurements is the 60mm between 115mm and 175mm. The 
physical internal length of the chamber is 190mm. Hence; the usable zone for acoustic 
measurement is only approximately 1/3 of the chamber length. 
 
A large number of outliers were observed in the data where the sphere is in either of 
the ports. This was due to resonant peak broadening caused by the space around the 
sphere. A gap of 0.5mm existed around the sphere when in the port which appears as 
an air leak to the resonant system. This small gap around the ball represents a high 
viscous force region where the acoustic resistive losses to the system are large. Hence, 
the gap appears as an air leak, not a secondary port (See Section 3.4.8). In this state, 
with a port effectively blocked, the resonator reverts to a single port resonator, which 
explains the large change in observed frequency. The greatly reduced Q factor makes 
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it difficult for the automated software, using resonant hunting, to ‘lock’ onto the 
resonant frequency, thus causing the outliers. 
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Figure 3.4.32 Frequency chamber mapping using a 42mL aluminium sphere moved in an 

axial direction in 1mm steps along the chamber’s length. Using a 3L chamber 
with two 22mm radius, 51mm asymmetric ports. 
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Figure 3.4.33 Enlargement of ‘stable’ region in figure 4.32. Plot shows change in mL from a 

central value of 3168mL at 145mm displacement. Using a 3L chamber with two 
22mm radius, 51mm asymmetric ports. 

 
3.4.10 Controlled decent using a dual-port resonator and resonant hunting 
Using the established resonant hunting method, pink noise followed by two chirps, 
decent speeds through the 3L dual port resonator could not exceeded 1mm/s. The 
speed could be increased to 2mm/s with an associated reduction in volume 
measurement accuracy from +0.1% to +0.5% of full scale. To achieve this a reduced 
scanning time and coarser chirp frequency is used. Measurement times for these 
accuracies are 40 seconds and 20 seconds respectively. The largest spherical object 
that can be lowered through the dual port resonator is 43mm diameter (42mL), hence 
the uncertainty for these two measurements accuracies are +3mL and +15mL 
respectively. 
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These poor results, in terms of sample transit time, prompted the development of 
rapid volume measurement methods described in Chapter 4. New techniques are 
developed using both phase shifting and Q profile shifting as ways to reduce 
measurement times while maintaining accuracy. 
 
3.4.11 Measurement of port flanging effects 
Resonator port flanging effects were tested for by using a range of flange sizes 
mounted to the exterior of the port (Figure 3.3.6, Methods). The flange factor 
determines the port length extension (See Chapter 2, Section 2.3 and Appendix A, 
Section 8) and is therefore important in determining the correct constant to use in 
volume calculations. A maximum flange factor of 1.698 is the theoretical limit for 
two acoustical point sources in an infinite plane (twice 8/3π). Two sources are 
considered due to there being both an internal and an external flange effect. 
 
By changing the port to flange ratio the flange effect can studied, Figure 3.4.34. This 
shows a distinct lowering of the resonant frequency for both the 3L chamber with 
51mm port and the 3L chamber with 170mm port, which is to be expected. Figure 
3.4.34 shows there is an upper limit when only the thickness of the port wall exits 
(3mm). This equates to a flange factor of 1.374 for the 51mm port and 1.375 for the 
170mm port. When the largest flanges were used the flange factors increased to 1.589 
and 1.690 respectively. In all instances the equipment was at a steady state 
temperature of (21ºC for 51mm port and 20ºC for 170mm port), which was necessary 
in order to isolate the flange effects. The upper value of 1.690 for the 170mm port 
suggests the flange factor is approaching the theoretical maximum value of 1.698. 
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Figure 3.4.34 Effects of various flange sizes on resonant frequency used to evaluate port 

length extention. Measurements taken with 3L resonator having two different 
port lengths, 51mm and 170mm. 

 
From the results for the 170mm port, specifically the value1.690, it can be seen that 
the internal flange factor must be close to the theoretical value of twice 8/3π. If this is 
true the external flange factor for the un-flanged port must be approximately 0.526. 
This result can be compared to the suggested value of 0.6 for an un-flanged port. The 
combined flange factor value of 1.375 was used in all volume calculations in Chapter 
4 but not Chapter 3. Theoretical values for the internal flange factor, between the port 
and chamber using an alternative method by Kang and Ji (2007), gave values 
significantly less than those measured and could not be used for objective 

51mm port 170mm port 
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comparisons. The Kang and Ji method predicts an internal value of 0.482 and an 
external value of 0.61 giving a total of 1.092 (See Chapter 2, Section 2.1.3). 
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3.5 Discussion 
 
3.5.1 Characterising the fabricated resonators 
In early testing it was noticed that different environmental configurations changed the 
behaviour of the resonant system. Small changes such as a door left ajar caused 
significant changes in resonant amplitudes being detected in the port. This is 
principally due to secondary behaviour of the environment, which changes the amount 
of sound energy present at the port of the resonator. 
 
Trials coupling of sound source to resonator were found not to have the high Q factors 
observed in the uncoupled configuration. Other investigations, such as Selamet, 
Dickey and Novak (1995), used a coupling method to isolate the system from changes 
in the environment. A directly coupled system results in a resonant dip rather than a 
resonant peak. The dip occurring at resonance is a product of cancellation between the 
driving source (loudspeaker) and the resonator. Difficulties arise in locating the dip’s 
centre, as cancellation is so complete that there is insufficient signal amplitude for the 
acquisition system to detect. This effect of irresolvable frequency data can be seen in 
detection limit results, Figure 3.4.1, where there is frequency scattering occurring at 
signal levels less than –50dB. 
 
In this configuration it is therefore necessary to have a standardised room or enclosure 
for resonant equipment to be mounted in if the un-coupled Helmholtz volume 
measurement system is to be used industrially or commercially. Such a set-up might 
entail an anechoic room or enclosure for the system to reside in that can be 
temperature controlled. The later developed environmental normalisation technique 
was able to remove this dependence and is discussed further in Chapter 4. 
 
Testing the resonator in different locations showed the resonant frequency to be 
insensitive to its position relative to the sound source. This location insensitivity was 
unexpected as environmental effects had such a large affect on the resonant peak 
amplitude. The only exception was having the port opening facing the sound source 
where a slight (0.1Hz) frequency shift occurred. Therefore this configuration should 
be avoided. The resonant frequency for a given configuration was also insensitive to 
small changes in the applied sound level between approximately 70 and 90dB. 
 
3.5.2 Repeatability of measurements using resonators 
It was often necessary to disassemble the resonator during this investigation. As a 
result of this disassembly there was an O-ring compression uncertainty in the 
resonator end plates. This caused a repeatability uncertainty of +3mL, which was the 
same order of magnitude as that found in non-disassembly calibration tests. 
 
The resonator body is coupled to the resonator end plates via four rods, which 
compress O-rings between the ends and the chamber. There was insufficient 
compression available to compress the O-rings completely and hence there were 
slight variations in the chamber size when running a series of tests requiring 
disassembly. Therefore, in future versions of this resonator a complete O-ring 
compression method will be required or a change in chamber design to eliminate this 
problem. 
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Consecutive repeat testing of the same samples, spheres and cubes, gave results that 
indicated high repeatability, within +1mL. The need of a reliable 
assembly/disassembly method was avoided by using the variable chamber resonator 
in Chapter 4. 
 
A large discrepancy was noticed between theoretical Q factor predictions using 
methods developed by Kinsler and Frey (1962) and Blackstock (2000), and those 
measured for the various resonator configurations. Typically the resonators were 
designed to have Q factors of over 100 and as high as 500. In reality the highest Q 
factor measured was around 65. This large difference was due to the acoustic losses in 
the system, principally viscous and thermal boundary layer effects within the 
resonator and to a lesser extent radiation resistance from the port. The theoretical Q 
factor values are derived from radiation resistance losses and not boundary layer 
losses, hence the significant differences. To rectify this discrepancy, thermal and 
viscous boundary layer losses would need to be analytically evaluated and 
incorporated into the existing theoretical Q factor Equation (No.25), Basic Equations. 
This might be achieved using boundary element modelling. 
 
For a very high Q factor there must be a large amount of energy stored in the system. 
Such high energies must be contained in the form of a moving mass of air in the port. 
Normally the rapid pressure changes preclude heat energy transfers. Therefore, the 
resonance would be predominantly adiabatic. However, if this were true the pressure 
amplitudes and velocities would continue to increase in the port and the system would 
soon violate lumped parameter assumptions that treat the chamber and port as two 
distinct entities.  
 
Within the port there is a secondary boundary layer associated with the region were 
the system is no longer adiabatic. Near the port surface there is thermal conduction 
zone, called the thermal boundary layer. This layer is considerably larger (calculated 
to be 1.54mm) than the viscous boundary layer (calculated to be 0.217mm). With an 
increase in the pressure amplitude and velocity there must be increases the viscous 
and thermal losses caused by the boundary layer within the port (See Appendix A, 
Section 9). Much like a shock absorber, the quicker the displacement the larger the 
resisting force. The maximum Q factor is therefore self limiting. 
 
There is the opportunity for further investigation into optimal energy storage in a 
resonator using non-lumped parameter techniques. If the Q factors could be increased 
the potential accuracy could likewise be extended, as the resolvability of resonant 
frequencies increase. The accuracy in determining the resonant frequency determines 
the uncertainty in any given volume measurement. 
 
A variation of +3dB in resonant gain was observed using the water calibration data, 
the variation being due to loudspeaker deficiencies and environmental effects. The 
average Q factor remained at approximately 60 up to an 85% fill. This supports the 
argument that Q factor is bounded to an upper limit determined by the viscous 
boundary layer losses. 
 
The ratio of reactance to resistive impedance may be linked to the boundary layer 
resistance at large amplitudes. Standard Q factor theory only includes mechanical 
impedance and not viscous losses. Boundary layer thickness is a function of velocity; 
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therefore as the amplitude becomes larger the rate of change in pressure also 
increases. So the pressure velocity will reach a maximum value but the group 
propagation velocity, speed of sound, remains constant. 
 
3.5.3 Temperature effects 
Temperature can have a significant effect on repeatability of frequency measurement, 
due to changes in the speed of sound with temperature. Throughout testing there were 
constant changes in temperature occurring. A standard adjustment of 0.6m/s/ºC was 
used throughout the initial parts of this investigation - Chapter 3. A temperature 
gradient of 0.534 m/s/ºC, which was capable of giving more accurate results, was 
used for experimental work in Chapter 4, using an additional β multiplier for c, of 
0.91. This adjustment was rechecked by a repeat measurement of the empty chamber 
volume at the end of each series of measurements, revealing a need for highly 
accurate temperature measurements. 
 
Discrepancies in the temperature gradient for the speed of sound occurring in the 
resonator indicated other temperature dependant components within the Helmholtz 
equation. The speed of sound was derived by standard methods given by Kinsler and 
Frey (1962), Blackstock (2000) and other standard texts as Equation (No.23), Basic 
Equations. The speed of sound should change by 0.587m/s/ºC, over the narrow range 
of 8ºC to 24ºC with a linear fit. However, when measured indirectly using the 
Helmholtz equation for the 3L resonator configuration a value of 0.534m/s/ºC was 
calculated. This showed there was an extra multiplying term β (0.91) that was needed 
in temperature compensation. β may vary according to the physical constraints of the 
resonator. 
 
This extra β term in the Helmholtz equation contains components that rely on 
temperature that were not considered in the initial stages. These include temperature 
dependence of the port length extension term based on air density. Also small terms 
that are omitted in deriving the lumped parameter Helmholtz equation as described in 
Appendix A, Section 2. The viscosity of air in the port can change the behaviour of 
the boundary layer at the port surface, and hence change the effective cross sectional 
area of the port (See Appendix A, Section 9). Humidity may also contribute to small 
changes in resonant behaviour and will need to be monitored in future studies to 
gauge its effect. 
 
If possible it is preferable to take temperature measurements inside the chamber to 
give the appropriate compensation factor. In addition, the sample being measured 
should be at the same temperature as the chamber to avoid temperature gradients 
occurring that could skew volume measurements. In future studies it is recommended 
a range of low-mass temperature sensors should be used in the chamber and port to 
better understand acoustic power dissipation within the resonator. Doing so will 
enable acoustic thermal heating to be monitored and enable its significance to be 
evaluated. It may also allow calculations of energy lost to boundary layer effects and 
those to acoustic radiation.  
 
3.5.4 Calibrating the asymmetric single port resonator 
Calibration of the resonant system yielded results having measured frequencies almost 
indistinguishable from those of prediction. This led to comparisons of volume 
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deviation rather than absolute values. A repeatable second order trend in over-
predicting volume was apparent in water volume measurements. 
 
The reason for this parabolic anomaly is unclear, but could be due to secondary 
effects caused by assumptions made in generating the Helmholtz equation. 
Specifically, the small signal approximations made to allow linearisation and the 
completion of the wave equation (See Appendix A, Section 2). Also, various small 
angle approximations were made in lumped parameter assumptions and transmission 
theory. Because measurements were being made to such a high accuracy these 
previously unimportant small terms may now be significant. 
 
Despite this second order over-prediction it can be compensated for in a correction 
that can flatten the deviation curve. With this correction the volume predictive 
capability was within +0.1% of the volume of the resonant chamber. 
 
The success in the predictive capabilities of this method is in part due to the 
consistently high Q factor for fill levels up to 2500mL in a 3L chamber. This 
maintains the resolvability of the resonant peak. Also, the high Q factor is indicative 
of low energy absorption from the water. At greater fill levels the water approached 
the interior port and the moving mass of air in the port interfered with the water. This 
caused the Q factor to decrease rapidly and prevented resonance. 
 
In horizontal water filling the interior port flange, formed by the roof of the chamber, 
became increasingly obscured. This changed the quantity of flange material in the 
chamber and hence, directly altered length extension constants used to predict the fill 
volume, via the Helmholtz equation. Unexpectedly this tended to flatten the over-
prediction of volume, displaying a near one-to-one prediction to actual fill up to 
500mL. This suggests the flange factor is deviating significantly from 8/3π (See 
Chapter 2, Section 2.1.3). 
 
Tests with a solid piston reproduced results seen in the water calibration within the 
uncertainty of piston position. Likewise Q factor values were also consistent with 
those observed with water at various fill heights. The piston tests became the 
forerunner to designing the variable chamber resonator described in Chapter 4.  
 
By customising of the chamber volume to suit the size of the sample the uncertainty 
in measurement could be kept to a minimum. Therefore, the uncertainty in a volume 
measurement using a variable chamber resonator would be constant, proportional to 
the object under test not the size of the chamber. For example, a typical maximum fill 
is around 1/3 of the chamber volume, assuming a spherical solid sample and enough 
clearance above the sample not to interfere with the port. If the current accuracy of 
+0.1% of full-scale fill is used then this sample could theoretically be measured to 
within +0.3% of its true volume. 
 
3.5.5 Effects of port symmetry 
It was expected that the results for a symmetric port configuration would give better 
predictive results than those of an asymmetric one. The symmetric configuration has 
two un-flanged ports and as such would be expected to have well defined flange 
factors, each of approximately 0.6 times the port radius. This benefit was not seen as 
the amount of scatter in the deviation curve exceeded that seen in the asymmetric port 
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tests. The larger amounts of scatter might indicate the internal port is violating the 
lumped parameter assumptions and may need to be analysed as two dimensional 
boundary layer problem as investigated by Kang and Ji (2008). 
 
The symmetric port configuration is impractical for most measurement applications as 
the port intrusion into the chamber restricts the available fill space and consequently 
reduces the potential fill. The port length extension term must also be allowed for 
which further reduces the available fill space. These poor results suggested the need 
for investigation into a flanged port exit in an asymmetric configuration (See Section 
3.5.11). 
 
3.5.6 Effects of sample irregularities 
A marked difference in behaviour of predicted volumes was apparent in the data seen 
from testing both regular spherical samples and irregular cubic samples. The sample 
shape to some extent determines the volume over-prediction trends seen in all fill 
types. Parabolic over-estimation of volume was seen in water data, but an almost 
exponential increase was observed with the solid samples in the 3L chamber. Some 
deviation between sample types should be expected if transmission theory is 
considered, as the propagating pressure wave interferes with each sample type 
differently (See Appendix A, Section 11). 
 
As a pressure wave emanates from the internal end of the port; it encounters a flat 
surface, in the case of water filling, which is effectively a high impedance barrier. 
This causes the bulk of the pressure wave to be reflected back up the chamber. If the 
emanating pressure wave encounters a regular or irregular solid the pressure wave 
becomes dispersed and the resulting resonant frequency may in part be a product of 
chamber size and interference. 
 
In the case of the spherical sample the sound wave is likely to be re-emitted omni-
directionally. In contrast, the angular cubic sample would likely reemit the sound 
waves as point sources from the edges and corners as well as from its planar surfaces. 
The angular cubic samples represent a different interference source than spherical 
ones. Adding to the complexity of the angular sample is the size of any flat surfaces. 
The larger they are the more efficiently they reradiate the incident sound pressure 
waves. Studies conducted by Barmatz et al. (1983), Leung et al. (1982) and Cordero 
and Mujica (2007) used rigid spheres in a ½ wave resonant cavity and found 
scattering to affect the resonant frequency. However, the Helmholtz resonator 
frequency is based on the chamber volume not a standing wave within the chamber. 
Therefore, the systems are not directly comparable. Changes in frequency due to a 
solid may be better solved using transmission theory as described in Appendix A, 
Section 11 or using FEM computer modelling. 
 
Disks of different sizes were used to measure their effect as an acoustic barrier. All 
disks at some height were able to adversely affect (change by more than the 
uncertainty in a given measurement) the resonant frequency with dependence 
proportional to the disks cross sectional area and its proximity to the interior port. The 
fact that the cross sectional area determines at which height the disk will reduce the 
resonant frequency suggests this phenomenon is not related to the port length 
extension term but, is instead associated with an impedance change or acoustic barrier 
caused by the disk (See Appendix A, Section 11). Leung et al. (1982) used various 
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sized flat disks in their ½ wave resonant cavity to isolate scattering from volume 
effects. The results of which suggested they were able to partition the cavity causing 
the largest changes to frequency where pressure velocities were greatest. 
 
For the disks 20mm to 60mm in diameter the resonant frequency was not significantly 
reduced until the disks were at 85% of the chamber height. This therefore represents 
the port length extension interference height, beyond which any disk, irrespective of 
size, will interfere with a moving mass of air in the port during resonance. This trend 
was also observed in the solids and water calibration tests. In the initial water 
calibration tests an upper limit of approximately 85% fill was observed when the Q 
factor significantly reduced above this value. 
 
The angular solids, having many flat and angular reradiating sources, had resonant 
frequencies consistently lower than the same volume with water filling. The spherical 
samples fell in between the angular cubic solids and water fill. A complex impedance 
path occurs with the inclusion of a solid into the resonant chamber. Disks displayed 
more pronounced frequency shifting than equivalent surface area solids, but this 
discrepancy is in part due to the secondary cavity created when the disk effectively 
partitions the chamber.  
 
From these observations two conclusions can be drawn. 1) Samples being measured 
in a resonant chamber are not expected to alter the resonant frequency if they are kept 
below 85% of the chamber height and they have a cross sectional area less than 20% 
of the chamber’s cross sectional area, determined by the flange factor. 2) When the 
sample cross sectional area is greater than 20% of the chamber cross sectional area the 
resonant frequency is likely to obey resonant theory if the sample is kept in a bounded 
region. The bounded region can be considered a tapered cone, defined by the sample’s 
cross sectional area and its height. The higher the sample the smaller its cross section 
must be to be accurately described by the Helmholtz equation. 
 
3.5.7 Measurement on granular materials 
A range of granular materials were tested to gauge the effect of collections of particles 
for bulk measurements using the resonant techniques developed. A distinct trend was 
seen in predicted volume based on particle size. Larger particles tended to be 
accurately predicted (marbles 15mm and 25mm). In smaller particles, between 0.7mm 
and 3mm, under prediction was apparent. This then switched to over prediction in 
particles of less than 0.3mm. 
 
Samples had a wide range of particle densities from 1.12g/cm3 for plastic pellets to 
2.54g/cm3 for sand. The trends seen indicate density does not affect the particle size to 
prediction relationship. It is apparent the sound absorption properties are a function of 
particle size and geometry, and not particle type. When an incident sound wave 
encounters the granular bed material it is re-emitted and absorbed by the individual 
particles. Also occurring is acoustic attenuation due to viscous interstitial effects due 
to boundary layer dimension being comparable to inter particle space size. As the 
sound penetrates the bed it is likely the viscous forces will dominate over the inertial 
ones as calculated in Appendix A, Section 9. This makes the bed acoustically 
resistive. The smaller the interstitial space the higher the acoustic resistance and the 
more the energy absorbed in the bed material. 
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Resonant peak broadening is the result of acoustic absorption within the bed material. 
As the bed depth increases the larger will be the attenuation of the signal. The 
reemission of sound from the particle bed is not always at the same frequency as the 
incoming wave. The result is a broadband noise centred about the resonant frequency, 
which causes a widening of the resonant peak. This widening makes resonant 
frequency detection more difficult and compromises the achievable accuracy. The 
smaller the particles are the more pronounced is the effect. A significant logarithmic 
relation was found based on Q factor versus particle size. This showed that Q factor is 
related to particle size. The smaller the particle the more energy is converted from 
resonance into broadband noise. 
 
The occurrence of sound reemission and absorption limits the maximum fill ratio for 
the chamber. At a fill level determined by the average bed particle size the level of 
reemitted sound becomes larger than the resonant frequency amplitude. When this 
occurs the primary resonant frequency will no longer be detectable. This was apparent 
in the skewed results from the small ballotini and sand where the prediction values 
reached a maximum. This was not seen in the larger particles tested, but is expected if 
the bed depth could be increased. This is an area where further testing could be 
conducted with a deeper chamber. 
 
There were marked differences in frequencies and sound pressure levels detected in 
the bed and chamber. A microphone placed beneath the bed material indicated 
significant attenuation occurring for the particles less than 1mm in diameter. For the 
small ballotini and the sand samples there was an apparent cut-off depth at which the 
resonant frequency could no longer be detected. The depth at which this happens is 
directly related to particle size via the interstitial space size. The relation would need 
to be determined using a deeper chamber and a range of particles with an average size 
less than 0.166mm (smallest sample tested, sand). 
 
A useful observation was made based on actual to predicted volume slope information 
and particle size. There was a near linear drop in slope from parity, as seen in large 
individual samples, to values of around 0.9 for collections of particles 2mm in 
diameter. This coincided with theoretical predictions about the Boundary layer 
distance. Sources such as Blackstock (2000), Beranek (1996) and Fung (1994) 
suggested the viscous forces should switch behaviour from inertial to viscous 
dominated at approximately 1mm, the value being dependant on the amplitude and 
frequency used, as it will change the wave velocity. 
 
It is thought a switch from particle volume to bulk volume measurement occurs as a 
result of a boundary layer coming into effect for the smaller particle sizes and a given 
bed depth. Evidence for this behaviour was seen when the small ballotini and sand 
samples, at low fill ratios, showed under prediction. Predicted volume results then 
moved rapidly into a linear over prediction volume region, and lastly a region of 
acoustic absorption by the bed where resonance is completely attenuated. A 
microphone mounted under the bed material was able to show the different types of 
resonant behaviour between those in the bed and those in the free space of the 
chamber and port. 
 
Secondary geometric resonance was often seen in the bed material and port when 
there was large attenuation caused by the smaller particles. Secondary resonance is a 
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function of the interior geometry of the chamber and port caused by ¼ wave 
resonance effects, as the dimension becomes a significant proportion of the 
wavelength. The broadband noise from particle reemissions was able to stimulate 
these higher resonant frequencies 
 
Bed depth attenuation effects were further confirmed from tests conducted with 
granular coated disks. Each disk was coated in one of the granular materials tested. Q 
factor values remained at about 60 irrespective of the coating material. This showed 
that an irregular roughened surface, independent of particle size, causes only minimal 
acoustic attenuation. 
 
Volume deviation results using the coated disks gave minimal differences at volumes 
less than 1/3 full-scale fill but this increased noticeably by 2/3 of full-scale fill. The 
amount of volume deviation from a non-coated disk was independent of particle size. 
The largest value was for a blank disk, but the smallest was for the plastic pellets 
despite their being the largest of the granular materials. There may be relationships 
between granular sample shape, particle size and chamber size, but these were not 
tested for and remain an area for further investigation of granular materials in a 
resonant cavity. 
 
The successful results with the coated disks allowed volume measurement of a small 
amount of the agricultural samples to determine their true particle density. By 
ensuring only a thin layer of the given sample to be measured was used, no bed depth 
behaviour would be present in the predictive results. By also using the smallest 
chamber (1L) the volume accuracy was maintained (within 2%), as each of the 
granular sample’s bulk volume was only 50mL. 
 
Volume measurement accuracy with granular materials was shown to be related to Q 
factor. As resonant peak broadening occurs the accuracy diminishes. In general terms 
the accuracy can be divided into three regions. If the Q factor is higher than 50 then 
volume measurements can be made within +0.1% full-scale fill. Typically this is only 
for larger particles (>15mm) or for thin layers of smaller granular material where bed 
attenuation does not occur. If the Q factor is reduced by acoustic attenuation, to 
between 30 and 50, accuracy is lessened to approximately +0.5% of full-scale fill. In 
bed materials causing high attenuation, where the Q factor is between 10 to 30, only 
+1% full-scale fill accuracy can be achieved. 
 
Appropriate volume deviation curve fitting will be required for all granular materials. 
Each has a linear region of actual-to-predicted volume that departs from the parity 
line by an amount determined by the average particle size (See Section 3.4.7). For 
granular materials with a mean size smaller than 0.7mm in diameter there will be a 
maximum fill level due to acoustic absorption as the bed suppresses resonance with 
increasing depth. This occurred at about 25% fill factor for sand (166µm) and 50% for 
the small ballotini (266µm) using a 3L chamber with a 140mm internal diameter. 
 
3.5.8 Effects of air leaks on resonant frequency and Q factor 
Using the holed 3L chamber from the chamber mapping, Section 3.5.9, allowed 
investigation of air leaks in a Helmholtz resonator. The holed chamber contained ten 
0.8mm holes evenly spaced on two sides of the chamber. The holes are there to allow 
a suspended ball to be moved inside the resonator by feeding a cable through the 
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chamber wall at different locations. Therefore, a range of leak combinations were 
investigated that determined the effect of individual leaks and if leak location was 
important. 
 
The addition of a single air leak compromised the accuracy of resonant 
measurements. The air leak resulted in large acoustic attenuation. This reduced the Q 
factor, which in turn lowered the resonant frequency’s resolvability. It was found that 
the resonant frequency was increased by 0.2Hz per leak and the Q factor reduced by 
14Log(n), where n is the number of leaks. The placement of the leak in the chamber 
was shown not to be significant. 
 
In contrast to multiple air leaks, an individual leak having a variable size showed a far 
greater effect on the resonant frequency. Despite this the behaviour was predictable 
and a distinct air leak size to resonant frequency second order relationship could be 
determined. A second order trend was also seen in the Q factor reduction with 
increasing air leak size. When the air leak size was greater than a threshold size 
determined by the boundary layer thickness, the air leak started to act as a secondary 
port. The air leak size at which this occurs is determined by the resonant frequency 
(See Appendix A, Section 9). 
 
When the boundary layer dominates the effect is to pinch off the air leak causing an 
acoustic barrier that absorbs energy from the resonant system. The sound velocity 
through the leak is unable to move at the bulk velocity occurring in the chamber and 
port. As the leak area is increased the pinch region is less than the area of the hole, 
thereby allowing a secondary port to form. At this size a rise in the Q factor should 
occur as the attenuation properties of the leak decline and the leak starts to aid 
resonant behaviour. This was seen in the results for an air leak diameter over 6mm 
using the 3L chamber having a 170mm main port. 
 
3.5.9 Effects of sample position on volume measurements 
Results from the 42mL sphere placement at different locations within the chamber 
showed a marked difference in resonance behaviour only occurred when the ball was 
placed in the immediate vicinity of the port entrance. This result was expected as it 
was observed in water calibration tests. Adjusting the sphere position enabled a direct 
frequency mapping around the port entrance. This data showed directly the 
flange/port length extension zone, which was hemispherical about the port entrance. 
The ball was moved in 1mm steps and was therefore able to reveal transitional 
behaviour at varying distances from the port and its internal flange. 
 
This information assisted in controlled drop experiments in proceeding sections. It 
was necessary to know how the resonant behaviour changed as an object moved 
through the chamber from one port to the other. Axial drop tests through the chamber, 
again with 1mm stepping, revealed a high level of detail in transitions from port 
entrance to exit. This test indicated that the length extension effect of the ports extend 
a far greater distant into the chamber than theory suggested. This ‘extra’ extension 
represents a decay of the bulk air movement protruding from the interior ports. The 
effect is only slight and is less than the achievable accuracy of the system, but greater 
than the repeatability. However, for consistency and accuracy it is best practice to 
make measurements in the centre 1/3 of the chamber for a dual port resonator. 
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3.5.10 Controlled decent using a dual-port resonator and resonant hunting 
It was possible to make accurate measurements for controlled decent of samples 
through the chamber. The maximum speed at which accuracy could be maintained 
was 1mm/s this could be increased to 2mm/s at the expense of doubling the 
measurement uncertainty. Therefore, using the resonant hunting method is not a 
practical method for rapid volume determination of moving samples. These results 
necessitated the development of the Q profile shifting techniques developed in 
Chapter 4. 
 
3.5.11 Measurement of port flanging effects 
A flange factor is the multiplier for the port radius that determines the port length 
extension. Flange factors were measured and used to improve the accuracy in 
calculating volumes for the Q profile shifting procedures in Chapter 4.  The 
configuration using the asymmetric un-flanged external port was found to have a 
flange factor of 1.375. The volume deviation curves used in the resonant hunting 
method (Chapter 3) did not incorporate this experimentally derived flange factor and 
used the theoretical value of (8/3π+0.6)a. The effect of this flange factor error causes 
a proportional offset in the volume deviation curve, the value being determined by the 
difference between the two. However, this discrepancy can be compensated for in a 
calibration correction. Other methods for determining the theoretical flange factor 
values presented by Kang and Ji (2008) gave results significantly less than those 
measured and could not be used for objective comparisons (See Chapter 2, Section 
2.3). 
 
The agreement in flange factor value for both the un-flanged 51mm port and 170mm 
port demonstrated the behaviour of the interior and exterior port were the similar 
irrespective of the port length for the two port tested. It also demonstrated that the 
flange factor was frequency independent as the two configurations resonated at very 
different frequencies. The addition of flange material to the external port revealed a 
steady decrease in resonant frequency with increasing flange size. The maximum 
flange factors measured were close to the theoretical maximum value of 1.698, 
thereby showing at roughly 8:1 flange to port ratio the port appears as a point source 
in an infinite plane. This transition was seen in Figure 3.4.34, Results, as the flange 
factors became asymptotic with very little change in resonant frequency for increasing 
flange size. 
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Chapter 4 
 

New methods in volume determination 
using Helmholtz resonance 
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4.1 Introduction and summary 
 
This chapter represents a progression from the previous chapter in which practicality 
of making volume measurements was tested and proved to be viable. This chapter 
describes the development of methods for reducing measurement time and ease of use 
of the Helmholtz resonator volume measurement system. 
 
To allow faster measurement times a number of methods were undertaken to remove 
the dependence on frequency scanning (chirps) for determining the resonant 
frequency. The first method employed was phase shifting, where the phase change 
was monitored before and after object insertion at a set driving frequency. The 
second, and more successful, was that of Q profile shifting which relies on negligible 
changes in the Q profile with small changes in chamber volume. 
 
To allow accurate predictive techniques using the Q profile shifting method an 
environmental normalisation curve system was implemented to remove environmental 
artefacts from the signal generated by the loudspeaker including acoustic reflections 
and diffraction.  This method was able to generate flat sound pressure levels over the 
desired frequency range. 
 
Over the course of this investigation three Q profile shifting techniques were 
developed, each building on experience gained and progressions made in 
understanding the factors affecting volume measurement. The first used port 
microphone data, collected from controlled drop experiments, which was then post 
processed. The second technique was able to use real time data to determine sample 
volume. The last incorporated environmental data and dynamically created Q profile 
curves and was able to make more accurate real time volume measurements. All 
systems incorporated varying levels of temperature compensation for the speed of 
sound. 
 
Other potential derivations of resonator design were investigated such as an inverted 
port resonator. This resonator variation would allow access to the resonant chamber 
without mechanical contacting or interference. The advantage of such a system would 
be corrosive environments or seal free configurations. 
 
A variable chamber resonator was designed and built to aid in rapid sample volume 
measurement and chamber customisation. This allowed fast repeatable measurements 
of a sample with minimal chamber volume uncertainty. The variable chamber 
resonator was operated with Q profile shifting and environmental normalisation 
curves. 
 
To assess this technology for potential commercial applications a limited number of 
tests were conducted on moving samples in which dynamic measurements were made. 
Measurements on a range of sample types were also undertaken. These consisted of a 
number of agricultural produce samples and two typical rock types having very 
different morphologies used to represent minerals testing. 
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4.2 Equipment and samples 
 
A large part of the equipment used in this section of work is that used in Chapter 3. 
This includes the Perspex dual port 3L resonator, the pulley apparatus, loudspeaker, 
Data acquisition system, temperature sensor, microphones and solid samples. New 
software was developed as necessary. Software algorithms and functional block 
diagrams are provided in Appendix B. Full drawings of all experimental apparatus are 
in Appendix E. 
 
4.2.1 Variable chamber resonator (VCR) 
A variable chamber volume resonator was designed and created to allow 
customisation of the resonator dimensions to better suit the sample size. The chamber 
floor was controlled by a stepper motor linear actuator type SMC LXP B 200, which 
in turn was controlled by a SMC LC56D actuator controller, Figure 4.2.1. The 
actuator controller was sent pulse codes via the computer data acquisition system. The 
positional control was within +15µm, as indicated by the linear actuator manufacturer, 
which equated to a volume uncertainty of +0.25mL. By adjusting the chamber floor 
position the resonator chamber volume could be adjusted from 3500mL to 1600mL. 
The volume measurement accuracy is a function of the full-scale fill, or fill fraction. 
Full drawings of all equipment and software functional block diagrams are given in 
Appendix E and B respectively. 
 

 
Figure 4.2.1 Variable chamber resonator, 1.6L – 3.5L with 175mm port. Shown are linear 

actuator placement and movable floor plate allowing sample insertion. 

4.2.2 Inverted port resonators 
The inverted port resonator consists of a cylindrical chamber and base with a 
removable concentric insert piece forming the port, Figure 4.2.2. A PCB103A 
microphone was inserted into the base of the chamber to monitor resonance. Three 
port pieces were used to test Q factor and resonant frequency. The chamber was made 
of 50mm diameter aluminium tube with a 3mm wall thickness (44mm internal) and 
had a length of 145mm. The three port pieces, made from machined 304 stainless 
steel, were: 41mm diameter with a 50mm length, 41mm diameter with a 25mm length 
and 35mm diameter with a 50mm length. This gives port to chamber radius ratios of 
0.932 and 0.795 for the 41mm and 35mm diameter ports respectively. 
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Figure 4.2.2 Inverted port resonator with removable port piece allowing easy access to 
chamber. 

4.2.3 Buoyancy rig 
A buoyancy rig was constructed, Figure 4.2.3, to allow accurate objective volume 
comparison of produce and mineral samples. Volume measurements were by 
immersion of the produce and mineral samples. Buoyancy volume measurements 
could be made to within +0.3mL, an order of magnitude better than either the 
resonant hunting or the Q profile shifting methods. The principle of operation relies 
on the difference in force for the weight of the sample as measured on the scales and 
when fully immersed. The sample weight minus its immersed weight will be the 
volume in cm3 (mL), dividing by the density of water will give the volume in m3 (See 
Appendix D, Section 4 for calibration and Appendix E for mechanical drawings). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2.3 Buoyancy rig used to either suspend sample or provide forced immersion for 
samples less dense than water. 

4.2.4 Agricultural produce and mineral samples 
The following samples were measured using the buoyancy rig from Section 4.2.3, to 
ascertain their volumes to within +0.3mL. 
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Sample Type Volume (mL) Mass (g) Density (kg/m3) 

Potatoes A Ilam Hardy 232.8 244.9 1052.0 
Potatoes B Ilam Hardy 256.8 269.4 1049.1 
Potatoes C Ilam Hardy 154.2 162.4 1053.2 
Potatoes D Ilam Hardy 143.1 151.3 1057.3 
Potatoes E Ilam Hardy 151.6 160.2 1056.7 
Kiwifruit A Kiwifruit 103.7 107.5 1036.6 
Kiwifruit B Kiwifruit  76.0 78.4 1031.6 
Kiwifruit C Kiwifruit  95.6 99.8 1043.9 
Kiwifruit D Kiwifruit  103.3 107.8 1043.6 
Kiwifruit E Kiwifruit  97.4 100.2 1028.7 
Capsicum A Capsicum 48.1 31.8 661.1 
Capsicum B Capsicum 53.5 34.3 641.1 
Capsicum C Capsicum 50.3 30.4 604.4 
Capsicum D Capsicum 51.5 35.4 687.4 
Capsicum E Capsicum 50.2 32.4 645.4 
Orange A Navel 158.6 151.5 955.2 
Orange B Navel 150.8 144.0 954.9 
Orange C Navel 141.3 133.0 941.3 
Orange D Navel 157.2 141.4 899.5 
Orange E Navel 159.0 147.0 924.5 
Egg A Free range 56.6 62.2 1098.9 
Egg B Free range 55.6 59.7 1073.7 
Egg C Free range 55.3 59.0 1066.9 
Egg D Free range 53.8 58.0 1078.1 
Egg E Free range 65.8 70.1 1065.3 
Avocado A Haas 197.5 197.3 999.0 
Avocado B Haas 178.5 177.1 992.2 
Avocado C Haas 186.9 185.8 994.1 
Avocado D Haas 180.9 180.8 999.4 
Lemon A Lisbon 117.3 106.4 907.1 
Lemon B Lisbon 124.3 112.6 905.9 
Lemon C Lisbon 112.7 101.3 898.8 
Lemon D Lisbon 127.3 114.7 901.0 
Lemon E Lisbon 132.1 121.9 922.8 
Greywacke A Greywacke 82.2 218.5 2658.2 
Greywacke B Greywacke 183.4 493.2 2689.2 
Greywacke C Greywacke 149.7 399.7 2670.0 
Greywacke D Greywacke 99.4 266.6 2682.1 
Greywacke E Greywacke 74.5 199.0 2671.1 
Schist A Schist 52.2 130.9 2507.7 
Schist B Schist 61.0 154.9 2539.3 
Schist C Schist 57.1 144.2 2525.4 
Schist D Schist 101.5 260.6 2567.5 
Schist E Schist 204.6 508.6 2485.8 

Table 4.2.1 Various produce and mineral samples used in variable chamber resonator using 
Q profile shifting. 
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4.3 Methods 
4.3.1 Phase shift technique 
A new and alternative method for finding the volume was investigated using 
frequency phase shift information. A phase shift change occurs in proportion to the 
difference between the driving frequency and the natural resonant frequency of the 
system. The closer the driving frequency is to the resonant frequency the larger the 
phase shift. This is analogous to the phase shift that occurs in resonant electrical 
circuits. 
 
The phase shift was initially measured using the zero crossing differences between the 
driving signal and the microphone signal. However, the zero crossing method was not 
able to give sufficient phase data due to small amounts of microphone signal noise. 
Zero crossings are locations where the amplitude of the signal passes through zero. To 
overcome this, complete wave sections of the signal data were analysed and compared 
to the generated signal to better track phase shifting. 
 
The advantage of a phase shift method is an instantaneous volume measurement. With 
a phase shift method the driving frequency can be set at the resonant frequency for the 
empty chamber system. Therefore, by measuring the phase shift change as an object 
passes through the chamber a phase shift to object size mapping can be made and 
hence allow for instant volume determination without the need to chirp through a 
range of frequencies. 
 
4.3.2 Q profile shifting – Controlled decent 
A new method of amplitude tracking and Q profile shifting (QPS) was also 
investigated. The new method would be able to determine the instantaneous volume 
of an object in the chamber using predictive techniques based on characteristics of the 
resonant peak profile. The resonant system is driven at its natural resonant frequency 
for an empty chamber. As an object passes through the chamber a microphone signal 
change will occur, due to the driving frequency no longer matching the empty 
chamber resonant frequency. 
 
The system will have a resonant frequency based on the object’s location and its 
effect on the geometric properties of the resonator. Important to this process was 
acquiring a Q profile, which defines the resonant peak, to allow a predicted volume 
measurement to be made. A Q profile was acquired for an empty chamber in which 
the frequency is swept over a sufficient range to include the largest frequency shift 
likely to occur for the largest object to be tested. Also required were accurate 
temperature measurements as subsequent measurements are likely to be at different 
temperatures than at the time of the resonant peak profiling. Temperature data is 
incorporated in the Helmholtz equation for volume calculations. 
 
Assuming there will be negligible changes in the Q profile shape for small changes in 
chamber volume, the Q profile can be frequency shifted to predict the volume of the 
sample. The amount of frequency shifting required for the Q profile is determined by 
the signal change of the port microphone. The greater the signals difference between 
an empty chamber level and one with a sample, the greater the frequency shifting 
required. 
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The Q profile was interpolated using a spline as well as a 5th order polynomial to 
evaluate which would be a more accurate method for frequency shifting. The spline is 
an n order polynomial where n is the number of points making up the Q profile. A 
fifth order polynomial was found to be the lowest order that was capable of accurately 
interpolating the Q profile over the required frequency range. Q profiles were 
gathered for three spherical samples to gauge how Q profiles changed with object 
size. The three spheres volumes were 7mL, 23mL and 42mL. 
 
As an object passes into the top port a significant reduction in cross section of the port 
occurs and there is a corresponding large microphone signal change. Once an object 
has passed into the chamber both ports will be free of interference and the resonator 
will behave in a similar fashion to that of the empty chamber. A reduction in 
microphone amplitude will occur due to the system no longer resonating at its ideal 
level, caused by the chamber volume change. By dividing the frequency signal from 
the microphone into individual cycles, a cycle-by-cycle analysis of the changing 
microphone amplitude can be made as the object passes through the port and into the 
chamber. The individual microphone levels are then subjected to a five point running 
average to minimise outliers and noise. 
 
Using this method three distinct regions can be analysed, the empty chamber 
amplitude prior to releasing the object, the port interference amplitude as the object 
passes into and out of the port and the amplitude where the object was in a valid 
measurement region within the chamber. By comparing the difference in amplitude 
between the empty chamber and the object in the valid region a ratio difference in 
signal can be determined. Next a Q profile shift (QPS) was made in which the Q 
profile was frequency shifted in intervals of 0.005Hz until the amplitude of the 
trailing edge of the curve was at the ratio detected by the microphone (signal ratio 
between no sample and the sample in the centre of the chamber). The number of 
increments needed to achieve this ratio will determine the new predicted resonant 
frequency. For example if 400 steps are required to achieve the ratio change then the 
new resonant frequency would be 400 x 0.005Hz, plus empty resonant frequency, 
plus the temperature compensation factor, Figure 4.3.1. 

 

Figure 4.3.1 Software adjustments to the Q profile required to make predictive volume 
measurements. A is the frequency shift due to temperature change, B the 
frequency shift associated with a volume change and D the total change in 
frequency that is used to predict the new resonant frequency. C is the amplitude 
change proportional to the change in microphone level at the initial resonant 
frequency. 

 

A B 

C 

D 
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From the newly determined resonant frequency and temperature information at the 
time of measurement a volume can be predicted for the object based on the Helmholtz 
equation for a multi-port resonator. 
 
More formally the mathematical model was constructed and can be described by 
Equations (4.3.1) to (4.3.4). This uses Equation (No.22), Basic Equations, and linear 
speed of sound compensation for c. The object volume w is a differential volume; the 
empty chamber volume minus the one measured containing the object. The first 
frequency, freq1T2, is calculated based on a shift in temperature since the empty 
chamber frequency scan, freq1T1 , at the initial temperature (Temp1), Equation (4.3.2). 
Equation (4.3.3) is the 5th order polynomial approximation of the resonant peak curve 
i.e. the Q profile. Equation (4.3.4) is the value of the predicted resonant frequency 
based on polynomial curve, temperature and the number of frequency increments 
required to reach the ratio of microphone attenuation. 
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where w is the object volume, Temp 1 and Temp 2 are the initial and subsequent 
temperatures respectively, Sp the combined port area, lp’  the length corrected port 
length, freq1T2 and freq2T2 the frequency at Temp 2 before and after object insertion, 
freq1T1 the frequency at Temp 1 before object insertion, Vc the chamber volume, 
dB(freq1T1) and dB(freq2T2) the amplitude in dB at freq1T1 and freq2T2, Dfreq the 
driving frequency, ∆freq the change in frequency required to achieve a percentage 
change in amplitude seen in lowering the object through the chamber, dfreqT2-T1 the 
change in resonant frequency due to temperature change, a1 to a6 the experimentally 
found coefficients for the fifth order polynomial fit of the Q profile and Ω(Dfreq) the 
fifth order meta function dependant on the driving frequency. 
 
4.3.3 Q profile shifting – Free falling sample 
For free fall tests two regions of port obstruction occurred. Of interest is the region 
prior to port entry and that of the valid measurement region within the chamber. Three 
spheres were used in the freefall experiments, 7mL (23.85mm), 9mL (25.40mm) and 
23mL (35.50mm). Sphere sizes larger than the 35.50mm diameter sphere tended to 
collide with the chamber or cause unacceptable pressure interference in the ports. This 
was due to the small clearance between sample and port, the port having a diameter of 
44mm. 
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The same methods of recording and analysing data were used as those used in the 
controlled descent procedure, Chapter 3, Section 3.3.10. The only difference being the 
removal of a five-point running average on microphone signals. This was performed 
to give finer detail of microphone amplitude in the decent with compromises in noise 
level. 
 
A cotton thread suspended the samples to be measured; the thread was then run over 
the pulleys shown in Figure 3.2.4 (See Chapter 3, Section 3.2.10). As the driving 
frequency was started the thread was released and suspended the sphere allowed to 
freefall through the chamber. This was repeated for the other two samples. A control 
was conducted using a slower descent (50mm/s) to gauge changes in signal level for a 
controlled drop versus a freefalling sample. The time to traverse the dual port 
resonator was less than 2 seconds. 
 
4.3.4 Environmental Normalisation Curve (ENC) 
Spurious deviations caused by environmental effects such as the loudspeaker, 
diffraction and reflections, are a constant problem in ascertaining the behaviour of a 
given resonator configuration (See Appendix D, Section 3). To overcome this a 
profile scan over the desired frequency range at 0.1Hz stepping intervals was taken at 
a location appropriate to where the port of the resonator would be without the 
resonator present. This then provided a benchmark response curve for the sound that 
would be incident at the mouth of the port. 
 
Using the environmental normalisation curve (ENC), a flat output of equal sound 
pressure level could be produced by the loudspeaker at a given special location. This 
was achieved by inverting the ENC amplitude profile to that measured at a given 
frequency. The reversed amplitude signal was then used in frequency generation. 
Alternatively, the ENC could be used in normalising Q profiles by linear interpolation 
and superposition. To verify the technique an ENC was recorded and then used in a 
subsequent frequency scan over the same range (at the same temperature). By taking 
ENC over a range of temperatures it was also possible to track how the environment 
changed with temperature and incorporate this in QPS software algorithms. 
 
4.3.5 Continuous Q Profile Shifting technique (QPS) 
The previous method developed was further refined and used in continuous 
measurements with the standard 1L, 2L and 3L chambers with a single port. The 
software algorithms were also redesigned to incorporate accurate temperature 
tracking, dynamically shifted Q profiles, environmental compensation and linear 
interpolation rather than the previous polynomial/spline fit. This allowed 
measurements of a far greater range of volumes and enabled good accuracy over a 
wider range of temperatures. 
 
The initial Q profile scan was similar to that used in the controlled drop with QPS. 
This consisted of pink noise followed by two successive resonant peak scans and a 
detailed Q profile scan. This profile was then used in all the subsequent measurements 
for the given set of measurements. 
 
A more faithful curve interpretation is possible using linear interpolation of the Q 
profile rather than polynomial curve fitting. This was achieved by initially taking a 
detailed scan of the Q profile, typically 0.1Hz stepping. The Q profile is then 
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superimposed on an environmental normalisation curve (ENC) taken of the 
surroundings at the same location as the port microphone, but with the resonator not 
present (See Section 4.3.4). The result is a normalised Q profile free from anomalous 
effects. The environmental curve is frequency shifted in proportion to the difference 
in temperature (ENC) to the Q profile temperature. Hence, only one environmental 
profile is needed regardless of any subsequent temperature changes. 
 
The normalised Q profile is then subjected to the same linear shifting procedure used 
in the controlled decent QPS procedure (successive frequency stepping to the required 
degree of microphone signal attenuation). The principal difference is linear 
interpolation of the shifted profile rather than a numerical calculation based on a 
polynomial or spline. To make better use of the Q profile, where the gradient is 
steepest, the driving frequency was selected at a location 1dB less than the peak 
amplitude (at resonant frequency). This avoided the region at the top of the profile 
where there was very little change in dB/mL for small samples. 
 
Once the Q profile is acquired, the loudspeaker emits a single tone frequency, which 
is monitored in the port using the PCB microphone. Continuous volume readings 
based on microphone signal changes are then displayed. Temperature compensation is 
dynamically applied by monitoring a Resistance Temperature Device (RTD). 
 
An improved Q factor measurement system was also incorporated. The improved 
method uses a 3rd order polynomial fit of the data between the lower –3dB frequency 
and the –1dB upper frequency. This removes any ‘roughness’ in the Q profile, which 
normally makes high accuracy Q measurements difficult. 
 
Temperature stability tests, Q profile stability tests and calibration plots of varying 
sample shape were used to confirm the validity of these techniques. Monitoring the 
predicted volume with changing temperature would test temperature compensation. 
Inspecting Q profiles at different chamber sizes by including regular solids would test 
Q profile stability. Granular materials cannot be used with QPS. Because of their 
porous natures the samples have an associated acoustic resistance causing attenuation 
of the resonant peak. This attenuation is indistinguishable from that caused by the 
inclusion of a sample. 
 
4.3.6 Inverted port resonators 
An experimental trial on inverted port resonators was undertaken to determine the 
feasibility of using an alternative method of measuring sample volumes in a 
Helmholtz resonant system. The inverted port resonator consists of a cylindrical 
chamber and base with a removable concentric insert piece forming the port, Figure 
4.2.2. The ability to easily insert and remove the port piece, giving access to the 
resonator interior, was the primary purpose of testing this configuration. This set up 
avoids the need for air seals and provides a simple way of accessing the interior of the 
chamber for volume measurement, which could be highly desirable for commercial 
applications of this technology. 
 
4.3.7 Variable chamber resonator (VCR) 
A variable chamber resonator VCR (See Section 4.2.1) was used with Q profile 
shifting (QPS) techniques similar to those described in Section 4.3.5. However, Q 
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profiles were shifted and overlain with ENC data in real time to further refine and 
speed up volume measurements. 
 
The raw Q profile was first stripped of environmental components using the ENC data 
to give a ‘naked’ Q profile. This naked profile was then frequency shifted and the 
corresponding ENC data superimposed. A comparison was then made to see if the 
resultant attenuation at the driving frequency matched that detected by the port 
microphone. If not, the process was repeated with increasing frequency shifting until 
either the ratio of attenuation (as measured with and without a sample) was detected 
or the shifted profile was out of range. 
 
In this way the QPS was dynamically dependant on the ENC profile at any given 
frequency. This method is more faithful to the true Q profile that would be measured 
had there been a scan over that frequency range. Correlation between predictive 
dynamic shifting was compared to actual Q profiles to evaluate the success of this 
method. 
 
A complete set of solids testing and chamber floor positions were carried out to act as 
comparisons to earlier measurement techniques. Adjusting the chamber floor in 1mm 
steps was equivalent to water calibration tests conducted in the static Perspex™ 
resonator. A further use for the VCR was to investigate rigid body resonators. The first 
generation resonators were made of Perspex™ hence; there would be some acoustic 
loss through the chamber walls associated with the lack of rigidity. In an attempt to 
reduce rigidity losses the VCR was made of thick wall, 304 stainless steel pipe (NPS6 
schedule 40). It was hoped that there might be an increase in Q factor with the 
improvement in resonator stiffness. This would give an increase in frequency 
determination due to a more defined resonant peak and therefore improve accuracy. 
 
4.3.8 Applications – Produce and mineral testing 
A number of produce and mineral samples were measured using a variable chamber 
resonator (VCR) and dynamic Q profile shifting (QPS), Table 4.2.1. This would test 
the VCR/QPS methods suitability for these applications. Samples of agricultural 
produce included potatoes, kiwifruit, capsicums, oranges, eggs, avocados and lemons. 
Capsicums were included as they have a large internal void space, which the other 
produce samples do not. Mineral samples comprised of greywacke and schist. The 
greywacke was a regular smooth stone with uniform density whereas the schist 
samples were highly angular.  
 
Five specimens of each sample type were measured, with the exception of the 
avocados in which only four were measured. Volumes ranged from 50mL to 
approximately 250mL. Most samples had a narrow size range with the exceptions 
being potatoes, greywacke and schist. The mineral samples, the kiwifruit, and the 
orange samples were also measured with the resonant hunting method and the results 
compared to identify trends between the two systems in measurement applications. 
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4.4 Results 
 
4.4.1 Phase shift technique 
Using phase shifting proved difficult as the phase shift for the objects being tested 
was very small. For the 42mL spherical ball the phase shift was about 0.002 seconds 
in the dual port 3L resonator. The uncertainty in this measurement, using zero 
crossing information, was typically 25%. Hence, for the largest sample tested that 
could pass freely through the ports, the accuracy was limited to +10.5mL.  
 
By observing larger numbers of wavelengths better resolution was achieved up to 
about +3% of the chamber volume. Further work would be required to fully test this 
method. However due to superior resolution in microphone attenuation occurring, Q 
profile shifting was deemed a better measurement option. The fastest speed tested at 
which reliable data could be collected was 80mm/s. The benefit of the phase shift 
method was its ability to give near instantaneous results. Only preliminary results 
were gathered for this component and as such were insufficiently detailed for 
presentation here. 
 
4.4.2 Q profile shifting – Controlled drop 
Results from resonant peak profiling with differing sample sizes showed there was a 
distinct loss in resonant peak amplitude caused by environmental effects, Figure 4.4.1. 
From previous data using static measurements the Q factor was observed to be nearly 
constant over small changes in sample volume. It was expected that the resonant 
amplitude would also remain fairly constant. Figure 4.4.1 shows the resonant peak Q 
profiles linearly decreased with increasing sample size over this narrow measurement 
range. 
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Figure 4.4.1 Q profiles for four chamber configurations, each using a different sized sphere. 

Using a 3L chamber with two 22mm radius, 51mm asymmetric ports. 

 
A plot of resonant peak decay with increasing sample size revealed a near linear 
relationship for the small range of samples tested, Figure 4.4.2. This decay value was 
factored into the Q profile shifting procedure to allow better resonant frequency 
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prediction in determination of the object within the chamber. Therefore, as the Q 
profile is incrementally increased, a further amplitude increase is applied to allow for 
the natural decline in the resonant peak with increasing sample size. The cause of this 
decline is a combination of loudspeaker frequency efficiency and environmental 
factors such as sound absorption for the given environment (See Section 4.4.4). 
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Figure 4.4.2 Resonant peak with increasing sample size for Q profile shifting. Tests used a 

3L chamber with two 22mm radius, 51mm asymmetric ports. 

 
The effect of an object passing through the port greatly altered the microphone’s 
instantaneous Root Mean Squared (RMS) voltage amplitude, as can be seen in Figure 
4.4.3 where large dips are present as the sample passes through the ports. Even with 
the smallest sample (7mL) a significant amplitude reduction is observed. The dips 
represent markers that can be used to delineate the chamber region. By taking a 
measurement centred between the dips a reading at the chamber mid point was 
acquired. This was then compared to the initial reading and the ratio was then used in 
Q profile shifting. 
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Figure 4.4.3 Reduction in RMS amplitude as samples pass through the chamber at 80mm/s. 

Transition dips are present as the samples pass through the ports.  Using a 3L 
chamber with two 22mm radius, 51mm asymmetric ports. 

‘Horns’ 
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The maximum speed at which a sample can descend through the chamber is a 
function of the port to sample diameter ratio and drop speed. The measurements made 
in Figure 4.4.3 were at 80mm/s. In Figure 4.4.3 significant ‘horns’ start to appear for 
the 42mL sample. These horns press into the measurement region. Interference 
between sample and port give rise to the horns as it is lowered through the port. The 
tighter fit between the sample and the port the larger the horns. 
 
Using the RMS amplitude tracking with Q profile shifting, accuracies of +0.1% of 
full-scale fill were achieved and repeatability of +0.04% of full scale. For the 3L 
chamber this represents +3mL and +1mL respectively. This is similar to the accuracy 
achieved in static measurements using the resonant hunting method of Chapter 3 
(+3mL accuracy and +1mL repeatability, assuming no disassembly). Because of 
restriction in port diameter a large sample range could not be used to verify accuracies 
of larger samples. 
 
A comparison between a spline vs. a 5th order polynomial fit was made to determine 
which would be best suited to interpolate data in Q profile shifting over the frequency 
range of 183Hz to 187Hz. A polynomial of degree 5 was the lowest order capable of 
accurately reproducing the resonant peak curve. 
 
For an empty chamber the two methods gave almost identical results, Figure 4.4.4. 
This is in contrast with data collected in an earlier test shown in Figure 4.4.1, which 
contains a number of ‘kinks’ for the empty chamber. Further testing with samples of 
42mL, 23mL and 7mL revealed better consistency was obtained using a 5th order 
polynomial rather than a spline. A number of repeat Q profiles indicated profile 
‘kinks’ were non-repeatable aberrant behaviour associated with environmental effects. 
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Figure 4.4.4 Comparison between spline fit and 5th order polynomial using an empty 

chamber. 3L chamber with two 22mm radius, 51mm asymmetric ports. 

 
The volume deviation using a spline tended to be larger when the sample size was 
small, with deviations of 4mL, 5mL and 5ml for the 42mL, 23mL and 7mL samples 
respectively. The polynomial fit had a near linear volume deviation of 2mL, 3mL and 
2mL for the 3 sample sizes tested. This should be expected, as any aberrant ‘kinks’ in 
the spline near the top of the Q factor curve should give the biggest deviations. 
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A changing the decent speed varies the number of microphone data points, thereby 
limiting the discernable information at the start of the drop and the critical centre 
region of the chamber. Results for a variable drop speed, Figure 4.4.5, were used to 
create a chamber map of varying speeds. From this an upper limit of 100mm/s was 
reached for the 42mL sample due to the lack of available data at the start of the 
controlled drop and poorly defined data in the centre region. The peak value of the 
horns and their penetration into the chamber was found to be independent of the drop 
speed. This suggests that the horns are a function of port to sample diameter ratio 
only. The chamber length is roughly 300mm, so the transit time through the 3L 
resonator is this length divided by the descent speed. 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2 4 6 8 10 12

Time (s)

R
M

S
 A

m
p

lit
u

d
e 

(V
)

Speed 1

speed 5

speed 10

 
Figure 4.4.5 Changes in descent speed for an aluminium sphere of 42mL. Speeds 1, 5 and 10 

are 28mm/s, 50mm/s and 100mm/s respectively. Tests used a 3L chamber with 
two 22mm radius, 51mm asymmetric ports. 

 
Temperature effects were again found to be very significant at these high accuracies 
and must be accounted for if temperature stability is to be maintained, as was 
observed in Chapter 2, Section 3.4.3. By constantly tracking the temperature to within 
0.1°C the resultant volume calculations could be kept to within +1mL when repeat 
measurements were made of the same sample over an 8 °C change in temperature. 
 
4.4.3 Q profile shifting – Free falling sample 
In contrast free fall tests were not successful as the number of complete cycles at the 
driving frequency was inadequate to be representative of the measurement region 
within the chamber. Comparing the measurement data for the 23mL ball, between a 
free fall and controlled drop, revealed the plateau signal level was never reached in 
the free fall test, Figure 4.4.6. A similar pattern was seen in a test conducted with a 
9mL ball. 
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Figure 4.4.6 a) Free fall data for 9mL and 23mL spheres. 9mL sphere measurement at 0.1s 

and 23mL measurement time at 0.25s b) comparison of slower descent speed at 
60mm/s. Tests used a 3L chamber with two 22mm radius, 51mm asymmetric 
ports.  

 
4.4.4 Environmental normalisation curve (ENC) 
Anomalous effects caused by loudspeaker, diffraction and reflection can significantly 
alter the measured Q profile. This is visible in Figure 4.4.7 where the leading edge of 
the Q profile is distorted by environmental effects. Using superposition techniques the 
Q profile can be restored to its true shape. This process was essential in the 
development of an accurate Q profile shifting methodology described and applied in 
Section 4.4.5. 
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Figure 4.4.7 Corrected Q factor curve using ENC. 

As part of the environmental normalisation curve (ENC) verification method an ENC 
post processed Q profile was directly compared to a dynamic ENC Q profile, Figure 
4.4.8. The two Q profiles lie atop each other demonstrating the validity of the ENC 
process. If differences were seen between the two profiles this would indicate the 
ENC data was not able to adequately compensate for the loudspeaker, reflection and 
diffraction effects. 

a) b) 
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Figure 4.4.8  Comparison of Q factor curve dynamically adjusted with ENC data and the 

same Q factor curve post processed using the ENC data. 

 
Environmental effects (Temperature, reflection and diffraction) also have the potential 
to shift the true resonant frequency. This is dependant on how strongly the system is 
resonating and the levels of environmental attenuation. Often the resonant peak would 
coincide with a major environmental peak or dip. For example the resonant frequency 
of the empty 3L chamber and 170mm long port configuration was approximately 
83Hz, which coincided with a region of very poor environmental stability between 60 
to 100Hz, Figure 4.4.9. 
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Figure 4.4.9 Stability and linear shifting of environmental profile with changing temperature 

between 60Hz-100Hz. 

 
Figure 4.4.9 also shows that the environmental curve has small temperature 
dependence. In this instance there is an average 0.7Hz increase in the profile for an 
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approximate 10ºC rise in temperature. This environmental temperature dependence 
must also be incorporated in the following procedures using ENC data. 
 
To gauge the full array of environmental effects on Q profiles an examination of the 
resonant peak amplitudes for a range of chamber fill levels using water was 
undertaken, Figure 4.4.10. The equipment used was the 3L chamber and 51mm long 
port. An ENC is also shown demonstrating that the resonant peak amplitudes follow 
closely the profile of the ENC. Necessitating the use of ENC data in conducting Q 
profile shifting. 
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Figure 4.4.10 Resonant peak amplitudes for various chamber fill levels and the ENC profile. 

 
When Q profiles were rerecorded incorporating an ENC profile, the resonant peak 
amplitudes still displayed significant variations in height for fill levels greater than 
approximately 500mL, Figure 4.4.11. The Q profiles were consistent with only minor 
changes in slope or value up to approximately 1L. As the fill level approached 1L, the 
Q factor value reduced indicating a steady decline in resonant energy. A flat, 
corrected profile is also shown in Figure 4.4.11 demonstrating the incident energy at 
the port was of equal sound pressure level. Therefore, peaks and dips in resonant 
energy are purely a function of the resonant system. The onset of Q profile 
broadening at 1L is not in keeping with observations made with the 3L Perspex 
resonator, which had a consistent Q factor up to 80% chamber fill. The cause of this 
discrepancy is unknown. 
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Figure 4.4.11 Q profiles for increasing fill with ENC corrected curves using a 3L chamber and 
51mm port with increasing fill level using water. 

 
4.4.5 Continuous Q profile shifting technique 
Five successive repeat Q profiles were recorded along with five repeat environmental 
normalisation curves (ENC) to ensure the software and hardware components were 
capable of replicating results under the same physical conditions. Figure 4.4.12 
testifies to the integrity of the software algorithms and hardware used. The deviations 
from the first trial to the last show negligible change in either Q profiles or ENC 
profiles. The loudspeaker and items in the immediate proximity of the resonator have 
temperature and humidity associated characteristics and it is these items that are likely 
to account for differences in ENC profiles. 
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Figure 4.4.12 Five repeat measurements of the Q profile and the environmental curve at 

17.0ºC showing negligible variation. 
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The Q profile shifting (QPS) technique relies on the Q profile being invariant with 
temperature. To test this assumption a 3L chamber and 51mm long port configuration 
was tested with Q profile curves superimposed with temperature compensated ENC 
data. Both an empty chamber and one containing a 278mL steel sphere were tested at 
two temperatures, Figure 4.4.13. Despite an almost nine degree increase in 
temperature the results indicate almost identical profiles with negligible deviations in 
Q profile shape. This result shows the profiles change in frequency with temperature 
but not shape. 
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Figure 4.4.13 Temperature stability tests at T1 (21.9ºC) and T2 (13.6ºC) using a 3L chamber 

with a 51mm port and a 278mL steel sphere sample. 

 
Amplitude deviation between Q profile curves is approximately +1dB for the two 
different temperatures with and without a sample displacement of 278mL, Figure 
4.4.14. Sound pressure level deviation data was gained by aligning the resonant peaks 
of the T1 and T2 Q profile curves. The rapid zero crossing at 127Hz and 134Hz 
represent the alignment frequencies for the empty and sample displaced chamber 
respectively. 
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Figure 4.4.14  Temperature stability: Sound pressure level deviation for the empty chamber 

and for a 278mL spherical displacement sample. Resonator has 3L chamber 
with 51mm long, 44mm diameter port. 
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An empty chamber profile has been frequency shifted to overlay one taken when a 
278mL steel ball was present to demonstrate the small deviation in Q profile, Figure 
4.4.15. The shifted profile having marginal profile divergence results in the need for a 
calibration curve seen in Figure 4.4.17. The 278mL steel sphere represents one of the 
largest samples that it was feasible to measure using QPS. As profile deviation is a 
function of sample size, the majority of samples will have profiles with significantly 
less divergence. 
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Figure 4.4.15 Q profile stability profiles taken at constant temperature and using 278mL steel 

sphere sample showing profile insensitivity to volume change. Also shown is a 
frequency-shifted profile of the empty chamber to allow direct comparison. The 
chamber was 3L and port 51mm. 

 
The amplitude deviation is maximal either side of the resonant peak reaching values 
+1dB, Figure 4.4.16. This difference occurs because the Q profile is changing shape 
and is not symmetrical about the resonant frequency. The asymmetry changes with 
sample size and shape. Minor variations in the environmental normalisation curve can 
also exaggerate this effect. 
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Figure 4.4.16  Q profile stability: associated sound pressure level deviation for a 278mL 

spherical displacement sample. Resonator has 3L chamber with 51mm long, 
44mm diameter port. 
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Volume measurements were conducted using the improved QPS method with a 
number of spherical, cubic samples and water at varying fill levels. The improved 
QPS method incorporates an empirically derived flange factor (See Chapter 3, Section 
3.4.11), a temperature factor (See Chapter 3, Section 3.4.3), linear interpolation and 
ENC Q profile correction using super positioning. 
 
The cost of these enhanced features was a computing bottleneck when performed 
using a computer having a 2.4GHz Intel CPU.  Very large numbers of calculations 
must be made every second which increases proportionally to the quantity of Q 
profile shifting required, the larger the volume the greater the frequency shifting. 
Coupled to the calculation times are the thousands of samples being analysed and 
generated every second by the data acquisition system. This restricted the maximum 
measurable sample volume to about 300mL in a 3L chamber with a 51mm port. 
 
Despite the limited volume range the continuous QPS method was able to measure 
samples to an accuracy of +6mL with a repeatability of +2mL (+0.2% full scale fill). 
This is similar to the previous QPS method and the traditional frequency scanning 
method. The dual port QPS experiments with controlled drop were limited to sample 
sizes of approximately 50mL in a 3L chamber. 
 
As with other techniques in this investigation second order curve fitting was required 
to counter discrepancies between theory and measurement. Comparisons between 
different sample geometries are given in Figure 4.4.17, all of which can be 
represented by a second order volume deviation curve. Only small changes are 
required in second order trends for the range of volumes tested. For small volumes 
between 0-220mL an averaged second order curve fit is capable of giving accuracies 
of +6mL (+0.2% full-scale fill or +2% for largest practical sample) irrespective of 
sample geometry, Figure 4.4.18. For samples larger than 220mL divergent second 
order corrections make specific curve fitting a necessity. 
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Figure 4.4.17 Volume deviation data and second order polynomial fitted curves for differing 

sample shape using the continuous QPS method. Resonator has 3L chamber 
with 51mm long, 44mm diameter port. 
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Figure 4.4.18  Continuous QPS deviation volume from true volume using a generic correction 

factor on water fill, sphere and cube volume. Resonator has 3L chamber with 
51mm long, 44mm diameter port. 

 
Similar second order volume deviation trends were also observed when the smaller 1L 
and 2L chambers (170mm port) were used with this method. Accuracy based on the 
full-scale chamber volume also remained similar. Accuracy was +2mL for the 1L 
chamber with repeatability of +0.6mL.  The 2L chamber had an accuracy of +4mL 
and a repeatability of +1mL respectively. This indicates the method is scalable for 
differing chamber sizes. 
 
The typical time for a measurement to stabilise was about 3 seconds. This is in part 
due to the investigator causing a temperature gradient to occur when inserting a 
sample into the chamber. The system requires thermal equilibrium to be achieved to 
make an accurate volume measurement. Also, the changing location of the 
investigator disturbs the ENC profile. Therefore, not until initial environmental 
conditions are replicated will measurements be valid. 
 
An improved Q factor measurement system gave repeat Q factor values of +1, 
whereas previous techniques, using the raw Q profile, were only able to give 
repeatability of +3. This improved method was also useful in making predictions of 
the resonant frequency, as it allowed a more precise value to be determined. Normally 
the peak of the Q factor has a certain ‘roughness’ associated with DAQ amplitude 
measurement limitations. In configurations with a low a Q factor this method offers 
improved resonant peak determination as it effectively smoothes the peak of the Q 
profile. 
 
4.4.6 Inverted port resonators 
Q profiles seen in Figure 4.4.19 were gathered using three port insert variations (See 
Figure 4.2.2) with environmental factors negated using the environmental 
normalisation technique described in Section 3.3.4. The two inserts with diameters of 
41mm showed significant resonant peak broadening indicating substantial viscous 
losses associated with acoustic resistance in the form of boundary layer effects. As the 
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port area is similar to the regular resonators used the losses associated with radiation 
resistance are expected to be comparable. By choosing two contrasting port plug 
lengths, each resulting in low Q factors of approximately ten demonstrated the losses 
are definitively boundary layer related and not port length related, Figure 4.4.19. 
When a port plug of 35mm diameter was implemented the resonant losses were 
significantly reduced and the Q factor increased to 33. 
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Figure 4.4.19 Environmentally normalization curve, corrected curve and inverted port 

resonator Q profiles curves with three port insert plug configurations. 

 
Using equations from Appendix A, Section 9 the boundary layer thickness could be 
assessed for the inverted port inserts. These resulted in values of 20% and 17% 
boundary layer thickness to port thickness for the 41mm diameter plug insert having 
lengths 50mm and 25mm respectively (Figure 4.4.20). The boundary layer thickness 
calculated, reduced to 5% for the 35mm diameter port plug insert. Successful resonant 
frequency predictions indicate the port area is behaving in a similar fashion to a 
traditional port. However, the boundary layer penetrates into the port to a far greater 
degree, interfering with the resonant moving air mass. 
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Figure 4.4.20 Boundary layer to port area becomes substantial for the inverted port resonator 
necessitating a large port area. 

 
The measured resonant frequencies and those found using port radius equivalents 
were within 1% for the 41mm diameter inserts having lengths of 25mm and 50mm. 
The 35mm diameter insert predicted value disagreed by more than 3%, despite having 
a far superior resonant Q factor. The Q factors for the inverted port resonators showed 
large divergence from the theoretical values in a similar manner to inconsistencies 
found with the standard resonator configurations. Predicted Q values were between 
103-399, but actual values fell well short, ranging from 10-33. 
 
4.4.7 Variable chamber resonator (VCR) 
Results for increased Q factor due to resonator rigidity were tested with the variable 
chamber resonator first numerically and then through Q factor measurements. The 
effects of chamber rigidity were evaluated as follows. The characteristic impedance 
(ρ0c0) for air is 415kg/m2s (rayls), water 1.48x109rayls, aluminium and Perspex™ ~17 
x106rayls and steel 47x106rayls (Blackstock, 2000). Therefore, the impedance of air is 
41,000 times less than the most readily coupling material, Perspex. This suggests 
transmission from one medium to another though the wall materials should be 
negligible. However, wall diaphragm effects may still be significant. 
 
Measurements of Q factors for the variable chamber resonator (VCR) were not 
enhanced by an increase in resonator rigidity. The resonator end plates are made from 
high strength alloy aluminium and the resonator body from thick wall 304 stainless 
steel (schedule 40). The movable floor of the resonator is 10mm thick aluminium with 
a 1.7mm O-ring seal. The required force to overcome the linear actuator is in excess 
of 45N. Despite these improvements in resonator stiffness the Q factor was 
consistently between 50-60. This is similar to the results for the Perspex™ resonator, 
indicating very little acoustic losses are occurring through the chamber wall, floor and 
ceiling. 
 
Calibrations using the improved dynamically shifted Q profiles were still best fitted 
by second order volume deviation curves similar to those observed in the continuous 
QPS techniques conducted in Section 4.4.5, Figure 4.4.21. Larger volume divergence 
was apparent in the fitted curves between the different sample geometries when 
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Boundary layer 

Chamber volume 
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compared with those in the continuous QPS calibration data. The reason for this 
difference may be associated with the disparity in resonator geometries, differing base 
chamber size and port length. Loudspeaker instabilities at frequencies below 100Hz 
could also cause differences in scatter between the continuous and dynamic QPS 
calibration data. 
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Figure 4.4.21  Deviation volume and second order fitted curves, implemented with VCR using 

QPS, when calibrating for a piston, spheres and cubes. VCR resonator has 3.5L 
chamber with 175mm long, 44mm diameter port. 

 
Using a generic second order curve fit the volume accuracy of the VCR could be 
maintained to within +0.3% (+10mL) of full-scale fill between 0-220mL, Figure 
4.4.22. This is a poorer result than the continuous QPS procedure. However, this 
uncertainty could be improved if a shorter port were implemented to raise the 
frequency range of operation over 100Hz. Loudspeaker instabilities at sub 100Hz 
frequencies limits the potential accuracy in this configuration. 
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Figure 4.4.22  VCR deviation volume from true volume using a generic correction factor on 

piston, sphere and cube volumes. VCR resonator has 3.5L chamber with 175mm 
long, 44mm diameter port. 
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Accuracy could be improved to +0.2% (+7mL) of full-scale fill, Figure 4.4.23, when a 
specific curve fit for a given sample geometry is implemented. Again, it should be 
possible to improve this value to +0.1% by the use of a shorter port to increase the 
resonant frequency above 100Hz. The large quantity of scatter is most prevalent in the 
piston driven variable chamber data despite having a volume uncertainty of less than 
+0.5mL. This suggests data scatter is caused by factors internal to the resonator. This 
is further confirmed by measurements made in an anechoic chamber (IRL, Lower 
Hutt, NZ) in which scatter persisted and accuracy could not be improved beyond 
+6mL (See Appendix D, Section 3). 
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Figure 4.4.23  VCR volume deviation from true volume using a specific second order 

correction on piston, sphere and cube volumes. Resonator has 3.5L chamber 
with 175mm long, 44mm diameter port. 

 
By comparing the measured Q profile and a frequency shifted Q profile the accuracy 
of the dynamic QPS technique was tested, Figure 4.4.24. This shows marginal 
differences in the two profiles. To further resolve deviations Figure 4.4.25 is plotted 
with a standard deviation of 0.4dB over the given frequency range. Agreement 
between the measured Q profile and the frequency shifted Q profile was able to 
confirm the method of dynamic super positioning of the environmental normalisation 
curve (ENC) data onto the ‘naked’ Q profile to adequately predict the Q profile at 
differing chamber volumes. This reduces the need for special environments for the 
Helmholtz resonant volume measurement system. 
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Figure 4.4.24  VCR with dynamic QPS of 133mL sample showing original (empty), predicted 

and measured Q profiles. Resonator has 3.5L chamber with 175mm long, 44mm 
diameter port. 
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Figure 4.4.25  Plot of amplitude deviation with changing frequency for 133mL sample, 

predicted and actual Q profiles. Resonator has 3.5L chamber with 175mm long, 
44mm diameter port. 

 
As the displacement in the chamber becomes larger the ability of the software 
algorithms to accurately predict the Q profile reduces as other factors, such as sample 
geometry, start to affect the resonant behaviour. This effect can be seen in the 
measured and predicted Q profiles, using QPS, for a 215mL cube, Figure 4.4.26.  
Figure 4.4.27 gives the amplitude deviation plot. The resonant frequency is over-
predicted, which is revealed as a rise in the amplitude over the frequency range 76 to 
80Hz, Figure 4.4.27. This increases the standard deviation to approximately 0.8dB. 
As the sample occupies more of the chamber space an increasing impedance occurs in 
the chamber. The sound wave propagating through the chamber experiences different 
impedances above and below the sample. 
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Figure 4.4.26  VCR with dynamic QPS of 215mL cube sample showing original (empty), 

predicted and measured Q profiles. VCR resonator has 3.5L chamber with 
175mm long, 44mm diameter port. 
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Figure 4.4.27  Plot of amplitude deviation with changing frequency for 215mL cube sample, 

predicted and actual Q profiles. VCR resonator has 3.5L chamber with 175mm 
long, 44mm diameter port. 

 
4.4.8 Applications – Produce and mineral testing 
When testing produce and mineral samples using dynamic Q profile shifting (QPS), 
results were generally within +2mL, the only exception being avocados, which were 
measured to an accuracy of +3mL. Each sample type required an appropriate offset 
and/or curve fit to allow for their characteristic texture, surface hardness and acoustic 
diffraction properties. When the sample size variation was less than 20mL from the 
smallest to largest, only an offset value was required, Figure 4.4.28. A calibration 
curve was required for samples having a larger range of sizes such as the greywacke, 
schist and potatoes. 
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Figure 4.4.28 Produce tests displaying the deviation of the predicted volume from the actual 

volume. VCR resonator has 3.5L chamber with 175mm long, 44mm diameter 
port. 

 
Oranges and lemons had comparable behaviour, having similar skin attributes and 
required a single offset value to measure their volumes to within +2mL, Figure 4.4.28. 
Kiwifruit having a hairy surface and no pithy skin behaved slightly differently to the 
citrus samples and required only a small offset value to maintain volume 
measurements to within 1mL. Potatoes had a size variation of over 100mL from 
smallest to largest and when second order curve fitting was used accuracy was within 
+2mL. Generally, the softer produce samples tended to have their volume under 
predicted. 
 
The greywacke and capsicums were the only sample types demonstrating consistent 
over prediction in volume. Schist samples had volume deviations similar to potato 
samples, Figures 4.4.28 and 4.4.29. To the authors knowledge there is no published 
information on acoustic scattering/absorption caused by minerals or agricultural 
produce, and as such is a further area for investigation. However, it may be 
anticipated the combination of scattering and elastic properties of the skin/surface will 
be significant. 
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Figure 4.4.29 Mineral tests displaying parabolic deviation of greywacke and linear deviation 

of schist samples. VCR resonator has 3.5L chamber with 175mm long, 44mm 
diameter port. 
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Significant differences were seen between the measurements on the smooth 
greywacke samples and the schist samples. With appropriate curve fitting both the 
greywacke and schist samples could be measured to within 1mL over the size ranges 
tested. The greywacke samples could be characterised by second order over 
prediction, Figure 4.4.29, whereas the schist sample showed an almost linear under 
prediction with increasing sample volume. 
 
The mineral, orange and kiwifruit samples were measured again using the resonant 
hunting method described in Chapter 2. The VCR was used in order to give a general 
comparison between the two volume measurement systems, Figure 4.4.30. The 
traditional frequency scanning technique was used with a chamber volume of 3.5L, 
identical to the QPS chamber volume. Under prediction was observed for the schist, 
kiwifruit and orange samples and over prediction for the greywacke samples. These 
results mimic those gained using QPS indicating consistent trends between the two 
systems. Accuracy using frequency scanning was +2mL for all the samples when used 
with appropriate offsets/curve fitting. The measurement accuracy for the frequency 
scanning method could be increased by selecting a smaller chamber to improve the 
sample to chamber volume ratio. 
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Figure 4.4.30 Comparison of two mineral sample types and two produce sample types as 

measured in VCR with 3.5L chamber volume. 

 
When the variable chamber resonator (VCR) chamber volume was reduced to 2L the 
volume accuracy for the greywacke and schist samples could be maintained to within 
+1mL, Figure 4.4.31. These results are consistent with trends seen in previous results 
using the Perspex resonators where accuracy was a function of chamber size. Tests on 
produce are not presented, as the timeframe was greater than three days between data 
gathered for tests using the smaller VCR chamber size. This time delay between 
measurements meant the produce sample properties were not necessarily the same as 
those at the time of earlier testing (i.e. Changes in hardness and density due to 
maturation). However the greywacke and schist results are indicative of what had 
been observed in earlier parts of this investigation for a smaller chamber size. 
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Figure 4.4.31 Greywacke and schist samples as measured in VCR with chamber volume of 2L 

with low deviation in volume measurement. 

 
In preliminary produce testing four grapefruit volumes were measured using both 
QPS and frequency scanning (results not presented). Of these, one had a significantly 
different density value, approximately 60g/cm3 less than the others. Upon cutting 
open this sample it was found it had a void space of between 2-5% by volume. This 
result suggests the accuracy of this system may be sufficient to sort samples with 
hidden void spaces. Produce having an internal cavity, as may occur with capsicums 
and apples, represents another potential use for either QPS or frequency scanning 
measurements. A puncture between the internal cavity and the external surface will 
give a highly aberrant volume measurement, resulting in a density error when 
incorporated with the sample’s weight. 
 
Tests with golf ball sized hollow plastic balls with puncture hole sizes of 1mm and 
2mm gave volume results of approximately 50% and 10% of their non-punctured 
volume respectively. This is consistent with part of the internal space being ‘visible’ 
to the driving frequency within the chamber. The amount of coupling between the 
inside of the ball to the outside is a function of the puncture hole diameter. The 
transition for these samples occurred at the 1-2mm range, which is consistent with 
observations of boundary layer penetration dependencies (See also Appendix A, 
Section 9). 
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4.5 Discussion 
 
4.5.1 Phase shift technique 
The phase shift method may prove useful in port chamber configurations with a larger 
port radius. This would allow an optimisation of port radius to sample diameter. 
Improved accuracy and a larger phase shift can be gained when there is an 
appropriately matched object to port ratio. A careful examination of phase shift to 
object size will be needed. The phase shift for the largest object must be as close to, 
but less than 90 degrees to make the greatest gains in accurate measurement. 
 
Investigation using larger numbers of repeat frequency sampling was able to improve 
resolution and accuracy to approximately +3% full-scale chamber fill. However there 
was an increase measurement time and despite significant gains in accuracy the Q 
profile shifting method was able to give far superior results. However, this method 
remains tenable and represents a potential area for future study. 
 
4.5.2 Q profile shifting – Controlled drop 
The microphone amplitude tracking method with Q profile shifting (QPS) method 
proved successful with accuracies and repeatability similar to those gained using the 
resonant hunting method. Using wider, longer ports, improvements could be made 
that would allow larger samples to be tested and superior resonant peak amplitude 
profiles gained. 
 
Tests were made on the time needed in the chamber’s central region for a required 
accuracy as objects traversed the chamber. If the central region is made large then the 
height of the chamber must increase in size accordingly. The problem of pressure 
differentials within the chamber then arises when the length of the chamber starts to 
approach ¼ wavelength of the resonant frequency. 
 
Panton and Miller (1975) noted the pressure difference from the top of the chamber to 
the bottom starts to become significant at as little as 1/16λ, for high accuracy systems. 
This pressure differential invalidates the use of Helmholtz resonator equations as 
these equations assume a lumped invariant pressure within the chamber. The methods 
for non-lumped pressure require the chamber to be calculated as a pressure 
continuum. Further details can be found in Selamet and Lee (2003) investigating non-
linear effects within the chamber. 
 
 For small samples, causing only a slight frequency shift, accuracy is compromised 
due to correspondingly small changes in amplitude about the resonant peak. As the 
object size increases the changes in microphone amplitude per millilitre become 
greater and more linear. Therefore, it is more practical to use a driving frequency 
either higher or lower than the resonant frequency. Consistent volume uncertainties 
can be achieved if the linear portion of the resonant curve is used to predict new 
resonant frequencies. 
 
In a similar way, it maybe possible to use a higher driving frequency. For large 
volume resonators a benefit may be had in using driving frequencies higher than the 
resonant frequency. For large resonators, in the cubic metre range, resonant 
frequencies maybe in the 10Hz to 30Hz range, far too low to be practical using 
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standard loudspeakers. But this may be avoided by using a higher driving frequency, 
far to the right of the resonant peak. 
 
The maximum usable range of the resonator will be determined by the Q factor. The 
steeper the Q factor the less the usable range, but the better the resolvability of sample 
size. Either side of the resonant peak a ‘dead’ region exists for which the resonator 
looks like an acoustic barrier to the driving frequency. For this investigation this 
occurred at signal levels less than –50dB. 
 
Microphone signal data contained large amplitude horns for a sample moving through 
the chamber (See Figure 4.4.5). These were largest for sample that had a cross 
sectional area close to that of the port area. The size of the horns was independent of 
the descent speed. The likely cause is blocking of the moving mass of air at the port 
exit, within the chamber, as seen in the chamber mapping experiments of Chapter 3, 
Section 3.4.9, Figure 3.4.32. It is therefore necessary to have a port area 
approximately twice the sample’s cross sectional area. Doing so will enlarge the 
centre measurement region, minimise the horns and allow the fastest possible decent 
speed.  
 
The typical time taken in making a Q profile shifted measurement is approximately 
three seconds. This is a substantial decrease in the time when compared to more than 
40 seconds to make a similarly accurate measurement using the resonant hunting 
method. However, a restriction in sample size exits; this limits the maximum size of a 
sample to what can be fitted through the port entrance and exit. 
 
Two alternate methods for measuring volume remain untested, but may be viable. The 
first using the transition time for the sample to traverse the port and second the change 
in microphone signal level observed as the object passes through the port. Both these 
methods rely on the sample being roughly spherical. For each method the relationship 
would need to be modelled. These two methods may also be suitable for free falling 
samples. 
 
4.5.3 Q profile shifting – Free falling sample 
Free fall measurements using the Q profile shifting method were unsuccessful, but did 
reveal sufficient differences between samples to warrant future investigation. No 
plateau region was seen, mid chamber, in the free fall data. This indicated that 
insufficient repeat cycles were gathered at the driving frequency. It may be possible to 
modify existing software to reinterpret the profile data, but this would require 
extensive investigation with careful consideration given to factors likely to affect 
interaction between sample and port. 
 
A measurement region does exist with a limited number of data points. By performing 
a numerical integration on the perturbation there may be sufficient data for a volume 
measurement. Whether this can be further refined could be an area for future 
investigation. However, refinements in acquisition would need to be conducted to 
establish its plausibility. Alternatively, a far higher driving frequency may give more 
cycles in the central region within the chamber. This would have to be considered 
carefully as higher frequencies cause more significant pressure differentials within the 
chamber and port. 
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4.5.4 Environmental normalisation curve (ENC) 
In calibrating the microphones (See Appendix D, Section 3) it was possible to 
calculate pressures in the port and chamber, even though these were not directly 
relevant to any particular part of the investigation. But, from these calibrations a fifty-
fold increase in pressure was measured between the ambient level and the chamber 
for a Q factor of approximately sixty. This can be contrasted to a pressure increased of 
only ten in the port at this Q factor. 
 
The PCB103A microphone’s calculated sensitivity value is dependant on the 
reference sound measurement device used and the stability of environmental effects. 
Using an environmental normalisation curve profile was able to remove deviations 
caused by loudspeaker, diffraction and reflection, thereby eliminating one of two 
possible sources of error in sensitivity calculations (the other being the sound meter 
calibration). When this was undertaken a 1V peak step change in signal level gave 
3dB (+0.1dB) signal change in measured sound pressure level by both the sound 
meter and the PCB microphone. This similarity in results between the microphone 
and the sound meter allowed subsequent experimental procedures to be conducted 
with objective sound pressure level readings. 
 
Because the resonant system in this investigation is in an open environment it is 
susceptible to external anomalous effects as mentioned previously, loudspeaker, 
diffraction and reflection. The usual solution is to couple the resonator to a zero 
impedance tube (anechoic termination) and loudspeaker combination (Selamet et al., 
1995), but this induces problems such as port and tube coupling, which create 
difficulties greater than an uncoupled system. 
 
Successful negation of the environmental factors was accomplished using an 
environmental normalisation curve (ENC) in which environmental profiles are 
superimposed with reverse frequency amplitudes onto Q profiles. This was able to 
give environmental free Q profiles for resonator configurations. The validity of this 
method was proved when the driving frequency amplitude was superimposed with the 
ENC profile and compared to a post-processed Q profile. Both Q profiles were found 
to be nearly identical, one created dynamically in real time and the other through post-
processing. 
 
A non-repeatable ENC region was found over the frequency range 60Hz to 100Hz. 
Even when the temperature was invariant, repeat ENC profiles were found to change 
significantly over this frequency range. The loudspeaker is the likely cause, as this 
range is close to its natural resonant frequency (~68Hz), where the loudspeaker is 
most unstable.  An environmental linear temperature change was also observed. This 
was only slight (~0.07Hz/ºC), but significant in accurately applying an ENC profile to 
a Q profile. To counter this there are two potential solutions 1) use a loud speaker 
capable of controlled lower frequencies or 2) implement a shorter port on the VCR to 
raise the empty resonant frequency. In future work it is likely a shorter port will be 
used. 
 
Resonant peak amplitude was shown to fluctuate at various chamber fill levels using 
water. Non-linearities were evident, even when a flat frequency response curve was 
presented to the resonant system. This limits the predictable behaviour to fill levels of 
less than 1/6 full-scale fill. Q factor slope variation started to become significant at 1/3 
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full-scale fill. Therefore, the QPS method will be restricted by these considerations 
unless a repeatable and predictable Q factor deviation function can be derived through 
experimental means. 
 
4.5.5 Continuous Q profile shifting technique 
The frequency region below 100Hz was found to be unstable with non-repeatable 
environmental normalisation curves (ENC). This necessitated the use of the 51mm 
port when conducting the majority of the experimental work using continuous Q 
profile shifting (QPS). The 51mm port with 3L chamber resulted in a resonant 
frequency of approximately 135Hz. This combination was able to give repeatable 
results for all the sample types tested. 
 
In early experiments, difficulties using the 170mm port and 3L chamber were 
encountered due to a small glue fracture between the port and flange holding the port 
to the chamber. This small crack caused the resonant amplitude to vary by as much as 
10%, causing large errors in the data. From the calibration of the microphones it was 
known the peak pressure inside the chamber increases 50 fold during resonance, 
which explains why such a small fracture was able to affect the resonant amplitude so 
significantly. This also reinforces the importance of avoiding any air leaks in a 
resonant system. Effects of small leaks in the port can be compared to the significant 
changes to resonant behaviour observed by Peat (2008) in his work on perforated 
ports. 
 
Real time computing limitations represent a restriction in conducting measurements 
over a large range of sample volumes. The number of variables to be shifted and the 
quantity of data acquisition processing becomes very large for samples over 10% full-
scale fill. Ideally testing would be conducted on a range of samples, approaching 1/5 
full-scale fill. This is the volume where the Q profile starts to deviate significantly to 
the empty chamber Q profile. The stability and regularity of Q profile is another 
restriction in QPS. The frequency region either side of the resonant peak, making up 
the Q profile curve, contains a limited range where the profile is stable and repeatable. 
The higher the Q factor, the less the available range for Q factor shifting. Therefore, 
there is a trade off between narrow measurement range with high accuracy or reduced 
accuracy with broad measurement range. 
 
Previous measurements using the QPS method with controlled drop and dual port 
were only able to measure samples capable of passing through the port. This thereby 
restricted the maximum sample volume to approximately 2% of full-scale fill. At 
these small volume sizes the Q profile is only shifted a small amount. Therefore, the 
environmental factors do not adversely affect the measurement and only temperature 
effects need be incorporated. Increasing the fill factor to 10% necessitated the use of 
the more advanced software systems described in the methods relating to this 
procedure. 
 
For the smaller samples, under 220ml in a 3L chamber, the sample geometry did not 
adversely affect the accuracy of volume measurement. This indicates the sample’s 
inability to reradiate sound compared to that of the chamber. This observation is 
reinforced when compared to similar observations made with acoustic barriers in 
Chapter 3, Section 3.4.6. As the sample volume is increased to over 8% of full-scale 
fill the sample’s surface geometry starts to alter the resonant behaviour, changing the 
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resonant strength. Between 8-10% specific second order correction curves are needed 
for the given geometry of the sample type. 
 
The accuracy for the continuous QPS method was found to be similar to the resonant 
hunting method, +0.2% full-scale fill. This equates to a measurement accuracy of 
+6ml with a repeatability of +2ml using a 3L chamber and 51mm long port. Using 
temperature compensation, the system was stable over the temperature ranges 8ºC to 
24ºC. When the chamber size was reduced to 1L and 2L the accuracy was likewise 
scaled, and remained at approximately +0.2% of full-scale fill. The time to make a 
measurement is theoretically 1 second, but this is not possible when an operator is 
required to insert/remove a sample. The thermal variation and the change to the ENC 
caused by the moving presence of the operator makes a three second time delay 
necessary while equilibrium conditions are restored. 
 
4.5.6 Inverted port resonators 
Helmholtz resonance was successfully induced using the inverted port resonator with 
an appropriately chosen port insert. The inverted port resonator was capable of 
sufficiently high Q factors to make volume measurements, approximately +1% of 
full-scale fill. However, the Q factor is not high enough to make measurements at 
comparable accuracies to the standard port resonator used in earlier procedures. But, 
this new and novel approach may have applications in processes requiring 
interference free resonator configurations with accessible interiors. Additionally, the 
resonant frequency can be easy changed by the application of a differing port length 
piece. It may also be feasible to have the port piece at various depths in the chamber 
ranging from fully removed to flush insertion. This should yield a variable frequency 
resonator based on the insertion depth, though Q factor is likely to be compromised. 
 
4.5.7 Variable chamber resonator (VCR) 
The variable chamber resonator (VCR) was able to show that a solid body resonator, 
having very high acoustic impedance, was not able to produce significantly higher Q 
factors to those of the original Perspex™ body resonators. This suggests very little 
sound is propagated away through the resonator body for either type of resonator 
configuration. Therefore, the energy losses are strictly those caused by boundary layer 
acoustic resistance and radiation resistance from the port. A third source of acoustic 
resistance can occur from energy absorbed in a porous sample as with the granular 
materials experiments. 
 
It was unclear why larger divergences were apparent in the curve fit calibrations seen 
in the dynamic QPS used for the VCR to those observed in the continuous QPS data. 
Some differences could be associated with the disparity in resonator geometries. The 
Perspex™ resonator has an internal diameter of 140mm, whereas the VCR has an 
internal diameter of 156mm. There was also a difference in port length, 175mm for 
the VCR and 51mm for the Perspex™ resonator. Results suggest resonators with a 
higher average frequency are less susceptible to sample geometry. However, 
transmission theory suggests that a lower average frequency should give less 
divergence, Blackstock (2000). 
 
In both the dynamic and continuous QPS techniques the Helmholtz equation used to 
derive the frequency is for a chamber having no impedance change associated with 
the inclusion of a sample. Therefore, it is expected that diffraction from sample edges 
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and impedance changes, due to the sample cross sectional area, should cause roughly 
the same divergence in each method. The continuous QPS technique had the most 
divergence for the spheres, whereas for the dynamic QPS technique it was the 
movable piston. The piston behaviour should be identical to changes in volume 
caused by water filling. 
 
Good agreement between real and predicted Q profiles demonstrated the ability of the 
dynamic QPS technique to accurately create Q profiles for small sample sizes (<5% 
full-scale fill). As the sample size approached 10% of full-scale fill, significant profile 
deviations started to occur and there was a need for deviation volume curve fitting for 
the given sample type. For all samples an increase in the Q profile asymmetry was 
observed with increasing sample size that made large frequency shifting increasingly 
less accurate. At these larger fills other factors such as changing higher order 
harmonics and sample interference patterns start to become more dominant, skewing 
the resonators properties away from the idealised one used to generate the Helmholtz 
equation. 
 
Anechoic testing of the VCR revealed conclusively instabilities in loudspeaker 
performance for frequency ranges below 100Hz (See Appendix D, Section 3). This 
will necessitate the use of a shorter port for future use. A shorter port will raise the 
frequency range into the stable region between 120Hz to 150Hz. At the time of VCR 
design the sub 100Hz instability was not known to be significant, as it would be 
negated in ENC compensation. Only through extensive testing in the continuous QPS 
procedures was the sub 100Hz region found too variable to compensate for. This led 
to the shorter 51mm port being used for much of the continuous QPS. 
 
4.5.8 Applications – Produce and mineral testing 
Close grouping of results for all sample types tested suggest the variable chamber 
resonator (VCR) using dynamic Q profile shifting (QPS) is a viable measurement 
technique, capable of sufficient accuracy to be able to sort a range of sample types to 
within 1% of their true volume (+0.2% chamber volume). Measurement times are 
typically between 2-3 seconds and require temperature stability and measurement 
accuracy of 0.1ºC. Temperature compensation is incorporated in the software 
algorithms, but sudden fluctuations can cause significant measurement errors. 
 
Differences in sample hardness, geometries and morphologies have a considerable 
effect on the resonator’s behaviour. This was seen in deviation volume trends for the 
various produce and mineral sample types. The regular grouping and trends between 
like samples indicates the VCR using dynamic QPS has potential in applications 
where rapid, medium accuracy volume determination is required. The lack of existing 
research in this area makes comparisons and analysis difficult and as such highlights 
the need for a more in-depth investigation on the acoustic properties of produce and 
minerals samples within a Helmholtz resonator. 
 
The only other known rigorous studies on the effects of solids in a resonant chamber 
are those by Leung et al. (1982) and Barmatz et al. (1983). Both performed tests using 
solid spheres of different sample materials (plastics, aluminium and steel) in a ½ wave 
resonant cavity. They noticed no appreciable differences in acoustic behaviour for the 
different sphere materials. This was to be expected, as the acoustic impedance of most 
solids is at least fifty thousand times that of air. Therefore, impedance coupling would 
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be expected to be very poor with most of the acoustic energy reflected off the solid by 
scattering. 
 
The volume deviation in the Q profile with increasing sample size makes the QPS 
applicable to small sample to chamber volume ratios where the sample does not 
unduly alter the chamber dynamics. This in turn limits the achievable accuracy, but 
may be acceptable where speed of measurement is required. Should more accurate 
measurements be required the VCR’s volume can be readily changed to suit the 
sample volume and the resonant hunting method used. The traditional frequency 
scanning method’s accuracy is greatest for large sample to chamber volume ratios. In 
contrast, the QPS accuracy is inversely proportional to the sample size, the smaller the 
ratio of sample to chamber, the more accurate the measurement.  
 
Measurement times are typically 30 to 40 seconds using resonant hunting. This can be 
significantly improved upon if the sample volume is already roughly known. For 
example if kiwifruit were to be sorted they could be weighed first and their volumes 
calculated based on a kiwifruit’s typical average density. The resonator could then 
perform a narrow sweep based on a known volume range and temperature. This 
method could reduce the scanning time to between 10 and 15 seconds, dependent on 
the density range of the sample type. 
 
Both QPS and frequency scanning techniques are sufficiently sensitive to distinguish 
hidden void spaces larger than approximately 2% of the sample volume, as might be 
present in citrus fruits, apples and some mineral samples. It is also able to detect 
punctured samples, as may occur with capsicums and apples. A puncture was found to 
give highly aberrant volume measurements due to acoustic resistance between the 
internal cavity and the exterior. The cause was consistent with calculations for the 
boundary layer dimensions given the resonator configuration. 
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Chapter 5 
 

Conclusions and recommendations 
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5.1 Conclusions 
The aims of this investigation were met by the successful measurement of volume for 
specific liquid, solid and particulate matter to a high accuracy. It was established that 
the accuracy was a function of the resonator chamber volume, for tested volumes 
between 1L and 3.5L. Two distinct and new methods were developed for this 
investigation: 1) the resonant hunting technique and 2) the Q profile shifting 
technique. 
 
Traditional frequency scanning methods were found to be slow. To improve this, a 
resonant hunting technique was developed enabling a reduction in measurement times 
to approximately 40 seconds with an accuracy of +0.1% of the chamber volume. It 
was found that acoustic absorption in the chamber bed material reduced the 
achievable accuracy when measuring the volume of particulates. 
 
A novel approach using Q profile shifting (QPS) was tested and found to be 
successful in volume measurements on liquids and solids. The accuracy for QPS was 
similar to the resonant hunting method. The QPS method was further improved using 
environmental sound level compensation techniques and temperature drift 
compensation. The QPS method was able to reduce measurement times by a factor of 
ten - approximately 3 seconds - at the expense of reducing the maximum sample-to-
chamber fill ratio of less than 15%. 
 
5.1.1 Characterising the fabricated resonators 
A resonant hunting algorithm was developed to allow resonant frequencies to be 
determined more rapidly than traditional frequency sweep methods. A short burst of 
pink noise (random frequencies at equal power) is applied that allows approximate 
identification of the resonant frequency. This was followed by two short frequency 
sweeps (chirps) over a narrow range to locate the resonant frequency to within 
+0.005Hz. This process reduced measurement time to around 40 seconds. 
 
Environmental acoustics significantly alter the incident sound pressure level at the 
port of an uncoupled Helmholtz resonator. Therefore, it is recommended to use a 
dedicated anechoic chamber to house future systems that do not incorporate 
environmental normalisation curves. 
 
Flange factors for determining the port length extension were found experimentally to 
be 1.375 for both the asymmetric 170mm port and 51mm port with a radius of 22mm 
mounted on a 3L chamber. In these instances, for an un-flanged port, the flange factor 
was frequency and port length independent. Therefore, the un-flanged factor was a 
function of port radius only. When flanging material was added to the exterior port (to 
a maximum ratio of approximately 8:1) the flange factor was found to be a function of 
the port length. 
 
5.1.2 Repeatability of measurements using resonators 
Using a standard 3L resonant chamber repeatability of measurement was better than 
+1mL, provided chamber disassembling is not required. Uncertainty increased to 
+3mL when testing objects requiring chamber disassembly. Future resonators need to 
eliminate assembly/disassembly O-ring compression uncertainties. 
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Significant discrepancies were found in calculated Q factor values when compared to 
measured Q factors. It is believed this is due to large thermal and viscous losses 
occurring at higher sinusoidal velocities at resonance that are not accounted for in 
standard theoretical Q factor calculations. 
 
5.1.3 Temperature effects 
Temperature measurement and compensation is essential for high accuracy 
measurements. Temperature compensation was in part responsible for the high 
repeatability of measurements despite temperature changes of up to sixteen degrees 
Celsius over the course of this investigation. 
 
Using a standard theoretical relationship for the sound of sound based on temperature 
results in a linear value of 0.587m/s/ºC over the temperature range used in this 
investigation. When this value was indirectly measured by experiment using the 
Helmholtz equation it was found to be 0.534m/s/ºC. The resulting extra temperature 
correction being a variable β times c. The beta term is responsible for other 
temperature sensitive variables in the Helmholtz equation. These include the length 
extension and the small signal approximations that are negated in lumped parameter 
analysis.  
 
5.1.4 Calibrating the asymmetric single port resonator 
Appropriate calibration curve fitting was required when either solid samples or water-
filling displacement occurred within the resonant chamber. All chamber 
displacements caused second order volume deviation in calculations. With second 
order compensation the Helmholtz resonance equation provides a method for 
measuring to an accuracy of better than +0.1% of full-scale fill volume of liquids, 
solids and granular materials larger than 15mm diameter, placed within a suitably 
designed chamber. 
 
5.1.5 Effects of port symmetry 
A symmetric configuration having two un-flanged port ends had significant scatter in 
the results when calibration was attempted using water at various fill levels. The un-
flanged symmetric resonator was not able to give as accurate results. The limited 
filling potential and high scatter make the symmetric resonator inappropriate for high 
accuracy volume measurement. 
 
5.1.6 Effects of sample irregularities 
Results from testing spherical and cubic samples in a 3L chamber showed a rapid, 
almost exponential rise, in over prediction at a threshold sample size. This trend was 
not seen in the 1L or 2L configurations. Despite this, corrective curve fitting was 
applied to the deviation volume and an accuracy of +0.1% of full-scale fill was 
maintained. 
 
Acoustic barriers were formed using a number of movable flat disks within the 
resonant chamber. When a disk’s area became larger than 20% of the chamber area its 
surface area was found to significantly alter the resonant frequency. Additionally, 
changes were also observed in the resonant frequency when any of the disks were 
within the top15% of the chamber surface. The height at which the area of a disk 
affects the resonant frequency was found to be a function of the disk area. Hence, the 
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larger the area of the disk the lower the height at which it starts to alter the resonant 
frequency. 
 
The effect on frequency caused by the disks was more pronounced than any of the 
solids tested, effectively partitioning the chamber. Therefore, the bounded volume 
inferred from disk height data represents the worst-case impedance effects a sample 
could have. 
 
5.1.7 Measurement of granular materials 
For collections of particles, whose average particle diameters are between 1mm and 
15mm, accuracy can be maintained to within +0.5% of full-scale fill. Particles having 
sizes larger than 15mm diameter are capable of being measured at accuracies similar 
to individual solid samples (+0.1% of full scale fill) 
 
When the measured average particle diameter drops below 1mm the boundary layer 
effects result in dominant thermal and viscous forces. This limits sound penetration 
into the bulk material; hence measurements start to become indicative of bulk volume 
rather than particle volume. 
 
Measurements of particles with diameters less than 1mm also show significant 
resonant peak broadening. Energy absorption by these small particles limits 
measurements of fill ratios to less than 50%. Accuracies of approximately +1% of 
full-scale volume are achievable in the range where measurements can be made. 
Appropriate curve fitting is required for all granular materials. The coefficients 
required are readily found through experiment using the given material. 
 
5.1.8 Effects of air leaks on resonant frequency and Q factor 
Air leaks in a Helmholtz resonator cause significant changes to the resonant 
behaviour. It was found that even a small hole resulted a large reduction in Q factor 
and caused resonant peak broadening. In instances of multiple air leaks distinct 
relationships were observed in resonant frequency and Q factor. Resonant frequency 
increased linearly with increased number of holes whereas Q factor reduced by a 
logarithmic factor based on hole size and number. 
 
A far more pronounced effect on frequency was observed when a single air leak 
having a variable size was made the subject of investigation. The larger boundary 
layer effect for an increase in air-leak size caused the Q factor to drop rapidly from a 
no leak value of 60 to a minimum of 18 for a 6mm diameter hole. Air-leaks larger 
than 6mm allowed the air-leak to act as a secondary port. The pinch off in the hole, 
caused by the boundary layer, was unable to restrict bulk airflow through the hole 
over a certain diameter. 
 
5.1.9 Effects of sample position on volume measurements 
Mapping of the chamber showed that an object placed in the immediate vicinity of the 
port greatly altered the resonant frequency. This included obscuring any part of the 
internal flange, which altered the planar point source assumption in volume prediction 
calculations. 
 
Moving a sample through the chamber lengthwise revealed that the port’s moving 
mass of air penetrates deeply into the chamber, three times greater than the theoretical 
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length extension suggests. However, this length extension ‘tail’ does not significantly 
alter volume prediction. Generally though, samples should be placed in the centre of 
the chamber for volume measurements with a dual port resonator and at the base for a 
single port resonator. 
  
5.1.10 Controlled decent and free falling sample using a dual-port resonator 
Comparable accuracy was achieved for a 3L dual port resonator, when using 
microphone signal attenuation information with Q profile shifting (QPS). This new 
method makes predictions of resonant frequency based on amplitude changes with 
temperature compensation. A significant advantage is a near instantaneous volume 
measurement. Only one calibration curve is needed and all subsequent measurements 
are made from this. Temperature compensation allowed for temperature stability over 
changes greater than 10ºC. The maximum controlled drop speed was found to be 
approximately 100mm/s in order to gather sufficient data points for analysis. 
 
Free fall measurements were not possible as there was a general lack of data in the 
critical region required to interpret either changing frequency or amplitude. Sufficient 
differences in signal were seen in amplitude variation to warrant future investigation 
into new methods. Phase shifting information represents another alternative that could 
yield potentially useful results. However, phase resolution information is not yet 
adequate. 
 
5.1.11 Environmental normalisation curve (ENC) 
An acoustical equalisation procedure was developed to allow removal of unwanted 
environmental (diffraction/reflection) and loudspeaker components that interfere with 
Q profile analysis. This method was applied to experimental work in Chapter 4. An 
Environmental normalisation curve (ENC) method was essential to allow 
measurement of samples larger than 2% of full-scale chamber fill using Q profile 
Shifting. At over 2% the environmental affects were found to be increasingly non-
linear. The ENC profile could be post fitted to existing data or used in real time signal 
generation to produce flat (+0.4dB) frequency response curves. 
 
5.1.12 Continuous Q profile shifting technique 
A continuous volume measurement system was developed using Q profile shifting 
techniques developed earlier and environmental normalisation methods coupled with 
empirically derived flange factors and temperature factors for the speed of sound. To 
provide additional accuracy linear interpolation was used on normalised Q profiles 
having a large number of data points. 
 
The new method allowed samples to be continuously added and removed from a 
resonant chamber in which dynamic volume measurements could be made. 
Measurement time was between 1-3 seconds depending on the stability of the 
environment. Accuracy was similar to the traditional frequency scanning method and 
remains constant for up or down scaling of the chamber volume. Using temperature 
information, the system was able to measure volumes without drift over a range of 
temperatures from 8-24ºC. 
 
Q profiles were found to remain sufficiently regular for fill levels up to 1/6 full-scale 
fill. The maximum volume fill level was generally restricted to 1/10 full-scale fill. Q 
profiles were also found to remain stable over the range of temperatures measured (8-
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24ºC). Granular materials cannot be used with QPS. Because of their porous natures 
the samples have an associated acoustic resistance causing attenuation of the resonant 
peak. This attenuation is indistinguishable from that caused by the inclusion of a 
sample. 
 
5.1.13 Inverted port resonators 
A new design of resonator was investigated incorporating an inverted port. Resonant 
frequency prediction using traditional theory yielded values within 3% of those 
measured. Q factors were highly compromised by significant boundary layer effects 
causing acoustic resistance. Despite this the inverted port resonator could be used for 
medium accuracy volume measurements requiring no seals and easy access of the 
chamber. 
 
5.1.14 Variable chamber resonator (VCR) 
Initial testing with the VCR was able to confirm that further stiffening of the resonator 
body was not able to raise the Q factor of the system above 60. Q factors for a range 
of chamber volumes were similar to those observed using the Perspex™ body 
resonator in earlier experiments. Therefore, energy losses to the system were 
primarily boundary layer acoustic resistance and radiation resistance. 
 
A number of further improvements in the Q profile shifting algorithms were made to 
better predict the Q profiles when a volume displacement occurred in the resonant 
chamber.  These included rebuilding the Q profile dynamically as the frequency shift 
was taking place. The success of this procedure was verified when samples up to 5% 
of full-scale fill were observed to have standard deviations of less than 0.4dB between 
predicted Q profiles and real, as measured, Q profiles. When the displacement was 
increased to 10% the standard deviation increased to approximately 0.8dB. 
 
Accuracy for the VCR was compromised to +0.2% (+7mL) of full-scale fill due to 
instabilities in the sub 100Hz range over which the VCR operated. In future work the 
port will need to be decreased in length to raise the resonant frequency into the stable 
region above 120Hz. Loudspeaker instabilities were revealed to be the cause in 
anechoic testing of the VCR and loudspeaker. 
 
5.1.15 Applications – Produce and mineral testing 
The variable chamber resonator (VCR) demonstrated its practical usefulness in being 
able to accurately size both produce and mineral solids to within 2mL when using 
dynamic Q profile shifting and a resonator chamber volume of 3.5L. Similar 
accuracies were observed using standard frequency scanning techniques. Both 
techniques are sufficiently accurate to detect hidden void spaces larger that 2% of the 
sample volume and the presence of a puncture in a sample containing an internal 
cavity (e.g. a holed capsicum). 
 
The resonant hunting method could be employed for mineral and produce sorting by 
using the VCR with an appropriately chosen chamber volume to sample volume ratio 
and applying a narrow sweep. However, measurement time would still be between 10-
15 seconds. The reduction in sweep time from 40-50 seconds to 10-15 seconds can be 
gained by knowing the sample weight and average density before a volume 
measurement is performed. This information would allow a localised sweep to be 
performed. 
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Volume measurement accuracy can be increased to +1mL when using a suitably sized 
chamber volume (2L) and the resonant hunting method, as was found for greywacke 
and schist samples. This represents an accuracy of +0.05% for samples having a 
narrow size range (<5% chamber volume). This will increase to +0.1% for larger size 
ranges (>5% chamber volume). 
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5.2 Recommendations 
 
A number of areas for further investigation have been identified as being important in 
the volume measurement of liquids, solids and particulate matter. There is little 
existing literature referring to these problems. Therefore, these will need to be 
addressed in order to improve the Helmholtz volume resonant measurement system. 
 
5.2.1 Energy in resonance, improving the Q factor 
Further investigation into optimal vibration energy storage in a resonator using non-
lumped parameter techniques would increase the potential accuracy. If the Q factors 
could be enhanced the potential accuracy would likewise be extended, as the 
resolvability of resonant frequencies would be increased. The accuracy in determining 
the resonant frequency determines the uncertainty in any given volume measurement. 
 
5.2.2 Thermal heating and temperature inside the resonator 
Further temperature investigation needs to be conducted to ascertain the acoustic 
heating that may be taking place within the chamber and port due to the viscous 
energy dissipation. To enable this a number of small low mass thermistors or 
thermocouples need to be implemented in the port and chamber. This further 
investigation could provide additional information on temperature gradient 
discrepancies calculated in this study. Additionally humidity should be measured to 
ascertain its effects on frequency at resonance. 
 
5.2.3 Broadband noise from particle reemission of sound 
A more complete understanding of maximum fill ratios for different particle sizes 
could be gained if the bed depth of granular material in the chamber could be 
increased. The sound reemission from the particle bed limits the maximum fill ratio 
for the chamber. At a fill level determined by the average bed particle size the level of 
reemitted sound becomes larger than the driving sound source. It may be possible to 
make volume measurements based on either energy absorption or increases in 
broadband noise. 
 
5.2.4 Effects of particle shape when testing granular materials 
Achievable measurement accuracies for different particle types could be increased 
through better data interpretation, as there is likely to be relationships between 
granular sample shape, particle size and chamber size. Also investigation of powder 
dilation needs to be undertaken for aerated systems. 
 
5.2.5 Phase shifting method of measuring sample volume 
A larger phase shift would give better resolution in measurement. This could be 
gained by using a wider port with a smaller chamber than was used in this 
investigation. Also improvements in phase analysis could be made using more cycles 
and improved algorithms. 
 
5.2.6 Alternate methods for volume measurements of moving samples 
Two methods for measuring volume remain untested, but may be viable. The first 
using the transition time for the sample to traverse the port and second, the change in 
microphone signal level observed as the object passes through the port. Both these 
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methods rely on the sample being roughly spherical. These two methods may also be 
suitable for free falling samples. 
 
By performing a numerical integration on the microphone signal perturbation there 
may be sufficient data for a volume measurement. However, refinements in data 
acquisition would need to be conducted to establish its plausibility. Alternatively a far 
higher driving frequency may give more cycles in the central region within the 
chamber. This would have to be considered carefully as higher frequencies cause 
more significant pressure differentials within the chamber and port. 
 
5.2.7 Measurement of surface hardness and structure 
Measurement of produce and minerals samples revealed distinct differences in 
behaviour based on surface texture, morphology and hardness. The role each plays in 
changing the acoustic impedance within the chamber will need further investigation. 
 
5.2.8 Energy impulse response 
An acoustic impulse method may provide an alternative to the sustained excitation 
methods used in this investigation. Information on the acoustic impedance within the 
chamber and hence the volume of the object may be revealed by applying a burst of 
energy at a given frequency and measuring the decay curve. 
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Appendix A 
Mathematics of acoustics 

1. The wave equation 
The material that follows has been assembled and integrated into a consistent form the 
following authors: Kinsler and Frey (1962), Blackstock (2000), Boyce and DiPrima 
(1997) and Fung (1994). It covers the relevant acoustics fundamentals, boundary 
value solutions and elements of continuum mechanics. 
 
The continuity, conservation of momentum and the isentropic equation of state are the 
three equations fundamental for deriving the wave equation. A complete solution 
would also contain the conservation of energy equation, but is unnecessary here 
because the body forces such as from gravity have almost no effect at the scale under 
investigation. Two other forces left out due to their small effects are those from 
viscosity (See Appendix A, Section 11) and those losses caused by flow. Blackstock 
(2000) states that these forces are many orders of magnitude smaller than those 
considered. 
 
For a bounded region the density change of that system must be equal to the mass 
flow in or out of the region, Equation (1.1), continuity condition. 
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where ρ is the density, u is the particle velocity x is the particle position and t the time. 
This may be expanded out to Equation (1.2) or as (1.3) in Eulerian form. The Eulerian 
or total material form can be derived by noting that Dρ/Dt = ∂ρ/∂t+u∂ρ/∂x or the total 
density change with time is equal to the relative density change with time plus the 
particle velocity multiplied by the change in density with position. 
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Similarly for momentum, the rate of increase in momentum of a closed bounded 
region must equal the total inflow of momentum plus the total forces acting on that 
region or in its mathematical form, Equation (1.4). 
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Expanding out the partial derivatives gives Equation (1.5). 
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By observing that the first and third term are in fact the continuity equation a 
reduction can be made resulting in Equation (1.6) or in its Eulerian form Equation 
(1.7). 
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Using the differential relationship between the speed of sound, pressure and density 
c2=dp/dρ for an isotropic system Equation (1.8) can be derived. The speed of sound 
becomes proportional to the ratio of molar specific heats(γ), the universal gas constant 
(Rc), the temperature in Kelvin (Temp)and the molecular mass of the air (M). 
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A difficulty arises in trying to resolve the continuity, momentum and isentropic 
equations, as they are non-linear. A linearisation is possible between the three 
equations by observing that some terms in these equations are orders of magnitude 
smaller than others; these are often called small signal approximations (Blackstock, 
2000) and are given in Equations (1.9). 
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With the reduction in complexity brought about by small signal assumptions 
Equations (1.10) to (1.12) result, where δρ=ρ-ρ0 and δp=p-p0. 
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Differentiating the isentropic state Equation (1.12) with respect to time gives Equation 
(1.13). Then substituting Equation (1.13) into the continuity Equation (1.10) and 
multiplying by c0

2 gives Equation (1.14). This can then be differentiated with respect 
to time to give Equation (1.15). Differentiating the momentum Equation (1.11) with 
respect to position to give Equation (1.16) and combining with Equation (1.15) results 
in the classical wave Equation defined by pressure, Equation 1.17. 
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A similar method for deriving the wave equation in terms of particle velocity can be 
used by differentiating Equation (1.13) with respect to position, the momentum 
Equation (1.11) with respect to time and combining to give Equation (1.18). 
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2. Solutions to the wave equation for Helmholtz resonator 
The wave equation is expanded upon to make up the oscillatory conditions existing 
within the resonator. The second term in Equation (1.18) is zero because the 
resonator’s dimensions are small compared to the wavelength, lumped parameters. 
Therefore, the velocity does not vary with position within the confines of the 
chamber. Three extra terms are needed to complete the equation. The mechanical 
spring force generated by the air trapped in the chamber; the acoustical resistance 
generated by sound radiated away from the system; and the driving force causing 
oscillation. Hence, the losses from the system must be equal to the driving force plus 
the force of oscillation. 
 
The forced mechanical oscillator can be rewritten in mathematical form, Equation 2.1, 
in which the oscillation is described in terms of position. The first term is Newton’s 
second law of f=ma, where a=d2x/dt2. The term Rmdx/dt represents acoustical energy 
lost to the system through mechanical and radiation resistance. The third term sx is the 
restorative spring force and feiωt is the complex driving force. In this form the position 
is a vector quantity but the solution will be solved for the one-dimensional case only. 
The partial derivative for position becomes a regular derivative, as the velocity is not 
changing with position. 
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The mass m is the mass of air in the port, which is equal to ρ0lpsp, the air density times 
the corrected port length times the CSA of the port. Rm the mechanical resistance 
generated by acoustic radiation resistance and is defined by (ρ0ck2sp

2)/2π (See 
Appendix A, Section 6). The stiffness or restoring force s and is equal to (ρ0c

2sp
2)/V 

(See Appendix A, Section 10). 
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Equation (2.1) is a linear, non-homogeneous, second order differential equation with 
an undetermined coefficient. The general solution is well known to be of the type 
x=Aeiωt, where A is complex (Boyce and DiPrima, 1997). Performing the necessary 
differentiations and substituting gives Equation (2.2), in which A is directly resolvable 
as Equation (2.3). Therefore x is expected to be of the form Equation (2.4). 
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The term in the denominator is the mechanical impedance Zm, Equation (2.5), and 
contains the real mechanical resistance (Rm) and the imaginary mechanical reactance 
(Xm). The mechanical reactance is equal to ωm-s/ω. As a consequence the natural 
relationship between reactance and resistance can be written as Equation (2.6), the 
phase angle φ between Xm and Rm. 
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Therefore, the position can be written in terms of the forcing function, the angular 
frequency and the mechanical impedance, Equation (2.7). The first derivative of 
Equation 2.7 with respect to time will give the velocity, Equation (2.8). Equations 
(2.7a) and (2.8a) are given for the real components. 
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From these relations it can be seen that the maximal position will be f/ωZm and the 
maximum velocity f/Zm. 
 
For a resonant system the frequency of oscillation is determined at the point where the 
reactance vanishes, Xm=0 or when ωm-s/ω=0. Using the definitions for m and s from 
Equation (2.1), Equation (2.9) can be formed and simplified into Equation (2.10), the 
classical Helmholtz equation. 
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3. Mechanical Power and Q factor for a resonator 
The instantaneous power (Winst) for a resonator is the product of the real components 
of the driving forcing (fCos(ωt)) and the velocity (fCos(ωt-φ)/Zm) resulting in 
Equation (3.1). 
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The average power will be the power delivered over one complete cycle (T). This is 
therefore the integral of Winst over T, resulting in Equation (3.2). Noting that 
Zm/Rm=Cosφ from the trigonometric implication Equation (2.6), an alternative form is 
also shown. 
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The Q factor for a resonant system is then defined by the narrowness of the resonant 
peak. The narrowness is a direct function of the mechanical resistance, the smaller the 
mechanical resistance the sharper the peak. So in designing a Helmholtz resonator 
with a high Q factor the resistance due to viscous losses in the port and acoustic 
radiation need to be kept as small as possible (See Appendix A, Section 7 an 9). 
 
Mathematically the Q factor is the region bounded by the half power points either side 
of the resonant frequency. If the resonant frequency is ω and the half power 
frequencies ωL and ωH for low and high respectively, then the Q factor can be 
represented by Equation (3.3). 
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At the half power point, Equation (2.5), the mechanical reactance must be equal to the 
mechanical resistance. Therefore, Xm = +/-Rm and Xm being ωm-s/ω, Equations (3.4a) 
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and (3.4b) must be true. Combining Equations (3.4a) and (3.4b) and eliminating sp 
gives Equation (3.5). 
 

H

p
Hm

s
mR

ω
ω −=        (3.4a) 

 

L

p
Lm

s
mR

ω
ω −=−        (3.4b) 

 

mR

m
Q

ω=         (3.5) 

 
From Section 6, the mechanical radiation resistance is equal to (ρ0ck2sp

2)/2π and the 
mass of air in the port, ρ0lpsp. Therefore, the Q factor for a Helmholtz resonator can be 
defined by Equation (3.6). Alternatively, ω can be replaced by the classical Helmholtz 
Equation (2.10). 
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4. Mechanical piston radiator 
The sound emitted from the end of the port can be likened to a piston radiator. This 
behaviour is annexed to transmission of sound within the port (See Appendix A, 
Section 11) to allow the derivation of radiation impedance in Section 7. 
 
A fundamental platform on which to derive the pressure function for a radiating 
piston needs to be established to allow an analysis of the piston radiator. The first step 
is to consider sound pressure and velocity of a spherical radiating surface. A piston 
moving in a planar surface behaves like a spherical emitting surface so long as ka<<1 
or the wavelength is considerably greater than the radius of the emitting source. This 
assumption will be used extensively in the following calculations and is true for this 
investigation. 
 
If a sphere is oscillating with a fundamental velocity amplitude of Uo then the specific 
velocity, Us, of the sphere’s surface can be described as Us=UoCos(ωt). However, it is 
more convenient to describe the specific velocity in complex form (Us=Uoe

iωt) to 
allow easy integration in later stages. For the purposes of this investigation the piston 
will never be in the situation where the piston velocity is greater than the particle 
velocity of the medium. The particle velocity can be describe by Equation (4.1) in 
which A is some complex constant and Zs is the specific impedance of the radiating 
source of radius a. Equation (4.1) is a general time dependent/position independent 
solution to the wave Equation (1.23) 
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The specific impedance is derived from the solution to the spherical wave equation 
and is given by Equation (4.2). The angle θ refers to the phase difference between the 
pressure and the velocity. As the port is open to the atmosphere the phase difference is 
equal to π/2. Knowing that ka<<1 the small angle approximation can then be applied 
to the exponential term, Equation (4.2a). The small angle approximation can also be 
used in the denominator of Equation (4.2) where the square root can be effectively 
removed, Equation (4.2b). Using approximations of Equations (4.2a) and (4.2b), 
Equation (4.3) can be formed from (4.2). 
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As the particle velocity is equal to the specific velocity Us, Equation (4.4) can be 
formed from Equation (4.1). Therefore, the complex constant A must be equal to 
UoZsaeika. Substituting the specific impedance into Equation (4.4) and solving for A 
gives Equation (4.5). Again using the small angle approximation of ka<<1 in the 
exponential term, Equation (4.5a) leads to Equation (4.6). After cancelling, A can be 
defined by the primary velocity (U0) and the radius of the piston (a) Equation (4.7). 
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The time dependant pressure and velocity for a spherical wave is defined by 
Equations (4.8) and (4.9). Using the value for A from previous calculation it is now 
possible to completely define p and u for spherical waves at a distance r. 
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The strength Q of the source can be defined as the integral of the dot product of 
specific velocity (Us) and the surface element (ds) or Q =∫ Us. ds. The strength (Q) 
will be the surface area multiplied by the specific velocity if the specific velocity is 
perpendicular to the radiating surface. For a spherical radiator this is 4πa2U0, and 
2πa2U0 for a ½ sphere. Using the definition for source strength of a ½ sphere radiator, 
an equation for the intensity and power can be defined using fundamental Equations 
(4.8) and (4.9), basic Equations. The result is Equations (4.10) and (4.11) 
respectively. 
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With the definitions of a spherical and ½ spherical radiator complete it is now 
possible to analyse the pressure at a distance R from a surface element on the piston, 
Figure 4.1.  The differential Equation (4.12) can be constructed using the definition 
for the pressure in Equation (4.8) and the source strength to assess the infinitesimal 
change in pressure caused by a surface element on the piston radiator at distance R. 
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Figure 4.1 Pressure at distance R from surface element caused by a piston radiator. 
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The distance R can be defined by Equation (4.13). A reduction in complexity is 
required due to the complexity in continuing to integrate Equation (4.12) with such an 
exponential term. By using a farfield approximation the difference between r and R is 
minimal and the phase difference caused by two adjacent surface elements is a 
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function of the angle and not the distance. The farfield describes the area where the 
pressure and velocity from a source is effectively even for a given radius and angular 
region. 
 
A power series expansion of Equation (4.13) is given by Equation (4.14). Only the 
first two terms are required in the farfield as the first confirms that R is approximately 
equal to r and the second gives the phase relationship between surface elements. 
Equation (4.12) can now be rewritten as Equation (4.15) with r in the denominator for 
the amplitude component and the first two terms from Equation (4.14) in the 
exponential term to describe the phase relationship. 
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The surface element ds is implicitly defined as σdσdψ, using this and integrating both 
sides of Equation (4.15), Equation (4.16) is formed. Using a standard Bessel function 
integral, Equation (4.17), the first integral for dψ can be solved. The second integral is 
now defined, in which it is possible to use the Bessel identity xJ1(x) =∫ xJ0(x)dx. In the 
integral defined by Equation (4.18), x=kσSinθ, therefore dx=kSinθdσ. Making the 
necessary substitutions and substituting a for a2/a gives the general solution, Equation 
(4.19). The last term in the square bracket is the decay rate from a source and will be 
used to define the pressure and intensity distributions. 
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The component outside the square brackets of Equation (4.19) is the pressure for a 
hemispherical oscillator defined in Equation (4.8), the only difference being the 
Bessel directivity component. Therefore, small piston radiators on a planar surface 
behave as a hemispherical source. 
 
5. Directivity of a piston source 
As stated previously, the term in the square brackets of Equations (4.19) defines the 
directivity of a piston source. At θ equal to zero, the axis pointing directly out from 
the source, the pressure is largest. The line of equal pressure then decays away by the 
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amount determined by the first order Bessel relationship. Figure 5.1 shows the 
pressure decay as a function of x where x is an angular interval. The points of zero 
crossing are defined by a numerical solution as kaSin θ=3.83. Hence, if ka is small 
and never approaches 3.83 the piston source appears as a hemispherical radiator. If ka 
is greater or equal to 3.83 then irregular lobes appear like those calculated for the 8-
inch speaker source in Appendix C, Section 4. 
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Figure 5.1 Pressure decay from axial direction extending over x, where x is defined as kasin(θ). 

 
Even lobes are 180 degrees out phase with odd lobes, assuming the primary lobe is 
odd. Also the side lobes are considerably smaller in pressure amplitude than the 
primary lobe. For a ½ pressure side lobe the intensity is expected to be a quarter, as 
the intensity is proportional to the pressure squared. The number of lobes will increase 
and the sound from the piston will become increasingly more directional as the 
wavelength decreases and becomes comparable with the radius of the piston. This fact 
is most obvious in Hi-fi systems; the bass from the woofer tends to be omnipresent 
whereas the high frequencies from the tweeters are highly directional. 
 
The directivity can be analysed in respect to angle where the width of the beam is 
defined as the ½ power points (-3dB) either side of the main axis of radiation. For this 
to be true the directivity component must be equal to 1/√2, Equation (5.1). The 
analytical solution to Equation (5.1) solving for θ is given by Equation (5.2). Note: 
the angle is multiplied by two as the directivity function accounts for only the 
clockwise region from the centre axis, i.e. one ½ power point, the angle between the 
two ½ power points is therefore twice this.  
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6. Pressure at the piston source 
For a radiating piston it is important to know not just the pressure in the farfield and 
velocity but also the pressure and velocity at the piston source. This allows the 
calculation of the radiation impedance occurring at the mouth of the port. The 
calculation for the pressure over the surface of the piston can be conducted in much 
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the same way as for the piston at a distance R. The difference is any small element ds 
experiences the force from a remote element ds’ and vice versa. This entails a 
doubling of the integrations required. The first set of integrations is to solve the 
pressure across the piston and the second set to determine the force generated. 
 
Figure 6.1 shows the piston surface with two arbitrary surface elements ds and ds’ 
separated from the horizontal by an angle θ, the radius of ds’ is given by b. To resolve 
the pressure integral, Equation (4.8) must be solved for R in which R is now the 
distance between surface elements, Equation (6.1). The surface element ds at a 
distance R and at an angle θ from the surface element ds’ can be written as 
ds=RdRdθ.  The length of R can vary between 0 - 2bCosθ so this sets the limits of the 
integral over dR. The angle θ between the horizontal and ds can vary between – π/2 
and π/2, this sets the limits for the second integral over dθ. 
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Figure 6.1 Piston face occupied by two arbitrary surface elements dS and dS’ and their 
geometric relations 

 

RdR
R

e
de

ckUi
p

bCos kRi
ti

∫∫
−

−
=

θπ

π
ω θ

π
ρ 2

0

)(2/

2/

00

2
    (6.1) 

 
The solution to the first integral is given by Equation (6.2) and this now gives rise to 
the second integral in the form of Equation (6.3), the solution to which can be found 
by rewriting the integral in its Eulerian complex equivalent, Equation (6.4). Note: the 
integral must be performed over the region 0-π/2 and the final solution doubled to 
allow integral evaluation. The solution can then be found using standard Bessel 
integrals, the zero order Bessel function and the zero order Struve function. The 
Struve function is the complex counterpart of the Bessel function. The final form of 
the pressure at the surface of the radiator is given by Equation (6.7). 
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(6.4) 
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The force exerted by the piston is the integral of pressure generated by all the surface 
elements. As mentioned previously, for any two surface elements ds and ds’, ds exerts 
a force on ds’ and vice versa, hence the force requires a multiplier of two. The force 
integral can now be written as Equation (6.8). The radius b is allowed to extend from 
0 – a and the angle ψ from 0 - 2π. Evaluating left hand integral first gives Equation 
(6.9) with the addition of a 2π term. Use of the Bessel identity xJ1(x) =∫ xJ0(x)dx 
allows the resolution of the Bessel and Struve integrals. The force, Equation (6.10), 
can now be shown to be derived from the specific velocity (Us=Uoe

iωt) and a complex 
radiation impedance term, Equation (6.11). The real (Rr) and imaginary (Xr) part of 
the radiation impedance (Zr) is given in Equations (6.12) and (6.13) respectively. 
Equations (6.12a) and (6.13a) are given for small values of ka. 
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7. Radiation impedance 
The radiation impedance has been defined by Equation (6.11) and as stated contains a 
real and imaginary component. Figure 7.1 shows the relative magnitude of the 
resistive and reactive components with increasing value of ka. For ka<1 the reactive 
component dominates but as the piston becomes a significant part of the wavelength 
the resistive component is larger. The resistive and reactive components are equal for 
ka≈2.8. The first four terms of the power series expansion of the Bessel and Struve 
functions are also given, demonstrating their validity for ka<2.5. For ka<1 the 
resistive and reactive components can be approximated by Rr≈x2/8 and Xr≈4x/3π. 
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Figure 7.1 The Resistive and reactive coefficients for increasing ka and the first four term 

approximations for the Bessel and Struve functions. 

 
The force in Equation (6.8) to (6.10) will be negative when considered in the 
complete definition of the wave equation as the radiation impedance is a restrictive 
force and acts to oppose the driving force. Adding (6.10) to Equation (2.1) it is now 
possible to account for the radiation resistance in the form of Equation (7.1). The 
solution to Equation (7.1) is the same as that for the wave Equation (2.1) and is given 
by Equation (7.2). The mechanical impedance (Zm) has already been shown to be the 
denominator in Equation (7.2), from Section 2. Simplifying Equation (7.2) and 
solving for U0 gives Equation (7.3). 
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Equation (7.3) is identical in form to the mechanical impedance definition of 
Zm= f/U0. The total impedance now consists of that caused by mechanical losses in the 
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port and sound emitted in the form of radiation away from the port. The radiation 
impedance has the same units as the mechanical impedance (N.m/s) and hence can be 
added to that of the established mechanical impedance. The effect of the radiation 
reactance is to add a virtual mass to the mass of air already moving in the port. The 
additional mass of air is given by a frequency dependant relationship, Equation (7.4), 
where the angular frequency can be changed for its wave number equivalent (ω=kc). 
Because ka is small in this investigation the first term in the Struve function 
expansion can be used for the radiation reactance, 8ka/3π. 
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This mass of air must be equal to the mass of air contained in a cylinder of cross 
sectional area equal to the port cross sectional area (ρ0∆lπa2). Hence, the equivalence 
Equation (7.5) can be generated that can then be solved for the change in length 
component ∆l. The resulting Equation (7.6) is the extra effective length generated by 
the radiation reactance that must be added to the physical length of the port. It is 
important to note that this is for a flanged port as all calculations have assumed a 
radiating piston in a planar surface. 
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The power transmitted from the end of the port is defined in the usual way for an 
oscillating radiator as ½RrU0

2. The small value of ka means the first term 
approximation can be used from the radiation resistance Bessel function (x2/8). The 
result is Equation (7.7). 
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8. Flanged and un-flanged ports 
The pressure wave travelling up the port ‘sees’ an effective impedance of zero where 
the wave front is no longer bounded by the confines of the port. In standard 
transmission theory this usually indicates that the wave is reflected and retransmitted 
back down the port. This is not the case; a small fraction of the sound is radiated 
away. The radiation reactance and resistance are shown in figure 7.1 and at small 
values of ka it can be seen that the reactance term dominates. Hence, it is expected 
that only a small proportion of the sound be transmitted away by a real component of 
resistance. It is this fact that also determines the efficiency of a piston of radius a to 
transmit a given frequency of wavelength λ. Accordingly efficient reproduction of low 
frequencies is impossible for a small piston. 
 
Using the radiation impedance it is possible to calculate its equivalent acoustic 
impedance Za. Acoustic impedance is also defined as the radiation impedance over 
the surface area squared (Za=  Zr / sp

2). The radiation impedance is proportional to the 
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surface area (sp) the characteristic impedance (ρ0c) and Rr + Xr from Equations (6.12) 
and (6.13). Combining these gives Equation (8.1), from which it is evident that a 
small value of ka will cause the second term, the reactive component, to dominate. 
The effective mass of air can be calculated and the length extension again shown to be 
equal to 8a/3π, in a similar way to Section 7. 
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An analysis of the un-flanged port end is considerably more difficult than its flanged 
counterpart and is yet to be solved satisfactorily. This is due to the way the plane 
wave emerges from the port end. In the flanged configuration the sound wave in the 
port transitions from a plane wave to a spherical wave upon emerging from the port. 
This change in wave type is accompanied by a complex change in velocity profiles 
around the sharp edged rim of the port and the value of 8a/3π is an upper limit rather 
than a precise value. This result is therefore found using a step change in the wave 
type rather than a continuum. 
 
In the un-flanged port there are two sharp edge boundaries caused by internal and 
external port edges. In addition there is no planar surface (flange) for the spherical 
wave to radiate off. Neither Rayleigh (1896) nor Blackstock (2000) have attempted to 
analytically solve this complex boundary layer problem as velocity approaches 
infinity at the inner and outer edges of the port. Both authors suggest an experimental 
value of between 0.6 and 0.61. 
 
9. Mechanical resistance caused by boundary layer 
To establish the mechanical resistance (Rm) caused by the air in the port, the air 
moving against the surface of the port needs to be evaluated. In acoustical calculations 
the air is usually considered to be an inviscid fluid (viscosity of zero). This is due to 
the air’s very low viscosity (µ=1.78x10-5Ns/m2 at STP). At low viscosities the air 
effectively slips over most surfaces with little shear force occurring between the solid 
boundary and the air. Therefore, very little frictional losses occur. 
 
A series of calculations is required to quantify the viscous shear forces causing 
mechanical resistance to steady airflow. It is possible to evaluate the turbulence 
occurring in the port using the Reynolds number (RN). The Reynolds number is 
described by Equation (9.1) and is a dimensionless value that determines the ratio of 
inertial to viscous forces. It is evident that the low value of viscosity for air in the 
denominator will cause a large resultant Reynolds number. 
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A Reynolds number of 2788 is calculated using the typical dimensions for this 
investigation, a port radius (a) of 0.022m, velocity (U0) the transverse pressure 
velocity of 1.88m/s, at 100Hz and 90dB using Equation (2.8a), and an air density (ρ) 
of 1.2kg/m3. Fung (1994) states that with the best available equipment turbulence 
cannot generally be prevented in systems having a Reynolds number of greater than 
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40,000 and typically starts at about 10,000. Consequently, the airflow in this work can 
be considered laminar. 
 
The region adjacent to where two mediums meet is called the boundary layer. It is 
physically impossible to have two materials in contact and have differing velocities; 
this is called the no-slip condition. Solutions to continuity equation for a viscous fluid 
(Blackstock, 2000) show that the boundary layer (no-slip) region typically manifests 
itself as a parabolic velocity function linking the bulk flow to zero flow at the solid 
boundary (Figure 9.1). 
 
 
 
 
 
 
 
 
         Port surface 
 
 

Figure 9.1 Velocity profile from internal port surf ace boundary. Arrows indicate velocity 
direction and magnitude. The boundary grows linearly with length. 

 
Two important boundary layer effects exist for an oscillatory plane wave in a tube, 
one for viscosity and one for thermal losses. Unlike a steady state boundary layer 
thickness, which increases with distance, an oscillatory pressure wave has a constant 
thickness defined as U0/e and is uniform along the surface length. The combinations 
of viscous and thermal boundary layers form the total boundary layer thickness. 
 
The boundary layer thickness associated with viscosity is defined by the kinematic 
viscosity (v) v=µ/ρ, and the angular frequency (ω) given by Equation (9.2) 
(Blackstock, 2000). For a 100Hz frequency in a port the expected viscous boundary 
layer is 0.217mm. This is consistent with findings by Beranek (1996), in which he 
suggests a lower limit of 4mm and an upper limit of 66mm for the radius of the port, 
at 150Hz. The lower limit of the port radius is determined by the viscous properties 
and the upper limit by the dimensions of the port becoming comparable to the 
wavelength, given by the equations 0.05/√freq and 10/freq respectively. 
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The thermal boundary layer occurs at a transition from adiabatic behaviour of sound 
in air to that of isothermal near the port surface (Blackstock, 2000). The moving air, 
close to the port surface, conducts heat away and represents an additional loss of 
acoustic energy in the port. The thermal mass of the port, aluminium, is far greater 
than the air and as such remains at a stable temperature. The energy in the form of 
sound, changing pressure, is very small and any proportion of this absorbed by the 
port will cause negligible heating. 
 

Boundary 
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U0/e 
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The thermal boundary layer can be described by Equation (9.3) (Blackstock, 2000), 
where Y is the thermal conductivity of air (0.026 W/m.K), Cp the specific heat of air at 
constant pressure (29.11 J/mol.K). By Using the Prandtl number, relating viscosity 
and conductivity, given by Equation (9.4), the thermal boundary layer equation can be 
simplified to a function of the viscous boundary layer. Using the previous viscous 
boundary layer value of 0.217mm this results in a thermal boundary layer of 1.54mm, 
considerably larger than the viscous boundary layer. 
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For this reason the boundary layer losses are associated with the frequency and not the 
sound pressure level. So as the amplitude in the port increases it is expected that the 
thermal and viscous losses should remain constant. The exception to this is at very 
high sound pressure levels (Ingard, 1953). 
 
To ascertain the effects of temperature on the Reynolds number a numerical analysis 
can be undertaken by considering changes to the air viscosity with temperature. Fung 
derives an air viscosity described by Equation (9.5), where vrms is the root mean 
squared molecular velocity give by Equation (9.6). Using the ideal gas law the density 
ρ can be rewritten as Equation (9.7) and the mean free path Lmfp as Equation (9.8), 
Equations (9.6) to (9.8) provided by Halliday et al., 1997. Rc is the universal gas 
constant, Mmol the molar mass, P the nominal pressure, m the mass of air, n the 
number of moles, N the number of molecules and V the volume of air.  
 
The effect of temperature on density and the mean free path tend to counteract each 
other leaving only the molecular velocity dependence. Therefore, the air viscosity is 
proportional to the temperature squared and will have negligible effects over a narrow 
temperature range as was used in this investigation (8-24ºC). 
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Therefore the losses in the port caused by the viscose and thermal boundary layer are 
significant and dominant over those caused by radiation in the form of sound. 
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Changes in viscosity for the narrow temperature range will have negligible effects on 
these parameters. 
 
To calculate the radiation losses it is necessary to calculate the sound transmission 
effects within the port. These include the incident, transmitted and the reflected 
components. The equations describing these effects can be divided into those in which 
the dimension of the system are a significant proportion of the wavelength and those 
that are not. For this investigation the dimensions are considerably smaller than the 
wavelengths used (ka<1). Further details on the power transmitted from the port can 
be found in Section 7. 
 
10. Mechanical stiffness caused by an orifice 
The mechanical stiffness is the effect of the port on the resonator’s ability to pass a 
moving mass of air in and out of that port. The excess pressure change associated with 
the change in density caused by the moving mass of air in the port can be represented 
by Equation (10.1). If the densities are replaced by mass over volume and the mass 
then cancelled, as there is conservation of mass throughout, Equation (10.2) is 
derived. In the port dV=xsp, the small change in particle position multiplied by the 
cross sectional area of the port will be equal to the change in volume, Equation (10.3). 
Multiplying the pressure by the cross sectional area gives the associated force caused 
by the stiffness, Equation (10.4). The terms inside the brackets of Equation (10.4) are 
the stiffness coefficients. 
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11. Acoustic transmission effects 
Transmission effects must be calculated for any propagated wave encountering a 
change of system. This includes a medium change or a physical constraint change, 
both which will be shown to equate to an impedance change. Transmission effects 
include incident, transmitted and reflected components and are usually complex in 
nature. The distribution of energy between these three paths will be entirely 
dependant on the impedance paths as seen by the propagating wave. 
 
The characteristic impedance for any medium is defined as the product of speed of 
sound through that medium and its density (Z=ρ0c). From this information the 
pressures may be calculated for incidence, reflection and transmission. The incident 
pressure is denoted by p+, reflected by p- and transmitted by pt. The coefficients of 
refection and transmission can be defined as the ratios of these respective pressures. 
Equations (11.1) and (11.2) define the reflected and transmitted coefficients. 
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For conservation of energy the incident and the reflected pressure must sum to the 
transmitted pressure, Equation (11.3). Dividing (11.3) by p+ gives Transmit=1+Reflect, 
the relationship between transmission and reflection. Conservation of energy also 
requires the particle velocities to balance. Equation (11.4) states that the sum of the 
incident and reflected particle velocities must equal the transmitted velocity. The 
superscripts refer to the usual incident, reflected and transmitted particle velocities. 
 
 tppp =+ −+         (11.3) 
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Equation (11.3) can be divided through by the characteristic impedance for the 
mediums each of the waves is propagating through resulting in Equation (11.5). The 
incident and reflected propagate through Z1 and the transmitted through Z2. Equation 
(11.5) is then divided through by p+ and appropriate substitution of the reflected and 
transmitted coefficients gives Equation (11.6). Solving for Reflect and Transmit 
respectively gives Equations (11.7) and (11.8), the reflection and transmission 
coefficients in terms of the impedance for the two mediums. 
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From Equations (11.7) and (11.8) it can be seen that the pressure phase relationship 
between incident and transmitted waves is always the same irrespective of the 
impedance change. Whereas the pressure phase relationship for the reflected wave is 
not always the same. Larger secondary impedances retain the incident pressure phase, 
as Z2 –Z1 is positive. If Z2 –Z1 is negative the reflected wave is out of phase by 180 
degrees. 
 
It is often more important to know the power that is incident, reflected and transmitted 
rather than the pressure. By using Equation (8), Basic equations, for the intensity, new 
reflection and transmission coefficients for the power can be derived ς and τ 
respectively. The intensities can be used directly as all the surface areas in these 
instances are identical and therefore cancel. Equations (11.9) and (11.10) show the 
derivation and reduction. Conservation of energy is obeyed as ς+τ=1. 
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If the impedance of the second medium is very large, approaching ∞, the reflected 
coefficient Reflect approaches 1 and no pressure is transmitted as it is all reflected. If 
the second impedance is very small, Reflect approaches –1, a complete out of phase 
reflection and again no pressure is transmitted into the second medium. When Z1 
equals Z2 complete transmission occurs and no pressure or energy is reflected back. 
This represents complete acoustic coupling. 
 
A complete description of the impedance will also include the complex forms of 
pressure velocity and impedance. It is normal for most of these variables to be 
frequency dependent and contain reactive components in addition to the purely 
resistive one. The specific pressure can be defined by some complex oscillatory 
primary pressure such that p(x,t)=P(x)eiωt, which must be a part solution to the 
position independent wave equation, Equation (1.17). Differentiating p twice with 
respect to time gives Equation (11.11). Placing this into the general wave equation for 
pressure gives Equation (11.12), where P is a function of x, this is the Helmholtz 
equation for a one-dimensional system. 
 

( ) ikt
ti

Pek
dt

Ped 2
2

2

−=
ω

       (11.11) 

 

02
2

2

=+
∂
∂

Pk
x

P
       (11.12) 

 
The solution to Equation (11.12) is that of a standard elliptic partial differential 
equation and can be solved by separation of variables. The solution of which is given 
by, Equation (11.13). As the specific velocity is the pressure over the specific 
impedance Us can be represented by Equation (11.14). The subscript 1 indicates the 
primary medium; subscript 2 will be used for the secondary medium. Figure 11.1 
shows the general representation of an impedance change for a given driving source. 
Note: the alpha term is the outward travelling wave as it decreases with distance x and 
the beta term is the inward travelling wave as it decreases with decreasing distance x. 
The inward and outward pressure wave are P+ and P- respectively where P+=αe-ikx 
and P-=βeikx. 
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Figure 11.1 Sound source driving into impedance Z1 which then changes to impedance Z2. 
The distance d=L-x for considering pressure and velocity as a function of the 
distance from the impedance change. 

 
It is more convenient to know the distance from the medium change than from the 
source, defined as d=L-x. With this in mind Equation (11.13) and (11.14) can be 
rewritten as Equations (11.15) and (11.16) respectively. The beta term in Equation 
(11.15) can be multiplied by P+/ P+ and the pressure reflection coefficient R inserted 
for P-/ P+. Similarly the beta term can be replaced in Equation (11.16). 
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Equations (11.15) and (11.16) are now defined in terms of the distance from the 
impedance boundary and both P and Us are functions of d. Therefore, an impedance 
as a function of d can be generated, Equation (11.17). At the boundary where d=0 the 
exponential terms vanish and the impedance of the secondary medium can be defined 
by Equation (11.18), solving for Reflect gives Equation (11.7). 
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So long as Zs1 is not equal to Zs2 a standing wave pattern will be generated and is 
usually defined by the standing wave ratio (SWR). The SWR is the ratio of maximum 
pressure to minimum pressure (SWR=Pmax/Pmin). The pressure at any given location is 
given by Equation 11.15, where the maximum possible pressure is (1+ Reflect) and the 
minimum (1- Reflect). Therefore, the SWR can be defined in terms of Reflect, Equation 

Impedance Z1 Impedance Z2 
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(11.19) or Reflect in terms of SWR, Equation (11.20). The absolute value for Reflect is 
used as only the magnitude of the SWR ratio need be considered. 
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Two important transmission cases exist for the Helmholtz resonator, a pressure 
release tube, port, and a rigid termination, chamber. Both these need to be evaluated 
to examine the pressure, velocity and impedance occurring in each. The port is 
terminated into free space so has a reflective coefficient of –1. The chamber is 
terminated in a solid end and hence has a reflective coefficient of 1. 
 
The solution for an open port can be derived using the existing transmission 
equations. Using Equation (11.15) and combining with the definition for pressure 
given by p(x,t)=P(x)eiωt, noting that is Reflect = –1 and d=L-x, gives Equation (11.21). 
Expanding out the exponential terms and cancelling gives Equation (11.22). At x=0 
Equations (11.23) and (11.24) must be true. These can be combined to derive an 
expression for P+, Equation (11.25). A complete interpretation for the pressure can 
now be formed into Equation (11.26). 
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A similar analysis of the velocity is possible starting with Equation (11.16a) in which 
the substitution d=L-x is made resulting in Equation (11.27). Cancelling the complex 
trigonometric terms expanded from the complex exponentials gives Equation (11.28). 
Using the definition for the velocity at x=0, Equation (11.29) and combining with 
(11.28) at x=0 leads to Equation (11.30). Equation (11.30) can be placed into (11.28) 
to form the complete mathematical description of velocity, Equation (11.31). 
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The velocity may also be solved using the small signal form of the conservation of 
momentum, Equation (11.16). By noting that the first derivative of the pressure with 
respect to position must equal the first derivative of velocity with respect to time. 
Using Equation (11.31) this can be expressed by Equation (11.32). Therefore, the 
integral of Equation (11.32) with respect to time must be the velocity in terms of the 
primary pressure, Equation (11.33). Substituting in k=2π/λ and ω=2π and appropriate 
cancellation then allows a further substitution of the characteristic impedance 
(ρ0c=Z1, from c= λfreq). Finally arriving at the specific velocity, Equation (11.34). 
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The specific impedance can be calculated by dividing Equations (11.26) by (11.34), 
the specific pressure over the specific velocity. The result is Equation (11.35), which 
can be further simplified by changing L-x for d, Equation (11.35a). It may be noted 
that the impedance is no longer time dependant. 
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The specific pressure, velocity and impedance can be calculated in an identical 
fashion for the rigid termination occurring inside the chamber (Reflect = 1). The time 
dependant pressure and velocities are given by Equations (11.36) and (11.37) 
respectively. The time independent impedance is given by Equation (11.38). 
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12. Lumped parameters 
If the chamber and port are small compared to the wavelengths that are driving the 
system and are causing the primary resonance then the system can be broken into its 
lumped components. This is true for all the exploratory work conducted in this 
investigation. 
 
The Helmholtz resonator can be approached in terms of the lumped components 
making up the port and the chamber. The impedance of the port is that of a short open 
cavity and the chamber a mass spring system. Therefore, by considering the sum of 
the impedances for the combined system the resonator system can be solved. It must 
be noted for a resonant system to oscillate, the reactance component of the impedance 
must be zero at the frequency of oscillation. 
 
For a short open cavity, which is effectively what the port is, the specific impedance 
is given by Equation (12.1), derived from Section 11 for an open tube. For 
k(lp+∆l)<<1  the small angle approximation can be used and tangent function ignored 
giving Equation (12.2). Using the definition for the characteristic impedance and 
converting the impedance from that of radiation to acoustic impedance (See Basic 
Equations (No.5) and (No.6), Equation (12.3) is formed. The sound losses to the 
environment caused by the radiation impedance are then added using the acoustic 
impedance of Equation (6.12a). Therefore, the total acoustic impedance generated by 
the port is given by Equation (12.4). 
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The acoustic impedance generated by the chamber is then added as an additional 
lumped component to that of the port. The chamber appears as a closed volume acted 
upon by a radiating piston source and hence can be represented by Equation (12.5). 
The specific input impedance to the chamber can be rewritten in the form of Equation 
(12.6) using the small angle approximation for the tangent function, which is valid for 
klc<<1  (lc is the chamber length), and the definition for the characteristic impedance. 
To find the acoustic impedance the specific impedance is divided by surface area of 
the port, sp. The volume V can then be substituted for the product lcsp allowing 
Equation (12.7) to be formed. 
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The total acoustic impedance can now be equated and as previously stated the 
reactance at resonance is zero. Hence, Equation (12.8) can be formed and reduced to 
Equation (12.9); the second term effectively vanishes at the resonant frequency. The 
classical Helmholtz resonator equation results with appropriate cancelling and 
rearranging, Equation (12.10). 
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13. Diffraction from edge effects 
A detailed analysis of diffraction is not included. There are a number of assumptions 
needed to solve even the simplest diffraction cases. This fact renders the results 
inadequate for the frequencies and dimensions used in this investigation. Even when 
such assumptions are used the results are only valid in the farfield and only for high 
frequencies. The general Helmholtz-Kirchhoff integral needs to be solved for pressure 
in three spatial dimensions and the time dimension, an exercise that would be a 
detailed investigation unto itself (See Blackstock (2000) for an introduction to 
diffraction). 
 
To solve the Helmholtz-Kirchhoff integral the pressure normal to any given 
diffraction source must be known advance. An empirical method would provide the 
most efficient way of analysing the diffraction occurring in complex shapes such as 
the interior and exterior area of the port. Avoidance of excess sources of diffraction is 
advantageous. In this investigation the microphone is within the port and hence does 
not ‘see’ the direct effects of diffraction taking place at the port entrance and exit. The 
microphone is affected by the indirect pressure variations occurring outside of the 
port. These ‘fringing’ effects will cause small secondary variation within the port as 
the interference can be considered a secondary impedance source to the openings. 
These secondary sources are far smaller than the primary ones caused by radiation 
impedances, which are a more significant loss to the system. 
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Appendix B 
Software descriptions and functional block 

diagrams 
 
1. Resonant hunting 
Chamber, port dimension and IIR software filters are set. Timers set duration for pink 
noise (10 seconds) followed by two frequency sweeps (0.1Hz stepping and 0.005Hz 
stepping). The first sweep is 2Hz wide and the second 0.1HZ. The acquisition 
captures frequency data (FFT) and temperature data (RTD) at 40,000 samples per 
second. Amplitude data is converted to dB using 1V signal as a reference value. An 
IIR 3rd order band pass filter is applied to frequency data to remove unwanted pink 
noise frequencies. An IIR 1st order low pass filter is applied to temperature data to 
remove thermal noise. A buffer joins continuous frequency data together to build a 
profile of the resonant peak. The maximum amplitude value is used to calculate the 
chamber volume. Simultaneously a power spectrum is displayed to allow the user to 
determine if resonance has been correctly identified. Once a volume has been 
calculated the user can save the frequency, amplitude, volume and temperature data. 
A function block diagram of this process is given in Figure 1. 
 

 

Figure 1. Resonant hunting 
functional block diagram 
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2. Broad frequency scanner 
Frequency range and IIR software filters are set. ENC profile is loaded for the 
frequency range to be scanned. The acquisition captures frequency data (FFT) and 
temperature data (RTD) at 40,000 samples per second. Amplitude data is converted to 
dB using 1V signal as a reference value. An IIR 3rd order band pass filter is applied to 
frequency data to remove noise frequencies. An IIR 1st order low pass filter is applied 
to temperature data to remove thermal noise. A buffer joins continuous frequency data 
together to build a profile over the frequency range. The maximum amplitude and Q 
factor values are displayed. Simultaneously a power spectrum is displayed to allow 
the user to determine if resonance is occurring. The user can save the frequency, 
amplitude, Q factor and temperature data. A function block diagram of this process is 
given in Figure 2. 
 
 
 
 

 

Figure 2. Broad frequency scanner 
functional block diagram 
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3. Chamber mapping using resonant hunting 
Chamber, port dimension and IIR software filters are set. The user sets the initial 
height for the sample volume to start at and the distance for it to travel. Timers set 
duration for pink noise (10 seconds) followed by two frequency sweeps (0.1Hz 
stepping and 0.005Hz stepping). The first sweep is 2Hz wide and the second 0.1HZ. 
The acquisition captures frequency data (FFT) and temperature data (RTD) at 40,000 
samples per second. Amplitude data is converted to dB using 1V signal as a reference 
value. An IIR 3rd order band pass filter is applied to frequency data to remove 
unwanted pink noise frequencies. An IIR 1st order low pass filter is applied to 
temperature data to remove thermal noise. A buffer joins continuous frequency data 
together to build a profile of the resonant peak. The maximum amplitude value is used 
to calculate the chamber volume. Simultaneously a power spectrum is displayed to 
allow the user to determine if resonance has been correctly identified. Once a volume 
has been calculated the frequency, amplitude, volume and temperature data are saved. 
The stepper motor is incremented 1mm and the process repeated until the maximum 
distance for the sample to travel is achieved. A function block diagram of this process 
is given in Figure 3. 

 

Figure 3. Chamber mapping using 
Resonant hunting 
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4. Q profile shifting 
A four state software system was implemented in the Q profile shifting technique 
(Figures 4-6). The initialise state 0 is the setting of the sample to be used in controlled 
drops. State 1 -Find the resonant frequency via resonant hunting. State 2 - Acquiring a 
Q profile for the empty chamber. State 3 - Perform a controlled drop and analyse 
microphone amplitude data to allow Q profile shifting. 
 
State 1 – Resonant hunting on empty chamber 
Chamber, port dimension and IIR software filters are set. The user sets the initial 
height for the sample volume to start at, drop speed and the distance for it to travel. 
Timers set duration for pink noise (10 seconds) followed by two frequency sweeps 
(0.1Hz stepping and 0.005Hz stepping). The first sweep is 2Hz wide and the second 
0.1HZ. The acquisition captures frequency data (FFT) and temperature data (RTD) at 
40,000 samples per second. Amplitude data is converted to dB using 1V signal as a 
reference value. An IIR 3rd order band pass filter is applied to frequency data to 
remove unwanted pink noise frequencies. An IIR 1st order low pass filter is applied to 
temperature data to remove thermal noise. A buffer joins continuous frequency data 
together to identify the resonant peak. Simultaneously a power spectrum is displayed 
to allow the user to determine if resonance has been correctly identified. A function 
block diagram of this process is given in Figure 4. 
 

 

Figure 4. Q profile shifting 
State 1 – Empty chamber frequency 
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State 2 – Generate Q profile 
A continuous frequency sweep (0.01Hz stepping) is performed based on the resonant 
frequency identified in state 1 (10Hz prior to 1Hz post). The acquisition captures 
frequency data (FFT) and temperature data (RTD) at 40,000 samples per second. 
Amplitude data is converted to dB using 1V signal as a reference value. An IIR 3rd 
order band pass filter is applied to frequency data to remove unwanted pink noise 
frequencies. An IIR 1st order low pass filter is applied to temperature data to remove 
thermal noise. A buffer joins continuous frequency data together to identify the 
resonant peak. Simultaneously a power spectrum is displayed to allow the user to 
determine if resonance has been correctly identified. Q factor is calculated and a 5th 
order polynomial or spline is fitted to the resonant peak profile (Q profile). A function 
block diagram of this process is given in Figure 5. 
 
 
 
 

 

Figure 5. Q profile shifting 
State 2 – Generate Q profile 
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State 3 – Perform Q profile shifting 
A single frequency is output to the loudspeaker based on the resonant frequency 
detected for the empty chamber. The acquisition captures frequency data (FFT) and 
temperature data (RTD) at 40,000 samples per second. Amplitude data is converted to 
dB using 1V signal as a reference value. An IIR 3rd order band pass filter is applied to 
frequency data to remove unwanted noise frequencies. An IIR 1st order low pass filter 
is applied to temperature data to remove thermal noise. A buffer joins continuous 
microphone amplitude data together to identify when the sample is in the centre of the 
chamber. Q profile shifting is performed to match attenuation to that observed for the 
empty chamber and the chamber containing the sample. A volume is calculated using 
the Helmholtz equation based on the predicted new resonant frequency. Microphone 
levels during the drop, Q factor, temperature at start and finish and the Q profile are 
saved. A function block diagram of this process is given in Figure 6. 
 
 

 

Figure 6. Q profile shifting 
State 3 – Perform Q profile shifting 
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5. Continuous Q profile shifting 
A four state software system was implemented for the continuous Q profile shifting 
technique. States 1 and 2 are identical to those used for the previous Q profile 
shifting, Section 4. State 0 - Load an ENC profile to be used in subsequent 
measurements. State 1 - Find the resonant frequency via resonant hunting (Figure 4, 
Section 4). State 2 - Acquiring a Q profile for the empty chamber (Figure 5, Section 
4). State 3 - Perform continuous Q profile shifting. 
 
State 3 – Continuous Q profile shifting 
A single frequency is output to the loudspeaker based on the resonant frequency 
detected for the empty chamber. The acquisition captures frequency data (FFT) and 
temperature data (RTD) at 40,000 samples per second. Amplitude data is converted to 
dB using 1V signal as a reference value. An IIR 3rd order band pass filter is applied to 
frequency data to remove unwanted noise frequencies. An IIR 1st order low pass filter 
is applied to temperature data to remove thermal noise. A buffer joins the last two 
microphone acquisitions and averages them. The percentage difference in level from 
an empty chamber and the one containing the sample is evaluated. The ENC data is 
used to create a corrected Q profile. The corrected Q profile is frequency shifted to 
match attenuation to that observed for the empty chamber and the chamber containing 
the sample. Linear interpolation is used to evaluate the Q profile as it is shifted. A 
volume is calculated using the Helmholtz equation based on the predicted new 
resonant frequency. Temperature at start and finish, Q profiles (raw and ENC 
corrected), the drive frequency, predicted resonant frequency and predicted volume 
are saved. A function block diagram of this process is given in Figure 7. 
 

 

Figure 7. 
Continuous Q profile shifting 
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6. VCR Q profile shifting 
A five state software system was implemented for the continuous Q profile shifting 
technique. State 0 - Load an ENC profile to be used in subsequent measurements and 
offset it based on the amplitude at the driving frequency of the empty chamber. State 
1 - Acquiring a Q profile for the empty chamber. State 2 - Perform a dynamic Q factor 
profile shift. State 3 - Create an ENC profile. State 4 - Check an ENC profile. The 
VCR floor can be raised and lowered via software control. The position will determine 
the interior chamber volume. 
 
State 1 – Acquire Q profile 
Using the chamber volume information an approximate resonant frequency can be 
calculated based on the Helmholtz equation. This removes the need for a pink noise 
burst to identifying the resonant frequency. A two-sweep frequency scan is then 
performed as described in Section 1 to identify the resonant frequency to within 
0.01Hz. Amplitude data is converted to dB using microphone calibration data 
described in Appendix D, Section 3. An IIR 3rd order band pass filter is applied to 
frequency data to remove unwanted noise frequencies. An IIR 1st order low pass filter 
is applied to temperature data to remove thermal noise. A frequency scan is then 
performed over a range to allow for a 15% change in chamber volume. A buffer joins 
continuous frequency data together. Simultaneously a power spectrum is displayed to 
allow the user to determine if resonance has been correctly identified. A function 
block diagram of this process is given in Figure 8. 
 

 

Figure 8. VCR Q profile shifting 
State 1 – Acquire Q profile 
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State 2 – Dynamic Q profile shifting 
A single frequency is output to the loudspeaker based on the resonant frequency 
detected for the empty chamber. The acquisition captures frequency data (FFT) and 
temperature data (RTD) at 40,000 samples per second. The percentage difference in 
level from an empty chamber and the one containing the sample is evaluated. The 
ENC data is used to create a corrected Q profile. The corrected Q profile is frequency-
shifted 0.01Hz and a comparison made with the attenuation observed for the empty 
chamber and the chamber containing the sample. If the attenuation is not equal the 
process is repeated. Each time the Raw Q profile is overlain with ENC data. Linear 
interpolation is used to evaluate the Q profile as it is shifted. A volume is calculated 
using the Helmholtz equation based on the predicted new resonant frequency. ENC 
data, Temperature at start and finish, Q profiles (raw and ENC corrected), the drive 
frequency, predicted resonant frequency and predicted volume are saved. A function 
block diagram of this process is given in Figure 9. 
 

 

Figure 9. VCR Q profile shifting 
State 2 – Dynamic Q profile shift 
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State 3 and 4 – Create and check an ENC profile 
A second microphone adjacent the port measures SPL with the Helmholtz resonator 
port blocked. A continuous frequency sweep (0.01Hz stepping) is performed over a 
frequency range to allow for a change in chamber volume of 15%. The acquisition 
captures frequency data (FFT) and temperature data (RTD) at 40,000 samples per 
second. Amplitude data is converted to dB using microphone calibration data 
described in Appendix D, Section 3. An IIR 3rd order band pass filter is applied to 
frequency data to remove unwanted noise frequencies. An IIR 1st order low pass filter 
is applied to temperature data to remove thermal noise. A buffer joins continuous 
frequency data together. Frequency, amplitudes and temperature are saved to disk. To 
check the ENC profile the same frequency sweep is performed only the amplitudes 
have been reversed based on an average SPL for the initial ENC frequency sweep. A 
maximum and minimum deviation is given in dB to ascertain whether the ENC profile 
is still valid. Figure 10 shows the functional block diagram for this process. 
 
 
 
 

 

Figure 10. ENC profile creation and 
checking 
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Appendix C 
Loudspeaker Parameters  

 
1. Loudspeaker design considerations 
The process of loudspeaker enclosure design is as complex as the procedures for 
developing the resonator and any other specialised area in acoustics. It can be said 
that there are a number of similarities between the two fields, but for the most part 
they are treated quite separately. 
 
Small (1972) stated that the real beginnings of loudspeaker and enclosure design 
started in the 1950’s with a switch from what is now considered the primitive low 
compliance designs to more modern high compliance ones. This principally refers to 
the compliance of the loudspeaker cone (diaphragm) or its stiffness and ‘throw’. 
 
It was important in this investigation to have a known referenced sound source with 
which to generate incident plane waves. Papers by Thiele (1971 and 1973) and Small 
(1972 and 1973) provided excellent details for analysis of loudspeakers and 
enclosures. What follows is a summary of their work, supported by similar findings of 
Beranek (1996). 
 
The chosen enclosure was a sealed air suspension, infinite baffle designs as 
considered by Small, Thiele and Baranek (1996). For the traditional moving coil 
loudspeaker there are two main enclosures those of the vented (ported) types and 
those of the sealed infinite baffle. The sealed air suspension type of enclosure is 
designed to damp all rare projected sound and provide a mass loading for the high 
compliance loudspeaker. 
 
Vented types use the Helmholtz resonator effect to extend the low frequency response 
of a loudspeaker beyond what it is normally capable of. It does this by providing an 
extra radiating piston in the form of the port. The port then resonates at the tuned 
frequency just below the natural resonant frequency of the enclosure to provide a 
secondary sound source. At all other frequencies the port appears as a high or low 
impedance path depending on frequency.  
 
2. Loudspeaker enclosure design 
Keeping the driver within its limitations is most important in enclosure design. To 
achieve this the small signal parameters values must be measured. These values will 
immediately reveal the true characteristics of the loudspeaker, i.e. whether it is of a 
high or low compliance type and therefore whether it is best suited to an air 
suspension, open baffle or ported configuration. Additional information can be 
gathered on the power handling capacity and the reference efficiency to fine-tune the 
enclosure. 
 
Most importantly the resonant frequency of the loudspeaker in free space must be 
considerably lower than that of the system. For an air suspension type of enclosure the 
ratio of suspension to enclosure compliance must be at least three. Additionally the 
resonant frequency in free space must be half the resonant frequency of the 
loudspeaker in the enclosure. The acoustic compliance volume of the loudspeaker 
must be bigger than the volume of the enclosure. Lastly, filling is usually beneficial to 
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the performance, but is best considered in reference to the overall system 
performance. 
 
3. Noise cancellation and echo suppression 
The creation of an equal-potential sound source across a range of frequencies is a 
particular problem in this investigation for creating aberration free resonant Q profile 
curves. The primary reason is loudspeaker non-linearities, echoes, diffraction sources 
and reflections. Recording studios and digital communications applications in the 
cellular phone industry have actively pursued the problem of flat frequency response 
and perceived signal levels. 
 
For cellular phones the main concern is background noise and echo reduction (Scalart 
and Benamar, 1996) for the recording industry and audio enthusiast it is to recreate a 
flat frequency response from their sound system (Everest, 2001). To this end digital 
signal processors are used to provide delays and filtering to the base signal in an 
attempt to compensate for the variety of anomalous effects described. In this 
investigation external noise does not pose a problem but loudspeaker deficiencies, 
diffraction, reflection and echo do. 
 
The problem for the recording industry and audio enthusiasts is to create 
compensation for these effects in a general way that is independent of listening 
position. To achieve this often multiple microphone correlation and signal 
convolution is performed (Everest, 2001). For this investigation the various 
components are statically located and advanced digital signal processor algorithms are 
therefore not required. 
 
By reducing the amount of reflection in a given environment a reduction in the 
dependence on negative phase corrections can be made. Everest suggests such 
measures include rubber supported glass and sound absorbing/diffracting panels. 
These methods are forms of passive noise control and are to be differentiated from 
active ones taking place electronically/digitally. 
 
Everest has identified diffraction from loudspeaker and baffling edges contribute as 
much as +5dB to the perceived sound level at the microphone location. This is caused 
by constructive and destructive interference. Again, to remove dependencies on the 
active control these diffraction sources can be significantly reduced by flush mounting 
the loudspeaker and removing baffling corners by rounding or addition of absorbing 
material. 
 
Echoes are generated from walls and other surfaces that reradiate sound from the 
primary source and those caused by diffraction. The effect of these can be ‘combing’ 
of the sound level at the microphone. Combing is the constructive and destructive 
interference pattern that manifests itself as a series of notches in the frequency 
spectrum. These notches can change frequency with any slight changes in the 
environment. To reduce the influence of the environment, passive control needs to be 
implemented as much as possible. As any active noise control in the form of negative 
feedback used to cancel reflection and diffraction can be negated by slight shifts in the 
notch frequencies. 
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4. Loudspeaker lobes and interference 
Figures 4.1a – 4.1d are calculated polar plots for an 8-inch full range speaker between 
100Hz and 5kHz. They show the narrowing of the primary lobe and appearance of 
secondary lobes with increasing frequency (More complete details of the piston type 
radiator can be found in Appendix A, Section 5). For frequencies lower than 1kHz the 
primary lobe is wide enough to be considered an omni directional source. The 
resonator was tested in off axis positions, as well as on axis located in front of the 
speaker.  
 
It should be noted that side lobes, those not on the primary axis, will have alternating 
negative and positive phase relationships with the primary lobe. This stems from 
Bessel functions being solutions to the pressure wave equation emanating from the 
loudspeaker. Lobe transitions are zero crossings and hence there is expected to be 
regions of zero sound intensity. This phenomena should only occur at frequencies 
where kaSinθ <<1 , i.e. when the wave length is smaller than the speaker diameter, 
where k is the wave number (1/λ), ‘a’ the sound source diameter and θ the off centre 
angle in radians). 
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Figure 4.1a Polar plot of sound intensity for an 8" speaker at 100Hz 
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Figure 4.1b Polar plot of sound intensity for an 8" speaker at 500Hz 
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Figure 4.1c Polar plot of sound intensity for an 8" speaker at 1kHz 
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Figure 4.1d Polar plot of sound intensity for an 8" speaker at 5kHz 

 
It is important the sound source is at a distance where fringe effects caused by edges 
directly adjacent to the loudspeaker are not likely to be present at the port. Fringe 
effects are usually present in the immediate vicinity around the driver, within one 
driver diameter of a secondary radiating edge. 
 
Figure 4.2 illustrates the reradiating effects (diffraction/fringing) that edges have on 
the primary sound source (Blackstock, 2000). Reradiated sound is out of phase and 
can cause both constructive and destructive interference. At distances greater than the 
lowest wavelength, regions of positive and negative attenuation occur at angles 
corresponding to overlap. 
 
Only certain frequencies produce lobes that extend over the radiating surface, Figures 
4.1a – 4.1d. The radiating surface can be considered the 90 - 270 degree axes that the 
loudspeaker is mounted. 
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Figure 4.2 Interference caused by reradiating by sharp edges within proximity of sound 

source (fringing). 

 
Interference effects from reflections are similar to those created by edge diffraction as 
seen in Figure 4.2. Therefore, the sound source should be physically remote from any 
immediate reflecting surfaces, such as walls or plane objects. As accuracy is the 
ultimate goal of this investigation, these small details may prove to be significant. 
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Appendix D 
Calibrations 

 
1. Density measurements of marbles used in granular testing 
A representative sample of twenty marbles used in procedure 7, both large and small, 
were measured using Mitutoyo slide callipers (+0.01mm) and again using the 
buoyancy rig developed for produce and mineral tests. Both the large and small 
marbles were first rolled across a flat surface to ensure they were sufficiently regular; 
then their diameter was measured. From the diameter measurements a total volume 
could be established. Marble glass density was calculated from the total weight for the 
marbles as measured using a set of Mettler PE6000 scales. 
 
Buoyancy was also used as a comparative method for determining the marble glass 
density. The precise volume of all small and large marbles was calculated by 
combining the submerged and un-submerged weights of each collection. From this 
and their collective weights the marble glass density was calculated. 
 
Results for the slide calliper measured glass density were 2.503g/mL and 2.500g/mL 
for the large and small marbles respectively. Buoyancy glass density results were 
2.522g/mL and 2.518g/mL respectively. The values derived from buoyancy testing 
should be more accurate as it was not possible to measure precise marble diameters 
due to their spheroidal (diameters had up to 3% eccentricity) rather than spherical 
manufacture. 
 
2. Calibration of variable chamber resonator, SMC LXPB200 linear actuator 
The SMC LXPB200 linear actuator movement was measured via a set of Mitutoyo 
slide callipers with a stated accuracy of +0.01mm. The linear actuator was moved at 
1mm step intervals as measured from the actuator body to the actuator plate, Figure 
2.1. The range of movement was from 109.71mm to 124.74mm equating to a 0-
300mL volume sample range when using the variable chamber resonator (VCR). The 
step accuracy was found to be +0.02mm; the specified accuracy of the SMC 
LXPB200 linear actuator was +0.03mm. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 The SMC LXPB200 linear actuator diagram showing where calibration 
measurements were taken. 

 
Taking ten repeat measurements of extension from 6.50mm to 116.50mm provided 
checks on the repeatability of the actuator movement. The repeat accuracy was 

Distance 

SMC LXPB200 
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+0.015mm. This shows the repeatability accuracy is greater than linear stepwise 
movement accuracy. Measurements of incremental stepping and repeat positioning 
are both better than the stated data sheet for the SMC LXPB200. The volume 
inaccuracy associated with a 0.02mm error is 0.2mL, which is better than the VCR 
volume measurement accuracy by a factor of ten. 
 
Both a dry and thin water film layer method was used to ensure there were no air 
leaks occurring at the boundary between piston O-ring and the chamber bore. The 
VCR piston position was actuated between 100mm to 115mm dry and the Q factor 
and temperature recorded. This was then repeated with a 50mL thin film of water 
covering the piston. The water would act as a barrier to any potential air gaps that 
may exist. The dry and wet Q factors should be significantly different if any leaks 
were present in the dry tests. Results showed Q factors between wet and dry mirrored 
each other with incremental stepping of the piston position, Figure 2.2, suggesting no 
air leaks for the VCR’s normal operation. 
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Figure 2.2 Q factor tests of VCR when dry and with a 50mL thin water film covering the 

piston. 

 
3. Anechoic chamber calibration of microphone and loudspeaker 
 
An anechoic chamber was used to calibrate the PCB 103A microphones and Realistic 
sound meter at IRL, Lower Hutt, NZ. The reference was a calibrated Quest 2400 
sound meter and 1kHz noise source of 93.6dB. Calibration was conducted at 16.2ºC 
as measured by a calibrated Hart Scientific RTD temperature meter model 1502A. 
 
A broad frequency sweep from 50 – 300Hz was conducted to gauge the influence of 
the loudspeaker in terms of linearity (Figure 3.1). Anechoic testing revealed the 
loudspeaker to within +0.5dB over the range 90Hz – 200Hz and +4dB between 50Hz 
– 300Hz. Measurements were made with a PCB103A microphone. Two other plots 
are given in Figure 3.1 as position 1 and position 2. These are the plots for the usual 
measurement environment during the experimental component of this investigation. 
These show the influence of reflection and refraction and also the need for 
environmental normalisation curves (ENC). The pronounced step in the anechoic data 
below 90Hz made measurements in this region difficult as described in the QPS 
procedures. 
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Figure 3.1  Broad frequency sweep of anechoic chamber and two positions used in non-

anechoic environment. Measurements made with PCB 103A microphone 
mounted 30 degree off axis at 0.5m. Position 2 taken atop of VCR resonator with 
port plug 50 degrees off axis at 0.5m. 

 
In all tests the PCB 103A microphone and Realistic sound meter data was offset to 
coincide with the calibrated Quest meter. This allowed direct comparison of 
sensitivity. Objective tests with a calibrated noise source showed the Realistic sound 
meter was 2.3dB low on its display and 9dB low on its analogue output at 77Hz. 
 
To gauge the response time and sensitivity of the PCB microphone, Realistic sound 
meter and Quest sound meter, all three were subjected to a broad frequency sweep 
between 50Hz – 300Hz, Figure 3.2. Results showed only marginal differences in 
sensitivity and response, Figure 3.3 is given to further highlight any differences 
between the Realistic and Quest sound meter from that of the PCB microphone. Both 
the Realistic and Quest meters have similar deviations. This discrepancy from the 
PCB microphone may be attributed to the weighting C filter built into the two sound 
meters. 
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Figure 3.2  Broad frequency sweep comparison between PCB 103A microphone, Realistic 

sound meter and Quest sound meter taken in anechoic chamber. Fast sweep, 
2Hz/sec 
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Figure 3.3  Broad frequency sweep deviation from the PCB 103A microphone for the 

Realistic sound meter and Quest sound meter taken in anechoic chamber. Fast 
sweep, 2Hz/sec 

 
When a narrow sweep over 65Hz – 95Hz was made the deviation between the PCB 
microphone and the sound meter was negligible. This indicates the sweep speed is 
significant in comparing the devices, Figure 3.4. As mentioned, the weighting filter 
may be responsible for deviations seen in the broad frequency sweep. There was a 
+0.2dB difference detected when comparing the deviation of the microphone to the 
sound meters, Figure 3.5. At the frequency of 77Hz there was less than 0.1dB 
difference and hence this frequency was chosen to calibrate the PCB 103A 
microphone. 
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Figure 3.4  Narrow frequency sweep comparison between PCB 103A microphone, Realistic 

sound meter and Quest sound meter taken in anechoic chamber. Slow sweep, 
0.2Hz/sec 
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Figure 3.5  Narrow frequency sweep deviation comparison between Realistic sound meter 

and Quest sound meter taken in anechoic chamber. Slow sweep, 0.2Hz/sec 

 
The PCB103A microphone calibration was conducted using the Realistic sound 
meter. Both the microphone and the sound meter were subjected to two signal levels 
over a frequency range from 50Hz to 200Hz, Figure 3.6. The signal differential was 
an average of 3dB for both the PCB microphones and the sound meter. This indicated 
they each had the same differential sensitivity. When the output was normalised using 
the environmental normalisation procedure, Chapter 4, the output from the 
loudspeaker was recorded at a steady 86.3dB +0.1dB. By taking this as the objective 
sound level the PCB signal could be offset and correctly calibrated for its sensitivity. 
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Figure 3.6 Calibration tests using 1Vpp and 2Vpp signals generated by DAQ, 

demonstrating a 3dB change in level as measured in the port. Also shown is a 
corrected output profile using ENC data at –37dB. 

 
The output was compared for both the sound meter and the PCB microphone to 
confirm the similarity in sensitivity over a nominal range of 70Hz to 110Hz, Figure 
3.7. The outputs of both were offset to allow direct comparisons. No resonator was 
present; therefore the output was representative of the loudspeaker and environmental 
effects. The average sound pressure level in this instance was 90dB. 
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Figure 3.7 Output from the Realistic sound meter and PCB 103A microphone in 

experimental environment. Amplitude is referenced to a 90dB level (0dB = 
90dB). 

 
The sound pressure level in dB is given by Equation (No.13), Basic Equations. By 
rearrangement the source pressure can be made the subject, Equation (3.1), and hence 
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the sensitivity in volts per kilopascal (VRMS/kPa) can be determined. By noting that 
the PCB microphones are used on the x100 setting, Equation (3.2) can be formed 
which gives the PCB103A’s sensitivity. This calculation is dependant on the reference 
sound level meter’s output (86.3dB). 
 








×= −

20
exp102 5 SPL

P       (3.1) 

 

P

V

P

V
ySensitivit

10

100

1000 ==       (3.2) 

 
where V is the RMS signal voltage measured from the PCB microphone under test 
(8.404mVRMS) and P is the pressure in Pascal of the reference source (86.3dB = 
413.07mPa). The 1000 multiplier in the numerator is due to the sensitivity being in 
kPa and the one hundred term in the divider in the denominator to the x100 setting of 
the PCB amplifier. The sensitivity of the PCB103A microphone was calculated to be 
203.5mV/kPa (-6% from stated datasheet sensitivity, PCB 103A microphones are 
+15% their nominal listed value). 
 
A VCR calibration using variable piston position was undertaken in the anechoic 
chamber to gain a better understanding of how the instability at sub 100Hz 
frequencies affect the accuracy in QPS techniques. The amount of scatter seen is not 
significantly less than that observed in the VCR’s normal non-linear environment, 
Figure 3.8. The reduction in scatter after specific curve fitting is reduced from +7mL 
to +5mL. 
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Figure 3.8 Anechoic chamber VCR volume deviation from true volume using a specific 

correction factor on piston volumes. Resonator has 3.5L chamber with 175mm 
long, 44mm diameter port. 

 
4. Buoyancy uncertainty due to balance deflection 
A small uncertainty in volume determination is possible due to movement in the 
Mettler PE600 scales used. If the scale’s measurement plate deflects significantly it 
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will insert a proportional amount of the immersion stem (used to suspend samples) 
into the water container and cause an error in the buoyancy weight of the sample. To 
quantify this uncertainty two steel blocks were placed either side of the scales and a 
steel rule placed edge on between the blocks. A range of sample weights were placed 
on the scales (0-3.5kg) and the deflection measured from the top of the steel rule to 
the scale’s measurement plate, Figure 4.1. 
 
 
 
 
 
 
 
 

Figure 4.1 Scale deflection tests for establishing buoyancy uncertainty due to the 
immersion stem. 

 
Defection tests revealed changes in height due to weight were linear for sample 
weights under 500g and proportional to 0.0002mm/g. For samples over 500g the 
deflection became parabolic with a defining proportionality of y=–4x10-8x2+0.0004x, 
where x is the sample weight and y the deflection in mm. Most of the produce and 
mineral testing samples were less than 500g in weight. The immersion stem is 5.6mm 
in diameter this gives it an immersion volume of 0.0246mL/mm of deflection. 
Coupled with the deflection coefficient of 0.0002mm/g for the scales this equates to 
approximately 4.9x10-6mL/g. This result is many orders of magnitude smaller than the 
measurement uncertainty in volume by weight. Hence, scale deflection is negligible in 
buoyancy volume measurements. 
 
The water container for buoyancy volume determination had a diameter of 260mm; 
this gave it a height change of 53mL/mm caused by a sample volume change. The 
immersion stem had a volume height change of 0.0246mL/mm, this meant the error 
associated with an increase in water height due to sample submersion was 4.64x10-4 
mL per millilitre of the sample volume. The largest sample measured using the 
buoyancy method was 410mL, therefore, it had an error of 0.2mL. This is the same 
order of uncertainty as the sample’s weight measurement. For the majority of samples 
(<200mL) the error due to an increase in water height is significantly less, less than 
0.1mL. Therefore the buoyancy method should be accurate to +0.2mL for samples 
under 500mL. 

Scales 

Deflection 
Steel rule 

Steel Block 
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Appendix E 
Working drawings and data sheets 
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Drawings for primary Helmholtz resonator: 
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Complete Helmholtz resonator assembly with dual ports and pulley back plate assembly 

 
Pinch roller assembly 
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Speaker enclosure drawings: 
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Drawings for variable chamber resonator:  
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Complete Assembly of variable chamber resonator 
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Drawings for volume buoyancy rig:  
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Data sheets 
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