Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

STUDENT MODELLING AND ADAPTIVITY IN WEB-BASED LEARNING SYSTEMS

A thesis submitted in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science

Massey University, New Zealand

Binglan Han

2001

Abstract

Web-based educational systems are now becoming part of main stream education. As an essential component of the web based educational systems, the student model enables the system to provide individualised course contents and study guidance, and therefore to help the students with different backgrounds and knowledge levels to achieve their learning goals effectively on the web.

A prototype student model was developed in this project for a web based learning system. The architecture of student model is divided in two parts: individual and group student models. The information contained in individual student model includes the student knowledge levels for course contents, study goals, learning styles, preferences, etc. The individual student model is initialised by asking students their behavioural preferences through a questionnaire, and using default information based on stereotyping in the group student model. The model is updated dynamically according to student study times and/or assessment results. The group student model is used for giving guidance to the students. Both navigation and content adaptations are provided based on the information maintained in student models.

A web-based educational system was constructed for implementing and testing the student model. The web-based system adopted a three-tier, client-server architecture. The first tier is a set of HTML frames embedded with Java Applets running in the student's web browser to provide course contents and navigation guides. The middle tier consists of Java Servlets, JSP, and application programs to receive student requests, update student model, and send adaptive course contents and navigation guidance information to the client side. The course contents are stored in XML files that are processed to create the individualised course content presentations. The third tier is the relational database for storing the course structures and contents, and the information in the student model.

This study produced a unique two-fold web-based student modelling system that can be applied to intelligently deliver the courses for a wide range of subject domains.

ACKNOWLEDGEMENTS

I would like to thank my chief supervisor, Dr Kinshuk, Associate Professor, Department of Information Systems, College of Business, Massey University. Thank you greatly for your guidance, advice, and inspiring wisdom throughout this enjoyable programme.

I would like to thank my supervisor, Professor Chris Jesshope, Institute of Information Sciences and Technology, College of Sciences, Massey University. Thank you for your advice and help during the course of this project.

I would also like to express my appreciation to Dr Jenny Zhang, Research Officer, NZEDSoft, Massey University, for her assistance and advice during the course of this project.

Finally, I would like to thank my husband and parents for their support and encouragement, without which this project would not have been completed.

TABLE OF CONTENTS

۸.

CHA	PTER	1 INTRODUCTION	1
1.1	Introd	luction	1
1.2	Web-b	based Intelligent Educational Systems	1
1.3	Advan	ntages of Web-based Intelligent Educational Systems	1
1.4	Importance of Adaptation in Web-based Intelligent Educational Systems		
1.5	Impor	tance of Student Model in Web-based Intelligent Educational Systems	3
1.6	Object	tives of the Project	4
1.7	Desigr	h Approach	4
1.8	Outlin	e of the Thesis	5
СНА	PTER	2 LITERATURE REVIEW	7
CIIA	IIER	2 DITERATORE REVIEW	,
2.1	Introd	luction	7
2.2	Archit	tecture of Intelligent Educational Systems	7
	2.2.1	Standalone Intelligent Educational Systems	7
	2.2.2	Web-based Intelligent Educational Systems	8
2.3	Inform	nation Handling in Web-based Intelligent Educational Systems	10
	2.3.1	Representation of Domain Knowledge (Domain Model)	10
	2.3.2	Information in Student Models	11
		2.3.2.1 Domain-Specific Information	11
		2.3.2.2 Domain-Independent Information	13

2.4	Stude	nt Modelling	18
	2.4.1	Initialisation of Student Models	19
	2.4.2	Update of Student Models	20
		2.4.2.1 Information Used for Updating Student Models	20
		2.4.2.2 Methods Used for Updating Student Models	21
2.5	Usage	of Student Model	22
	2.5.1	Usage of Student Model in Intelligent Educational Systems	22
		2.5.1.1 Knowledge Development	23
		2.5.1.2 Error Remediation	25
		2.5.1.3 Domain Content Representation	26
		2.5.1.4 Exploration Space Control	26
	2.5.2	Usage of Student Model in Web-based Educational Systems	26
2.6	Adap	tation in Web-based Intelligent Educational Systems	28
	2.6.1	Adaptive Presentation	28
		2.6.1.1 General Approaches of Adaptive Presentation	29
		2.6.1.2 Implementation of Adaptive Presentation	30
	2.6.2	Adaptive Navigation	31
		2.6.2.1 General Approaches of Adaptive Navigation	31
		2.6.2.2 Implementation of Adaptive Navigation	33
	2.6.3	Adaptive Collaboration Support	35
2.7	Summ	nary	35
CHA	PTEF		25
		IMPLEMENTATION	37
3.1	Intro	duction	37
3.2	Syste	m Architecture in Relation with TILE Project	37

3.3	Java	and Related Network Technologies Used in this Project	38
	3.3.1	Java	38
	3.3.2	Applet	40
	3.3.3	Servlet	40
	3.3.4	JSP	41
	3.3.5	JDBC	42
	3.3.6	Tomcat	42
	3.3.7	XML	42
	3.3.8	JavaScript	43
3.4	Basic	Structure Design of the Three Tier Architecture	43
	3.4.1	Client Tier	43
	3.4.2	Middle Tier	45
	3.4.3	Data Management Tier	45
3.5	Clien	t-Server Communication	45
3.6	Interface Design of the System		46
3.7	Imple	ementation Details of the Three Tier Architecture	49
	3.7.1	JSP Files and Student Model Interface Package	49
	3.7.2	Student Model Application Package and Servlets Package	51
	3.7.3	Student Model Database Access Package	55
3.8	Syste	m Working Processes	57
	3.8.1	Student Login Process	57
	3.8.2	Student Model Initialisation Process	57
	3.8.3	Student Model Update Process	58

3.9 Summary

59

СНА	APTR 4	4 SYSTEM DATABASE DESIGN AND IMPLEMENTATION	60
4.1	Intro	luction	60
4.2	Know	ledge Representation Database	61
	4.2.1	Components of Knowledge Representation Database	61
		4.2.1.1 Content Tree	61
		4.2.1.2 Concept Network	63
	4.2.2	Requirements for Knowledge Representation Database	64
	4.2.3	Design of Knowledge Representation Database	65
4.3	Indivi	dual Student Model Database	65
	4.3.1	Components of Individual Student Model Database	68
		4.3.1.1 Domain Independent Data	68
		4.3.1.2 Domain Specific Data	69
	4.3.2	Design of Student Model Database	71
	4.3.3	Referential Constraints	74
4.4	Grouj	o Student Model Database	74
4.5	Sumn	nary	75
СНА	PTER	5 STUDENT MODELLIGN IN WEB-BASED LEARNING SYSTEMS	76
5.1	Intro	luction	76
5.2	Initia	lisation of Individual Student Model	76
	5.2.1	Initialisation of Student Domain-Independent information	76
	5.2.2	Initialisation of Student Domain-Specific Information	76
5.3	Upda	te of Individual Student Model	78

5.3.1 Update of Student Domain-Independent information 78

	5.3.2	Update of Student Domain-Specific Information	79
5.4	Updat	te Algorithms of Individual Student Model	83
5.5	Initialisation and Update of Group Student Model		
5.6	Sumn	nary	86
СНА	PTER	CONTROL OF STUDENT MODEL IN SYSTEM	87
6.1	Intro	luction	87
6.2	Usage	of Student Model	87
6.3	Navig	ation Adaptation	87
	6.3.1	List of Recommended Links	88
	6.3.2	Graphic Presentation of Section Competence Level	90
	6.3.3	Graphic Presentation of Concept Competence Level	90
	6.3.4	Cross Reference Links	92
6.4	Content Adaptation		94
	6.4.1	Content Adaptation Based-on Individual Student Model	94
	6.4.2	Content Adaptation Based-on Group Student Model	98
6.5	Sumn	nary	98
CHA	PTER	7 DISCUSSIONS AND CONCLUSION	99
7.1	Intro	duction	99
7.2	Discu	ssions	99
	7.2.1	System Architecture	99
	7.2.2	Domain Model	99
	7.2.3	Student Model	100

V

	7.2.4	Adaptation Approaches	101
7.3	Future Work		102
	7.3.1	Task-Based Stereotyping	102
	7.3.2	Utilisation of More Student Learning Actions	102
	7.3.3	More Flexible Content Adaptations	103
	7.3.4	Multiple Representation Approach	103
	7.3.5	Exploration Space Control	103
	7.3.6	Deactivation of Adaptation	103
7.4	Concl	lusion	104

REFERENCES

105

LIST OF FIGURES

Figure 1-1	Outline of the thesis	6
Figure 2-1	Architecture of standalone intelligent educational systems	8
Figure 2-2	Architecture of distributed web-based intelligent educational systems	10
Figure 2-3	Student's motivational states model	15
Figure 2-4	Structure of student model module and its relationship with	
	other modules	36
Figure 3-1	Scope of this study in relation to the three-tier architecture	39
Figure 3-2	Three-tire architecture of the system	44
Figure 3-3	Design system interfaces	47
Figure 3-4	System working process	60
Figure 4-1	Example of a content tree	62
Figure 4-2	Example of concept network	63
Figure 4-3	Example of section-concept-question relationship	64
Figure 4-4	Logic view of the knowledge representation database	66
Figure 4-5	Logic view of student model database	73
Figure 5-1	Student interface of questionnaire	77
Figure 5-2	Student competence levels update process	82
Figure 6-1	Student interface of list of recommended links	88
Figure 6-2	Student interface of displaying section competence level	91
Figure 6-3	Student interface of displaying concept competence level	91
Figure 6-4	Student interface of displaying assessment section	93
Figure 6-5	Student interface of concept window	93
Figure 6-6	XML files processing steps	96
Figure 6-7	Student interface of content presentation	97
Figure 6-8	Student interface of group student model	98

LIST OF TABLES

Table 3-1	JSP files and HTML files	50
Table 3-2	Student model interface package	50
Table 3-3	Student model application package	52
Table 3-4	Servlets package	54
Table 3-5	Student model database access package	55
Table 4-1	Entities and their attributes of the knowledge representation database	67
Table 4-2	Integer attributes specification of student model database	72
Table 4-3	Entities and their attributes of the student model database	73
Table 6-1	Summary of navigation adaptation methods that are used in the system	95
Table 6-2	Content adaptation methods that can be used in the system	97